1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// \brief The maximum iterations used to merge memory checks 52 static cl::opt<unsigned> MemoryCheckMergeThreshold( 53 "memory-check-merge-threshold", cl::Hidden, 54 cl::desc("Maximum number of comparisons done when trying to merge " 55 "runtime memory checks. (default = 100)"), 56 cl::init(100)); 57 58 /// Maximum SIMD width. 59 const unsigned VectorizerParams::MaxVectorWidth = 64; 60 61 /// \brief We collect dependences up to this threshold. 62 static cl::opt<unsigned> 63 MaxDependences("max-dependences", cl::Hidden, 64 cl::desc("Maximum number of dependences collected by " 65 "loop-access analysis (default = 100)"), 66 cl::init(100)); 67 68 bool VectorizerParams::isInterleaveForced() { 69 return ::VectorizationInterleave.getNumOccurrences() > 0; 70 } 71 72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 73 const Function *TheFunction, 74 const Loop *TheLoop, 75 const char *PassName) { 76 DebugLoc DL = TheLoop->getStartLoc(); 77 if (const Instruction *I = Message.getInstr()) 78 DL = I->getDebugLoc(); 79 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 80 *TheFunction, DL, Message.str()); 81 } 82 83 Value *llvm::stripIntegerCast(Value *V) { 84 if (CastInst *CI = dyn_cast<CastInst>(V)) 85 if (CI->getOperand(0)->getType()->isIntegerTy()) 86 return CI->getOperand(0); 87 return V; 88 } 89 90 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 91 const ValueToValueMap &PtrToStride, 92 Value *Ptr, Value *OrigPtr) { 93 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 94 95 // If there is an entry in the map return the SCEV of the pointer with the 96 // symbolic stride replaced by one. 97 ValueToValueMap::const_iterator SI = 98 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 99 if (SI != PtrToStride.end()) { 100 Value *StrideVal = SI->second; 101 102 // Strip casts. 103 StrideVal = stripIntegerCast(StrideVal); 104 105 // Replace symbolic stride by one. 106 Value *One = ConstantInt::get(StrideVal->getType(), 1); 107 ValueToValueMap RewriteMap; 108 RewriteMap[StrideVal] = One; 109 110 ScalarEvolution *SE = PSE.getSE(); 111 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 112 const auto *CT = 113 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 114 115 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 116 auto *Expr = PSE.getSCEV(Ptr); 117 118 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 119 << "\n"); 120 return Expr; 121 } 122 123 // Otherwise, just return the SCEV of the original pointer. 124 return OrigSCEV; 125 } 126 127 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 128 unsigned DepSetId, unsigned ASId, 129 const ValueToValueMap &Strides, 130 PredicatedScalarEvolution &PSE) { 131 // Get the stride replaced scev. 132 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 133 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 134 assert(AR && "Invalid addrec expression"); 135 ScalarEvolution *SE = PSE.getSE(); 136 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 137 138 const SCEV *ScStart = AR->getStart(); 139 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 140 const SCEV *Step = AR->getStepRecurrence(*SE); 141 142 // For expressions with negative step, the upper bound is ScStart and the 143 // lower bound is ScEnd. 144 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 145 if (CStep->getValue()->isNegative()) 146 std::swap(ScStart, ScEnd); 147 } else { 148 // Fallback case: the step is not constant, but the we can still 149 // get the upper and lower bounds of the interval by using min/max 150 // expressions. 151 ScStart = SE->getUMinExpr(ScStart, ScEnd); 152 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 153 } 154 155 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 156 } 157 158 SmallVector<RuntimePointerChecking::PointerCheck, 4> 159 RuntimePointerChecking::generateChecks() const { 160 SmallVector<PointerCheck, 4> Checks; 161 162 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 163 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 164 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 165 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 166 167 if (needsChecking(CGI, CGJ)) 168 Checks.push_back(std::make_pair(&CGI, &CGJ)); 169 } 170 } 171 return Checks; 172 } 173 174 void RuntimePointerChecking::generateChecks( 175 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 176 assert(Checks.empty() && "Checks is not empty"); 177 groupChecks(DepCands, UseDependencies); 178 Checks = generateChecks(); 179 } 180 181 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 182 const CheckingPtrGroup &N) const { 183 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 184 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 185 if (needsChecking(M.Members[I], N.Members[J])) 186 return true; 187 return false; 188 } 189 190 /// Compare \p I and \p J and return the minimum. 191 /// Return nullptr in case we couldn't find an answer. 192 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 193 ScalarEvolution *SE) { 194 const SCEV *Diff = SE->getMinusSCEV(J, I); 195 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 196 197 if (!C) 198 return nullptr; 199 if (C->getValue()->isNegative()) 200 return J; 201 return I; 202 } 203 204 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 205 const SCEV *Start = RtCheck.Pointers[Index].Start; 206 const SCEV *End = RtCheck.Pointers[Index].End; 207 208 // Compare the starts and ends with the known minimum and maximum 209 // of this set. We need to know how we compare against the min/max 210 // of the set in order to be able to emit memchecks. 211 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 212 if (!Min0) 213 return false; 214 215 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 216 if (!Min1) 217 return false; 218 219 // Update the low bound expression if we've found a new min value. 220 if (Min0 == Start) 221 Low = Start; 222 223 // Update the high bound expression if we've found a new max value. 224 if (Min1 != End) 225 High = End; 226 227 Members.push_back(Index); 228 return true; 229 } 230 231 void RuntimePointerChecking::groupChecks( 232 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 233 // We build the groups from dependency candidates equivalence classes 234 // because: 235 // - We know that pointers in the same equivalence class share 236 // the same underlying object and therefore there is a chance 237 // that we can compare pointers 238 // - We wouldn't be able to merge two pointers for which we need 239 // to emit a memcheck. The classes in DepCands are already 240 // conveniently built such that no two pointers in the same 241 // class need checking against each other. 242 243 // We use the following (greedy) algorithm to construct the groups 244 // For every pointer in the equivalence class: 245 // For each existing group: 246 // - if the difference between this pointer and the min/max bounds 247 // of the group is a constant, then make the pointer part of the 248 // group and update the min/max bounds of that group as required. 249 250 CheckingGroups.clear(); 251 252 // If we need to check two pointers to the same underlying object 253 // with a non-constant difference, we shouldn't perform any pointer 254 // grouping with those pointers. This is because we can easily get 255 // into cases where the resulting check would return false, even when 256 // the accesses are safe. 257 // 258 // The following example shows this: 259 // for (i = 0; i < 1000; ++i) 260 // a[5000 + i * m] = a[i] + a[i + 9000] 261 // 262 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 263 // (0, 10000) which is always false. However, if m is 1, there is no 264 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 265 // us to perform an accurate check in this case. 266 // 267 // The above case requires that we have an UnknownDependence between 268 // accesses to the same underlying object. This cannot happen unless 269 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 270 // is also false. In this case we will use the fallback path and create 271 // separate checking groups for all pointers. 272 273 // If we don't have the dependency partitions, construct a new 274 // checking pointer group for each pointer. This is also required 275 // for correctness, because in this case we can have checking between 276 // pointers to the same underlying object. 277 if (!UseDependencies) { 278 for (unsigned I = 0; I < Pointers.size(); ++I) 279 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 280 return; 281 } 282 283 unsigned TotalComparisons = 0; 284 285 DenseMap<Value *, unsigned> PositionMap; 286 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 287 PositionMap[Pointers[Index].PointerValue] = Index; 288 289 // We need to keep track of what pointers we've already seen so we 290 // don't process them twice. 