1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr, Value *OrigPtr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = 151 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 152 if (SI != PtrToStride.end()) { 153 Value *StrideVal = SI->second; 154 155 // Strip casts. 156 StrideVal = stripIntegerCast(StrideVal); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 // Otherwise, just return the SCEV of the original pointer. 172 return OrigSCEV; 173 } 174 175 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 176 unsigned Index, RuntimePointerChecking &RtCheck) 177 : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End), 178 Low(RtCheck.Pointers[Index].Start) { 179 Members.push_back(Index); 180 } 181 182 /// Calculate Start and End points of memory access. 183 /// Let's assume A is the first access and B is a memory access on N-th loop 184 /// iteration. Then B is calculated as: 185 /// B = A + Step*N . 186 /// Step value may be positive or negative. 187 /// N is a calculated back-edge taken count: 188 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 189 /// Start and End points are calculated in the following way: 190 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 191 /// where SizeOfElt is the size of single memory access in bytes. 192 /// 193 /// There is no conflict when the intervals are disjoint: 194 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 195 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 196 unsigned DepSetId, unsigned ASId, 197 const ValueToValueMap &Strides, 198 PredicatedScalarEvolution &PSE) { 199 // Get the stride replaced scev. 200 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 201 ScalarEvolution *SE = PSE.getSE(); 202 203 const SCEV *ScStart; 204 const SCEV *ScEnd; 205 206 if (SE->isLoopInvariant(Sc, Lp)) 207 ScStart = ScEnd = Sc; 208 else { 209 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 210 assert(AR && "Invalid addrec expression"); 211 const SCEV *Ex = PSE.getBackedgeTakenCount(); 212 213 ScStart = AR->getStart(); 214 ScEnd = AR->evaluateAtIteration(Ex, *SE); 215 const SCEV *Step = AR->getStepRecurrence(*SE); 216 217 // For expressions with negative step, the upper bound is ScStart and the 218 // lower bound is ScEnd. 219 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 220 if (CStep->getValue()->isNegative()) 221 std::swap(ScStart, ScEnd); 222 } else { 223 // Fallback case: the step is not constant, but we can still 224 // get the upper and lower bounds of the interval by using min/max 225 // expressions. 226 ScStart = SE->getUMinExpr(ScStart, ScEnd); 227 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 228 } 229 // Add the size of the pointed element to ScEnd. 230 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 231 unsigned EltSize = 232 DL.getTypeStoreSizeInBits(Ptr->getType()->getPointerElementType()) / 8; 233 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 234 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 235 } 236 237 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 238 } 239 240 SmallVector<RuntimePointerCheck, 4> 241 RuntimePointerChecking::generateChecks() const { 242 SmallVector<RuntimePointerCheck, 4> Checks; 243 244 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 245 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 246 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 247 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 248 249 if (needsChecking(CGI, CGJ)) 250 Checks.push_back(std::make_pair(&CGI, &CGJ)); 251 } 252 } 253 return Checks; 254 } 255 256 void RuntimePointerChecking::generateChecks( 257 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 258 assert(Checks.empty() && "Checks is not empty"); 259 groupChecks(DepCands, UseDependencies); 260 Checks = generateChecks(); 261 } 262 263 bool RuntimePointerChecking::needsChecking( 264 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 265 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 266 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 267 if (needsChecking(M.Members[I], N.Members[J])) 268 return true; 269 return false; 270 } 271 272 /// Compare \p I and \p J and return the minimum. 273 /// Return nullptr in case we couldn't find an answer. 274 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 275 ScalarEvolution *SE) { 276 const SCEV *Diff = SE->getMinusSCEV(J, I); 277 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 278 279 if (!C) 280 return nullptr; 281 if (C->getValue()->isNegative()) 282 return J; 283 return I; 284 } 285 286 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) { 287 const SCEV *Start = RtCheck.Pointers[Index].Start; 288 const SCEV *End = RtCheck.Pointers[Index].End; 289 290 // Compare the starts and ends with the known minimum and maximum 291 // of this set. We need to know how we compare against the min/max 292 // of the set in order to be able to emit memchecks. 293 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 294 if (!Min0) 295 return false; 296 297 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 298 if (!Min1) 299 return false; 300 301 // Update the low bound expression if we've found a new min value. 302 if (Min0 == Start) 303 Low = Start; 304 305 // Update the high bound expression if we've found a new max value. 306 if (Min1 != End) 307 High = End; 308 309 Members.push_back(Index); 310 return true; 311 } 312 313 void RuntimePointerChecking::groupChecks( 314 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 315 // We build the groups from dependency candidates equivalence classes 316 // because: 317 // - We know that pointers in the same equivalence class share 318 // the same underlying object and therefore there is a chance 319 // that we can compare pointers 320 // - We wouldn't be able to merge two pointers for which we need 321 // to emit a memcheck. The classes in DepCands are already 322 // conveniently built such that no two pointers in the same 323 // class need checking against each other. 324 325 // We use the following (greedy) algorithm to construct the groups 326 // For every pointer in the equivalence class: 327 // For each existing group: 328 // - if the difference between this pointer and the min/max bounds 329 // of the group is a constant, then make the pointer part of the 330 // group and update the min/max bounds of that group as required. 331 332 CheckingGroups.clear(); 333 334 // If we need to check two pointers to the same underlying object 335 // with a non-constant difference, we shouldn't perform any pointer 336 // grouping with those pointers. This is because we can easily get 337 // into cases where the resulting check would return false, even when 338 // the accesses are safe. 339 // 340 // The following example shows this: 341 // for (i = 0; i < 1000; ++i) 342 // a[5000 + i * m] = a[i] + a[i + 9000] 343 // 344 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 345 // (0, 10000) which is always false. However, if m is 1, there is no 346 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 347 // us to perform an accurate check in this case. 348 // 349 // The above case requires that we have an UnknownDependence between 350 // accesses to the same underlying object. This cannot happen unless 351 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 352 // is also false. In this case we will use the fallback path and create 353 // separate checking groups for all pointers. 354 355 // If we don't have the dependency partitions, construct a new 356 // checking pointer group for each pointer. This is also required 357 // for correctness, because in this case we can have checking between 358 // pointers to the same underlying object. 359 if (!UseDependencies) { 360 for (unsigned I = 0; I < Pointers.size(); ++I) 361 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 362 return; 363 } 364 365 unsigned TotalComparisons = 0; 366 367 DenseMap<Value *, unsigned> PositionMap; 368 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 369 PositionMap[Pointers[Index].PointerValue] = Index; 370 371 // We need to keep track of what pointers we've already seen so we 372 // don't process them twice. 373 SmallSet<unsigned, 2> Seen; 374 375 // Go through all equivalence classes, get the "pointer check groups" 376 // and add them to the overall solution. We use the order in which accesses 377 // appear in 'Pointers' to enforce determinism. 378 for (unsigned I = 0; I < Pointers.size(); ++I) { 379 // We've seen this pointer before, and therefore already processed 380 // its equivalence class. 381 if (Seen.count(I)) 382 continue; 383 384 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 385 Pointers[I].IsWritePtr); 386 387 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 388 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 389 390 // Because DepCands is constructed by visiting accesses in the order in 391 // which they appear in alias sets (which is deterministic) and the 392 // iteration order within an equivalence class member is only dependent on 393 // the order in which unions and insertions are performed on the 394 // equivalence class, the iteration order is deterministic. 395 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 396 MI != ME; ++MI) { 397 auto PointerI = PositionMap.find(MI->getPointer()); 398 assert(PointerI != PositionMap.end() && 399 "pointer in equivalence class not found in PositionMap"); 400 unsigned Pointer = PointerI->second; 401 bool Merged = false; 402 // Mark this pointer as seen. 403 Seen.insert(Pointer); 404 405 // Go through all the existing sets and see if we can find one 406 // which can include this pointer. 407 for (RuntimeCheckingPtrGroup &Group : Groups) { 408 // Don't perform more than a certain amount of comparisons. 409 // This should limit the cost of grouping the pointers to something 410 // reasonable. If we do end up hitting this threshold, the algorithm 411 // will create separate groups for all remaining pointers. 