1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect dependences up to this threshold.
62 static cl::opt<unsigned>
63     MaxDependences("max-dependences", cl::Hidden,
64                    cl::desc("Maximum number of dependences collected by "
65                             "loop-access analysis (default = 100)"),
66                    cl::init(100));
67 
68 /// \brief Enable store-to-load forwarding conflict detection. This option can
69 /// be disabled for correctness testing.
70 static cl::opt<bool> EnableForwardingConflictDetection(
71     "store-to-load-forwarding-conflict-detection", cl::Hidden,
72     cl::desc("Enable conflict detection in loop-access analysis"),
73     cl::init(true));
74 
75 bool VectorizerParams::isInterleaveForced() {
76   return ::VectorizationInterleave.getNumOccurrences() > 0;
77 }
78 
79 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
80                                     const Function *TheFunction,
81                                     const Loop *TheLoop,
82                                     const char *PassName) {
83   DebugLoc DL = TheLoop->getStartLoc();
84   if (const Instruction *I = Message.getInstr())
85     DL = I->getDebugLoc();
86   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
87                                  *TheFunction, DL, Message.str());
88 }
89 
90 Value *llvm::stripIntegerCast(Value *V) {
91   if (CastInst *CI = dyn_cast<CastInst>(V))
92     if (CI->getOperand(0)->getType()->isIntegerTy())
93       return CI->getOperand(0);
94   return V;
95 }
96 
97 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
98                                             const ValueToValueMap &PtrToStride,
99                                             Value *Ptr, Value *OrigPtr) {
100   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
101 
102   // If there is an entry in the map return the SCEV of the pointer with the
103   // symbolic stride replaced by one.
104   ValueToValueMap::const_iterator SI =
105       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
106   if (SI != PtrToStride.end()) {
107     Value *StrideVal = SI->second;
108 
109     // Strip casts.
110     StrideVal = stripIntegerCast(StrideVal);
111 
112     // Replace symbolic stride by one.
113     Value *One = ConstantInt::get(StrideVal->getType(), 1);
114     ValueToValueMap RewriteMap;
115     RewriteMap[StrideVal] = One;
116 
117     ScalarEvolution *SE = PSE.getSE();
118     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
119     const auto *CT =
120         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
121 
122     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
123     auto *Expr = PSE.getSCEV(Ptr);
124 
125     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
126                  << "\n");
127     return Expr;
128   }
129 
130   // Otherwise, just return the SCEV of the original pointer.
131   return OrigSCEV;
132 }
133 
134 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
135                                     unsigned DepSetId, unsigned ASId,
136                                     const ValueToValueMap &Strides,
137                                     PredicatedScalarEvolution &PSE) {
138   // Get the stride replaced scev.
139   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
140   ScalarEvolution *SE = PSE.getSE();
141 
142   const SCEV *ScStart;
143   const SCEV *ScEnd;
144 
145   if (SE->isLoopInvariant(Sc, Lp))
146     ScStart = ScEnd = Sc;
147   else {
148     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
149     assert(AR && "Invalid addrec expression");
150     const SCEV *Ex = PSE.getBackedgeTakenCount();
151 
152     ScStart = AR->getStart();
153     ScEnd = AR->evaluateAtIteration(Ex, *SE);
154     const SCEV *Step = AR->getStepRecurrence(*SE);
155 
156     // For expressions with negative step, the upper bound is ScStart and the
157     // lower bound is ScEnd.
158     if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
159       if (CStep->getValue()->isNegative())
160         std::swap(ScStart, ScEnd);
161     } else {
162       // Fallback case: the step is not constant, but the we can still
163       // get the upper and lower bounds of the interval by using min/max
164       // expressions.
165       ScStart = SE->getUMinExpr(ScStart, ScEnd);
166       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
167     }
168   }
169 
170   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
171 }
172 
173 SmallVector<RuntimePointerChecking::PointerCheck, 4>
174 RuntimePointerChecking::generateChecks() const {
175   SmallVector<PointerCheck, 4> Checks;
176 
177   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
178     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
179       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
180       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
181 
182       if (needsChecking(CGI, CGJ))
183         Checks.push_back(std::make_pair(&CGI, &CGJ));
184     }
185   }
186   return Checks;
187 }
188 
189 void RuntimePointerChecking::generateChecks(
190     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
191   assert(Checks.empty() && "Checks is not empty");
192   groupChecks(DepCands, UseDependencies);
193   Checks = generateChecks();
194 }
195 
196 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
197                                            const CheckingPtrGroup &N) const {
198   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
199     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
200       if (needsChecking(M.Members[I], N.Members[J]))
201         return true;
202   return false;
203 }
204 
205 /// Compare \p I and \p J and return the minimum.
206 /// Return nullptr in case we couldn't find an answer.
207 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
208                                    ScalarEvolution *SE) {
209   const SCEV *Diff = SE->getMinusSCEV(J, I);
210   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
211 
212   if (!C)
213     return nullptr;
214   if (C->getValue()->isNegative())
215     return J;
216   return I;
217 }
218 
219 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
220   const SCEV *Start = RtCheck.Pointers[Index].Start;
221   const SCEV *End = RtCheck.Pointers[Index].End;
222 
223   // Compare the starts and ends with the known minimum and maximum
224   // of this set. We need to know how we compare against the min/max
225   // of the set in order to be able to emit memchecks.
226   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
227   if (!Min0)
228     return false;
229 
230   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
231   if (!Min1)
232     return false;
233 
234   // Update the low bound  expression if we've found a new min value.
235   if (Min0 == Start)
236     Low = Start;
237 
238   // Update the high bound expression if we've found a new max value.
239   if (Min1 != End)
240     High = End;
241 
242   Members.push_back(Index);
243   return true;
244 }
245 
246 void RuntimePointerChecking::groupChecks(
247     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
248   // We build the groups from dependency candidates equivalence classes
249   // because:
250   //    - We know that pointers in the same equivalence class share
251   //      the same underlying object and therefore there is a chance
252   //      that we can compare pointers
253   //    - We wouldn't be able to merge two pointers for which we need
254   //      to emit a memcheck. The classes in DepCands are already
255   //      conveniently built such that no two pointers in the same
256   //      class need checking against each other.
257 
258   // We use the following (greedy) algorithm to construct the groups
259   // For every pointer in the equivalence class:
260   //   For each existing group:
261   //   - if the difference between this pointer and the min/max bounds
262   //     of the group is a constant, then make the pointer part of the
263   //     group and update the min/max bounds of that group as required.
264 
265   CheckingGroups.clear();
266 
267   // If we need to check two pointers to the same underlying object
268   // with a non-constant difference, we shouldn't perform any pointer
269   // grouping with those pointers. This is because we can easily get
270   // into cases where the resulting check would return false, even when
271   // the accesses are safe.
272   //
273   // The following example shows this:
274   // for (i = 0; i < 1000; ++i)
275   //   a[5000 + i * m] = a[i] + a[i + 9000]
276   //
277   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
278   // (0, 10000) which is always false. However, if m is 1, there is no
279   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
280   // us to perform an accurate check in this case.
281   //
282   // The above case requires that we have an UnknownDependence between
283   // accesses to the same underlying object. This cannot happen unless
284   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
285   // is also false. In this case we will use the fallback path and create
286   // separate checking groups for all pointers.
287 
288   // If we don't have the dependency partitions, construct a new
289   // checking pointer group for each pointer. This is also required
290   // for correctness, because in this case we can have checking between
291   // pointers to the same underlying object.
