1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// \brief The maximum iterations used to merge memory checks 52 static cl::opt<unsigned> MemoryCheckMergeThreshold( 53 "memory-check-merge-threshold", cl::Hidden, 54 cl::desc("Maximum number of comparisons done when trying to merge " 55 "runtime memory checks. (default = 100)"), 56 cl::init(100)); 57 58 /// Maximum SIMD width. 59 const unsigned VectorizerParams::MaxVectorWidth = 64; 60 61 /// \brief We collect interesting dependences up to this threshold. 62 static cl::opt<unsigned> MaxInterestingDependence( 63 "max-interesting-dependences", cl::Hidden, 64 cl::desc("Maximum number of interesting dependences collected by " 65 "loop-access analysis (default = 100)"), 66 cl::init(100)); 67 68 bool VectorizerParams::isInterleaveForced() { 69 return ::VectorizationInterleave.getNumOccurrences() > 0; 70 } 71 72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 73 const Function *TheFunction, 74 const Loop *TheLoop, 75 const char *PassName) { 76 DebugLoc DL = TheLoop->getStartLoc(); 77 if (const Instruction *I = Message.getInstr()) 78 DL = I->getDebugLoc(); 79 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 80 *TheFunction, DL, Message.str()); 81 } 82 83 Value *llvm::stripIntegerCast(Value *V) { 84 if (CastInst *CI = dyn_cast<CastInst>(V)) 85 if (CI->getOperand(0)->getType()->isIntegerTy()) 86 return CI->getOperand(0); 87 return V; 88 } 89 90 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 91 const ValueToValueMap &PtrToStride, 92 Value *Ptr, Value *OrigPtr) { 93 94 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 95 96 // If there is an entry in the map return the SCEV of the pointer with the 97 // symbolic stride replaced by one. 98 ValueToValueMap::const_iterator SI = 99 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 100 if (SI != PtrToStride.end()) { 101 Value *StrideVal = SI->second; 102 103 // Strip casts. 104 StrideVal = stripIntegerCast(StrideVal); 105 106 // Replace symbolic stride by one. 107 Value *One = ConstantInt::get(StrideVal->getType(), 1); 108 ValueToValueMap RewriteMap; 109 RewriteMap[StrideVal] = One; 110 111 const SCEV *ByOne = 112 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 113 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 114 << "\n"); 115 return ByOne; 116 } 117 118 // Otherwise, just return the SCEV of the original pointer. 119 return SE->getSCEV(Ptr); 120 } 121 122 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 123 unsigned DepSetId, unsigned ASId, 124 const ValueToValueMap &Strides) { 125 // Get the stride replaced scev. 126 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 127 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 128 assert(AR && "Invalid addrec expression"); 129 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 130 131 const SCEV *ScStart = AR->getStart(); 132 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 133 const SCEV *Step = AR->getStepRecurrence(*SE); 134 135 // For expressions with negative step, the upper bound is ScStart and the 136 // lower bound is ScEnd. 137 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 138 if (CStep->getValue()->isNegative()) 139 std::swap(ScStart, ScEnd); 140 } else { 141 // Fallback case: the step is not constant, but the we can still 142 // get the upper and lower bounds of the interval by using min/max 143 // expressions. 144 ScStart = SE->getUMinExpr(ScStart, ScEnd); 145 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 146 } 147 148 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 149 } 150 151 SmallVector<RuntimePointerChecking::PointerCheck, 4> 152 RuntimePointerChecking::generateChecks( 153 const SmallVectorImpl<int> *PtrPartition) const { 154 SmallVector<PointerCheck, 4> Checks; 155 156 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 157 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 158 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 159 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 160 161 if (needsChecking(CGI, CGJ, PtrPartition)) 162 Checks.push_back(std::make_pair(&CGI, &CGJ)); 163 } 164 } 165 return Checks; 166 } 167 168 bool RuntimePointerChecking::needsChecking( 169 const CheckingPtrGroup &M, const CheckingPtrGroup &N, 170 const SmallVectorImpl<int> *PtrPartition) const { 171 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 172 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 173 if (needsChecking(M.Members[I], N.Members[J], PtrPartition)) 174 return true; 175 return false; 176 } 177 178 /// Compare \p I and \p J and return the minimum. 179 /// Return nullptr in case we couldn't find an answer. 180 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 181 ScalarEvolution *SE) { 182 const SCEV *Diff = SE->getMinusSCEV(J, I); 183 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 184 185 if (!C) 186 return nullptr; 187 if (C->getValue()->isNegative()) 188 return J; 189 return I; 190 } 191 192 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 193 const SCEV *Start = RtCheck.Pointers[Index].Start; 194 const SCEV *End = RtCheck.Pointers[Index].End; 195 196 // Compare the starts and ends with the known minimum and maximum 197 // of this set. We need to know how we compare against the min/max 198 // of the set in order to be able to emit memchecks. 199 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 200 if (!Min0) 201 return false; 202 203 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 204 if (!Min1) 205 return false; 206 207 // Update the low bound expression if we've found a new min value. 208 if (Min0 == Start) 209 Low = Start; 210 211 // Update the high bound expression if we've found a new max value. 212 if (Min1 != End) 213 High = End; 214 215 Members.push_back(Index); 216 return true; 217 } 218 219 void RuntimePointerChecking::groupChecks( 220 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 221 // We build the groups from dependency candidates equivalence classes 222 // because: 223 // - We know that pointers in the same equivalence class share 224 // the same underlying object and therefore there is a chance 225 // that we can compare pointers 226 // - We wouldn't be able to merge two pointers for which we need 227 // to emit a memcheck. The classes in DepCands are already 228 // conveniently built such that no two pointers in the same 229 // class need checking against each other. 230 231 // We use the following (greedy) algorithm to construct the groups 232 // For every pointer in the equivalence class: 233 // For each existing group: 234 // - if the difference between this pointer and the min/max bounds 235 // of the group is a constant, then make the pointer part of the 236 // group and update the min/max bounds of that group as required. 237 238 CheckingGroups.clear(); 239 240 // If we don't have the dependency partitions, construct a new 241 // checking pointer group for each pointer. 242 if (!UseDependencies) { 243 for (unsigned I = 0; I < Pointers.size(); ++I) 244 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 245 return; 246 } 247 248 unsigned TotalComparisons = 0; 249 250 DenseMap<Value *, unsigned> PositionMap; 251 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 252 PositionMap[Pointers[Index].PointerValue] = Index; 253 254 // We need to keep track of what pointers we've already seen so we 255 // don't process them twice. 256 SmallSet<unsigned, 2> Seen; 257 258 // Go through all equivalence classes, get the the "pointer check groups" 259 // and add them to the overall solution. We use the order in which accesses 260 // appear in 'Pointers' to enforce determinism. 261 for (unsigned I = 0; I < Pointers.size(); ++I) { 262 // We've seen this pointer before, and therefore already processed 263 // its equivalence class. 