1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// Maximum SIMD width. 52 const unsigned VectorizerParams::MaxVectorWidth = 64; 53 54 /// \brief We collect interesting dependences up to this threshold. 55 static cl::opt<unsigned> MaxInterestingDependence( 56 "max-interesting-dependences", cl::Hidden, 57 cl::desc("Maximum number of interesting dependences collected by " 58 "loop-access analysis (default = 100)"), 59 cl::init(100)); 60 61 bool VectorizerParams::isInterleaveForced() { 62 return ::VectorizationInterleave.getNumOccurrences() > 0; 63 } 64 65 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 66 const Function *TheFunction, 67 const Loop *TheLoop, 68 const char *PassName) { 69 DebugLoc DL = TheLoop->getStartLoc(); 70 if (const Instruction *I = Message.getInstr()) 71 DL = I->getDebugLoc(); 72 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 73 *TheFunction, DL, Message.str()); 74 } 75 76 Value *llvm::stripIntegerCast(Value *V) { 77 if (CastInst *CI = dyn_cast<CastInst>(V)) 78 if (CI->getOperand(0)->getType()->isIntegerTy()) 79 return CI->getOperand(0); 80 return V; 81 } 82 83 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 84 const ValueToValueMap &PtrToStride, 85 Value *Ptr, Value *OrigPtr) { 86 87 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 88 89 // If there is an entry in the map return the SCEV of the pointer with the 90 // symbolic stride replaced by one. 91 ValueToValueMap::const_iterator SI = 92 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 93 if (SI != PtrToStride.end()) { 94 Value *StrideVal = SI->second; 95 96 // Strip casts. 97 StrideVal = stripIntegerCast(StrideVal); 98 99 // Replace symbolic stride by one. 100 Value *One = ConstantInt::get(StrideVal->getType(), 1); 101 ValueToValueMap RewriteMap; 102 RewriteMap[StrideVal] = One; 103 104 const SCEV *ByOne = 105 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 106 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 107 << "\n"); 108 return ByOne; 109 } 110 111 // Otherwise, just return the SCEV of the original pointer. 112 return SE->getSCEV(Ptr); 113 } 114 115 void LoopAccessInfo::RuntimePointerCheck::insert( 116 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 117 unsigned ASId, const ValueToValueMap &Strides) { 118 // Get the stride replaced scev. 119 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 120 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 121 assert(AR && "Invalid addrec expression"); 122 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 123 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 124 Pointers.push_back(Ptr); 125 Starts.push_back(AR->getStart()); 126 Ends.push_back(ScEnd); 127 IsWritePtr.push_back(WritePtr); 128 DependencySetId.push_back(DepSetId); 129 AliasSetId.push_back(ASId); 130 } 131 132 bool LoopAccessInfo::RuntimePointerCheck::needsChecking( 133 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { 134 // No need to check if two readonly pointers intersect. 135 if (!IsWritePtr[I] && !IsWritePtr[J]) 136 return false; 137 138 // Only need to check pointers between two different dependency sets. 139 if (DependencySetId[I] == DependencySetId[J]) 140 return false; 141 142 // Only need to check pointers in the same alias set. 143 if (AliasSetId[I] != AliasSetId[J]) 144 return false; 145 146 // If PtrPartition is set omit checks between pointers of the same partition. 147 // Partition number -1 means that the pointer is used in multiple partitions. 148 // In this case we can't omit the check. 149 if (PtrPartition && (*PtrPartition)[I] != -1 && 150 (*PtrPartition)[I] == (*PtrPartition)[J]) 151 return false; 152 153 return true; 154 } 155 156 void LoopAccessInfo::RuntimePointerCheck::print( 157 raw_ostream &OS, unsigned Depth, 158 const SmallVectorImpl<int> *PtrPartition) const { 159 unsigned NumPointers = Pointers.size(); 160 if (NumPointers == 0) 161 return; 162 163 OS.indent(Depth) << "Run-time memory checks:\n"; 164 unsigned N = 0; 165 for (unsigned I = 0; I < NumPointers; ++I) 166 for (unsigned J = I + 1; J < NumPointers; ++J) 167 if (needsChecking(I, J, PtrPartition)) { 168 OS.indent(Depth) << N++ << ":\n"; 169 OS.indent(Depth + 2) << *Pointers[I]; 170 if (PtrPartition) 171 OS << " (Partition: " << (*PtrPartition)[I] << ")"; 172 OS << "\n"; 173 OS.indent(Depth + 2) << *Pointers[J]; 174 if (PtrPartition) 175 OS << " (Partition: " << (*PtrPartition)[J] << ")"; 176 OS << "\n"; 177 } 178 } 179 180 unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks( 181 const SmallVectorImpl<int> *PtrPartition) const { 182 unsigned NumPointers = Pointers.size(); 183 unsigned CheckCount = 0; 184 185 for (unsigned I = 0; I < NumPointers; ++I) 186 for (unsigned J = I + 1; J < NumPointers; ++J) 187 if (needsChecking(I, J, PtrPartition)) 188 CheckCount++; 189 return CheckCount; 190 } 191 192 bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking( 193 const SmallVectorImpl<int> *PtrPartition) const { 194 return getNumberOfChecks(PtrPartition) != 0; 195 } 196 197 namespace { 198 /// \brief Analyses memory accesses in a loop. 199 /// 200 /// Checks whether run time pointer checks are needed and builds sets for data 201 /// dependence checking. 202 class AccessAnalysis { 203 public: 204 /// \brief Read or write access location. 205 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 206 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 207 208 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 209 MemoryDepChecker::DepCandidates &DA) 210 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckNeeded(false) {} 211 212 /// \brief Register a load and whether it is only read from. 213 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 214 Value *Ptr = const_cast<Value*>(Loc.Ptr); 215 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 216 Accesses.insert(MemAccessInfo(Ptr, false)); 217 if (IsReadOnly) 218 ReadOnlyPtr.insert(Ptr); 219 } 220 221 /// \brief Register a store. 222 void addStore(MemoryLocation &Loc) { 223 Value *Ptr = const_cast<Value*>(Loc.Ptr); 224 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 225 Accesses.insert(MemAccessInfo(Ptr, true)); 226 } 227 228 /// \brief Check whether we can check the pointers at runtime for 229 /// non-intersection. Returns true when we have 0 pointers 230 /// (a check on 0 pointers for non-intersection will always return true). 231 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, 232 bool &NeedRTCheck, ScalarEvolution *SE, Loop *TheLoop, 233 const ValueToValueMap &Strides, 234 bool ShouldCheckStride = false); 235 236 /// \brief Goes over all memory accesses, checks whether a RT check is needed 237 /// and builds sets of dependent accesses. 