291 SmallSet<unsigned, 2> Seen; 292 293 // Go through all equivalence classes, get the "pointer check groups" 294 // and add them to the overall solution. We use the order in which accesses 295 // appear in 'Pointers' to enforce determinism. 296 for (unsigned I = 0; I < Pointers.size(); ++I) { 297 // We've seen this pointer before, and therefore already processed 298 // its equivalence class. 299 if (Seen.count(I)) 300 continue; 301 302 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 303 Pointers[I].IsWritePtr); 304 305 SmallVector<CheckingPtrGroup, 2> Groups; 306 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 307 308 // Because DepCands is constructed by visiting accesses in the order in 309 // which they appear in alias sets (which is deterministic) and the 310 // iteration order within an equivalence class member is only dependent on 311 // the order in which unions and insertions are performed on the 312 // equivalence class, the iteration order is deterministic. 313 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 314 MI != ME; ++MI) { 315 unsigned Pointer = PositionMap[MI->getPointer()]; 316 bool Merged = false; 317 // Mark this pointer as seen. 318 Seen.insert(Pointer); 319 320 // Go through all the existing sets and see if we can find one 321 // which can include this pointer. 322 for (CheckingPtrGroup &Group : Groups) { 323 // Don't perform more than a certain amount of comparisons. 324 // This should limit the cost of grouping the pointers to something 325 // reasonable. If we do end up hitting this threshold, the algorithm 326 // will create separate groups for all remaining pointers. 327 if (TotalComparisons > MemoryCheckMergeThreshold) 328 break; 329 330 TotalComparisons++; 331 332 if (Group.addPointer(Pointer)) { 333 Merged = true; 334 break; 335 } 336 } 337 338 if (!Merged) 339 // We couldn't add this pointer to any existing set or the threshold 340 // for the number of comparisons has been reached. Create a new group 341 // to hold the current pointer. 342 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 343 } 344 345 // We've computed the grouped checks for this partition. 346 // Save the results and continue with the next one. 347 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 348 } 349 } 350 351 bool RuntimePointerChecking::arePointersInSamePartition( 352 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 353 unsigned PtrIdx2) { 354 return (PtrToPartition[PtrIdx1] != -1 && 355 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 356 } 357 358 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 359 const PointerInfo &PointerI = Pointers[I]; 360 const PointerInfo &PointerJ = Pointers[J]; 361 362 // No need to check if two readonly pointers intersect. 363 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 364 return false; 365 366 // Only need to check pointers between two different dependency sets. 367 if (PointerI.DependencySetId == PointerJ.DependencySetId) 368 return false; 369 370 // Only need to check pointers in the same alias set. 371 if (PointerI.AliasSetId != PointerJ.AliasSetId) 372 return false; 373 374 return true; 375 } 376 377 void RuntimePointerChecking::printChecks( 378 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 379 unsigned Depth) const { 380 unsigned N = 0; 381 for (const auto &Check : Checks) { 382 const auto &First = Check.first->Members, &Second = Check.second->Members; 383 384 OS.indent(Depth) << "Check " << N++ << ":\n"; 385 386 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 387 for (unsigned K = 0; K < First.size(); ++K) 388 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 389 390 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 391 for (unsigned K = 0; K < Second.size(); ++K) 392 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 393 } 394 } 395 396 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 397 398 OS.indent(Depth) << "Run-time memory checks:\n"; 399 printChecks(OS, Checks, Depth); 400 401 OS.indent(Depth) << "Grouped accesses:\n"; 402 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 403 const auto &CG = CheckingGroups[I]; 404 405 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 406 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 407 << ")\n"; 408 for (unsigned J = 0; J < CG.Members.size(); ++J) { 409 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 410 << "\n"; 411 } 412 } 413 } 414 415 namespace { 416 /// \brief Analyses memory accesses in a loop. 417 /// 418 /// Checks whether run time pointer checks are needed and builds sets for data 419 /// dependence checking. 420 class AccessAnalysis { 421 public: 422 /// \brief Read or write access location. 423 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 424 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 425 426 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 427 MemoryDepChecker::DepCandidates &DA, 428 PredicatedScalarEvolution &PSE) 429 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 430 PSE(PSE) {} 431 432 /// \brief Register a load and whether it is only read from. 433 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 434 Value *Ptr = const_cast<Value*>(Loc.Ptr); 435 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 436 Accesses.insert(MemAccessInfo(Ptr, false)); 437 if (IsReadOnly) 438 ReadOnlyPtr.insert(Ptr); 439 } 440 441 /// \brief Register a store. 442 void addStore(MemoryLocation &Loc) { 443 Value *Ptr = const_cast<Value*>(Loc.Ptr); 444 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 445 Accesses.insert(MemAccessInfo(Ptr, true)); 446 } 447 448 /// \brief Check whether we can check the pointers at runtime for 449 /// non-intersection. 450 /// 451 /// Returns true if we need no check or if we do and we can generate them 452 /// (i.e. the pointers have computable bounds). 453 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 454 Loop *TheLoop, const ValueToValueMap &Strides, 455 bool ShouldCheckStride = false); 456 457 /// \brief Goes over all memory accesses, checks whether a RT check is needed 458 /// and builds sets of dependent accesses. 459 void buildDependenceSets() { 460 processMemAccesses(); 461 } 462 463 /// \brief Initial processing of memory accesses determined that we need to 464 /// perform dependency checking. 465 /// 466 /// Note that this can later be cleared if we retry memcheck analysis without 467 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 468 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 469 470 /// We decided that no dependence analysis would be used. Reset the state. 471 void resetDepChecks(MemoryDepChecker &DepChecker) { 472 CheckDeps.clear(); 473 DepChecker.clearDependences(); 474 } 475 476 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 477 478 private: 479 typedef SetVector<MemAccessInfo> PtrAccessSet; 480 481 /// \brief Go over all memory access and check whether runtime pointer checks 482 /// are needed and build sets of dependency check candidates. 483 void processMemAccesses(); 484 485 /// Set of all accesses. 486 PtrAccessSet Accesses; 487 488 const DataLayout &DL; 489 490 /// Set of accesses that need a further dependence check. 491 MemAccessInfoSet CheckDeps; 492 493 /// Set of pointers that are read only. 494 SmallPtrSet<Value*, 16> ReadOnlyPtr; 495 496 /// An alias set tracker to partition the access set by underlying object and 497 //intrinsic property (such as TBAA metadata). 498 AliasSetTracker AST; 499 500 LoopInfo *LI; 501 502 /// Sets of potentially dependent accesses - members of one set share an 503 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 504 /// dependence check. 505 MemoryDepChecker::DepCandidates &DepCands; 506 507 /// \brief Initial processing of memory accesses determined that we may need 508 /// to add memchecks. Perform the analysis to determine the necessary checks. 509 /// 510 /// Note that, this is different from isDependencyCheckNeeded. When we retry 511 /// memcheck analysis without dependency checking 512 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 513 /// while this remains set if we have potentially dependent accesses. 514 bool IsRTCheckAnalysisNeeded; 515 516 /// The SCEV predicate containing all the SCEV-related assumptions. 517 PredicatedScalarEvolution &PSE; 518 }; 519 520 } // end anonymous namespace 521 522 /// \brief Check whether a pointer can participate in a runtime bounds check. 