264 if (Seen.count(I)) 265 continue; 266 267 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 268 Pointers[I].IsWritePtr); 269 270 SmallVector<CheckingPtrGroup, 2> Groups; 271 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 272 273 // Because DepCands is constructed by visiting accesses in the order in 274 // which they appear in alias sets (which is deterministic) and the 275 // iteration order within an equivalence class member is only dependent on 276 // the order in which unions and insertions are performed on the 277 // equivalence class, the iteration order is deterministic. 278 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 279 MI != ME; ++MI) { 280 unsigned Pointer = PositionMap[MI->getPointer()]; 281 bool Merged = false; 282 // Mark this pointer as seen. 283 Seen.insert(Pointer); 284 285 // Go through all the existing sets and see if we can find one 286 // which can include this pointer. 287 for (CheckingPtrGroup &Group : Groups) { 288 // Don't perform more than a certain amount of comparisons. 289 // This should limit the cost of grouping the pointers to something 290 // reasonable. If we do end up hitting this threshold, the algorithm 291 // will create separate groups for all remaining pointers. 292 if (TotalComparisons > MemoryCheckMergeThreshold) 293 break; 294 295 TotalComparisons++; 296 297 if (Group.addPointer(Pointer)) { 298 Merged = true; 299 break; 300 } 301 } 302 303 if (!Merged) 304 // We couldn't add this pointer to any existing set or the threshold 305 // for the number of comparisons has been reached. Create a new group 306 // to hold the current pointer. 307 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 308 } 309 310 // We've computed the grouped checks for this partition. 311 // Save the results and continue with the next one. 312 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 313 } 314 } 315 316 bool RuntimePointerChecking::arePointersInSamePartition( 317 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 318 unsigned PtrIdx2) { 319 return (PtrToPartition[PtrIdx1] != -1 && 320 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 321 } 322 323 bool RuntimePointerChecking::needsChecking( 324 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { 325 const PointerInfo &PointerI = Pointers[I]; 326 const PointerInfo &PointerJ = Pointers[J]; 327 328 // No need to check if two readonly pointers intersect. 329 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 330 return false; 331 332 // Only need to check pointers between two different dependency sets. 333 if (PointerI.DependencySetId == PointerJ.DependencySetId) 334 return false; 335 336 // Only need to check pointers in the same alias set. 337 if (PointerI.AliasSetId != PointerJ.AliasSetId) 338 return false; 339 340 // If PtrPartition is set omit checks between pointers of the same partition. 341 if (PtrPartition && arePointersInSamePartition(*PtrPartition, I, J)) 342 return false; 343 344 return true; 345 } 346 347 void RuntimePointerChecking::printChecks( 348 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 349 unsigned Depth) const { 350 unsigned N = 0; 351 for (const auto &Check : Checks) { 352 const auto &First = Check.first->Members, &Second = Check.second->Members; 353 354 OS.indent(Depth) << "Check " << N++ << ":\n"; 355 356 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 357 for (unsigned K = 0; K < First.size(); ++K) 358 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 359 360 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 361 for (unsigned K = 0; K < Second.size(); ++K) 362 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 363 } 364 } 365 366 void RuntimePointerChecking::print( 367 raw_ostream &OS, unsigned Depth, 368 const SmallVectorImpl<int> *PtrPartition) const { 369 370 OS.indent(Depth) << "Run-time memory checks:\n"; 371 printChecks(OS, generateChecks(PtrPartition), Depth); 372 373 OS.indent(Depth) << "Grouped accesses:\n"; 374 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 375 const auto &CG = CheckingGroups[I]; 376 377 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 378 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 379 << ")\n"; 380 for (unsigned J = 0; J < CG.Members.size(); ++J) { 381 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 382 << "\n"; 383 } 384 } 385 } 386 387 unsigned RuntimePointerChecking::getNumberOfChecks( 388 const SmallVectorImpl<int> *PtrPartition) const { 389 390 unsigned NumPartitions = CheckingGroups.size(); 391 unsigned CheckCount = 0; 392 393 for (unsigned I = 0; I < NumPartitions; ++I) 394 for (unsigned J = I + 1; J < NumPartitions; ++J) 395 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) 396 CheckCount++; 397 return CheckCount; 398 } 399 400 bool RuntimePointerChecking::needsAnyChecking( 401 const SmallVectorImpl<int> *PtrPartition) const { 402 unsigned NumPointers = Pointers.size(); 403 404 for (unsigned I = 0; I < NumPointers; ++I) 405 for (unsigned J = I + 1; J < NumPointers; ++J) 406 if (needsChecking(I, J, PtrPartition)) 407 return true; 408 return false; 409 } 410 411 namespace { 412 /// \brief Analyses memory accesses in a loop. 413 /// 414 /// Checks whether run time pointer checks are needed and builds sets for data 415 /// dependence checking. 416 class AccessAnalysis { 417 public: 418 /// \brief Read or write access location. 419 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 420 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 421 422 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 423 MemoryDepChecker::DepCandidates &DA) 424 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), 425 IsRTCheckAnalysisNeeded(false) {} 426 427 /// \brief Register a load and whether it is only read from. 428 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 429 Value *Ptr = const_cast<Value*>(Loc.Ptr); 430 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 431 Accesses.insert(MemAccessInfo(Ptr, false)); 432 if (IsReadOnly) 433 ReadOnlyPtr.insert(Ptr); 434 } 435 436 /// \brief Register a store. 437 void addStore(MemoryLocation &Loc) { 438 Value *Ptr = const_cast<Value*>(Loc.Ptr); 439 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 440 Accesses.insert(MemAccessInfo(Ptr, true)); 441 } 442 443 /// \brief Check whether we can check the pointers at runtime for 444 /// non-intersection. 445 /// 446 /// Returns true if we need no check or if we do and we can generate them 447 /// (i.e. the pointers have computable bounds). 448 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 449 Loop *TheLoop, const ValueToValueMap &Strides, 450 bool ShouldCheckStride = false); 451 452 /// \brief Goes over all memory accesses, checks whether a RT check is needed 453 /// and builds sets of dependent accesses. 454 void buildDependenceSets() { 455 processMemAccesses(); 456 } 457 458 /// \brief Initial processing of memory accesses determined that we need to 459 /// perform dependency checking. 460 /// 461 /// Note that this can later be cleared if we retry memcheck analysis without 462 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 463 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 464 465 /// We decided that no dependence analysis would be used. Reset the state. 466 void resetDepChecks(MemoryDepChecker &DepChecker) { 467 CheckDeps.clear(); 468 DepChecker.clearInterestingDependences(); 469 } 470 471 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 472 473 private: 474 typedef SetVector<MemAccessInfo> PtrAccessSet; 475 476 /// \brief Go over all memory access and check whether runtime pointer checks 477 /// are needed and build sets of dependency check candidates. 478 void processMemAccesses(); 479 480 /// Set of all accesses. 481 PtrAccessSet Accesses; 482 483 const DataLayout &DL; 484 485 /// Set of accesses that need a further dependence check. 486 MemAccessInfoSet CheckDeps; 487 488 /// Set of pointers that are read only. 489 SmallPtrSet<Value*, 16> ReadOnlyPtr; 490 491 /// An alias set tracker to partition the access set by underlying object and 492 //intrinsic property (such as TBAA metadata). 493 AliasSetTracker AST; 494 495 LoopInfo *LI; 496 497 /// Sets of potentially dependent accesses - members of one set share an 498 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 499 /// dependence check. 