238 void buildDependenceSets() { 239 processMemAccesses(); 240 } 241 242 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 243 244 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 245 246 /// We decided that no dependence analysis would be used. Reset the state. 247 void resetDepChecks(MemoryDepChecker &DepChecker) { 248 CheckDeps.clear(); 249 DepChecker.clearInterestingDependences(); 250 } 251 252 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 253 254 private: 255 typedef SetVector<MemAccessInfo> PtrAccessSet; 256 257 /// \brief Go over all memory access and check whether runtime pointer checks 258 /// are needed /// and build sets of dependency check candidates. 259 void processMemAccesses(); 260 261 /// Set of all accesses. 262 PtrAccessSet Accesses; 263 264 const DataLayout &DL; 265 266 /// Set of accesses that need a further dependence check. 267 MemAccessInfoSet CheckDeps; 268 269 /// Set of pointers that are read only. 270 SmallPtrSet<Value*, 16> ReadOnlyPtr; 271 272 /// An alias set tracker to partition the access set by underlying object and 273 //intrinsic property (such as TBAA metadata). 274 AliasSetTracker AST; 275 276 LoopInfo *LI; 277 278 /// Sets of potentially dependent accesses - members of one set share an 279 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 280 /// dependence check. 281 MemoryDepChecker::DepCandidates &DepCands; 282 283 bool IsRTCheckNeeded; 284 }; 285 286 } // end anonymous namespace 287 288 /// \brief Check whether a pointer can participate in a runtime bounds check. 289 static bool hasComputableBounds(ScalarEvolution *SE, 290 const ValueToValueMap &Strides, Value *Ptr) { 291 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 292 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 293 if (!AR) 294 return false; 295 296 return AR->isAffine(); 297 } 298 299 bool AccessAnalysis::canCheckPtrAtRT( 300 LoopAccessInfo::RuntimePointerCheck &RtCheck, bool &NeedRTCheck, 301 ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, 302 bool ShouldCheckStride) { 303 // Find pointers with computable bounds. We are going to use this information 304 // to place a runtime bound check. 305 bool CanDoRT = true; 306 307 NeedRTCheck = false; 308 if (!IsRTCheckNeeded) return true; 309 310 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 311 312 // We assign a consecutive id to access from different alias sets. 313 // Accesses between different groups doesn't need to be checked. 314 unsigned ASId = 1; 315 for (auto &AS : AST) { 316 // We assign consecutive id to access from different dependence sets. 317 // Accesses within the same set don't need a runtime check. 318 unsigned RunningDepId = 1; 319 DenseMap<Value *, unsigned> DepSetId; 320 321 for (auto A : AS) { 322 Value *Ptr = A.getValue(); 323 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 324 MemAccessInfo Access(Ptr, IsWrite); 325 326 if (hasComputableBounds(SE, StridesMap, Ptr) && 327 // When we run after a failing dependency check we have to make sure 328 // we don't have wrapping pointers. 329 (!ShouldCheckStride || 330 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 331 // The id of the dependence set. 332 unsigned DepId; 333 334 if (IsDepCheckNeeded) { 335 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 336 unsigned &LeaderId = DepSetId[Leader]; 337 if (!LeaderId) 338 LeaderId = RunningDepId++; 339 DepId = LeaderId; 340 } else 341 // Each access has its own dependence set. 342 DepId = RunningDepId++; 343 344 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 345 346 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 347 } else { 348 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 349 CanDoRT = false; 350 } 351 } 352 353 ++ASId; 354 } 355 356 // We need a runtime check if there are any accesses that need checking. 357 // However, some accesses cannot be checked (for example because we 358 // can't determine their bounds). In these cases we would need a check 359 // but wouldn't be able to add it. 360 NeedRTCheck = !CanDoRT || RtCheck.needsAnyChecking(nullptr); 361 362 // If the pointers that we would use for the bounds comparison have different 363 // address spaces, assume the values aren't directly comparable, so we can't 364 // use them for the runtime check. We also have to assume they could 365 // overlap. In the future there should be metadata for whether address spaces 366 // are disjoint. 367 unsigned NumPointers = RtCheck.Pointers.size(); 368 for (unsigned i = 0; i < NumPointers; ++i) { 369 for (unsigned j = i + 1; j < NumPointers; ++j) { 370 // Only need to check pointers between two different dependency sets. 371 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 372 continue; 373 // Only need to check pointers in the same alias set. 374 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 375 continue; 376 377 Value *PtrI = RtCheck.Pointers[i]; 378 Value *PtrJ = RtCheck.Pointers[j]; 379 380 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 381 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 382 if (ASi != ASj) { 383 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 384 " different address spaces\n"); 385 return false; 386 } 387 } 388 } 389 390 return CanDoRT; 391 } 392 393 void AccessAnalysis::processMemAccesses() { 394 // We process the set twice: first we process read-write pointers, last we 395 // process read-only pointers. This allows us to skip dependence tests for 396 // read-only pointers. 397 398 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 399 DEBUG(dbgs() << " AST: "; AST.dump()); 400 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 401 DEBUG({ 402 for (auto A : Accesses) 403 dbgs() << "\t" << *A.getPointer() << " (" << 404 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 405 "read-only" : "read")) << ")\n"; 406 }); 407 408 // The AliasSetTracker has nicely partitioned our pointers by metadata 409 // compatibility and potential for underlying-object overlap. As a result, we 410 // only need to check for potential pointer dependencies within each alias 411 // set. 412 for (auto &AS : AST) { 413 // Note that both the alias-set tracker and the alias sets themselves used 414 // linked lists internally and so the iteration order here is deterministic 415 // (matching the original instruction order within each set). 416 417 bool SetHasWrite = false; 418 419 // Map of pointers to last access encountered. 420 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 421 UnderlyingObjToAccessMap ObjToLastAccess; 422 423 // Set of access to check after all writes have been processed. 