1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/EquivalenceClasses.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AliasSetTracker.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstdlib>
66 #include <iterator>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-accesses"
73 
74 static cl::opt<unsigned, true>
75 VectorizationFactor("force-vector-width", cl::Hidden,
76                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77                     cl::location(VectorizerParams::VectorizationFactor));
78 unsigned VectorizerParams::VectorizationFactor;
79 
80 static cl::opt<unsigned, true>
81 VectorizationInterleave("force-vector-interleave", cl::Hidden,
82                         cl::desc("Sets the vectorization interleave count. "
83                                  "Zero is autoselect."),
84                         cl::location(
85                             VectorizerParams::VectorizationInterleave));
86 unsigned VectorizerParams::VectorizationInterleave;
87 
88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89     "runtime-memory-check-threshold", cl::Hidden,
90     cl::desc("When performing memory disambiguation checks at runtime do not "
91              "generate more than this number of comparisons (default = 8)."),
92     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94 
95 /// \brief The maximum iterations used to merge memory checks
96 static cl::opt<unsigned> MemoryCheckMergeThreshold(
97     "memory-check-merge-threshold", cl::Hidden,
98     cl::desc("Maximum number of comparisons done when trying to merge "
99              "runtime memory checks. (default = 100)"),
100     cl::init(100));
101 
102 /// Maximum SIMD width.
103 const unsigned VectorizerParams::MaxVectorWidth = 64;
104 
105 /// \brief We collect dependences up to this threshold.
106 static cl::opt<unsigned>
107     MaxDependences("max-dependences", cl::Hidden,
108                    cl::desc("Maximum number of dependences collected by "
109                             "loop-access analysis (default = 100)"),
110                    cl::init(100));
111 
112 /// This enables versioning on the strides of symbolically striding memory
113 /// accesses in code like the following.
114 ///   for (i = 0; i < N; ++i)
115 ///     A[i * Stride1] += B[i * Stride2] ...
116 ///
117 /// Will be roughly translated to
118 ///    if (Stride1 == 1 && Stride2 == 1) {
119 ///      for (i = 0; i < N; i+=4)
120 ///       A[i:i+3] += ...
121 ///    } else
122 ///      ...
123 static cl::opt<bool> EnableMemAccessVersioning(
124     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125     cl::desc("Enable symbolic stride memory access versioning"));
126 
127 /// \brief Enable store-to-load forwarding conflict detection. This option can
128 /// be disabled for correctness testing.
129 static cl::opt<bool> EnableForwardingConflictDetection(
130     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131     cl::desc("Enable conflict detection in loop-access analysis"),
132     cl::init(true));
133 
134 bool VectorizerParams::isInterleaveForced() {
135   return ::VectorizationInterleave.getNumOccurrences() > 0;
136 }
137 
138 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
139                                     const Loop *TheLoop, const char *PassName,
140                                     OptimizationRemarkEmitter &ORE) {
141   DebugLoc DL = TheLoop->getStartLoc();
142   const Value *V = TheLoop->getHeader();
143   if (const Instruction *I = Message.getInstr()) {
144     // If there is no debug location attached to the instruction, revert back to
145     // using the loop's.
146     if (I->getDebugLoc())
147       DL = I->getDebugLoc();
148     V = I->getParent();
149   }
150   ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
151 }
152 
153 Value *llvm::stripIntegerCast(Value *V) {
154   if (auto *CI = dyn_cast<CastInst>(V))
155     if (CI->getOperand(0)->getType()->isIntegerTy())
156       return CI->getOperand(0);
157   return V;
158 }
159 
160 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
161                                             const ValueToValueMap &PtrToStride,
162                                             Value *Ptr, Value *OrigPtr) {
163   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
164 
165   // If there is an entry in the map return the SCEV of the pointer with the
166   // symbolic stride replaced by one.
167   ValueToValueMap::const_iterator SI =
168       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
169   if (SI != PtrToStride.end()) {
170     Value *StrideVal = SI->second;
171 
172     // Strip casts.
173     StrideVal = stripIntegerCast(StrideVal);
174 
175     // Replace symbolic stride by one.
176     Value *One = ConstantInt::get(StrideVal->getType(), 1);
177     ValueToValueMap RewriteMap;
178     RewriteMap[StrideVal] = One;
179 
180     ScalarEvolution *SE = PSE.getSE();
181     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
182     const auto *CT =
183         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
184 
185     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
186     auto *Expr = PSE.getSCEV(Ptr);
187 
188     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
189                  << "\n");
190     return Expr;
191   }
192 
193   // Otherwise, just return the SCEV of the original pointer.
194   return OrigSCEV;
195 }
196 
197 /// Calculate Start and End points of memory access.
198 /// Let's assume A is the first access and B is a memory access on N-th loop
199 /// iteration. Then B is calculated as:
200 ///   B = A + Step*N .
201 /// Step value may be positive or negative.
202 /// N is a calculated back-edge taken count:
203 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
204 /// Start and End points are calculated in the following way:
205 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
206 /// where SizeOfElt is the size of single memory access in bytes.
207 ///
208 /// There is no conflict when the intervals are disjoint:
209 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
210 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
211                                     unsigned DepSetId, unsigned ASId,
212                                     const ValueToValueMap &Strides,
213                                     PredicatedScalarEvolution &PSE) {
214   // Get the stride replaced scev.
215   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
216   ScalarEvolution *SE = PSE.getSE();
217 
218   const SCEV *ScStart;
219   const SCEV *ScEnd;
220 
221   if (SE->isLoopInvariant(Sc, Lp))
222     ScStart = ScEnd = Sc;
223   else {
224     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
225     assert(AR && "Invalid addrec expression");
226     const SCEV *Ex = PSE.getBackedgeTakenCount();
227 
228     ScStart = AR->getStart();
229     ScEnd = AR->evaluateAtIteration(Ex, *SE);
230     const SCEV *Step = AR->getStepRecurrence(*SE);
231 
232     // For expressions with negative step, the upper bound is ScStart and the
233     // lower bound is ScEnd.
234     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
235       if (CStep->getValue()->isNegative())
236         std::swap(ScStart, ScEnd);
237     } else {
238       // Fallback case: the step is not constant, but we can still
239       // get the upper and lower bounds of the interval by using min/max
240       // expressions.
241       ScStart = SE->getUMinExpr(ScStart, ScEnd);
242       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
243     }
244     // Add the size of the pointed element to ScEnd.
245     unsigned EltSize =
246       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
247     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
248     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
249   }
250 
251   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
252 }
253 
254 SmallVector<RuntimePointerChecking::PointerCheck, 4>
255 RuntimePointerChecking::generateChecks() const {
256   SmallVector<PointerCheck, 4> Checks;
257 
258   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
259     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
260       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
261       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
262 
263       if (needsChecking(CGI, CGJ))
264         Checks.push_back(std::make_pair(&CGI, &CGJ));
265     }
266   }
267   return Checks;
268 }
269 
270 void RuntimePointerChecking::generateChecks(
271     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
272   assert(Checks.empty() && "Checks is not empty");
273   groupChecks(DepCands, UseDependencies);
274   Checks = generateChecks();
275 }
276 
277 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
278                                            const CheckingPtrGroup &N) const {
279   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
280     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
281       if (needsChecking(M.Members[I], N.Members[J]))
282         return true;
283   return false;
284 }
285 
286 /// Compare \p I and \p J and return the minimum.
287 /// Return nullptr in case we couldn't find an answer.
288 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
289                                    ScalarEvolution *SE) {
290   const SCEV *Diff = SE->getMinusSCEV(J, I);
291   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
292 
293   if (!C)
294     return nullptr;
295   if (C->getValue()->isNegative())
296     return J;
297   return I;
298 }
299 
300 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
301   const SCEV *Start = RtCheck.Pointers[Index].Start;
302   const SCEV *End = RtCheck.Pointers[Index].End;
303 
304   // Compare the starts and ends with the known minimum and maximum
305   // of this set. We need to know how we compare against the min/max
306   // of the set in order to be able to emit memchecks.
307   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
308   if (!Min0)
309     return false;
310 
311   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
312   if (!Min1)
313     return false;
314 
315   // Update the low bound  expression if we've found a new min value.
316   if (Min0 == Start)
317     Low = Start;
318 
319   // Update the high bound expression if we've found a new max value.