292   if (!UseDependencies) {
293     for (unsigned I = 0; I < Pointers.size(); ++I)
294       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
295     return;
296   }
297 
298   unsigned TotalComparisons = 0;
299 
300   DenseMap<Value *, unsigned> PositionMap;
301   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
302     PositionMap[Pointers[Index].PointerValue] = Index;
303 
304   // We need to keep track of what pointers we've already seen so we
305   // don't process them twice.
306   SmallSet<unsigned, 2> Seen;
307 
308   // Go through all equivalence classes, get the "pointer check groups"
309   // and add them to the overall solution. We use the order in which accesses
310   // appear in 'Pointers' to enforce determinism.
311   for (unsigned I = 0; I < Pointers.size(); ++I) {
312     // We've seen this pointer before, and therefore already processed
313     // its equivalence class.
314     if (Seen.count(I))
315       continue;
316 
317     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
318                                            Pointers[I].IsWritePtr);
319 
320     SmallVector<CheckingPtrGroup, 2> Groups;
321     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
322 
323     // Because DepCands is constructed by visiting accesses in the order in
324     // which they appear in alias sets (which is deterministic) and the
325     // iteration order within an equivalence class member is only dependent on
326     // the order in which unions and insertions are performed on the
327     // equivalence class, the iteration order is deterministic.
328     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
329          MI != ME; ++MI) {
330       unsigned Pointer = PositionMap[MI->getPointer()];
331       bool Merged = false;
332       // Mark this pointer as seen.
333       Seen.insert(Pointer);
334 
335       // Go through all the existing sets and see if we can find one
336       // which can include this pointer.
337       for (CheckingPtrGroup &Group : Groups) {
338         // Don't perform more than a certain amount of comparisons.
339         // This should limit the cost of grouping the pointers to something
340         // reasonable.  If we do end up hitting this threshold, the algorithm
341         // will create separate groups for all remaining pointers.
342         if (TotalComparisons > MemoryCheckMergeThreshold)
343           break;
344 
345         TotalComparisons++;
346 
347         if (Group.addPointer(Pointer)) {
348           Merged = true;
349           break;
350         }
351       }
352 
353       if (!Merged)
354         // We couldn't add this pointer to any existing set or the threshold
355         // for the number of comparisons has been reached. Create a new group
356         // to hold the current pointer.
357         Groups.push_back(CheckingPtrGroup(Pointer, *this));
358     }
359 
360     // We've computed the grouped checks for this partition.
361     // Save the results and continue with the next one.
362     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
363   }
364 }
365 
366 bool RuntimePointerChecking::arePointersInSamePartition(
367     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
368     unsigned PtrIdx2) {
369   return (PtrToPartition[PtrIdx1] != -1 &&
370           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
371 }
372 
373 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
374   const PointerInfo &PointerI = Pointers[I];
375   const PointerInfo &PointerJ = Pointers[J];
376 
377   // No need to check if two readonly pointers intersect.
378   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
379     return false;
380 
381   // Only need to check pointers between two different dependency sets.
382   if (PointerI.DependencySetId == PointerJ.DependencySetId)
383     return false;
384 
385   // Only need to check pointers in the same alias set.
386   if (PointerI.AliasSetId != PointerJ.AliasSetId)
387     return false;
388 
389   return true;
390 }
391 
392 void RuntimePointerChecking::printChecks(
393     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
394     unsigned Depth) const {
395   unsigned N = 0;
396   for (const auto &Check : Checks) {
397     const auto &First = Check.first->Members, &Second = Check.second->Members;
398 
399     OS.indent(Depth) << "Check " << N++ << ":\n";
400 
401     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
402     for (unsigned K = 0; K < First.size(); ++K)
403       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
404 
405     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
406     for (unsigned K = 0; K < Second.size(); ++K)
407       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
408   }
409 }
410 
411 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
412 
413   OS.indent(Depth) << "Run-time memory checks:\n";
414   printChecks(OS, Checks, Depth);
415 
416   OS.indent(Depth) << "Grouped accesses:\n";
417   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
418     const auto &CG = CheckingGroups[I];
419 
420     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
421     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
422                          << ")\n";
423     for (unsigned J = 0; J < CG.Members.size(); ++J) {
424       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
425                            << "\n";
426     }
427   }
428 }
429 
430 namespace {
431 /// \brief Analyses memory accesses in a loop.
432 ///
433 /// Checks whether run time pointer checks are needed and builds sets for data
434 /// dependence checking.
435 class AccessAnalysis {
436 public:
437   /// \brief Read or write access location.
438   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
439   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
440 
441   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
442                  MemoryDepChecker::DepCandidates &DA,
443                  PredicatedScalarEvolution &PSE)
444       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
445         PSE(PSE) {}
446 
447   /// \brief Register a load  and whether it is only read from.
448   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
449     Value *Ptr = const_cast<Value*>(Loc.Ptr);
450     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
451     Accesses.insert(MemAccessInfo(Ptr, false));
452     if (IsReadOnly)
453       ReadOnlyPtr.insert(Ptr);
454   }
455 
456   /// \brief Register a store.
457   void addStore(MemoryLocation &Loc) {
458     Value *Ptr = const_cast<Value*>(Loc.Ptr);
459     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
460     Accesses.insert(MemAccessInfo(Ptr, true));
461   }
462 
463   /// \brief Check whether we can check the pointers at runtime for
464   /// non-intersection.
465   ///
466   /// Returns true if we need no check or if we do and we can generate them
467   /// (i.e. the pointers have computable bounds).
468   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
469                        Loop *TheLoop, const ValueToValueMap &Strides,
470                        bool ShouldCheckWrap = false);
471 
472   /// \brief Goes over all memory accesses, checks whether a RT check is needed
473   /// and builds sets of dependent accesses.
474   void buildDependenceSets() {
475     processMemAccesses();
476   }
477 
478   /// \brief Initial processing of memory accesses determined that we need to
479   /// perform dependency checking.
480   ///
481   /// Note that this can later be cleared if we retry memcheck analysis without
482   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
483   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
484 
485   /// We decided that no dependence analysis would be used.  Reset the state.
486   void resetDepChecks(MemoryDepChecker &DepChecker) {
487     CheckDeps.clear();
488     DepChecker.clearDependences();
489   }
490 
491   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
492 
493 private:
494   typedef SetVector<MemAccessInfo> PtrAccessSet;
495 
496   /// \brief Go over all memory access and check whether runtime pointer checks
497   /// are needed and build sets of dependency check candidates.
498   void processMemAccesses();
499 
500   /// Set of all accesses.
501   PtrAccessSet Accesses;
502 
503   const DataLayout &DL;
504 
505   /// Set of accesses that need a further dependence check.
506   MemAccessInfoSet CheckDeps;
507 
508   /// Set of pointers that are read only.
509   SmallPtrSet<Value*, 16> ReadOnlyPtr;
510 
511   /// An alias set tracker to partition the access set by underlying object and
512   //intrinsic property (such as TBAA metadata).
513   AliasSetTracker AST;
514 
515   LoopInfo *LI;
516 
517   /// Sets of potentially dependent accesses - members of one set share an
518   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
519   /// dependence check.
520   MemoryDepChecker::DepCandidates &DepCands;
521 
522   /// \brief Initial processing of memory accesses determined that we may need
523   /// to add memchecks.  Perform the analysis to determine the necessary checks.
524   ///
525   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
526   /// memcheck analysis without dependency checking
527   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
528   /// while this remains set if we have potentially dependent accesses.
529   bool IsRTCheckAnalysisNeeded;
530 
531   /// The SCEV predicate containing all the SCEV-related assumptions.
532   PredicatedScalarEvolution &PSE;
533 };
534 
535 } // end anonymous namespace
536 
537 /// \brief Check whether a pointer can participate in a runtime bounds check.
