1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 bool VectorizerParams::isInterleaveForced() { 134 return ::VectorizationInterleave.getNumOccurrences() > 0; 135 } 136 137 Value *llvm::stripIntegerCast(Value *V) { 138 if (auto *CI = dyn_cast<CastInst>(V)) 139 if (CI->getOperand(0)->getType()->isIntegerTy()) 140 return CI->getOperand(0); 141 return V; 142 } 143 144 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 145 const ValueToValueMap &PtrToStride, 146 Value *Ptr) { 147 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 148 149 // If there is an entry in the map return the SCEV of the pointer with the 150 // symbolic stride replaced by one. 151 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 152 if (SI == PtrToStride.end()) 153 // For a non-symbolic stride, just return the original expression. 154 return OrigSCEV; 155 156 Value *StrideVal = stripIntegerCast(SI->second); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 172 unsigned Index, RuntimePointerChecking &RtCheck) 173 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 174 AddressSpace(RtCheck.Pointers[Index] 175 .PointerValue->getType() 176 ->getPointerAddressSpace()) { 177 Members.push_back(Index); 178 } 179 180 /// Calculate Start and End points of memory access. 181 /// Let's assume A is the first access and B is a memory access on N-th loop 182 /// iteration. Then B is calculated as: 183 /// B = A + Step*N . 184 /// Step value may be positive or negative. 185 /// N is a calculated back-edge taken count: 186 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 187 /// Start and End points are calculated in the following way: 188 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 189 /// where SizeOfElt is the size of single memory access in bytes. 190 /// 191 /// There is no conflict when the intervals are disjoint: 192 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 193 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 194 Type *AccessTy, bool WritePtr, 195 unsigned DepSetId, unsigned ASId, 196 PredicatedScalarEvolution &PSE) { 197 ScalarEvolution *SE = PSE.getSE(); 198 199 const SCEV *ScStart; 200 const SCEV *ScEnd; 201 202 if (SE->isLoopInvariant(PtrExpr, Lp)) { 203 ScStart = ScEnd = PtrExpr; 204 } else { 205 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 206 assert(AR && "Invalid addrec expression"); 207 const SCEV *Ex = PSE.getBackedgeTakenCount(); 208 209 ScStart = AR->getStart(); 210 ScEnd = AR->evaluateAtIteration(Ex, *SE); 211 const SCEV *Step = AR->getStepRecurrence(*SE); 212 213 // For expressions with negative step, the upper bound is ScStart and the 214 // lower bound is ScEnd. 215 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 216 if (CStep->getValue()->isNegative()) 217 std::swap(ScStart, ScEnd); 218 } else { 219 // Fallback case: the step is not constant, but we can still 220 // get the upper and lower bounds of the interval by using min/max 221 // expressions. 222 ScStart = SE->getUMinExpr(ScStart, ScEnd); 223 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 224 } 225 } 226 // Add the size of the pointed element to ScEnd. 227 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 228 Type *IdxTy = DL.getIndexType(Ptr->getType()); 229 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 230 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 231 232 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr); 233 } 234 235 void RuntimePointerChecking::tryToCreateDiffCheck( 236 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 237 if (!CanUseDiffCheck) 238 return; 239 240 // If either group contains multiple different pointers, bail out. 241 // TODO: Support multiple pointers by using the minimum or maximum pointer, 242 // depending on src & sink. 243 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 244 CanUseDiffCheck = false; 245 return; 246 } 247 248 PointerInfo *Src = &Pointers[CGI.Members[0]]; 249 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 250 251 // If either pointer is read and written, multiple checks may be needed. Bail 252 // out. 253 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 254 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 255 CanUseDiffCheck = false; 256 return; 257 } 258 259 ArrayRef<unsigned> AccSrc = 260 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 261 ArrayRef<unsigned> AccSink = 262 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 263 // If either pointer is accessed multiple times, there may not be a clear 264 // src/sink relation. Bail out for now. 265 if (AccSrc.size() != 1 || AccSink.size() != 1) { 266 CanUseDiffCheck = false; 267 return; 268 } 269 // If the sink is accessed before src, swap src/sink. 270 if (AccSink[0] < AccSrc[0]) 271 std::swap(Src, Sink); 272 273 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 274 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 275 if (!SrcAR || !SinkAR) { 276 CanUseDiffCheck = false; 277 return; 278 } 279 280 const DataLayout &DL = 281 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 282 SmallVector<Instruction *, 4> SrcInsts = 283 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 284 SmallVector<Instruction *, 4> SinkInsts = 285 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 286 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 287 Type *DstTy = getLoadStoreType(SinkInsts[0]); 288 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 289 return; 290 unsigned AllocSize = 291 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 292 IntegerType *IntTy = 293 IntegerType::get(Src->PointerValue->getContext(), 294 DL.getPointerSizeInBits(CGI.AddressSpace)); 295 296 // Only matching constant steps matching the AllocSize are supported at the 297 // moment. This simplifies the difference computation. Can be extended in the 298 // future. 299 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 300 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 301 Step->getAPInt().abs() != AllocSize) { 302 CanUseDiffCheck = false; 303 return; 304 } 305 306 // When counting down, the dependence distance needs to be swapped. 307 if (Step->getValue()->isNegative()) 308 std::swap(SinkAR, SrcAR); 309 310 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 311 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 312 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 313 isa<SCEVCouldNotCompute>(SrcStartInt)) { 314 CanUseDiffCheck = false; 315 return; 316 } 317 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize); 318 } 319 320 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 321 SmallVector<RuntimePointerCheck, 4> Checks; 322 323 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 324 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 325 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 326 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 327 328 if (needsChecking(CGI, CGJ)) { 329 tryToCreateDiffCheck(CGI, CGJ); 330 Checks.push_back(std::make_pair(&CGI, &CGJ)); 331 } 332 } 333 } 334 return Checks; 335 } 336 337 void RuntimePointerChecking::generateChecks( 338 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 339 assert(Checks.empty() && "Checks is not empty"); 340 groupChecks(DepCands, UseDependencies); 341 Checks = generateChecks(); 342 } 343 344 bool RuntimePointerChecking::needsChecking( 345 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 346 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 347 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 348 if (needsChecking(M.Members[I], N.Members[J])) 349 return true; 350 return false; 351 } 352 353 /// Compare \p I and \p J and return the minimum. 354 /// Return nullptr in case we couldn't find an answer. 355 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 356 ScalarEvolution *SE) { 357 const SCEV *Diff = SE->getMinusSCEV(J, I); 358 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 359 360 if (!C) 361 return nullptr; 362 if (C->getValue()->isNegative()) 363 return J; 364 return I; 365 } 366 367 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 368 RuntimePointerChecking &RtCheck) { 369 return addPointer( 370 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 371 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 372 *RtCheck.SE); 373 } 374 375 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 376 const SCEV *End, unsigned AS, 377 ScalarEvolution &SE) { 378 assert(AddressSpace == AS && 379 "all pointers in a checking group must be in the same address space"); 380 381 // Compare the starts and ends with the known minimum and maximum 382 // of this set. We need to know how we compare against the min/max 383 // of the set in order to be able to emit memchecks. 384 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 385 if (!Min0) 386 return false; 387 388 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 389 if (!Min1) 390 return false; 391 392 // Update the low bound expression if we've found a new min value. 393 if (Min0 == Start) 394 Low = Start; 395 396 // Update the high bound expression if we've found a new max value. 397 if (Min1 != End) 398 High = End; 399 400 Members.push_back(Index); 401 return true; 402 } 403 404 void RuntimePointerChecking::groupChecks( 405 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 406 // We build the groups from dependency candidates equivalence classes 407 // because: 408 // - We know that pointers in the same equivalence class share 409 // the same underlying object and therefore there is a chance 410 // that we can compare pointers 411 // - We wouldn't be able to merge two pointers for which we need 412 // to emit a memcheck. The classes in DepCands are already 413 // conveniently built such that no two pointers in the same 414 // class need checking against each other. 415 416 // We use the following (greedy) algorithm to construct the groups 417 // For every pointer in the equivalence class: 418 // For each existing group: 419 // - if the difference between this pointer and the min/max bounds 420 // of the group is a constant, then make the pointer part of the 421 // group and update the min/max bounds of that group as required. 422 423 CheckingGroups.clear(); 424 425 // If we need to check two pointers to the same underlying object 426 // with a non-constant difference, we shouldn't perform any pointer 427 // grouping with those pointers. This is because we can easily get 428 // into cases where the resulting check would return false, even when 429 // the accesses are safe. 430 // 431 // The following example shows this: 432 // for (i = 0; i < 1000; ++i) 433 // a[5000 + i * m] = a[i] + a[i + 9000] 434 // 435 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 436 // (0, 10000) which is always false. However, if m is 1, there is no 437 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 438 // us to perform an accurate check in this case. 439 // 440 // The above case requires that we have an UnknownDependence between 441 // accesses to the same underlying object. This cannot happen unless 442 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 443 // is also false. In this case we will use the fallback path and create 444 // separate checking groups for all pointers. 