320   if (Min1 != End)
321     High = End;
322 
323   Members.push_back(Index);
324   return true;
325 }
326 
327 void RuntimePointerChecking::groupChecks(
328     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
329   // We build the groups from dependency candidates equivalence classes
330   // because:
331   //    - We know that pointers in the same equivalence class share
332   //      the same underlying object and therefore there is a chance
333   //      that we can compare pointers
334   //    - We wouldn't be able to merge two pointers for which we need
335   //      to emit a memcheck. The classes in DepCands are already
336   //      conveniently built such that no two pointers in the same
337   //      class need checking against each other.
338 
339   // We use the following (greedy) algorithm to construct the groups
340   // For every pointer in the equivalence class:
341   //   For each existing group:
342   //   - if the difference between this pointer and the min/max bounds
343   //     of the group is a constant, then make the pointer part of the
344   //     group and update the min/max bounds of that group as required.
345 
346   CheckingGroups.clear();
347 
348   // If we need to check two pointers to the same underlying object
349   // with a non-constant difference, we shouldn't perform any pointer
350   // grouping with those pointers. This is because we can easily get
351   // into cases where the resulting check would return false, even when
352   // the accesses are safe.
353   //
354   // The following example shows this:
355   // for (i = 0; i < 1000; ++i)
356   //   a[5000 + i * m] = a[i] + a[i + 9000]
357   //
358   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
359   // (0, 10000) which is always false. However, if m is 1, there is no
360   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
361   // us to perform an accurate check in this case.
362   //
363   // The above case requires that we have an UnknownDependence between
364   // accesses to the same underlying object. This cannot happen unless
365   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
366   // is also false. In this case we will use the fallback path and create
367   // separate checking groups for all pointers.
368 
369   // If we don't have the dependency partitions, construct a new
370   // checking pointer group for each pointer. This is also required
371   // for correctness, because in this case we can have checking between
372   // pointers to the same underlying object.
373   if (!UseDependencies) {
374     for (unsigned I = 0; I < Pointers.size(); ++I)
375       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
376     return;
377   }
378 
379   unsigned TotalComparisons = 0;
380 
381   DenseMap<Value *, unsigned> PositionMap;
382   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
383     PositionMap[Pointers[Index].PointerValue] = Index;
384 
385   // We need to keep track of what pointers we've already seen so we
386   // don't process them twice.
387   SmallSet<unsigned, 2> Seen;
388 
389   // Go through all equivalence classes, get the "pointer check groups"
390   // and add them to the overall solution. We use the order in which accesses
391   // appear in 'Pointers' to enforce determinism.
392   for (unsigned I = 0; I < Pointers.size(); ++I) {
393     // We've seen this pointer before, and therefore already processed
394     // its equivalence class.
395     if (Seen.count(I))
396       continue;
397 
398     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
399                                            Pointers[I].IsWritePtr);
400 
401     SmallVector<CheckingPtrGroup, 2> Groups;
402     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
403 
404     // Because DepCands is constructed by visiting accesses in the order in
405     // which they appear in alias sets (which is deterministic) and the
406     // iteration order within an equivalence class member is only dependent on
407     // the order in which unions and insertions are performed on the
408     // equivalence class, the iteration order is deterministic.
409     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
410          MI != ME; ++MI) {
411       unsigned Pointer = PositionMap[MI->getPointer()];
412       bool Merged = false;
413       // Mark this pointer as seen.
414       Seen.insert(Pointer);
415 
416       // Go through all the existing sets and see if we can find one
417       // which can include this pointer.
418       for (CheckingPtrGroup &Group : Groups) {
419         // Don't perform more than a certain amount of comparisons.
420         // This should limit the cost of grouping the pointers to something
421         // reasonable.  If we do end up hitting this threshold, the algorithm
422         // will create separate groups for all remaining pointers.
423         if (TotalComparisons > MemoryCheckMergeThreshold)
424           break;
425 
426         TotalComparisons++;
427 
428         if (Group.addPointer(Pointer)) {
429           Merged = true;
430           break;
431         }
432       }
433 
434       if (!Merged)
435         // We couldn't add this pointer to any existing set or the threshold
436         // for the number of comparisons has been reached. Create a new group
437         // to hold the current pointer.
438         Groups.push_back(CheckingPtrGroup(Pointer, *this));
439     }
440 
441     // We've computed the grouped checks for this partition.
442     // Save the results and continue with the next one.
443     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
444   }
445 }
446 
447 bool RuntimePointerChecking::arePointersInSamePartition(
448     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
449     unsigned PtrIdx2) {
450   return (PtrToPartition[PtrIdx1] != -1 &&
451           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
452 }
453 
454 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
455   const PointerInfo &PointerI = Pointers[I];
456   const PointerInfo &PointerJ = Pointers[J];
457 
458   // No need to check if two readonly pointers intersect.
459   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
460     return false;
461 
462   // Only need to check pointers between two different dependency sets.
463   if (PointerI.DependencySetId == PointerJ.DependencySetId)
464     return false;
465 
466   // Only need to check pointers in the same alias set.
467   if (PointerI.AliasSetId != PointerJ.AliasSetId)
468     return false;
469 
470   return true;
471 }
472 
473 void RuntimePointerChecking::printChecks(
474     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
475     unsigned Depth) const {
476   unsigned N = 0;
477   for (const auto &Check : Checks) {
478     const auto &First = Check.first->Members, &Second = Check.second->Members;
479 
480     OS.indent(Depth) << "Check " << N++ << ":\n";
481 
482     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
483     for (unsigned K = 0; K < First.size(); ++K)
484       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
485 
486     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
487     for (unsigned K = 0; K < Second.size(); ++K)
488       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
489   }
490 }
491 
492 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
493 
494   OS.indent(Depth) << "Run-time memory checks:\n";
495   printChecks(OS, Checks, Depth);
496 
497   OS.indent(Depth) << "Grouped accesses:\n";
498   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
499     const auto &CG = CheckingGroups[I];
500 
501     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
502     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
503                          << ")\n";
504     for (unsigned J = 0; J < CG.Members.size(); ++J) {
505       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
506                            << "\n";
507     }
508   }
509 }
510 
511 namespace {
512 
513 /// \brief Analyses memory accesses in a loop.
514 ///
515 /// Checks whether run time pointer checks are needed and builds sets for data
516 /// dependence checking.
517 class AccessAnalysis {
518 public:
519   /// \brief Read or write access location.
520   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
521   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
522 
523   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
524                  MemoryDepChecker::DepCandidates &DA,
525                  PredicatedScalarEvolution &PSE)
526       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
527         PSE(PSE) {}
528 
529   /// \brief Register a load  and whether it is only read from.
530   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
531     Value *Ptr = const_cast<Value*>(Loc.Ptr);
532     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
533     Accesses.insert(MemAccessInfo(Ptr, false));
534     if (IsReadOnly)
535       ReadOnlyPtr.insert(Ptr);
536   }
537 
538   /// \brief Register a store.
539   void addStore(MemoryLocation &Loc) {
540     Value *Ptr = const_cast<Value*>(Loc.Ptr);
541     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
542     Accesses.insert(MemAccessInfo(Ptr, true));
543   }
544 
545   /// \brief Check whether we can check the pointers at runtime for
546   /// non-intersection.
547   ///
548   /// Returns true if we need no check or if we do and we can generate them
549   /// (i.e. the pointers have computable bounds).
550   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551                        Loop *TheLoop, const ValueToValueMap &Strides,
552                        bool ShouldCheckWrap = false);
553 
554   /// \brief Goes over all memory accesses, checks whether a RT check is needed
555   /// and builds sets of dependent accesses.
556   void buildDependenceSets() {
557     processMemAccesses();
558   }
559 
560   /// \brief Initial processing of memory accesses determined that we need to
561   /// perform dependency checking.
562   ///
563   /// Note that this can later be cleared if we retry memcheck analysis without
564   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
565   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
566 
567   /// We decided that no dependence analysis would be used.  Reset the state.
568   void resetDepChecks(MemoryDepChecker &DepChecker) {
569     CheckDeps.clear();
570     DepChecker.clearDependences();
571   }
572 
573   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
574 
575 private:
576   typedef SetVector<MemAccessInfo> PtrAccessSet;
577 
578   /// \brief Go over all memory access and check whether runtime pointer checks
579   /// are needed and build sets of dependency check candidates.
580   void processMemAccesses();
581 
582   /// Set of all accesses.