523 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 524 const ValueToValueMap &Strides, Value *Ptr, 525 Loop *L) { 526 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 527 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 528 if (!AR) 529 return false; 530 531 return AR->isAffine(); 532 } 533 534 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 535 ScalarEvolution *SE, Loop *TheLoop, 536 const ValueToValueMap &StridesMap, 537 bool ShouldCheckStride) { 538 // Find pointers with computable bounds. We are going to use this information 539 // to place a runtime bound check. 540 bool CanDoRT = true; 541 542 bool NeedRTCheck = false; 543 if (!IsRTCheckAnalysisNeeded) return true; 544 545 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 546 547 // We assign a consecutive id to access from different alias sets. 548 // Accesses between different groups doesn't need to be checked. 549 unsigned ASId = 1; 550 for (auto &AS : AST) { 551 int NumReadPtrChecks = 0; 552 int NumWritePtrChecks = 0; 553 554 // We assign consecutive id to access from different dependence sets. 555 // Accesses within the same set don't need a runtime check. 556 unsigned RunningDepId = 1; 557 DenseMap<Value *, unsigned> DepSetId; 558 559 for (auto A : AS) { 560 Value *Ptr = A.getValue(); 561 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 562 MemAccessInfo Access(Ptr, IsWrite); 563 564 if (IsWrite) 565 ++NumWritePtrChecks; 566 else 567 ++NumReadPtrChecks; 568 569 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 570 // When we run after a failing dependency check we have to make sure 571 // we don't have wrapping pointers. 572 (!ShouldCheckStride || 573 isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) { 574 // The id of the dependence set. 575 unsigned DepId; 576 577 if (IsDepCheckNeeded) { 578 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 579 unsigned &LeaderId = DepSetId[Leader]; 580 if (!LeaderId) 581 LeaderId = RunningDepId++; 582 DepId = LeaderId; 583 } else 584 // Each access has its own dependence set. 585 DepId = RunningDepId++; 586 587 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 588 589 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 590 } else { 591 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 592 CanDoRT = false; 593 } 594 } 595 596 // If we have at least two writes or one write and a read then we need to 597 // check them. But there is no need to checks if there is only one 598 // dependence set for this alias set. 599 // 600 // Note that this function computes CanDoRT and NeedRTCheck independently. 601 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 602 // for which we couldn't find the bounds but we don't actually need to emit 603 // any checks so it does not matter. 604 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 605 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 606 NumWritePtrChecks >= 1)); 607 608 ++ASId; 609 } 610 611 // If the pointers that we would use for the bounds comparison have different 612 // address spaces, assume the values aren't directly comparable, so we can't 613 // use them for the runtime check. We also have to assume they could 614 // overlap. In the future there should be metadata for whether address spaces 615 // are disjoint. 616 unsigned NumPointers = RtCheck.Pointers.size(); 617 for (unsigned i = 0; i < NumPointers; ++i) { 618 for (unsigned j = i + 1; j < NumPointers; ++j) { 619 // Only need to check pointers between two different dependency sets. 620 if (RtCheck.Pointers[i].DependencySetId == 621 RtCheck.Pointers[j].DependencySetId) 622 continue; 623 // Only need to check pointers in the same alias set. 624 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 625 continue; 626 627 Value *PtrI = RtCheck.Pointers[i].PointerValue; 628 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 629 630 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 631 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 632 if (ASi != ASj) { 633 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 634 " different address spaces\n"); 635 return false; 636 } 637 } 638 } 639 640 if (NeedRTCheck && CanDoRT) 641 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 642 643 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 644 << " pointer comparisons.\n"); 645 646 RtCheck.Need = NeedRTCheck; 647 648 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 649 if (!CanDoRTIfNeeded) 650 RtCheck.reset(); 651 return CanDoRTIfNeeded; 652 } 653 654 void AccessAnalysis::processMemAccesses() { 655 // We process the set twice: first we process read-write pointers, last we 656 // process read-only pointers. This allows us to skip dependence tests for 657 // read-only pointers. 658 659 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 660 DEBUG(dbgs() << " AST: "; AST.dump()); 661 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 662 DEBUG({ 663 for (auto A : Accesses) 664 dbgs() << "\t" << *A.getPointer() << " (" << 665 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 666 "read-only" : "read")) << ")\n"; 667 }); 668 669 // The AliasSetTracker has nicely partitioned our pointers by metadata 670 // compatibility and potential for underlying-object overlap. As a result, we 671 // only need to check for potential pointer dependencies within each alias 672 // set. 673 for (auto &AS : AST) { 674 // Note that both the alias-set tracker and the alias sets themselves used 675 // linked lists internally and so the iteration order here is deterministic 676 // (matching the original instruction order within each set). 677 678 bool SetHasWrite = false; 679 680 // Map of pointers to last access encountered. 681 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 682 UnderlyingObjToAccessMap ObjToLastAccess; 683 684 // Set of access to check after all writes have been processed. 685 PtrAccessSet DeferredAccesses; 686 687 // Iterate over each alias set twice, once to process read/write pointers, 688 // and then to process read-only pointers. 689 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 690 bool UseDeferred = SetIteration > 0; 691 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 692 693 for (auto AV : AS) { 694 Value *Ptr = AV.getValue(); 695 696 // For a single memory access in AliasSetTracker, Accesses may contain 697 // both read and write, and they both need to be handled for CheckDeps. 698 for (auto AC : S) { 699 if (AC.getPointer() != Ptr) 700 continue; 701 702 bool IsWrite = AC.getInt(); 703 704 // If we're using the deferred access set, then it contains only 705 // reads. 706 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 707 if (UseDeferred && !IsReadOnlyPtr) 708 continue; 709 // Otherwise, the pointer must be in the PtrAccessSet, either as a 710 // read or a write. 711 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 712 S.count(MemAccessInfo(Ptr, false))) && 713 "Alias-set pointer not in the access set?"); 714 715 MemAccessInfo Access(Ptr, IsWrite); 716 DepCands.insert(Access); 717 718 // Memorize read-only pointers for later processing and skip them in 719 // the first round (they need to be checked after we have seen all 720 // write pointers). Note: we also mark pointer that are not 721 // consecutive as "read-only" pointers (so that we check 722 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 723 if (!UseDeferred && IsReadOnlyPtr) { 724 DeferredAccesses.insert(Access); 725 continue; 726 } 727 728 // If this is a write - check other reads and writes for conflicts. If 729 // this is a read only check other writes for conflicts (but only if 730 // there is no other write to the ptr - this is an optimization to 731 // catch "a[i] = a[i] + " without having to do a dependence check). 732 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 733 CheckDeps.insert(Access); 734 IsRTCheckAnalysisNeeded = true; 735 } 736 737 if (IsWrite) 738 SetHasWrite = true; 739 740 // Create sets of pointers connected by a shared alias set and 741 // underlying object. 742 typedef SmallVector<Value *, 16> ValueVector; 743 ValueVector TempObjects; 744 745 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 746 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 747 for (Value *UnderlyingObj : TempObjects) { 748 // nullptr never alias, don't join sets for pointer that have "null" 749 // in their UnderlyingObjects list. 750 if (isa<ConstantPointerNull>(UnderlyingObj)) 751 continue; 752 753 UnderlyingObjToAccessMap::iterator Prev = 754 ObjToLastAccess.find(UnderlyingObj); 755 if (Prev != ObjToLastAccess.end()) 756 DepCands.unionSets(Access, Prev->second); 757 758 ObjToLastAccess[UnderlyingObj] = Access; 759 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 760 } 761 } 762 } 763 } 764 } 765 } 766 767 static bool isInBoundsGep(Value *Ptr) { 768 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 769 return GEP->isInBounds(); 770 return false; 771 } 772 773 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 774 /// i.e. monotonically increasing/decreasing. 