445 446 // If we don't have the dependency partitions, construct a new 447 // checking pointer group for each pointer. This is also required 448 // for correctness, because in this case we can have checking between 449 // pointers to the same underlying object. 450 if (!UseDependencies) { 451 for (unsigned I = 0; I < Pointers.size(); ++I) 452 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 453 return; 454 } 455 456 unsigned TotalComparisons = 0; 457 458 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 459 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 460 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 461 Iter.first->second.push_back(Index); 462 } 463 464 // We need to keep track of what pointers we've already seen so we 465 // don't process them twice. 466 SmallSet<unsigned, 2> Seen; 467 468 // Go through all equivalence classes, get the "pointer check groups" 469 // and add them to the overall solution. We use the order in which accesses 470 // appear in 'Pointers' to enforce determinism. 471 for (unsigned I = 0; I < Pointers.size(); ++I) { 472 // We've seen this pointer before, and therefore already processed 473 // its equivalence class. 474 if (Seen.count(I)) 475 continue; 476 477 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 478 Pointers[I].IsWritePtr); 479 480 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 481 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 482 483 // Because DepCands is constructed by visiting accesses in the order in 484 // which they appear in alias sets (which is deterministic) and the 485 // iteration order within an equivalence class member is only dependent on 486 // the order in which unions and insertions are performed on the 487 // equivalence class, the iteration order is deterministic. 488 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 489 MI != ME; ++MI) { 490 auto PointerI = PositionMap.find(MI->getPointer()); 491 assert(PointerI != PositionMap.end() && 492 "pointer in equivalence class not found in PositionMap"); 493 for (unsigned Pointer : PointerI->second) { 494 bool Merged = false; 495 // Mark this pointer as seen. 496 Seen.insert(Pointer); 497 498 // Go through all the existing sets and see if we can find one 499 // which can include this pointer. 500 for (RuntimeCheckingPtrGroup &Group : Groups) { 501 // Don't perform more than a certain amount of comparisons. 502 // This should limit the cost of grouping the pointers to something 503 // reasonable. If we do end up hitting this threshold, the algorithm 504 // will create separate groups for all remaining pointers. 505 if (TotalComparisons > MemoryCheckMergeThreshold) 506 break; 507 508 TotalComparisons++; 509 510 if (Group.addPointer(Pointer, *this)) { 511 Merged = true; 512 break; 513 } 514 } 515 516 if (!Merged) 517 // We couldn't add this pointer to any existing set or the threshold 518 // for the number of comparisons has been reached. Create a new group 519 // to hold the current pointer. 520 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 521 } 522 } 523 524 // We've computed the grouped checks for this partition. 525 // Save the results and continue with the next one. 526 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 527 } 528 } 529 530 bool RuntimePointerChecking::arePointersInSamePartition( 531 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 532 unsigned PtrIdx2) { 533 return (PtrToPartition[PtrIdx1] != -1 && 534 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 535 } 536 537 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 538 const PointerInfo &PointerI = Pointers[I]; 539 const PointerInfo &PointerJ = Pointers[J]; 540 541 // No need to check if two readonly pointers intersect. 542 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 543 return false; 544 545 // Only need to check pointers between two different dependency sets. 546 if (PointerI.DependencySetId == PointerJ.DependencySetId) 547 return false; 548 549 // Only need to check pointers in the same alias set. 550 if (PointerI.AliasSetId != PointerJ.AliasSetId) 551 return false; 552 553 return true; 554 } 555 556 void RuntimePointerChecking::printChecks( 557 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 558 unsigned Depth) const { 559 unsigned N = 0; 560 for (const auto &Check : Checks) { 561 const auto &First = Check.first->Members, &Second = Check.second->Members; 562 563 OS.indent(Depth) << "Check " << N++ << ":\n"; 564 565 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 566 for (unsigned K = 0; K < First.size(); ++K) 567 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 568 569 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 570 for (unsigned K = 0; K < Second.size(); ++K) 571 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 572 } 573 } 574 575 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 576 577 OS.indent(Depth) << "Run-time memory checks:\n"; 578 printChecks(OS, Checks, Depth); 579 580 OS.indent(Depth) << "Grouped accesses:\n"; 581 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 582 const auto &CG = CheckingGroups[I]; 583 584 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 585 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 586 << ")\n"; 587 for (unsigned J = 0; J < CG.Members.size(); ++J) { 588 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 589 << "\n"; 590 } 591 } 592 } 593 594 namespace { 595 596 /// Analyses memory accesses in a loop. 597 /// 598 /// Checks whether run time pointer checks are needed and builds sets for data 599 /// dependence checking. 600 class AccessAnalysis { 601 public: 602 /// Read or write access location. 603 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 604 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 605 606 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 607 MemoryDepChecker::DepCandidates &DA, 608 PredicatedScalarEvolution &PSE) 609 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {} 610 611 /// Register a load and whether it is only read from. 612 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 613 Value *Ptr = const_cast<Value*>(Loc.Ptr); 614 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 615 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 616 if (IsReadOnly) 617 ReadOnlyPtr.insert(Ptr); 618 } 619 620 /// Register a store. 621 void addStore(MemoryLocation &Loc, Type *AccessTy) { 622 Value *Ptr = const_cast<Value*>(Loc.Ptr); 623 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 624 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 625 } 626 627 /// Check if we can emit a run-time no-alias check for \p Access. 628 /// 629 /// Returns true if we can emit a run-time no alias check for \p Access. 630 /// If we can check this access, this also adds it to a dependence set and 631 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 632 /// we will attempt to use additional run-time checks in order to get 633 /// the bounds of the pointer. 634 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 635 MemAccessInfo Access, Type *AccessTy, 636 const ValueToValueMap &Strides, 637 DenseMap<Value *, unsigned> &DepSetId, 638 Loop *TheLoop, unsigned &RunningDepId, 639 unsigned ASId, bool ShouldCheckStride, bool Assume); 640 641 /// Check whether we can check the pointers at runtime for 642 /// non-intersection. 643 /// 644 /// Returns true if we need no check or if we do and we can generate them 645 /// (i.e. the pointers have computable bounds). 646 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 647 Loop *TheLoop, const ValueToValueMap &Strides, 648 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 649 650 /// Goes over all memory accesses, checks whether a RT check is needed 651 /// and builds sets of dependent accesses. 652 void buildDependenceSets() { 653 processMemAccesses(); 654 } 655 656 /// Initial processing of memory accesses determined that we need to 657 /// perform dependency checking. 658 /// 659 /// Note that this can later be cleared if we retry memcheck analysis without 660 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 661 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 662 663 /// We decided that no dependence analysis would be used. Reset the state. 664 void resetDepChecks(MemoryDepChecker &DepChecker) { 665 CheckDeps.clear(); 666 DepChecker.clearDependences(); 667 } 668 669 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 670 671 private: 672 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 673 674 /// Go over all memory access and check whether runtime pointer checks 675 /// are needed and build sets of dependency check candidates. 676 void processMemAccesses(); 677 678 /// Map of all accesses. Values are the types used to access memory pointed to 679 /// by the pointer. 680 PtrAccessMap Accesses; 681 682 /// The loop being checked. 683 const Loop *TheLoop; 684 685 /// List of accesses that need a further dependence check. 686 MemAccessInfoList CheckDeps; 687 688 /// Set of pointers that are read only. 689 SmallPtrSet<Value*, 16> ReadOnlyPtr; 690 691 /// An alias set tracker to partition the access set by underlying object and 692 //intrinsic property (such as TBAA metadata). 693 AliasSetTracker AST; 694 695 LoopInfo *LI; 696 697 /// Sets of potentially dependent accesses - members of one set share an 698 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 699 /// dependence check. 700 MemoryDepChecker::DepCandidates &DepCands; 701 702 /// Initial processing of memory accesses determined that we may need 703 /// to add memchecks. Perform the analysis to determine the necessary checks. 704 /// 705 /// Note that, this is different from isDependencyCheckNeeded. When we retry 706 /// memcheck analysis without dependency checking 707 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 708 /// cleared while this remains set if we have potentially dependent accesses. 709 bool IsRTCheckAnalysisNeeded = false; 710 711 /// The SCEV predicate containing all the SCEV-related assumptions. 712 PredicatedScalarEvolution &PSE; 713 }; 714 715 } // end anonymous namespace 716 717 /// Check whether a pointer can participate in a runtime bounds check. 718 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 719 /// by adding run-time checks (overflow checks) if necessary. 720 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 721 const SCEV *PtrScev, Loop *L, bool Assume) { 722 // The bounds for loop-invariant pointer is trivial. 