583   PtrAccessSet Accesses;
584 
585   const DataLayout &DL;
586 
587   /// Set of accesses that need a further dependence check.
588   MemAccessInfoSet CheckDeps;
589 
590   /// Set of pointers that are read only.
591   SmallPtrSet<Value*, 16> ReadOnlyPtr;
592 
593   /// An alias set tracker to partition the access set by underlying object and
594   //intrinsic property (such as TBAA metadata).
595   AliasSetTracker AST;
596 
597   LoopInfo *LI;
598 
599   /// Sets of potentially dependent accesses - members of one set share an
600   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
601   /// dependence check.
602   MemoryDepChecker::DepCandidates &DepCands;
603 
604   /// \brief Initial processing of memory accesses determined that we may need
605   /// to add memchecks.  Perform the analysis to determine the necessary checks.
606   ///
607   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
608   /// memcheck analysis without dependency checking
609   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
610   /// while this remains set if we have potentially dependent accesses.
611   bool IsRTCheckAnalysisNeeded;
612 
613   /// The SCEV predicate containing all the SCEV-related assumptions.
614   PredicatedScalarEvolution &PSE;
615 };
616 
617 } // end anonymous namespace
618 
619 /// \brief Check whether a pointer can participate in a runtime bounds check.
620 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
621                                 const ValueToValueMap &Strides, Value *Ptr,
622                                 Loop *L) {
623   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
624 
625   // The bounds for loop-invariant pointer is trivial.
626   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627     return true;
628 
629   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630   if (!AR)
631     return false;
632 
633   return AR->isAffine();
634 }
635 
636 /// \brief Check whether a pointer address cannot wrap.
637 static bool isNoWrap(PredicatedScalarEvolution &PSE,
638                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
639   const SCEV *PtrScev = PSE.getSCEV(Ptr);
640   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
641     return true;
642 
643   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
644   return Stride == 1;
645 }
646 
647 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
648                                      ScalarEvolution *SE, Loop *TheLoop,
649                                      const ValueToValueMap &StridesMap,
650                                      bool ShouldCheckWrap) {
651   // Find pointers with computable bounds. We are going to use this information
652   // to place a runtime bound check.
653   bool CanDoRT = true;
654 
655   bool NeedRTCheck = false;
656   if (!IsRTCheckAnalysisNeeded) return true;
657 
658   bool IsDepCheckNeeded = isDependencyCheckNeeded();
659 
660   // We assign a consecutive id to access from different alias sets.
661   // Accesses between different groups doesn't need to be checked.
662   unsigned ASId = 1;
663   for (auto &AS : AST) {
664     int NumReadPtrChecks = 0;
665     int NumWritePtrChecks = 0;
666 
667     // We assign consecutive id to access from different dependence sets.
668     // Accesses within the same set don't need a runtime check.
669     unsigned RunningDepId = 1;
670     DenseMap<Value *, unsigned> DepSetId;
671 
672     for (auto A : AS) {
673       Value *Ptr = A.getValue();
674       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
675       MemAccessInfo Access(Ptr, IsWrite);
676 
677       if (IsWrite)
678         ++NumWritePtrChecks;
679       else
680         ++NumReadPtrChecks;
681 
682       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
683           // When we run after a failing dependency check we have to make sure
684           // we don't have wrapping pointers.
685           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
686         // The id of the dependence set.
687         unsigned DepId;
688 
689         if (IsDepCheckNeeded) {
690           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
691           unsigned &LeaderId = DepSetId[Leader];
692           if (!LeaderId)
693             LeaderId = RunningDepId++;
694           DepId = LeaderId;
695         } else
696           // Each access has its own dependence set.
697           DepId = RunningDepId++;
698 
699         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
700 
701         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
702       } else {
703         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
704         CanDoRT = false;
705       }
706     }
707 
708     // If we have at least two writes or one write and a read then we need to
709     // check them.  But there is no need to checks if there is only one
710     // dependence set for this alias set.
711     //
712     // Note that this function computes CanDoRT and NeedRTCheck independently.
713     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
714     // for which we couldn't find the bounds but we don't actually need to emit
715     // any checks so it does not matter.
716     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
717       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
718                                                  NumWritePtrChecks >= 1));
719 
720     ++ASId;
721   }
722 
723   // If the pointers that we would use for the bounds comparison have different
724   // address spaces, assume the values aren't directly comparable, so we can't
725   // use them for the runtime check. We also have to assume they could
726   // overlap. In the future there should be metadata for whether address spaces
727   // are disjoint.
728   unsigned NumPointers = RtCheck.Pointers.size();
729   for (unsigned i = 0; i < NumPointers; ++i) {
730     for (unsigned j = i + 1; j < NumPointers; ++j) {
731       // Only need to check pointers between two different dependency sets.
732       if (RtCheck.Pointers[i].DependencySetId ==
733           RtCheck.Pointers[j].DependencySetId)
734        continue;
735       // Only need to check pointers in the same alias set.
736       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
737         continue;
738 
739       Value *PtrI = RtCheck.Pointers[i].PointerValue;
740       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
741 
742       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
743       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
744       if (ASi != ASj) {
745         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
746                        " different address spaces\n");
747         return false;
748       }
749     }
750   }
751 
752   if (NeedRTCheck && CanDoRT)
753     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
754 
755   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
756                << " pointer comparisons.\n");
757 
758   RtCheck.Need = NeedRTCheck;
759 
760   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
761   if (!CanDoRTIfNeeded)
762     RtCheck.reset();
763   return CanDoRTIfNeeded;
764 }
765 
766 void AccessAnalysis::processMemAccesses() {
767   // We process the set twice: first we process read-write pointers, last we
768   // process read-only pointers. This allows us to skip dependence tests for
769   // read-only pointers.
770 
771   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
772   DEBUG(dbgs() << "  AST: "; AST.dump());
773   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
774   DEBUG({
775     for (auto A : Accesses)
776       dbgs() << "\t" << *A.getPointer() << " (" <<
777                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
778                                          "read-only" : "read")) << ")\n";
779   });
780 
781   // The AliasSetTracker has nicely partitioned our pointers by metadata
782   // compatibility and potential for underlying-object overlap. As a result, we
783   // only need to check for potential pointer dependencies within each alias
784   // set.
785   for (auto &AS : AST) {
786     // Note that both the alias-set tracker and the alias sets themselves used
787     // linked lists internally and so the iteration order here is deterministic
788     // (matching the original instruction order within each set).
789 
790     bool SetHasWrite = false;
791 
792     // Map of pointers to last access encountered.
793     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
794     UnderlyingObjToAccessMap ObjToLastAccess;
795 
796     // Set of access to check after all writes have been processed.
797     PtrAccessSet DeferredAccesses;
798 
799     // Iterate over each alias set twice, once to process read/write pointers,
800     // and then to process read-only pointers.
801     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
802       bool UseDeferred = SetIteration > 0;
803       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
804 
805       for (auto AV : AS) {
806         Value *Ptr = AV.getValue();
807 
808         // For a single memory access in AliasSetTracker, Accesses may contain
809         // both read and write, and they both need to be handled for CheckDeps.
810         for (auto AC : S) {
811           if (AC.getPointer() != Ptr)
812             continue;
813 
814           bool IsWrite = AC.getInt();
815 
816           // If we're using the deferred access set, then it contains only
817           // reads.
818           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
819           if (UseDeferred && !IsReadOnlyPtr)
820             continue;
821           // Otherwise, the pointer must be in the PtrAccessSet, either as a
822           // read or a write.
823           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
824                   S.count(MemAccessInfo(Ptr, false))) &&
825                  "Alias-set pointer not in the access set?");
826 
827           MemAccessInfo Access(Ptr, IsWrite);
828           DepCands.insert(Access);
829 
830           // Memorize read-only pointers for later processing and skip them in
831           // the first round (they need to be checked after we have seen all
832           // write pointers). Note: we also mark pointer that are not
833           // consecutive as "read-only" pointers (so that we check
834           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
835           if (!UseDeferred && IsReadOnlyPtr) {
836             DeferredAccesses.insert(Access);
837             continue;
838           }
839 
840           // If this is a write - check other reads and writes for conflicts. If
841           // this is a read only check other writes for conflicts (but only if
842           // there is no other write to the ptr - this is an optimization to
843           // catch "a[i] = a[i] + " without having to do a dependence check).
