1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/Utils/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// Maximum SIMD width. 52 const unsigned VectorizerParams::MaxVectorWidth = 64; 53 54 /// \brief We collect interesting dependences up to this threshold. 55 static cl::opt<unsigned> MaxInterestingDependence( 56 "max-interesting-dependences", cl::Hidden, 57 cl::desc("Maximum number of interesting dependences collected by " 58 "loop-access analysis (default = 100)"), 59 cl::init(100)); 60 61 bool VectorizerParams::isInterleaveForced() { 62 return ::VectorizationInterleave.getNumOccurrences() > 0; 63 } 64 65 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 66 const Function *TheFunction, 67 const Loop *TheLoop, 68 const char *PassName) { 69 DebugLoc DL = TheLoop->getStartLoc(); 70 if (const Instruction *I = Message.getInstr()) 71 DL = I->getDebugLoc(); 72 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 73 *TheFunction, DL, Message.str()); 74 } 75 76 Value *llvm::stripIntegerCast(Value *V) { 77 if (CastInst *CI = dyn_cast<CastInst>(V)) 78 if (CI->getOperand(0)->getType()->isIntegerTy()) 79 return CI->getOperand(0); 80 return V; 81 } 82 83 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 84 const ValueToValueMap &PtrToStride, 85 Value *Ptr, Value *OrigPtr) { 86 87 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 88 89 // If there is an entry in the map return the SCEV of the pointer with the 90 // symbolic stride replaced by one. 91 ValueToValueMap::const_iterator SI = 92 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 93 if (SI != PtrToStride.end()) { 94 Value *StrideVal = SI->second; 95 96 // Strip casts. 97 StrideVal = stripIntegerCast(StrideVal); 98 99 // Replace symbolic stride by one. 100 Value *One = ConstantInt::get(StrideVal->getType(), 1); 101 ValueToValueMap RewriteMap; 102 RewriteMap[StrideVal] = One; 103 104 const SCEV *ByOne = 105 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 106 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 107 << "\n"); 108 return ByOne; 109 } 110 111 // Otherwise, just return the SCEV of the original pointer. 112 return SE->getSCEV(Ptr); 113 } 114 115 void LoopAccessInfo::RuntimePointerCheck::insert( 116 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 117 unsigned ASId, const ValueToValueMap &Strides) { 118 // Get the stride replaced scev. 119 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 120 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 121 assert(AR && "Invalid addrec expression"); 122 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 123 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 124 Pointers.push_back(Ptr); 125 Starts.push_back(AR->getStart()); 126 Ends.push_back(ScEnd); 127 IsWritePtr.push_back(WritePtr); 128 DependencySetId.push_back(DepSetId); 129 AliasSetId.push_back(ASId); 130 } 131 132 bool LoopAccessInfo::RuntimePointerCheck::needsChecking( 133 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { 134 // No need to check if two readonly pointers intersect. 135 if (!IsWritePtr[I] && !IsWritePtr[J]) 136 return false; 137 138 // Only need to check pointers between two different dependency sets. 139 if (DependencySetId[I] == DependencySetId[J]) 140 return false; 141 142 // Only need to check pointers in the same alias set. 143 if (AliasSetId[I] != AliasSetId[J]) 144 return false; 145 146 // If PtrPartition is set omit checks between pointers of the same partition. 147 // Partition number -1 means that the pointer is used in multiple partitions. 148 // In this case we can't omit the check. 149 if (PtrPartition && (*PtrPartition)[I] != -1 && 150 (*PtrPartition)[I] == (*PtrPartition)[J]) 151 return false; 152 153 return true; 154 } 155 156 void LoopAccessInfo::RuntimePointerCheck::print( 157 raw_ostream &OS, unsigned Depth, 158 const SmallVectorImpl<int> *PtrPartition) const { 159 unsigned NumPointers = Pointers.size(); 160 if (NumPointers == 0) 161 return; 162 163 OS.indent(Depth) << "Run-time memory checks:\n"; 164 unsigned N = 0; 165 for (unsigned I = 0; I < NumPointers; ++I) 166 for (unsigned J = I + 1; J < NumPointers; ++J) 167 if (needsChecking(I, J, PtrPartition)) { 168 OS.indent(Depth) << N++ << ":\n"; 169 OS.indent(Depth + 2) << *Pointers[I]; 170 if (PtrPartition) 171 OS << " (Partition: " << (*PtrPartition)[I] << ")"; 172 OS << "\n"; 173 OS.indent(Depth + 2) << *Pointers[J]; 174 if (PtrPartition) 175 OS << " (Partition: " << (*PtrPartition)[J] << ")"; 176 OS << "\n"; 177 } 178 } 179 180 namespace { 181 /// \brief Analyses memory accesses in a loop. 182 /// 183 /// Checks whether run time pointer checks are needed and builds sets for data 184 /// dependence checking. 185 class AccessAnalysis { 186 public: 187 /// \brief Read or write access location. 188 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 189 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 190 191 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, 192 MemoryDepChecker::DepCandidates &DA) 193 : DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 194 195 /// \brief Register a load and whether it is only read from. 196 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 197 Value *Ptr = const_cast<Value*>(Loc.Ptr); 198 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 199 Accesses.insert(MemAccessInfo(Ptr, false)); 200 if (IsReadOnly) 201 ReadOnlyPtr.insert(Ptr); 202 } 203 204 /// \brief Register a store. 205 void addStore(AliasAnalysis::Location &Loc) { 206 Value *Ptr = const_cast<Value*>(Loc.Ptr); 207 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 208 Accesses.insert(MemAccessInfo(Ptr, true)); 209 } 210 211 /// \brief Check whether we can check the pointers at runtime for 212 /// non-intersection. 