723 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 724 return true; 725 726 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 727 728 if (!AR && Assume) 729 AR = PSE.getAsAddRec(Ptr); 730 731 if (!AR) 732 return false; 733 734 return AR->isAffine(); 735 } 736 737 /// Check whether a pointer address cannot wrap. 738 static bool isNoWrap(PredicatedScalarEvolution &PSE, 739 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 740 Loop *L) { 741 const SCEV *PtrScev = PSE.getSCEV(Ptr); 742 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 743 return true; 744 745 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 746 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 747 return true; 748 749 return false; 750 } 751 752 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 753 function_ref<void(Value *)> AddPointer) { 754 SmallPtrSet<Value *, 8> Visited; 755 SmallVector<Value *> WorkList; 756 WorkList.push_back(StartPtr); 757 758 while (!WorkList.empty()) { 759 Value *Ptr = WorkList.pop_back_val(); 760 if (!Visited.insert(Ptr).second) 761 continue; 762 auto *PN = dyn_cast<PHINode>(Ptr); 763 // SCEV does not look through non-header PHIs inside the loop. Such phis 764 // can be analyzed by adding separate accesses for each incoming pointer 765 // value. 766 if (PN && InnermostLoop.contains(PN->getParent()) && 767 PN->getParent() != InnermostLoop.getHeader()) { 768 for (const Use &Inc : PN->incoming_values()) 769 WorkList.push_back(Inc); 770 } else 771 AddPointer(Ptr); 772 } 773 } 774 775 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 776 MemAccessInfo Access, Type *AccessTy, 777 const ValueToValueMap &StridesMap, 778 DenseMap<Value *, unsigned> &DepSetId, 779 Loop *TheLoop, unsigned &RunningDepId, 780 unsigned ASId, bool ShouldCheckWrap, 781 bool Assume) { 782 Value *Ptr = Access.getPointer(); 783 784 ScalarEvolution &SE = *PSE.getSE(); 785 SmallVector<const SCEV *> TranslatedPtrs; 786 if (auto *SI = dyn_cast<SelectInst>(Ptr)) 787 TranslatedPtrs = {SE.getSCEV(SI->getOperand(1)), 788 SE.getSCEV(SI->getOperand(2))}; 789 else 790 TranslatedPtrs = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr)}; 791 792 for (const SCEV *PtrExpr : TranslatedPtrs) { 793 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 794 return false; 795 796 // When we run after a failing dependency check we have to make sure 797 // we don't have wrapping pointers. 798 if (ShouldCheckWrap) { 799 // Skip wrap checking when translating pointers. 800 if (TranslatedPtrs.size() > 1) 801 return false; 802 803 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 804 auto *Expr = PSE.getSCEV(Ptr); 805 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 806 return false; 807 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 808 } 809 } 810 // If there's only one option for Ptr, look it up after bounds and wrap 811 // checking, because assumptions might have been added to PSE. 812 if (TranslatedPtrs.size() == 1) 813 TranslatedPtrs[0] = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 814 } 815 816 for (const SCEV *PtrExpr : TranslatedPtrs) { 817 // The id of the dependence set. 818 unsigned DepId; 819 820 if (isDependencyCheckNeeded()) { 821 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 822 unsigned &LeaderId = DepSetId[Leader]; 823 if (!LeaderId) 824 LeaderId = RunningDepId++; 825 DepId = LeaderId; 826 } else 827 // Each access has its own dependence set. 828 DepId = RunningDepId++; 829 830 bool IsWrite = Access.getInt(); 831 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE); 832 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 833 } 834 835 return true; 836 } 837 838 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 839 ScalarEvolution *SE, Loop *TheLoop, 840 const ValueToValueMap &StridesMap, 841 Value *&UncomputablePtr, bool ShouldCheckWrap) { 842 // Find pointers with computable bounds. We are going to use this information 843 // to place a runtime bound check. 844 bool CanDoRT = true; 845 846 bool MayNeedRTCheck = false; 847 if (!IsRTCheckAnalysisNeeded) return true; 848 849 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 850 851 // We assign a consecutive id to access from different alias sets. 852 // Accesses between different groups doesn't need to be checked. 853 unsigned ASId = 0; 854 for (auto &AS : AST) { 855 int NumReadPtrChecks = 0; 856 int NumWritePtrChecks = 0; 857 bool CanDoAliasSetRT = true; 858 ++ASId; 859 860 // We assign consecutive id to access from different dependence sets. 861 // Accesses within the same set don't need a runtime check. 862 unsigned RunningDepId = 1; 863 DenseMap<Value *, unsigned> DepSetId; 864 865 SmallVector<MemAccessInfo, 4> Retries; 866 867 // First, count how many write and read accesses are in the alias set. Also 868 // collect MemAccessInfos for later. 869 SmallVector<MemAccessInfo, 4> AccessInfos; 870 for (const auto &A : AS) { 871 Value *Ptr = A.getValue(); 872 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 873 874 if (IsWrite) 875 ++NumWritePtrChecks; 876 else 877 ++NumReadPtrChecks; 878 AccessInfos.emplace_back(Ptr, IsWrite); 879 } 880 881 // We do not need runtime checks for this alias set, if there are no writes 882 // or a single write and no reads. 883 if (NumWritePtrChecks == 0 || 884 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 885 assert((AS.size() <= 1 || 886 all_of(AS, 887 [this](auto AC) { 888 MemAccessInfo AccessWrite(AC.getValue(), true); 889 return DepCands.findValue(AccessWrite) == DepCands.end(); 890 })) && 891 "Can only skip updating CanDoRT below, if all entries in AS " 892 "are reads or there is at most 1 entry"); 893 continue; 894 } 895 896 for (auto &Access : AccessInfos) { 897 for (auto &AccessTy : Accesses[Access]) { 898 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 899 DepSetId, TheLoop, RunningDepId, ASId, 900 ShouldCheckWrap, false)) { 901 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 902 << *Access.getPointer() << '\n'); 903 Retries.push_back(Access); 904 CanDoAliasSetRT = false; 905 } 906 } 907 } 908 909 // Note that this function computes CanDoRT and MayNeedRTCheck 910 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 911 // we have a pointer for which we couldn't find the bounds but we don't 912 // actually need to emit any checks so it does not matter. 913 // 914 // We need runtime checks for this alias set, if there are at least 2 915 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 916 // any bound checks (because in that case the number of dependence sets is 917 // incomplete). 918 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 919 920 // We need to perform run-time alias checks, but some pointers had bounds 921 // that couldn't be checked. 922 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 923 // Reset the CanDoSetRt flag and retry all accesses that have failed. 924 // We know that we need these checks, so we can now be more aggressive 925 // and add further checks if required (overflow checks). 926 CanDoAliasSetRT = true; 927 for (auto Access : Retries) { 928 for (auto &AccessTy : Accesses[Access]) { 929 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 930 DepSetId, TheLoop, RunningDepId, ASId, 931 ShouldCheckWrap, /*Assume=*/true)) { 932 CanDoAliasSetRT = false; 933 UncomputablePtr = Access.getPointer(); 934 break; 935 } 936 } 937 } 938 } 939 940 CanDoRT &= CanDoAliasSetRT; 941 MayNeedRTCheck |= NeedsAliasSetRTCheck; 942 ++ASId; 943 } 944 945 // If the pointers that we would use for the bounds comparison have different 946 // address spaces, assume the values aren't directly comparable, so we can't 947 // use them for the runtime check. We also have to assume they could 948 // overlap. In the future there should be metadata for whether address spaces 949 // are disjoint. 950 unsigned NumPointers = RtCheck.Pointers.size(); 951 for (unsigned i = 0; i < NumPointers; ++i) { 952 for (unsigned j = i + 1; j < NumPointers; ++j) { 953 // Only need to check pointers between two different dependency sets. 954 if (RtCheck.Pointers[i].DependencySetId == 955 RtCheck.Pointers[j].DependencySetId) 956 continue; 957 // Only need to check pointers in the same alias set. 958 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 959 continue; 960 961 Value *PtrI = RtCheck.Pointers[i].PointerValue; 962 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 963 964 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 965 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 966 if (ASi != ASj) { 967 LLVM_DEBUG( 968 dbgs() << "LAA: Runtime check would require comparison between" 969 " different address spaces\n"); 970 return false; 971 } 972 } 973 } 974 975 if (MayNeedRTCheck && CanDoRT) 976 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 977 978 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 979 << " pointer comparisons.\n"); 980 981 // If we can do run-time checks, but there are no checks, no runtime checks 982 // are needed. This can happen when all pointers point to the same underlying 983 // object for example. 984 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 985 986 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 987 if (!CanDoRTIfNeeded) 988 RtCheck.reset(); 989 return CanDoRTIfNeeded; 990 } 991 992 void AccessAnalysis::processMemAccesses() { 993 // We process the set twice: first we process read-write pointers, last we 994 // process read-only pointers. This allows us to skip dependence tests for 995 // read-only pointers. 996 997 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 998 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 999 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1000 LLVM_DEBUG({ 1001 for (auto A : Accesses) 1002 dbgs() << "\t" << *A.first.getPointer() << " (" 1003 << (A.first.getInt() 1004 ? "write" 1005 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 1006 : "read")) 1007 << ")\n"; 1008 }); 1009 1010 // The AliasSetTracker has nicely partitioned our pointers by metadata 1011 // compatibility and potential for underlying-object overlap. As a result, we 1012 // only need to check for potential pointer dependencies within each alias 1013 // set. 1014 for (const auto &AS : AST) { 1015 // Note that both the alias-set tracker and the alias sets themselves used 1016 // linked lists internally and so the iteration order here is deterministic 1017 // (matching the original instruction order within each set). 1018 1019 bool SetHasWrite = false; 1020 1021 // Map of pointers to last access encountered. 1022 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1023 UnderlyingObjToAccessMap ObjToLastAccess; 1024 1025 // Set of access to check after all writes have been processed. 1026 PtrAccessMap DeferredAccesses; 1027 1028 // Iterate over each alias set twice, once to process read/write pointers, 1029 // and then to process read-only pointers. 1030 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1031 bool UseDeferred = SetIteration > 0; 1032 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1033 1034 for (const auto &AV : AS) { 1035 Value *Ptr = AV.getValue(); 1036 1037 // For a single memory access in AliasSetTracker, Accesses may contain 1038 // both read and write, and they both need to be handled for CheckDeps. 