1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// \brief The maximum iterations used to merge memory checks 52 static cl::opt<unsigned> MemoryCheckMergeThreshold( 53 "memory-check-merge-threshold", cl::Hidden, 54 cl::desc("Maximum number of comparisons done when trying to merge " 55 "runtime memory checks. (default = 100)"), 56 cl::init(100)); 57 58 /// Maximum SIMD width. 59 const unsigned VectorizerParams::MaxVectorWidth = 64; 60 61 /// \brief We collect interesting dependences up to this threshold. 62 static cl::opt<unsigned> MaxInterestingDependence( 63 "max-interesting-dependences", cl::Hidden, 64 cl::desc("Maximum number of interesting dependences collected by " 65 "loop-access analysis (default = 100)"), 66 cl::init(100)); 67 68 bool VectorizerParams::isInterleaveForced() { 69 return ::VectorizationInterleave.getNumOccurrences() > 0; 70 } 71 72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 73 const Function *TheFunction, 74 const Loop *TheLoop, 75 const char *PassName) { 76 DebugLoc DL = TheLoop->getStartLoc(); 77 if (const Instruction *I = Message.getInstr()) 78 DL = I->getDebugLoc(); 79 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 80 *TheFunction, DL, Message.str()); 81 } 82 83 Value *llvm::stripIntegerCast(Value *V) { 84 if (CastInst *CI = dyn_cast<CastInst>(V)) 85 if (CI->getOperand(0)->getType()->isIntegerTy()) 86 return CI->getOperand(0); 87 return V; 88 } 89 90 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 91 const ValueToValueMap &PtrToStride, 92 Value *Ptr, Value *OrigPtr) { 93 94 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 95 96 // If there is an entry in the map return the SCEV of the pointer with the 97 // symbolic stride replaced by one. 98 ValueToValueMap::const_iterator SI = 99 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 100 if (SI != PtrToStride.end()) { 101 Value *StrideVal = SI->second; 102 103 // Strip casts. 104 StrideVal = stripIntegerCast(StrideVal); 105 106 // Replace symbolic stride by one. 107 Value *One = ConstantInt::get(StrideVal->getType(), 1); 108 ValueToValueMap RewriteMap; 109 RewriteMap[StrideVal] = One; 110 111 const SCEV *ByOne = 112 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 113 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 114 << "\n"); 115 return ByOne; 116 } 117 118 // Otherwise, just return the SCEV of the original pointer. 119 return SE->getSCEV(Ptr); 120 } 121 122 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 123 unsigned DepSetId, unsigned ASId, 124 const ValueToValueMap &Strides) { 125 // Get the stride replaced scev. 126 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 127 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 128 assert(AR && "Invalid addrec expression"); 129 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 130 131 const SCEV *ScStart = AR->getStart(); 132 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 133 const SCEV *Step = AR->getStepRecurrence(*SE); 134 135 // For expressions with negative step, the upper bound is ScStart and the 136 // lower bound is ScEnd. 137 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 138 if (CStep->getValue()->isNegative()) 139 std::swap(ScStart, ScEnd); 140 } else { 141 // Fallback case: the step is not constant, but the we can still 142 // get the upper and lower bounds of the interval by using min/max 143 // expressions. 144 ScStart = SE->getUMinExpr(ScStart, ScEnd); 145 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 146 } 147 148 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 149 } 150 151 SmallVector<RuntimePointerChecking::PointerCheck, 4> 152 RuntimePointerChecking::generateChecks( 153 const SmallVectorImpl<int> *PtrPartition) const { 154 SmallVector<PointerCheck, 4> Checks; 155 156 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 157 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 158 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 159 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 160 161 if (needsChecking(CGI, CGJ, PtrPartition)) 162 Checks.push_back(std::make_pair(&CGI, &CGJ)); 163 } 164 } 165 return Checks; 166 } 167 168 bool RuntimePointerChecking::needsChecking( 169 const CheckingPtrGroup &M, const CheckingPtrGroup &N, 170 const SmallVectorImpl<int> *PtrPartition) const { 171 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 172 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 173 if (needsChecking(M.Members[I], N.Members[J], PtrPartition)) 174 return true; 175 return false; 176 } 177 178 /// Compare \p I and \p J and return the minimum. 179 /// Return nullptr in case we couldn't find an answer. 180 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 181 ScalarEvolution *SE) { 182 const SCEV *Diff = SE->getMinusSCEV(J, I); 183 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 184 185 if (!C) 186 return nullptr; 187 if (C->getValue()->isNegative()) 188 return J; 189 return I; 190 } 191 192 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 193 const SCEV *Start = RtCheck.Pointers[Index].Start; 194 const SCEV *End = RtCheck.Pointers[Index].End; 195 196 // Compare the starts and ends with the known minimum and maximum 197 // of this set. We need to know how we compare against the min/max 198 // of the set in order to be able to emit memchecks. 199 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 200 if (!Min0) 201 return false; 202 203 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 204 if (!Min1) 205 return false; 206 207 // Update the low bound expression if we've found a new min value. 208 if (Min0 == Start) 209 Low = Start; 210 211 // Update the high bound expression if we've found a new max value. 212 if (Min1 != End) 213 High = End; 214 215 Members.push_back(Index); 216 return true; 217 } 218 219 void RuntimePointerChecking::groupChecks( 220 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 221 // We build the groups from dependency candidates equivalence classes 222 // because: 223 // - We know that pointers in the same equivalence class share 224 // the same underlying object and therefore there is a chance 225 // that we can compare pointers 226 // - We wouldn't be able to merge two pointers for which we need 227 // to emit a memcheck. The classes in DepCands are already 228 // conveniently built such that no two pointers in the same 229 // class need checking against each other. 230 231 // We use the following (greedy) algorithm to construct the groups 232 // For every pointer in the equivalence class: 233 // For each existing group: 234 // - if the difference between this pointer and the min/max bounds 235 // of the group is a constant, then make the pointer part of the 236 // group and update the min/max bounds of that group as required. 237 238 CheckingGroups.clear(); 239 240 // If we need to check two pointers to the same underlying object 241 // with a non-constant difference, we shouldn't perform any pointer 242 // grouping with those pointers. This is because we can easily get 243 // into cases where the resulting check would return false, even when 244 // the accesses are safe. 245 // 246 // The following example shows this: 247 // for (i = 0; i < 1000; ++i) 248 // a[5000 + i * m] = a[i] + a[i + 9000] 249 // 250 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 251 // (0, 10000) which is always false. However, if m is 1, there is no 252 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 253 // us to perform an accurate check in this case. 254 // 255 // The above case requires that we have an UnknownDependence between 256 // accesses to the same underlying object. This cannot happen unless 257 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 258 // is also false. In this case we will use the fallback path and create 259 // separate checking groups for all pointers. 260 261 // If we don't have the dependency partitions, construct a new 262 // checking pointer group for each pointer. This is also required 263 // for correctness, because in this case we can have checking between 264 // pointers to the same underlying object. 