213 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, 214 unsigned &NumComparisons, ScalarEvolution *SE, 215 Loop *TheLoop, const ValueToValueMap &Strides, 216 bool ShouldCheckStride = false); 217 218 /// \brief Goes over all memory accesses, checks whether a RT check is needed 219 /// and builds sets of dependent accesses. 220 void buildDependenceSets() { 221 processMemAccesses(); 222 } 223 224 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 225 226 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 227 void resetDepChecks() { CheckDeps.clear(); } 228 229 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 230 231 private: 232 typedef SetVector<MemAccessInfo> PtrAccessSet; 233 234 /// \brief Go over all memory access and check whether runtime pointer checks 235 /// are needed /// and build sets of dependency check candidates. 236 void processMemAccesses(); 237 238 /// Set of all accesses. 239 PtrAccessSet Accesses; 240 241 const DataLayout &DL; 242 243 /// Set of accesses that need a further dependence check. 244 MemAccessInfoSet CheckDeps; 245 246 /// Set of pointers that are read only. 247 SmallPtrSet<Value*, 16> ReadOnlyPtr; 248 249 /// An alias set tracker to partition the access set by underlying object and 250 //intrinsic property (such as TBAA metadata). 251 AliasSetTracker AST; 252 253 /// Sets of potentially dependent accesses - members of one set share an 254 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 255 /// dependence check. 256 MemoryDepChecker::DepCandidates &DepCands; 257 258 bool IsRTCheckNeeded; 259 }; 260 261 } // end anonymous namespace 262 263 /// \brief Check whether a pointer can participate in a runtime bounds check. 264 static bool hasComputableBounds(ScalarEvolution *SE, 265 const ValueToValueMap &Strides, Value *Ptr) { 266 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 267 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 268 if (!AR) 269 return false; 270 271 return AR->isAffine(); 272 } 273 274 /// \brief Check the stride of the pointer and ensure that it does not wrap in 275 /// the address space. 276 static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 277 const ValueToValueMap &StridesMap); 278 279 bool AccessAnalysis::canCheckPtrAtRT( 280 LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons, 281 ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, 282 bool ShouldCheckStride) { 283 // Find pointers with computable bounds. We are going to use this information 284 // to place a runtime bound check. 285 bool CanDoRT = true; 286 287 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 288 NumComparisons = 0; 289 290 // We assign a consecutive id to access from different alias sets. 291 // Accesses between different groups doesn't need to be checked. 292 unsigned ASId = 1; 293 for (auto &AS : AST) { 294 unsigned NumReadPtrChecks = 0; 295 unsigned NumWritePtrChecks = 0; 296 297 // We assign consecutive id to access from different dependence sets. 298 // Accesses within the same set don't need a runtime check. 299 unsigned RunningDepId = 1; 300 DenseMap<Value *, unsigned> DepSetId; 301 302 for (auto A : AS) { 303 Value *Ptr = A.getValue(); 304 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 305 MemAccessInfo Access(Ptr, IsWrite); 306 307 if (IsWrite) 308 ++NumWritePtrChecks; 309 else 310 ++NumReadPtrChecks; 311 312 if (hasComputableBounds(SE, StridesMap, Ptr) && 313 // When we run after a failing dependency check we have to make sure 314 // we don't have wrapping pointers. 315 (!ShouldCheckStride || 316 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 317 // The id of the dependence set. 318 unsigned DepId; 319 320 if (IsDepCheckNeeded) { 321 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 322 unsigned &LeaderId = DepSetId[Leader]; 323 if (!LeaderId) 324 LeaderId = RunningDepId++; 325 DepId = LeaderId; 326 } else 327 // Each access has its own dependence set. 328 DepId = RunningDepId++; 329 330 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 331 332 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 333 } else { 334 CanDoRT = false; 335 } 336 } 337 338 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 339 NumComparisons += 0; // Only one dependence set. 340 else { 341 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 342 NumWritePtrChecks - 1)); 343 } 344 345 ++ASId; 346 } 347 348 // If the pointers that we would use for the bounds comparison have different 349 // address spaces, assume the values aren't directly comparable, so we can't 350 // use them for the runtime check. We also have to assume they could 351 // overlap. In the future there should be metadata for whether address spaces 352 // are disjoint. 353 unsigned NumPointers = RtCheck.Pointers.size(); 354 for (unsigned i = 0; i < NumPointers; ++i) { 355 for (unsigned j = i + 1; j < NumPointers; ++j) { 356 // Only need to check pointers between two different dependency sets. 357 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 358 continue; 359 // Only need to check pointers in the same alias set. 360 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 361 continue; 362 363 Value *PtrI = RtCheck.Pointers[i]; 364 Value *PtrJ = RtCheck.Pointers[j]; 365 366 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 367 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 368 if (ASi != ASj) { 369 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 370 " different address spaces\n"); 371 return false; 372 } 373 } 374 } 375 376 return CanDoRT; 377 } 378 379 void AccessAnalysis::processMemAccesses() { 380 // We process the set twice: first we process read-write pointers, last we 381 // process read-only pointers. This allows us to skip dependence tests for 382 // read-only pointers. 