424 PtrAccessSet DeferredAccesses; 425 426 // Iterate over each alias set twice, once to process read/write pointers, 427 // and then to process read-only pointers. 428 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 429 bool UseDeferred = SetIteration > 0; 430 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 431 432 for (auto AV : AS) { 433 Value *Ptr = AV.getValue(); 434 435 // For a single memory access in AliasSetTracker, Accesses may contain 436 // both read and write, and they both need to be handled for CheckDeps. 437 for (auto AC : S) { 438 if (AC.getPointer() != Ptr) 439 continue; 440 441 bool IsWrite = AC.getInt(); 442 443 // If we're using the deferred access set, then it contains only 444 // reads. 445 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 446 if (UseDeferred && !IsReadOnlyPtr) 447 continue; 448 // Otherwise, the pointer must be in the PtrAccessSet, either as a 449 // read or a write. 450 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 451 S.count(MemAccessInfo(Ptr, false))) && 452 "Alias-set pointer not in the access set?"); 453 454 MemAccessInfo Access(Ptr, IsWrite); 455 DepCands.insert(Access); 456 457 // Memorize read-only pointers for later processing and skip them in 458 // the first round (they need to be checked after we have seen all 459 // write pointers). Note: we also mark pointer that are not 460 // consecutive as "read-only" pointers (so that we check 461 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 462 if (!UseDeferred && IsReadOnlyPtr) { 463 DeferredAccesses.insert(Access); 464 continue; 465 } 466 467 // If this is a write - check other reads and writes for conflicts. If 468 // this is a read only check other writes for conflicts (but only if 469 // there is no other write to the ptr - this is an optimization to 470 // catch "a[i] = a[i] + " without having to do a dependence check). 471 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 472 CheckDeps.insert(Access); 473 IsRTCheckNeeded = true; 474 } 475 476 if (IsWrite) 477 SetHasWrite = true; 478 479 // Create sets of pointers connected by a shared alias set and 480 // underlying object. 481 typedef SmallVector<Value *, 16> ValueVector; 482 ValueVector TempObjects; 483 484 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 485 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 486 for (Value *UnderlyingObj : TempObjects) { 487 UnderlyingObjToAccessMap::iterator Prev = 488 ObjToLastAccess.find(UnderlyingObj); 489 if (Prev != ObjToLastAccess.end()) 490 DepCands.unionSets(Access, Prev->second); 491 492 ObjToLastAccess[UnderlyingObj] = Access; 493 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 494 } 495 } 496 } 497 } 498 } 499 } 500 501 static bool isInBoundsGep(Value *Ptr) { 502 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 503 return GEP->isInBounds(); 504 return false; 505 } 506 507 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 508 /// i.e. monotonically increasing/decreasing. 509 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 510 ScalarEvolution *SE, const Loop *L) { 511 // FIXME: This should probably only return true for NUW. 512 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 513 return true; 514 515 // Scalar evolution does not propagate the non-wrapping flags to values that 516 // are derived from a non-wrapping induction variable because non-wrapping 517 // could be flow-sensitive. 518 // 519 // Look through the potentially overflowing instruction to try to prove 520 // non-wrapping for the *specific* value of Ptr. 521 522 // The arithmetic implied by an inbounds GEP can't overflow. 523 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 524 if (!GEP || !GEP->isInBounds()) 525 return false; 526 527 // Make sure there is only one non-const index and analyze that. 528 Value *NonConstIndex = nullptr; 529 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 530 if (!isa<ConstantInt>(*Index)) { 531 if (NonConstIndex) 532 return false; 533 NonConstIndex = *Index; 534 } 535 if (!NonConstIndex) 536 // The recurrence is on the pointer, ignore for now. 537 return false; 538 539 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 540 // AddRec using a NSW operation. 541 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 542 if (OBO->hasNoSignedWrap() && 543 // Assume constant for other the operand so that the AddRec can be 544 // easily found. 545 isa<ConstantInt>(OBO->getOperand(1))) { 546 auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 547 548 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 549 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 550 } 551 552 return false; 553 } 554 555 /// \brief Check whether the access through \p Ptr has a constant stride. 556 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 557 const ValueToValueMap &StridesMap) { 558 const Type *Ty = Ptr->getType(); 559 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 560 561 // Make sure that the pointer does not point to aggregate types. 562 const PointerType *PtrTy = cast<PointerType>(Ty); 563 if (PtrTy->getElementType()->isAggregateType()) { 564 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 565 << *Ptr << "\n"); 566 return 0; 567 } 568 569 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 570 571 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 572 if (!AR) { 573 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 574 << *Ptr << " SCEV: " << *PtrScev << "\n"); 575 return 0; 576 } 577 578 // The accesss function must stride over the innermost loop. 579 if (Lp != AR->getLoop()) { 580 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 581 *Ptr << " SCEV: " << *PtrScev << "\n"); 582 } 583 584 // The address calculation must not wrap. Otherwise, a dependence could be 585 // inverted. 586 // An inbounds getelementptr that is a AddRec with a unit stride 587 // cannot wrap per definition. The unit stride requirement is checked later. 588 // An getelementptr without an inbounds attribute and unit stride would have 589 // to access the pointer value "0" which is undefined behavior in address 590 // space 0, therefore we can also vectorize this case. 591 bool IsInBoundsGEP = isInBoundsGep(Ptr); 592 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); 593 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 594 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 595 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 596 << *Ptr << " SCEV: " << *PtrScev << "\n"); 597 return 0; 598 } 599 600 // Check the step is constant. 601 const SCEV *Step = AR->getStepRecurrence(*SE); 602 603 // Calculate the pointer stride and check if it is consecutive. 