265 if (!UseDependencies) { 266 for (unsigned I = 0; I < Pointers.size(); ++I) 267 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 268 return; 269 } 270 271 unsigned TotalComparisons = 0; 272 273 DenseMap<Value *, unsigned> PositionMap; 274 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 275 PositionMap[Pointers[Index].PointerValue] = Index; 276 277 // We need to keep track of what pointers we've already seen so we 278 // don't process them twice. 279 SmallSet<unsigned, 2> Seen; 280 281 // Go through all equivalence classes, get the the "pointer check groups" 282 // and add them to the overall solution. We use the order in which accesses 283 // appear in 'Pointers' to enforce determinism. 284 for (unsigned I = 0; I < Pointers.size(); ++I) { 285 // We've seen this pointer before, and therefore already processed 286 // its equivalence class. 287 if (Seen.count(I)) 288 continue; 289 290 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 291 Pointers[I].IsWritePtr); 292 293 SmallVector<CheckingPtrGroup, 2> Groups; 294 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 295 296 // Because DepCands is constructed by visiting accesses in the order in 297 // which they appear in alias sets (which is deterministic) and the 298 // iteration order within an equivalence class member is only dependent on 299 // the order in which unions and insertions are performed on the 300 // equivalence class, the iteration order is deterministic. 301 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 302 MI != ME; ++MI) { 303 unsigned Pointer = PositionMap[MI->getPointer()]; 304 bool Merged = false; 305 // Mark this pointer as seen. 306 Seen.insert(Pointer); 307 308 // Go through all the existing sets and see if we can find one 309 // which can include this pointer. 310 for (CheckingPtrGroup &Group : Groups) { 311 // Don't perform more than a certain amount of comparisons. 312 // This should limit the cost of grouping the pointers to something 313 // reasonable. If we do end up hitting this threshold, the algorithm 314 // will create separate groups for all remaining pointers. 315 if (TotalComparisons > MemoryCheckMergeThreshold) 316 break; 317 318 TotalComparisons++; 319 320 if (Group.addPointer(Pointer)) { 321 Merged = true; 322 break; 323 } 324 } 325 326 if (!Merged) 327 // We couldn't add this pointer to any existing set or the threshold 328 // for the number of comparisons has been reached. Create a new group 329 // to hold the current pointer. 330 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 331 } 332 333 // We've computed the grouped checks for this partition. 334 // Save the results and continue with the next one. 335 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 336 } 337 } 338 339 bool RuntimePointerChecking::arePointersInSamePartition( 340 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 341 unsigned PtrIdx2) { 342 return (PtrToPartition[PtrIdx1] != -1 && 343 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 344 } 345 346 bool RuntimePointerChecking::needsChecking( 347 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { 348 const PointerInfo &PointerI = Pointers[I]; 349 const PointerInfo &PointerJ = Pointers[J]; 350 351 // No need to check if two readonly pointers intersect. 352 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 353 return false; 354 355 // Only need to check pointers between two different dependency sets. 356 if (PointerI.DependencySetId == PointerJ.DependencySetId) 357 return false; 358 359 // Only need to check pointers in the same alias set. 360 if (PointerI.AliasSetId != PointerJ.AliasSetId) 361 return false; 362 363 // If PtrPartition is set omit checks between pointers of the same partition. 364 if (PtrPartition && arePointersInSamePartition(*PtrPartition, I, J)) 365 return false; 366 367 return true; 368 } 369 370 void RuntimePointerChecking::printChecks( 371 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 372 unsigned Depth) const { 373 unsigned N = 0; 374 for (const auto &Check : Checks) { 375 const auto &First = Check.first->Members, &Second = Check.second->Members; 376 377 OS.indent(Depth) << "Check " << N++ << ":\n"; 378 379 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 380 for (unsigned K = 0; K < First.size(); ++K) 381 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 382 383 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 384 for (unsigned K = 0; K < Second.size(); ++K) 385 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 386 } 387 } 388 389 void RuntimePointerChecking::print( 390 raw_ostream &OS, unsigned Depth, 391 const SmallVectorImpl<int> *PtrPartition) const { 392 393 OS.indent(Depth) << "Run-time memory checks:\n"; 394 printChecks(OS, generateChecks(PtrPartition), Depth); 395 396 OS.indent(Depth) << "Grouped accesses:\n"; 397 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 398 const auto &CG = CheckingGroups[I]; 399 400 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 401 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 402 << ")\n"; 403 for (unsigned J = 0; J < CG.Members.size(); ++J) { 404 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 405 << "\n"; 406 } 407 } 408 } 409 410 unsigned RuntimePointerChecking::getNumberOfChecks( 411 const SmallVectorImpl<int> *PtrPartition) const { 412 413 unsigned NumPartitions = CheckingGroups.size(); 414 unsigned CheckCount = 0; 415 416 for (unsigned I = 0; I < NumPartitions; ++I) 417 for (unsigned J = I + 1; J < NumPartitions; ++J) 418 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) 419 CheckCount++; 420 return CheckCount; 421 } 422 423 bool RuntimePointerChecking::needsAnyChecking( 424 const SmallVectorImpl<int> *PtrPartition) const { 425 unsigned NumPointers = Pointers.size(); 426 427 for (unsigned I = 0; I < NumPointers; ++I) 428 for (unsigned J = I + 1; J < NumPointers; ++J) 429 if (needsChecking(I, J, PtrPartition)) 430 return true; 431 return false; 432 } 433 434 namespace { 435 /// \brief Analyses memory accesses in a loop. 436 /// 437 /// Checks whether run time pointer checks are needed and builds sets for data 438 /// dependence checking. 439 class AccessAnalysis { 440 public: 441 /// \brief Read or write access location. 442 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 443 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 444 445 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 446 MemoryDepChecker::DepCandidates &DA) 447 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), 448 IsRTCheckAnalysisNeeded(false) {} 449 450 /// \brief Register a load and whether it is only read from. 451 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 452 Value *Ptr = const_cast<Value*>(Loc.Ptr); 453 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 454 Accesses.insert(MemAccessInfo(Ptr, false)); 455 if (IsReadOnly) 456 ReadOnlyPtr.insert(Ptr); 457 } 458 459 /// \brief Register a store. 460 void addStore(MemoryLocation &Loc) { 461 Value *Ptr = const_cast<Value*>(Loc.Ptr); 462 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 463 Accesses.insert(MemAccessInfo(Ptr, true)); 464 } 465 466 /// \brief Check whether we can check the pointers at runtime for 467 /// non-intersection. 468 /// 469 /// Returns true if we need no check or if we do and we can generate them 470 /// (i.e. the pointers have computable bounds). 471 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 472 Loop *TheLoop, const ValueToValueMap &Strides, 473 bool ShouldCheckStride = false); 474 475 /// \brief Goes over all memory accesses, checks whether a RT check is needed 476 /// and builds sets of dependent accesses. 477 void buildDependenceSets() { 478 processMemAccesses(); 479 } 480 481 /// \brief Initial processing of memory accesses determined that we need to 482 /// perform dependency checking. 483 /// 484 /// Note that this can later be cleared if we retry memcheck analysis without 485 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 486 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 487 488 /// We decided that no dependence analysis would be used. Reset the state. 