844           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
845             CheckDeps.insert(Access);
846             IsRTCheckAnalysisNeeded = true;
847           }
848 
849           if (IsWrite)
850             SetHasWrite = true;
851 
852           // Create sets of pointers connected by a shared alias set and
853           // underlying object.
854           typedef SmallVector<Value *, 16> ValueVector;
855           ValueVector TempObjects;
856 
857           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
858           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
859           for (Value *UnderlyingObj : TempObjects) {
860             // nullptr never alias, don't join sets for pointer that have "null"
861             // in their UnderlyingObjects list.
862             if (isa<ConstantPointerNull>(UnderlyingObj))
863               continue;
864 
865             UnderlyingObjToAccessMap::iterator Prev =
866                 ObjToLastAccess.find(UnderlyingObj);
867             if (Prev != ObjToLastAccess.end())
868               DepCands.unionSets(Access, Prev->second);
869 
870             ObjToLastAccess[UnderlyingObj] = Access;
871             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
872           }
873         }
874       }
875     }
876   }
877 }
878 
879 static bool isInBoundsGep(Value *Ptr) {
880   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
881     return GEP->isInBounds();
882   return false;
883 }
884 
885 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
886 /// i.e. monotonically increasing/decreasing.
887 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
888                            PredicatedScalarEvolution &PSE, const Loop *L) {
889   // FIXME: This should probably only return true for NUW.
890   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
891     return true;
892 
893   // Scalar evolution does not propagate the non-wrapping flags to values that
894   // are derived from a non-wrapping induction variable because non-wrapping
895   // could be flow-sensitive.
896   //
897   // Look through the potentially overflowing instruction to try to prove
898   // non-wrapping for the *specific* value of Ptr.
899 
900   // The arithmetic implied by an inbounds GEP can't overflow.
901   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
902   if (!GEP || !GEP->isInBounds())
903     return false;
904 
905   // Make sure there is only one non-const index and analyze that.
906   Value *NonConstIndex = nullptr;
907   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
908     if (!isa<ConstantInt>(Index)) {
909       if (NonConstIndex)
910         return false;
911       NonConstIndex = Index;
912     }
913   if (!NonConstIndex)
914     // The recurrence is on the pointer, ignore for now.
915     return false;
916 
917   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
918   // AddRec using a NSW operation.
919   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
920     if (OBO->hasNoSignedWrap() &&
921         // Assume constant for other the operand so that the AddRec can be
922         // easily found.
923         isa<ConstantInt>(OBO->getOperand(1))) {
924       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
925 
926       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
927         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
928     }
929 
930   return false;
931 }
932 
933 /// \brief Check whether the access through \p Ptr has a constant stride.
934 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
935                            const Loop *Lp, const ValueToValueMap &StridesMap,
936                            bool Assume, bool ShouldCheckWrap) {
937   Type *Ty = Ptr->getType();
938   assert(Ty->isPointerTy() && "Unexpected non-ptr");
939 
940   // Make sure that the pointer does not point to aggregate types.
941   auto *PtrTy = cast<PointerType>(Ty);
942   if (PtrTy->getElementType()->isAggregateType()) {
943     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
944                  << "\n");
945     return 0;
946   }
947 
948   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
949 
950   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
951   if (Assume && !AR)
952     AR = PSE.getAsAddRec(Ptr);
953 
954   if (!AR) {
955     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
956                  << " SCEV: " << *PtrScev << "\n");
957     return 0;
958   }
959 
960   // The accesss function must stride over the innermost loop.
961   if (Lp != AR->getLoop()) {
962     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
963           *Ptr << " SCEV: " << *AR << "\n");
964     return 0;
965   }
966 
967   // The address calculation must not wrap. Otherwise, a dependence could be
968   // inverted.
969   // An inbounds getelementptr that is a AddRec with a unit stride
970   // cannot wrap per definition. The unit stride requirement is checked later.
971   // An getelementptr without an inbounds attribute and unit stride would have
972   // to access the pointer value "0" which is undefined behavior in address
973   // space 0, therefore we can also vectorize this case.
974   bool IsInBoundsGEP = isInBoundsGep(Ptr);
975   bool IsNoWrapAddRec = !ShouldCheckWrap ||
976     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
977     isNoWrapAddRec(Ptr, AR, PSE, Lp);
978   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
979   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
980     if (Assume) {
981       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
982       IsNoWrapAddRec = true;
983       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
984                    << "LAA:   Pointer: " << *Ptr << "\n"
985                    << "LAA:   SCEV: " << *AR << "\n"
986                    << "LAA:   Added an overflow assumption\n");
987     } else {
988       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
989                    << *Ptr << " SCEV: " << *AR << "\n");
990       return 0;
991     }
992   }
993 
994   // Check the step is constant.
995   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
996 
997   // Calculate the pointer stride and check if it is constant.
998   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
999   if (!C) {
1000     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
1001           " SCEV: " << *AR << "\n");
1002     return 0;
1003   }
1004 
1005   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1006   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1007   const APInt &APStepVal = C->getAPInt();
1008 
1009   // Huge step value - give up.
1010   if (APStepVal.getBitWidth() > 64)
1011     return 0;
1012 
1013   int64_t StepVal = APStepVal.getSExtValue();
1014 
1015   // Strided access.
1016   int64_t Stride = StepVal / Size;
1017   int64_t Rem = StepVal % Size;
1018   if (Rem)
1019     return 0;
1020 
1021   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1022   // know we can't "wrap around the address space". In case of address space
1023   // zero we know that this won't happen without triggering undefined behavior.
1024   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
1025       Stride != 1 && Stride != -1) {
1026     if (Assume) {
1027       // We can avoid this case by adding a run-time check.
1028       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1029                    << "inbouds or in address space 0 may wrap:\n"
1030                    << "LAA:   Pointer: " << *Ptr << "\n"
1031                    << "LAA:   SCEV: " << *AR << "\n"
1032                    << "LAA:   Added an overflow assumption\n");
1033       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1034     } else
1035       return 0;
1036   }
1037 
1038   return Stride;
1039 }
1040 
1041 /// Take the pointer operand from the Load/Store instruction.
1042 /// Returns NULL if this is not a valid Load/Store instruction.
1043 static Value *getPointerOperand(Value *I) {
1044   if (auto *LI = dyn_cast<LoadInst>(I))
1045     return LI->getPointerOperand();
1046   if (auto *SI = dyn_cast<StoreInst>(I))
1047     return SI->getPointerOperand();
1048   return nullptr;
1049 }
1050 
1051 /// Take the address space operand from the Load/Store instruction.
1052 /// Returns -1 if this is not a valid Load/Store instruction.
1053 static unsigned getAddressSpaceOperand(Value *I) {
1054   if (LoadInst *L = dyn_cast<LoadInst>(I))
1055     return L->getPointerAddressSpace();
1056   if (StoreInst *S = dyn_cast<StoreInst>(I))
1057     return S->getPointerAddressSpace();
1058   return -1;
1059 }
1060 
1061 /// Saves the memory accesses after sorting it into vector argument 'Sorted'.
1062 void llvm::sortMemAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1063                          ScalarEvolution &SE,
1064                          SmallVectorImpl<Value *> &Sorted) {
1065   SmallVector<std::pair<int, Value *>, 4> OffValPairs;
1066   for (auto *Val : VL) {
1067     // Compute the constant offset from the base pointer of each memory accesses
1068     // and insert into the vector of key,value pair which needs to be sorted.
1069     Value *Ptr = getPointerOperand(Val);
1070     unsigned AS = getAddressSpaceOperand(Val);
1071     unsigned PtrBitWidth = DL.getPointerSizeInBits(AS);
1072     Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
1073     APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1074 
1075     // FIXME: Currently the offsets are assumed to be constant.However this not
1076     // always true as offsets can be variables also and we would need to
1077     // consider the difference of the variable offsets.
1078     APInt Offset(PtrBitWidth, 0);
1079     Ptr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1080     OffValPairs.push_back(std::make_pair(Offset.getSExtValue(), Val));
1081   }
1082   std::sort(OffValPairs.begin(), OffValPairs.end(),
1083             [](const std::pair<int, Value *> &Left,
1084                const std::pair<int, Value *> &Right) {
1085               return Left.first < Right.first;
1086             });
1087 
1088   for (auto& it : OffValPairs)
1089     Sorted.push_back(it.second);
1090 }
1091 
1092 /// Returns true if the memory operations \p A and \p B are consecutive.