604 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 605 if (!C) { 606 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 607 " SCEV: " << *PtrScev << "\n"); 608 return 0; 609 } 610 611 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 612 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 613 const APInt &APStepVal = C->getValue()->getValue(); 614 615 // Huge step value - give up. 616 if (APStepVal.getBitWidth() > 64) 617 return 0; 618 619 int64_t StepVal = APStepVal.getSExtValue(); 620 621 // Strided access. 622 int64_t Stride = StepVal / Size; 623 int64_t Rem = StepVal % Size; 624 if (Rem) 625 return 0; 626 627 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 628 // know we can't "wrap around the address space". In case of address space 629 // zero we know that this won't happen without triggering undefined behavior. 630 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 631 Stride != 1 && Stride != -1) 632 return 0; 633 634 return Stride; 635 } 636 637 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 638 switch (Type) { 639 case NoDep: 640 case Forward: 641 case BackwardVectorizable: 642 return true; 643 644 case Unknown: 645 case ForwardButPreventsForwarding: 646 case Backward: 647 case BackwardVectorizableButPreventsForwarding: 648 return false; 649 } 650 llvm_unreachable("unexpected DepType!"); 651 } 652 653 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 654 switch (Type) { 655 case NoDep: 656 case Forward: 657 return false; 658 659 case BackwardVectorizable: 660 case Unknown: 661 case ForwardButPreventsForwarding: 662 case Backward: 663 case BackwardVectorizableButPreventsForwarding: 664 return true; 665 } 666 llvm_unreachable("unexpected DepType!"); 667 } 668 669 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 670 switch (Type) { 671 case NoDep: 672 case Forward: 673 case ForwardButPreventsForwarding: 674 return false; 675 676 case Unknown: 677 case BackwardVectorizable: 678 case Backward: 679 case BackwardVectorizableButPreventsForwarding: 680 return true; 681 } 682 llvm_unreachable("unexpected DepType!"); 683 } 684 685 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 686 unsigned TypeByteSize) { 687 // If loads occur at a distance that is not a multiple of a feasible vector 688 // factor store-load forwarding does not take place. 689 // Positive dependences might cause troubles because vectorizing them might 690 // prevent store-load forwarding making vectorized code run a lot slower. 691 // a[i] = a[i-3] ^ a[i-8]; 692 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 693 // hence on your typical architecture store-load forwarding does not take 694 // place. Vectorizing in such cases does not make sense. 695 // Store-load forwarding distance. 696 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 697 // Maximum vector factor. 698 unsigned MaxVFWithoutSLForwardIssues = 699 VectorizerParams::MaxVectorWidth * TypeByteSize; 700 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 701 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 702 703 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 704 vf *= 2) { 705 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 706 MaxVFWithoutSLForwardIssues = (vf >>=1); 707 break; 708 } 709 } 710 711 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 712 DEBUG(dbgs() << "LAA: Distance " << Distance << 713 " that could cause a store-load forwarding conflict\n"); 714 return true; 715 } 716 717 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 718 MaxVFWithoutSLForwardIssues != 719 VectorizerParams::MaxVectorWidth * TypeByteSize) 720 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 721 return false; 722 } 723 724 /// \brief Check the dependence for two accesses with the same stride \p Stride. 725 /// \p Distance is the positive distance and \p TypeByteSize is type size in 726 /// bytes. 727 /// 728 /// \returns true if they are independent. 729 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 730 unsigned TypeByteSize) { 731 assert(Stride > 1 && "The stride must be greater than 1"); 732 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 733 assert(Distance > 0 && "The distance must be non-zero"); 734 735 // Skip if the distance is not multiple of type byte size. 736 if (Distance % TypeByteSize) 737 return false; 738 739 unsigned ScaledDist = Distance / TypeByteSize; 740 741 // No dependence if the scaled distance is not multiple of the stride. 742 // E.g. 743 // for (i = 0; i < 1024 ; i += 4) 744 // A[i+2] = A[i] + 1; 745 // 746 // Two accesses in memory (scaled distance is 2, stride is 4): 747 // | A[0] | | | | A[4] | | | | 748 // | | | A[2] | | | | A[6] | | 749 // 750 // E.g. 751 // for (i = 0; i < 1024 ; i += 3) 752 // A[i+4] = A[i] + 1; 753 // 754 // Two accesses in memory (scaled distance is 4, stride is 3): 755 // | A[0] | | | A[3] | | | A[6] | | | 756 // | | | | | A[4] | | | A[7] | | 757 return ScaledDist % Stride; 758 } 759 760 MemoryDepChecker::Dependence::DepType 761 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 762 const MemAccessInfo &B, unsigned BIdx, 763 const ValueToValueMap &Strides) { 764 assert (AIdx < BIdx && "Must pass arguments in program order"); 765 766 Value *APtr = A.getPointer(); 767 Value *BPtr = B.getPointer(); 768 bool AIsWrite = A.getInt(); 769 bool BIsWrite = B.getInt(); 770 771 // Two reads are independent. 772 if (!AIsWrite && !BIsWrite) 773 return Dependence::NoDep; 774 775 // We cannot check pointers in different address spaces. 776 if (APtr->getType()->getPointerAddressSpace() != 777 BPtr->getType()->getPointerAddressSpace()) 778 return Dependence::Unknown; 779 780 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 781 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 782 783 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 784 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 785 786 const SCEV *Src = AScev; 787 const SCEV *Sink = BScev; 788 789 // If the induction step is negative we have to invert source and sink of the 790 // dependence. 791 if (StrideAPtr < 0) { 792 //Src = BScev; 793 //Sink = AScev; 794 std::swap(APtr, BPtr); 795 std::swap(Src, Sink); 796 std::swap(AIsWrite, BIsWrite); 797 std::swap(AIdx, BIdx); 798 std::swap(StrideAPtr, StrideBPtr); 799 } 800 801 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 802 803 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 804 << "(Induction step: " << StrideAPtr << ")\n"); 805 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 806 << *InstMap[BIdx] << ": " << *Dist << "\n"); 807 808 // Need consecutive accesses. We don't want to vectorize 809 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 810 // the address space. 