412 if (TotalComparisons > MemoryCheckMergeThreshold) 413 break; 414 415 TotalComparisons++; 416 417 if (Group.addPointer(Pointer)) { 418 Merged = true; 419 break; 420 } 421 } 422 423 if (!Merged) 424 // We couldn't add this pointer to any existing set or the threshold 425 // for the number of comparisons has been reached. Create a new group 426 // to hold the current pointer. 427 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 428 } 429 430 // We've computed the grouped checks for this partition. 431 // Save the results and continue with the next one. 432 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 433 } 434 } 435 436 bool RuntimePointerChecking::arePointersInSamePartition( 437 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 438 unsigned PtrIdx2) { 439 return (PtrToPartition[PtrIdx1] != -1 && 440 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 441 } 442 443 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 444 const PointerInfo &PointerI = Pointers[I]; 445 const PointerInfo &PointerJ = Pointers[J]; 446 447 // No need to check if two readonly pointers intersect. 448 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 449 return false; 450 451 // Only need to check pointers between two different dependency sets. 452 if (PointerI.DependencySetId == PointerJ.DependencySetId) 453 return false; 454 455 // Only need to check pointers in the same alias set. 456 if (PointerI.AliasSetId != PointerJ.AliasSetId) 457 return false; 458 459 return true; 460 } 461 462 void RuntimePointerChecking::printChecks( 463 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 464 unsigned Depth) const { 465 unsigned N = 0; 466 for (const auto &Check : Checks) { 467 const auto &First = Check.first->Members, &Second = Check.second->Members; 468 469 OS.indent(Depth) << "Check " << N++ << ":\n"; 470 471 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 472 for (unsigned K = 0; K < First.size(); ++K) 473 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 474 475 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 476 for (unsigned K = 0; K < Second.size(); ++K) 477 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 478 } 479 } 480 481 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 482 483 OS.indent(Depth) << "Run-time memory checks:\n"; 484 printChecks(OS, Checks, Depth); 485 486 OS.indent(Depth) << "Grouped accesses:\n"; 487 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 488 const auto &CG = CheckingGroups[I]; 489 490 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 491 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 492 << ")\n"; 493 for (unsigned J = 0; J < CG.Members.size(); ++J) { 494 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 495 << "\n"; 496 } 497 } 498 } 499 500 namespace { 501 502 /// Analyses memory accesses in a loop. 503 /// 504 /// Checks whether run time pointer checks are needed and builds sets for data 505 /// dependence checking. 506 class AccessAnalysis { 507 public: 508 /// Read or write access location. 509 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 510 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 511 512 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 513 MemoryDepChecker::DepCandidates &DA, 514 PredicatedScalarEvolution &PSE) 515 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 516 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 517 518 /// Register a load and whether it is only read from. 519 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 520 Value *Ptr = const_cast<Value*>(Loc.Ptr); 521 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 522 Accesses.insert(MemAccessInfo(Ptr, false)); 523 if (IsReadOnly) 524 ReadOnlyPtr.insert(Ptr); 525 } 526 527 /// Register a store. 528 void addStore(MemoryLocation &Loc) { 529 Value *Ptr = const_cast<Value*>(Loc.Ptr); 530 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 531 Accesses.insert(MemAccessInfo(Ptr, true)); 532 } 533 534 /// Check if we can emit a run-time no-alias check for \p Access. 535 /// 536 /// Returns true if we can emit a run-time no alias check for \p Access. 537 /// If we can check this access, this also adds it to a dependence set and 538 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 539 /// we will attempt to use additional run-time checks in order to get 540 /// the bounds of the pointer. 541 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 542 MemAccessInfo Access, 543 const ValueToValueMap &Strides, 544 DenseMap<Value *, unsigned> &DepSetId, 545 Loop *TheLoop, unsigned &RunningDepId, 546 unsigned ASId, bool ShouldCheckStride, 547 bool Assume); 548 549 /// Check whether we can check the pointers at runtime for 550 /// non-intersection. 551 /// 552 /// Returns true if we need no check or if we do and we can generate them 553 /// (i.e. the pointers have computable bounds). 554 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 555 Loop *TheLoop, const ValueToValueMap &Strides, 556 bool ShouldCheckWrap = false); 557 558 /// Goes over all memory accesses, checks whether a RT check is needed 559 /// and builds sets of dependent accesses. 560 void buildDependenceSets() { 561 processMemAccesses(); 562 } 563 564 /// Initial processing of memory accesses determined that we need to 565 /// perform dependency checking. 566 /// 567 /// Note that this can later be cleared if we retry memcheck analysis without 568 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 569 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 570 571 /// We decided that no dependence analysis would be used. Reset the state. 572 void resetDepChecks(MemoryDepChecker &DepChecker) { 573 CheckDeps.clear(); 574 DepChecker.clearDependences(); 575 } 576 577 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 578 579 private: 580 typedef SetVector<MemAccessInfo> PtrAccessSet; 581 582 /// Go over all memory access and check whether runtime pointer checks 583 /// are needed and build sets of dependency check candidates. 584 void processMemAccesses(); 585 586 /// Set of all accesses. 587 PtrAccessSet Accesses; 588 589 /// The loop being checked. 590 const Loop *TheLoop; 591 592 /// List of accesses that need a further dependence check. 593 MemAccessInfoList CheckDeps; 594 595 /// Set of pointers that are read only. 596 SmallPtrSet<Value*, 16> ReadOnlyPtr; 597 598 /// An alias set tracker to partition the access set by underlying object and 599 //intrinsic property (such as TBAA metadata). 600 AliasSetTracker AST; 601 602 LoopInfo *LI; 603 604 /// Sets of potentially dependent accesses - members of one set share an 605 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 606 /// dependence check. 607 MemoryDepChecker::DepCandidates &DepCands; 608 609 /// Initial processing of memory accesses determined that we may need 610 /// to add memchecks. Perform the analysis to determine the necessary checks. 611 /// 612 /// Note that, this is different from isDependencyCheckNeeded. When we retry 613 /// memcheck analysis without dependency checking 614 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 615 /// cleared while this remains set if we have potentially dependent accesses. 616 bool IsRTCheckAnalysisNeeded; 617 618 /// The SCEV predicate containing all the SCEV-related assumptions. 619 PredicatedScalarEvolution &PSE; 620 }; 621 622 } // end anonymous namespace 623 624 /// Check whether a pointer can participate in a runtime bounds check. 625 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 626 /// by adding run-time checks (overflow checks) if necessary. 627 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 628 const ValueToValueMap &Strides, Value *Ptr, 629 Loop *L, bool Assume) { 630 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 631 632 // The bounds for loop-invariant pointer is trivial. 633 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 634 return true; 635 636 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 637 638 if (!AR && Assume) 639 AR = PSE.getAsAddRec(Ptr); 640 641 if (!AR) 642 return false; 643 644 return AR->isAffine(); 645 } 646 647 /// Check whether a pointer address cannot wrap. 648 static bool isNoWrap(PredicatedScalarEvolution &PSE, 649 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 650 const SCEV *PtrScev = PSE.getSCEV(Ptr); 651 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 652 return true; 653 654 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 655 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 656 return true; 657 658 return false; 659 } 660 661 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 662 MemAccessInfo Access, 663 const ValueToValueMap &StridesMap, 664 DenseMap<Value *, unsigned> &DepSetId, 665 Loop *TheLoop, unsigned &RunningDepId, 666 unsigned ASId, bool ShouldCheckWrap, 667 bool Assume) { 668 Value *Ptr = Access.getPointer(); 669 670 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 671 return false; 672 673 // When we run after a failing dependency check we have to make sure 674 // we don't have wrapping pointers. 675 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 676 auto *Expr = PSE.getSCEV(Ptr); 677 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 678 return false; 679 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 680 } 681 682 // The id of the dependence set. 683 unsigned DepId; 684 685 if (isDependencyCheckNeeded()) { 686 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 687 unsigned &LeaderId = DepSetId[Leader]; 688 if (!LeaderId) 689 LeaderId = RunningDepId++; 690 DepId = LeaderId; 691 } else 692 // Each access has its own dependence set. 693 DepId = RunningDepId++; 694 695 bool IsWrite = Access.getInt(); 696 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 697 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 698 699 return true; 700 } 701 702 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 703 ScalarEvolution *SE, Loop *TheLoop, 704 const ValueToValueMap &StridesMap, 705 bool ShouldCheckWrap) { 706 // Find pointers with computable bounds. We are going to use this information 707 // to place a runtime bound check. 