489 void resetDepChecks(MemoryDepChecker &DepChecker) { 490 CheckDeps.clear(); 491 DepChecker.clearInterestingDependences(); 492 } 493 494 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 495 496 private: 497 typedef SetVector<MemAccessInfo> PtrAccessSet; 498 499 /// \brief Go over all memory access and check whether runtime pointer checks 500 /// are needed and build sets of dependency check candidates. 501 void processMemAccesses(); 502 503 /// Set of all accesses. 504 PtrAccessSet Accesses; 505 506 const DataLayout &DL; 507 508 /// Set of accesses that need a further dependence check. 509 MemAccessInfoSet CheckDeps; 510 511 /// Set of pointers that are read only. 512 SmallPtrSet<Value*, 16> ReadOnlyPtr; 513 514 /// An alias set tracker to partition the access set by underlying object and 515 //intrinsic property (such as TBAA metadata). 516 AliasSetTracker AST; 517 518 LoopInfo *LI; 519 520 /// Sets of potentially dependent accesses - members of one set share an 521 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 522 /// dependence check. 523 MemoryDepChecker::DepCandidates &DepCands; 524 525 /// \brief Initial processing of memory accesses determined that we may need 526 /// to add memchecks. Perform the analysis to determine the necessary checks. 527 /// 528 /// Note that, this is different from isDependencyCheckNeeded. When we retry 529 /// memcheck analysis without dependency checking 530 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 531 /// while this remains set if we have potentially dependent accesses. 532 bool IsRTCheckAnalysisNeeded; 533 }; 534 535 } // end anonymous namespace 536 537 /// \brief Check whether a pointer can participate in a runtime bounds check. 538 static bool hasComputableBounds(ScalarEvolution *SE, 539 const ValueToValueMap &Strides, Value *Ptr) { 540 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 541 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 542 if (!AR) 543 return false; 544 545 return AR->isAffine(); 546 } 547 548 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 549 ScalarEvolution *SE, Loop *TheLoop, 550 const ValueToValueMap &StridesMap, 551 bool ShouldCheckStride) { 552 // Find pointers with computable bounds. We are going to use this information 553 // to place a runtime bound check. 554 bool CanDoRT = true; 555 556 bool NeedRTCheck = false; 557 if (!IsRTCheckAnalysisNeeded) return true; 558 559 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 560 561 // We assign a consecutive id to access from different alias sets. 562 // Accesses between different groups doesn't need to be checked. 563 unsigned ASId = 1; 564 for (auto &AS : AST) { 565 int NumReadPtrChecks = 0; 566 int NumWritePtrChecks = 0; 567 568 // We assign consecutive id to access from different dependence sets. 569 // Accesses within the same set don't need a runtime check. 570 unsigned RunningDepId = 1; 571 DenseMap<Value *, unsigned> DepSetId; 572 573 for (auto A : AS) { 574 Value *Ptr = A.getValue(); 575 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 576 MemAccessInfo Access(Ptr, IsWrite); 577 578 if (IsWrite) 579 ++NumWritePtrChecks; 580 else 581 ++NumReadPtrChecks; 582 583 if (hasComputableBounds(SE, StridesMap, Ptr) && 584 // When we run after a failing dependency check we have to make sure 585 // we don't have wrapping pointers. 586 (!ShouldCheckStride || 587 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 588 // The id of the dependence set. 589 unsigned DepId; 590 591 if (IsDepCheckNeeded) { 592 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 593 unsigned &LeaderId = DepSetId[Leader]; 594 if (!LeaderId) 595 LeaderId = RunningDepId++; 596 DepId = LeaderId; 597 } else 598 // Each access has its own dependence set. 599 DepId = RunningDepId++; 600 601 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 602 603 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 604 } else { 605 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 606 CanDoRT = false; 607 } 608 } 609 610 // If we have at least two writes or one write and a read then we need to 611 // check them. But there is no need to checks if there is only one 612 // dependence set for this alias set. 613 // 614 // Note that this function computes CanDoRT and NeedRTCheck independently. 615 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 616 // for which we couldn't find the bounds but we don't actually need to emit 617 // any checks so it does not matter. 618 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 619 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 620 NumWritePtrChecks >= 1)); 621 622 ++ASId; 623 } 624 625 // If the pointers that we would use for the bounds comparison have different 626 // address spaces, assume the values aren't directly comparable, so we can't 627 // use them for the runtime check. We also have to assume they could 628 // overlap. In the future there should be metadata for whether address spaces 629 // are disjoint. 630 unsigned NumPointers = RtCheck.Pointers.size(); 631 for (unsigned i = 0; i < NumPointers; ++i) { 632 for (unsigned j = i + 1; j < NumPointers; ++j) { 633 // Only need to check pointers between two different dependency sets. 634 if (RtCheck.Pointers[i].DependencySetId == 635 RtCheck.Pointers[j].DependencySetId) 636 continue; 637 // Only need to check pointers in the same alias set. 638 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 639 continue; 640 641 Value *PtrI = RtCheck.Pointers[i].PointerValue; 642 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 643 644 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 645 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 646 if (ASi != ASj) { 647 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 648 " different address spaces\n"); 649 return false; 650 } 651 } 652 } 653 654 if (NeedRTCheck && CanDoRT) 655 RtCheck.groupChecks(DepCands, IsDepCheckNeeded); 656 657 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr) 658 << " pointer comparisons.\n"); 659 660 RtCheck.Need = NeedRTCheck; 661 662 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 663 if (!CanDoRTIfNeeded) 664 RtCheck.reset(); 665 return CanDoRTIfNeeded; 666 } 667 668 void AccessAnalysis::processMemAccesses() { 669 // We process the set twice: first we process read-write pointers, last we 670 // process read-only pointers. This allows us to skip dependence tests for 671 // read-only pointers. 672 673 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 674 DEBUG(dbgs() << " AST: "; AST.dump()); 675 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 676 DEBUG({ 677 for (auto A : Accesses) 678 dbgs() << "\t" << *A.getPointer() << " (" << 679 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 680 "read-only" : "read")) << ")\n"; 681 }); 682 683 // The AliasSetTracker has nicely partitioned our pointers by metadata 684 // compatibility and potential for underlying-object overlap. As a result, we 685 // only need to check for potential pointer dependencies within each alias 686 // set. 687 for (auto &AS : AST) { 688 // Note that both the alias-set tracker and the alias sets themselves used 689 // linked lists internally and so the iteration order here is deterministic 690 // (matching the original instruction order within each set). 691 692 bool SetHasWrite = false; 693 694 // Map of pointers to last access encountered. 695 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 696 UnderlyingObjToAccessMap ObjToLastAccess; 697 698 // Set of access to check after all writes have been processed. 699 PtrAccessSet DeferredAccesses; 700 701 // Iterate over each alias set twice, once to process read/write pointers, 702 // and then to process read-only pointers. 703 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 704 bool UseDeferred = SetIteration > 0; 705 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 706 707 for (auto AV : AS) { 708 Value *Ptr = AV.getValue(); 709 710 // For a single memory access in AliasSetTracker, Accesses may contain 711 // both read and write, and they both need to be handled for CheckDeps. 712 for (auto AC : S) { 713 if (AC.getPointer() != Ptr) 714 continue; 715 716 bool IsWrite = AC.getInt(); 717 718 // If we're using the deferred access set, then it contains only 719 // reads. 