383 384 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 385 DEBUG(dbgs() << " AST: "; AST.dump()); 386 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 387 DEBUG({ 388 for (auto A : Accesses) 389 dbgs() << "\t" << *A.getPointer() << " (" << 390 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 391 "read-only" : "read")) << ")\n"; 392 }); 393 394 // The AliasSetTracker has nicely partitioned our pointers by metadata 395 // compatibility and potential for underlying-object overlap. As a result, we 396 // only need to check for potential pointer dependencies within each alias 397 // set. 398 for (auto &AS : AST) { 399 // Note that both the alias-set tracker and the alias sets themselves used 400 // linked lists internally and so the iteration order here is deterministic 401 // (matching the original instruction order within each set). 402 403 bool SetHasWrite = false; 404 405 // Map of pointers to last access encountered. 406 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 407 UnderlyingObjToAccessMap ObjToLastAccess; 408 409 // Set of access to check after all writes have been processed. 410 PtrAccessSet DeferredAccesses; 411 412 // Iterate over each alias set twice, once to process read/write pointers, 413 // and then to process read-only pointers. 414 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 415 bool UseDeferred = SetIteration > 0; 416 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 417 418 for (auto AV : AS) { 419 Value *Ptr = AV.getValue(); 420 421 // For a single memory access in AliasSetTracker, Accesses may contain 422 // both read and write, and they both need to be handled for CheckDeps. 423 for (auto AC : S) { 424 if (AC.getPointer() != Ptr) 425 continue; 426 427 bool IsWrite = AC.getInt(); 428 429 // If we're using the deferred access set, then it contains only 430 // reads. 431 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 432 if (UseDeferred && !IsReadOnlyPtr) 433 continue; 434 // Otherwise, the pointer must be in the PtrAccessSet, either as a 435 // read or a write. 436 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 437 S.count(MemAccessInfo(Ptr, false))) && 438 "Alias-set pointer not in the access set?"); 439 440 MemAccessInfo Access(Ptr, IsWrite); 441 DepCands.insert(Access); 442 443 // Memorize read-only pointers for later processing and skip them in 444 // the first round (they need to be checked after we have seen all 445 // write pointers). Note: we also mark pointer that are not 446 // consecutive as "read-only" pointers (so that we check 447 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 448 if (!UseDeferred && IsReadOnlyPtr) { 449 DeferredAccesses.insert(Access); 450 continue; 451 } 452 453 // If this is a write - check other reads and writes for conflicts. If 454 // this is a read only check other writes for conflicts (but only if 455 // there is no other write to the ptr - this is an optimization to 456 // catch "a[i] = a[i] + " without having to do a dependence check). 457 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 458 CheckDeps.insert(Access); 459 IsRTCheckNeeded = true; 460 } 461 462 if (IsWrite) 463 SetHasWrite = true; 464 465 // Create sets of pointers connected by a shared alias set and 466 // underlying object. 467 typedef SmallVector<Value *, 16> ValueVector; 468 ValueVector TempObjects; 469 GetUnderlyingObjects(Ptr, TempObjects, DL); 470 for (Value *UnderlyingObj : TempObjects) { 471 UnderlyingObjToAccessMap::iterator Prev = 472 ObjToLastAccess.find(UnderlyingObj); 473 if (Prev != ObjToLastAccess.end()) 474 DepCands.unionSets(Access, Prev->second); 475 476 ObjToLastAccess[UnderlyingObj] = Access; 477 } 478 } 479 } 480 } 481 } 482 } 483 484 static bool isInBoundsGep(Value *Ptr) { 485 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 486 return GEP->isInBounds(); 487 return false; 488 } 489 490 /// \brief Check whether the access through \p Ptr has a constant stride. 491 static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 492 const ValueToValueMap &StridesMap) { 493 const Type *Ty = Ptr->getType(); 494 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 495 496 // Make sure that the pointer does not point to aggregate types. 497 const PointerType *PtrTy = cast<PointerType>(Ty); 498 if (PtrTy->getElementType()->isAggregateType()) { 499 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 500 << *Ptr << "\n"); 501 return 0; 502 } 503 504 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 505 506 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 507 if (!AR) { 508 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 509 << *Ptr << " SCEV: " << *PtrScev << "\n"); 510 return 0; 511 } 512 513 // The accesss function must stride over the innermost loop. 514 if (Lp != AR->getLoop()) { 515 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 516 *Ptr << " SCEV: " << *PtrScev << "\n"); 517 } 518 519 // The address calculation must not wrap. Otherwise, a dependence could be 520 // inverted. 521 // An inbounds getelementptr that is a AddRec with a unit stride 522 // cannot wrap per definition. The unit stride requirement is checked later. 523 // An getelementptr without an inbounds attribute and unit stride would have 524 // to access the pointer value "0" which is undefined behavior in address 525 // space 0, therefore we can also vectorize this case. 526 bool IsInBoundsGEP = isInBoundsGep(Ptr); 527 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 528 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 529 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 530 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 531 << *Ptr << " SCEV: " << *PtrScev << "\n"); 532 return 0; 533 } 534 535 // Check the step is constant. 536 const SCEV *Step = AR->getStepRecurrence(*SE); 537 538 // Calculate the pointer stride and check if it is consecutive. 539 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 540 if (!C) { 541 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 542 " SCEV: " << *PtrScev << "\n"); 543 return 0; 544 } 545 546 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 547 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 548 const APInt &APStepVal = C->getValue()->getValue(); 549 550 // Huge step value - give up. 551 if (APStepVal.getBitWidth() > 64) 552 return 0; 553 554 int64_t StepVal = APStepVal.getSExtValue(); 555 556 // Strided access. 