1039 for (const auto &AC : S) { 1040 if (AC.first.getPointer() != Ptr) 1041 continue; 1042 1043 bool IsWrite = AC.first.getInt(); 1044 1045 // If we're using the deferred access set, then it contains only 1046 // reads. 1047 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1048 if (UseDeferred && !IsReadOnlyPtr) 1049 continue; 1050 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1051 // read or a write. 1052 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1053 S.count(MemAccessInfo(Ptr, false))) && 1054 "Alias-set pointer not in the access set?"); 1055 1056 MemAccessInfo Access(Ptr, IsWrite); 1057 DepCands.insert(Access); 1058 1059 // Memorize read-only pointers for later processing and skip them in 1060 // the first round (they need to be checked after we have seen all 1061 // write pointers). Note: we also mark pointer that are not 1062 // consecutive as "read-only" pointers (so that we check 1063 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1064 if (!UseDeferred && IsReadOnlyPtr) { 1065 // We only use the pointer keys, the types vector values don't 1066 // matter. 1067 DeferredAccesses.insert({Access, {}}); 1068 continue; 1069 } 1070 1071 // If this is a write - check other reads and writes for conflicts. If 1072 // this is a read only check other writes for conflicts (but only if 1073 // there is no other write to the ptr - this is an optimization to 1074 // catch "a[i] = a[i] + " without having to do a dependence check). 1075 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1076 CheckDeps.push_back(Access); 1077 IsRTCheckAnalysisNeeded = true; 1078 } 1079 1080 if (IsWrite) 1081 SetHasWrite = true; 1082 1083 // Create sets of pointers connected by a shared alias set and 1084 // underlying object. 1085 typedef SmallVector<const Value *, 16> ValueVector; 1086 ValueVector TempObjects; 1087 1088 getUnderlyingObjects(Ptr, TempObjects, LI); 1089 LLVM_DEBUG(dbgs() 1090 << "Underlying objects for pointer " << *Ptr << "\n"); 1091 for (const Value *UnderlyingObj : TempObjects) { 1092 // nullptr never alias, don't join sets for pointer that have "null" 1093 // in their UnderlyingObjects list. 1094 if (isa<ConstantPointerNull>(UnderlyingObj) && 1095 !NullPointerIsDefined( 1096 TheLoop->getHeader()->getParent(), 1097 UnderlyingObj->getType()->getPointerAddressSpace())) 1098 continue; 1099 1100 UnderlyingObjToAccessMap::iterator Prev = 1101 ObjToLastAccess.find(UnderlyingObj); 1102 if (Prev != ObjToLastAccess.end()) 1103 DepCands.unionSets(Access, Prev->second); 1104 1105 ObjToLastAccess[UnderlyingObj] = Access; 1106 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1107 } 1108 } 1109 } 1110 } 1111 } 1112 } 1113 1114 static bool isInBoundsGep(Value *Ptr) { 1115 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1116 return GEP->isInBounds(); 1117 return false; 1118 } 1119 1120 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1121 /// i.e. monotonically increasing/decreasing. 1122 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1123 PredicatedScalarEvolution &PSE, const Loop *L) { 1124 // FIXME: This should probably only return true for NUW. 1125 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1126 return true; 1127 1128 // Scalar evolution does not propagate the non-wrapping flags to values that 1129 // are derived from a non-wrapping induction variable because non-wrapping 1130 // could be flow-sensitive. 1131 // 1132 // Look through the potentially overflowing instruction to try to prove 1133 // non-wrapping for the *specific* value of Ptr. 1134 1135 // The arithmetic implied by an inbounds GEP can't overflow. 1136 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1137 if (!GEP || !GEP->isInBounds()) 1138 return false; 1139 1140 // Make sure there is only one non-const index and analyze that. 1141 Value *NonConstIndex = nullptr; 1142 for (Value *Index : GEP->indices()) 1143 if (!isa<ConstantInt>(Index)) { 1144 if (NonConstIndex) 1145 return false; 1146 NonConstIndex = Index; 1147 } 1148 if (!NonConstIndex) 1149 // The recurrence is on the pointer, ignore for now. 1150 return false; 1151 1152 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1153 // AddRec using a NSW operation. 1154 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1155 if (OBO->hasNoSignedWrap() && 1156 // Assume constant for other the operand so that the AddRec can be 1157 // easily found. 1158 isa<ConstantInt>(OBO->getOperand(1))) { 1159 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1160 1161 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1162 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1163 } 1164 1165 return false; 1166 } 1167 1168 /// Check whether the access through \p Ptr has a constant stride. 1169 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1170 Value *Ptr, const Loop *Lp, 1171 const ValueToValueMap &StridesMap, bool Assume, 1172 bool ShouldCheckWrap) { 1173 Type *Ty = Ptr->getType(); 1174 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1175 1176 if (isa<ScalableVectorType>(AccessTy)) { 1177 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1178 << "\n"); 1179 return 0; 1180 } 1181 1182 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1183 1184 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1185 if (Assume && !AR) 1186 AR = PSE.getAsAddRec(Ptr); 1187 1188 if (!AR) { 1189 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1190 << " SCEV: " << *PtrScev << "\n"); 1191 return 0; 1192 } 1193 1194 // The access function must stride over the innermost loop. 1195 if (Lp != AR->getLoop()) { 1196 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1197 << *Ptr << " SCEV: " << *AR << "\n"); 1198 return 0; 1199 } 1200 1201 // The address calculation must not wrap. Otherwise, a dependence could be 1202 // inverted. 1203 // An inbounds getelementptr that is a AddRec with a unit stride 1204 // cannot wrap per definition. The unit stride requirement is checked later. 1205 // An getelementptr without an inbounds attribute and unit stride would have 1206 // to access the pointer value "0" which is undefined behavior in address 1207 // space 0, therefore we can also vectorize this case. 1208 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1209 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1210 bool IsNoWrapAddRec = !ShouldCheckWrap || 1211 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1212 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1213 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1214 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1215 if (Assume) { 1216 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1217 IsNoWrapAddRec = true; 1218 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1219 << "LAA: Pointer: " << *Ptr << "\n" 1220 << "LAA: SCEV: " << *AR << "\n" 1221 << "LAA: Added an overflow assumption\n"); 1222 } else { 1223 LLVM_DEBUG( 1224 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1225 << *Ptr << " SCEV: " << *AR << "\n"); 1226 return 0; 1227 } 1228 } 1229 1230 // Check the step is constant. 1231 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1232 1233 // Calculate the pointer stride and check if it is constant. 1234 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1235 if (!C) { 1236 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1237 << " SCEV: " << *AR << "\n"); 1238 return 0; 1239 } 1240 1241 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1242 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1243 int64_t Size = AllocSize.getFixedSize(); 1244 const APInt &APStepVal = C->getAPInt(); 1245 1246 // Huge step value - give up. 1247 if (APStepVal.getBitWidth() > 64) 1248 return 0; 1249 1250 int64_t StepVal = APStepVal.getSExtValue(); 1251 1252 // Strided access. 1253 int64_t Stride = StepVal / Size; 1254 int64_t Rem = StepVal % Size; 1255 if (Rem) 1256 return 0; 1257 1258 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1259 // know we can't "wrap around the address space". In case of address space 1260 // zero we know that this won't happen without triggering undefined behavior. 1261 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1262 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1263 AddrSpace))) { 1264 if (Assume) { 1265 // We can avoid this case by adding a run-time check. 1266 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1267 << "inbounds or in address space 0 may wrap:\n" 1268 << "LAA: Pointer: " << *Ptr << "\n" 1269 << "LAA: SCEV: " << *AR << "\n" 1270 << "LAA: Added an overflow assumption\n"); 1271 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1272 } else 1273 return 0; 1274 } 1275 1276 return Stride; 1277 } 1278 1279 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1280 Value *PtrB, const DataLayout &DL, 1281 ScalarEvolution &SE, bool StrictCheck, 1282 bool CheckType) { 1283 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1284 assert(cast<PointerType>(PtrA->getType()) 1285 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1286 assert(cast<PointerType>(PtrB->getType()) 1287 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1288 1289 // Make sure that A and B are different pointers. 1290 if (PtrA == PtrB) 1291 return 0; 1292 1293 // Make sure that the element types are the same if required. 1294 if (CheckType && ElemTyA != ElemTyB) 1295 return None; 1296 1297 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1298 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1299 1300 // Check that the address spaces match. 1301 if (ASA != ASB) 1302 return None; 1303 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1304 1305 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1306 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1307 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1308 1309 int Val; 1310 if (PtrA1 == PtrB1) { 1311 // Retrieve the address space again as pointer stripping now tracks through 1312 // `addrspacecast`. 1313 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1314 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1315 // Check that the address spaces match and that the pointers are valid. 1316 if (ASA != ASB) 1317 return None; 1318 1319 IdxWidth = DL.getIndexSizeInBits(ASA); 1320 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1321 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1322 1323 OffsetB -= OffsetA; 1324 Val = OffsetB.getSExtValue(); 1325 } else { 1326 // Otherwise compute the distance with SCEV between the base pointers. 1327 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1328 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1329 const auto *Diff = 1330 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1331 if (!Diff) 1332 return None; 1333 Val = Diff->getAPInt().getSExtValue(); 1334 } 1335 int Size = DL.getTypeStoreSize(ElemTyA); 1336 int Dist = Val / Size; 1337 1338 // Ensure that the calculated distance matches the type-based one after all 1339 // the bitcasts removal in the provided pointers. 