500 MemoryDepChecker::DepCandidates &DepCands; 501 502 /// \brief Initial processing of memory accesses determined that we may need 503 /// to add memchecks. Perform the analysis to determine the necessary checks. 504 /// 505 /// Note that, this is different from isDependencyCheckNeeded. When we retry 506 /// memcheck analysis without dependency checking 507 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 508 /// while this remains set if we have potentially dependent accesses. 509 bool IsRTCheckAnalysisNeeded; 510 }; 511 512 } // end anonymous namespace 513 514 /// \brief Check whether a pointer can participate in a runtime bounds check. 515 static bool hasComputableBounds(ScalarEvolution *SE, 516 const ValueToValueMap &Strides, Value *Ptr) { 517 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 518 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 519 if (!AR) 520 return false; 521 522 return AR->isAffine(); 523 } 524 525 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 526 ScalarEvolution *SE, Loop *TheLoop, 527 const ValueToValueMap &StridesMap, 528 bool ShouldCheckStride) { 529 // Find pointers with computable bounds. We are going to use this information 530 // to place a runtime bound check. 531 bool CanDoRT = true; 532 533 bool NeedRTCheck = false; 534 if (!IsRTCheckAnalysisNeeded) return true; 535 536 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 537 538 // We assign a consecutive id to access from different alias sets. 539 // Accesses between different groups doesn't need to be checked. 540 unsigned ASId = 1; 541 for (auto &AS : AST) { 542 int NumReadPtrChecks = 0; 543 int NumWritePtrChecks = 0; 544 545 // We assign consecutive id to access from different dependence sets. 546 // Accesses within the same set don't need a runtime check. 547 unsigned RunningDepId = 1; 548 DenseMap<Value *, unsigned> DepSetId; 549 550 for (auto A : AS) { 551 Value *Ptr = A.getValue(); 552 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 553 MemAccessInfo Access(Ptr, IsWrite); 554 555 if (IsWrite) 556 ++NumWritePtrChecks; 557 else 558 ++NumReadPtrChecks; 559 560 if (hasComputableBounds(SE, StridesMap, Ptr) && 561 // When we run after a failing dependency check we have to make sure 562 // we don't have wrapping pointers. 563 (!ShouldCheckStride || 564 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 565 // The id of the dependence set. 566 unsigned DepId; 567 568 if (IsDepCheckNeeded) { 569 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 570 unsigned &LeaderId = DepSetId[Leader]; 571 if (!LeaderId) 572 LeaderId = RunningDepId++; 573 DepId = LeaderId; 574 } else 575 // Each access has its own dependence set. 576 DepId = RunningDepId++; 577 578 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 579 580 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 581 } else { 582 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 583 CanDoRT = false; 584 } 585 } 586 587 // If we have at least two writes or one write and a read then we need to 588 // check them. But there is no need to checks if there is only one 589 // dependence set for this alias set. 590 // 591 // Note that this function computes CanDoRT and NeedRTCheck independently. 592 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 593 // for which we couldn't find the bounds but we don't actually need to emit 594 // any checks so it does not matter. 595 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 596 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 597 NumWritePtrChecks >= 1)); 598 599 ++ASId; 600 } 601 602 // If the pointers that we would use for the bounds comparison have different 603 // address spaces, assume the values aren't directly comparable, so we can't 604 // use them for the runtime check. We also have to assume they could 605 // overlap. In the future there should be metadata for whether address spaces 606 // are disjoint. 607 unsigned NumPointers = RtCheck.Pointers.size(); 608 for (unsigned i = 0; i < NumPointers; ++i) { 609 for (unsigned j = i + 1; j < NumPointers; ++j) { 610 // Only need to check pointers between two different dependency sets. 611 if (RtCheck.Pointers[i].DependencySetId == 612 RtCheck.Pointers[j].DependencySetId) 613 continue; 614 // Only need to check pointers in the same alias set. 615 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 616 continue; 617 618 Value *PtrI = RtCheck.Pointers[i].PointerValue; 619 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 620 621 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 622 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 623 if (ASi != ASj) { 624 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 625 " different address spaces\n"); 626 return false; 627 } 628 } 629 } 630 631 if (NeedRTCheck && CanDoRT) 632 RtCheck.groupChecks(DepCands, IsDepCheckNeeded); 633 634 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr) 635 << " pointer comparisons.\n"); 636 637 RtCheck.Need = NeedRTCheck; 638 639 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 640 if (!CanDoRTIfNeeded) 641 RtCheck.reset(); 642 return CanDoRTIfNeeded; 643 } 644 645 void AccessAnalysis::processMemAccesses() { 646 // We process the set twice: first we process read-write pointers, last we 647 // process read-only pointers. This allows us to skip dependence tests for 648 // read-only pointers. 649 650 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 651 DEBUG(dbgs() << " AST: "; AST.dump()); 652 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 653 DEBUG({ 654 for (auto A : Accesses) 655 dbgs() << "\t" << *A.getPointer() << " (" << 656 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 657 "read-only" : "read")) << ")\n"; 658 }); 659 660 // The AliasSetTracker has nicely partitioned our pointers by metadata 661 // compatibility and potential for underlying-object overlap. As a result, we 662 // only need to check for potential pointer dependencies within each alias 663 // set. 664 for (auto &AS : AST) { 665 // Note that both the alias-set tracker and the alias sets themselves used 666 // linked lists internally and so the iteration order here is deterministic 667 // (matching the original instruction order within each set). 668 669 bool SetHasWrite = false; 670 671 // Map of pointers to last access encountered. 672 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 673 UnderlyingObjToAccessMap ObjToLastAccess; 674 675 // Set of access to check after all writes have been processed. 676 PtrAccessSet DeferredAccesses; 677 678 // Iterate over each alias set twice, once to process read/write pointers, 679 // and then to process read-only pointers. 680 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 681 bool UseDeferred = SetIteration > 0; 682 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 683 684 for (auto AV : AS) { 685 Value *Ptr = AV.getValue(); 686 687 // For a single memory access in AliasSetTracker, Accesses may contain 688 // both read and write, and they both need to be handled for CheckDeps. 689 for (auto AC : S) { 690 if (AC.getPointer() != Ptr) 691 continue; 692 693 bool IsWrite = AC.getInt(); 694 695 // If we're using the deferred access set, then it contains only 696 // reads. 697 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 698 if (UseDeferred && !IsReadOnlyPtr) 699 continue; 700 // Otherwise, the pointer must be in the PtrAccessSet, either as a 701 // read or a write. 702 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 703 S.count(MemAccessInfo(Ptr, false))) && 704 "Alias-set pointer not in the access set?"); 705 706 MemAccessInfo Access(Ptr, IsWrite); 707 DepCands.insert(Access); 708 709 // Memorize read-only pointers for later processing and skip them in 710 // the first round (they need to be checked after we have seen all 711 // write pointers). Note: we also mark pointer that are not 712 // consecutive as "read-only" pointers (so that we check 713 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 714 if (!UseDeferred && IsReadOnlyPtr) { 715 DeferredAccesses.insert(Access); 716 continue; 717 } 718 719 // If this is a write - check other reads and writes for conflicts. If 720 // this is a read only check other writes for conflicts (but only if 721 // there is no other write to the ptr - this is an optimization to 722 // catch "a[i] = a[i] + " without having to do a dependence check). 