557 int64_t Stride = StepVal / Size; 558 int64_t Rem = StepVal % Size; 559 if (Rem) 560 return 0; 561 562 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 563 // know we can't "wrap around the address space". In case of address space 564 // zero we know that this won't happen without triggering undefined behavior. 565 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 566 Stride != 1 && Stride != -1) 567 return 0; 568 569 return Stride; 570 } 571 572 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 573 switch (Type) { 574 case NoDep: 575 case Forward: 576 case BackwardVectorizable: 577 return true; 578 579 case Unknown: 580 case ForwardButPreventsForwarding: 581 case Backward: 582 case BackwardVectorizableButPreventsForwarding: 583 return false; 584 } 585 llvm_unreachable("unexpected DepType!"); 586 } 587 588 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 589 switch (Type) { 590 case NoDep: 591 case Forward: 592 return false; 593 594 case BackwardVectorizable: 595 case Unknown: 596 case ForwardButPreventsForwarding: 597 case Backward: 598 case BackwardVectorizableButPreventsForwarding: 599 return true; 600 } 601 llvm_unreachable("unexpected DepType!"); 602 } 603 604 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 605 switch (Type) { 606 case NoDep: 607 case Forward: 608 case ForwardButPreventsForwarding: 609 return false; 610 611 case Unknown: 612 case BackwardVectorizable: 613 case Backward: 614 case BackwardVectorizableButPreventsForwarding: 615 return true; 616 } 617 llvm_unreachable("unexpected DepType!"); 618 } 619 620 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 621 unsigned TypeByteSize) { 622 // If loads occur at a distance that is not a multiple of a feasible vector 623 // factor store-load forwarding does not take place. 624 // Positive dependences might cause troubles because vectorizing them might 625 // prevent store-load forwarding making vectorized code run a lot slower. 626 // a[i] = a[i-3] ^ a[i-8]; 627 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 628 // hence on your typical architecture store-load forwarding does not take 629 // place. Vectorizing in such cases does not make sense. 630 // Store-load forwarding distance. 631 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 632 // Maximum vector factor. 633 unsigned MaxVFWithoutSLForwardIssues = 634 VectorizerParams::MaxVectorWidth * TypeByteSize; 635 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 636 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 637 638 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 639 vf *= 2) { 640 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 641 MaxVFWithoutSLForwardIssues = (vf >>=1); 642 break; 643 } 644 } 645 646 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 647 DEBUG(dbgs() << "LAA: Distance " << Distance << 648 " that could cause a store-load forwarding conflict\n"); 649 return true; 650 } 651 652 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 653 MaxVFWithoutSLForwardIssues != 654 VectorizerParams::MaxVectorWidth * TypeByteSize) 655 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 656 return false; 657 } 658 659 MemoryDepChecker::Dependence::DepType 660 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 661 const MemAccessInfo &B, unsigned BIdx, 662 const ValueToValueMap &Strides) { 663 assert (AIdx < BIdx && "Must pass arguments in program order"); 664 665 Value *APtr = A.getPointer(); 666 Value *BPtr = B.getPointer(); 667 bool AIsWrite = A.getInt(); 668 bool BIsWrite = B.getInt(); 669 670 // Two reads are independent. 671 if (!AIsWrite && !BIsWrite) 672 return Dependence::NoDep; 673 674 // We cannot check pointers in different address spaces. 675 if (APtr->getType()->getPointerAddressSpace() != 676 BPtr->getType()->getPointerAddressSpace()) 677 return Dependence::Unknown; 678 679 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 680 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 681 682 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 683 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 684 685 const SCEV *Src = AScev; 686 const SCEV *Sink = BScev; 687 688 // If the induction step is negative we have to invert source and sink of the 689 // dependence. 690 if (StrideAPtr < 0) { 691 //Src = BScev; 692 //Sink = AScev; 693 std::swap(APtr, BPtr); 694 std::swap(Src, Sink); 695 std::swap(AIsWrite, BIsWrite); 696 std::swap(AIdx, BIdx); 697 std::swap(StrideAPtr, StrideBPtr); 698 } 699 700 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 701 702 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 703 << "(Induction step: " << StrideAPtr << ")\n"); 704 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 705 << *InstMap[BIdx] << ": " << *Dist << "\n"); 706 707 // Need consecutive accesses. We don't want to vectorize 708 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 709 // the address space. 710 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 711 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 712 return Dependence::Unknown; 713 } 714 715 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 716 if (!C) { 717 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 718 ShouldRetryWithRuntimeCheck = true; 719 return Dependence::Unknown; 720 } 721 722 Type *ATy = APtr->getType()->getPointerElementType(); 723 Type *BTy = BPtr->getType()->getPointerElementType(); 724 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 725 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 726 727 // Negative distances are not plausible dependencies. 