775 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 776 PredicatedScalarEvolution &PSE, const Loop *L) { 777 // FIXME: This should probably only return true for NUW. 778 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 779 return true; 780 781 // Scalar evolution does not propagate the non-wrapping flags to values that 782 // are derived from a non-wrapping induction variable because non-wrapping 783 // could be flow-sensitive. 784 // 785 // Look through the potentially overflowing instruction to try to prove 786 // non-wrapping for the *specific* value of Ptr. 787 788 // The arithmetic implied by an inbounds GEP can't overflow. 789 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 790 if (!GEP || !GEP->isInBounds()) 791 return false; 792 793 // Make sure there is only one non-const index and analyze that. 794 Value *NonConstIndex = nullptr; 795 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 796 if (!isa<ConstantInt>(*Index)) { 797 if (NonConstIndex) 798 return false; 799 NonConstIndex = *Index; 800 } 801 if (!NonConstIndex) 802 // The recurrence is on the pointer, ignore for now. 803 return false; 804 805 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 806 // AddRec using a NSW operation. 807 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 808 if (OBO->hasNoSignedWrap() && 809 // Assume constant for other the operand so that the AddRec can be 810 // easily found. 811 isa<ConstantInt>(OBO->getOperand(1))) { 812 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 813 814 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 815 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 816 } 817 818 return false; 819 } 820 821 /// \brief Check whether the access through \p Ptr has a constant stride. 822 int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr, 823 const Loop *Lp, const ValueToValueMap &StridesMap, 824 bool Assume) { 825 Type *Ty = Ptr->getType(); 826 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 827 828 // Make sure that the pointer does not point to aggregate types. 829 auto *PtrTy = cast<PointerType>(Ty); 830 if (PtrTy->getElementType()->isAggregateType()) { 831 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 832 << "\n"); 833 return 0; 834 } 835 836 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 837 838 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 839 if (Assume && !AR) 840 AR = dyn_cast<SCEVAddRecExpr>(PSE.getAsAddRec(Ptr)); 841 842 if (!AR) { 843 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 844 << " SCEV: " << *PtrScev << "\n"); 845 return 0; 846 } 847 848 // The accesss function must stride over the innermost loop. 849 if (Lp != AR->getLoop()) { 850 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 851 *Ptr << " SCEV: " << *AR << "\n"); 852 return 0; 853 } 854 855 // The address calculation must not wrap. Otherwise, a dependence could be 856 // inverted. 857 // An inbounds getelementptr that is a AddRec with a unit stride 858 // cannot wrap per definition. The unit stride requirement is checked later. 859 // An getelementptr without an inbounds attribute and unit stride would have 860 // to access the pointer value "0" which is undefined behavior in address 861 // space 0, therefore we can also vectorize this case. 862 bool IsInBoundsGEP = isInBoundsGep(Ptr); 863 bool IsNoWrapAddRec = 864 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 865 isNoWrapAddRec(Ptr, AR, PSE, Lp); 866 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 867 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 868 if (Assume) { 869 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 870 IsNoWrapAddRec = true; 871 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 872 << "LAA: Pointer: " << *Ptr << "\n" 873 << "LAA: SCEV: " << *AR << "\n" 874 << "LAA: Added an overflow assumption\n"); 875 } else { 876 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 877 << *Ptr << " SCEV: " << *AR << "\n"); 878 return 0; 879 } 880 } 881 882 // Check the step is constant. 883 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 884 885 // Calculate the pointer stride and check if it is constant. 886 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 887 if (!C) { 888 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 889 " SCEV: " << *AR << "\n"); 890 return 0; 891 } 892 893 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 894 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 895 const APInt &APStepVal = C->getAPInt(); 896 897 // Huge step value - give up. 898 if (APStepVal.getBitWidth() > 64) 899 return 0; 900 901 int64_t StepVal = APStepVal.getSExtValue(); 902 903 // Strided access. 904 int64_t Stride = StepVal / Size; 905 int64_t Rem = StepVal % Size; 906 if (Rem) 907 return 0; 908 909 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 910 // know we can't "wrap around the address space". In case of address space 911 // zero we know that this won't happen without triggering undefined behavior. 912 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 913 Stride != 1 && Stride != -1) { 914 if (Assume) { 915 // We can avoid this case by adding a run-time check. 916 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 917 << "inbouds or in address space 0 may wrap:\n" 918 << "LAA: Pointer: " << *Ptr << "\n" 919 << "LAA: SCEV: " << *AR << "\n" 920 << "LAA: Added an overflow assumption\n"); 921 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 922 } else 923 return 0; 924 } 925 926 return Stride; 927 } 928 929 /// Take the pointer operand from the Load/Store instruction. 930 /// Returns NULL if this is not a valid Load/Store instruction. 931 static Value *getPointerOperand(Value *I) { 932 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 933 return LI->getPointerOperand(); 934 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 935 return SI->getPointerOperand(); 936 return nullptr; 937 } 938 939 /// Take the address space operand from the Load/Store instruction. 940 /// Returns -1 if this is not a valid Load/Store instruction. 941 static unsigned getAddressSpaceOperand(Value *I) { 942 if (LoadInst *L = dyn_cast<LoadInst>(I)) 943 return L->getPointerAddressSpace(); 944 if (StoreInst *S = dyn_cast<StoreInst>(I)) 945 return S->getPointerAddressSpace(); 946 return -1; 947 } 948 949 /// Returns true if the memory operations \p A and \p B are consecutive. 950 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 951 ScalarEvolution &SE, bool CheckType) { 952 Value *PtrA = getPointerOperand(A); 953 Value *PtrB = getPointerOperand(B); 954 unsigned ASA = getAddressSpaceOperand(A); 955 unsigned ASB = getAddressSpaceOperand(B); 956 957 // Check that the address spaces match and that the pointers are valid. 958 if (!PtrA || !PtrB || (ASA != ASB)) 959 return false; 960 961 // Make sure that A and B are different pointers. 962 if (PtrA == PtrB) 963 return false; 964 965 // Make sure that A and B have the same type if required. 966 if(CheckType && PtrA->getType() != PtrB->getType()) 967 return false; 968 969 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 970 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 971 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 972 973 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 974 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 975 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 976 977 // OffsetDelta = OffsetB - OffsetA; 978 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 979 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 980 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 981 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 982 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 983 // Check if they are based on the same pointer. That makes the offsets 984 // sufficient. 985 if (PtrA == PtrB) 986 return OffsetDelta == Size; 987 988 // Compute the necessary base pointer delta to have the necessary final delta 989 // equal to the size. 990 // BaseDelta = Size - OffsetDelta; 991 const SCEV *SizeSCEV = SE.getConstant(Size); 992 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 993 994 // Otherwise compute the distance with SCEV between the base pointers. 