723 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 724 CheckDeps.insert(Access); 725 IsRTCheckAnalysisNeeded = true; 726 } 727 728 if (IsWrite) 729 SetHasWrite = true; 730 731 // Create sets of pointers connected by a shared alias set and 732 // underlying object. 733 typedef SmallVector<Value *, 16> ValueVector; 734 ValueVector TempObjects; 735 736 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 737 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 738 for (Value *UnderlyingObj : TempObjects) { 739 UnderlyingObjToAccessMap::iterator Prev = 740 ObjToLastAccess.find(UnderlyingObj); 741 if (Prev != ObjToLastAccess.end()) 742 DepCands.unionSets(Access, Prev->second); 743 744 ObjToLastAccess[UnderlyingObj] = Access; 745 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 746 } 747 } 748 } 749 } 750 } 751 } 752 753 static bool isInBoundsGep(Value *Ptr) { 754 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 755 return GEP->isInBounds(); 756 return false; 757 } 758 759 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 760 /// i.e. monotonically increasing/decreasing. 761 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 762 ScalarEvolution *SE, const Loop *L) { 763 // FIXME: This should probably only return true for NUW. 764 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 765 return true; 766 767 // Scalar evolution does not propagate the non-wrapping flags to values that 768 // are derived from a non-wrapping induction variable because non-wrapping 769 // could be flow-sensitive. 770 // 771 // Look through the potentially overflowing instruction to try to prove 772 // non-wrapping for the *specific* value of Ptr. 773 774 // The arithmetic implied by an inbounds GEP can't overflow. 775 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 776 if (!GEP || !GEP->isInBounds()) 777 return false; 778 779 // Make sure there is only one non-const index and analyze that. 780 Value *NonConstIndex = nullptr; 781 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 782 if (!isa<ConstantInt>(*Index)) { 783 if (NonConstIndex) 784 return false; 785 NonConstIndex = *Index; 786 } 787 if (!NonConstIndex) 788 // The recurrence is on the pointer, ignore for now. 789 return false; 790 791 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 792 // AddRec using a NSW operation. 793 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 794 if (OBO->hasNoSignedWrap() && 795 // Assume constant for other the operand so that the AddRec can be 796 // easily found. 797 isa<ConstantInt>(OBO->getOperand(1))) { 798 auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 799 800 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 801 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 802 } 803 804 return false; 805 } 806 807 /// \brief Check whether the access through \p Ptr has a constant stride. 808 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 809 const ValueToValueMap &StridesMap) { 810 const Type *Ty = Ptr->getType(); 811 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 812 813 // Make sure that the pointer does not point to aggregate types. 814 const PointerType *PtrTy = cast<PointerType>(Ty); 815 if (PtrTy->getElementType()->isAggregateType()) { 816 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 817 << *Ptr << "\n"); 818 return 0; 819 } 820 821 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 822 823 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 824 if (!AR) { 825 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 826 << *Ptr << " SCEV: " << *PtrScev << "\n"); 827 return 0; 828 } 829 830 // The accesss function must stride over the innermost loop. 831 if (Lp != AR->getLoop()) { 832 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 833 *Ptr << " SCEV: " << *PtrScev << "\n"); 834 } 835 836 // The address calculation must not wrap. Otherwise, a dependence could be 837 // inverted. 838 // An inbounds getelementptr that is a AddRec with a unit stride 839 // cannot wrap per definition. The unit stride requirement is checked later. 840 // An getelementptr without an inbounds attribute and unit stride would have 841 // to access the pointer value "0" which is undefined behavior in address 842 // space 0, therefore we can also vectorize this case. 843 bool IsInBoundsGEP = isInBoundsGep(Ptr); 844 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); 845 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 846 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 847 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 848 << *Ptr << " SCEV: " << *PtrScev << "\n"); 849 return 0; 850 } 851 852 // Check the step is constant. 853 const SCEV *Step = AR->getStepRecurrence(*SE); 854 855 // Calculate the pointer stride and check if it is constant. 856 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 857 if (!C) { 858 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 859 " SCEV: " << *PtrScev << "\n"); 860 return 0; 861 } 862 863 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 864 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 865 const APInt &APStepVal = C->getValue()->getValue(); 866 867 // Huge step value - give up. 868 if (APStepVal.getBitWidth() > 64) 869 return 0; 870 871 int64_t StepVal = APStepVal.getSExtValue(); 872 873 // Strided access. 874 int64_t Stride = StepVal / Size; 875 int64_t Rem = StepVal % Size; 876 if (Rem) 877 return 0; 878 879 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 880 // know we can't "wrap around the address space". In case of address space 881 // zero we know that this won't happen without triggering undefined behavior. 882 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 883 Stride != 1 && Stride != -1) 884 return 0; 885 886 return Stride; 887 } 888 889 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 890 switch (Type) { 891 case NoDep: 892 case Forward: 893 case BackwardVectorizable: 894 return true; 895 896 case Unknown: 897 case ForwardButPreventsForwarding: 898 case Backward: 899 case BackwardVectorizableButPreventsForwarding: 900 return false; 901 } 902 llvm_unreachable("unexpected DepType!"); 903 } 904 905 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 906 switch (Type) { 907 case NoDep: 908 case Forward: 909 return false; 910 911 case BackwardVectorizable: 912 case Unknown: 913 case ForwardButPreventsForwarding: 914 case Backward: 915 case BackwardVectorizableButPreventsForwarding: 916 return true; 917 } 918 llvm_unreachable("unexpected DepType!"); 919 } 920 921 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 922 switch (Type) { 923 case NoDep: 924 case Forward: 925 case ForwardButPreventsForwarding: 926 return false; 927 928 case Unknown: 929 case BackwardVectorizable: 930 case Backward: 931 case BackwardVectorizableButPreventsForwarding: 932 return true; 933 } 934 llvm_unreachable("unexpected DepType!"); 935 } 936 937 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 938 unsigned TypeByteSize) { 939 // If loads occur at a distance that is not a multiple of a feasible vector 940 // factor store-load forwarding does not take place. 941 // Positive dependences might cause troubles because vectorizing them might 942 // prevent store-load forwarding making vectorized code run a lot slower. 943 // a[i] = a[i-3] ^ a[i-8]; 944 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 945 // hence on your typical architecture store-load forwarding does not take 946 // place. Vectorizing in such cases does not make sense. 947 // Store-load forwarding distance. 