811 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 812 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 813 return Dependence::Unknown; 814 } 815 816 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 817 if (!C) { 818 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 819 ShouldRetryWithRuntimeCheck = true; 820 return Dependence::Unknown; 821 } 822 823 Type *ATy = APtr->getType()->getPointerElementType(); 824 Type *BTy = BPtr->getType()->getPointerElementType(); 825 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 826 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 827 828 // Negative distances are not plausible dependencies. 829 const APInt &Val = C->getValue()->getValue(); 830 if (Val.isNegative()) { 831 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 832 if (IsTrueDataDependence && 833 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 834 ATy != BTy)) 835 return Dependence::ForwardButPreventsForwarding; 836 837 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 838 return Dependence::Forward; 839 } 840 841 // Write to the same location with the same size. 842 // Could be improved to assert type sizes are the same (i32 == float, etc). 843 if (Val == 0) { 844 if (ATy == BTy) 845 return Dependence::NoDep; 846 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 847 return Dependence::Unknown; 848 } 849 850 assert(Val.isStrictlyPositive() && "Expect a positive value"); 851 852 if (ATy != BTy) { 853 DEBUG(dbgs() << 854 "LAA: ReadWrite-Write positive dependency with different types\n"); 855 return Dependence::Unknown; 856 } 857 858 unsigned Distance = (unsigned) Val.getZExtValue(); 859 860 unsigned Stride = std::abs(StrideAPtr); 861 if (Stride > 1 && 862 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) 863 return Dependence::NoDep; 864 865 // Bail out early if passed-in parameters make vectorization not feasible. 866 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 867 VectorizerParams::VectorizationFactor : 1); 868 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 869 VectorizerParams::VectorizationInterleave : 1); 870 // The minimum number of iterations for a vectorized/unrolled version. 871 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 872 873 // It's not vectorizable if the distance is smaller than the minimum distance 874 // needed for a vectroized/unrolled version. Vectorizing one iteration in 875 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 876 // TypeByteSize (No need to plus the last gap distance). 877 // 878 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 879 // foo(int *A) { 880 // int *B = (int *)((char *)A + 14); 881 // for (i = 0 ; i < 1024 ; i += 2) 882 // B[i] = A[i] + 1; 883 // } 884 // 885 // Two accesses in memory (stride is 2): 886 // | A[0] | | A[2] | | A[4] | | A[6] | | 887 // | B[0] | | B[2] | | B[4] | 888 // 889 // Distance needs for vectorizing iterations except the last iteration: 890 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 891 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 892 // 893 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 894 // 12, which is less than distance. 895 // 896 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 897 // the minimum distance needed is 28, which is greater than distance. It is 898 // not safe to do vectorization. 899 unsigned MinDistanceNeeded = 900 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 901 if (MinDistanceNeeded > Distance) { 902 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 903 << '\n'); 904 return Dependence::Backward; 905 } 906 907 // Unsafe if the minimum distance needed is greater than max safe distance. 908 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 909 DEBUG(dbgs() << "LAA: Failure because it needs at least " 910 << MinDistanceNeeded << " size in bytes"); 911 return Dependence::Backward; 912 } 913 914 // Positive distance bigger than max vectorization factor. 915 // FIXME: Should use max factor instead of max distance in bytes, which could 916 // not handle different types. 917 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 918 // void foo (int *A, char *B) { 919 // for (unsigned i = 0; i < 1024; i++) { 920 // A[i+2] = A[i] + 1; 921 // B[i+2] = B[i] + 1; 922 // } 923 // } 924 // 925 // This case is currently unsafe according to the max safe distance. If we 926 // analyze the two accesses on array B, the max safe dependence distance 927 // is 2. Then we analyze the accesses on array A, the minimum distance needed 928 // is 8, which is less than 2 and forbidden vectorization, But actually 929 // both A and B could be vectorized by 2 iterations. 930 MaxSafeDepDistBytes = 931 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 932 933 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 934 if (IsTrueDataDependence && 935 couldPreventStoreLoadForward(Distance, TypeByteSize)) 936 return Dependence::BackwardVectorizableButPreventsForwarding; 937 938 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 939 << " with max VF = " 940 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 941 942 return Dependence::BackwardVectorizable; 943 } 944 945 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 946 MemAccessInfoSet &CheckDeps, 947 const ValueToValueMap &Strides) { 948 949 MaxSafeDepDistBytes = -1U; 950 while (!CheckDeps.empty()) { 951 MemAccessInfo CurAccess = *CheckDeps.begin(); 952 953 // Get the relevant memory access set. 954 EquivalenceClasses<MemAccessInfo>::iterator I = 955 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 956 957 // Check accesses within this set. 958 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 959 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 960 961 // Check every access pair. 962 while (AI != AE) { 963 CheckDeps.erase(*AI); 964 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 965 while (OI != AE) { 966 // Check every accessing instruction pair in program order. 967 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 968 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 969 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 970 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 971 auto A = std::make_pair(&*AI, *I1); 972 auto B = std::make_pair(&*OI, *I2); 973 974 assert(*I1 != *I2); 975 if (*I1 > *I2) 976 std::swap(A, B); 977 978 Dependence::DepType Type = 979 isDependent(*A.first, A.second, *B.first, B.second, Strides); 980 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 981 982 // Gather dependences unless we accumulated MaxInterestingDependence 983 // dependences. In that case return as soon as we find the first 984 // unsafe dependence. This puts a limit on this quadratic 985 // algorithm. 