728 const APInt &Val = C->getValue()->getValue(); 729 if (Val.isNegative()) { 730 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 731 if (IsTrueDataDependence && 732 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 733 ATy != BTy)) 734 return Dependence::ForwardButPreventsForwarding; 735 736 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 737 return Dependence::Forward; 738 } 739 740 // Write to the same location with the same size. 741 // Could be improved to assert type sizes are the same (i32 == float, etc). 742 if (Val == 0) { 743 if (ATy == BTy) 744 return Dependence::NoDep; 745 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 746 return Dependence::Unknown; 747 } 748 749 assert(Val.isStrictlyPositive() && "Expect a positive value"); 750 751 if (ATy != BTy) { 752 DEBUG(dbgs() << 753 "LAA: ReadWrite-Write positive dependency with different types\n"); 754 return Dependence::Unknown; 755 } 756 757 unsigned Distance = (unsigned) Val.getZExtValue(); 758 759 // Bail out early if passed-in parameters make vectorization not feasible. 760 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 761 VectorizerParams::VectorizationFactor : 1); 762 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 763 VectorizerParams::VectorizationInterleave : 1); 764 765 // The distance must be bigger than the size needed for a vectorized version 766 // of the operation and the size of the vectorized operation must not be 767 // bigger than the currrent maximum size. 768 if (Distance < 2*TypeByteSize || 769 2*TypeByteSize > MaxSafeDepDistBytes || 770 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 771 DEBUG(dbgs() << "LAA: Failure because of Positive distance " 772 << Val.getSExtValue() << '\n'); 773 return Dependence::Backward; 774 } 775 776 // Positive distance bigger than max vectorization factor. 777 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 778 Distance : MaxSafeDepDistBytes; 779 780 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 781 if (IsTrueDataDependence && 782 couldPreventStoreLoadForward(Distance, TypeByteSize)) 783 return Dependence::BackwardVectorizableButPreventsForwarding; 784 785 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() << 786 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 787 788 return Dependence::BackwardVectorizable; 789 } 790 791 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 792 MemAccessInfoSet &CheckDeps, 793 const ValueToValueMap &Strides) { 794 795 MaxSafeDepDistBytes = -1U; 796 while (!CheckDeps.empty()) { 797 MemAccessInfo CurAccess = *CheckDeps.begin(); 798 799 // Get the relevant memory access set. 800 EquivalenceClasses<MemAccessInfo>::iterator I = 801 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 802 803 // Check accesses within this set. 804 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 805 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 806 807 // Check every access pair. 808 while (AI != AE) { 809 CheckDeps.erase(*AI); 810 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 811 while (OI != AE) { 812 // Check every accessing instruction pair in program order. 813 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 814 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 815 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 816 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 817 auto A = std::make_pair(&*AI, *I1); 818 auto B = std::make_pair(&*OI, *I2); 819 820 assert(*I1 != *I2); 821 if (*I1 > *I2) 822 std::swap(A, B); 823 824 Dependence::DepType Type = 825 isDependent(*A.first, A.second, *B.first, B.second, Strides); 826 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 827 828 // Gather dependences unless we accumulated MaxInterestingDependence 829 // dependences. In that case return as soon as we find the first 830 // unsafe dependence. This puts a limit on this quadratic 831 // algorithm. 832 if (RecordInterestingDependences) { 833 if (Dependence::isInterestingDependence(Type)) 834 InterestingDependences.push_back( 835 Dependence(A.second, B.second, Type)); 836 837 if (InterestingDependences.size() >= MaxInterestingDependence) { 838 RecordInterestingDependences = false; 839 InterestingDependences.clear(); 840 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 841 } 842 } 843 if (!RecordInterestingDependences && !SafeForVectorization) 844 return false; 845 } 846 ++OI; 847 } 848 AI++; 849 } 850 } 851 852 DEBUG(dbgs() << "Total Interesting Dependences: " 853 << InterestingDependences.size() << "\n"); 854 return SafeForVectorization; 855 } 856 857 SmallVector<Instruction *, 4> 858 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 859 MemAccessInfo Access(Ptr, isWrite); 860 auto &IndexVector = Accesses.find(Access)->second; 861 862 SmallVector<Instruction *, 4> Insts; 863 std::transform(IndexVector.begin(), IndexVector.end(), 864 std::back_inserter(Insts), 865 [&](unsigned Idx) { return this->InstMap[Idx]; }); 866 return Insts; 867 } 868 869 const char *MemoryDepChecker::Dependence::DepName[] = { 870 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 871 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 872 873 void MemoryDepChecker::Dependence::print( 874 raw_ostream &OS, unsigned Depth, 875 const SmallVectorImpl<Instruction *> &Instrs) const { 876 OS.indent(Depth) << DepName[Type] << ":\n"; 877 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 878 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 879 } 880 881 bool LoopAccessInfo::canAnalyzeLoop() { 882 // We can only analyze innermost loops. 883 if (!TheLoop->empty()) { 884 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 885 return false; 886 } 887 888 // We must have a single backedge. 889 if (TheLoop->getNumBackEdges() != 1) { 890 emitAnalysis( 891 LoopAccessReport() << 892 "loop control flow is not understood by analyzer"); 893 return false; 894 } 895 896 // We must have a single exiting block. 