1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/EquivalenceClasses.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AliasSetTracker.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Operator.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstdlib> 66 #include <iterator> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-accesses" 73 74 static cl::opt<unsigned, true> 75 VectorizationFactor("force-vector-width", cl::Hidden, 76 cl::desc("Sets the SIMD width. Zero is autoselect."), 77 cl::location(VectorizerParams::VectorizationFactor)); 78 unsigned VectorizerParams::VectorizationFactor; 79 80 static cl::opt<unsigned, true> 81 VectorizationInterleave("force-vector-interleave", cl::Hidden, 82 cl::desc("Sets the vectorization interleave count. " 83 "Zero is autoselect."), 84 cl::location( 85 VectorizerParams::VectorizationInterleave)); 86 unsigned VectorizerParams::VectorizationInterleave; 87 88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 89 "runtime-memory-check-threshold", cl::Hidden, 90 cl::desc("When performing memory disambiguation checks at runtime do not " 91 "generate more than this number of comparisons (default = 8)."), 92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94 95 /// The maximum iterations used to merge memory checks 96 static cl::opt<unsigned> MemoryCheckMergeThreshold( 97 "memory-check-merge-threshold", cl::Hidden, 98 cl::desc("Maximum number of comparisons done when trying to merge " 99 "runtime memory checks. (default = 100)"), 100 cl::init(100)); 101 102 /// Maximum SIMD width. 103 const unsigned VectorizerParams::MaxVectorWidth = 64; 104 105 /// We collect dependences up to this threshold. 106 static cl::opt<unsigned> 107 MaxDependences("max-dependences", cl::Hidden, 108 cl::desc("Maximum number of dependences collected by " 109 "loop-access analysis (default = 100)"), 110 cl::init(100)); 111 112 /// This enables versioning on the strides of symbolically striding memory 113 /// accesses in code like the following. 114 /// for (i = 0; i < N; ++i) 115 /// A[i * Stride1] += B[i * Stride2] ... 116 /// 117 /// Will be roughly translated to 118 /// if (Stride1 == 1 && Stride2 == 1) { 119 /// for (i = 0; i < N; i+=4) 120 /// A[i:i+3] += ... 121 /// } else 122 /// ... 123 static cl::opt<bool> EnableMemAccessVersioning( 124 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125 cl::desc("Enable symbolic stride memory access versioning")); 126 127 /// Enable store-to-load forwarding conflict detection. This option can 128 /// be disabled for correctness testing. 129 static cl::opt<bool> EnableForwardingConflictDetection( 130 "store-to-load-forwarding-conflict-detection", cl::Hidden, 131 cl::desc("Enable conflict detection in loop-access analysis"), 132 cl::init(true)); 133 134 bool VectorizerParams::isInterleaveForced() { 135 return ::VectorizationInterleave.getNumOccurrences() > 0; 136 } 137 138 Value *llvm::stripIntegerCast(Value *V) { 139 if (auto *CI = dyn_cast<CastInst>(V)) 140 if (CI->getOperand(0)->getType()->isIntegerTy()) 141 return CI->getOperand(0); 142 return V; 143 } 144 145 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 146 const ValueToValueMap &PtrToStride, 147 Value *Ptr, Value *OrigPtr) { 148 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 149 150 // If there is an entry in the map return the SCEV of the pointer with the 151 // symbolic stride replaced by one. 152 ValueToValueMap::const_iterator SI = 153 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 154 if (SI != PtrToStride.end()) { 155 Value *StrideVal = SI->second; 156 157 // Strip casts. 158 StrideVal = stripIntegerCast(StrideVal); 159 160 ScalarEvolution *SE = PSE.getSE(); 161 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 162 const auto *CT = 163 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 164 165 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 166 auto *Expr = PSE.getSCEV(Ptr); 167 168 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 169 << " by: " << *Expr << "\n"); 170 return Expr; 171 } 172 173 // Otherwise, just return the SCEV of the original pointer. 174 return OrigSCEV; 175 } 176 177 /// Calculate Start and End points of memory access. 178 /// Let's assume A is the first access and B is a memory access on N-th loop 179 /// iteration. Then B is calculated as: 180 /// B = A + Step*N . 181 /// Step value may be positive or negative. 182 /// N is a calculated back-edge taken count: 183 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 184 /// Start and End points are calculated in the following way: 185 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 186 /// where SizeOfElt is the size of single memory access in bytes. 