986 if (RecordInterestingDependences) { 987 if (Dependence::isInterestingDependence(Type)) 988 InterestingDependences.push_back( 989 Dependence(A.second, B.second, Type)); 990 991 if (InterestingDependences.size() >= MaxInterestingDependence) { 992 RecordInterestingDependences = false; 993 InterestingDependences.clear(); 994 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 995 } 996 } 997 if (!RecordInterestingDependences && !SafeForVectorization) 998 return false; 999 } 1000 ++OI; 1001 } 1002 AI++; 1003 } 1004 } 1005 1006 DEBUG(dbgs() << "Total Interesting Dependences: " 1007 << InterestingDependences.size() << "\n"); 1008 return SafeForVectorization; 1009 } 1010 1011 SmallVector<Instruction *, 4> 1012 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1013 MemAccessInfo Access(Ptr, isWrite); 1014 auto &IndexVector = Accesses.find(Access)->second; 1015 1016 SmallVector<Instruction *, 4> Insts; 1017 std::transform(IndexVector.begin(), IndexVector.end(), 1018 std::back_inserter(Insts), 1019 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1020 return Insts; 1021 } 1022 1023 const char *MemoryDepChecker::Dependence::DepName[] = { 1024 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1025 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1026 1027 void MemoryDepChecker::Dependence::print( 1028 raw_ostream &OS, unsigned Depth, 1029 const SmallVectorImpl<Instruction *> &Instrs) const { 1030 OS.indent(Depth) << DepName[Type] << ":\n"; 1031 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1032 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1033 } 1034 1035 bool LoopAccessInfo::canAnalyzeLoop() { 1036 // We need to have a loop header. 1037 DEBUG(dbgs() << "LAA: Found a loop: " << 1038 TheLoop->getHeader()->getName() << '\n'); 1039 1040 // We can only analyze innermost loops. 1041 if (!TheLoop->empty()) { 1042 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1043 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1044 return false; 1045 } 1046 1047 // We must have a single backedge. 1048 if (TheLoop->getNumBackEdges() != 1) { 1049 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1050 emitAnalysis( 1051 LoopAccessReport() << 1052 "loop control flow is not understood by analyzer"); 1053 return false; 1054 } 1055 1056 // We must have a single exiting block. 1057 if (!TheLoop->getExitingBlock()) { 1058 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1059 emitAnalysis( 1060 LoopAccessReport() << 1061 "loop control flow is not understood by analyzer"); 1062 return false; 1063 } 1064 1065 // We only handle bottom-tested loops, i.e. loop in which the condition is 1066 // checked at the end of each iteration. With that we can assume that all 1067 // instructions in the loop are executed the same number of times. 1068 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1069 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1070 emitAnalysis( 1071 LoopAccessReport() << 1072 "loop control flow is not understood by analyzer"); 1073 return false; 1074 } 1075 1076 // ScalarEvolution needs to be able to find the exit count. 1077 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 1078 if (ExitCount == SE->getCouldNotCompute()) { 1079 emitAnalysis(LoopAccessReport() << 1080 "could not determine number of loop iterations"); 1081 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1082 return false; 1083 } 1084 1085 return true; 1086 } 1087 1088 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1089 1090 typedef SmallVector<Value*, 16> ValueVector; 1091 typedef SmallPtrSet<Value*, 16> ValueSet; 1092 1093 // Holds the Load and Store *instructions*. 1094 ValueVector Loads; 1095 ValueVector Stores; 1096 1097 // Holds all the different accesses in the loop. 1098 unsigned NumReads = 0; 1099 unsigned NumReadWrites = 0; 1100 1101 PtrRtCheck.Pointers.clear(); 1102 PtrRtCheck.Need = false; 1103 1104 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1105 1106 // For each block. 1107 for (Loop::block_iterator bb = TheLoop->block_begin(), 1108 be = TheLoop->block_end(); bb != be; ++bb) { 1109 1110 // Scan the BB and collect legal loads and stores. 1111 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1112 ++it) { 1113 1114 // If this is a load, save it. If this instruction can read from memory 1115 // but is not a load, then we quit. Notice that we don't handle function 1116 // calls that read or write. 1117 if (it->mayReadFromMemory()) { 1118 // Many math library functions read the rounding mode. We will only 1119 // vectorize a loop if it contains known function calls that don't set 1120 // the flag. Therefore, it is safe to ignore this read from memory. 1121 CallInst *Call = dyn_cast<CallInst>(it); 1122 if (Call && getIntrinsicIDForCall(Call, TLI)) 1123 continue; 1124 1125 // If the function has an explicit vectorized counterpart, we can safely 1126 // assume that it can be vectorized. 1127 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1128 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1129 continue; 1130 1131 LoadInst *Ld = dyn_cast<LoadInst>(it); 1132 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1133 emitAnalysis(LoopAccessReport(Ld) 1134 << "read with atomic ordering or volatile read"); 1135 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1136 CanVecMem = false; 1137 return; 1138 } 1139 NumLoads++; 1140 Loads.push_back(Ld); 1141 DepChecker.addAccess(Ld); 1142 continue; 1143 } 1144 1145 // Save 'store' instructions. Abort if other instructions write to memory. 1146 if (it->mayWriteToMemory()) { 1147 StoreInst *St = dyn_cast<StoreInst>(it); 1148 if (!St) { 1149 emitAnalysis(LoopAccessReport(it) << 1150 "instruction cannot be vectorized"); 1151 CanVecMem = false; 1152 return; 1153 } 1154 if (!St->isSimple() && !IsAnnotatedParallel) { 1155 emitAnalysis(LoopAccessReport(St) 1156 << "write with atomic ordering or volatile write"); 1157 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1158 CanVecMem = false; 1159 return; 1160 } 1161 NumStores++; 1162 Stores.push_back(St); 1163 DepChecker.addAccess(St); 1164 } 1165 } // Next instr. 1166 } // Next block. 1167 1168 // Now we have two lists that hold the loads and the stores. 1169 // Next, we find the pointers that they use. 1170 1171 // Check if we see any stores. If there are no stores, then we don't 1172 // care if the pointers are *restrict*. 