708 bool CanDoRT = true; 709 710 bool MayNeedRTCheck = false; 711 if (!IsRTCheckAnalysisNeeded) return true; 712 713 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 714 715 // We assign a consecutive id to access from different alias sets. 716 // Accesses between different groups doesn't need to be checked. 717 unsigned ASId = 0; 718 for (auto &AS : AST) { 719 int NumReadPtrChecks = 0; 720 int NumWritePtrChecks = 0; 721 bool CanDoAliasSetRT = true; 722 ++ASId; 723 724 // We assign consecutive id to access from different dependence sets. 725 // Accesses within the same set don't need a runtime check. 726 unsigned RunningDepId = 1; 727 DenseMap<Value *, unsigned> DepSetId; 728 729 SmallVector<MemAccessInfo, 4> Retries; 730 731 // First, count how many write and read accesses are in the alias set. Also 732 // collect MemAccessInfos for later. 733 SmallVector<MemAccessInfo, 4> AccessInfos; 734 for (const auto &A : AS) { 735 Value *Ptr = A.getValue(); 736 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 737 738 if (IsWrite) 739 ++NumWritePtrChecks; 740 else 741 ++NumReadPtrChecks; 742 AccessInfos.emplace_back(Ptr, IsWrite); 743 } 744 745 // We do not need runtime checks for this alias set, if there are no writes 746 // or a single write and no reads. 747 if (NumWritePtrChecks == 0 || 748 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 749 assert((AS.size() <= 1 || 750 all_of(AS, 751 [this](auto AC) { 752 MemAccessInfo AccessWrite(AC.getValue(), true); 753 return DepCands.findValue(AccessWrite) == DepCands.end(); 754 })) && 755 "Can only skip updating CanDoRT below, if all entries in AS " 756 "are reads or there is at most 1 entry"); 757 continue; 758 } 759 760 for (auto &Access : AccessInfos) { 761 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 762 RunningDepId, ASId, ShouldCheckWrap, false)) { 763 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 764 << *Access.getPointer() << '\n'); 765 Retries.push_back(Access); 766 CanDoAliasSetRT = false; 767 } 768 } 769 770 // Note that this function computes CanDoRT and MayNeedRTCheck 771 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 772 // we have a pointer for which we couldn't find the bounds but we don't 773 // actually need to emit any checks so it does not matter. 774 // 775 // We need runtime checks for this alias set, if there are at least 2 776 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 777 // any bound checks (because in that case the number of dependence sets is 778 // incomplete). 779 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 780 781 // We need to perform run-time alias checks, but some pointers had bounds 782 // that couldn't be checked. 783 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 784 // Reset the CanDoSetRt flag and retry all accesses that have failed. 785 // We know that we need these checks, so we can now be more aggressive 786 // and add further checks if required (overflow checks). 787 CanDoAliasSetRT = true; 788 for (auto Access : Retries) 789 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 790 TheLoop, RunningDepId, ASId, 791 ShouldCheckWrap, /*Assume=*/true)) { 792 CanDoAliasSetRT = false; 793 break; 794 } 795 } 796 797 CanDoRT &= CanDoAliasSetRT; 798 MayNeedRTCheck |= NeedsAliasSetRTCheck; 799 ++ASId; 800 } 801 802 // If the pointers that we would use for the bounds comparison have different 803 // address spaces, assume the values aren't directly comparable, so we can't 804 // use them for the runtime check. We also have to assume they could 805 // overlap. In the future there should be metadata for whether address spaces 806 // are disjoint. 807 unsigned NumPointers = RtCheck.Pointers.size(); 808 for (unsigned i = 0; i < NumPointers; ++i) { 809 for (unsigned j = i + 1; j < NumPointers; ++j) { 810 // Only need to check pointers between two different dependency sets. 811 if (RtCheck.Pointers[i].DependencySetId == 812 RtCheck.Pointers[j].DependencySetId) 813 continue; 814 // Only need to check pointers in the same alias set. 815 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 816 continue; 817 818 Value *PtrI = RtCheck.Pointers[i].PointerValue; 819 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 820 821 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 822 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 823 if (ASi != ASj) { 824 LLVM_DEBUG( 825 dbgs() << "LAA: Runtime check would require comparison between" 826 " different address spaces\n"); 827 return false; 828 } 829 } 830 } 831 832 if (MayNeedRTCheck && CanDoRT) 833 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 834 835 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 836 << " pointer comparisons.\n"); 837 838 // If we can do run-time checks, but there are no checks, no runtime checks 839 // are needed. This can happen when all pointers point to the same underlying 840 // object for example. 841 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 842 843 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 844 if (!CanDoRTIfNeeded) 845 RtCheck.reset(); 846 return CanDoRTIfNeeded; 847 } 848 849 void AccessAnalysis::processMemAccesses() { 850 // We process the set twice: first we process read-write pointers, last we 851 // process read-only pointers. This allows us to skip dependence tests for 852 // read-only pointers. 853 854 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 855 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 856 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 857 LLVM_DEBUG({ 858 for (auto A : Accesses) 859 dbgs() << "\t" << *A.getPointer() << " (" << 860 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 861 "read-only" : "read")) << ")\n"; 862 }); 863 864 // The AliasSetTracker has nicely partitioned our pointers by metadata 865 // compatibility and potential for underlying-object overlap. As a result, we 866 // only need to check for potential pointer dependencies within each alias 867 // set. 868 for (const auto &AS : AST) { 869 // Note that both the alias-set tracker and the alias sets themselves used 870 // linked lists internally and so the iteration order here is deterministic 871 // (matching the original instruction order within each set). 872 873 bool SetHasWrite = false; 874 875 // Map of pointers to last access encountered. 876 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 877 UnderlyingObjToAccessMap ObjToLastAccess; 878 879 // Set of access to check after all writes have been processed. 880 PtrAccessSet DeferredAccesses; 881 882 // Iterate over each alias set twice, once to process read/write pointers, 883 // and then to process read-only pointers. 884 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 885 bool UseDeferred = SetIteration > 0; 886 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 887 888 for (const auto &AV : AS) { 889 Value *Ptr = AV.getValue(); 890 891 // For a single memory access in AliasSetTracker, Accesses may contain 892 // both read and write, and they both need to be handled for CheckDeps. 893 for (const auto &AC : S) { 894 if (AC.getPointer() != Ptr) 895 continue; 896 897 bool IsWrite = AC.getInt(); 898 899 // If we're using the deferred access set, then it contains only 900 // reads. 901 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 902 if (UseDeferred && !IsReadOnlyPtr) 903 continue; 904 // Otherwise, the pointer must be in the PtrAccessSet, either as a 905 // read or a write. 906 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 907 S.count(MemAccessInfo(Ptr, false))) && 908 "Alias-set pointer not in the access set?"); 909 910 MemAccessInfo Access(Ptr, IsWrite); 911 DepCands.insert(Access); 912 913 // Memorize read-only pointers for later processing and skip them in 914 // the first round (they need to be checked after we have seen all 915 // write pointers). Note: we also mark pointer that are not 916 // consecutive as "read-only" pointers (so that we check 917 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 918 if (!UseDeferred && IsReadOnlyPtr) { 919 DeferredAccesses.insert(Access); 920 continue; 921 } 922 923 // If this is a write - check other reads and writes for conflicts. If 924 // this is a read only check other writes for conflicts (but only if 925 // there is no other write to the ptr - this is an optimization to 926 // catch "a[i] = a[i] + " without having to do a dependence check). 927 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 928 CheckDeps.push_back(Access); 929 IsRTCheckAnalysisNeeded = true; 930 } 931 932 if (IsWrite) 933 SetHasWrite = true; 934 935 // Create sets of pointers connected by a shared alias set and 936 // underlying object. 937 typedef SmallVector<const Value *, 16> ValueVector; 938 ValueVector TempObjects; 939 940 getUnderlyingObjects(Ptr, TempObjects, LI); 941 LLVM_DEBUG(dbgs() 942 << "Underlying objects for pointer " << *Ptr << "\n"); 943 for (const Value *UnderlyingObj : TempObjects) { 944 // nullptr never alias, don't join sets for pointer that have "null" 945 // in their UnderlyingObjects list. 946 if (isa<ConstantPointerNull>(UnderlyingObj) && 947 !NullPointerIsDefined( 948 TheLoop->getHeader()->getParent(), 949 UnderlyingObj->getType()->getPointerAddressSpace())) 950 continue; 951 952 UnderlyingObjToAccessMap::iterator Prev = 953 ObjToLastAccess.find(UnderlyingObj); 954 if (Prev != ObjToLastAccess.end()) 955 DepCands.unionSets(Access, Prev->second); 956 957 ObjToLastAccess[UnderlyingObj] = Access; 958 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 959 } 960 } 961 } 962 } 963 } 964 } 965 966 static bool isInBoundsGep(Value *Ptr) { 967 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 968 return GEP->isInBounds(); 969 return false; 970 } 971 972 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 973 /// i.e. monotonically increasing/decreasing. 