897 if (!TheLoop->getExitingBlock()) { 898 emitAnalysis( 899 LoopAccessReport() << 900 "loop control flow is not understood by analyzer"); 901 return false; 902 } 903 904 // We only handle bottom-tested loops, i.e. loop in which the condition is 905 // checked at the end of each iteration. With that we can assume that all 906 // instructions in the loop are executed the same number of times. 907 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 908 emitAnalysis( 909 LoopAccessReport() << 910 "loop control flow is not understood by analyzer"); 911 return false; 912 } 913 914 // We need to have a loop header. 915 DEBUG(dbgs() << "LAA: Found a loop: " << 916 TheLoop->getHeader()->getName() << '\n'); 917 918 // ScalarEvolution needs to be able to find the exit count. 919 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 920 if (ExitCount == SE->getCouldNotCompute()) { 921 emitAnalysis(LoopAccessReport() << 922 "could not determine number of loop iterations"); 923 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 924 return false; 925 } 926 927 return true; 928 } 929 930 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 931 932 typedef SmallVector<Value*, 16> ValueVector; 933 typedef SmallPtrSet<Value*, 16> ValueSet; 934 935 // Holds the Load and Store *instructions*. 936 ValueVector Loads; 937 ValueVector Stores; 938 939 // Holds all the different accesses in the loop. 940 unsigned NumReads = 0; 941 unsigned NumReadWrites = 0; 942 943 PtrRtCheck.Pointers.clear(); 944 PtrRtCheck.Need = false; 945 946 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 947 948 // For each block. 949 for (Loop::block_iterator bb = TheLoop->block_begin(), 950 be = TheLoop->block_end(); bb != be; ++bb) { 951 952 // Scan the BB and collect legal loads and stores. 953 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 954 ++it) { 955 956 // If this is a load, save it. If this instruction can read from memory 957 // but is not a load, then we quit. Notice that we don't handle function 958 // calls that read or write. 959 if (it->mayReadFromMemory()) { 960 // Many math library functions read the rounding mode. We will only 961 // vectorize a loop if it contains known function calls that don't set 962 // the flag. Therefore, it is safe to ignore this read from memory. 963 CallInst *Call = dyn_cast<CallInst>(it); 964 if (Call && getIntrinsicIDForCall(Call, TLI)) 965 continue; 966 967 // If the function has an explicit vectorized counterpart, we can safely 968 // assume that it can be vectorized. 969 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 970 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 971 continue; 972 973 LoadInst *Ld = dyn_cast<LoadInst>(it); 974 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 975 emitAnalysis(LoopAccessReport(Ld) 976 << "read with atomic ordering or volatile read"); 977 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 978 CanVecMem = false; 979 return; 980 } 981 NumLoads++; 982 Loads.push_back(Ld); 983 DepChecker.addAccess(Ld); 984 continue; 985 } 986 987 // Save 'store' instructions. Abort if other instructions write to memory. 988 if (it->mayWriteToMemory()) { 989 StoreInst *St = dyn_cast<StoreInst>(it); 990 if (!St) { 991 emitAnalysis(LoopAccessReport(it) << 992 "instruction cannot be vectorized"); 993 CanVecMem = false; 994 return; 995 } 996 if (!St->isSimple() && !IsAnnotatedParallel) { 997 emitAnalysis(LoopAccessReport(St) 998 << "write with atomic ordering or volatile write"); 999 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1000 CanVecMem = false; 1001 return; 1002 } 1003 NumStores++; 1004 Stores.push_back(St); 1005 DepChecker.addAccess(St); 1006 } 1007 } // Next instr. 1008 } // Next block. 1009 1010 // Now we have two lists that hold the loads and the stores. 1011 // Next, we find the pointers that they use. 1012 1013 // Check if we see any stores. If there are no stores, then we don't 1014 // care if the pointers are *restrict*. 1015 if (!Stores.size()) { 1016 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1017 CanVecMem = true; 1018 return; 1019 } 1020 1021 MemoryDepChecker::DepCandidates DependentAccesses; 1022 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1023 AA, DependentAccesses); 1024 1025 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1026 // multiple times on the same object. If the ptr is accessed twice, once 1027 // for read and once for write, it will only appear once (on the write 1028 // list). This is okay, since we are going to check for conflicts between 1029 // writes and between reads and writes, but not between reads and reads. 1030 ValueSet Seen; 1031 1032 ValueVector::iterator I, IE; 1033 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1034 StoreInst *ST = cast<StoreInst>(*I); 1035 Value* Ptr = ST->getPointerOperand(); 1036 1037 if (isUniform(Ptr)) { 1038 emitAnalysis( 1039 LoopAccessReport(ST) 1040 << "write to a loop invariant address could not be vectorized"); 1041 DEBUG(dbgs() << "LAA: We don't allow storing to uniform addresses\n"); 1042 CanVecMem = false; 1043 return; 1044 } 1045 1046 // If we did *not* see this pointer before, insert it to the read-write 1047 // list. At this phase it is only a 'write' list. 1048 if (Seen.insert(Ptr).second) { 1049 ++NumReadWrites; 1050 1051 AliasAnalysis::Location Loc = AA->getLocation(ST); 1052 // The TBAA metadata could have a control dependency on the predication 1053 // condition, so we cannot rely on it when determining whether or not we 1054 // need runtime pointer checks. 1055 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1056 Loc.AATags.TBAA = nullptr; 1057 1058 Accesses.addStore(Loc); 1059 } 1060 } 1061 1062 if (IsAnnotatedParallel) { 1063 DEBUG(dbgs() 1064 << "LAA: A loop annotated parallel, ignore memory dependency " 1065 << "checks.