1340 if (!StrictCheck || Dist * Size == Val) 1341 return Dist; 1342 return None; 1343 } 1344 1345 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1346 const DataLayout &DL, ScalarEvolution &SE, 1347 SmallVectorImpl<unsigned> &SortedIndices) { 1348 assert(llvm::all_of( 1349 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1350 "Expected list of pointer operands."); 1351 // Walk over the pointers, and map each of them to an offset relative to 1352 // first pointer in the array. 1353 Value *Ptr0 = VL[0]; 1354 1355 using DistOrdPair = std::pair<int64_t, int>; 1356 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1357 return L.first < R.first; 1358 }; 1359 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1360 Offsets.emplace(0, 0); 1361 int Cnt = 1; 1362 bool IsConsecutive = true; 1363 for (auto *Ptr : VL.drop_front()) { 1364 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1365 /*StrictCheck=*/true); 1366 if (!Diff) 1367 return false; 1368 1369 // Check if the pointer with the same offset is found. 1370 int64_t Offset = *Diff; 1371 auto Res = Offsets.emplace(Offset, Cnt); 1372 if (!Res.second) 1373 return false; 1374 // Consecutive order if the inserted element is the last one. 1375 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1376 ++Cnt; 1377 } 1378 SortedIndices.clear(); 1379 if (!IsConsecutive) { 1380 // Fill SortedIndices array only if it is non-consecutive. 1381 SortedIndices.resize(VL.size()); 1382 Cnt = 0; 1383 for (const std::pair<int64_t, int> &Pair : Offsets) { 1384 SortedIndices[Cnt] = Pair.second; 1385 ++Cnt; 1386 } 1387 } 1388 return true; 1389 } 1390 1391 /// Returns true if the memory operations \p A and \p B are consecutive. 1392 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1393 ScalarEvolution &SE, bool CheckType) { 1394 Value *PtrA = getLoadStorePointerOperand(A); 1395 Value *PtrB = getLoadStorePointerOperand(B); 1396 if (!PtrA || !PtrB) 1397 return false; 1398 Type *ElemTyA = getLoadStoreType(A); 1399 Type *ElemTyB = getLoadStoreType(B); 1400 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1401 /*StrictCheck=*/true, CheckType); 1402 return Diff && *Diff == 1; 1403 } 1404 1405 void MemoryDepChecker::addAccess(StoreInst *SI) { 1406 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1407 [this, SI](Value *Ptr) { 1408 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1409 InstMap.push_back(SI); 1410 ++AccessIdx; 1411 }); 1412 } 1413 1414 void MemoryDepChecker::addAccess(LoadInst *LI) { 1415 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1416 [this, LI](Value *Ptr) { 1417 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1418 InstMap.push_back(LI); 1419 ++AccessIdx; 1420 }); 1421 } 1422 1423 MemoryDepChecker::VectorizationSafetyStatus 1424 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1425 switch (Type) { 1426 case NoDep: 1427 case Forward: 1428 case BackwardVectorizable: 1429 return VectorizationSafetyStatus::Safe; 1430 1431 case Unknown: 1432 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1433 case ForwardButPreventsForwarding: 1434 case Backward: 1435 case BackwardVectorizableButPreventsForwarding: 1436 return VectorizationSafetyStatus::Unsafe; 1437 } 1438 llvm_unreachable("unexpected DepType!"); 1439 } 1440 1441 bool MemoryDepChecker::Dependence::isBackward() const { 1442 switch (Type) { 1443 case NoDep: 1444 case Forward: 1445 case ForwardButPreventsForwarding: 1446 case Unknown: 1447 return false; 1448 1449 case BackwardVectorizable: 1450 case Backward: 1451 case BackwardVectorizableButPreventsForwarding: 1452 return true; 1453 } 1454 llvm_unreachable("unexpected DepType!"); 1455 } 1456 1457 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1458 return isBackward() || Type == Unknown; 1459 } 1460 1461 bool MemoryDepChecker::Dependence::isForward() const { 1462 switch (Type) { 1463 case Forward: 1464 case ForwardButPreventsForwarding: 1465 return true; 1466 1467 case NoDep: 1468 case Unknown: 1469 case BackwardVectorizable: 1470 case Backward: 1471 case BackwardVectorizableButPreventsForwarding: 1472 return false; 1473 } 1474 llvm_unreachable("unexpected DepType!"); 1475 } 1476 1477 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1478 uint64_t TypeByteSize) { 1479 // If loads occur at a distance that is not a multiple of a feasible vector 1480 // factor store-load forwarding does not take place. 1481 // Positive dependences might cause troubles because vectorizing them might 1482 // prevent store-load forwarding making vectorized code run a lot slower. 1483 // a[i] = a[i-3] ^ a[i-8]; 1484 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1485 // hence on your typical architecture store-load forwarding does not take 1486 // place. Vectorizing in such cases does not make sense. 1487 // Store-load forwarding distance. 1488 1489 // After this many iterations store-to-load forwarding conflicts should not 1490 // cause any slowdowns. 1491 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1492 // Maximum vector factor. 1493 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1494 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1495 1496 // Compute the smallest VF at which the store and load would be misaligned. 1497 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1498 VF *= 2) { 1499 // If the number of vector iteration between the store and the load are 1500 // small we could incur conflicts. 1501 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1502 MaxVFWithoutSLForwardIssues = (VF >> 1); 1503 break; 1504 } 1505 } 1506 1507 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1508 LLVM_DEBUG( 1509 dbgs() << "LAA: Distance " << Distance 1510 << " that could cause a store-load forwarding conflict\n"); 1511 return true; 1512 } 1513 1514 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1515 MaxVFWithoutSLForwardIssues != 1516 VectorizerParams::MaxVectorWidth * TypeByteSize) 1517 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1518 return false; 1519 } 1520 1521 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1522 if (Status < S) 1523 Status = S; 1524 } 1525 1526 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1527 /// memory accesses, that have the same stride whose absolute value is given 1528 /// in \p Stride, and that have the same type size \p TypeByteSize, 1529 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1530 /// possible to prove statically that the dependence distance is larger 1531 /// than the range that the accesses will travel through the execution of 1532 /// the loop. If so, return true; false otherwise. This is useful for 1533 /// example in loops such as the following (PR31098): 1534 /// for (i = 0; i < D; ++i) { 1535 /// = out[i]; 1536 /// out[i+D] = 1537 /// } 1538 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1539 const SCEV &BackedgeTakenCount, 1540 const SCEV &Dist, uint64_t Stride, 1541 uint64_t TypeByteSize) { 1542 1543 // If we can prove that 1544 // (**) |Dist| > BackedgeTakenCount * Step 1545 // where Step is the absolute stride of the memory accesses in bytes, 1546 // then there is no dependence. 1547 // 1548 // Rationale: 1549 // We basically want to check if the absolute distance (|Dist/Step|) 1550 // is >= the loop iteration count (or > BackedgeTakenCount). 1551 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1552 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1553 // that the dependence distance is >= VF; This is checked elsewhere. 1554 // But in some cases we can prune unknown dependence distances early, and 1555 // even before selecting the VF, and without a runtime test, by comparing 1556 // the distance against the loop iteration count. Since the vectorized code 1557 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1558 // also guarantees that distance >= VF. 1559 // 1560 const uint64_t ByteStride = Stride * TypeByteSize; 1561 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1562 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1563 1564 const SCEV *CastedDist = &Dist; 1565 const SCEV *CastedProduct = Product; 1566 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1567 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1568 1569 // The dependence distance can be positive/negative, so we sign extend Dist; 1570 // The multiplication of the absolute stride in bytes and the 1571 // backedgeTakenCount is non-negative, so we zero extend Product. 1572 if (DistTypeSizeBits > ProductTypeSizeBits) 1573 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1574 else 1575 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1576 1577 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1578 // (If so, then we have proven (**) because |Dist| >= Dist) 1579 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1580 if (SE.isKnownPositive(Minus)) 1581 return true; 1582 1583 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1584 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1585 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1586 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1587 if (SE.isKnownPositive(Minus)) 1588 return true; 1589 1590 return false; 1591 } 1592 1593 /// Check the dependence for two accesses with the same stride \p Stride. 1594 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1595 /// bytes. 1596 /// 1597 /// \returns true if they are independent. 1598 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1599 uint64_t TypeByteSize) { 1600 assert(Stride > 1 && "The stride must be greater than 1"); 1601 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1602 assert(Distance > 0 && "The distance must be non-zero"); 1603 1604 // Skip if the distance is not multiple of type byte size. 1605 if (Distance % TypeByteSize) 1606 return false; 1607 1608 uint64_t ScaledDist = Distance / TypeByteSize; 1609 1610 // No dependence if the scaled distance is not multiple of the stride. 1611 // E.g. 1612 // for (i = 0; i < 1024 ; i += 4) 1613 // A[i+2] = A[i] + 1; 1614 // 1615 // Two accesses in memory (scaled distance is 2, stride is 4): 1616 // | A[0] | | | | A[4] | | | | 1617 // | | | A[2] | | | | A[6] | | 1618 // 1619 // E.g. 1620 // for (i = 0; i < 1024 ; i += 3) 1621 // A[i+4] = A[i] + 1; 1622 // 1623 // Two accesses in memory (scaled distance is 4, stride is 3): 1624 // | A[0] | | | A[3] | | | A[6] | | | 1625 // | | | | | A[4] | | | A[7] | | 1626 return ScaledDist % Stride; 1627 } 1628 1629 MemoryDepChecker::Dependence::DepType 1630 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1631 const MemAccessInfo &B, unsigned BIdx, 1632 const ValueToValueMap &Strides) { 1633 assert (AIdx < BIdx && "Must pass arguments in program order"); 1634 1635 Value *APtr = A.getPointer(); 1636 Value *BPtr = B.getPointer(); 1637 bool AIsWrite = A.getInt(); 1638 bool BIsWrite = B.getInt(); 1639 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1640 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1641 1642 // Two reads are independent. 