974 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 975 PredicatedScalarEvolution &PSE, const Loop *L) { 976 // FIXME: This should probably only return true for NUW. 977 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 978 return true; 979 980 // Scalar evolution does not propagate the non-wrapping flags to values that 981 // are derived from a non-wrapping induction variable because non-wrapping 982 // could be flow-sensitive. 983 // 984 // Look through the potentially overflowing instruction to try to prove 985 // non-wrapping for the *specific* value of Ptr. 986 987 // The arithmetic implied by an inbounds GEP can't overflow. 988 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 989 if (!GEP || !GEP->isInBounds()) 990 return false; 991 992 // Make sure there is only one non-const index and analyze that. 993 Value *NonConstIndex = nullptr; 994 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 995 if (!isa<ConstantInt>(Index)) { 996 if (NonConstIndex) 997 return false; 998 NonConstIndex = Index; 999 } 1000 if (!NonConstIndex) 1001 // The recurrence is on the pointer, ignore for now. 1002 return false; 1003 1004 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1005 // AddRec using a NSW operation. 1006 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1007 if (OBO->hasNoSignedWrap() && 1008 // Assume constant for other the operand so that the AddRec can be 1009 // easily found. 1010 isa<ConstantInt>(OBO->getOperand(1))) { 1011 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1012 1013 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1014 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1015 } 1016 1017 return false; 1018 } 1019 1020 /// Check whether the access through \p Ptr has a constant stride. 1021 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 1022 const Loop *Lp, const ValueToValueMap &StridesMap, 1023 bool Assume, bool ShouldCheckWrap) { 1024 Type *Ty = Ptr->getType(); 1025 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1026 1027 // Make sure that the pointer does not point to aggregate types. 1028 auto *PtrTy = cast<PointerType>(Ty); 1029 if (PtrTy->getElementType()->isAggregateType()) { 1030 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1031 << *Ptr << "\n"); 1032 return 0; 1033 } 1034 1035 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1036 1037 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1038 if (Assume && !AR) 1039 AR = PSE.getAsAddRec(Ptr); 1040 1041 if (!AR) { 1042 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1043 << " SCEV: " << *PtrScev << "\n"); 1044 return 0; 1045 } 1046 1047 // The access function must stride over the innermost loop. 1048 if (Lp != AR->getLoop()) { 1049 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1050 << *Ptr << " SCEV: " << *AR << "\n"); 1051 return 0; 1052 } 1053 1054 // The address calculation must not wrap. Otherwise, a dependence could be 1055 // inverted. 1056 // An inbounds getelementptr that is a AddRec with a unit stride 1057 // cannot wrap per definition. The unit stride requirement is checked later. 1058 // An getelementptr without an inbounds attribute and unit stride would have 1059 // to access the pointer value "0" which is undefined behavior in address 1060 // space 0, therefore we can also vectorize this case. 1061 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1062 bool IsNoWrapAddRec = !ShouldCheckWrap || 1063 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1064 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1065 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1066 NullPointerIsDefined(Lp->getHeader()->getParent(), 1067 PtrTy->getAddressSpace())) { 1068 if (Assume) { 1069 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1070 IsNoWrapAddRec = true; 1071 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1072 << "LAA: Pointer: " << *Ptr << "\n" 1073 << "LAA: SCEV: " << *AR << "\n" 1074 << "LAA: Added an overflow assumption\n"); 1075 } else { 1076 LLVM_DEBUG( 1077 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1078 << *Ptr << " SCEV: " << *AR << "\n"); 1079 return 0; 1080 } 1081 } 1082 1083 // Check the step is constant. 1084 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1085 1086 // Calculate the pointer stride and check if it is constant. 1087 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1088 if (!C) { 1089 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1090 << " SCEV: " << *AR << "\n"); 1091 return 0; 1092 } 1093 1094 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1095 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1096 const APInt &APStepVal = C->getAPInt(); 1097 1098 // Huge step value - give up. 1099 if (APStepVal.getBitWidth() > 64) 1100 return 0; 1101 1102 int64_t StepVal = APStepVal.getSExtValue(); 1103 1104 // Strided access. 1105 int64_t Stride = StepVal / Size; 1106 int64_t Rem = StepVal % Size; 1107 if (Rem) 1108 return 0; 1109 1110 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1111 // know we can't "wrap around the address space". In case of address space 1112 // zero we know that this won't happen without triggering undefined behavior. 1113 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1114 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1115 PtrTy->getAddressSpace()))) { 1116 if (Assume) { 1117 // We can avoid this case by adding a run-time check. 1118 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1119 << "inbounds or in address space 0 may wrap:\n" 1120 << "LAA: Pointer: " << *Ptr << "\n" 1121 << "LAA: SCEV: " << *AR << "\n" 1122 << "LAA: Added an overflow assumption\n"); 1123 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1124 } else 1125 return 0; 1126 } 1127 1128 return Stride; 1129 } 1130 1131 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1132 ScalarEvolution &SE, 1133 SmallVectorImpl<unsigned> &SortedIndices) { 1134 assert(llvm::all_of( 1135 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1136 "Expected list of pointer operands."); 1137 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1138 OffValPairs.reserve(VL.size()); 1139 1140 // Walk over the pointers, and map each of them to an offset relative to 1141 // first pointer in the array. 1142 Value *Ptr0 = VL[0]; 1143 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1144 Value *Obj0 = getUnderlyingObject(Ptr0); 1145 1146 llvm::SmallSet<int64_t, 4> Offsets; 1147 for (auto *Ptr : VL) { 1148 // TODO: Outline this code as a special, more time consuming, version of 1149 // computeConstantDifference() function. 1150 if (Ptr->getType()->getPointerAddressSpace() != 1151 Ptr0->getType()->getPointerAddressSpace()) 1152 return false; 1153 // If a pointer refers to a different underlying object, bail - the 1154 // pointers are by definition incomparable. 1155 Value *CurrObj = getUnderlyingObject(Ptr); 1156 if (CurrObj != Obj0) 1157 return false; 1158 1159 const SCEV *Scev = SE.getSCEV(Ptr); 1160 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1161 // The pointers may not have a constant offset from each other, or SCEV 1162 // may just not be smart enough to figure out they do. Regardless, 1163 // there's nothing we can do. 1164 if (!Diff) 1165 return false; 1166 1167 // Check if the pointer with the same offset is found. 1168 int64_t Offset = Diff->getAPInt().getSExtValue(); 1169 if (!Offsets.insert(Offset).second) 1170 return false; 1171 OffValPairs.emplace_back(Offset, Ptr); 1172 } 1173 SortedIndices.clear(); 1174 SortedIndices.resize(VL.size()); 1175 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1176 1177 // Sort the memory accesses and keep the order of their uses in UseOrder. 1178 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1179 return OffValPairs[Left].first < OffValPairs[Right].first; 1180 }); 1181 1182 // Check if the order is consecutive already. 1183 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1184 return I == SortedIndices[I]; 1185 })) 1186 SortedIndices.clear(); 1187 1188 return true; 1189 } 1190 1191 /// Take the address space operand from the Load/Store instruction. 1192 /// Returns -1 if this is not a valid Load/Store instruction. 1193 static unsigned getAddressSpaceOperand(Value *I) { 1194 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1195 return L->getPointerAddressSpace(); 1196 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1197 return S->getPointerAddressSpace(); 1198 return -1; 1199 } 1200 1201 /// Returns true if the memory operations \p A and \p B are consecutive. 1202 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1203 ScalarEvolution &SE, bool CheckType) { 1204 Value *PtrA = getLoadStorePointerOperand(A); 1205 Value *PtrB = getLoadStorePointerOperand(B); 1206 unsigned ASA = getAddressSpaceOperand(A); 1207 unsigned ASB = getAddressSpaceOperand(B); 1208 1209 // Check that the address spaces match and that the pointers are valid. 1210 if (!PtrA || !PtrB || (ASA != ASB)) 1211 return false; 1212 1213 // Make sure that A and B are different pointers. 1214 if (PtrA == PtrB) 1215 return false; 1216 1217 // Make sure that A and B have the same type if required. 1218 if (CheckType && PtrA->getType() != PtrB->getType()) 1219 return false; 1220 1221 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1222 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1223 1224 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1225 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1226 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1227 1228 // Retrieve the address space again as pointer stripping now tracks through 1229 // `addrspacecast`. 1230 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1231 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1232 // Check that the address spaces match and that the pointers are valid. 1233 if (ASA != ASB) 1234 return false; 1235 1236 IdxWidth = DL.getIndexSizeInBits(ASA); 1237 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1238 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1239 1240 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1241 1242 // OffsetDelta = OffsetB - OffsetA; 1243 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1244 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1245 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1246 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1247 1248 // Check if they are based on the same pointer. That makes the offsets 1249 // sufficient. 