\n"); 1066 CanVecMem = true; 1067 return; 1068 } 1069 1070 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1071 LoadInst *LD = cast<LoadInst>(*I); 1072 Value* Ptr = LD->getPointerOperand(); 1073 // If we did *not* see this pointer before, insert it to the 1074 // read list. If we *did* see it before, then it is already in 1075 // the read-write list. This allows us to vectorize expressions 1076 // such as A[i] += x; Because the address of A[i] is a read-write 1077 // pointer. This only works if the index of A[i] is consecutive. 1078 // If the address of i is unknown (for example A[B[i]]) then we may 1079 // read a few words, modify, and write a few words, and some of the 1080 // words may be written to the same address. 1081 bool IsReadOnlyPtr = false; 1082 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1083 ++NumReads; 1084 IsReadOnlyPtr = true; 1085 } 1086 1087 AliasAnalysis::Location Loc = AA->getLocation(LD); 1088 // The TBAA metadata could have a control dependency on the predication 1089 // condition, so we cannot rely on it when determining whether or not we 1090 // need runtime pointer checks. 1091 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1092 Loc.AATags.TBAA = nullptr; 1093 1094 Accesses.addLoad(Loc, IsReadOnlyPtr); 1095 } 1096 1097 // If we write (or read-write) to a single destination and there are no 1098 // other reads in this loop then is it safe to vectorize. 1099 if (NumReadWrites == 1 && NumReads == 0) { 1100 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1101 CanVecMem = true; 1102 return; 1103 } 1104 1105 // Build dependence sets and check whether we need a runtime pointer bounds 1106 // check. 1107 Accesses.buildDependenceSets(); 1108 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 1109 1110 // Find pointers with computable bounds. We are going to use this information 1111 // to place a runtime bound check. 1112 bool CanDoRT = false; 1113 if (NeedRTCheck) 1114 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 1115 Strides); 1116 1117 DEBUG(dbgs() << "LAA: We need to do " << NumComparisons << 1118 " pointer comparisons.\n"); 1119 1120 // If we only have one set of dependences to check pointers among we don't 1121 // need a runtime check. 1122 if (NumComparisons == 0 && NeedRTCheck) 1123 NeedRTCheck = false; 1124 1125 // Check that we found the bounds for the pointer. 1126 if (CanDoRT) 1127 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1128 else if (NeedRTCheck) { 1129 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1130 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << 1131 "the array bounds.\n"); 1132 PtrRtCheck.reset(); 1133 CanVecMem = false; 1134 return; 1135 } 1136 1137 PtrRtCheck.Need = NeedRTCheck; 1138 1139 CanVecMem = true; 1140 if (Accesses.isDependencyCheckNeeded()) { 1141 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1142 CanVecMem = DepChecker.areDepsSafe( 1143 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1144 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1145 1146 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1147 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1148 NeedRTCheck = true; 1149 1150 // Clear the dependency checks. We assume they are not needed. 1151 Accesses.resetDepChecks(); 1152 1153 PtrRtCheck.reset(); 1154 PtrRtCheck.Need = true; 1155 1156 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 1157 TheLoop, Strides, true); 1158 // Check that we found the bounds for the pointer. 1159 if (!CanDoRT && NumComparisons > 0) { 1160 emitAnalysis(LoopAccessReport() 1161 << "cannot check memory dependencies at runtime"); 1162 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1163 PtrRtCheck.reset(); 1164 CanVecMem = false; 1165 return; 1166 } 1167 1168 CanVecMem = true; 1169 } 1170 } 1171 1172 if (CanVecMem) 1173 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1174 << (NeedRTCheck ? "" : " don't") 1175 << " need a runtime memory check.\n"); 1176 else { 1177 emitAnalysis(LoopAccessReport() << 1178 "unsafe dependent memory operations in loop"); 1179 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1180 } 1181 } 1182 1183 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1184 DominatorTree *DT) { 1185 assert(TheLoop->contains(BB) && "Unknown block used"); 1186 1187 // Blocks that do not dominate the latch need predication. 1188 BasicBlock* Latch = TheLoop->getLoopLatch(); 1189 return !DT->dominates(BB, Latch); 1190 } 1191 1192 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1193 assert(!Report && "Multiple reports generated"); 1194 Report = Message; 1195 } 1196 1197 bool LoopAccessInfo::isUniform(Value *V) const { 1198 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1199 } 1200 1201 // FIXME: this function is currently a duplicate of the one in 1202 // LoopVectorize.cpp. 1203 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1204 Instruction *Loc) { 1205 if (FirstInst) 1206 return FirstInst; 1207 if (Instruction *I = dyn_cast<Instruction>(V)) 1208 return I->getParent() == Loc->getParent() ? I : nullptr; 1209 return nullptr; 1210 } 1211 1212 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1213 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { 1214 if (!PtrRtCheck.Need) 1215 return std::make_pair(nullptr, nullptr); 1216 1217 unsigned NumPointers = PtrRtCheck.Pointers.size(); 1218 SmallVector<TrackingVH<Value> , 2> Starts; 1219 SmallVector<TrackingVH<Value> , 2> Ends; 1220 1221 LLVMContext &Ctx = Loc->getContext(); 1222 SCEVExpander Exp(*SE, DL, "induction"); 1223 Instruction *FirstInst = nullptr; 1224 1225 for (unsigned i = 0; i < NumPointers; ++i) { 1226 Value *Ptr = PtrRtCheck.Pointers[i]; 1227 const SCEV *Sc = SE->getSCEV(Ptr); 1228 1229 if (SE->isLoopInvariant(Sc, TheLoop)) { 1230 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << 1231 *Ptr <<"\n"); 1232 Starts.push_back(Ptr); 1233 Ends.push_back(Ptr); 1234 } else { 1235 DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n'); 1236 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1237 1238 // Use this type for pointer arithmetic. 