1093 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1094                                ScalarEvolution &SE, bool CheckType) {
1095   Value *PtrA = getPointerOperand(A);
1096   Value *PtrB = getPointerOperand(B);
1097   unsigned ASA = getAddressSpaceOperand(A);
1098   unsigned ASB = getAddressSpaceOperand(B);
1099 
1100   // Check that the address spaces match and that the pointers are valid.
1101   if (!PtrA || !PtrB || (ASA != ASB))
1102     return false;
1103 
1104   // Make sure that A and B are different pointers.
1105   if (PtrA == PtrB)
1106     return false;
1107 
1108   // Make sure that A and B have the same type if required.
1109   if (CheckType && PtrA->getType() != PtrB->getType())
1110     return false;
1111 
1112   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1113   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1114   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1115 
1116   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1117   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1118   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1119 
1120   //  OffsetDelta = OffsetB - OffsetA;
1121   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1122   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1123   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1124   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1125   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1126   // Check if they are based on the same pointer. That makes the offsets
1127   // sufficient.
1128   if (PtrA == PtrB)
1129     return OffsetDelta == Size;
1130 
1131   // Compute the necessary base pointer delta to have the necessary final delta
1132   // equal to the size.
1133   // BaseDelta = Size - OffsetDelta;
1134   const SCEV *SizeSCEV = SE.getConstant(Size);
1135   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1136 
1137   // Otherwise compute the distance with SCEV between the base pointers.
1138   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1139   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1140   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1141   return X == PtrSCEVB;
1142 }
1143 
1144 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1145   switch (Type) {
1146   case NoDep:
1147   case Forward:
1148   case BackwardVectorizable:
1149     return true;
1150 
1151   case Unknown:
1152   case ForwardButPreventsForwarding:
1153   case Backward:
1154   case BackwardVectorizableButPreventsForwarding:
1155     return false;
1156   }
1157   llvm_unreachable("unexpected DepType!");
1158 }
1159 
1160 bool MemoryDepChecker::Dependence::isBackward() const {
1161   switch (Type) {
1162   case NoDep:
1163   case Forward:
1164   case ForwardButPreventsForwarding:
1165   case Unknown:
1166     return false;
1167 
1168   case BackwardVectorizable:
1169   case Backward:
1170   case BackwardVectorizableButPreventsForwarding:
1171     return true;
1172   }
1173   llvm_unreachable("unexpected DepType!");
1174 }
1175 
1176 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1177   return isBackward() || Type == Unknown;
1178 }
1179 
1180 bool MemoryDepChecker::Dependence::isForward() const {
1181   switch (Type) {
1182   case Forward:
1183   case ForwardButPreventsForwarding:
1184     return true;
1185 
1186   case NoDep:
1187   case Unknown:
1188   case BackwardVectorizable:
1189   case Backward:
1190   case BackwardVectorizableButPreventsForwarding:
1191     return false;
1192   }
1193   llvm_unreachable("unexpected DepType!");
1194 }
1195 
1196 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1197                                                     uint64_t TypeByteSize) {
1198   // If loads occur at a distance that is not a multiple of a feasible vector
1199   // factor store-load forwarding does not take place.
1200   // Positive dependences might cause troubles because vectorizing them might
1201   // prevent store-load forwarding making vectorized code run a lot slower.
1202   //   a[i] = a[i-3] ^ a[i-8];
1203   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1204   //   hence on your typical architecture store-load forwarding does not take
1205   //   place. Vectorizing in such cases does not make sense.
1206   // Store-load forwarding distance.
1207 
1208   // After this many iterations store-to-load forwarding conflicts should not
1209   // cause any slowdowns.
1210   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1211   // Maximum vector factor.
1212   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1213       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1214 
1215   // Compute the smallest VF at which the store and load would be misaligned.
1216   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1217        VF *= 2) {
1218     // If the number of vector iteration between the store and the load are
1219     // small we could incur conflicts.
1220     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1221       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1222       break;
1223     }
1224   }
1225 
1226   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1227     DEBUG(dbgs() << "LAA: Distance " << Distance
1228                  << " that could cause a store-load forwarding conflict\n");
1229     return true;
1230   }
1231 
1232   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1233       MaxVFWithoutSLForwardIssues !=
1234           VectorizerParams::MaxVectorWidth * TypeByteSize)
1235     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1236   return false;
1237 }
1238 
1239 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1240 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1241 /// bytes.
1242 ///
1243 /// \returns true if they are independent.
1244 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1245                                           uint64_t TypeByteSize) {
1246   assert(Stride > 1 && "The stride must be greater than 1");
1247   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1248   assert(Distance > 0 && "The distance must be non-zero");
1249 
1250   // Skip if the distance is not multiple of type byte size.
1251   if (Distance % TypeByteSize)
1252     return false;
1253 
1254   uint64_t ScaledDist = Distance / TypeByteSize;
1255 
1256   // No dependence if the scaled distance is not multiple of the stride.
1257   // E.g.
1258   //      for (i = 0; i < 1024 ; i += 4)
1259   //        A[i+2] = A[i] + 1;
1260   //
1261   // Two accesses in memory (scaled distance is 2, stride is 4):
1262   //     | A[0] |      |      |      | A[4] |      |      |      |
1263   //     |      |      | A[2] |      |      |      | A[6] |      |
1264   //
1265   // E.g.
1266   //      for (i = 0; i < 1024 ; i += 3)
1267   //        A[i+4] = A[i] + 1;
1268   //
1269   // Two accesses in memory (scaled distance is 4, stride is 3):
1270   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1271   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1272   return ScaledDist % Stride;
1273 }
1274 
1275 MemoryDepChecker::Dependence::DepType
1276 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1277                               const MemAccessInfo &B, unsigned BIdx,
1278                               const ValueToValueMap &Strides) {
1279   assert (AIdx < BIdx && "Must pass arguments in program order");
1280 
1281   Value *APtr = A.getPointer();
1282   Value *BPtr = B.getPointer();
1283   bool AIsWrite = A.getInt();
1284   bool BIsWrite = B.getInt();
1285 
1286   // Two reads are independent.
1287   if (!AIsWrite && !BIsWrite)
1288     return Dependence::NoDep;
1289 
1290   // We cannot check pointers in different address spaces.
1291   if (APtr->getType()->getPointerAddressSpace() !=
1292       BPtr->getType()->getPointerAddressSpace())
1293     return Dependence::Unknown;
1294 
1295   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1296   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1297 
1298   const SCEV *Src = PSE.getSCEV(APtr);
1299   const SCEV *Sink = PSE.getSCEV(BPtr);
1300 
1301   // If the induction step is negative we have to invert source and sink of the
1302   // dependence.
1303   if (StrideAPtr < 0) {
1304     std::swap(APtr, BPtr);
1305     std::swap(Src, Sink);
1306     std::swap(AIsWrite, BIsWrite);
1307     std::swap(AIdx, BIdx);
1308     std::swap(StrideAPtr, StrideBPtr);
1309   }
1310 
1311   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1312 
1313   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1314                << "(Induction step: " << StrideAPtr << ")\n");
1315   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1316                << *InstMap[BIdx] << ": " << *Dist << "\n");
1317 
1318   // Need accesses with constant stride. We don't want to vectorize
1319   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1320   // the address space.
1321   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1322     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1323     return Dependence::Unknown;
1324   }
1325 
1326   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1327   if (!C) {
1328     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1329     ShouldRetryWithRuntimeCheck = true;
1330     return Dependence::Unknown;
1331   }
1332 
1333   Type *ATy = APtr->getType()->getPointerElementType();
1334   Type *BTy = BPtr->getType()->getPointerElementType();
1335   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1336   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1337 
1338   const APInt &Val = C->getAPInt();
1339   int64_t Distance = Val.getSExtValue();
1340   uint64_t Stride = std::abs(StrideAPtr);
1341 
1342   // Attempt to prove strided accesses independent.
1343   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1344       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1345     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1346     return Dependence::NoDep;
1347   }
1348 
1349   // Negative distances are not plausible dependencies.
1350   if (Val.isNegative()) {
1351     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1352     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1353         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1354          ATy != BTy)) {
1355       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1356       return Dependence::ForwardButPreventsForwarding;
1357     }
1358 
1359     DEBUG(dbgs() << "LAA: Dependence is negative\n");
1360     return Dependence::Forward;
1361   }
1362 
1363   // Write to the same location with the same size.