720 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 721 if (UseDeferred && !IsReadOnlyPtr) 722 continue; 723 // Otherwise, the pointer must be in the PtrAccessSet, either as a 724 // read or a write. 725 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 726 S.count(MemAccessInfo(Ptr, false))) && 727 "Alias-set pointer not in the access set?"); 728 729 MemAccessInfo Access(Ptr, IsWrite); 730 DepCands.insert(Access); 731 732 // Memorize read-only pointers for later processing and skip them in 733 // the first round (they need to be checked after we have seen all 734 // write pointers). Note: we also mark pointer that are not 735 // consecutive as "read-only" pointers (so that we check 736 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 737 if (!UseDeferred && IsReadOnlyPtr) { 738 DeferredAccesses.insert(Access); 739 continue; 740 } 741 742 // If this is a write - check other reads and writes for conflicts. If 743 // this is a read only check other writes for conflicts (but only if 744 // there is no other write to the ptr - this is an optimization to 745 // catch "a[i] = a[i] + " without having to do a dependence check). 746 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 747 CheckDeps.insert(Access); 748 IsRTCheckAnalysisNeeded = true; 749 } 750 751 if (IsWrite) 752 SetHasWrite = true; 753 754 // Create sets of pointers connected by a shared alias set and 755 // underlying object. 756 typedef SmallVector<Value *, 16> ValueVector; 757 ValueVector TempObjects; 758 759 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 760 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 761 for (Value *UnderlyingObj : TempObjects) { 762 UnderlyingObjToAccessMap::iterator Prev = 763 ObjToLastAccess.find(UnderlyingObj); 764 if (Prev != ObjToLastAccess.end()) 765 DepCands.unionSets(Access, Prev->second); 766 767 ObjToLastAccess[UnderlyingObj] = Access; 768 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 769 } 770 } 771 } 772 } 773 } 774 } 775 776 static bool isInBoundsGep(Value *Ptr) { 777 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 778 return GEP->isInBounds(); 779 return false; 780 } 781 782 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 783 /// i.e. monotonically increasing/decreasing. 784 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 785 ScalarEvolution *SE, const Loop *L) { 786 // FIXME: This should probably only return true for NUW. 787 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 788 return true; 789 790 // Scalar evolution does not propagate the non-wrapping flags to values that 791 // are derived from a non-wrapping induction variable because non-wrapping 792 // could be flow-sensitive. 793 // 794 // Look through the potentially overflowing instruction to try to prove 795 // non-wrapping for the *specific* value of Ptr. 796 797 // The arithmetic implied by an inbounds GEP can't overflow. 798 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 799 if (!GEP || !GEP->isInBounds()) 800 return false; 801 802 // Make sure there is only one non-const index and analyze that. 803 Value *NonConstIndex = nullptr; 804 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 805 if (!isa<ConstantInt>(*Index)) { 806 if (NonConstIndex) 807 return false; 808 NonConstIndex = *Index; 809 } 810 if (!NonConstIndex) 811 // The recurrence is on the pointer, ignore for now. 812 return false; 813 814 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 815 // AddRec using a NSW operation. 816 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 817 if (OBO->hasNoSignedWrap() && 818 // Assume constant for other the operand so that the AddRec can be 819 // easily found. 820 isa<ConstantInt>(OBO->getOperand(1))) { 821 auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 822 823 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 824 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 825 } 826 827 return false; 828 } 829 830 /// \brief Check whether the access through \p Ptr has a constant stride. 831 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 832 const ValueToValueMap &StridesMap) { 833 const Type *Ty = Ptr->getType(); 834 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 835 836 // Make sure that the pointer does not point to aggregate types. 837 const PointerType *PtrTy = cast<PointerType>(Ty); 838 if (PtrTy->getElementType()->isAggregateType()) { 839 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 840 << *Ptr << "\n"); 841 return 0; 842 } 843 844 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 845 846 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 847 if (!AR) { 848 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 849 << *Ptr << " SCEV: " << *PtrScev << "\n"); 850 return 0; 851 } 852 853 // The accesss function must stride over the innermost loop. 854 if (Lp != AR->getLoop()) { 855 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 856 *Ptr << " SCEV: " << *PtrScev << "\n"); 857 } 858 859 // The address calculation must not wrap. Otherwise, a dependence could be 860 // inverted. 861 // An inbounds getelementptr that is a AddRec with a unit stride 862 // cannot wrap per definition. The unit stride requirement is checked later. 863 // An getelementptr without an inbounds attribute and unit stride would have 864 // to access the pointer value "0" which is undefined behavior in address 865 // space 0, therefore we can also vectorize this case. 866 bool IsInBoundsGEP = isInBoundsGep(Ptr); 867 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); 868 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 869 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 870 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 871 << *Ptr << " SCEV: " << *PtrScev << "\n"); 872 return 0; 873 } 874 875 // Check the step is constant. 876 const SCEV *Step = AR->getStepRecurrence(*SE); 877 878 // Calculate the pointer stride and check if it is constant. 879 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 880 if (!C) { 881 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 882 " SCEV: " << *PtrScev << "\n"); 883 return 0; 884 } 885 886 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 887 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 888 const APInt &APStepVal = C->getValue()->getValue(); 889 890 // Huge step value - give up. 891 if (APStepVal.getBitWidth() > 64) 892 return 0; 893 894 int64_t StepVal = APStepVal.getSExtValue(); 895 896 // Strided access. 897 int64_t Stride = StepVal / Size; 898 int64_t Rem = StepVal % Size; 899 if (Rem) 900 return 0; 901 902 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 903 // know we can't "wrap around the address space". In case of address space 904 // zero we know that this won't happen without triggering undefined behavior. 905 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 906 Stride != 1 && Stride != -1) 907 return 0; 908 909 return Stride; 910 } 911 912 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 913 switch (Type) { 914 case NoDep: 915 case Forward: 916 case BackwardVectorizable: 917 return true; 918 919 case Unknown: 920 case ForwardButPreventsForwarding: 921 case Backward: 922 case BackwardVectorizableButPreventsForwarding: 923 return false; 924 } 925 llvm_unreachable("unexpected DepType!"); 926 } 927 928 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 929 switch (Type) { 930 case NoDep: 931 case Forward: 932 return false; 933 934 case BackwardVectorizable: 935 case Unknown: 936 case ForwardButPreventsForwarding: 937 case Backward: 938 case BackwardVectorizableButPreventsForwarding: 939 return true; 940 } 941 llvm_unreachable("unexpected DepType!"); 942 } 943 944 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 945 switch (Type) { 946 case NoDep: 947 case Forward: 948 case ForwardButPreventsForwarding: 949 return false; 950 951 case Unknown: 952 case BackwardVectorizable: 953 case Backward: 954 case BackwardVectorizableButPreventsForwarding: 955 return true; 956 } 957 llvm_unreachable("unexpected DepType!"); 958 } 959 960 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 961 unsigned TypeByteSize) { 962 // If loads occur at a distance that is not a multiple of a feasible vector 963 // factor store-load forwarding does not take place. 