995 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 996 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 997 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 998 return X == PtrSCEVB; 999 } 1000 1001 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1002 switch (Type) { 1003 case NoDep: 1004 case Forward: 1005 case BackwardVectorizable: 1006 return true; 1007 1008 case Unknown: 1009 case ForwardButPreventsForwarding: 1010 case Backward: 1011 case BackwardVectorizableButPreventsForwarding: 1012 return false; 1013 } 1014 llvm_unreachable("unexpected DepType!"); 1015 } 1016 1017 bool MemoryDepChecker::Dependence::isBackward() const { 1018 switch (Type) { 1019 case NoDep: 1020 case Forward: 1021 case ForwardButPreventsForwarding: 1022 case Unknown: 1023 return false; 1024 1025 case BackwardVectorizable: 1026 case Backward: 1027 case BackwardVectorizableButPreventsForwarding: 1028 return true; 1029 } 1030 llvm_unreachable("unexpected DepType!"); 1031 } 1032 1033 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1034 return isBackward() || Type == Unknown; 1035 } 1036 1037 bool MemoryDepChecker::Dependence::isForward() const { 1038 switch (Type) { 1039 case Forward: 1040 case ForwardButPreventsForwarding: 1041 return true; 1042 1043 case NoDep: 1044 case Unknown: 1045 case BackwardVectorizable: 1046 case Backward: 1047 case BackwardVectorizableButPreventsForwarding: 1048 return false; 1049 } 1050 llvm_unreachable("unexpected DepType!"); 1051 } 1052 1053 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 1054 unsigned TypeByteSize) { 1055 // If loads occur at a distance that is not a multiple of a feasible vector 1056 // factor store-load forwarding does not take place. 1057 // Positive dependences might cause troubles because vectorizing them might 1058 // prevent store-load forwarding making vectorized code run a lot slower. 1059 // a[i] = a[i-3] ^ a[i-8]; 1060 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1061 // hence on your typical architecture store-load forwarding does not take 1062 // place. Vectorizing in such cases does not make sense. 1063 // Store-load forwarding distance. 1064 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 1065 // Maximum vector factor. 1066 unsigned MaxVFWithoutSLForwardIssues = 1067 VectorizerParams::MaxVectorWidth * TypeByteSize; 1068 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 1069 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 1070 1071 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 1072 vf *= 2) { 1073 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 1074 MaxVFWithoutSLForwardIssues = (vf >>=1); 1075 break; 1076 } 1077 } 1078 1079 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 1080 DEBUG(dbgs() << "LAA: Distance " << Distance << 1081 " that could cause a store-load forwarding conflict\n"); 1082 return true; 1083 } 1084 1085 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1086 MaxVFWithoutSLForwardIssues != 1087 VectorizerParams::MaxVectorWidth * TypeByteSize) 1088 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1089 return false; 1090 } 1091 1092 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1093 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1094 /// bytes. 1095 /// 1096 /// \returns true if they are independent. 1097 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 1098 unsigned TypeByteSize) { 1099 assert(Stride > 1 && "The stride must be greater than 1"); 1100 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1101 assert(Distance > 0 && "The distance must be non-zero"); 1102 1103 // Skip if the distance is not multiple of type byte size. 1104 if (Distance % TypeByteSize) 1105 return false; 1106 1107 unsigned ScaledDist = Distance / TypeByteSize; 1108 1109 // No dependence if the scaled distance is not multiple of the stride. 1110 // E.g. 1111 // for (i = 0; i < 1024 ; i += 4) 1112 // A[i+2] = A[i] + 1; 1113 // 1114 // Two accesses in memory (scaled distance is 2, stride is 4): 1115 // | A[0] | | | | A[4] | | | | 1116 // | | | A[2] | | | | A[6] | | 1117 // 1118 // E.g. 1119 // for (i = 0; i < 1024 ; i += 3) 1120 // A[i+4] = A[i] + 1; 1121 // 1122 // Two accesses in memory (scaled distance is 4, stride is 3): 1123 // | A[0] | | | A[3] | | | A[6] | | | 1124 // | | | | | A[4] | | | A[7] | | 1125 return ScaledDist % Stride; 1126 } 1127 1128 MemoryDepChecker::Dependence::DepType 1129 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1130 const MemAccessInfo &B, unsigned BIdx, 1131 const ValueToValueMap &Strides) { 1132 assert (AIdx < BIdx && "Must pass arguments in program order"); 1133 1134 Value *APtr = A.getPointer(); 1135 Value *BPtr = B.getPointer(); 1136 bool AIsWrite = A.getInt(); 1137 bool BIsWrite = B.getInt(); 1138 1139 // Two reads are independent. 1140 if (!AIsWrite && !BIsWrite) 1141 return Dependence::NoDep; 1142 1143 // We cannot check pointers in different address spaces. 1144 if (APtr->getType()->getPointerAddressSpace() != 1145 BPtr->getType()->getPointerAddressSpace()) 1146 return Dependence::Unknown; 1147 1148 const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr); 1149 const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr); 1150 1151 int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides, true); 1152 int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides, true); 1153 1154 const SCEV *Src = AScev; 1155 const SCEV *Sink = BScev; 1156 1157 // If the induction step is negative we have to invert source and sink of the 1158 // dependence. 1159 if (StrideAPtr < 0) { 1160 //Src = BScev; 1161 //Sink = AScev; 1162 std::swap(APtr, BPtr); 1163 std::swap(Src, Sink); 1164 std::swap(AIsWrite, BIsWrite); 1165 std::swap(AIdx, BIdx); 1166 std::swap(StrideAPtr, StrideBPtr); 1167 } 1168 1169 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1170 1171 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1172 << "(Induction step: " << StrideAPtr << ")\n"); 1173 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1174 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1175 1176 // Need accesses with constant stride. We don't want to vectorize 1177 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1178 // the address space. 1179 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1180 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1181 return Dependence::Unknown; 1182 } 1183 1184 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1185 if (!C) { 1186 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1187 ShouldRetryWithRuntimeCheck = true; 1188 return Dependence::Unknown; 1189 } 1190 1191 Type *ATy = APtr->getType()->getPointerElementType(); 1192 Type *BTy = BPtr->getType()->getPointerElementType(); 1193 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1194 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 1195 1196 // Negative distances are not plausible dependencies. 1197 const APInt &Val = C->getAPInt(); 1198 if (Val.isNegative()) { 1199 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1200 if (IsTrueDataDependence && 1201 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1202 ATy != BTy)) 1203 return Dependence::ForwardButPreventsForwarding; 1204 1205 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 1206 return Dependence::Forward; 1207 } 1208 1209 // Write to the same location with the same size. 1210 // Could be improved to assert type sizes are the same (i32 == float, etc). 1211 if (Val == 0) { 1212 if (ATy == BTy) 1213 return Dependence::Forward; 1214 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1215 return Dependence::Unknown; 1216 } 1217 1218 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1219 1220 if (ATy != BTy) { 1221 DEBUG(dbgs() << 1222 "LAA: ReadWrite-Write positive dependency with different types\n"); 1223 return Dependence::Unknown; 1224 } 1225 1226 unsigned Distance = (unsigned) Val.getZExtValue(); 1227 1228 unsigned Stride = std::abs(StrideAPtr); 1229 if (Stride > 1 && 1230 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 1231 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1232 return Dependence::NoDep; 1233 } 1234 1235 // Bail out early if passed-in parameters make vectorization not feasible. 1236 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1237 VectorizerParams::VectorizationFactor : 1); 1238 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1239 VectorizerParams::VectorizationInterleave : 1); 1240 // The minimum number of iterations for a vectorized/unrolled version. 1241 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1242 1243 // It's not vectorizable if the distance is smaller than the minimum distance 1244 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1245 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1246 // TypeByteSize (No need to plus the last gap distance). 