538 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
539                                 const ValueToValueMap &Strides, Value *Ptr,
540                                 Loop *L) {
541   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
542 
543   // The bounds for loop-invariant pointer is trivial.
544   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
545     return true;
546 
547   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
548   if (!AR)
549     return false;
550 
551   return AR->isAffine();
552 }
553 
554 /// \brief Check whether a pointer address cannot wrap.
555 static bool isNoWrap(PredicatedScalarEvolution &PSE,
556                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
557   const SCEV *PtrScev = PSE.getSCEV(Ptr);
558   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
559     return true;
560 
561   int Stride = getPtrStride(PSE, Ptr, L, Strides);
562   return Stride == 1;
563 }
564 
565 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
566                                      ScalarEvolution *SE, Loop *TheLoop,
567                                      const ValueToValueMap &StridesMap,
568                                      bool ShouldCheckWrap) {
569   // Find pointers with computable bounds. We are going to use this information
570   // to place a runtime bound check.
571   bool CanDoRT = true;
572 
573   bool NeedRTCheck = false;
574   if (!IsRTCheckAnalysisNeeded) return true;
575 
576   bool IsDepCheckNeeded = isDependencyCheckNeeded();
577 
578   // We assign a consecutive id to access from different alias sets.
579   // Accesses between different groups doesn't need to be checked.
580   unsigned ASId = 1;
581   for (auto &AS : AST) {
582     int NumReadPtrChecks = 0;
583     int NumWritePtrChecks = 0;
584 
585     // We assign consecutive id to access from different dependence sets.
586     // Accesses within the same set don't need a runtime check.
587     unsigned RunningDepId = 1;
588     DenseMap<Value *, unsigned> DepSetId;
589 
590     for (auto A : AS) {
591       Value *Ptr = A.getValue();
592       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
593       MemAccessInfo Access(Ptr, IsWrite);
594 
595       if (IsWrite)
596         ++NumWritePtrChecks;
597       else
598         ++NumReadPtrChecks;
599 
600       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
601           // When we run after a failing dependency check we have to make sure
602           // we don't have wrapping pointers.
603           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
604         // The id of the dependence set.
605         unsigned DepId;
606 
607         if (IsDepCheckNeeded) {
608           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
609           unsigned &LeaderId = DepSetId[Leader];
610           if (!LeaderId)
611             LeaderId = RunningDepId++;
612           DepId = LeaderId;
613         } else
614           // Each access has its own dependence set.
615           DepId = RunningDepId++;
616 
617         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
618 
619         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
620       } else {
621         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
622         CanDoRT = false;
623       }
624     }
625 
626     // If we have at least two writes or one write and a read then we need to
627     // check them.  But there is no need to checks if there is only one
628     // dependence set for this alias set.
629     //
630     // Note that this function computes CanDoRT and NeedRTCheck independently.
631     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
632     // for which we couldn't find the bounds but we don't actually need to emit
633     // any checks so it does not matter.
634     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
635       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
636                                                  NumWritePtrChecks >= 1));
637 
638     ++ASId;
639   }
640 
641   // If the pointers that we would use for the bounds comparison have different
642   // address spaces, assume the values aren't directly comparable, so we can't
643   // use them for the runtime check. We also have to assume they could
644   // overlap. In the future there should be metadata for whether address spaces
645   // are disjoint.
646   unsigned NumPointers = RtCheck.Pointers.size();
647   for (unsigned i = 0; i < NumPointers; ++i) {
648     for (unsigned j = i + 1; j < NumPointers; ++j) {
649       // Only need to check pointers between two different dependency sets.
650       if (RtCheck.Pointers[i].DependencySetId ==
651           RtCheck.Pointers[j].DependencySetId)
652        continue;
653       // Only need to check pointers in the same alias set.
654       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
655         continue;
656 
657       Value *PtrI = RtCheck.Pointers[i].PointerValue;
658       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
659 
660       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
661       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
662       if (ASi != ASj) {
663         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
664                        " different address spaces\n");
665         return false;
666       }
667     }
668   }
669 
670   if (NeedRTCheck && CanDoRT)
671     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
672 
673   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
674                << " pointer comparisons.\n");
675 
676   RtCheck.Need = NeedRTCheck;
677 
678   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
679   if (!CanDoRTIfNeeded)
680     RtCheck.reset();
681   return CanDoRTIfNeeded;
682 }
683 
684 void AccessAnalysis::processMemAccesses() {
685   // We process the set twice: first we process read-write pointers, last we
686   // process read-only pointers. This allows us to skip dependence tests for
687   // read-only pointers.
688 
689   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
690   DEBUG(dbgs() << "  AST: "; AST.dump());
691   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
692   DEBUG({
693     for (auto A : Accesses)
694       dbgs() << "\t" << *A.getPointer() << " (" <<
695                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
696                                          "read-only" : "read")) << ")\n";
697   });
698 
699   // The AliasSetTracker has nicely partitioned our pointers by metadata
700   // compatibility and potential for underlying-object overlap. As a result, we
701   // only need to check for potential pointer dependencies within each alias
702   // set.
703   for (auto &AS : AST) {
704     // Note that both the alias-set tracker and the alias sets themselves used
705     // linked lists internally and so the iteration order here is deterministic
706     // (matching the original instruction order within each set).
707 
708     bool SetHasWrite = false;
709 
710     // Map of pointers to last access encountered.
711     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
712     UnderlyingObjToAccessMap ObjToLastAccess;
713 
714     // Set of access to check after all writes have been processed.
715     PtrAccessSet DeferredAccesses;
716 
717     // Iterate over each alias set twice, once to process read/write pointers,
718     // and then to process read-only pointers.
719     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
720       bool UseDeferred = SetIteration > 0;
721       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
722 
723       for (auto AV : AS) {
724         Value *Ptr = AV.getValue();
725 
726         // For a single memory access in AliasSetTracker, Accesses may contain
727         // both read and write, and they both need to be handled for CheckDeps.
728         for (auto AC : S) {
729           if (AC.getPointer() != Ptr)
730             continue;
731 
732           bool IsWrite = AC.getInt();
733 
734           // If we're using the deferred access set, then it contains only
735           // reads.
736           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
737           if (UseDeferred && !IsReadOnlyPtr)
738             continue;
739           // Otherwise, the pointer must be in the PtrAccessSet, either as a
740           // read or a write.
741           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
742                   S.count(MemAccessInfo(Ptr, false))) &&
743                  "Alias-set pointer not in the access set?");
744 
745           MemAccessInfo Access(Ptr, IsWrite);
746           DepCands.insert(Access);
747 
748           // Memorize read-only pointers for later processing and skip them in
749           // the first round (they need to be checked after we have seen all
750           // write pointers). Note: we also mark pointer that are not
751           // consecutive as "read-only" pointers (so that we check
752           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
753           if (!UseDeferred && IsReadOnlyPtr) {
754             DeferredAccesses.insert(Access);
755             continue;
756           }
757 
758           // If this is a write - check other reads and writes for conflicts. If
759           // this is a read only check other writes for conflicts (but only if
760           // there is no other write to the ptr - this is an optimization to
761           // catch "a[i] = a[i] + " without having to do a dependence check).
762           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
763             CheckDeps.insert(Access);
764             IsRTCheckAnalysisNeeded = true;
765           }
766 
767           if (IsWrite)
768             SetHasWrite = true;
769 
770           // Create sets of pointers connected by a shared alias set and
771           // underlying object.
772           typedef SmallVector<Value *, 16> ValueVector;
773           ValueVector TempObjects;
774 
775           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
776           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
777           for (Value *UnderlyingObj : TempObjects) {
778             // nullptr never alias, don't join sets for pointer that have "null"
779             // in their UnderlyingObjects list.