948 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 949 // Maximum vector factor. 950 unsigned MaxVFWithoutSLForwardIssues = 951 VectorizerParams::MaxVectorWidth * TypeByteSize; 952 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 953 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 954 955 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 956 vf *= 2) { 957 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 958 MaxVFWithoutSLForwardIssues = (vf >>=1); 959 break; 960 } 961 } 962 963 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 964 DEBUG(dbgs() << "LAA: Distance " << Distance << 965 " that could cause a store-load forwarding conflict\n"); 966 return true; 967 } 968 969 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 970 MaxVFWithoutSLForwardIssues != 971 VectorizerParams::MaxVectorWidth * TypeByteSize) 972 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 973 return false; 974 } 975 976 /// \brief Check the dependence for two accesses with the same stride \p Stride. 977 /// \p Distance is the positive distance and \p TypeByteSize is type size in 978 /// bytes. 979 /// 980 /// \returns true if they are independent. 981 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 982 unsigned TypeByteSize) { 983 assert(Stride > 1 && "The stride must be greater than 1"); 984 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 985 assert(Distance > 0 && "The distance must be non-zero"); 986 987 // Skip if the distance is not multiple of type byte size. 988 if (Distance % TypeByteSize) 989 return false; 990 991 unsigned ScaledDist = Distance / TypeByteSize; 992 993 // No dependence if the scaled distance is not multiple of the stride. 994 // E.g. 995 // for (i = 0; i < 1024 ; i += 4) 996 // A[i+2] = A[i] + 1; 997 // 998 // Two accesses in memory (scaled distance is 2, stride is 4): 999 // | A[0] | | | | A[4] | | | | 1000 // | | | A[2] | | | | A[6] | | 1001 // 1002 // E.g. 1003 // for (i = 0; i < 1024 ; i += 3) 1004 // A[i+4] = A[i] + 1; 1005 // 1006 // Two accesses in memory (scaled distance is 4, stride is 3): 1007 // | A[0] | | | A[3] | | | A[6] | | | 1008 // | | | | | A[4] | | | A[7] | | 1009 return ScaledDist % Stride; 1010 } 1011 1012 MemoryDepChecker::Dependence::DepType 1013 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1014 const MemAccessInfo &B, unsigned BIdx, 1015 const ValueToValueMap &Strides) { 1016 assert (AIdx < BIdx && "Must pass arguments in program order"); 1017 1018 Value *APtr = A.getPointer(); 1019 Value *BPtr = B.getPointer(); 1020 bool AIsWrite = A.getInt(); 1021 bool BIsWrite = B.getInt(); 1022 1023 // Two reads are independent. 1024 if (!AIsWrite && !BIsWrite) 1025 return Dependence::NoDep; 1026 1027 // We cannot check pointers in different address spaces. 1028 if (APtr->getType()->getPointerAddressSpace() != 1029 BPtr->getType()->getPointerAddressSpace()) 1030 return Dependence::Unknown; 1031 1032 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 1033 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 1034 1035 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 1036 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 1037 1038 const SCEV *Src = AScev; 1039 const SCEV *Sink = BScev; 1040 1041 // If the induction step is negative we have to invert source and sink of the 1042 // dependence. 1043 if (StrideAPtr < 0) { 1044 //Src = BScev; 1045 //Sink = AScev; 1046 std::swap(APtr, BPtr); 1047 std::swap(Src, Sink); 1048 std::swap(AIsWrite, BIsWrite); 1049 std::swap(AIdx, BIdx); 1050 std::swap(StrideAPtr, StrideBPtr); 1051 } 1052 1053 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 1054 1055 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1056 << "(Induction step: " << StrideAPtr << ")\n"); 1057 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1058 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1059 1060 // Need accesses with constant stride. We don't want to vectorize 1061 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1062 // the address space. 1063 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1064 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1065 return Dependence::Unknown; 1066 } 1067 1068 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1069 if (!C) { 1070 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1071 ShouldRetryWithRuntimeCheck = true; 1072 return Dependence::Unknown; 1073 } 1074 1075 Type *ATy = APtr->getType()->getPointerElementType(); 1076 Type *BTy = BPtr->getType()->getPointerElementType(); 1077 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1078 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 1079 1080 // Negative distances are not plausible dependencies. 1081 const APInt &Val = C->getValue()->getValue(); 1082 if (Val.isNegative()) { 1083 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1084 if (IsTrueDataDependence && 1085 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1086 ATy != BTy)) 1087 return Dependence::ForwardButPreventsForwarding; 1088 1089 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 1090 return Dependence::Forward; 1091 } 1092 1093 // Write to the same location with the same size. 1094 // Could be improved to assert type sizes are the same (i32 == float, etc). 1095 if (Val == 0) { 1096 if (ATy == BTy) 1097 return Dependence::NoDep; 1098 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1099 return Dependence::Unknown; 1100 } 1101 1102 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1103 1104 if (ATy != BTy) { 1105 DEBUG(dbgs() << 1106 "LAA: ReadWrite-Write positive dependency with different types\n"); 1107 return Dependence::Unknown; 1108 } 1109 1110 unsigned Distance = (unsigned) Val.getZExtValue(); 1111 1112 unsigned Stride = std::abs(StrideAPtr); 1113 if (Stride > 1 && 1114 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 1115 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1116 return Dependence::NoDep; 1117 } 1118 1119 // Bail out early if passed-in parameters make vectorization not feasible. 1120 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1121 VectorizerParams::VectorizationFactor : 1); 1122 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1123 VectorizerParams::VectorizationInterleave : 1); 1124 // The minimum number of iterations for a vectorized/unrolled version. 1125 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1126 1127 // It's not vectorizable if the distance is smaller than the minimum distance 1128 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1129 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1130 // TypeByteSize (No need to plus the last gap distance). 1131 // 1132 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1133 // foo(int *A) { 1134 // int *B = (int *)((char *)A + 14); 1135 // for (i = 0 ; i < 1024 ; i += 2) 1136 // B[i] = A[i] + 1; 1137 // } 1138 // 1139 // Two accesses in memory (stride is 2): 1140 // | A[0] | | A[2] | | A[4] | | A[6] | | 1141 // | B[0] | | B[2] | | B[4] | 1142 // 1143 // Distance needs for vectorizing iterations except the last iteration: 1144 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1145 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1146 // 1147 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1148 // 12, which is less than distance. 1149 // 1150 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1151 // the minimum distance needed is 28, which is greater than distance. It is 1152 // not safe to do vectorization. 1153 unsigned MinDistanceNeeded = 1154 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1155 if (MinDistanceNeeded > Distance) { 1156 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1157 << '\n'); 1158 return Dependence::Backward; 1159 } 1160 1161 // Unsafe if the minimum distance needed is greater than max safe distance. 1162 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1163 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1164 << MinDistanceNeeded << " size in bytes"); 1165 return Dependence::Backward; 1166 } 1167 1168 // Positive distance bigger than max vectorization factor. 