964 // Positive dependences might cause troubles because vectorizing them might 965 // prevent store-load forwarding making vectorized code run a lot slower. 966 // a[i] = a[i-3] ^ a[i-8]; 967 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 968 // hence on your typical architecture store-load forwarding does not take 969 // place. Vectorizing in such cases does not make sense. 970 // Store-load forwarding distance. 971 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 972 // Maximum vector factor. 973 unsigned MaxVFWithoutSLForwardIssues = 974 VectorizerParams::MaxVectorWidth * TypeByteSize; 975 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 976 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 977 978 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 979 vf *= 2) { 980 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 981 MaxVFWithoutSLForwardIssues = (vf >>=1); 982 break; 983 } 984 } 985 986 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 987 DEBUG(dbgs() << "LAA: Distance " << Distance << 988 " that could cause a store-load forwarding conflict\n"); 989 return true; 990 } 991 992 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 993 MaxVFWithoutSLForwardIssues != 994 VectorizerParams::MaxVectorWidth * TypeByteSize) 995 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 996 return false; 997 } 998 999 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1000 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1001 /// bytes. 1002 /// 1003 /// \returns true if they are independent. 1004 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 1005 unsigned TypeByteSize) { 1006 assert(Stride > 1 && "The stride must be greater than 1"); 1007 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1008 assert(Distance > 0 && "The distance must be non-zero"); 1009 1010 // Skip if the distance is not multiple of type byte size. 1011 if (Distance % TypeByteSize) 1012 return false; 1013 1014 unsigned ScaledDist = Distance / TypeByteSize; 1015 1016 // No dependence if the scaled distance is not multiple of the stride. 1017 // E.g. 1018 // for (i = 0; i < 1024 ; i += 4) 1019 // A[i+2] = A[i] + 1; 1020 // 1021 // Two accesses in memory (scaled distance is 2, stride is 4): 1022 // | A[0] | | | | A[4] | | | | 1023 // | | | A[2] | | | | A[6] | | 1024 // 1025 // E.g. 1026 // for (i = 0; i < 1024 ; i += 3) 1027 // A[i+4] = A[i] + 1; 1028 // 1029 // Two accesses in memory (scaled distance is 4, stride is 3): 1030 // | A[0] | | | A[3] | | | A[6] | | | 1031 // | | | | | A[4] | | | A[7] | | 1032 return ScaledDist % Stride; 1033 } 1034 1035 MemoryDepChecker::Dependence::DepType 1036 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1037 const MemAccessInfo &B, unsigned BIdx, 1038 const ValueToValueMap &Strides) { 1039 assert (AIdx < BIdx && "Must pass arguments in program order"); 1040 1041 Value *APtr = A.getPointer(); 1042 Value *BPtr = B.getPointer(); 1043 bool AIsWrite = A.getInt(); 1044 bool BIsWrite = B.getInt(); 1045 1046 // Two reads are independent. 1047 if (!AIsWrite && !BIsWrite) 1048 return Dependence::NoDep; 1049 1050 // We cannot check pointers in different address spaces. 1051 if (APtr->getType()->getPointerAddressSpace() != 1052 BPtr->getType()->getPointerAddressSpace()) 1053 return Dependence::Unknown; 1054 1055 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 1056 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 1057 1058 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 1059 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 1060 1061 const SCEV *Src = AScev; 1062 const SCEV *Sink = BScev; 1063 1064 // If the induction step is negative we have to invert source and sink of the 1065 // dependence. 1066 if (StrideAPtr < 0) { 1067 //Src = BScev; 1068 //Sink = AScev; 1069 std::swap(APtr, BPtr); 1070 std::swap(Src, Sink); 1071 std::swap(AIsWrite, BIsWrite); 1072 std::swap(AIdx, BIdx); 1073 std::swap(StrideAPtr, StrideBPtr); 1074 } 1075 1076 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 1077 1078 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1079 << "(Induction step: " << StrideAPtr << ")\n"); 1080 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1081 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1082 1083 // Need accesses with constant stride. We don't want to vectorize 1084 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1085 // the address space. 1086 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1087 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1088 return Dependence::Unknown; 1089 } 1090 1091 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1092 if (!C) { 1093 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1094 ShouldRetryWithRuntimeCheck = true; 1095 return Dependence::Unknown; 1096 } 1097 1098 Type *ATy = APtr->getType()->getPointerElementType(); 1099 Type *BTy = BPtr->getType()->getPointerElementType(); 1100 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1101 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 1102 1103 // Negative distances are not plausible dependencies. 1104 const APInt &Val = C->getValue()->getValue(); 1105 if (Val.isNegative()) { 1106 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1107 if (IsTrueDataDependence && 1108 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1109 ATy != BTy)) 1110 return Dependence::ForwardButPreventsForwarding; 1111 1112 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 1113 return Dependence::Forward; 1114 } 1115 1116 // Write to the same location with the same size. 1117 // Could be improved to assert type sizes are the same (i32 == float, etc). 1118 if (Val == 0) { 1119 if (ATy == BTy) 1120 return Dependence::NoDep; 1121 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1122 return Dependence::Unknown; 1123 } 1124 1125 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1126 1127 if (ATy != BTy) { 1128 DEBUG(dbgs() << 1129 "LAA: ReadWrite-Write positive dependency with different types\n"); 1130 return Dependence::Unknown; 1131 } 1132 1133 unsigned Distance = (unsigned) Val.getZExtValue(); 1134 1135 unsigned Stride = std::abs(StrideAPtr); 1136 if (Stride > 1 && 1137 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 1138 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1139 return Dependence::NoDep; 1140 } 1141 1142 // Bail out early if passed-in parameters make vectorization not feasible. 1143 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1144 VectorizerParams::VectorizationFactor : 1); 1145 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1146 VectorizerParams::VectorizationInterleave : 1); 1147 // The minimum number of iterations for a vectorized/unrolled version. 1148 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1149 1150 // It's not vectorizable if the distance is smaller than the minimum distance 1151 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1152 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1153 // TypeByteSize (No need to plus the last gap distance). 1154 // 1155 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1156 // foo(int *A) { 1157 // int *B = (int *)((char *)A + 14); 1158 // for (i = 0 ; i < 1024 ; i += 2) 1159 // B[i] = A[i] + 1; 1160 // } 1161 // 1162 // Two accesses in memory (stride is 2): 1163 // | A[0] | | A[2] | | A[4] | | A[6] | | 1164 // | B[0] | | B[2] | | B[4] | 1165 // 1166 // Distance needs for vectorizing iterations except the last iteration: 1167 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1168 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1169 // 1170 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1171 // 12, which is less than distance. 1172 // 1173 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1174 // the minimum distance needed is 28, which is greater than distance. It is 1175 // not safe to do vectorization. 