1250 if (PtrA == PtrB) 1251 return OffsetDelta == Size; 1252 1253 // Compute the necessary base pointer delta to have the necessary final delta 1254 // equal to the size. 1255 // BaseDelta = Size - OffsetDelta; 1256 const SCEV *SizeSCEV = SE.getConstant(Size); 1257 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1258 1259 // Otherwise compute the distance with SCEV between the base pointers. 1260 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1261 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1262 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1263 return X == PtrSCEVB; 1264 } 1265 1266 MemoryDepChecker::VectorizationSafetyStatus 1267 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1268 switch (Type) { 1269 case NoDep: 1270 case Forward: 1271 case BackwardVectorizable: 1272 return VectorizationSafetyStatus::Safe; 1273 1274 case Unknown: 1275 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1276 case ForwardButPreventsForwarding: 1277 case Backward: 1278 case BackwardVectorizableButPreventsForwarding: 1279 return VectorizationSafetyStatus::Unsafe; 1280 } 1281 llvm_unreachable("unexpected DepType!"); 1282 } 1283 1284 bool MemoryDepChecker::Dependence::isBackward() const { 1285 switch (Type) { 1286 case NoDep: 1287 case Forward: 1288 case ForwardButPreventsForwarding: 1289 case Unknown: 1290 return false; 1291 1292 case BackwardVectorizable: 1293 case Backward: 1294 case BackwardVectorizableButPreventsForwarding: 1295 return true; 1296 } 1297 llvm_unreachable("unexpected DepType!"); 1298 } 1299 1300 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1301 return isBackward() || Type == Unknown; 1302 } 1303 1304 bool MemoryDepChecker::Dependence::isForward() const { 1305 switch (Type) { 1306 case Forward: 1307 case ForwardButPreventsForwarding: 1308 return true; 1309 1310 case NoDep: 1311 case Unknown: 1312 case BackwardVectorizable: 1313 case Backward: 1314 case BackwardVectorizableButPreventsForwarding: 1315 return false; 1316 } 1317 llvm_unreachable("unexpected DepType!"); 1318 } 1319 1320 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1321 uint64_t TypeByteSize) { 1322 // If loads occur at a distance that is not a multiple of a feasible vector 1323 // factor store-load forwarding does not take place. 1324 // Positive dependences might cause troubles because vectorizing them might 1325 // prevent store-load forwarding making vectorized code run a lot slower. 1326 // a[i] = a[i-3] ^ a[i-8]; 1327 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1328 // hence on your typical architecture store-load forwarding does not take 1329 // place. Vectorizing in such cases does not make sense. 1330 // Store-load forwarding distance. 1331 1332 // After this many iterations store-to-load forwarding conflicts should not 1333 // cause any slowdowns. 1334 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1335 // Maximum vector factor. 1336 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1337 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1338 1339 // Compute the smallest VF at which the store and load would be misaligned. 1340 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1341 VF *= 2) { 1342 // If the number of vector iteration between the store and the load are 1343 // small we could incur conflicts. 1344 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1345 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1346 break; 1347 } 1348 } 1349 1350 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1351 LLVM_DEBUG( 1352 dbgs() << "LAA: Distance " << Distance 1353 << " that could cause a store-load forwarding conflict\n"); 1354 return true; 1355 } 1356 1357 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1358 MaxVFWithoutSLForwardIssues != 1359 VectorizerParams::MaxVectorWidth * TypeByteSize) 1360 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1361 return false; 1362 } 1363 1364 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1365 if (Status < S) 1366 Status = S; 1367 } 1368 1369 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1370 /// memory accesses, that have the same stride whose absolute value is given 1371 /// in \p Stride, and that have the same type size \p TypeByteSize, 1372 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1373 /// possible to prove statically that the dependence distance is larger 1374 /// than the range that the accesses will travel through the execution of 1375 /// the loop. If so, return true; false otherwise. This is useful for 1376 /// example in loops such as the following (PR31098): 1377 /// for (i = 0; i < D; ++i) { 1378 /// = out[i]; 1379 /// out[i+D] = 1380 /// } 1381 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1382 const SCEV &BackedgeTakenCount, 1383 const SCEV &Dist, uint64_t Stride, 1384 uint64_t TypeByteSize) { 1385 1386 // If we can prove that 1387 // (**) |Dist| > BackedgeTakenCount * Step 1388 // where Step is the absolute stride of the memory accesses in bytes, 1389 // then there is no dependence. 1390 // 1391 // Rationale: 1392 // We basically want to check if the absolute distance (|Dist/Step|) 1393 // is >= the loop iteration count (or > BackedgeTakenCount). 1394 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1395 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1396 // that the dependence distance is >= VF; This is checked elsewhere. 1397 // But in some cases we can prune unknown dependence distances early, and 1398 // even before selecting the VF, and without a runtime test, by comparing 1399 // the distance against the loop iteration count. Since the vectorized code 1400 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1401 // also guarantees that distance >= VF. 1402 // 1403 const uint64_t ByteStride = Stride * TypeByteSize; 1404 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1405 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1406 1407 const SCEV *CastedDist = &Dist; 1408 const SCEV *CastedProduct = Product; 1409 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1410 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1411 1412 // The dependence distance can be positive/negative, so we sign extend Dist; 1413 // The multiplication of the absolute stride in bytes and the 1414 // backedgeTakenCount is non-negative, so we zero extend Product. 1415 if (DistTypeSize > ProductTypeSize) 1416 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1417 else 1418 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1419 1420 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1421 // (If so, then we have proven (**) because |Dist| >= Dist) 1422 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1423 if (SE.isKnownPositive(Minus)) 1424 return true; 1425 1426 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1427 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1428 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1429 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1430 if (SE.isKnownPositive(Minus)) 1431 return true; 1432 1433 return false; 1434 } 1435 1436 /// Check the dependence for two accesses with the same stride \p Stride. 1437 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1438 /// bytes. 1439 /// 1440 /// \returns true if they are independent. 1441 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1442 uint64_t TypeByteSize) { 1443 assert(Stride > 1 && "The stride must be greater than 1"); 1444 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1445 assert(Distance > 0 && "The distance must be non-zero"); 1446 1447 // Skip if the distance is not multiple of type byte size. 1448 if (Distance % TypeByteSize) 1449 return false; 1450 1451 uint64_t ScaledDist = Distance / TypeByteSize; 1452 1453 // No dependence if the scaled distance is not multiple of the stride. 1454 // E.g. 1455 // for (i = 0; i < 1024 ; i += 4) 1456 // A[i+2] = A[i] + 1; 1457 // 1458 // Two accesses in memory (scaled distance is 2, stride is 4): 1459 // | A[0] | | | | A[4] | | | | 1460 // | | | A[2] | | | | A[6] | | 1461 // 1462 // E.g. 1463 // for (i = 0; i < 1024 ; i += 3) 1464 // A[i+4] = A[i] + 1; 1465 // 1466 // Two accesses in memory (scaled distance is 4, stride is 3): 1467 // | A[0] | | | A[3] | | | A[6] | | | 1468 // | | | | | A[4] | | | A[7] | | 1469 return ScaledDist % Stride; 1470 } 1471 1472 MemoryDepChecker::Dependence::DepType 1473 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1474 const MemAccessInfo &B, unsigned BIdx, 1475 const ValueToValueMap &Strides) { 1476 assert (AIdx < BIdx && "Must pass arguments in program order"); 1477 1478 Value *APtr = A.getPointer(); 1479 Value *BPtr = B.getPointer(); 1480 bool AIsWrite = A.getInt(); 1481 bool BIsWrite = B.getInt(); 1482 1483 // Two reads are independent. 1484 if (!AIsWrite && !BIsWrite) 1485 return Dependence::NoDep; 1486 1487 // We cannot check pointers in different address spaces. 1488 if (APtr->getType()->getPointerAddressSpace() != 1489 BPtr->getType()->getPointerAddressSpace()) 1490 return Dependence::Unknown; 1491 1492 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1493 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1494 1495 const SCEV *Src = PSE.getSCEV(APtr); 1496 const SCEV *Sink = PSE.getSCEV(BPtr); 1497 1498 // If the induction step is negative we have to invert source and sink of the 1499 // dependence. 1500 if (StrideAPtr < 0) { 1501 std::swap(APtr, BPtr); 1502 std::swap(Src, Sink); 1503 std::swap(AIsWrite, BIsWrite); 1504 std::swap(AIdx, BIdx); 1505 std::swap(StrideAPtr, StrideBPtr); 1506 } 1507 1508 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1509 1510 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1511 << "(Induction step: " << StrideAPtr << ")\n"); 1512 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1513 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1514 1515 // Need accesses with constant stride. We don't want to vectorize 1516 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1517 // the address space. 