1169 // FIXME: Should use max factor instead of max distance in bytes, which could 1170 // not handle different types. 1171 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1172 // void foo (int *A, char *B) { 1173 // for (unsigned i = 0; i < 1024; i++) { 1174 // A[i+2] = A[i] + 1; 1175 // B[i+2] = B[i] + 1; 1176 // } 1177 // } 1178 // 1179 // This case is currently unsafe according to the max safe distance. If we 1180 // analyze the two accesses on array B, the max safe dependence distance 1181 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1182 // is 8, which is less than 2 and forbidden vectorization, But actually 1183 // both A and B could be vectorized by 2 iterations. 1184 MaxSafeDepDistBytes = 1185 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 1186 1187 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1188 if (IsTrueDataDependence && 1189 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1190 return Dependence::BackwardVectorizableButPreventsForwarding; 1191 1192 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1193 << " with max VF = " 1194 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1195 1196 return Dependence::BackwardVectorizable; 1197 } 1198 1199 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1200 MemAccessInfoSet &CheckDeps, 1201 const ValueToValueMap &Strides) { 1202 1203 MaxSafeDepDistBytes = -1U; 1204 while (!CheckDeps.empty()) { 1205 MemAccessInfo CurAccess = *CheckDeps.begin(); 1206 1207 // Get the relevant memory access set. 1208 EquivalenceClasses<MemAccessInfo>::iterator I = 1209 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1210 1211 // Check accesses within this set. 1212 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 1213 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 1214 1215 // Check every access pair. 1216 while (AI != AE) { 1217 CheckDeps.erase(*AI); 1218 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1219 while (OI != AE) { 1220 // Check every accessing instruction pair in program order. 1221 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1222 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1223 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1224 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1225 auto A = std::make_pair(&*AI, *I1); 1226 auto B = std::make_pair(&*OI, *I2); 1227 1228 assert(*I1 != *I2); 1229 if (*I1 > *I2) 1230 std::swap(A, B); 1231 1232 Dependence::DepType Type = 1233 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1234 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1235 1236 // Gather dependences unless we accumulated MaxInterestingDependence 1237 // dependences. In that case return as soon as we find the first 1238 // unsafe dependence. This puts a limit on this quadratic 1239 // algorithm. 1240 if (RecordInterestingDependences) { 1241 if (Dependence::isInterestingDependence(Type)) 1242 InterestingDependences.push_back( 1243 Dependence(A.second, B.second, Type)); 1244 1245 if (InterestingDependences.size() >= MaxInterestingDependence) { 1246 RecordInterestingDependences = false; 1247 InterestingDependences.clear(); 1248 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1249 } 1250 } 1251 if (!RecordInterestingDependences && !SafeForVectorization) 1252 return false; 1253 } 1254 ++OI; 1255 } 1256 AI++; 1257 } 1258 } 1259 1260 DEBUG(dbgs() << "Total Interesting Dependences: " 1261 << InterestingDependences.size() << "\n"); 1262 return SafeForVectorization; 1263 } 1264 1265 SmallVector<Instruction *, 4> 1266 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1267 MemAccessInfo Access(Ptr, isWrite); 1268 auto &IndexVector = Accesses.find(Access)->second; 1269 1270 SmallVector<Instruction *, 4> Insts; 1271 std::transform(IndexVector.begin(), IndexVector.end(), 1272 std::back_inserter(Insts), 1273 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1274 return Insts; 1275 } 1276 1277 const char *MemoryDepChecker::Dependence::DepName[] = { 1278 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1279 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1280 1281 void MemoryDepChecker::Dependence::print( 1282 raw_ostream &OS, unsigned Depth, 1283 const SmallVectorImpl<Instruction *> &Instrs) const { 1284 OS.indent(Depth) << DepName[Type] << ":\n"; 1285 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1286 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1287 } 1288 1289 bool LoopAccessInfo::canAnalyzeLoop() { 1290 // We need to have a loop header. 1291 DEBUG(dbgs() << "LAA: Found a loop: " << 1292 TheLoop->getHeader()->getName() << '\n'); 1293 1294 // We can only analyze innermost loops. 1295 if (!TheLoop->empty()) { 1296 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1297 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1298 return false; 1299 } 1300 1301 // We must have a single backedge. 1302 if (TheLoop->getNumBackEdges() != 1) { 1303 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1304 emitAnalysis( 1305 LoopAccessReport() << 1306 "loop control flow is not understood by analyzer"); 1307 return false; 1308 } 1309 1310 // We must have a single exiting block. 1311 if (!TheLoop->getExitingBlock()) { 1312 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1313 emitAnalysis( 1314 LoopAccessReport() << 1315 "loop control flow is not understood by analyzer"); 1316 return false; 1317 } 1318 1319 // We only handle bottom-tested loops, i.e. loop in which the condition is 1320 // checked at the end of each iteration. With that we can assume that all 1321 // instructions in the loop are executed the same number of times. 1322 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1323 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1324 emitAnalysis( 1325 LoopAccessReport() << 1326 "loop control flow is not understood by analyzer"); 1327 return false; 1328 } 1329 1330 // ScalarEvolution needs to be able to find the exit count. 1331 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 1332 if (ExitCount == SE->getCouldNotCompute()) { 1333 emitAnalysis(LoopAccessReport() << 1334 "could not determine number of loop iterations"); 1335 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1336 return false; 1337 } 1338 1339 return true; 1340 } 1341 1342 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1343 1344 typedef SmallVector<Value*, 16> ValueVector; 1345 typedef SmallPtrSet<Value*, 16> ValueSet; 1346 1347 // Holds the Load and Store *instructions*. 1348 ValueVector Loads; 1349 ValueVector Stores; 1350 1351 // Holds all the different accesses in the loop. 1352 unsigned NumReads = 0; 1353 unsigned NumReadWrites = 0; 1354 1355 PtrRtChecking.Pointers.clear(); 1356 PtrRtChecking.Need = false; 1357 1358 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1359 1360 // For each block. 1361 for (Loop::block_iterator bb = TheLoop->block_begin(), 1362 be = TheLoop->block_end(); bb != be; ++bb) { 1363 1364 // Scan the BB and collect legal loads and stores. 1365 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1366 ++it) { 1367 1368 // If this is a load, save it. If this instruction can read from memory 1369 // but is not a load, then we quit. Notice that we don't handle function 1370 // calls that read or write. 1371 if (it->mayReadFromMemory()) { 1372 // Many math library functions read the rounding mode. We will only 1373 // vectorize a loop if it contains known function calls that don't set 1374 // the flag. Therefore, it is safe to ignore this read from memory. 1375 CallInst *Call = dyn_cast<CallInst>(it); 1376 if (Call && getIntrinsicIDForCall(Call, TLI)) 1377 continue; 1378 1379 // If the function has an explicit vectorized counterpart, we can safely 1380 // assume that it can be vectorized. 