780             if (isa<ConstantPointerNull>(UnderlyingObj))
781               continue;
782 
783             UnderlyingObjToAccessMap::iterator Prev =
784                 ObjToLastAccess.find(UnderlyingObj);
785             if (Prev != ObjToLastAccess.end())
786               DepCands.unionSets(Access, Prev->second);
787 
788             ObjToLastAccess[UnderlyingObj] = Access;
789             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
790           }
791         }
792       }
793     }
794   }
795 }
796 
797 static bool isInBoundsGep(Value *Ptr) {
798   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
799     return GEP->isInBounds();
800   return false;
801 }
802 
803 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
804 /// i.e. monotonically increasing/decreasing.
805 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
806                            PredicatedScalarEvolution &PSE, const Loop *L) {
807   // FIXME: This should probably only return true for NUW.
808   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
809     return true;
810 
811   // Scalar evolution does not propagate the non-wrapping flags to values that
812   // are derived from a non-wrapping induction variable because non-wrapping
813   // could be flow-sensitive.
814   //
815   // Look through the potentially overflowing instruction to try to prove
816   // non-wrapping for the *specific* value of Ptr.
817 
818   // The arithmetic implied by an inbounds GEP can't overflow.
819   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
820   if (!GEP || !GEP->isInBounds())
821     return false;
822 
823   // Make sure there is only one non-const index and analyze that.
824   Value *NonConstIndex = nullptr;
825   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
826     if (!isa<ConstantInt>(*Index)) {
827       if (NonConstIndex)
828         return false;
829       NonConstIndex = *Index;
830     }
831   if (!NonConstIndex)
832     // The recurrence is on the pointer, ignore for now.
833     return false;
834 
835   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
836   // AddRec using a NSW operation.
837   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
838     if (OBO->hasNoSignedWrap() &&
839         // Assume constant for other the operand so that the AddRec can be
840         // easily found.
841         isa<ConstantInt>(OBO->getOperand(1))) {
842       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
843 
844       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
845         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
846     }
847 
848   return false;
849 }
850 
851 /// \brief Check whether the access through \p Ptr has a constant stride.
852 int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
853                        const Loop *Lp, const ValueToValueMap &StridesMap,
854                        bool Assume) {
855   Type *Ty = Ptr->getType();
856   assert(Ty->isPointerTy() && "Unexpected non-ptr");
857 
858   // Make sure that the pointer does not point to aggregate types.
859   auto *PtrTy = cast<PointerType>(Ty);
860   if (PtrTy->getElementType()->isAggregateType()) {
861     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
862                  << "\n");
863     return 0;
864   }
865 
866   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
867 
868   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
869   if (Assume && !AR)
870     AR = PSE.getAsAddRec(Ptr);
871 
872   if (!AR) {
873     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
874                  << " SCEV: " << *PtrScev << "\n");
875     return 0;
876   }
877 
878   // The accesss function must stride over the innermost loop.
879   if (Lp != AR->getLoop()) {
880     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
881           *Ptr << " SCEV: " << *AR << "\n");
882     return 0;
883   }
884 
885   // The address calculation must not wrap. Otherwise, a dependence could be
886   // inverted.
887   // An inbounds getelementptr that is a AddRec with a unit stride
888   // cannot wrap per definition. The unit stride requirement is checked later.
889   // An getelementptr without an inbounds attribute and unit stride would have
890   // to access the pointer value "0" which is undefined behavior in address
891   // space 0, therefore we can also vectorize this case.
892   bool IsInBoundsGEP = isInBoundsGep(Ptr);
893   bool IsNoWrapAddRec =
894       PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
895       isNoWrapAddRec(Ptr, AR, PSE, Lp);
896   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
897   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
898     if (Assume) {
899       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
900       IsNoWrapAddRec = true;
901       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
902                    << "LAA:   Pointer: " << *Ptr << "\n"
903                    << "LAA:   SCEV: " << *AR << "\n"
904                    << "LAA:   Added an overflow assumption\n");
905     } else {
906       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
907                    << *Ptr << " SCEV: " << *AR << "\n");
908       return 0;
909     }
910   }
911 
912   // Check the step is constant.
913   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
914 
915   // Calculate the pointer stride and check if it is constant.
916   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
917   if (!C) {
918     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
919           " SCEV: " << *AR << "\n");
920     return 0;
921   }
922 
923   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
924   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
925   const APInt &APStepVal = C->getAPInt();
926 
927   // Huge step value - give up.
928   if (APStepVal.getBitWidth() > 64)
929     return 0;
930 
931   int64_t StepVal = APStepVal.getSExtValue();
932 
933   // Strided access.
934   int64_t Stride = StepVal / Size;
935   int64_t Rem = StepVal % Size;
936   if (Rem)
937     return 0;
938 
939   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
940   // know we can't "wrap around the address space". In case of address space
941   // zero we know that this won't happen without triggering undefined behavior.
942   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
943       Stride != 1 && Stride != -1) {
944     if (Assume) {
945       // We can avoid this case by adding a run-time check.
946       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
947                    << "inbouds or in address space 0 may wrap:\n"
948                    << "LAA:   Pointer: " << *Ptr << "\n"
949                    << "LAA:   SCEV: " << *AR << "\n"
950                    << "LAA:   Added an overflow assumption\n");
951       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
952     } else
953       return 0;
954   }
955 
956   return Stride;
957 }
958 
959 /// Take the pointer operand from the Load/Store instruction.
960 /// Returns NULL if this is not a valid Load/Store instruction.
961 static Value *getPointerOperand(Value *I) {
962   if (LoadInst *LI = dyn_cast<LoadInst>(I))
963     return LI->getPointerOperand();
964   if (StoreInst *SI = dyn_cast<StoreInst>(I))
965     return SI->getPointerOperand();
966   return nullptr;
967 }
968 
969 /// Take the address space operand from the Load/Store instruction.
970 /// Returns -1 if this is not a valid Load/Store instruction.
971 static unsigned getAddressSpaceOperand(Value *I) {
972   if (LoadInst *L = dyn_cast<LoadInst>(I))
973     return L->getPointerAddressSpace();
974   if (StoreInst *S = dyn_cast<StoreInst>(I))
975     return S->getPointerAddressSpace();
976   return -1;
977 }
978 
979 /// Returns true if the memory operations \p A and \p B are consecutive.
980 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
981                                ScalarEvolution &SE, bool CheckType) {
982   Value *PtrA = getPointerOperand(A);
983   Value *PtrB = getPointerOperand(B);
984   unsigned ASA = getAddressSpaceOperand(A);
985   unsigned ASB = getAddressSpaceOperand(B);
986 
987   // Check that the address spaces match and that the pointers are valid.
988   if (!PtrA || !PtrB || (ASA != ASB))
989     return false;
990 
991   // Make sure that A and B are different pointers.
992   if (PtrA == PtrB)
993     return false;
994 
995   // Make sure that A and B have the same type if required.
996   if(CheckType && PtrA->getType() != PtrB->getType())
997       return false;
998 
999   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1000   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1001   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1002 
1003   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1004   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1005   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1006 
1007   //  OffsetDelta = OffsetB - OffsetA;
1008   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1009   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1010   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1011   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1012   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1013   // Check if they are based on the same pointer. That makes the offsets
1014   // sufficient.
1015   if (PtrA == PtrB)
1016     return OffsetDelta == Size;
1017 
1018   // Compute the necessary base pointer delta to have the necessary final delta
1019   // equal to the size.
1020   // BaseDelta = Size - OffsetDelta;
1021   const SCEV *SizeSCEV = SE.getConstant(Size);
1022   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1023 
1024   // Otherwise compute the distance with SCEV between the base pointers.