1518 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1519 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1520 return Dependence::Unknown; 1521 } 1522 1523 Type *ATy = APtr->getType()->getPointerElementType(); 1524 Type *BTy = BPtr->getType()->getPointerElementType(); 1525 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1526 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1527 uint64_t Stride = std::abs(StrideAPtr); 1528 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1529 if (!C) { 1530 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1531 isSafeDependenceDistance(DL, *(PSE.getSE()), 1532 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1533 TypeByteSize)) 1534 return Dependence::NoDep; 1535 1536 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1537 FoundNonConstantDistanceDependence = true; 1538 return Dependence::Unknown; 1539 } 1540 1541 const APInt &Val = C->getAPInt(); 1542 int64_t Distance = Val.getSExtValue(); 1543 1544 // Attempt to prove strided accesses independent. 1545 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1546 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1547 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1548 return Dependence::NoDep; 1549 } 1550 1551 // Negative distances are not plausible dependencies. 1552 if (Val.isNegative()) { 1553 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1554 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1555 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1556 ATy != BTy)) { 1557 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1558 return Dependence::ForwardButPreventsForwarding; 1559 } 1560 1561 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1562 return Dependence::Forward; 1563 } 1564 1565 // Write to the same location with the same size. 1566 // Could be improved to assert type sizes are the same (i32 == float, etc). 1567 if (Val == 0) { 1568 if (ATy == BTy) 1569 return Dependence::Forward; 1570 LLVM_DEBUG( 1571 dbgs() << "LAA: Zero dependence difference but different types\n"); 1572 return Dependence::Unknown; 1573 } 1574 1575 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1576 1577 if (ATy != BTy) { 1578 LLVM_DEBUG( 1579 dbgs() 1580 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1581 return Dependence::Unknown; 1582 } 1583 1584 // Bail out early if passed-in parameters make vectorization not feasible. 1585 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1586 VectorizerParams::VectorizationFactor : 1); 1587 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1588 VectorizerParams::VectorizationInterleave : 1); 1589 // The minimum number of iterations for a vectorized/unrolled version. 1590 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1591 1592 // It's not vectorizable if the distance is smaller than the minimum distance 1593 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1594 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1595 // TypeByteSize (No need to plus the last gap distance). 1596 // 1597 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1598 // foo(int *A) { 1599 // int *B = (int *)((char *)A + 14); 1600 // for (i = 0 ; i < 1024 ; i += 2) 1601 // B[i] = A[i] + 1; 1602 // } 1603 // 1604 // Two accesses in memory (stride is 2): 1605 // | A[0] | | A[2] | | A[4] | | A[6] | | 1606 // | B[0] | | B[2] | | B[4] | 1607 // 1608 // Distance needs for vectorizing iterations except the last iteration: 1609 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1610 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1611 // 1612 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1613 // 12, which is less than distance. 1614 // 1615 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1616 // the minimum distance needed is 28, which is greater than distance. It is 1617 // not safe to do vectorization. 1618 uint64_t MinDistanceNeeded = 1619 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1620 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1621 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1622 << Distance << '\n'); 1623 return Dependence::Backward; 1624 } 1625 1626 // Unsafe if the minimum distance needed is greater than max safe distance. 1627 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1628 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1629 << MinDistanceNeeded << " size in bytes"); 1630 return Dependence::Backward; 1631 } 1632 1633 // Positive distance bigger than max vectorization factor. 1634 // FIXME: Should use max factor instead of max distance in bytes, which could 1635 // not handle different types. 1636 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1637 // void foo (int *A, char *B) { 1638 // for (unsigned i = 0; i < 1024; i++) { 1639 // A[i+2] = A[i] + 1; 1640 // B[i+2] = B[i] + 1; 1641 // } 1642 // } 1643 // 1644 // This case is currently unsafe according to the max safe distance. If we 1645 // analyze the two accesses on array B, the max safe dependence distance 1646 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1647 // is 8, which is less than 2 and forbidden vectorization, But actually 1648 // both A and B could be vectorized by 2 iterations. 1649 MaxSafeDepDistBytes = 1650 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1651 1652 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1653 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1654 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1655 return Dependence::BackwardVectorizableButPreventsForwarding; 1656 1657 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1658 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1659 << " with max VF = " << MaxVF << '\n'); 1660 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1661 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1662 return Dependence::BackwardVectorizable; 1663 } 1664 1665 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1666 MemAccessInfoList &CheckDeps, 1667 const ValueToValueMap &Strides) { 1668 1669 MaxSafeDepDistBytes = -1; 1670 SmallPtrSet<MemAccessInfo, 8> Visited; 1671 for (MemAccessInfo CurAccess : CheckDeps) { 1672 if (Visited.count(CurAccess)) 1673 continue; 1674 1675 // Get the relevant memory access set. 1676 EquivalenceClasses<MemAccessInfo>::iterator I = 1677 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1678 1679 // Check accesses within this set. 1680 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1681 AccessSets.member_begin(I); 1682 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1683 AccessSets.member_end(); 1684 1685 // Check every access pair. 1686 while (AI != AE) { 1687 Visited.insert(*AI); 1688 bool AIIsWrite = AI->getInt(); 1689 // Check loads only against next equivalent class, but stores also against 1690 // other stores in the same equivalence class - to the same address. 1691 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1692 (AIIsWrite ? AI : std::next(AI)); 1693 while (OI != AE) { 1694 // Check every accessing instruction pair in program order. 1695 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1696 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1697 // Scan all accesses of another equivalence class, but only the next 1698 // accesses of the same equivalent class. 1699 for (std::vector<unsigned>::iterator 1700 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1701 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1702 I2 != I2E; ++I2) { 1703 auto A = std::make_pair(&*AI, *I1); 1704 auto B = std::make_pair(&*OI, *I2); 1705 1706 assert(*I1 != *I2); 1707 if (*I1 > *I2) 1708 std::swap(A, B); 1709 1710 Dependence::DepType Type = 1711 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1712 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1713 1714 // Gather dependences unless we accumulated MaxDependences 1715 // dependences. In that case return as soon as we find the first 1716 // unsafe dependence. This puts a limit on this quadratic 1717 // algorithm. 1718 if (RecordDependences) { 1719 if (Type != Dependence::NoDep) 1720 Dependences.push_back(Dependence(A.second, B.second, Type)); 1721 1722 if (Dependences.size() >= MaxDependences) { 1723 RecordDependences = false; 1724 Dependences.clear(); 1725 LLVM_DEBUG(dbgs() 1726 << "Too many dependences, stopped recording\n"); 1727 } 1728 } 1729 if (!RecordDependences && !isSafeForVectorization()) 1730 return false; 1731 } 1732 ++OI; 1733 } 1734 AI++; 1735 } 1736 } 1737 1738 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1739 return isSafeForVectorization(); 1740 } 1741 1742 SmallVector<Instruction *, 4> 1743 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1744 MemAccessInfo Access(Ptr, isWrite); 1745 auto &IndexVector = Accesses.find(Access)->second; 1746 1747 SmallVector<Instruction *, 4> Insts; 1748 transform(IndexVector, 1749 std::back_inserter(Insts), 1750 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1751 return Insts; 1752 } 1753 1754 const char *MemoryDepChecker::Dependence::DepName[] = { 1755 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1756 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1757 1758 void MemoryDepChecker::Dependence::print( 1759 raw_ostream &OS, unsigned Depth, 1760 const SmallVectorImpl<Instruction *> &Instrs) const { 1761 OS.indent(Depth) << DepName[Type] << ":\n"; 1762 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1763 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1764 } 1765 1766 bool LoopAccessInfo::canAnalyzeLoop() { 1767 // We need to have a loop header. 1768 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1769 << TheLoop->getHeader()->getParent()->getName() << ": " 1770 << TheLoop->getHeader()->getName() << '\n'); 1771 1772 // We can only analyze innermost loops. 