1176 unsigned MinDistanceNeeded = 1177 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1178 if (MinDistanceNeeded > Distance) { 1179 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1180 << '\n'); 1181 return Dependence::Backward; 1182 } 1183 1184 // Unsafe if the minimum distance needed is greater than max safe distance. 1185 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1186 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1187 << MinDistanceNeeded << " size in bytes"); 1188 return Dependence::Backward; 1189 } 1190 1191 // Positive distance bigger than max vectorization factor. 1192 // FIXME: Should use max factor instead of max distance in bytes, which could 1193 // not handle different types. 1194 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1195 // void foo (int *A, char *B) { 1196 // for (unsigned i = 0; i < 1024; i++) { 1197 // A[i+2] = A[i] + 1; 1198 // B[i+2] = B[i] + 1; 1199 // } 1200 // } 1201 // 1202 // This case is currently unsafe according to the max safe distance. If we 1203 // analyze the two accesses on array B, the max safe dependence distance 1204 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1205 // is 8, which is less than 2 and forbidden vectorization, But actually 1206 // both A and B could be vectorized by 2 iterations. 1207 MaxSafeDepDistBytes = 1208 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 1209 1210 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1211 if (IsTrueDataDependence && 1212 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1213 return Dependence::BackwardVectorizableButPreventsForwarding; 1214 1215 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1216 << " with max VF = " 1217 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1218 1219 return Dependence::BackwardVectorizable; 1220 } 1221 1222 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1223 MemAccessInfoSet &CheckDeps, 1224 const ValueToValueMap &Strides) { 1225 1226 MaxSafeDepDistBytes = -1U; 1227 while (!CheckDeps.empty()) { 1228 MemAccessInfo CurAccess = *CheckDeps.begin(); 1229 1230 // Get the relevant memory access set. 1231 EquivalenceClasses<MemAccessInfo>::iterator I = 1232 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1233 1234 // Check accesses within this set. 1235 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 1236 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 1237 1238 // Check every access pair. 1239 while (AI != AE) { 1240 CheckDeps.erase(*AI); 1241 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1242 while (OI != AE) { 1243 // Check every accessing instruction pair in program order. 1244 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1245 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1246 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1247 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1248 auto A = std::make_pair(&*AI, *I1); 1249 auto B = std::make_pair(&*OI, *I2); 1250 1251 assert(*I1 != *I2); 1252 if (*I1 > *I2) 1253 std::swap(A, B); 1254 1255 Dependence::DepType Type = 1256 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1257 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1258 1259 // Gather dependences unless we accumulated MaxInterestingDependence 1260 // dependences. In that case return as soon as we find the first 1261 // unsafe dependence. This puts a limit on this quadratic 1262 // algorithm. 1263 if (RecordInterestingDependences) { 1264 if (Dependence::isInterestingDependence(Type)) 1265 InterestingDependences.push_back( 1266 Dependence(A.second, B.second, Type)); 1267 1268 if (InterestingDependences.size() >= MaxInterestingDependence) { 1269 RecordInterestingDependences = false; 1270 InterestingDependences.clear(); 1271 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1272 } 1273 } 1274 if (!RecordInterestingDependences && !SafeForVectorization) 1275 return false; 1276 } 1277 ++OI; 1278 } 1279 AI++; 1280 } 1281 } 1282 1283 DEBUG(dbgs() << "Total Interesting Dependences: " 1284 << InterestingDependences.size() << "\n"); 1285 return SafeForVectorization; 1286 } 1287 1288 SmallVector<Instruction *, 4> 1289 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1290 MemAccessInfo Access(Ptr, isWrite); 1291 auto &IndexVector = Accesses.find(Access)->second; 1292 1293 SmallVector<Instruction *, 4> Insts; 1294 std::transform(IndexVector.begin(), IndexVector.end(), 1295 std::back_inserter(Insts), 1296 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1297 return Insts; 1298 } 1299 1300 const char *MemoryDepChecker::Dependence::DepName[] = { 1301 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1302 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1303 1304 void MemoryDepChecker::Dependence::print( 1305 raw_ostream &OS, unsigned Depth, 1306 const SmallVectorImpl<Instruction *> &Instrs) const { 1307 OS.indent(Depth) << DepName[Type] << ":\n"; 1308 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1309 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1310 } 1311 1312 bool LoopAccessInfo::canAnalyzeLoop() { 1313 // We need to have a loop header. 1314 DEBUG(dbgs() << "LAA: Found a loop: " << 1315 TheLoop->getHeader()->getName() << '\n'); 1316 1317 // We can only analyze innermost loops. 1318 if (!TheLoop->empty()) { 1319 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1320 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1321 return false; 1322 } 1323 1324 // We must have a single backedge. 1325 if (TheLoop->getNumBackEdges() != 1) { 1326 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1327 emitAnalysis( 1328 LoopAccessReport() << 1329 "loop control flow is not understood by analyzer"); 1330 return false; 1331 } 1332 1333 // We must have a single exiting block. 1334 if (!TheLoop->getExitingBlock()) { 1335 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1336 emitAnalysis( 1337 LoopAccessReport() << 1338 "loop control flow is not understood by analyzer"); 1339 return false; 1340 } 1341 1342 // We only handle bottom-tested loops, i.e. loop in which the condition is 1343 // checked at the end of each iteration. With that we can assume that all 1344 // instructions in the loop are executed the same number of times. 1345 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1346 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1347 emitAnalysis( 1348 LoopAccessReport() << 1349 "loop control flow is not understood by analyzer"); 1350 return false; 1351 } 1352 1353 // ScalarEvolution needs to be able to find the exit count. 1354 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 1355 if (ExitCount == SE->getCouldNotCompute()) { 1356 emitAnalysis(LoopAccessReport() << 1357 "could not determine number of loop iterations"); 1358 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1359 return false; 1360 } 1361 1362 return true; 1363 } 1364 1365 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1366 1367 typedef SmallVector<Value*, 16> ValueVector; 1368 typedef SmallPtrSet<Value*, 16> ValueSet; 1369 1370 // Holds the Load and Store *instructions*. 1371 ValueVector Loads; 1372 ValueVector Stores; 1373 1374 // Holds all the different accesses in the loop. 1375 unsigned NumReads = 0; 1376 unsigned NumReadWrites = 0; 1377 1378 PtrRtChecking.Pointers.clear(); 1379 PtrRtChecking.Need = false; 1380 1381 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1382 1383 // For each block. 1384 for (Loop::block_iterator bb = TheLoop->block_begin(), 1385 be = TheLoop->block_end(); bb != be; ++bb) { 1386 1387 // Scan the BB and collect legal loads and stores. 1388 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1389 ++it) { 1390 1391 // If this is a load, save it. If this instruction can read from memory 1392 // but is not a load, then we quit. Notice that we don't handle function 1393 // calls that read or write. 1394 if (it->mayReadFromMemory()) { 1395 // Many math library functions read the rounding mode. We will only 1396 // vectorize a loop if it contains known function calls that don't set 1397 // the flag. Therefore, it is safe to ignore this read from memory. 1398 CallInst *Call = dyn_cast<CallInst>(it); 1399 if (Call && getIntrinsicIDForCall(Call, TLI)) 1400 continue; 1401 1402 // If the function has an explicit vectorized counterpart, we can safely 1403 // assume that it can be vectorized. 