1173 if (!Stores.size()) { 1174 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1175 CanVecMem = true; 1176 return; 1177 } 1178 1179 MemoryDepChecker::DepCandidates DependentAccesses; 1180 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1181 AA, LI, DependentAccesses); 1182 1183 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1184 // multiple times on the same object. If the ptr is accessed twice, once 1185 // for read and once for write, it will only appear once (on the write 1186 // list). This is okay, since we are going to check for conflicts between 1187 // writes and between reads and writes, but not between reads and reads. 1188 ValueSet Seen; 1189 1190 ValueVector::iterator I, IE; 1191 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1192 StoreInst *ST = cast<StoreInst>(*I); 1193 Value* Ptr = ST->getPointerOperand(); 1194 // Check for store to loop invariant address. 1195 StoreToLoopInvariantAddress |= isUniform(Ptr); 1196 // If we did *not* see this pointer before, insert it to the read-write 1197 // list. At this phase it is only a 'write' list. 1198 if (Seen.insert(Ptr).second) { 1199 ++NumReadWrites; 1200 1201 MemoryLocation Loc = MemoryLocation::get(ST); 1202 // The TBAA metadata could have a control dependency on the predication 1203 // condition, so we cannot rely on it when determining whether or not we 1204 // need runtime pointer checks. 1205 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1206 Loc.AATags.TBAA = nullptr; 1207 1208 Accesses.addStore(Loc); 1209 } 1210 } 1211 1212 if (IsAnnotatedParallel) { 1213 DEBUG(dbgs() 1214 << "LAA: A loop annotated parallel, ignore memory dependency " 1215 << "checks.\n"); 1216 CanVecMem = true; 1217 return; 1218 } 1219 1220 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1221 LoadInst *LD = cast<LoadInst>(*I); 1222 Value* Ptr = LD->getPointerOperand(); 1223 // If we did *not* see this pointer before, insert it to the 1224 // read list. If we *did* see it before, then it is already in 1225 // the read-write list. This allows us to vectorize expressions 1226 // such as A[i] += x; Because the address of A[i] is a read-write 1227 // pointer. This only works if the index of A[i] is consecutive. 1228 // If the address of i is unknown (for example A[B[i]]) then we may 1229 // read a few words, modify, and write a few words, and some of the 1230 // words may be written to the same address. 1231 bool IsReadOnlyPtr = false; 1232 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1233 ++NumReads; 1234 IsReadOnlyPtr = true; 1235 } 1236 1237 MemoryLocation Loc = MemoryLocation::get(LD); 1238 // The TBAA metadata could have a control dependency on the predication 1239 // condition, so we cannot rely on it when determining whether or not we 1240 // need runtime pointer checks. 1241 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1242 Loc.AATags.TBAA = nullptr; 1243 1244 Accesses.addLoad(Loc, IsReadOnlyPtr); 1245 } 1246 1247 // If we write (or read-write) to a single destination and there are no 1248 // other reads in this loop then is it safe to vectorize. 1249 if (NumReadWrites == 1 && NumReads == 0) { 1250 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1251 CanVecMem = true; 1252 return; 1253 } 1254 1255 // Build dependence sets and check whether we need a runtime pointer bounds 1256 // check. 1257 Accesses.buildDependenceSets(); 1258 1259 // Find pointers with computable bounds. We are going to use this information 1260 // to place a runtime bound check. 1261 bool NeedRTCheck; 1262 bool CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, 1263 NeedRTCheck, SE, 1264 TheLoop, Strides); 1265 1266 DEBUG(dbgs() << "LAA: We need to do " 1267 << PtrRtCheck.getNumberOfChecks(nullptr) 1268 << " pointer comparisons.\n"); 1269 1270 // Check that we found the bounds for the pointer. 1271 if (CanDoRT) 1272 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1273 else if (NeedRTCheck) { 1274 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1275 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << 1276 "the array bounds.\n"); 1277 PtrRtCheck.reset(); 1278 CanVecMem = false; 1279 return; 1280 } 1281 1282 PtrRtCheck.Need = NeedRTCheck; 1283 1284 CanVecMem = true; 1285 if (Accesses.isDependencyCheckNeeded()) { 1286 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1287 CanVecMem = DepChecker.areDepsSafe( 1288 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1289 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1290 1291 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1292 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1293 NeedRTCheck = true; 1294 1295 // Clear the dependency checks. We assume they are not needed. 1296 Accesses.resetDepChecks(DepChecker); 1297 1298 PtrRtCheck.reset(); 1299 PtrRtCheck.Need = true; 1300 1301 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NeedRTCheck, SE, 1302 TheLoop, Strides, true); 1303 1304 // Check that we found the bounds for the pointer. 1305 if (NeedRTCheck && !CanDoRT) { 1306 emitAnalysis(LoopAccessReport() 1307 << "cannot check memory dependencies at runtime"); 1308 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1309 PtrRtCheck.reset(); 1310 CanVecMem = false; 1311 return; 1312 } 1313 1314 CanVecMem = true; 1315 } 1316 } 1317 1318 if (CanVecMem) 1319 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1320 << (NeedRTCheck ? "" : " don't") 1321 << " need a runtime memory check.\n"); 1322 else { 1323 emitAnalysis(LoopAccessReport() << 1324 "unsafe dependent memory operations in loop"); 1325 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1326 } 1327 } 1328 1329 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1330 DominatorTree *DT) { 1331 assert(TheLoop->contains(BB) && "Unknown block used"); 1332 1333 // Blocks that do not dominate the latch need predication. 1334 BasicBlock* Latch = TheLoop->getLoopLatch(); 1335 return !DT->dominates(BB, Latch); 1336 } 1337 1338 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1339 assert(!Report && "Multiple reports generated"); 1340 Report = Message; 1341 } 1342 1343 bool LoopAccessInfo::isUniform(Value *V) const { 1344 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1345 } 1346 1347 // FIXME: this function is currently a duplicate of the one in 1348 // LoopVectorize.cpp. 1349 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1350 Instruction *Loc) { 1351 if (FirstInst) 1352 return FirstInst; 1353 if (Instruction *I = dyn_cast<Instruction>(V)) 1354 return I->getParent() == Loc->getParent() ? I : nullptr; 1355 return nullptr; 1356 } 1357 1358 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1359 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { 1360 if (!PtrRtCheck.Need) 1361 return std::make_pair(nullptr, nullptr); 1362 1363 unsigned NumPointers = PtrRtCheck.Pointers.size(); 1364 SmallVector<TrackingVH<Value> , 2> Starts; 1365 SmallVector<TrackingVH<Value> , 2> Ends; 1366 1367 LLVMContext &Ctx = Loc->getContext(); 1368 SCEVExpander Exp(*SE, DL, "induction"); 1369 Instruction *FirstInst = nullptr; 1370 1371 for (unsigned i = 0; i < NumPointers; ++i) { 1372 Value *Ptr = PtrRtCheck.Pointers[i]; 1373 const SCEV *Sc = SE->getSCEV(Ptr); 1374 1375 if (SE->isLoopInvariant(Sc, TheLoop)) { 1376 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << 1377 *Ptr <<"\n"); 1378 Starts.push_back(Ptr); 1379 Ends.push_back(Ptr); 1380 } else { 1381 DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n'); 1382 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1383 1384 // Use this type for pointer arithmetic. 