1773 if (!TheLoop->isInnermost()) { 1774 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1775 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1776 return false; 1777 } 1778 1779 // We must have a single backedge. 1780 if (TheLoop->getNumBackEdges() != 1) { 1781 LLVM_DEBUG( 1782 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1783 recordAnalysis("CFGNotUnderstood") 1784 << "loop control flow is not understood by analyzer"; 1785 return false; 1786 } 1787 1788 // We must have a single exiting block. 1789 if (!TheLoop->getExitingBlock()) { 1790 LLVM_DEBUG( 1791 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1792 recordAnalysis("CFGNotUnderstood") 1793 << "loop control flow is not understood by analyzer"; 1794 return false; 1795 } 1796 1797 // We only handle bottom-tested loops, i.e. loop in which the condition is 1798 // checked at the end of each iteration. With that we can assume that all 1799 // instructions in the loop are executed the same number of times. 1800 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1801 LLVM_DEBUG( 1802 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1803 recordAnalysis("CFGNotUnderstood") 1804 << "loop control flow is not understood by analyzer"; 1805 return false; 1806 } 1807 1808 // ScalarEvolution needs to be able to find the exit count. 1809 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1810 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1811 recordAnalysis("CantComputeNumberOfIterations") 1812 << "could not determine number of loop iterations"; 1813 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1814 return false; 1815 } 1816 1817 return true; 1818 } 1819 1820 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1821 const TargetLibraryInfo *TLI, 1822 DominatorTree *DT) { 1823 typedef SmallPtrSet<Value*, 16> ValueSet; 1824 1825 // Holds the Load and Store instructions. 1826 SmallVector<LoadInst *, 16> Loads; 1827 SmallVector<StoreInst *, 16> Stores; 1828 1829 // Holds all the different accesses in the loop. 1830 unsigned NumReads = 0; 1831 unsigned NumReadWrites = 0; 1832 1833 bool HasComplexMemInst = false; 1834 1835 // A runtime check is only legal to insert if there are no convergent calls. 1836 HasConvergentOp = false; 1837 1838 PtrRtChecking->Pointers.clear(); 1839 PtrRtChecking->Need = false; 1840 1841 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1842 1843 const bool EnableMemAccessVersioningOfLoop = 1844 EnableMemAccessVersioning && 1845 !TheLoop->getHeader()->getParent()->hasOptSize(); 1846 1847 // For each block. 1848 for (BasicBlock *BB : TheLoop->blocks()) { 1849 // Scan the BB and collect legal loads and stores. Also detect any 1850 // convergent instructions. 1851 for (Instruction &I : *BB) { 1852 if (auto *Call = dyn_cast<CallBase>(&I)) { 1853 if (Call->isConvergent()) 1854 HasConvergentOp = true; 1855 } 1856 1857 // With both a non-vectorizable memory instruction and a convergent 1858 // operation, found in this loop, no reason to continue the search. 1859 if (HasComplexMemInst && HasConvergentOp) { 1860 CanVecMem = false; 1861 return; 1862 } 1863 1864 // Avoid hitting recordAnalysis multiple times. 1865 if (HasComplexMemInst) 1866 continue; 1867 1868 // If this is a load, save it. If this instruction can read from memory 1869 // but is not a load, then we quit. Notice that we don't handle function 1870 // calls that read or write. 1871 if (I.mayReadFromMemory()) { 1872 // Many math library functions read the rounding mode. We will only 1873 // vectorize a loop if it contains known function calls that don't set 1874 // the flag. Therefore, it is safe to ignore this read from memory. 1875 auto *Call = dyn_cast<CallInst>(&I); 1876 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1877 continue; 1878 1879 // If the function has an explicit vectorized counterpart, we can safely 1880 // assume that it can be vectorized. 1881 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1882 !VFDatabase::getMappings(*Call).empty()) 1883 continue; 1884 1885 auto *Ld = dyn_cast<LoadInst>(&I); 1886 if (!Ld) { 1887 recordAnalysis("CantVectorizeInstruction", Ld) 1888 << "instruction cannot be vectorized"; 1889 HasComplexMemInst = true; 1890 continue; 1891 } 1892 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1893 recordAnalysis("NonSimpleLoad", Ld) 1894 << "read with atomic ordering or volatile read"; 1895 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1896 HasComplexMemInst = true; 1897 continue; 1898 } 1899 NumLoads++; 1900 Loads.push_back(Ld); 1901 DepChecker->addAccess(Ld); 1902 if (EnableMemAccessVersioningOfLoop) 1903 collectStridedAccess(Ld); 1904 continue; 1905 } 1906 1907 // Save 'store' instructions. Abort if other instructions write to memory. 1908 if (I.mayWriteToMemory()) { 1909 auto *St = dyn_cast<StoreInst>(&I); 1910 if (!St) { 1911 recordAnalysis("CantVectorizeInstruction", St) 1912 << "instruction cannot be vectorized"; 1913 HasComplexMemInst = true; 1914 continue; 1915 } 1916 if (!St->isSimple() && !IsAnnotatedParallel) { 1917 recordAnalysis("NonSimpleStore", St) 1918 << "write with atomic ordering or volatile write"; 1919 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1920 HasComplexMemInst = true; 1921 continue; 1922 } 1923 NumStores++; 1924 Stores.push_back(St); 1925 DepChecker->addAccess(St); 1926 if (EnableMemAccessVersioningOfLoop) 1927 collectStridedAccess(St); 1928 } 1929 } // Next instr. 1930 } // Next block. 1931 1932 if (HasComplexMemInst) { 1933 CanVecMem = false; 1934 return; 1935 } 1936 1937 // Now we have two lists that hold the loads and the stores. 1938 // Next, we find the pointers that they use. 1939 1940 // Check if we see any stores. If there are no stores, then we don't 1941 // care if the pointers are *restrict*. 1942 if (!Stores.size()) { 1943 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1944 CanVecMem = true; 1945 return; 1946 } 1947 1948 MemoryDepChecker::DepCandidates DependentAccesses; 1949 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1950 1951 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1952 // multiple times on the same object. If the ptr is accessed twice, once 1953 // for read and once for write, it will only appear once (on the write 1954 // list). This is okay, since we are going to check for conflicts between 1955 // writes and between reads and writes, but not between reads and reads. 1956 ValueSet Seen; 1957 1958 // Record uniform store addresses to identify if we have multiple stores 1959 // to the same address. 1960 ValueSet UniformStores; 1961 1962 for (StoreInst *ST : Stores) { 1963 Value *Ptr = ST->getPointerOperand(); 1964 1965 if (isUniform(Ptr)) 1966 HasDependenceInvolvingLoopInvariantAddress |= 1967 !UniformStores.insert(Ptr).second; 1968 1969 // If we did *not* see this pointer before, insert it to the read-write 1970 // list. At this phase it is only a 'write' list. 1971 if (Seen.insert(Ptr).second) { 1972 ++NumReadWrites; 1973 1974 MemoryLocation Loc = MemoryLocation::get(ST); 1975 // The TBAA metadata could have a control dependency on the predication 1976 // condition, so we cannot rely on it when determining whether or not we 1977 // need runtime pointer checks. 1978 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1979 Loc.AATags.TBAA = nullptr; 1980 1981 Accesses.addStore(Loc); 1982 } 1983 } 1984 1985 if (IsAnnotatedParallel) { 1986 LLVM_DEBUG( 1987 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1988 << "checks.\n"); 1989 CanVecMem = true; 1990 return; 1991 } 1992 1993 for (LoadInst *LD : Loads) { 1994 Value *Ptr = LD->getPointerOperand(); 1995 // If we did *not* see this pointer before, insert it to the 1996 // read list. If we *did* see it before, then it is already in 1997 // the read-write list. This allows us to vectorize expressions 1998 // such as A[i] += x; Because the address of A[i] is a read-write 1999 // pointer. This only works if the index of A[i] is consecutive. 2000 // If the address of i is unknown (for example A[B[i]]) then we may 2001 // read a few words, modify, and write a few words, and some of the 2002 // words may be written to the same address. 2003 bool IsReadOnlyPtr = false; 2004 if (Seen.insert(Ptr).second || 2005 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 2006 ++NumReads; 2007 IsReadOnlyPtr = true; 2008 } 2009 2010 // See if there is an unsafe dependency between a load to a uniform address and 2011 // store to the same uniform address. 2012 if (UniformStores.count(Ptr)) { 2013 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2014 "load and uniform store to the same address!\n"); 2015 HasDependenceInvolvingLoopInvariantAddress = true; 2016 } 2017 2018 MemoryLocation Loc = MemoryLocation::get(LD); 2019 // The TBAA metadata could have a control dependency on the predication 2020 // condition, so we cannot rely on it when determining whether or not we 2021 // need runtime pointer checks. 2022 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2023 Loc.AATags.TBAA = nullptr; 2024 2025 Accesses.addLoad(Loc, IsReadOnlyPtr); 2026 } 2027 2028 // If we write (or read-write) to a single destination and there are no 2029 // other reads in this loop then is it safe to vectorize. 2030 if (NumReadWrites == 1 && NumReads == 0) { 2031 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2032 CanVecMem = true; 2033 return; 2034 } 2035 2036 // Build dependence sets and check whether we need a runtime pointer bounds 2037 // check. 2038 Accesses.buildDependenceSets(); 2039 2040 // Find pointers with computable bounds. We are going to use this information 2041 // to place a runtime bound check. 2042 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2043 TheLoop, SymbolicStrides); 2044 if (!CanDoRTIfNeeded) { 2045 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2046 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2047 << "the array bounds.