1643 if (!AIsWrite && !BIsWrite) 1644 return Dependence::NoDep; 1645 1646 // We cannot check pointers in different address spaces. 1647 if (APtr->getType()->getPointerAddressSpace() != 1648 BPtr->getType()->getPointerAddressSpace()) 1649 return Dependence::Unknown; 1650 1651 int64_t StrideAPtr = 1652 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1653 int64_t StrideBPtr = 1654 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1655 1656 const SCEV *Src = PSE.getSCEV(APtr); 1657 const SCEV *Sink = PSE.getSCEV(BPtr); 1658 1659 // If the induction step is negative we have to invert source and sink of the 1660 // dependence. 1661 if (StrideAPtr < 0) { 1662 std::swap(APtr, BPtr); 1663 std::swap(ATy, BTy); 1664 std::swap(Src, Sink); 1665 std::swap(AIsWrite, BIsWrite); 1666 std::swap(AIdx, BIdx); 1667 std::swap(StrideAPtr, StrideBPtr); 1668 } 1669 1670 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1671 1672 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1673 << "(Induction step: " << StrideAPtr << ")\n"); 1674 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1675 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1676 1677 // Need accesses with constant stride. We don't want to vectorize 1678 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1679 // the address space. 1680 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1681 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1682 return Dependence::Unknown; 1683 } 1684 1685 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1686 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1687 bool HasSameSize = 1688 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1689 uint64_t Stride = std::abs(StrideAPtr); 1690 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1691 if (!C) { 1692 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1693 isSafeDependenceDistance(DL, *(PSE.getSE()), 1694 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1695 TypeByteSize)) 1696 return Dependence::NoDep; 1697 1698 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1699 FoundNonConstantDistanceDependence = true; 1700 return Dependence::Unknown; 1701 } 1702 1703 const APInt &Val = C->getAPInt(); 1704 int64_t Distance = Val.getSExtValue(); 1705 1706 // Attempt to prove strided accesses independent. 1707 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1708 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1709 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1710 return Dependence::NoDep; 1711 } 1712 1713 // Negative distances are not plausible dependencies. 1714 if (Val.isNegative()) { 1715 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1716 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1717 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1718 !HasSameSize)) { 1719 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1720 return Dependence::ForwardButPreventsForwarding; 1721 } 1722 1723 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1724 return Dependence::Forward; 1725 } 1726 1727 // Write to the same location with the same size. 1728 if (Val == 0) { 1729 if (HasSameSize) 1730 return Dependence::Forward; 1731 LLVM_DEBUG( 1732 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1733 return Dependence::Unknown; 1734 } 1735 1736 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1737 1738 if (!HasSameSize) { 1739 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1740 "different type sizes\n"); 1741 return Dependence::Unknown; 1742 } 1743 1744 // Bail out early if passed-in parameters make vectorization not feasible. 1745 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1746 VectorizerParams::VectorizationFactor : 1); 1747 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1748 VectorizerParams::VectorizationInterleave : 1); 1749 // The minimum number of iterations for a vectorized/unrolled version. 1750 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1751 1752 // It's not vectorizable if the distance is smaller than the minimum distance 1753 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1754 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1755 // TypeByteSize (No need to plus the last gap distance). 1756 // 1757 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1758 // foo(int *A) { 1759 // int *B = (int *)((char *)A + 14); 1760 // for (i = 0 ; i < 1024 ; i += 2) 1761 // B[i] = A[i] + 1; 1762 // } 1763 // 1764 // Two accesses in memory (stride is 2): 1765 // | A[0] | | A[2] | | A[4] | | A[6] | | 1766 // | B[0] | | B[2] | | B[4] | 1767 // 1768 // Distance needs for vectorizing iterations except the last iteration: 1769 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1770 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1771 // 1772 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1773 // 12, which is less than distance. 1774 // 1775 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1776 // the minimum distance needed is 28, which is greater than distance. It is 1777 // not safe to do vectorization. 1778 uint64_t MinDistanceNeeded = 1779 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1780 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1781 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1782 << Distance << '\n'); 1783 return Dependence::Backward; 1784 } 1785 1786 // Unsafe if the minimum distance needed is greater than max safe distance. 1787 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1788 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1789 << MinDistanceNeeded << " size in bytes"); 1790 return Dependence::Backward; 1791 } 1792 1793 // Positive distance bigger than max vectorization factor. 1794 // FIXME: Should use max factor instead of max distance in bytes, which could 1795 // not handle different types. 1796 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1797 // void foo (int *A, char *B) { 1798 // for (unsigned i = 0; i < 1024; i++) { 1799 // A[i+2] = A[i] + 1; 1800 // B[i+2] = B[i] + 1; 1801 // } 1802 // } 1803 // 1804 // This case is currently unsafe according to the max safe distance. If we 1805 // analyze the two accesses on array B, the max safe dependence distance 1806 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1807 // is 8, which is less than 2 and forbidden vectorization, But actually 1808 // both A and B could be vectorized by 2 iterations. 1809 MaxSafeDepDistBytes = 1810 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1811 1812 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1813 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1814 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1815 return Dependence::BackwardVectorizableButPreventsForwarding; 1816 1817 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1818 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1819 << " with max VF = " << MaxVF << '\n'); 1820 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1821 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1822 return Dependence::BackwardVectorizable; 1823 } 1824 1825 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1826 MemAccessInfoList &CheckDeps, 1827 const ValueToValueMap &Strides) { 1828 1829 MaxSafeDepDistBytes = -1; 1830 SmallPtrSet<MemAccessInfo, 8> Visited; 1831 for (MemAccessInfo CurAccess : CheckDeps) { 1832 if (Visited.count(CurAccess)) 1833 continue; 1834 1835 // Get the relevant memory access set. 1836 EquivalenceClasses<MemAccessInfo>::iterator I = 1837 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1838 1839 // Check accesses within this set. 1840 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1841 AccessSets.member_begin(I); 1842 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1843 AccessSets.member_end(); 1844 1845 // Check every access pair. 1846 while (AI != AE) { 1847 Visited.insert(*AI); 1848 bool AIIsWrite = AI->getInt(); 1849 // Check loads only against next equivalent class, but stores also against 1850 // other stores in the same equivalence class - to the same address. 1851 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1852 (AIIsWrite ? AI : std::next(AI)); 1853 while (OI != AE) { 1854 // Check every accessing instruction pair in program order. 1855 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1856 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1857 // Scan all accesses of another equivalence class, but only the next 1858 // accesses of the same equivalent class. 1859 for (std::vector<unsigned>::iterator 1860 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1861 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1862 I2 != I2E; ++I2) { 1863 auto A = std::make_pair(&*AI, *I1); 1864 auto B = std::make_pair(&*OI, *I2); 1865 1866 assert(*I1 != *I2); 1867 if (*I1 > *I2) 1868 std::swap(A, B); 1869 1870 Dependence::DepType Type = 1871 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1872 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1873 1874 // Gather dependences unless we accumulated MaxDependences 1875 // dependences. In that case return as soon as we find the first 1876 // unsafe dependence. This puts a limit on this quadratic 1877 // algorithm. 1878 if (RecordDependences) { 1879 if (Type != Dependence::NoDep) 1880 Dependences.push_back(Dependence(A.second, B.second, Type)); 1881 1882 if (Dependences.size() >= MaxDependences) { 1883 RecordDependences = false; 1884 Dependences.clear(); 1885 LLVM_DEBUG(dbgs() 1886 << "Too many dependences, stopped recording\n"); 1887 } 1888 } 1889 if (!RecordDependences && !isSafeForVectorization()) 1890 return false; 1891 } 1892 ++OI; 1893 } 1894 AI++; 1895 } 1896 } 1897 1898 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1899 return isSafeForVectorization(); 1900 } 1901 1902 SmallVector<Instruction *, 4> 1903 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1904 MemAccessInfo Access(Ptr, isWrite); 1905 auto &IndexVector = Accesses.find(Access)->second; 1906 1907 SmallVector<Instruction *, 4> Insts; 1908 transform(IndexVector, 1909 std::back_inserter(Insts), 1910 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1911 return Insts; 1912 } 1913 1914 const char *MemoryDepChecker::Dependence::DepName[] = { 1915 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1916 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1917 1918 void MemoryDepChecker::Dependence::print( 1919 raw_ostream &OS, unsigned Depth, 1920 const SmallVectorImpl<Instruction *> &Instrs) const { 1921 OS.indent(Depth) << DepName[Type] << ":\n"; 1922 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1923 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1924 } 1925 1926 bool LoopAccessInfo::canAnalyzeLoop() { 1927 // We need to have a loop header. 