1385 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1386 1387 Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); 1388 Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); 1389 Starts.push_back(Start); 1390 Ends.push_back(End); 1391 } 1392 } 1393 1394 IRBuilder<> ChkBuilder(Loc); 1395 // Our instructions might fold to a constant. 1396 Value *MemoryRuntimeCheck = nullptr; 1397 for (unsigned i = 0; i < NumPointers; ++i) { 1398 for (unsigned j = i+1; j < NumPointers; ++j) { 1399 if (!PtrRtCheck.needsChecking(i, j, PtrPartition)) 1400 continue; 1401 1402 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1403 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1404 1405 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1406 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1407 "Trying to bounds check pointers with different address spaces"); 1408 1409 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1410 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1411 1412 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1413 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1414 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1415 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1416 1417 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1418 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1419 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1420 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1421 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1422 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1423 if (MemoryRuntimeCheck) { 1424 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1425 "conflict.rdx"); 1426 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1427 } 1428 MemoryRuntimeCheck = IsConflict; 1429 } 1430 } 1431 1432 if (!MemoryRuntimeCheck) 1433 return std::make_pair(nullptr, nullptr); 1434 1435 // We have to do this trickery because the IRBuilder might fold the check to a 1436 // constant expression in which case there is no Instruction anchored in a 1437 // the block. 1438 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1439 ConstantInt::getTrue(Ctx)); 1440 ChkBuilder.Insert(Check, "memcheck.conflict"); 1441 FirstInst = getFirstInst(FirstInst, Check, Loc); 1442 return std::make_pair(FirstInst, Check); 1443 } 1444 1445 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1446 const DataLayout &DL, 1447 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1448 DominatorTree *DT, LoopInfo *LI, 1449 const ValueToValueMap &Strides) 1450 : DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), 1451 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1452 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1453 StoreToLoopInvariantAddress(false) { 1454 if (canAnalyzeLoop()) 1455 analyzeLoop(Strides); 1456 } 1457 1458 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1459 if (CanVecMem) { 1460 if (PtrRtCheck.Need) 1461 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1462 else 1463 OS.indent(Depth) << "Memory dependences are safe\n"; 1464 } 1465 1466 if (Report) 1467 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1468 1469 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1470 OS.indent(Depth) << "Interesting Dependences:\n"; 1471 for (auto &Dep : *InterestingDependences) { 1472 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1473 OS << "\n"; 1474 } 1475 } else 1476 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1477 1478 // List the pair of accesses need run-time checks to prove independence. 1479 PtrRtCheck.print(OS, Depth); 1480 OS << "\n"; 1481 1482 OS.indent(Depth) << "Store to invariant address was " 1483 << (StoreToLoopInvariantAddress ? "" : "not ") 1484 << "found in loop.\n"; 1485 } 1486 1487 const LoopAccessInfo & 1488 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1489 auto &LAI = LoopAccessInfoMap[L]; 1490 1491 #ifndef NDEBUG 1492 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1493 "Symbolic strides changed for loop"); 1494 #endif 1495 1496 if (!LAI) { 1497 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1498 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1499 Strides); 1500 #ifndef NDEBUG 1501 LAI->NumSymbolicStrides = Strides.size(); 1502 #endif 1503 } 1504 return *LAI.get(); 1505 } 1506 1507 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1508 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1509 1510 ValueToValueMap NoSymbolicStrides; 1511 1512 for (Loop *TopLevelLoop : *LI) 1513 for (Loop *L : depth_first(TopLevelLoop)) { 1514 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1515 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1516 LAI.print(OS, 4); 1517 } 1518 } 1519 1520 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1521 SE = &getAnalysis<ScalarEvolution>(); 1522 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1523 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1524 AA = &getAnalysis<AliasAnalysis>(); 1525 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1526 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1527 1528 return false; 1529 } 1530 1531 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1532 AU.addRequired<ScalarEvolution>(); 1533 AU.addRequired<AliasAnalysis>(); 1534 AU.addRequired<DominatorTreeWrapperPass>(); 1535 AU.addRequired<LoopInfoWrapperPass>(); 1536 1537 AU.setPreservesAll(); 1538 } 1539 1540 char LoopAccessAnalysis::ID = 0; 1541 static const char laa_name[] = "Loop Access Analysis"; 1542 #define LAA_NAME "loop-accesses" 1543 1544 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1545 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1546 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1547 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1548 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1549 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1550 1551 namespace llvm { 1552 Pass *createLAAPass() { 1553 return new LoopAccessAnalysis(); 1554 } 1555 } 1556