1247 // 1248 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1249 // foo(int *A) { 1250 // int *B = (int *)((char *)A + 14); 1251 // for (i = 0 ; i < 1024 ; i += 2) 1252 // B[i] = A[i] + 1; 1253 // } 1254 // 1255 // Two accesses in memory (stride is 2): 1256 // | A[0] | | A[2] | | A[4] | | A[6] | | 1257 // | B[0] | | B[2] | | B[4] | 1258 // 1259 // Distance needs for vectorizing iterations except the last iteration: 1260 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1261 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1262 // 1263 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1264 // 12, which is less than distance. 1265 // 1266 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1267 // the minimum distance needed is 28, which is greater than distance. It is 1268 // not safe to do vectorization. 1269 unsigned MinDistanceNeeded = 1270 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1271 if (MinDistanceNeeded > Distance) { 1272 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1273 << '\n'); 1274 return Dependence::Backward; 1275 } 1276 1277 // Unsafe if the minimum distance needed is greater than max safe distance. 1278 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1279 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1280 << MinDistanceNeeded << " size in bytes"); 1281 return Dependence::Backward; 1282 } 1283 1284 // Positive distance bigger than max vectorization factor. 1285 // FIXME: Should use max factor instead of max distance in bytes, which could 1286 // not handle different types. 1287 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1288 // void foo (int *A, char *B) { 1289 // for (unsigned i = 0; i < 1024; i++) { 1290 // A[i+2] = A[i] + 1; 1291 // B[i+2] = B[i] + 1; 1292 // } 1293 // } 1294 // 1295 // This case is currently unsafe according to the max safe distance. If we 1296 // analyze the two accesses on array B, the max safe dependence distance 1297 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1298 // is 8, which is less than 2 and forbidden vectorization, But actually 1299 // both A and B could be vectorized by 2 iterations. 1300 MaxSafeDepDistBytes = 1301 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 1302 1303 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1304 if (IsTrueDataDependence && 1305 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1306 return Dependence::BackwardVectorizableButPreventsForwarding; 1307 1308 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1309 << " with max VF = " 1310 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1311 1312 return Dependence::BackwardVectorizable; 1313 } 1314 1315 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1316 MemAccessInfoSet &CheckDeps, 1317 const ValueToValueMap &Strides) { 1318 1319 MaxSafeDepDistBytes = -1U; 1320 while (!CheckDeps.empty()) { 1321 MemAccessInfo CurAccess = *CheckDeps.begin(); 1322 1323 // Get the relevant memory access set. 1324 EquivalenceClasses<MemAccessInfo>::iterator I = 1325 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1326 1327 // Check accesses within this set. 1328 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 1329 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 1330 1331 // Check every access pair. 1332 while (AI != AE) { 1333 CheckDeps.erase(*AI); 1334 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1335 while (OI != AE) { 1336 // Check every accessing instruction pair in program order. 1337 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1338 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1339 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1340 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1341 auto A = std::make_pair(&*AI, *I1); 1342 auto B = std::make_pair(&*OI, *I2); 1343 1344 assert(*I1 != *I2); 1345 if (*I1 > *I2) 1346 std::swap(A, B); 1347 1348 Dependence::DepType Type = 1349 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1350 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1351 1352 // Gather dependences unless we accumulated MaxDependences 1353 // dependences. In that case return as soon as we find the first 1354 // unsafe dependence. This puts a limit on this quadratic 1355 // algorithm. 1356 if (RecordDependences) { 1357 if (Type != Dependence::NoDep) 1358 Dependences.push_back(Dependence(A.second, B.second, Type)); 1359 1360 if (Dependences.size() >= MaxDependences) { 1361 RecordDependences = false; 1362 Dependences.clear(); 1363 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1364 } 1365 } 1366 if (!RecordDependences && !SafeForVectorization) 1367 return false; 1368 } 1369 ++OI; 1370 } 1371 AI++; 1372 } 1373 } 1374 1375 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1376 return SafeForVectorization; 1377 } 1378 1379 SmallVector<Instruction *, 4> 1380 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1381 MemAccessInfo Access(Ptr, isWrite); 1382 auto &IndexVector = Accesses.find(Access)->second; 1383 1384 SmallVector<Instruction *, 4> Insts; 1385 std::transform(IndexVector.begin(), IndexVector.end(), 1386 std::back_inserter(Insts), 1387 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1388 return Insts; 1389 } 1390 1391 const char *MemoryDepChecker::Dependence::DepName[] = { 1392 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1393 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1394 1395 void MemoryDepChecker::Dependence::print( 1396 raw_ostream &OS, unsigned Depth, 1397 const SmallVectorImpl<Instruction *> &Instrs) const { 1398 OS.indent(Depth) << DepName[Type] << ":\n"; 1399 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1400 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1401 } 1402 1403 bool LoopAccessInfo::canAnalyzeLoop() { 1404 // We need to have a loop header. 1405 DEBUG(dbgs() << "LAA: Found a loop in " 1406 << TheLoop->getHeader()->getParent()->getName() << ": " 1407 << TheLoop->getHeader()->getName() << '\n'); 1408 1409 // We can only analyze innermost loops. 1410 if (!TheLoop->empty()) { 1411 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1412 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1413 return false; 1414 } 1415 1416 // We must have a single backedge. 1417 if (TheLoop->getNumBackEdges() != 1) { 1418 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1419 emitAnalysis( 1420 LoopAccessReport() << 1421 "loop control flow is not understood by analyzer"); 1422 return false; 1423 } 1424 1425 // We must have a single exiting block. 1426 if (!TheLoop->getExitingBlock()) { 1427 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1428 emitAnalysis( 1429 LoopAccessReport() << 1430 "loop control flow is not understood by analyzer"); 1431 return false; 1432 } 1433 1434 // We only handle bottom-tested loops, i.e. loop in which the condition is 1435 // checked at the end of each iteration. With that we can assume that all 1436 // instructions in the loop are executed the same number of times. 1437 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1438 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1439 emitAnalysis( 1440 LoopAccessReport() << 1441 "loop control flow is not understood by analyzer"); 1442 return false; 1443 } 1444 1445 // ScalarEvolution needs to be able to find the exit count. 1446 const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop); 1447 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 1448 emitAnalysis(LoopAccessReport() 1449 << "could not determine number of loop iterations"); 1450 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1451 return false; 1452 } 1453 1454 return true; 1455 } 1456 1457 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1458 1459 typedef SmallVector<Value*, 16> ValueVector; 1460 typedef SmallPtrSet<Value*, 16> ValueSet; 1461 1462 // Holds the Load and Store *instructions*. 1463 ValueVector Loads; 1464 ValueVector Stores; 1465 1466 // Holds all the different accesses in the loop. 1467 unsigned NumReads = 0; 1468 unsigned NumReadWrites = 0; 1469 1470 PtrRtChecking.Pointers.clear(); 1471 PtrRtChecking.Need = false; 1472 1473 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1474 1475 // For each block. 1476 for (Loop::block_iterator bb = TheLoop->block_begin(), 1477 be = TheLoop->block_end(); bb != be; ++bb) { 1478 1479 // Scan the BB and collect legal loads and stores. 1480 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1481 ++it) { 1482 1483 // If this is a load, save it. If this instruction can read from memory 1484 // but is not a load, then we quit. Notice that we don't handle function 1485 // calls that read or write. 