1025   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1026   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1027   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1028   return X == PtrSCEVB;
1029 }
1030 
1031 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1032   switch (Type) {
1033   case NoDep:
1034   case Forward:
1035   case BackwardVectorizable:
1036     return true;
1037 
1038   case Unknown:
1039   case ForwardButPreventsForwarding:
1040   case Backward:
1041   case BackwardVectorizableButPreventsForwarding:
1042     return false;
1043   }
1044   llvm_unreachable("unexpected DepType!");
1045 }
1046 
1047 bool MemoryDepChecker::Dependence::isBackward() const {
1048   switch (Type) {
1049   case NoDep:
1050   case Forward:
1051   case ForwardButPreventsForwarding:
1052   case Unknown:
1053     return false;
1054 
1055   case BackwardVectorizable:
1056   case Backward:
1057   case BackwardVectorizableButPreventsForwarding:
1058     return true;
1059   }
1060   llvm_unreachable("unexpected DepType!");
1061 }
1062 
1063 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1064   return isBackward() || Type == Unknown;
1065 }
1066 
1067 bool MemoryDepChecker::Dependence::isForward() const {
1068   switch (Type) {
1069   case Forward:
1070   case ForwardButPreventsForwarding:
1071     return true;
1072 
1073   case NoDep:
1074   case Unknown:
1075   case BackwardVectorizable:
1076   case Backward:
1077   case BackwardVectorizableButPreventsForwarding:
1078     return false;
1079   }
1080   llvm_unreachable("unexpected DepType!");
1081 }
1082 
1083 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1084                                                     unsigned TypeByteSize) {
1085   // If loads occur at a distance that is not a multiple of a feasible vector
1086   // factor store-load forwarding does not take place.
1087   // Positive dependences might cause troubles because vectorizing them might
1088   // prevent store-load forwarding making vectorized code run a lot slower.
1089   //   a[i] = a[i-3] ^ a[i-8];
1090   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1091   //   hence on your typical architecture store-load forwarding does not take
1092   //   place. Vectorizing in such cases does not make sense.
1093   // Store-load forwarding distance.
1094 
1095   // After this many iterations store-to-load forwarding conflicts should not
1096   // cause any slowdowns.
1097   const unsigned NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1098   // Maximum vector factor.
1099   unsigned MaxVFWithoutSLForwardIssues = std::min(
1100       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1101 
1102   // Compute the smallest VF at which the store and load would be misaligned.
1103   for (unsigned VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1104        VF *= 2) {
1105     // If the number of vector iteration between the store and the load are
1106     // small we could incur conflicts.
1107     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1108       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1109       break;
1110     }
1111   }
1112 
1113   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1114     DEBUG(dbgs() << "LAA: Distance " << Distance
1115                  << " that could cause a store-load forwarding conflict\n");
1116     return true;
1117   }
1118 
1119   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1120       MaxVFWithoutSLForwardIssues !=
1121           VectorizerParams::MaxVectorWidth * TypeByteSize)
1122     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1123   return false;
1124 }
1125 
1126 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1127 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1128 /// bytes.
1129 ///
1130 /// \returns true if they are independent.
1131 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1132                                           unsigned TypeByteSize) {
1133   assert(Stride > 1 && "The stride must be greater than 1");
1134   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1135   assert(Distance > 0 && "The distance must be non-zero");
1136 
1137   // Skip if the distance is not multiple of type byte size.
1138   if (Distance % TypeByteSize)
1139     return false;
1140 
1141   unsigned ScaledDist = Distance / TypeByteSize;
1142 
1143   // No dependence if the scaled distance is not multiple of the stride.
1144   // E.g.
1145   //      for (i = 0; i < 1024 ; i += 4)
1146   //        A[i+2] = A[i] + 1;
1147   //
1148   // Two accesses in memory (scaled distance is 2, stride is 4):
1149   //     | A[0] |      |      |      | A[4] |      |      |      |
1150   //     |      |      | A[2] |      |      |      | A[6] |      |
1151   //
1152   // E.g.
1153   //      for (i = 0; i < 1024 ; i += 3)
1154   //        A[i+4] = A[i] + 1;
1155   //
1156   // Two accesses in memory (scaled distance is 4, stride is 3):
1157   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1158   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1159   return ScaledDist % Stride;
1160 }
1161 
1162 MemoryDepChecker::Dependence::DepType
1163 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1164                               const MemAccessInfo &B, unsigned BIdx,
1165                               const ValueToValueMap &Strides) {
1166   assert (AIdx < BIdx && "Must pass arguments in program order");
1167 
1168   Value *APtr = A.getPointer();
1169   Value *BPtr = B.getPointer();
1170   bool AIsWrite = A.getInt();
1171   bool BIsWrite = B.getInt();
1172 
1173   // Two reads are independent.
1174   if (!AIsWrite && !BIsWrite)
1175     return Dependence::NoDep;
1176 
1177   // We cannot check pointers in different address spaces.
1178   if (APtr->getType()->getPointerAddressSpace() !=
1179       BPtr->getType()->getPointerAddressSpace())
1180     return Dependence::Unknown;
1181 
1182   int StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1183   int StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1184 
1185   const SCEV *Src = PSE.getSCEV(APtr);
1186   const SCEV *Sink = PSE.getSCEV(BPtr);
1187 
1188   // If the induction step is negative we have to invert source and sink of the
1189   // dependence.
1190   if (StrideAPtr < 0) {
1191     std::swap(APtr, BPtr);
1192     std::swap(Src, Sink);
1193     std::swap(AIsWrite, BIsWrite);
1194     std::swap(AIdx, BIdx);
1195     std::swap(StrideAPtr, StrideBPtr);
1196   }
1197 
1198   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1199 
1200   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1201                << "(Induction step: " << StrideAPtr << ")\n");
1202   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1203                << *InstMap[BIdx] << ": " << *Dist << "\n");
1204 
1205   // Need accesses with constant stride. We don't want to vectorize
1206   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1207   // the address space.
1208   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1209     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1210     return Dependence::Unknown;
1211   }
1212 
1213   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1214   if (!C) {
1215     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1216     ShouldRetryWithRuntimeCheck = true;
1217     return Dependence::Unknown;
1218   }
1219 
1220   Type *ATy = APtr->getType()->getPointerElementType();
1221   Type *BTy = BPtr->getType()->getPointerElementType();
1222   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1223   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1224 
1225   const APInt &Val = C->getAPInt();
1226   int64_t Distance = Val.getSExtValue();
1227   unsigned Stride = std::abs(StrideAPtr);
1228 
1229   // Attempt to prove strided accesses independent.
1230   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1231       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1232     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1233     return Dependence::NoDep;
1234   }
1235 
1236   // Negative distances are not plausible dependencies.
1237   if (Val.isNegative()) {
1238     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1239     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1240         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1241          ATy != BTy)) {
1242       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1243       return Dependence::ForwardButPreventsForwarding;
1244     }
1245 
1246     DEBUG(dbgs() << "LAA: Dependence is negative\n");
1247     return Dependence::Forward;
1248   }
1249 
1250   // Write to the same location with the same size.
1251   // Could be improved to assert type sizes are the same (i32 == float, etc).
1252   if (Val == 0) {
1253     if (ATy == BTy)
1254       return Dependence::Forward;
1255     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1256     return Dependence::Unknown;
1257   }
1258 
1259   assert(Val.isStrictlyPositive() && "Expect a positive value");
1260 
1261   if (ATy != BTy) {
1262     DEBUG(dbgs() <<
1263           "LAA: ReadWrite-Write positive dependency with different types\n");
1264     return Dependence::Unknown;
1265   }
1266 
1267   // Bail out early if passed-in parameters make vectorization not feasible.