\n"); 2048 CanVecMem = false; 2049 return; 2050 } 2051 2052 LLVM_DEBUG( 2053 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2054 2055 CanVecMem = true; 2056 if (Accesses.isDependencyCheckNeeded()) { 2057 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2058 CanVecMem = DepChecker->areDepsSafe( 2059 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2060 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2061 2062 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2063 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2064 2065 // Clear the dependency checks. We assume they are not needed. 2066 Accesses.resetDepChecks(*DepChecker); 2067 2068 PtrRtChecking->reset(); 2069 PtrRtChecking->Need = true; 2070 2071 auto *SE = PSE->getSE(); 2072 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2073 SymbolicStrides, true); 2074 2075 // Check that we found the bounds for the pointer. 2076 if (!CanDoRTIfNeeded) { 2077 recordAnalysis("CantCheckMemDepsAtRunTime") 2078 << "cannot check memory dependencies at runtime"; 2079 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2080 CanVecMem = false; 2081 return; 2082 } 2083 2084 CanVecMem = true; 2085 } 2086 } 2087 2088 if (HasConvergentOp) { 2089 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2090 << "cannot add control dependency to convergent operation"; 2091 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2092 "would be needed with a convergent operation\n"); 2093 CanVecMem = false; 2094 return; 2095 } 2096 2097 if (CanVecMem) 2098 LLVM_DEBUG( 2099 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2100 << (PtrRtChecking->Need ? "" : " don't") 2101 << " need runtime memory checks.\n"); 2102 else { 2103 recordAnalysis("UnsafeMemDep") 2104 << "unsafe dependent memory operations in loop. Use " 2105 "#pragma loop distribute(enable) to allow loop distribution " 2106 "to attempt to isolate the offending operations into a separate " 2107 "loop"; 2108 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2109 } 2110 } 2111 2112 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2113 DominatorTree *DT) { 2114 assert(TheLoop->contains(BB) && "Unknown block used"); 2115 2116 // Blocks that do not dominate the latch need predication. 2117 BasicBlock* Latch = TheLoop->getLoopLatch(); 2118 return !DT->dominates(BB, Latch); 2119 } 2120 2121 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2122 Instruction *I) { 2123 assert(!Report && "Multiple reports generated"); 2124 2125 Value *CodeRegion = TheLoop->getHeader(); 2126 DebugLoc DL = TheLoop->getStartLoc(); 2127 2128 if (I) { 2129 CodeRegion = I->getParent(); 2130 // If there is no debug location attached to the instruction, revert back to 2131 // using the loop's. 2132 if (I->getDebugLoc()) 2133 DL = I->getDebugLoc(); 2134 } 2135 2136 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2137 CodeRegion); 2138 return *Report; 2139 } 2140 2141 bool LoopAccessInfo::isUniform(Value *V) const { 2142 auto *SE = PSE->getSE(); 2143 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2144 // never considered uniform. 2145 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2146 // trivially loop-invariant FP values to be considered uniform. 2147 if (!SE->isSCEVable(V->getType())) 2148 return false; 2149 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2150 } 2151 2152 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2153 Value *Ptr = nullptr; 2154 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2155 Ptr = LI->getPointerOperand(); 2156 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2157 Ptr = SI->getPointerOperand(); 2158 else 2159 return; 2160 2161 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2162 if (!Stride) 2163 return; 2164 2165 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2166 "versioning:"); 2167 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2168 2169 // Avoid adding the "Stride == 1" predicate when we know that 2170 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2171 // or zero iteration loop, as Trip-Count <= Stride == 1. 2172 // 2173 // TODO: We are currently not making a very informed decision on when it is 2174 // beneficial to apply stride versioning. It might make more sense that the 2175 // users of this analysis (such as the vectorizer) will trigger it, based on 2176 // their specific cost considerations; For example, in cases where stride 2177 // versioning does not help resolving memory accesses/dependences, the 2178 // vectorizer should evaluate the cost of the runtime test, and the benefit 2179 // of various possible stride specializations, considering the alternatives 2180 // of using gather/scatters (if available). 2181 2182 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2183 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2184 2185 // Match the types so we can compare the stride and the BETakenCount. 2186 // The Stride can be positive/negative, so we sign extend Stride; 2187 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2188 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2189 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2190 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2191 const SCEV *CastedStride = StrideExpr; 2192 const SCEV *CastedBECount = BETakenCount; 2193 ScalarEvolution *SE = PSE->getSE(); 2194 if (BETypeSize >= StrideTypeSize) 2195 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2196 else 2197 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2198 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2199 // Since TripCount == BackEdgeTakenCount + 1, checking: 2200 // "Stride >= TripCount" is equivalent to checking: 2201 // Stride - BETakenCount > 0 2202 if (SE->isKnownPositive(StrideMinusBETaken)) { 2203 LLVM_DEBUG( 2204 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2205 "Stride==1 predicate will imply that the loop executes " 2206 "at most once.\n"); 2207 return; 2208 } 2209 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2210 2211 SymbolicStrides[Ptr] = Stride; 2212 StrideSet.insert(Stride); 2213 } 2214 2215 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2216 const TargetLibraryInfo *TLI, AAResults *AA, 2217 DominatorTree *DT, LoopInfo *LI) 2218 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2219 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2220 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2221 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2222 HasConvergentOp(false), 2223 HasDependenceInvolvingLoopInvariantAddress(false) { 2224 if (canAnalyzeLoop()) 2225 analyzeLoop(AA, LI, TLI, DT); 2226 } 2227 2228 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2229 if (CanVecMem) { 2230 OS.indent(Depth) << "Memory dependences are safe"; 2231 if (MaxSafeDepDistBytes != -1ULL) 2232 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2233 << " bytes"; 2234 if (PtrRtChecking->Need) 2235 OS << " with run-time checks"; 2236 OS << "\n"; 2237 } 2238 2239 if (HasConvergentOp) 2240 OS.indent(Depth) << "Has convergent operation in loop\n"; 2241 2242 if (Report) 2243 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2244 2245 if (auto *Dependences = DepChecker->getDependences()) { 2246 OS.indent(Depth) << "Dependences:\n"; 2247 for (auto &Dep : *Dependences) { 2248 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2249 OS << "\n"; 2250 } 2251 } else 2252 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2253 2254 // List the pair of accesses need run-time checks to prove independence. 2255 PtrRtChecking->print(OS, Depth); 2256 OS << "\n"; 2257 2258 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2259 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2260 << "found in loop.\n"; 2261 2262 OS.indent(Depth) << "SCEV assumptions:\n"; 2263 PSE->getUnionPredicate().print(OS, Depth); 2264 2265 OS << "\n"; 2266 2267 OS.indent(Depth) << "Expressions re-written:\n"; 2268 PSE->print(OS, Depth); 2269 } 2270 2271 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2272 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2273 } 2274 2275 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2276 auto &LAI = LoopAccessInfoMap[L]; 2277 2278 if (!LAI) 2279 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2280 2281 return *LAI.get(); 2282 } 2283 2284 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2285 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2286 2287 for (Loop *TopLevelLoop : *LI) 2288 for (Loop *L : depth_first(TopLevelLoop)) { 2289 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2290 auto &LAI = LAA.getInfo(L); 2291 LAI.print(OS, 4); 2292 } 2293 } 2294 2295 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2296 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2297 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2298 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2299 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2300 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2301 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2302 2303 return false; 2304 } 2305 2306 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2307 AU.addRequired<ScalarEvolutionWrapperPass>(); 2308 AU.addRequired<AAResultsWrapperPass>(); 2309 AU.addRequired<DominatorTreeWrapperPass>(); 2310 AU.addRequired<LoopInfoWrapperPass>(); 2311 2312 AU.setPreservesAll(); 2313 } 2314 2315 char LoopAccessLegacyAnalysis::ID = 0; 2316 static const char laa_name[] = "Loop Access Analysis"; 2317 #define LAA_NAME "loop-accesses" 2318 2319 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2320 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2321 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2322 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2323 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2324 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2325 2326 AnalysisKey LoopAccessAnalysis::Key; 2327 2328 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2329 LoopStandardAnalysisResults &AR) { 2330 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2331 } 2332 2333 namespace llvm { 2334 2335 Pass *createLAAPass() { 2336 return new LoopAccessLegacyAnalysis(); 2337 } 2338 2339 } // end namespace llvm 2340