1928 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1929 << TheLoop->getHeader()->getParent()->getName() << ": " 1930 << TheLoop->getHeader()->getName() << '\n'); 1931 1932 // We can only analyze innermost loops. 1933 if (!TheLoop->isInnermost()) { 1934 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1935 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1936 return false; 1937 } 1938 1939 // We must have a single backedge. 1940 if (TheLoop->getNumBackEdges() != 1) { 1941 LLVM_DEBUG( 1942 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1943 recordAnalysis("CFGNotUnderstood") 1944 << "loop control flow is not understood by analyzer"; 1945 return false; 1946 } 1947 1948 // ScalarEvolution needs to be able to find the exit count. 1949 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1950 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1951 recordAnalysis("CantComputeNumberOfIterations") 1952 << "could not determine number of loop iterations"; 1953 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1954 return false; 1955 } 1956 1957 return true; 1958 } 1959 1960 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1961 const TargetLibraryInfo *TLI, 1962 DominatorTree *DT) { 1963 // Holds the Load and Store instructions. 1964 SmallVector<LoadInst *, 16> Loads; 1965 SmallVector<StoreInst *, 16> Stores; 1966 1967 // Holds all the different accesses in the loop. 1968 unsigned NumReads = 0; 1969 unsigned NumReadWrites = 0; 1970 1971 bool HasComplexMemInst = false; 1972 1973 // A runtime check is only legal to insert if there are no convergent calls. 1974 HasConvergentOp = false; 1975 1976 PtrRtChecking->Pointers.clear(); 1977 PtrRtChecking->Need = false; 1978 1979 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1980 1981 const bool EnableMemAccessVersioningOfLoop = 1982 EnableMemAccessVersioning && 1983 !TheLoop->getHeader()->getParent()->hasOptSize(); 1984 1985 // For each block. 1986 for (BasicBlock *BB : TheLoop->blocks()) { 1987 // Scan the BB and collect legal loads and stores. Also detect any 1988 // convergent instructions. 1989 for (Instruction &I : *BB) { 1990 if (auto *Call = dyn_cast<CallBase>(&I)) { 1991 if (Call->isConvergent()) 1992 HasConvergentOp = true; 1993 } 1994 1995 // With both a non-vectorizable memory instruction and a convergent 1996 // operation, found in this loop, no reason to continue the search. 1997 if (HasComplexMemInst && HasConvergentOp) { 1998 CanVecMem = false; 1999 return; 2000 } 2001 2002 // Avoid hitting recordAnalysis multiple times. 2003 if (HasComplexMemInst) 2004 continue; 2005 2006 // If this is a load, save it. If this instruction can read from memory 2007 // but is not a load, then we quit. Notice that we don't handle function 2008 // calls that read or write. 2009 if (I.mayReadFromMemory()) { 2010 // Many math library functions read the rounding mode. We will only 2011 // vectorize a loop if it contains known function calls that don't set 2012 // the flag. Therefore, it is safe to ignore this read from memory. 2013 auto *Call = dyn_cast<CallInst>(&I); 2014 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2015 continue; 2016 2017 // If the function has an explicit vectorized counterpart, we can safely 2018 // assume that it can be vectorized. 2019 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2020 !VFDatabase::getMappings(*Call).empty()) 2021 continue; 2022 2023 auto *Ld = dyn_cast<LoadInst>(&I); 2024 if (!Ld) { 2025 recordAnalysis("CantVectorizeInstruction", Ld) 2026 << "instruction cannot be vectorized"; 2027 HasComplexMemInst = true; 2028 continue; 2029 } 2030 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2031 recordAnalysis("NonSimpleLoad", Ld) 2032 << "read with atomic ordering or volatile read"; 2033 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2034 HasComplexMemInst = true; 2035 continue; 2036 } 2037 NumLoads++; 2038 Loads.push_back(Ld); 2039 DepChecker->addAccess(Ld); 2040 if (EnableMemAccessVersioningOfLoop) 2041 collectStridedAccess(Ld); 2042 continue; 2043 } 2044 2045 // Save 'store' instructions. Abort if other instructions write to memory. 2046 if (I.mayWriteToMemory()) { 2047 auto *St = dyn_cast<StoreInst>(&I); 2048 if (!St) { 2049 recordAnalysis("CantVectorizeInstruction", St) 2050 << "instruction cannot be vectorized"; 2051 HasComplexMemInst = true; 2052 continue; 2053 } 2054 if (!St->isSimple() && !IsAnnotatedParallel) { 2055 recordAnalysis("NonSimpleStore", St) 2056 << "write with atomic ordering or volatile write"; 2057 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2058 HasComplexMemInst = true; 2059 continue; 2060 } 2061 NumStores++; 2062 Stores.push_back(St); 2063 DepChecker->addAccess(St); 2064 if (EnableMemAccessVersioningOfLoop) 2065 collectStridedAccess(St); 2066 } 2067 } // Next instr. 2068 } // Next block. 2069 2070 if (HasComplexMemInst) { 2071 CanVecMem = false; 2072 return; 2073 } 2074 2075 // Now we have two lists that hold the loads and the stores. 2076 // Next, we find the pointers that they use. 2077 2078 // Check if we see any stores. If there are no stores, then we don't 2079 // care if the pointers are *restrict*. 2080 if (!Stores.size()) { 2081 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2082 CanVecMem = true; 2083 return; 2084 } 2085 2086 MemoryDepChecker::DepCandidates DependentAccesses; 2087 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2088 2089 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2090 // multiple times on the same object. If the ptr is accessed twice, once 2091 // for read and once for write, it will only appear once (on the write 2092 // list). This is okay, since we are going to check for conflicts between 2093 // writes and between reads and writes, but not between reads and reads. 2094 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2095 2096 // Record uniform store addresses to identify if we have multiple stores 2097 // to the same address. 2098 SmallPtrSet<Value *, 16> UniformStores; 2099 2100 for (StoreInst *ST : Stores) { 2101 Value *Ptr = ST->getPointerOperand(); 2102 2103 if (isUniform(Ptr)) { 2104 // Record store instructions to loop invariant addresses 2105 StoresToInvariantAddresses.push_back(ST); 2106 HasDependenceInvolvingLoopInvariantAddress |= 2107 !UniformStores.insert(Ptr).second; 2108 } 2109 2110 // If we did *not* see this pointer before, insert it to the read-write 2111 // list. At this phase it is only a 'write' list. 2112 Type *AccessTy = getLoadStoreType(ST); 2113 if (Seen.insert({Ptr, AccessTy}).second) { 2114 ++NumReadWrites; 2115 2116 MemoryLocation Loc = MemoryLocation::get(ST); 2117 // The TBAA metadata could have a control dependency on the predication 2118 // condition, so we cannot rely on it when determining whether or not we 2119 // need runtime pointer checks. 2120 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2121 Loc.AATags.TBAA = nullptr; 2122 2123 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2124 [&Accesses, AccessTy, Loc](Value *Ptr) { 2125 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2126 Accesses.addStore(NewLoc, AccessTy); 2127 }); 2128 } 2129 } 2130 2131 if (IsAnnotatedParallel) { 2132 LLVM_DEBUG( 2133 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2134 << "checks.\n"); 2135 CanVecMem = true; 2136 return; 2137 } 2138 2139 for (LoadInst *LD : Loads) { 2140 Value *Ptr = LD->getPointerOperand(); 2141 // If we did *not* see this pointer before, insert it to the 2142 // read list. If we *did* see it before, then it is already in 2143 // the read-write list. This allows us to vectorize expressions 2144 // such as A[i] += x; Because the address of A[i] is a read-write 2145 // pointer. This only works if the index of A[i] is consecutive. 2146 // If the address of i is unknown (for example A[B[i]]) then we may 2147 // read a few words, modify, and write a few words, and some of the 2148 // words may be written to the same address. 2149 bool IsReadOnlyPtr = false; 2150 Type *AccessTy = getLoadStoreType(LD); 2151 if (Seen.insert({Ptr, AccessTy}).second || 2152 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2153 ++NumReads; 2154 IsReadOnlyPtr = true; 2155 } 2156 2157 // See if there is an unsafe dependency between a load to a uniform address and 2158 // store to the same uniform address. 2159 if (UniformStores.count(Ptr)) { 2160 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2161 "load and uniform store to the same address!\n"); 2162 HasDependenceInvolvingLoopInvariantAddress = true; 2163 } 2164 2165 MemoryLocation Loc = MemoryLocation::get(LD); 2166 // The TBAA metadata could have a control dependency on the predication 2167 // condition, so we cannot rely on it when determining whether or not we 2168 // need runtime pointer checks. 2169 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2170 Loc.AATags.TBAA = nullptr; 2171 2172 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2173 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2174 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2175 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2176 }); 2177 } 2178 2179 // If we write (or read-write) to a single destination and there are no 2180 // other reads in this loop then is it safe to vectorize. 2181 if (NumReadWrites == 1 && NumReads == 0) { 2182 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2183 CanVecMem = true; 2184 return; 2185 } 2186 2187 // Build dependence sets and check whether we need a runtime pointer bounds 2188 // check. 2189 Accesses.buildDependenceSets(); 2190 2191 // Find pointers with computable bounds. We are going to use this information 2192 // to place a runtime bound check. 2193 Value *UncomputablePtr = nullptr; 2194 bool CanDoRTIfNeeded = 2195 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2196 SymbolicStrides, UncomputablePtr, false); 2197 if (!CanDoRTIfNeeded) { 2198 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2199 recordAnalysis("CantIdentifyArrayBounds", I) 2200 << "cannot identify array bounds"; 2201 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2202 << "the array bounds.\n"); 2203 CanVecMem = false; 2204 return; 2205 } 2206 2207 LLVM_DEBUG( 2208 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2209 2210 CanVecMem = true; 2211 if (Accesses.isDependencyCheckNeeded()) { 2212 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2213 CanVecMem = DepChecker->areDepsSafe( 2214 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2215 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2216 2217 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2218 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2219 2220 // Clear the dependency checks. We assume they are not needed. 2221 Accesses.resetDepChecks(*DepChecker); 2222 2223 PtrRtChecking->reset(); 2224 PtrRtChecking->Need = true; 2225 2226 auto *SE = PSE->getSE(); 2227 UncomputablePtr = nullptr; 2228 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2229 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2230 2231 // Check that we found the bounds for the pointer. 