1381 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1382 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1383 continue; 1384 1385 LoadInst *Ld = dyn_cast<LoadInst>(it); 1386 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1387 emitAnalysis(LoopAccessReport(Ld) 1388 << "read with atomic ordering or volatile read"); 1389 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1390 CanVecMem = false; 1391 return; 1392 } 1393 NumLoads++; 1394 Loads.push_back(Ld); 1395 DepChecker.addAccess(Ld); 1396 continue; 1397 } 1398 1399 // Save 'store' instructions. Abort if other instructions write to memory. 1400 if (it->mayWriteToMemory()) { 1401 StoreInst *St = dyn_cast<StoreInst>(it); 1402 if (!St) { 1403 emitAnalysis(LoopAccessReport(it) << 1404 "instruction cannot be vectorized"); 1405 CanVecMem = false; 1406 return; 1407 } 1408 if (!St->isSimple() && !IsAnnotatedParallel) { 1409 emitAnalysis(LoopAccessReport(St) 1410 << "write with atomic ordering or volatile write"); 1411 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1412 CanVecMem = false; 1413 return; 1414 } 1415 NumStores++; 1416 Stores.push_back(St); 1417 DepChecker.addAccess(St); 1418 } 1419 } // Next instr. 1420 } // Next block. 1421 1422 // Now we have two lists that hold the loads and the stores. 1423 // Next, we find the pointers that they use. 1424 1425 // Check if we see any stores. If there are no stores, then we don't 1426 // care if the pointers are *restrict*. 1427 if (!Stores.size()) { 1428 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1429 CanVecMem = true; 1430 return; 1431 } 1432 1433 MemoryDepChecker::DepCandidates DependentAccesses; 1434 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1435 AA, LI, DependentAccesses); 1436 1437 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1438 // multiple times on the same object. If the ptr is accessed twice, once 1439 // for read and once for write, it will only appear once (on the write 1440 // list). This is okay, since we are going to check for conflicts between 1441 // writes and between reads and writes, but not between reads and reads. 1442 ValueSet Seen; 1443 1444 ValueVector::iterator I, IE; 1445 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1446 StoreInst *ST = cast<StoreInst>(*I); 1447 Value* Ptr = ST->getPointerOperand(); 1448 // Check for store to loop invariant address. 1449 StoreToLoopInvariantAddress |= isUniform(Ptr); 1450 // If we did *not* see this pointer before, insert it to the read-write 1451 // list. At this phase it is only a 'write' list. 1452 if (Seen.insert(Ptr).second) { 1453 ++NumReadWrites; 1454 1455 MemoryLocation Loc = MemoryLocation::get(ST); 1456 // The TBAA metadata could have a control dependency on the predication 1457 // condition, so we cannot rely on it when determining whether or not we 1458 // need runtime pointer checks. 1459 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1460 Loc.AATags.TBAA = nullptr; 1461 1462 Accesses.addStore(Loc); 1463 } 1464 } 1465 1466 if (IsAnnotatedParallel) { 1467 DEBUG(dbgs() 1468 << "LAA: A loop annotated parallel, ignore memory dependency " 1469 << "checks.\n"); 1470 CanVecMem = true; 1471 return; 1472 } 1473 1474 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1475 LoadInst *LD = cast<LoadInst>(*I); 1476 Value* Ptr = LD->getPointerOperand(); 1477 // If we did *not* see this pointer before, insert it to the 1478 // read list. If we *did* see it before, then it is already in 1479 // the read-write list. This allows us to vectorize expressions 1480 // such as A[i] += x; Because the address of A[i] is a read-write 1481 // pointer. This only works if the index of A[i] is consecutive. 1482 // If the address of i is unknown (for example A[B[i]]) then we may 1483 // read a few words, modify, and write a few words, and some of the 1484 // words may be written to the same address. 1485 bool IsReadOnlyPtr = false; 1486 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1487 ++NumReads; 1488 IsReadOnlyPtr = true; 1489 } 1490 1491 MemoryLocation Loc = MemoryLocation::get(LD); 1492 // The TBAA metadata could have a control dependency on the predication 1493 // condition, so we cannot rely on it when determining whether or not we 1494 // need runtime pointer checks. 1495 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1496 Loc.AATags.TBAA = nullptr; 1497 1498 Accesses.addLoad(Loc, IsReadOnlyPtr); 1499 } 1500 1501 // If we write (or read-write) to a single destination and there are no 1502 // other reads in this loop then is it safe to vectorize. 1503 if (NumReadWrites == 1 && NumReads == 0) { 1504 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1505 CanVecMem = true; 1506 return; 1507 } 1508 1509 // Build dependence sets and check whether we need a runtime pointer bounds 1510 // check. 1511 Accesses.buildDependenceSets(); 1512 1513 // Find pointers with computable bounds. We are going to use this information 1514 // to place a runtime bound check. 1515 bool CanDoRTIfNeeded = 1516 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides); 1517 if (!CanDoRTIfNeeded) { 1518 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1519 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1520 << "the array bounds.\n"); 1521 CanVecMem = false; 1522 return; 1523 } 1524 1525 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1526 1527 CanVecMem = true; 1528 if (Accesses.isDependencyCheckNeeded()) { 1529 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1530 CanVecMem = DepChecker.areDepsSafe( 1531 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1532 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1533 1534 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1535 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1536 1537 // Clear the dependency checks. We assume they are not needed. 1538 Accesses.resetDepChecks(DepChecker); 1539 1540 PtrRtChecking.reset(); 1541 PtrRtChecking.Need = true; 1542 1543 CanDoRTIfNeeded = 1544 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 1545 1546 // Check that we found the bounds for the pointer. 1547 if (!CanDoRTIfNeeded) { 1548 emitAnalysis(LoopAccessReport() 1549 << "cannot check memory dependencies at runtime"); 1550 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1551 CanVecMem = false; 1552 return; 1553 } 1554 1555 CanVecMem = true; 1556 } 1557 } 1558 1559 if (CanVecMem) 1560 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1561 << (PtrRtChecking.Need ? "" : " don't") 1562 << " need runtime memory checks.\n"); 1563 else { 1564 emitAnalysis(LoopAccessReport() << 1565 "unsafe dependent memory operations in loop"); 1566 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1567 } 1568 } 1569 1570 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1571 DominatorTree *DT) { 1572 assert(TheLoop->contains(BB) && "Unknown block used"); 1573 1574 // Blocks that do not dominate the latch need predication. 1575 BasicBlock* Latch = TheLoop->getLoopLatch(); 1576 return !DT->dominates(BB, Latch); 1577 } 1578 1579 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1580 assert(!Report && "Multiple reports generated"); 1581 Report = Message; 1582 } 1583 1584 bool LoopAccessInfo::isUniform(Value *V) const { 1585 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1586 } 1587 1588 // FIXME: this function is currently a duplicate of the one in 1589 // LoopVectorize.cpp. 1590 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1591 Instruction *Loc) { 1592 if (FirstInst) 1593 return FirstInst; 1594 if (Instruction *I = dyn_cast<Instruction>(V)) 1595 return I->getParent() == Loc->getParent() ? I : nullptr; 1596 return nullptr; 1597 } 1598 1599 /// \brief IR Values for the lower and upper bounds of a pointer evolution. 1600 struct PointerBounds { 1601 Value *Start; 1602 Value *End; 1603 }; 1604 1605 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1606 /// in \p TheLoop. \return the values for the bounds. 