1268   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1269                            VectorizerParams::VectorizationFactor : 1);
1270   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1271                            VectorizerParams::VectorizationInterleave : 1);
1272   // The minimum number of iterations for a vectorized/unrolled version.
1273   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1274 
1275   // It's not vectorizable if the distance is smaller than the minimum distance
1276   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1277   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1278   // TypeByteSize (No need to plus the last gap distance).
1279   //
1280   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1281   //      foo(int *A) {
1282   //        int *B = (int *)((char *)A + 14);
1283   //        for (i = 0 ; i < 1024 ; i += 2)
1284   //          B[i] = A[i] + 1;
1285   //      }
1286   //
1287   // Two accesses in memory (stride is 2):
1288   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1289   //                              | B[0] |      | B[2] |      | B[4] |
1290   //
1291   // Distance needs for vectorizing iterations except the last iteration:
1292   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1293   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1294   //
1295   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1296   // 12, which is less than distance.
1297   //
1298   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1299   // the minimum distance needed is 28, which is greater than distance. It is
1300   // not safe to do vectorization.
1301   unsigned MinDistanceNeeded =
1302       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1303   if (MinDistanceNeeded > Distance) {
1304     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1305                  << '\n');
1306     return Dependence::Backward;
1307   }
1308 
1309   // Unsafe if the minimum distance needed is greater than max safe distance.
1310   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1311     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1312                  << MinDistanceNeeded << " size in bytes");
1313     return Dependence::Backward;
1314   }
1315 
1316   // Positive distance bigger than max vectorization factor.
1317   // FIXME: Should use max factor instead of max distance in bytes, which could
1318   // not handle different types.
1319   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1320   //      void foo (int *A, char *B) {
1321   //        for (unsigned i = 0; i < 1024; i++) {
1322   //          A[i+2] = A[i] + 1;
1323   //          B[i+2] = B[i] + 1;
1324   //        }
1325   //      }
1326   //
1327   // This case is currently unsafe according to the max safe distance. If we
1328   // analyze the two accesses on array B, the max safe dependence distance
1329   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1330   // is 8, which is less than 2 and forbidden vectorization, But actually
1331   // both A and B could be vectorized by 2 iterations.
1332   MaxSafeDepDistBytes =
1333       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1334 
1335   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1336   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1337       couldPreventStoreLoadForward(Distance, TypeByteSize))
1338     return Dependence::BackwardVectorizableButPreventsForwarding;
1339 
1340   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1341                << " with max VF = "
1342                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1343 
1344   return Dependence::BackwardVectorizable;
1345 }
1346 
1347 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1348                                    MemAccessInfoSet &CheckDeps,
1349                                    const ValueToValueMap &Strides) {
1350 
1351   MaxSafeDepDistBytes = -1U;
1352   while (!CheckDeps.empty()) {
1353     MemAccessInfo CurAccess = *CheckDeps.begin();
1354 
1355     // Get the relevant memory access set.
1356     EquivalenceClasses<MemAccessInfo>::iterator I =
1357       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1358 
1359     // Check accesses within this set.
1360     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1361         AccessSets.member_begin(I);
1362     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1363         AccessSets.member_end();
1364 
1365     // Check every access pair.
1366     while (AI != AE) {
1367       CheckDeps.erase(*AI);
1368       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1369       while (OI != AE) {
1370         // Check every accessing instruction pair in program order.
1371         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1372              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1373           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1374                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1375             auto A = std::make_pair(&*AI, *I1);
1376             auto B = std::make_pair(&*OI, *I2);
1377 
1378             assert(*I1 != *I2);
1379             if (*I1 > *I2)
1380               std::swap(A, B);
1381 
1382             Dependence::DepType Type =
1383                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1384             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1385 
1386             // Gather dependences unless we accumulated MaxDependences
1387             // dependences.  In that case return as soon as we find the first
1388             // unsafe dependence.  This puts a limit on this quadratic
1389             // algorithm.
1390             if (RecordDependences) {
1391               if (Type != Dependence::NoDep)
1392                 Dependences.push_back(Dependence(A.second, B.second, Type));
1393 
1394               if (Dependences.size() >= MaxDependences) {
1395                 RecordDependences = false;
1396                 Dependences.clear();
1397                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1398               }
1399             }
1400             if (!RecordDependences && !SafeForVectorization)
1401               return false;
1402           }
1403         ++OI;
1404       }
1405       AI++;
1406     }
1407   }
1408 
1409   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1410   return SafeForVectorization;
1411 }
1412 
1413 SmallVector<Instruction *, 4>
1414 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1415   MemAccessInfo Access(Ptr, isWrite);
1416   auto &IndexVector = Accesses.find(Access)->second;
1417 
1418   SmallVector<Instruction *, 4> Insts;
1419   std::transform(IndexVector.begin(), IndexVector.end(),
1420                  std::back_inserter(Insts),
1421                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1422   return Insts;
1423 }
1424 
1425 const char *MemoryDepChecker::Dependence::DepName[] = {
1426     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1427     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1428 
1429 void MemoryDepChecker::Dependence::print(
1430     raw_ostream &OS, unsigned Depth,
1431     const SmallVectorImpl<Instruction *> &Instrs) const {
1432   OS.indent(Depth) << DepName[Type] << ":\n";
1433   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1434   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1435 }
1436 
1437 bool LoopAccessInfo::canAnalyzeLoop() {
1438   // We need to have a loop header.
1439   DEBUG(dbgs() << "LAA: Found a loop in "
1440                << TheLoop->getHeader()->getParent()->getName() << ": "
1441                << TheLoop->getHeader()->getName() << '\n');
1442 
1443   // We can only analyze innermost loops.
1444   if (!TheLoop->empty()) {
1445     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1446     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1447     return false;
1448   }
1449 
1450   // We must have a single backedge.
1451   if (TheLoop->getNumBackEdges() != 1) {
1452     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1453     emitAnalysis(
1454         LoopAccessReport() <<
1455         "loop control flow is not understood by analyzer");
1456     return false;
1457   }
1458 
1459   // We must have a single exiting block.
1460   if (!TheLoop->getExitingBlock()) {
1461     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1462     emitAnalysis(
1463         LoopAccessReport() <<
1464         "loop control flow is not understood by analyzer");
1465     return false;
1466   }
1467 
1468   // We only handle bottom-tested loops, i.e. loop in which the condition is
1469   // checked at the end of each iteration. With that we can assume that all
1470   // instructions in the loop are executed the same number of times.
1471   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1472     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1473     emitAnalysis(
1474         LoopAccessReport() <<
1475         "loop control flow is not understood by analyzer");
1476     return false;
1477   }
1478 
1479   // ScalarEvolution needs to be able to find the exit count.
1480   const SCEV *ExitCount = PSE.getBackedgeTakenCount();
1481   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1482     emitAnalysis(LoopAccessReport()
1483                  << "could not determine number of loop iterations");
1484     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1485     return false;
1486   }
1487 
1488   return true;
1489 }
1490 
1491 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1492 
1493   typedef SmallPtrSet<Value*, 16> ValueSet;
1494 
1495   // Holds the Load and Store instructions.
1496   SmallVector<LoadInst *, 16> Loads;
1497   SmallVector<StoreInst *, 16> Stores;
1498 
1499   // Holds all the different accesses in the loop.
1500   unsigned NumReads = 0;
1501   unsigned NumReadWrites = 0;
1502 
1503   PtrRtChecking.Pointers.clear();
1504   PtrRtChecking.Need = false;
1505 
1506   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1507 
1508   // For each block.
1509   for (Loop::block_iterator bb = TheLoop->block_begin(),
1510        be = TheLoop->block_end(); bb != be; ++bb) {
1511 
1512     // Scan the BB and collect legal loads and stores.