2232 if (!CanDoRTIfNeeded) { 2233 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2234 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2235 << "cannot check memory dependencies at runtime"; 2236 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2237 CanVecMem = false; 2238 return; 2239 } 2240 2241 CanVecMem = true; 2242 } 2243 } 2244 2245 if (HasConvergentOp) { 2246 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2247 << "cannot add control dependency to convergent operation"; 2248 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2249 "would be needed with a convergent operation\n"); 2250 CanVecMem = false; 2251 return; 2252 } 2253 2254 if (CanVecMem) 2255 LLVM_DEBUG( 2256 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2257 << (PtrRtChecking->Need ? "" : " don't") 2258 << " need runtime memory checks.\n"); 2259 else 2260 emitUnsafeDependenceRemark(); 2261 } 2262 2263 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2264 auto Deps = getDepChecker().getDependences(); 2265 if (!Deps) 2266 return; 2267 auto Found = std::find_if( 2268 Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) { 2269 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2270 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2271 }); 2272 if (Found == Deps->end()) 2273 return; 2274 MemoryDepChecker::Dependence Dep = *Found; 2275 2276 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2277 2278 // Emit remark for first unsafe dependence 2279 OptimizationRemarkAnalysis &R = 2280 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2281 << "unsafe dependent memory operations in loop. Use " 2282 "#pragma loop distribute(enable) to allow loop distribution " 2283 "to attempt to isolate the offending operations into a separate " 2284 "loop"; 2285 2286 switch (Dep.Type) { 2287 case MemoryDepChecker::Dependence::NoDep: 2288 case MemoryDepChecker::Dependence::Forward: 2289 case MemoryDepChecker::Dependence::BackwardVectorizable: 2290 llvm_unreachable("Unexpected dependence"); 2291 case MemoryDepChecker::Dependence::Backward: 2292 R << "\nBackward loop carried data dependence."; 2293 break; 2294 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2295 R << "\nForward loop carried data dependence that prevents " 2296 "store-to-load forwarding."; 2297 break; 2298 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2299 R << "\nBackward loop carried data dependence that prevents " 2300 "store-to-load forwarding."; 2301 break; 2302 case MemoryDepChecker::Dependence::Unknown: 2303 R << "\nUnknown data dependence."; 2304 break; 2305 } 2306 2307 if (Instruction *I = Dep.getSource(*this)) { 2308 DebugLoc SourceLoc = I->getDebugLoc(); 2309 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2310 SourceLoc = DD->getDebugLoc(); 2311 if (SourceLoc) 2312 R << " Memory location is the same as accessed at " 2313 << ore::NV("Location", SourceLoc); 2314 } 2315 } 2316 2317 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2318 DominatorTree *DT) { 2319 assert(TheLoop->contains(BB) && "Unknown block used"); 2320 2321 // Blocks that do not dominate the latch need predication. 2322 BasicBlock* Latch = TheLoop->getLoopLatch(); 2323 return !DT->dominates(BB, Latch); 2324 } 2325 2326 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2327 Instruction *I) { 2328 assert(!Report && "Multiple reports generated"); 2329 2330 Value *CodeRegion = TheLoop->getHeader(); 2331 DebugLoc DL = TheLoop->getStartLoc(); 2332 2333 if (I) { 2334 CodeRegion = I->getParent(); 2335 // If there is no debug location attached to the instruction, revert back to 2336 // using the loop's. 2337 if (I->getDebugLoc()) 2338 DL = I->getDebugLoc(); 2339 } 2340 2341 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2342 CodeRegion); 2343 return *Report; 2344 } 2345 2346 bool LoopAccessInfo::isUniform(Value *V) const { 2347 auto *SE = PSE->getSE(); 2348 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2349 // never considered uniform. 2350 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2351 // trivially loop-invariant FP values to be considered uniform. 2352 if (!SE->isSCEVable(V->getType())) 2353 return false; 2354 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2355 } 2356 2357 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2358 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2359 if (!Ptr) 2360 return; 2361 2362 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2363 if (!Stride) 2364 return; 2365 2366 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2367 "versioning:"); 2368 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2369 2370 // Avoid adding the "Stride == 1" predicate when we know that 2371 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2372 // or zero iteration loop, as Trip-Count <= Stride == 1. 2373 // 2374 // TODO: We are currently not making a very informed decision on when it is 2375 // beneficial to apply stride versioning. It might make more sense that the 2376 // users of this analysis (such as the vectorizer) will trigger it, based on 2377 // their specific cost considerations; For example, in cases where stride 2378 // versioning does not help resolving memory accesses/dependences, the 2379 // vectorizer should evaluate the cost of the runtime test, and the benefit 2380 // of various possible stride specializations, considering the alternatives 2381 // of using gather/scatters (if available). 2382 2383 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2384 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2385 2386 // Match the types so we can compare the stride and the BETakenCount. 2387 // The Stride can be positive/negative, so we sign extend Stride; 2388 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2389 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2390 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2391 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2392 const SCEV *CastedStride = StrideExpr; 2393 const SCEV *CastedBECount = BETakenCount; 2394 ScalarEvolution *SE = PSE->getSE(); 2395 if (BETypeSizeBits >= StrideTypeSizeBits) 2396 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2397 else 2398 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2399 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2400 // Since TripCount == BackEdgeTakenCount + 1, checking: 2401 // "Stride >= TripCount" is equivalent to checking: 2402 // Stride - BETakenCount > 0 2403 if (SE->isKnownPositive(StrideMinusBETaken)) { 2404 LLVM_DEBUG( 2405 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2406 "Stride==1 predicate will imply that the loop executes " 2407 "at most once.\n"); 2408 return; 2409 } 2410 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2411 2412 SymbolicStrides[Ptr] = Stride; 2413 StrideSet.insert(Stride); 2414 } 2415 2416 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2417 const TargetLibraryInfo *TLI, AAResults *AA, 2418 DominatorTree *DT, LoopInfo *LI) 2419 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2420 PtrRtChecking(nullptr), 2421 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2422 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2423 if (canAnalyzeLoop()) { 2424 analyzeLoop(AA, LI, TLI, DT); 2425 } 2426 } 2427 2428 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2429 if (CanVecMem) { 2430 OS.indent(Depth) << "Memory dependences are safe"; 2431 if (MaxSafeDepDistBytes != -1ULL) 2432 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2433 << " bytes"; 2434 if (PtrRtChecking->Need) 2435 OS << " with run-time checks"; 2436 OS << "\n"; 2437 } 2438 2439 if (HasConvergentOp) 2440 OS.indent(Depth) << "Has convergent operation in loop\n"; 2441 2442 if (Report) 2443 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2444 2445 if (auto *Dependences = DepChecker->getDependences()) { 2446 OS.indent(Depth) << "Dependences:\n"; 2447 for (auto &Dep : *Dependences) { 2448 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2449 OS << "\n"; 2450 } 2451 } else 2452 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2453 2454 // List the pair of accesses need run-time checks to prove independence. 2455 PtrRtChecking->print(OS, Depth); 2456 OS << "\n"; 2457 2458 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2459 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2460 << "found in loop.\n"; 2461 2462 OS.indent(Depth) << "SCEV assumptions:\n"; 2463 PSE->getPredicate().print(OS, Depth); 2464 2465 OS << "\n"; 2466 2467 OS.indent(Depth) << "Expressions re-written:\n"; 2468 PSE->print(OS, Depth); 2469 } 2470 2471 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2472 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2473 } 2474 2475 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2476 auto &LAI = LoopAccessInfoMap[L]; 2477 2478 if (!LAI) 2479 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2480 2481 return *LAI; 2482 } 2483 2484 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2485 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2486 2487 for (Loop *TopLevelLoop : *LI) 2488 for (Loop *L : depth_first(TopLevelLoop)) { 2489 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2490 auto &LAI = LAA.getInfo(L); 2491 LAI.print(OS, 4); 2492 } 2493 } 2494 2495 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2496 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2497 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2498 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2499 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2500 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2501 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2502 2503 return false; 2504 } 2505 2506 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2507 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2508 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2509 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2510 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2511 2512 AU.setPreservesAll(); 2513 } 2514 2515 char LoopAccessLegacyAnalysis::ID = 0; 2516 static const char laa_name[] = "Loop Access Analysis"; 2517 #define LAA_NAME "loop-accesses" 2518 2519 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2520 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2521 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2522 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2523 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2524 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2525 2526 AnalysisKey LoopAccessAnalysis::Key; 2527 2528 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2529 LoopStandardAnalysisResults &AR) { 2530 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2531 } 2532 2533 namespace llvm { 2534 2535 Pass *createLAAPass() { 2536 return new LoopAccessLegacyAnalysis(); 2537 } 2538 2539 } // end namespace llvm 2540