1404 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1405 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1406 continue; 1407 1408 LoadInst *Ld = dyn_cast<LoadInst>(it); 1409 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1410 emitAnalysis(LoopAccessReport(Ld) 1411 << "read with atomic ordering or volatile read"); 1412 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1413 CanVecMem = false; 1414 return; 1415 } 1416 NumLoads++; 1417 Loads.push_back(Ld); 1418 DepChecker.addAccess(Ld); 1419 continue; 1420 } 1421 1422 // Save 'store' instructions. Abort if other instructions write to memory. 1423 if (it->mayWriteToMemory()) { 1424 StoreInst *St = dyn_cast<StoreInst>(it); 1425 if (!St) { 1426 emitAnalysis(LoopAccessReport(it) << 1427 "instruction cannot be vectorized"); 1428 CanVecMem = false; 1429 return; 1430 } 1431 if (!St->isSimple() && !IsAnnotatedParallel) { 1432 emitAnalysis(LoopAccessReport(St) 1433 << "write with atomic ordering or volatile write"); 1434 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1435 CanVecMem = false; 1436 return; 1437 } 1438 NumStores++; 1439 Stores.push_back(St); 1440 DepChecker.addAccess(St); 1441 } 1442 } // Next instr. 1443 } // Next block. 1444 1445 // Now we have two lists that hold the loads and the stores. 1446 // Next, we find the pointers that they use. 1447 1448 // Check if we see any stores. If there are no stores, then we don't 1449 // care if the pointers are *restrict*. 1450 if (!Stores.size()) { 1451 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1452 CanVecMem = true; 1453 return; 1454 } 1455 1456 MemoryDepChecker::DepCandidates DependentAccesses; 1457 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1458 AA, LI, DependentAccesses); 1459 1460 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1461 // multiple times on the same object. If the ptr is accessed twice, once 1462 // for read and once for write, it will only appear once (on the write 1463 // list). This is okay, since we are going to check for conflicts between 1464 // writes and between reads and writes, but not between reads and reads. 1465 ValueSet Seen; 1466 1467 ValueVector::iterator I, IE; 1468 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1469 StoreInst *ST = cast<StoreInst>(*I); 1470 Value* Ptr = ST->getPointerOperand(); 1471 // Check for store to loop invariant address. 1472 StoreToLoopInvariantAddress |= isUniform(Ptr); 1473 // If we did *not* see this pointer before, insert it to the read-write 1474 // list. At this phase it is only a 'write' list. 1475 if (Seen.insert(Ptr).second) { 1476 ++NumReadWrites; 1477 1478 MemoryLocation Loc = MemoryLocation::get(ST); 1479 // The TBAA metadata could have a control dependency on the predication 1480 // condition, so we cannot rely on it when determining whether or not we 1481 // need runtime pointer checks. 1482 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1483 Loc.AATags.TBAA = nullptr; 1484 1485 Accesses.addStore(Loc); 1486 } 1487 } 1488 1489 if (IsAnnotatedParallel) { 1490 DEBUG(dbgs() 1491 << "LAA: A loop annotated parallel, ignore memory dependency " 1492 << "checks.\n"); 1493 CanVecMem = true; 1494 return; 1495 } 1496 1497 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1498 LoadInst *LD = cast<LoadInst>(*I); 1499 Value* Ptr = LD->getPointerOperand(); 1500 // If we did *not* see this pointer before, insert it to the 1501 // read list. If we *did* see it before, then it is already in 1502 // the read-write list. This allows us to vectorize expressions 1503 // such as A[i] += x; Because the address of A[i] is a read-write 1504 // pointer. This only works if the index of A[i] is consecutive. 1505 // If the address of i is unknown (for example A[B[i]]) then we may 1506 // read a few words, modify, and write a few words, and some of the 1507 // words may be written to the same address. 1508 bool IsReadOnlyPtr = false; 1509 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1510 ++NumReads; 1511 IsReadOnlyPtr = true; 1512 } 1513 1514 MemoryLocation Loc = MemoryLocation::get(LD); 1515 // The TBAA metadata could have a control dependency on the predication 1516 // condition, so we cannot rely on it when determining whether or not we 1517 // need runtime pointer checks. 1518 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1519 Loc.AATags.TBAA = nullptr; 1520 1521 Accesses.addLoad(Loc, IsReadOnlyPtr); 1522 } 1523 1524 // If we write (or read-write) to a single destination and there are no 1525 // other reads in this loop then is it safe to vectorize. 1526 if (NumReadWrites == 1 && NumReads == 0) { 1527 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1528 CanVecMem = true; 1529 return; 1530 } 1531 1532 // Build dependence sets and check whether we need a runtime pointer bounds 1533 // check. 1534 Accesses.buildDependenceSets(); 1535 1536 // Find pointers with computable bounds. We are going to use this information 1537 // to place a runtime bound check. 1538 bool CanDoRTIfNeeded = 1539 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides); 1540 if (!CanDoRTIfNeeded) { 1541 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1542 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1543 << "the array bounds.\n"); 1544 CanVecMem = false; 1545 return; 1546 } 1547 1548 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1549 1550 CanVecMem = true; 1551 if (Accesses.isDependencyCheckNeeded()) { 1552 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1553 CanVecMem = DepChecker.areDepsSafe( 1554 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1555 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1556 1557 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1558 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1559 1560 // Clear the dependency checks. We assume they are not needed. 1561 Accesses.resetDepChecks(DepChecker); 1562 1563 PtrRtChecking.reset(); 1564 PtrRtChecking.Need = true; 1565 1566 CanDoRTIfNeeded = 1567 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 1568 1569 // Check that we found the bounds for the pointer. 1570 if (!CanDoRTIfNeeded) { 1571 emitAnalysis(LoopAccessReport() 1572 << "cannot check memory dependencies at runtime"); 1573 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1574 CanVecMem = false; 1575 return; 1576 } 1577 1578 CanVecMem = true; 1579 } 1580 } 1581 1582 if (CanVecMem) 1583 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1584 << (PtrRtChecking.Need ? "" : " don't") 1585 << " need runtime memory checks.\n"); 1586 else { 1587 emitAnalysis(LoopAccessReport() << 1588 "unsafe dependent memory operations in loop"); 1589 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1590 } 1591 } 1592 1593 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1594 DominatorTree *DT) { 1595 assert(TheLoop->contains(BB) && "Unknown block used"); 1596 1597 // Blocks that do not dominate the latch need predication. 1598 BasicBlock* Latch = TheLoop->getLoopLatch(); 1599 return !DT->dominates(BB, Latch); 1600 } 1601 1602 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1603 assert(!Report && "Multiple reports generated"); 1604 Report = Message; 1605 } 1606 1607 bool LoopAccessInfo::isUniform(Value *V) const { 1608 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1609 } 1610 1611 // FIXME: this function is currently a duplicate of the one in 1612 // LoopVectorize.cpp. 1613 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1614 Instruction *Loc) { 1615 if (FirstInst) 1616 return FirstInst; 1617 if (Instruction *I = dyn_cast<Instruction>(V)) 1618 return I->getParent() == Loc->getParent() ? I : nullptr; 1619 return nullptr; 1620 } 1621 1622 /// \brief IR Values for the lower and upper bounds of a pointer evolution. 1623 struct PointerBounds { 1624 Value *Start; 1625 Value *End; 1626 }; 1627 1628 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1629 /// in \p TheLoop. \return the values for the bounds. 