1513     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1514          ++it) {
1515 
1516       // If this is a load, save it. If this instruction can read from memory
1517       // but is not a load, then we quit. Notice that we don't handle function
1518       // calls that read or write.
1519       if (it->mayReadFromMemory()) {
1520         // Many math library functions read the rounding mode. We will only
1521         // vectorize a loop if it contains known function calls that don't set
1522         // the flag. Therefore, it is safe to ignore this read from memory.
1523         CallInst *Call = dyn_cast<CallInst>(it);
1524         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1525           continue;
1526 
1527         // If the function has an explicit vectorized counterpart, we can safely
1528         // assume that it can be vectorized.
1529         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1530             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1531           continue;
1532 
1533         LoadInst *Ld = dyn_cast<LoadInst>(it);
1534         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1535           emitAnalysis(LoopAccessReport(Ld)
1536                        << "read with atomic ordering or volatile read");
1537           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1538           CanVecMem = false;
1539           return;
1540         }
1541         NumLoads++;
1542         Loads.push_back(Ld);
1543         DepChecker.addAccess(Ld);
1544         continue;
1545       }
1546 
1547       // Save 'store' instructions. Abort if other instructions write to memory.
1548       if (it->mayWriteToMemory()) {
1549         StoreInst *St = dyn_cast<StoreInst>(it);
1550         if (!St) {
1551           emitAnalysis(LoopAccessReport(&*it) <<
1552                        "instruction cannot be vectorized");
1553           CanVecMem = false;
1554           return;
1555         }
1556         if (!St->isSimple() && !IsAnnotatedParallel) {
1557           emitAnalysis(LoopAccessReport(St)
1558                        << "write with atomic ordering or volatile write");
1559           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1560           CanVecMem = false;
1561           return;
1562         }
1563         NumStores++;
1564         Stores.push_back(St);
1565         DepChecker.addAccess(St);
1566       }
1567     } // Next instr.
1568   } // Next block.
1569 
1570   // Now we have two lists that hold the loads and the stores.
1571   // Next, we find the pointers that they use.
1572 
1573   // Check if we see any stores. If there are no stores, then we don't
1574   // care if the pointers are *restrict*.
1575   if (!Stores.size()) {
1576     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1577     CanVecMem = true;
1578     return;
1579   }
1580 
1581   MemoryDepChecker::DepCandidates DependentAccesses;
1582   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1583                           AA, LI, DependentAccesses, PSE);
1584 
1585   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1586   // multiple times on the same object. If the ptr is accessed twice, once
1587   // for read and once for write, it will only appear once (on the write
1588   // list). This is okay, since we are going to check for conflicts between
1589   // writes and between reads and writes, but not between reads and reads.
1590   ValueSet Seen;
1591 
1592   for (StoreInst *ST : Stores) {
1593     Value *Ptr = ST->getPointerOperand();
1594     // Check for store to loop invariant address.
1595     StoreToLoopInvariantAddress |= isUniform(Ptr);
1596     // If we did *not* see this pointer before, insert it to  the read-write
1597     // list. At this phase it is only a 'write' list.
1598     if (Seen.insert(Ptr).second) {
1599       ++NumReadWrites;
1600 
1601       MemoryLocation Loc = MemoryLocation::get(ST);
1602       // The TBAA metadata could have a control dependency on the predication
1603       // condition, so we cannot rely on it when determining whether or not we
1604       // need runtime pointer checks.
1605       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1606         Loc.AATags.TBAA = nullptr;
1607 
1608       Accesses.addStore(Loc);
1609     }
1610   }
1611 
1612   if (IsAnnotatedParallel) {
1613     DEBUG(dbgs()
1614           << "LAA: A loop annotated parallel, ignore memory dependency "
1615           << "checks.\n");
1616     CanVecMem = true;
1617     return;
1618   }
1619 
1620   for (LoadInst *LD : Loads) {
1621     Value *Ptr = LD->getPointerOperand();
1622     // If we did *not* see this pointer before, insert it to the
1623     // read list. If we *did* see it before, then it is already in
1624     // the read-write list. This allows us to vectorize expressions
1625     // such as A[i] += x;  Because the address of A[i] is a read-write
1626     // pointer. This only works if the index of A[i] is consecutive.
1627     // If the address of i is unknown (for example A[B[i]]) then we may
1628     // read a few words, modify, and write a few words, and some of the
1629     // words may be written to the same address.
1630     bool IsReadOnlyPtr = false;
1631     if (Seen.insert(Ptr).second || !getPtrStride(PSE, Ptr, TheLoop, Strides)) {
1632       ++NumReads;
1633       IsReadOnlyPtr = true;
1634     }
1635 
1636     MemoryLocation Loc = MemoryLocation::get(LD);
1637     // The TBAA metadata could have a control dependency on the predication
1638     // condition, so we cannot rely on it when determining whether or not we
1639     // need runtime pointer checks.
1640     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1641       Loc.AATags.TBAA = nullptr;
1642 
1643     Accesses.addLoad(Loc, IsReadOnlyPtr);
1644   }
1645 
1646   // If we write (or read-write) to a single destination and there are no
1647   // other reads in this loop then is it safe to vectorize.
1648   if (NumReadWrites == 1 && NumReads == 0) {
1649     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1650     CanVecMem = true;
1651     return;
1652   }
1653 
1654   // Build dependence sets and check whether we need a runtime pointer bounds
1655   // check.
1656   Accesses.buildDependenceSets();
1657 
1658   // Find pointers with computable bounds. We are going to use this information
1659   // to place a runtime bound check.
1660   bool CanDoRTIfNeeded =
1661       Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1662   if (!CanDoRTIfNeeded) {
1663     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1664     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1665                  << "the array bounds.\n");
1666     CanVecMem = false;
1667     return;
1668   }
1669 
1670   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1671 
1672   CanVecMem = true;
1673   if (Accesses.isDependencyCheckNeeded()) {
1674     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1675     CanVecMem = DepChecker.areDepsSafe(
1676         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1677     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1678 
1679     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1680       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1681 
1682       // Clear the dependency checks. We assume they are not needed.
1683       Accesses.resetDepChecks(DepChecker);
1684 
1685       PtrRtChecking.reset();
1686       PtrRtChecking.Need = true;
1687 
1688       auto *SE = PSE.getSE();
1689       CanDoRTIfNeeded =
1690           Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1691 
1692       // Check that we found the bounds for the pointer.
1693       if (!CanDoRTIfNeeded) {
1694         emitAnalysis(LoopAccessReport()
1695                      << "cannot check memory dependencies at runtime");
1696         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1697         CanVecMem = false;
1698         return;
1699       }
1700 
1701       CanVecMem = true;
1702     }
1703   }
1704 
1705   if (CanVecMem)
1706     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1707                  << (PtrRtChecking.Need ? "" : " don't")
1708                  << " need runtime memory checks.\n");
1709   else {
1710     emitAnalysis(
1711         LoopAccessReport()
1712         << "unsafe dependent memory operations in loop. Use "
1713            "#pragma loop distribute(enable) to allow loop distribution "
1714            "to attempt to isolate the offending operations into a separate "
1715            "loop");
1716     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1717   }
1718 }
1719 
1720 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1721                                            DominatorTree *DT)  {
1722   assert(TheLoop->contains(BB) && "Unknown block used");
1723 
1724   // Blocks that do not dominate the latch need predication.
1725   BasicBlock* Latch = TheLoop->getLoopLatch();
1726   return !DT->dominates(BB, Latch);
1727 }
1728 
1729 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1730   assert(!Report && "Multiple reports generated");
1731   Report = Message;
1732 }
1733 
1734 bool LoopAccessInfo::isUniform(Value *V) const {
1735   return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1736 }
1737 
1738 // FIXME: this function is currently a duplicate of the one in
1739 // LoopVectorize.cpp.