187 /// 188 /// There is no conflict when the intervals are disjoint: 189 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 190 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 191 unsigned DepSetId, unsigned ASId, 192 const ValueToValueMap &Strides, 193 PredicatedScalarEvolution &PSE) { 194 // Get the stride replaced scev. 195 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 196 ScalarEvolution *SE = PSE.getSE(); 197 198 const SCEV *ScStart; 199 const SCEV *ScEnd; 200 201 if (SE->isLoopInvariant(Sc, Lp)) 202 ScStart = ScEnd = Sc; 203 else { 204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 205 assert(AR && "Invalid addrec expression"); 206 const SCEV *Ex = PSE.getBackedgeTakenCount(); 207 208 ScStart = AR->getStart(); 209 ScEnd = AR->evaluateAtIteration(Ex, *SE); 210 const SCEV *Step = AR->getStepRecurrence(*SE); 211 212 // For expressions with negative step, the upper bound is ScStart and the 213 // lower bound is ScEnd. 214 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 215 if (CStep->getValue()->isNegative()) 216 std::swap(ScStart, ScEnd); 217 } else { 218 // Fallback case: the step is not constant, but we can still 219 // get the upper and lower bounds of the interval by using min/max 220 // expressions. 221 ScStart = SE->getUMinExpr(ScStart, ScEnd); 222 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 223 } 224 // Add the size of the pointed element to ScEnd. 225 unsigned EltSize = 226 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 227 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 228 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 229 } 230 231 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 232 } 233 234 SmallVector<RuntimePointerChecking::PointerCheck, 4> 235 RuntimePointerChecking::generateChecks() const { 236 SmallVector<PointerCheck, 4> Checks; 237 238 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 239 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 240 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 241 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 242 243 if (needsChecking(CGI, CGJ)) 244 Checks.push_back(std::make_pair(&CGI, &CGJ)); 245 } 246 } 247 return Checks; 248 } 249 250 void RuntimePointerChecking::generateChecks( 251 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 252 assert(Checks.empty() && "Checks is not empty"); 253 groupChecks(DepCands, UseDependencies); 254 Checks = generateChecks(); 255 } 256 257 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 258 const CheckingPtrGroup &N) const { 259 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 260 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 261 if (needsChecking(M.Members[I], N.Members[J])) 262 return true; 263 return false; 264 } 265 266 /// Compare \p I and \p J and return the minimum. 267 /// Return nullptr in case we couldn't find an answer. 268 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 269 ScalarEvolution *SE) { 270 const SCEV *Diff = SE->getMinusSCEV(J, I); 271 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 272 273 if (!C) 274 return nullptr; 275 if (C->getValue()->isNegative()) 276 return J; 277 return I; 278 } 279 280 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 281 const SCEV *Start = RtCheck.Pointers[Index].Start; 282 const SCEV *End = RtCheck.Pointers[Index].End; 283 284 // Compare the starts and ends with the known minimum and maximum 285 // of this set. We need to know how we compare against the min/max 286 // of the set in order to be able to emit memchecks. 287 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 288 if (!Min0) 289 return false; 290 291 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 292 if (!Min1) 293 return false; 294 295 // Update the low bound expression if we've found a new min value. 296 if (Min0 == Start) 297 Low = Start; 298 299 // Update the high bound expression if we've found a new max value. 300 if (Min1 != End) 301 High = End; 302 303 Members.push_back(Index); 304 return true; 305 } 306 307 void RuntimePointerChecking::groupChecks( 308 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 309 // We build the groups from dependency candidates equivalence classes 310 // because: 311 // - We know that pointers in the same equivalence class share 312 // the same underlying object and therefore there is a chance 313 // that we can compare pointers 314 // - We wouldn't be able to merge two pointers for which we need 315 // to emit a memcheck. The classes in DepCands are already 316 // conveniently built such that no two pointers in the same 317 // class need checking against each other. 318 319 // We use the following (greedy) algorithm to construct the groups 320 // For every pointer in the equivalence class: 321 // For each existing group: 322 // - if the difference between this pointer and the min/max bounds 323 // of the group is a constant, then make the pointer part of the 324 // group and update the min/max bounds of that group as required. 