1239 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1240 1241 Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); 1242 Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); 1243 Starts.push_back(Start); 1244 Ends.push_back(End); 1245 } 1246 } 1247 1248 IRBuilder<> ChkBuilder(Loc); 1249 // Our instructions might fold to a constant. 1250 Value *MemoryRuntimeCheck = nullptr; 1251 for (unsigned i = 0; i < NumPointers; ++i) { 1252 for (unsigned j = i+1; j < NumPointers; ++j) { 1253 if (!PtrRtCheck.needsChecking(i, j, PtrPartition)) 1254 continue; 1255 1256 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1257 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1258 1259 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1260 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1261 "Trying to bounds check pointers with different address spaces"); 1262 1263 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1264 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1265 1266 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1267 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1268 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1269 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1270 1271 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1272 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1273 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1274 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1275 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1276 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1277 if (MemoryRuntimeCheck) { 1278 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1279 "conflict.rdx"); 1280 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1281 } 1282 MemoryRuntimeCheck = IsConflict; 1283 } 1284 } 1285 1286 if (!MemoryRuntimeCheck) 1287 return std::make_pair(nullptr, nullptr); 1288 1289 // We have to do this trickery because the IRBuilder might fold the check to a 1290 // constant expression in which case there is no Instruction anchored in a 1291 // the block. 1292 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1293 ConstantInt::getTrue(Ctx)); 1294 ChkBuilder.Insert(Check, "memcheck.conflict"); 1295 FirstInst = getFirstInst(FirstInst, Check, Loc); 1296 return std::make_pair(FirstInst, Check); 1297 } 1298 1299 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1300 const DataLayout &DL, 1301 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1302 DominatorTree *DT, 1303 const ValueToValueMap &Strides) 1304 : DepChecker(SE, L), NumComparisons(0), TheLoop(L), SE(SE), DL(DL), 1305 TLI(TLI), AA(AA), DT(DT), NumLoads(0), NumStores(0), 1306 MaxSafeDepDistBytes(-1U), CanVecMem(false) { 1307 if (canAnalyzeLoop()) 1308 analyzeLoop(Strides); 1309 } 1310 1311 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1312 if (CanVecMem) { 1313 if (PtrRtCheck.empty()) 1314 OS.indent(Depth) << "Memory dependences are safe\n"; 1315 else 1316 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1317 } 1318 1319 if (Report) 1320 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1321 1322 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1323 OS.indent(Depth) << "Interesting Dependences:\n"; 1324 for (auto &Dep : *InterestingDependences) { 1325 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1326 OS << "\n"; 1327 } 1328 } else 1329 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1330 1331 // List the pair of accesses need run-time checks to prove independence. 1332 PtrRtCheck.print(OS, Depth); 1333 OS << "\n"; 1334 } 1335 1336 const LoopAccessInfo & 1337 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1338 auto &LAI = LoopAccessInfoMap[L]; 1339 1340 #ifndef NDEBUG 1341 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1342 "Symbolic strides changed for loop"); 1343 #endif 1344 1345 if (!LAI) { 1346 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1347 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, Strides); 1348 #ifndef NDEBUG 1349 LAI->NumSymbolicStrides = Strides.size(); 1350 #endif 1351 } 1352 return *LAI.get(); 1353 } 1354 1355 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1356 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1357 1358 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1359 ValueToValueMap NoSymbolicStrides; 1360 1361 for (Loop *TopLevelLoop : *LI) 1362 for (Loop *L : depth_first(TopLevelLoop)) { 1363 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1364 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1365 LAI.print(OS, 4); 1366 } 1367 } 1368 1369 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1370 SE = &getAnalysis<ScalarEvolution>(); 1371 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1372 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1373 AA = &getAnalysis<AliasAnalysis>(); 1374 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1375 1376 return false; 1377 } 1378 1379 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1380 AU.addRequired<ScalarEvolution>(); 1381 AU.addRequired<AliasAnalysis>(); 1382 AU.addRequired<DominatorTreeWrapperPass>(); 1383 AU.addRequired<LoopInfoWrapperPass>(); 1384 1385 AU.setPreservesAll(); 1386 } 1387 1388 char LoopAccessAnalysis::ID = 0; 1389 static const char laa_name[] = "Loop Access Analysis"; 1390 #define LAA_NAME "loop-accesses" 1391 1392 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1393 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1394 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1395 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1396 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1397 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1398 1399 namespace llvm { 1400 Pass *createLAAPass() { 1401 return new LoopAccessAnalysis(); 1402 } 1403 } 1404