1486 if (it->mayReadFromMemory()) { 1487 // Many math library functions read the rounding mode. We will only 1488 // vectorize a loop if it contains known function calls that don't set 1489 // the flag. Therefore, it is safe to ignore this read from memory. 1490 CallInst *Call = dyn_cast<CallInst>(it); 1491 if (Call && getIntrinsicIDForCall(Call, TLI)) 1492 continue; 1493 1494 // If the function has an explicit vectorized counterpart, we can safely 1495 // assume that it can be vectorized. 1496 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1497 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1498 continue; 1499 1500 LoadInst *Ld = dyn_cast<LoadInst>(it); 1501 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1502 emitAnalysis(LoopAccessReport(Ld) 1503 << "read with atomic ordering or volatile read"); 1504 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1505 CanVecMem = false; 1506 return; 1507 } 1508 NumLoads++; 1509 Loads.push_back(Ld); 1510 DepChecker.addAccess(Ld); 1511 continue; 1512 } 1513 1514 // Save 'store' instructions. Abort if other instructions write to memory. 1515 if (it->mayWriteToMemory()) { 1516 StoreInst *St = dyn_cast<StoreInst>(it); 1517 if (!St) { 1518 emitAnalysis(LoopAccessReport(&*it) << 1519 "instruction cannot be vectorized"); 1520 CanVecMem = false; 1521 return; 1522 } 1523 if (!St->isSimple() && !IsAnnotatedParallel) { 1524 emitAnalysis(LoopAccessReport(St) 1525 << "write with atomic ordering or volatile write"); 1526 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1527 CanVecMem = false; 1528 return; 1529 } 1530 NumStores++; 1531 Stores.push_back(St); 1532 DepChecker.addAccess(St); 1533 } 1534 } // Next instr. 1535 } // Next block. 1536 1537 // Now we have two lists that hold the loads and the stores. 1538 // Next, we find the pointers that they use. 1539 1540 // Check if we see any stores. If there are no stores, then we don't 1541 // care if the pointers are *restrict*. 1542 if (!Stores.size()) { 1543 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1544 CanVecMem = true; 1545 return; 1546 } 1547 1548 MemoryDepChecker::DepCandidates DependentAccesses; 1549 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1550 AA, LI, DependentAccesses, PSE); 1551 1552 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1553 // multiple times on the same object. If the ptr is accessed twice, once 1554 // for read and once for write, it will only appear once (on the write 1555 // list). This is okay, since we are going to check for conflicts between 1556 // writes and between reads and writes, but not between reads and reads. 1557 ValueSet Seen; 1558 1559 ValueVector::iterator I, IE; 1560 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1561 StoreInst *ST = cast<StoreInst>(*I); 1562 Value* Ptr = ST->getPointerOperand(); 1563 // Check for store to loop invariant address. 1564 StoreToLoopInvariantAddress |= isUniform(Ptr); 1565 // If we did *not* see this pointer before, insert it to the read-write 1566 // list. At this phase it is only a 'write' list. 1567 if (Seen.insert(Ptr).second) { 1568 ++NumReadWrites; 1569 1570 MemoryLocation Loc = MemoryLocation::get(ST); 1571 // The TBAA metadata could have a control dependency on the predication 1572 // condition, so we cannot rely on it when determining whether or not we 1573 // need runtime pointer checks. 1574 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1575 Loc.AATags.TBAA = nullptr; 1576 1577 Accesses.addStore(Loc); 1578 } 1579 } 1580 1581 if (IsAnnotatedParallel) { 1582 DEBUG(dbgs() 1583 << "LAA: A loop annotated parallel, ignore memory dependency " 1584 << "checks.\n"); 1585 CanVecMem = true; 1586 return; 1587 } 1588 1589 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1590 LoadInst *LD = cast<LoadInst>(*I); 1591 Value* Ptr = LD->getPointerOperand(); 1592 // If we did *not* see this pointer before, insert it to the 1593 // read list. If we *did* see it before, then it is already in 1594 // the read-write list. This allows us to vectorize expressions 1595 // such as A[i] += x; Because the address of A[i] is a read-write 1596 // pointer. This only works if the index of A[i] is consecutive. 1597 // If the address of i is unknown (for example A[B[i]]) then we may 1598 // read a few words, modify, and write a few words, and some of the 1599 // words may be written to the same address. 1600 bool IsReadOnlyPtr = false; 1601 if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) { 1602 ++NumReads; 1603 IsReadOnlyPtr = true; 1604 } 1605 1606 MemoryLocation Loc = MemoryLocation::get(LD); 1607 // The TBAA metadata could have a control dependency on the predication 1608 // condition, so we cannot rely on it when determining whether or not we 1609 // need runtime pointer checks. 1610 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1611 Loc.AATags.TBAA = nullptr; 1612 1613 Accesses.addLoad(Loc, IsReadOnlyPtr); 1614 } 1615 1616 // If we write (or read-write) to a single destination and there are no 1617 // other reads in this loop then is it safe to vectorize. 1618 if (NumReadWrites == 1 && NumReads == 0) { 1619 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1620 CanVecMem = true; 1621 return; 1622 } 1623 1624 // Build dependence sets and check whether we need a runtime pointer bounds 1625 // check. 1626 Accesses.buildDependenceSets(); 1627 1628 // Find pointers with computable bounds. We are going to use this information 1629 // to place a runtime bound check. 1630 bool CanDoRTIfNeeded = 1631 Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides); 1632 if (!CanDoRTIfNeeded) { 1633 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1634 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1635 << "the array bounds.\n"); 1636 CanVecMem = false; 1637 return; 1638 } 1639 1640 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1641 1642 CanVecMem = true; 1643 if (Accesses.isDependencyCheckNeeded()) { 1644 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1645 CanVecMem = DepChecker.areDepsSafe( 1646 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1647 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1648 1649 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1650 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1651 1652 // Clear the dependency checks. We assume they are not needed. 1653 Accesses.resetDepChecks(DepChecker); 1654 1655 PtrRtChecking.reset(); 1656 PtrRtChecking.Need = true; 1657 1658 auto *SE = PSE.getSE(); 1659 CanDoRTIfNeeded = 1660 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 1661 1662 // Check that we found the bounds for the pointer. 1663 if (!CanDoRTIfNeeded) { 1664 emitAnalysis(LoopAccessReport() 1665 << "cannot check memory dependencies at runtime"); 1666 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1667 CanVecMem = false; 1668 return; 1669 } 1670 1671 CanVecMem = true; 1672 } 1673 } 1674 1675 if (CanVecMem) 1676 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1677 << (PtrRtChecking.Need ? "" : " don't") 1678 << " need runtime memory checks.\n"); 1679 else { 1680 emitAnalysis(LoopAccessReport() << 1681 "unsafe dependent memory operations in loop"); 1682 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1683 } 1684 } 1685 1686 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1687 DominatorTree *DT) { 1688 assert(TheLoop->contains(BB) && "Unknown block used"); 1689 1690 // Blocks that do not dominate the latch need predication. 1691 BasicBlock* Latch = TheLoop->getLoopLatch(); 1692 return !DT->dominates(BB, Latch); 1693 } 1694 1695 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1696 assert(!Report && "Multiple reports generated"); 1697 Report = Message; 1698 } 1699 1700 bool LoopAccessInfo::isUniform(Value *V) const { 1701 return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop)); 1702 } 1703 1704 // FIXME: this function is currently a duplicate of the one in 1705 // LoopVectorize.cpp. 1706 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1707 Instruction *Loc) { 1708 if (FirstInst) 1709 return FirstInst; 1710 if (Instruction *I = dyn_cast<Instruction>(V)) 1711 return I->getParent() == Loc->getParent() ? I : nullptr; 1712 return nullptr; 1713 } 1714 1715 namespace { 1716 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1717 /// need to use value-handles because SCEV expansion can invalidate previously 1718 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1719 /// a previous one. 1720 struct PointerBounds { 1721 TrackingVH<Value> Start; 1722 TrackingVH<Value> End; 1723 }; 1724 } // end anonymous namespace 1725 1726 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1727 /// in \p TheLoop. \return the values for the bounds. 