1364   // Could be improved to assert type sizes are the same (i32 == float, etc).
1365   if (Val == 0) {
1366     if (ATy == BTy)
1367       return Dependence::Forward;
1368     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1369     return Dependence::Unknown;
1370   }
1371 
1372   assert(Val.isStrictlyPositive() && "Expect a positive value");
1373 
1374   if (ATy != BTy) {
1375     DEBUG(dbgs() <<
1376           "LAA: ReadWrite-Write positive dependency with different types\n");
1377     return Dependence::Unknown;
1378   }
1379 
1380   // Bail out early if passed-in parameters make vectorization not feasible.
1381   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1382                            VectorizerParams::VectorizationFactor : 1);
1383   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1384                            VectorizerParams::VectorizationInterleave : 1);
1385   // The minimum number of iterations for a vectorized/unrolled version.
1386   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1387 
1388   // It's not vectorizable if the distance is smaller than the minimum distance
1389   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1390   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1391   // TypeByteSize (No need to plus the last gap distance).
1392   //
1393   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1394   //      foo(int *A) {
1395   //        int *B = (int *)((char *)A + 14);
1396   //        for (i = 0 ; i < 1024 ; i += 2)
1397   //          B[i] = A[i] + 1;
1398   //      }
1399   //
1400   // Two accesses in memory (stride is 2):
1401   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1402   //                              | B[0] |      | B[2] |      | B[4] |
1403   //
1404   // Distance needs for vectorizing iterations except the last iteration:
1405   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1406   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1407   //
1408   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1409   // 12, which is less than distance.
1410   //
1411   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1412   // the minimum distance needed is 28, which is greater than distance. It is
1413   // not safe to do vectorization.
1414   uint64_t MinDistanceNeeded =
1415       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1416   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1417     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1418                  << '\n');
1419     return Dependence::Backward;
1420   }
1421 
1422   // Unsafe if the minimum distance needed is greater than max safe distance.
1423   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1424     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1425                  << MinDistanceNeeded << " size in bytes");
1426     return Dependence::Backward;
1427   }
1428 
1429   // Positive distance bigger than max vectorization factor.
1430   // FIXME: Should use max factor instead of max distance in bytes, which could
1431   // not handle different types.
1432   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1433   //      void foo (int *A, char *B) {
1434   //        for (unsigned i = 0; i < 1024; i++) {
1435   //          A[i+2] = A[i] + 1;
1436   //          B[i+2] = B[i] + 1;
1437   //        }
1438   //      }
1439   //
1440   // This case is currently unsafe according to the max safe distance. If we
1441   // analyze the two accesses on array B, the max safe dependence distance
1442   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1443   // is 8, which is less than 2 and forbidden vectorization, But actually
1444   // both A and B could be vectorized by 2 iterations.
1445   MaxSafeDepDistBytes =
1446       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1447 
1448   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1449   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1450       couldPreventStoreLoadForward(Distance, TypeByteSize))
1451     return Dependence::BackwardVectorizableButPreventsForwarding;
1452 
1453   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1454                << " with max VF = "
1455                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1456 
1457   return Dependence::BackwardVectorizable;
1458 }
1459 
1460 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1461                                    MemAccessInfoSet &CheckDeps,
1462                                    const ValueToValueMap &Strides) {
1463 
1464   MaxSafeDepDistBytes = -1;
1465   while (!CheckDeps.empty()) {
1466     MemAccessInfo CurAccess = *CheckDeps.begin();
1467 
1468     // Get the relevant memory access set.
1469     EquivalenceClasses<MemAccessInfo>::iterator I =
1470       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1471 
1472     // Check accesses within this set.
1473     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1474         AccessSets.member_begin(I);
1475     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1476         AccessSets.member_end();
1477 
1478     // Check every access pair.
1479     while (AI != AE) {
1480       CheckDeps.erase(*AI);
1481       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1482       while (OI != AE) {
1483         // Check every accessing instruction pair in program order.
1484         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1485              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1486           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1487                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1488             auto A = std::make_pair(&*AI, *I1);
1489             auto B = std::make_pair(&*OI, *I2);
1490 
1491             assert(*I1 != *I2);
1492             if (*I1 > *I2)
1493               std::swap(A, B);
1494 
1495             Dependence::DepType Type =
1496                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1497             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1498 
1499             // Gather dependences unless we accumulated MaxDependences
1500             // dependences.  In that case return as soon as we find the first
1501             // unsafe dependence.  This puts a limit on this quadratic
1502             // algorithm.
1503             if (RecordDependences) {
1504               if (Type != Dependence::NoDep)
1505                 Dependences.push_back(Dependence(A.second, B.second, Type));
1506 
1507               if (Dependences.size() >= MaxDependences) {
1508                 RecordDependences = false;
1509                 Dependences.clear();
1510                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1511               }
1512             }
1513             if (!RecordDependences && !SafeForVectorization)
1514               return false;
1515           }
1516         ++OI;
1517       }
1518       AI++;
1519     }
1520   }
1521 
1522   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1523   return SafeForVectorization;
1524 }
1525 
1526 SmallVector<Instruction *, 4>
1527 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1528   MemAccessInfo Access(Ptr, isWrite);
1529   auto &IndexVector = Accesses.find(Access)->second;
1530 
1531   SmallVector<Instruction *, 4> Insts;
1532   transform(IndexVector,
1533                  std::back_inserter(Insts),
1534                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1535   return Insts;
1536 }
1537 
1538 const char *MemoryDepChecker::Dependence::DepName[] = {
1539     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1540     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1541 
1542 void MemoryDepChecker::Dependence::print(
1543     raw_ostream &OS, unsigned Depth,
1544     const SmallVectorImpl<Instruction *> &Instrs) const {
1545   OS.indent(Depth) << DepName[Type] << ":\n";
1546   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1547   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1548 }
1549 
1550 bool LoopAccessInfo::canAnalyzeLoop() {
1551   // We need to have a loop header.
1552   DEBUG(dbgs() << "LAA: Found a loop in "
1553                << TheLoop->getHeader()->getParent()->getName() << ": "
1554                << TheLoop->getHeader()->getName() << '\n');
1555 
1556   // We can only analyze innermost loops.
1557   if (!TheLoop->empty()) {
1558     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1559     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1560     return false;
1561   }
1562 
1563   // We must have a single backedge.
1564   if (TheLoop->getNumBackEdges() != 1) {
1565     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1566     recordAnalysis("CFGNotUnderstood")
1567         << "loop control flow is not understood by analyzer";
1568     return false;
1569   }
1570 
1571   // We must have a single exiting block.
1572   if (!TheLoop->getExitingBlock()) {
1573     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1574     recordAnalysis("CFGNotUnderstood")
1575         << "loop control flow is not understood by analyzer";
1576     return false;
1577   }
1578 
1579   // We only handle bottom-tested loops, i.e. loop in which the condition is
1580   // checked at the end of each iteration. With that we can assume that all
1581   // instructions in the loop are executed the same number of times.
1582   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1583     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1584     recordAnalysis("CFGNotUnderstood")
1585         << "loop control flow is not understood by analyzer";
1586     return false;
1587   }
1588 
1589   // ScalarEvolution needs to be able to find the exit count.
1590   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1591   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1592     recordAnalysis("CantComputeNumberOfIterations")
1593         << "could not determine number of loop iterations";
1594     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1595     return false;
1596   }
1597 
1598   return true;
1599 }
1600 
1601 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1602                                  const TargetLibraryInfo *TLI,
1603                                  DominatorTree *DT) {
1604   typedef SmallPtrSet<Value*, 16> ValueSet;
1605 
1606   // Holds the Load and Store instructions.
1607   SmallVector<LoadInst *, 16> Loads;
1608   SmallVector<StoreInst *, 16> Stores;
1609 
1610   // Holds all the different accesses in the loop.
1611   unsigned NumReads = 0;
1612   unsigned NumReadWrites = 0;
1613 
1614   PtrRtChecking->Pointers.clear();
1615   PtrRtChecking->Need = false;
1616 
1617   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1618 
1619   // For each block.
1620   for (BasicBlock *BB : TheLoop->blocks()) {
1621     // Scan the BB and collect legal loads and stores.
1622     for (Instruction &I : *BB) {
1623       // If this is a load, save it. If this instruction can read from memory
1624       // but is not a load, then we quit. Notice that we don't handle function
1625       // calls that read or write.