1740 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1741                                  Instruction *Loc) {
1742   if (FirstInst)
1743     return FirstInst;
1744   if (Instruction *I = dyn_cast<Instruction>(V))
1745     return I->getParent() == Loc->getParent() ? I : nullptr;
1746   return nullptr;
1747 }
1748 
1749 namespace {
1750 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1751 /// need to use value-handles because SCEV expansion can invalidate previously
1752 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1753 /// a previous one.
1754 struct PointerBounds {
1755   TrackingVH<Value> Start;
1756   TrackingVH<Value> End;
1757 };
1758 } // end anonymous namespace
1759 
1760 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1761 /// in \p TheLoop.  \return the values for the bounds.
1762 static PointerBounds
1763 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1764              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1765              const RuntimePointerChecking &PtrRtChecking) {
1766   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1767   const SCEV *Sc = SE->getSCEV(Ptr);
1768 
1769   if (SE->isLoopInvariant(Sc, TheLoop)) {
1770     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1771                  << "\n");
1772     return {Ptr, Ptr};
1773   } else {
1774     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1775     LLVMContext &Ctx = Loc->getContext();
1776 
1777     // Use this type for pointer arithmetic.
1778     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1779     Value *Start = nullptr, *End = nullptr;
1780 
1781     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1782     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1783     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1784     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1785     return {Start, End};
1786   }
1787 }
1788 
1789 /// \brief Turns a collection of checks into a collection of expanded upper and
1790 /// lower bounds for both pointers in the check.
1791 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1792     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1793     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1794     const RuntimePointerChecking &PtrRtChecking) {
1795   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1796 
1797   // Here we're relying on the SCEV Expander's cache to only emit code for the
1798   // same bounds once.
1799   std::transform(
1800       PointerChecks.begin(), PointerChecks.end(),
1801       std::back_inserter(ChecksWithBounds),
1802       [&](const RuntimePointerChecking::PointerCheck &Check) {
1803         PointerBounds
1804           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1805           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1806         return std::make_pair(First, Second);
1807       });
1808 
1809   return ChecksWithBounds;
1810 }
1811 
1812 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1813     Instruction *Loc,
1814     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1815     const {
1816   auto *SE = PSE.getSE();
1817   SCEVExpander Exp(*SE, DL, "induction");
1818   auto ExpandedChecks =
1819       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1820 
1821   LLVMContext &Ctx = Loc->getContext();
1822   Instruction *FirstInst = nullptr;
1823   IRBuilder<> ChkBuilder(Loc);
1824   // Our instructions might fold to a constant.
1825   Value *MemoryRuntimeCheck = nullptr;
1826 
1827   for (const auto &Check : ExpandedChecks) {
1828     const PointerBounds &A = Check.first, &B = Check.second;
1829     // Check if two pointers (A and B) conflict where conflict is computed as:
1830     // start(A) <= end(B) && start(B) <= end(A)
1831     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1832     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1833 
1834     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1835            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1836            "Trying to bounds check pointers with different address spaces");
1837 
1838     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1839     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1840 
1841     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1842     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1843     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1844     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1845 
1846     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1847     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1848     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1849     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1850     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1851     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1852     if (MemoryRuntimeCheck) {
1853       IsConflict =
1854           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1855       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1856     }
1857     MemoryRuntimeCheck = IsConflict;
1858   }
1859 
1860   if (!MemoryRuntimeCheck)
1861     return std::make_pair(nullptr, nullptr);
1862 
1863   // We have to do this trickery because the IRBuilder might fold the check to a
1864   // constant expression in which case there is no Instruction anchored in a
1865   // the block.
1866   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1867                                                  ConstantInt::getTrue(Ctx));
1868   ChkBuilder.Insert(Check, "memcheck.conflict");
1869   FirstInst = getFirstInst(FirstInst, Check, Loc);
1870   return std::make_pair(FirstInst, Check);
1871 }
1872 
1873 std::pair<Instruction *, Instruction *>
1874 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1875   if (!PtrRtChecking.Need)
1876     return std::make_pair(nullptr, nullptr);
1877 
1878   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1879 }
1880 
1881 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1882                                const DataLayout &DL,
1883                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1884                                DominatorTree *DT, LoopInfo *LI,
1885                                const ValueToValueMap &Strides)
1886     : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1887       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1888       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1889       StoreToLoopInvariantAddress(false) {
1890   if (canAnalyzeLoop())
1891     analyzeLoop(Strides);
1892 }
1893 
1894 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1895   if (CanVecMem) {
1896     OS.indent(Depth) << "Memory dependences are safe";
1897     if (MaxSafeDepDistBytes != -1U)
1898       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1899          << " bytes";
1900     if (PtrRtChecking.Need)
1901       OS << " with run-time checks";
1902     OS << "\n";
1903   }
1904 
1905   if (Report)
1906     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1907 
1908   if (auto *Dependences = DepChecker.getDependences()) {
1909     OS.indent(Depth) << "Dependences:\n";
1910     for (auto &Dep : *Dependences) {
1911       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1912       OS << "\n";
1913     }
1914   } else
1915     OS.indent(Depth) << "Too many dependences, not recorded\n";
1916 
1917   // List the pair of accesses need run-time checks to prove independence.
1918   PtrRtChecking.print(OS, Depth);
1919   OS << "\n";
1920 
1921   OS.indent(Depth) << "Store to invariant address was "
1922                    << (StoreToLoopInvariantAddress ? "" : "not ")
1923                    << "found in loop.\n";
1924 
1925   OS.indent(Depth) << "SCEV assumptions:\n";
1926   PSE.getUnionPredicate().print(OS, Depth);
1927 
1928   OS << "\n";
1929 
1930   OS.indent(Depth) << "Expressions re-written:\n";
1931   PSE.print(OS, Depth);
1932 }
1933 
1934 const LoopAccessInfo &
1935 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1936   auto &LAI = LoopAccessInfoMap[L];
1937 
1938 #ifndef NDEBUG
1939   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1940          "Symbolic strides changed for loop");
1941 #endif
1942 
1943   if (!LAI) {
1944     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1945     LAI =
1946         llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1947 #ifndef NDEBUG
1948     LAI->NumSymbolicStrides = Strides.size();
1949 #endif
1950   }
1951   return *LAI.get();
1952 }
1953 
1954 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1955   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1956 
1957   ValueToValueMap NoSymbolicStrides;
1958 
1959   for (Loop *TopLevelLoop : *LI)
1960     for (Loop *L : depth_first(TopLevelLoop)) {
1961       OS.indent(2) << L->getHeader()->getName() << ":\n";
1962       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1963       LAI.print(OS, 4);
1964     }
1965 }
1966 
1967 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1968   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1969   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1970   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1971   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1972   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1973   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1974 
1975   return false;
1976 }
1977 
1978 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1979     AU.addRequired<ScalarEvolutionWrapperPass>();
1980     AU.addRequired<AAResultsWrapperPass>();
1981     AU.addRequired<DominatorTreeWrapperPass>();
1982     AU.addRequired<LoopInfoWrapperPass>();
1983 
1984     AU.setPreservesAll();
1985 }
1986 
1987 char LoopAccessAnalysis::ID = 0;
1988 static const char laa_name[] = "Loop Access Analysis";
1989 #define LAA_NAME "loop-accesses"
1990 
1991 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1992 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1993 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1994 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1995 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1996 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1997 
1998 namespace llvm {
1999   Pass *createLAAPass() {
2000     return new LoopAccessAnalysis();
2001   }
2002 }
2003