1607 static PointerBounds 1608 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1609 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1610 const RuntimePointerChecking &PtrRtChecking) { 1611 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1612 const SCEV *Sc = SE->getSCEV(Ptr); 1613 1614 if (SE->isLoopInvariant(Sc, TheLoop)) { 1615 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1616 << "\n"); 1617 return {Ptr, Ptr}; 1618 } else { 1619 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1620 LLVMContext &Ctx = Loc->getContext(); 1621 1622 // Use this type for pointer arithmetic. 1623 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1624 Value *Start = nullptr, *End = nullptr; 1625 1626 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1627 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1628 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1629 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1630 return {Start, End}; 1631 } 1632 } 1633 1634 /// \brief Turns a collection of checks into a collection of expanded upper and 1635 /// lower bounds for both pointers in the check. 1636 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1637 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1638 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1639 const RuntimePointerChecking &PtrRtChecking) { 1640 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1641 1642 // Here we're relying on the SCEV Expander's cache to only emit code for the 1643 // same bounds once. 1644 std::transform( 1645 PointerChecks.begin(), PointerChecks.end(), 1646 std::back_inserter(ChecksWithBounds), 1647 [&](const RuntimePointerChecking::PointerCheck &Check) { 1648 PointerBounds 1649 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1650 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1651 return std::make_pair(First, Second); 1652 }); 1653 1654 return ChecksWithBounds; 1655 } 1656 1657 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1658 Instruction *Loc, 1659 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1660 const { 1661 1662 SCEVExpander Exp(*SE, DL, "induction"); 1663 auto ExpandedChecks = 1664 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); 1665 1666 LLVMContext &Ctx = Loc->getContext(); 1667 Instruction *FirstInst = nullptr; 1668 IRBuilder<> ChkBuilder(Loc); 1669 // Our instructions might fold to a constant. 1670 Value *MemoryRuntimeCheck = nullptr; 1671 1672 for (const auto &Check : ExpandedChecks) { 1673 const PointerBounds &A = Check.first, &B = Check.second; 1674 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1675 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1676 1677 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1678 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1679 "Trying to bounds check pointers with different address spaces"); 1680 1681 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1682 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1683 1684 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1685 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1686 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1687 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1688 1689 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1690 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1691 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1692 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1693 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1694 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1695 if (MemoryRuntimeCheck) { 1696 IsConflict = 1697 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1698 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1699 } 1700 MemoryRuntimeCheck = IsConflict; 1701 } 1702 1703 if (!MemoryRuntimeCheck) 1704 return std::make_pair(nullptr, nullptr); 1705 1706 // We have to do this trickery because the IRBuilder might fold the check to a 1707 // constant expression in which case there is no Instruction anchored in a 1708 // the block. 1709 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1710 ConstantInt::getTrue(Ctx)); 1711 ChkBuilder.Insert(Check, "memcheck.conflict"); 1712 FirstInst = getFirstInst(FirstInst, Check, Loc); 1713 return std::make_pair(FirstInst, Check); 1714 } 1715 1716 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1717 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { 1718 if (!PtrRtChecking.Need) 1719 return std::make_pair(nullptr, nullptr); 1720 1721 return addRuntimeCheck(Loc, PtrRtChecking.generateChecks(PtrPartition)); 1722 } 1723 1724 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1725 const DataLayout &DL, 1726 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1727 DominatorTree *DT, LoopInfo *LI, 1728 const ValueToValueMap &Strides) 1729 : PtrRtChecking(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), 1730 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1731 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1732 StoreToLoopInvariantAddress(false) { 1733 if (canAnalyzeLoop()) 1734 analyzeLoop(Strides); 1735 } 1736 1737 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1738 if (CanVecMem) { 1739 if (PtrRtChecking.Need) 1740 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1741 else 1742 OS.indent(Depth) << "Memory dependences are safe\n"; 1743 } 1744 1745 if (Report) 1746 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1747 1748 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1749 OS.indent(Depth) << "Interesting Dependences:\n"; 1750 for (auto &Dep : *InterestingDependences) { 1751 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1752 OS << "\n"; 1753 } 1754 } else 1755 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1756 1757 // List the pair of accesses need run-time checks to prove independence. 1758 PtrRtChecking.print(OS, Depth); 1759 OS << "\n"; 1760 1761 OS.indent(Depth) << "Store to invariant address was " 1762 << (StoreToLoopInvariantAddress ? "" : "not ") 1763 << "found in loop.\n"; 1764 } 1765 1766 const LoopAccessInfo & 1767 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1768 auto &LAI = LoopAccessInfoMap[L]; 1769 1770 #ifndef NDEBUG 1771 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1772 "Symbolic strides changed for loop"); 1773 #endif 1774 1775 if (!LAI) { 1776 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1777 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1778 Strides); 1779 #ifndef NDEBUG 1780 LAI->NumSymbolicStrides = Strides.size(); 1781 #endif 1782 } 1783 return *LAI.get(); 1784 } 1785 1786 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1787 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1788 1789 ValueToValueMap NoSymbolicStrides; 1790 1791 for (Loop *TopLevelLoop : *LI) 1792 for (Loop *L : depth_first(TopLevelLoop)) { 1793 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1794 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1795 LAI.print(OS, 4); 1796 } 1797 } 1798 1799 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1800 SE = &getAnalysis<ScalarEvolution>(); 1801 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1802 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1803 AA = &getAnalysis<AliasAnalysis>(); 1804 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1805 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1806 1807 return false; 1808 } 1809 1810 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1811 AU.addRequired<ScalarEvolution>(); 1812 AU.addRequired<AliasAnalysis>(); 1813 AU.addRequired<DominatorTreeWrapperPass>(); 1814 AU.addRequired<LoopInfoWrapperPass>(); 1815 1816 AU.setPreservesAll(); 1817 } 1818 1819 char LoopAccessAnalysis::ID = 0; 1820 static const char laa_name[] = "Loop Access Analysis"; 1821 #define LAA_NAME "loop-accesses" 1822 1823 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1824 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1825 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1826 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1827 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1828 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1829 1830 namespace llvm { 1831 Pass *createLAAPass() { 1832 return new LoopAccessAnalysis(); 1833 } 1834 } 1835