1630 static PointerBounds 1631 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1632 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1633 const RuntimePointerChecking &PtrRtChecking) { 1634 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1635 const SCEV *Sc = SE->getSCEV(Ptr); 1636 1637 if (SE->isLoopInvariant(Sc, TheLoop)) { 1638 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1639 << "\n"); 1640 return {Ptr, Ptr}; 1641 } else { 1642 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1643 LLVMContext &Ctx = Loc->getContext(); 1644 1645 // Use this type for pointer arithmetic. 1646 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1647 Value *Start = nullptr, *End = nullptr; 1648 1649 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1650 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1651 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1652 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1653 return {Start, End}; 1654 } 1655 } 1656 1657 /// \brief Turns a collection of checks into a collection of expanded upper and 1658 /// lower bounds for both pointers in the check. 1659 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1660 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1661 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1662 const RuntimePointerChecking &PtrRtChecking) { 1663 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1664 1665 // Here we're relying on the SCEV Expander's cache to only emit code for the 1666 // same bounds once. 1667 std::transform( 1668 PointerChecks.begin(), PointerChecks.end(), 1669 std::back_inserter(ChecksWithBounds), 1670 [&](const RuntimePointerChecking::PointerCheck &Check) { 1671 PointerBounds 1672 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1673 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1674 return std::make_pair(First, Second); 1675 }); 1676 1677 return ChecksWithBounds; 1678 } 1679 1680 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1681 Instruction *Loc, 1682 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1683 const { 1684 1685 SCEVExpander Exp(*SE, DL, "induction"); 1686 auto ExpandedChecks = 1687 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); 1688 1689 LLVMContext &Ctx = Loc->getContext(); 1690 Instruction *FirstInst = nullptr; 1691 IRBuilder<> ChkBuilder(Loc); 1692 // Our instructions might fold to a constant. 1693 Value *MemoryRuntimeCheck = nullptr; 1694 1695 for (const auto &Check : ExpandedChecks) { 1696 const PointerBounds &A = Check.first, &B = Check.second; 1697 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1698 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1699 1700 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1701 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1702 "Trying to bounds check pointers with different address spaces"); 1703 1704 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1705 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1706 1707 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1708 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1709 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1710 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1711 1712 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1713 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1714 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1715 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1716 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1717 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1718 if (MemoryRuntimeCheck) { 1719 IsConflict = 1720 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1721 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1722 } 1723 MemoryRuntimeCheck = IsConflict; 1724 } 1725 1726 if (!MemoryRuntimeCheck) 1727 return std::make_pair(nullptr, nullptr); 1728 1729 // We have to do this trickery because the IRBuilder might fold the check to a 1730 // constant expression in which case there is no Instruction anchored in a 1731 // the block. 1732 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1733 ConstantInt::getTrue(Ctx)); 1734 ChkBuilder.Insert(Check, "memcheck.conflict"); 1735 FirstInst = getFirstInst(FirstInst, Check, Loc); 1736 return std::make_pair(FirstInst, Check); 1737 } 1738 1739 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1740 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { 1741 if (!PtrRtChecking.Need) 1742 return std::make_pair(nullptr, nullptr); 1743 1744 return addRuntimeCheck(Loc, PtrRtChecking.generateChecks(PtrPartition)); 1745 } 1746 1747 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1748 const DataLayout &DL, 1749 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1750 DominatorTree *DT, LoopInfo *LI, 1751 const ValueToValueMap &Strides) 1752 : PtrRtChecking(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), 1753 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1754 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1755 StoreToLoopInvariantAddress(false) { 1756 if (canAnalyzeLoop()) 1757 analyzeLoop(Strides); 1758 } 1759 1760 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1761 if (CanVecMem) { 1762 if (PtrRtChecking.Need) 1763 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1764 else 1765 OS.indent(Depth) << "Memory dependences are safe\n"; 1766 } 1767 1768 if (Report) 1769 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1770 1771 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1772 OS.indent(Depth) << "Interesting Dependences:\n"; 1773 for (auto &Dep : *InterestingDependences) { 1774 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1775 OS << "\n"; 1776 } 1777 } else 1778 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1779 1780 // List the pair of accesses need run-time checks to prove independence. 1781 PtrRtChecking.print(OS, Depth); 1782 OS << "\n"; 1783 1784 OS.indent(Depth) << "Store to invariant address was " 1785 << (StoreToLoopInvariantAddress ? "" : "not ") 1786 << "found in loop.\n"; 1787 } 1788 1789 const LoopAccessInfo & 1790 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1791 auto &LAI = LoopAccessInfoMap[L]; 1792 1793 #ifndef NDEBUG 1794 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1795 "Symbolic strides changed for loop"); 1796 #endif 1797 1798 if (!LAI) { 1799 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1800 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1801 Strides); 1802 #ifndef NDEBUG 1803 LAI->NumSymbolicStrides = Strides.size(); 1804 #endif 1805 } 1806 return *LAI.get(); 1807 } 1808 1809 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1810 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1811 1812 ValueToValueMap NoSymbolicStrides; 1813 1814 for (Loop *TopLevelLoop : *LI) 1815 for (Loop *L : depth_first(TopLevelLoop)) { 1816 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1817 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1818 LAI.print(OS, 4); 1819 } 1820 } 1821 1822 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1823 SE = &getAnalysis<ScalarEvolution>(); 1824 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1825 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1826 AA = &getAnalysis<AliasAnalysis>(); 1827 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1828 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1829 1830 return false; 1831 } 1832 1833 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1834 AU.addRequired<ScalarEvolution>(); 1835 AU.addRequired<AliasAnalysis>(); 1836 AU.addRequired<DominatorTreeWrapperPass>(); 1837 AU.addRequired<LoopInfoWrapperPass>(); 1838 1839 AU.setPreservesAll(); 1840 } 1841 1842 char LoopAccessAnalysis::ID = 0; 1843 static const char laa_name[] = "Loop Access Analysis"; 1844 #define LAA_NAME "loop-accesses" 1845 1846 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1847 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1848 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1849 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1850 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1851 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1852 1853 namespace llvm { 1854 Pass *createLAAPass() { 1855 return new LoopAccessAnalysis(); 1856 } 1857 } 1858