1728 static PointerBounds 1729 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1730 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1731 const RuntimePointerChecking &PtrRtChecking) { 1732 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1733 const SCEV *Sc = SE->getSCEV(Ptr); 1734 1735 if (SE->isLoopInvariant(Sc, TheLoop)) { 1736 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1737 << "\n"); 1738 return {Ptr, Ptr}; 1739 } else { 1740 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1741 LLVMContext &Ctx = Loc->getContext(); 1742 1743 // Use this type for pointer arithmetic. 1744 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1745 Value *Start = nullptr, *End = nullptr; 1746 1747 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1748 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1749 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1750 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1751 return {Start, End}; 1752 } 1753 } 1754 1755 /// \brief Turns a collection of checks into a collection of expanded upper and 1756 /// lower bounds for both pointers in the check. 1757 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1758 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1759 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1760 const RuntimePointerChecking &PtrRtChecking) { 1761 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1762 1763 // Here we're relying on the SCEV Expander's cache to only emit code for the 1764 // same bounds once. 1765 std::transform( 1766 PointerChecks.begin(), PointerChecks.end(), 1767 std::back_inserter(ChecksWithBounds), 1768 [&](const RuntimePointerChecking::PointerCheck &Check) { 1769 PointerBounds 1770 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1771 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1772 return std::make_pair(First, Second); 1773 }); 1774 1775 return ChecksWithBounds; 1776 } 1777 1778 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 1779 Instruction *Loc, 1780 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1781 const { 1782 auto *SE = PSE.getSE(); 1783 SCEVExpander Exp(*SE, DL, "induction"); 1784 auto ExpandedChecks = 1785 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); 1786 1787 LLVMContext &Ctx = Loc->getContext(); 1788 Instruction *FirstInst = nullptr; 1789 IRBuilder<> ChkBuilder(Loc); 1790 // Our instructions might fold to a constant. 1791 Value *MemoryRuntimeCheck = nullptr; 1792 1793 for (const auto &Check : ExpandedChecks) { 1794 const PointerBounds &A = Check.first, &B = Check.second; 1795 // Check if two pointers (A and B) conflict where conflict is computed as: 1796 // start(A) <= end(B) && start(B) <= end(A) 1797 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1798 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1799 1800 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1801 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1802 "Trying to bounds check pointers with different address spaces"); 1803 1804 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1805 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1806 1807 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1808 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1809 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1810 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1811 1812 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1813 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1814 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1815 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1816 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1817 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1818 if (MemoryRuntimeCheck) { 1819 IsConflict = 1820 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1821 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1822 } 1823 MemoryRuntimeCheck = IsConflict; 1824 } 1825 1826 if (!MemoryRuntimeCheck) 1827 return std::make_pair(nullptr, nullptr); 1828 1829 // We have to do this trickery because the IRBuilder might fold the check to a 1830 // constant expression in which case there is no Instruction anchored in a 1831 // the block. 1832 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1833 ConstantInt::getTrue(Ctx)); 1834 ChkBuilder.Insert(Check, "memcheck.conflict"); 1835 FirstInst = getFirstInst(FirstInst, Check, Loc); 1836 return std::make_pair(FirstInst, Check); 1837 } 1838 1839 std::pair<Instruction *, Instruction *> 1840 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1841 if (!PtrRtChecking.Need) 1842 return std::make_pair(nullptr, nullptr); 1843 1844 return addRuntimeChecks(Loc, PtrRtChecking.getChecks()); 1845 } 1846 1847 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1848 const DataLayout &DL, 1849 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1850 DominatorTree *DT, LoopInfo *LI, 1851 const ValueToValueMap &Strides) 1852 : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL), 1853 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1854 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1855 StoreToLoopInvariantAddress(false) { 1856 if (canAnalyzeLoop()) 1857 analyzeLoop(Strides); 1858 } 1859 1860 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1861 if (CanVecMem) { 1862 if (PtrRtChecking.Need) 1863 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1864 else 1865 OS.indent(Depth) << "Memory dependences are safe\n"; 1866 } 1867 1868 if (Report) 1869 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1870 1871 if (auto *Dependences = DepChecker.getDependences()) { 1872 OS.indent(Depth) << "Dependences:\n"; 1873 for (auto &Dep : *Dependences) { 1874 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1875 OS << "\n"; 1876 } 1877 } else 1878 OS.indent(Depth) << "Too many dependences, not recorded\n"; 1879 1880 // List the pair of accesses need run-time checks to prove independence. 1881 PtrRtChecking.print(OS, Depth); 1882 OS << "\n"; 1883 1884 OS.indent(Depth) << "Store to invariant address was " 1885 << (StoreToLoopInvariantAddress ? "" : "not ") 1886 << "found in loop.\n"; 1887 1888 OS.indent(Depth) << "SCEV assumptions:\n"; 1889 PSE.getUnionPredicate().print(OS, Depth); 1890 } 1891 1892 const LoopAccessInfo & 1893 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1894 auto &LAI = LoopAccessInfoMap[L]; 1895 1896 #ifndef NDEBUG 1897 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1898 "Symbolic strides changed for loop"); 1899 #endif 1900 1901 if (!LAI) { 1902 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1903 LAI = 1904 llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides); 1905 #ifndef NDEBUG 1906 LAI->NumSymbolicStrides = Strides.size(); 1907 #endif 1908 } 1909 return *LAI.get(); 1910 } 1911 1912 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1913 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1914 1915 ValueToValueMap NoSymbolicStrides; 1916 1917 for (Loop *TopLevelLoop : *LI) 1918 for (Loop *L : depth_first(TopLevelLoop)) { 1919 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1920 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1921 LAI.print(OS, 4); 1922 } 1923 } 1924 1925 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1926 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1927 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1928 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1929 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1930 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1931 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1932 1933 return false; 1934 } 1935 1936 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1937 AU.addRequired<ScalarEvolutionWrapperPass>(); 1938 AU.addRequired<AAResultsWrapperPass>(); 1939 AU.addRequired<DominatorTreeWrapperPass>(); 1940 AU.addRequired<LoopInfoWrapperPass>(); 1941 1942 AU.setPreservesAll(); 1943 } 1944 1945 char LoopAccessAnalysis::ID = 0; 1946 static const char laa_name[] = "Loop Access Analysis"; 1947 #define LAA_NAME "loop-accesses" 1948 1949 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1950 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1951 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1952 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1953 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1954 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1955 1956 namespace llvm { 1957 Pass *createLAAPass() { 1958 return new LoopAccessAnalysis(); 1959 } 1960 } 1961