1626       if (I.mayReadFromMemory()) {
1627         // Many math library functions read the rounding mode. We will only
1628         // vectorize a loop if it contains known function calls that don't set
1629         // the flag. Therefore, it is safe to ignore this read from memory.
1630         auto *Call = dyn_cast<CallInst>(&I);
1631         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1632           continue;
1633 
1634         // If the function has an explicit vectorized counterpart, we can safely
1635         // assume that it can be vectorized.
1636         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1637             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1638           continue;
1639 
1640         auto *Ld = dyn_cast<LoadInst>(&I);
1641         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1642           recordAnalysis("NonSimpleLoad", Ld)
1643               << "read with atomic ordering or volatile read";
1644           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1645           CanVecMem = false;
1646           return;
1647         }
1648         NumLoads++;
1649         Loads.push_back(Ld);
1650         DepChecker->addAccess(Ld);
1651         if (EnableMemAccessVersioning)
1652           collectStridedAccess(Ld);
1653         continue;
1654       }
1655 
1656       // Save 'store' instructions. Abort if other instructions write to memory.
1657       if (I.mayWriteToMemory()) {
1658         auto *St = dyn_cast<StoreInst>(&I);
1659         if (!St) {
1660           recordAnalysis("CantVectorizeInstruction", St)
1661               << "instruction cannot be vectorized";
1662           CanVecMem = false;
1663           return;
1664         }
1665         if (!St->isSimple() && !IsAnnotatedParallel) {
1666           recordAnalysis("NonSimpleStore", St)
1667               << "write with atomic ordering or volatile write";
1668           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1669           CanVecMem = false;
1670           return;
1671         }
1672         NumStores++;
1673         Stores.push_back(St);
1674         DepChecker->addAccess(St);
1675         if (EnableMemAccessVersioning)
1676           collectStridedAccess(St);
1677       }
1678     } // Next instr.
1679   } // Next block.
1680 
1681   // Now we have two lists that hold the loads and the stores.
1682   // Next, we find the pointers that they use.
1683 
1684   // Check if we see any stores. If there are no stores, then we don't
1685   // care if the pointers are *restrict*.
1686   if (!Stores.size()) {
1687     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1688     CanVecMem = true;
1689     return;
1690   }
1691 
1692   MemoryDepChecker::DepCandidates DependentAccesses;
1693   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1694                           AA, LI, DependentAccesses, *PSE);
1695 
1696   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1697   // multiple times on the same object. If the ptr is accessed twice, once
1698   // for read and once for write, it will only appear once (on the write
1699   // list). This is okay, since we are going to check for conflicts between
1700   // writes and between reads and writes, but not between reads and reads.
1701   ValueSet Seen;
1702 
1703   for (StoreInst *ST : Stores) {
1704     Value *Ptr = ST->getPointerOperand();
1705     // Check for store to loop invariant address.
1706     StoreToLoopInvariantAddress |= isUniform(Ptr);
1707     // If we did *not* see this pointer before, insert it to  the read-write
1708     // list. At this phase it is only a 'write' list.
1709     if (Seen.insert(Ptr).second) {
1710       ++NumReadWrites;
1711 
1712       MemoryLocation Loc = MemoryLocation::get(ST);
1713       // The TBAA metadata could have a control dependency on the predication
1714       // condition, so we cannot rely on it when determining whether or not we
1715       // need runtime pointer checks.
1716       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1717         Loc.AATags.TBAA = nullptr;
1718 
1719       Accesses.addStore(Loc);
1720     }
1721   }
1722 
1723   if (IsAnnotatedParallel) {
1724     DEBUG(dbgs()
1725           << "LAA: A loop annotated parallel, ignore memory dependency "
1726           << "checks.\n");
1727     CanVecMem = true;
1728     return;
1729   }
1730 
1731   for (LoadInst *LD : Loads) {
1732     Value *Ptr = LD->getPointerOperand();
1733     // If we did *not* see this pointer before, insert it to the
1734     // read list. If we *did* see it before, then it is already in
1735     // the read-write list. This allows us to vectorize expressions
1736     // such as A[i] += x;  Because the address of A[i] is a read-write
1737     // pointer. This only works if the index of A[i] is consecutive.
1738     // If the address of i is unknown (for example A[B[i]]) then we may
1739     // read a few words, modify, and write a few words, and some of the
1740     // words may be written to the same address.
1741     bool IsReadOnlyPtr = false;
1742     if (Seen.insert(Ptr).second ||
1743         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1744       ++NumReads;
1745       IsReadOnlyPtr = true;
1746     }
1747 
1748     MemoryLocation Loc = MemoryLocation::get(LD);
1749     // The TBAA metadata could have a control dependency on the predication
1750     // condition, so we cannot rely on it when determining whether or not we
1751     // need runtime pointer checks.
1752     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1753       Loc.AATags.TBAA = nullptr;
1754 
1755     Accesses.addLoad(Loc, IsReadOnlyPtr);
1756   }
1757 
1758   // If we write (or read-write) to a single destination and there are no
1759   // other reads in this loop then is it safe to vectorize.
1760   if (NumReadWrites == 1 && NumReads == 0) {
1761     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1762     CanVecMem = true;
1763     return;
1764   }
1765 
1766   // Build dependence sets and check whether we need a runtime pointer bounds
1767   // check.
1768   Accesses.buildDependenceSets();
1769 
1770   // Find pointers with computable bounds. We are going to use this information
1771   // to place a runtime bound check.
1772   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1773                                                   TheLoop, SymbolicStrides);
1774   if (!CanDoRTIfNeeded) {
1775     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1776     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1777                  << "the array bounds.\n");
1778     CanVecMem = false;
1779     return;
1780   }
1781 
1782   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1783 
1784   CanVecMem = true;
1785   if (Accesses.isDependencyCheckNeeded()) {
1786     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1787     CanVecMem = DepChecker->areDepsSafe(
1788         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1789     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
1790 
1791     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
1792       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1793 
1794       // Clear the dependency checks. We assume they are not needed.
1795       Accesses.resetDepChecks(*DepChecker);
1796 
1797       PtrRtChecking->reset();
1798       PtrRtChecking->Need = true;
1799 
1800       auto *SE = PSE->getSE();
1801       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
1802                                                  SymbolicStrides, true);
1803 
1804       // Check that we found the bounds for the pointer.
1805       if (!CanDoRTIfNeeded) {
1806         recordAnalysis("CantCheckMemDepsAtRunTime")
1807             << "cannot check memory dependencies at runtime";
1808         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1809         CanVecMem = false;
1810         return;
1811       }
1812 
1813       CanVecMem = true;
1814     }
1815   }
1816 
1817   if (CanVecMem)
1818     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1819                  << (PtrRtChecking->Need ? "" : " don't")
1820                  << " need runtime memory checks.\n");
1821   else {
1822     recordAnalysis("UnsafeMemDep")
1823         << "unsafe dependent memory operations in loop. Use "
1824            "#pragma loop distribute(enable) to allow loop distribution "
1825            "to attempt to isolate the offending operations into a separate "
1826            "loop";
1827     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1828   }
1829 }
1830 
1831 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1832                                            DominatorTree *DT)  {
1833   assert(TheLoop->contains(BB) && "Unknown block used");
1834 
1835   // Blocks that do not dominate the latch need predication.
1836   BasicBlock* Latch = TheLoop->getLoopLatch();
1837   return !DT->dominates(BB, Latch);
1838 }
1839 
1840 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1841                                                            Instruction *I) {
1842   assert(!Report && "Multiple reports generated");
1843 
1844   Value *CodeRegion = TheLoop->getHeader();
1845   DebugLoc DL = TheLoop->getStartLoc();
1846 
1847   if (I) {
1848     CodeRegion = I->getParent();
1849     // If there is no debug location attached to the instruction, revert back to
1850     // using the loop's.
1851     if (I->getDebugLoc())
1852       DL = I->getDebugLoc();
1853   }
1854 
1855   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1856                                                    CodeRegion);
1857   return *Report;
1858 }
1859 
1860 bool LoopAccessInfo::isUniform(Value *V) const {
1861   auto *SE = PSE->getSE();
1862   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1863   // never considered uniform.
1864   // TODO: Is this really what we want? Even without FP SCEV, we may want some
1865   // trivially loop-invariant FP values to be considered uniform.
1866   if (!SE->isSCEVable(V->getType()))
1867     return false;
1868   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1869 }
1870 
1871 // FIXME: this function is currently a duplicate of the one in
1872 // LoopVectorize.cpp.
1873 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1874                                  Instruction *Loc) {
1875   if (FirstInst)
1876     return FirstInst;
1877   if (Instruction *I = dyn_cast<Instruction>(V))
1878     return I->getParent() == Loc->getParent() ? I : nullptr;
1879   return nullptr;
1880 }
1881 
1882 namespace {
1883 
1884 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1885 /// need to use value-handles because SCEV expansion can invalidate previously
1886 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1887 /// a previous one.
1888 struct PointerBounds {
1889   TrackingVH<Value> Start;
1890   TrackingVH<Value> End;
1891 };
1892 
1893 } // end anonymous namespace
1894 
1895 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1896 /// in \p TheLoop.  \return the values for the bounds.
1897 static PointerBounds
1898 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1899              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1900              const RuntimePointerChecking &PtrRtChecking) {
1901   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1902   const SCEV *Sc = SE->getSCEV(Ptr);
1903 
1904   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1905   LLVMContext &Ctx = Loc->getContext();
1906 
1907   // Use this type for pointer arithmetic.
1908   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1909 
1910   if (SE->isLoopInvariant(Sc, TheLoop)) {
1911     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1912                  << "\n");
1913     // Ptr could be in the loop body. If so, expand a new one at the correct
1914     // location.
1915     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1916     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1917                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1918                         : Ptr;
1919     return {NewPtr, NewPtr};
1920   } else {
1921     Value *Start = nullptr, *End = nullptr;
1922     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1923     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1924     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1925     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1926     return {Start, End};
1927   }
1928 }
1929 
1930 /// \brief Turns a collection of checks into a collection of expanded upper and
1931 /// lower bounds for both pointers in the check.
1932 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1933     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1934     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1935     const RuntimePointerChecking &PtrRtChecking) {
1936   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1937 
1938   // Here we're relying on the SCEV Expander's cache to only emit code for the
1939   // same bounds once.
1940   transform(
1941       PointerChecks, std::back_inserter(ChecksWithBounds),
1942       [&](const RuntimePointerChecking::PointerCheck &Check) {
1943         PointerBounds
1944           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1945           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1946         return std::make_pair(First, Second);
1947       });
1948 
1949   return ChecksWithBounds;
1950 }
1951 
1952 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1953     Instruction *Loc,
1954     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1955     const {
1956   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1957   auto *SE = PSE->getSE();
1958   SCEVExpander Exp(*SE, DL, "induction");
1959   auto ExpandedChecks =
1960       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
1961 
1962   LLVMContext &Ctx = Loc->getContext();
1963   Instruction *FirstInst = nullptr;
1964   IRBuilder<> ChkBuilder(Loc);
1965   // Our instructions might fold to a constant.
1966   Value *MemoryRuntimeCheck = nullptr;
1967 
1968   for (const auto &Check : ExpandedChecks) {
1969     const PointerBounds &A = Check.first, &B = Check.second;
1970     // Check if two pointers (A and B) conflict where conflict is computed as:
1971     // start(A) <= end(B) && start(B) <= end(A)
1972     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1973     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1974 
1975     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1976            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1977            "Trying to bounds check pointers with different address spaces");
1978 
1979     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1980     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1981 
1982     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1983     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1984     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1985     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1986 
1987     // [A|B].Start points to the first accessed byte under base [A|B].
1988     // [A|B].End points to the last accessed byte, plus one.
1989     // There is no conflict when the intervals are disjoint:
1990     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1991     //
1992     // bound0 = (B.Start < A.End)
1993     // bound1 = (A.Start < B.End)
1994     //  IsConflict = bound0 & bound1
1995     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1996     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1997     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1998     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1999     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2000     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2001     if (MemoryRuntimeCheck) {
2002       IsConflict =
2003           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2004       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2005     }
2006     MemoryRuntimeCheck = IsConflict;
2007   }
2008 
2009   if (!MemoryRuntimeCheck)
2010     return std::make_pair(nullptr, nullptr);
2011 
2012   // We have to do this trickery because the IRBuilder might fold the check to a
2013   // constant expression in which case there is no Instruction anchored in a
2014   // the block.
2015   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2016                                                  ConstantInt::getTrue(Ctx));
2017   ChkBuilder.Insert(Check, "memcheck.conflict");
2018   FirstInst = getFirstInst(FirstInst, Check, Loc);
2019   return std::make_pair(FirstInst, Check);
2020 }
2021 
2022 std::pair<Instruction *, Instruction *>
2023 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2024   if (!PtrRtChecking->Need)
2025     return std::make_pair(nullptr, nullptr);
2026 
2027   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
2028 }
2029 
2030 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2031   Value *Ptr = nullptr;
2032   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2033     Ptr = LI->getPointerOperand();
2034   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2035     Ptr = SI->getPointerOperand();
2036   else
2037     return;
2038 
2039   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2040   if (!Stride)
2041     return;
2042 
2043   DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2044   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2045   SymbolicStrides[Ptr] = Stride;
2046   StrideSet.insert(Stride);
2047 }
2048 
2049 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2050                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2051                                DominatorTree *DT, LoopInfo *LI)
2052     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2053       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
2054       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2055       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2056       StoreToLoopInvariantAddress(false) {
2057   if (canAnalyzeLoop())
2058     analyzeLoop(AA, LI, TLI, DT);
2059 }
2060 
2061 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2062   if (CanVecMem) {
2063     OS.indent(Depth) << "Memory dependences are safe";
2064     if (MaxSafeDepDistBytes != -1ULL)
2065       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2066          << " bytes";
2067     if (PtrRtChecking->Need)
2068       OS << " with run-time checks";
2069     OS << "\n";
2070   }
2071 
2072   if (Report)
2073     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2074 
2075   if (auto *Dependences = DepChecker->getDependences()) {
2076     OS.indent(Depth) << "Dependences:\n";
2077     for (auto &Dep : *Dependences) {
2078       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2079       OS << "\n";
2080     }
2081   } else
2082     OS.indent(Depth) << "Too many dependences, not recorded\n";
2083 
2084   // List the pair of accesses need run-time checks to prove independence.
2085   PtrRtChecking->print(OS, Depth);
2086   OS << "\n";
2087 
2088   OS.indent(Depth) << "Store to invariant address was "
2089                    << (StoreToLoopInvariantAddress ? "" : "not ")
2090                    << "found in loop.\n";
2091 
2092   OS.indent(Depth) << "SCEV assumptions:\n";
2093   PSE->getUnionPredicate().print(OS, Depth);
2094 
2095   OS << "\n";
2096 
2097   OS.indent(Depth) << "Expressions re-written:\n";
2098   PSE->print(OS, Depth);
2099 }
2100 
2101 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2102   auto &LAI = LoopAccessInfoMap[L];
2103 
2104   if (!LAI)
2105     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2106 
2107   return *LAI.get();
2108 }
2109 
2110 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2111   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2112 
2113   for (Loop *TopLevelLoop : *LI)
2114     for (Loop *L : depth_first(TopLevelLoop)) {
2115       OS.indent(2) << L->getHeader()->getName() << ":\n";
2116       auto &LAI = LAA.getInfo(L);
2117       LAI.print(OS, 4);
2118     }
2119 }
2120 
2121 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2122   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2123   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2124   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2125   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2126   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2127   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2128 
2129   return false;
2130 }
2131 
2132 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2133     AU.addRequired<ScalarEvolutionWrapperPass>();
2134     AU.addRequired<AAResultsWrapperPass>();
2135     AU.addRequired<DominatorTreeWrapperPass>();
2136     AU.addRequired<LoopInfoWrapperPass>();
2137 
2138     AU.setPreservesAll();
2139 }
2140 
2141 char LoopAccessLegacyAnalysis::ID = 0;
2142 static const char laa_name[] = "Loop Access Analysis";
2143 #define LAA_NAME "loop-accesses"
2144 
2145 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2146 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2147 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2149 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2150 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2151 
2152 AnalysisKey LoopAccessAnalysis::Key;
2153 
2154 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2155                                        LoopStandardAnalysisResults &AR) {
2156   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2157 }
2158 
2159 namespace llvm {
2160 
2161   Pass *createLAAPass() {
2162     return new LoopAccessLegacyAnalysis();
2163   }
2164 
2165 } // end namespace llvm
2166