325 326 CheckingGroups.clear(); 327 328 // If we need to check two pointers to the same underlying object 329 // with a non-constant difference, we shouldn't perform any pointer 330 // grouping with those pointers. This is because we can easily get 331 // into cases where the resulting check would return false, even when 332 // the accesses are safe. 333 // 334 // The following example shows this: 335 // for (i = 0; i < 1000; ++i) 336 // a[5000 + i * m] = a[i] + a[i + 9000] 337 // 338 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 339 // (0, 10000) which is always false. However, if m is 1, there is no 340 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 341 // us to perform an accurate check in this case. 342 // 343 // The above case requires that we have an UnknownDependence between 344 // accesses to the same underlying object. This cannot happen unless 345 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 346 // is also false. In this case we will use the fallback path and create 347 // separate checking groups for all pointers. 348 349 // If we don't have the dependency partitions, construct a new 350 // checking pointer group for each pointer. This is also required 351 // for correctness, because in this case we can have checking between 352 // pointers to the same underlying object. 353 if (!UseDependencies) { 354 for (unsigned I = 0; I < Pointers.size(); ++I) 355 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 356 return; 357 } 358 359 unsigned TotalComparisons = 0; 360 361 DenseMap<Value *, unsigned> PositionMap; 362 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 363 PositionMap[Pointers[Index].PointerValue] = Index; 364 365 // We need to keep track of what pointers we've already seen so we 366 // don't process them twice. 367 SmallSet<unsigned, 2> Seen; 368 369 // Go through all equivalence classes, get the "pointer check groups" 370 // and add them to the overall solution. We use the order in which accesses 371 // appear in 'Pointers' to enforce determinism. 372 for (unsigned I = 0; I < Pointers.size(); ++I) { 373 // We've seen this pointer before, and therefore already processed 374 // its equivalence class. 375 if (Seen.count(I)) 376 continue; 377 378 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 379 Pointers[I].IsWritePtr); 380 381 SmallVector<CheckingPtrGroup, 2> Groups; 382 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 383 384 // Because DepCands is constructed by visiting accesses in the order in 385 // which they appear in alias sets (which is deterministic) and the 386 // iteration order within an equivalence class member is only dependent on 387 // the order in which unions and insertions are performed on the 388 // equivalence class, the iteration order is deterministic. 389 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 390 MI != ME; ++MI) { 391 unsigned Pointer = PositionMap[MI->getPointer()]; 392 bool Merged = false; 393 // Mark this pointer as seen. 394 Seen.insert(Pointer); 395 396 // Go through all the existing sets and see if we can find one 397 // which can include this pointer. 398 for (CheckingPtrGroup &Group : Groups) { 399 // Don't perform more than a certain amount of comparisons. 400 // This should limit the cost of grouping the pointers to something 401 // reasonable. If we do end up hitting this threshold, the algorithm 402 // will create separate groups for all remaining pointers. 403 if (TotalComparisons > MemoryCheckMergeThreshold) 404 break; 405 406 TotalComparisons++; 407 408 if (Group.addPointer(Pointer)) { 409 Merged = true; 410 break; 411 } 412 } 413 414 if (!Merged) 415 // We couldn't add this pointer to any existing set or the threshold 416 // for the number of comparisons has been reached. Create a new group 417 // to hold the current pointer. 418 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 419 } 420 421 // We've computed the grouped checks for this partition. 422 // Save the results and continue with the next one. 423 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 424 } 425 } 426 427 bool RuntimePointerChecking::arePointersInSamePartition( 428 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 429 unsigned PtrIdx2) { 430 return (PtrToPartition[PtrIdx1] != -1 && 431 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 432 } 433 434 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 435 const PointerInfo &PointerI = Pointers[I]; 436 const PointerInfo &PointerJ = Pointers[J]; 437 438 // No need to check if two readonly pointers intersect. 439 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 440 return false; 441 442 // Only need to check pointers between two different dependency sets. 443 if (PointerI.DependencySetId == PointerJ.DependencySetId) 444 return false; 445 446 // Only need to check pointers in the same alias set. 447 if (PointerI.AliasSetId != PointerJ.AliasSetId) 448 return false; 449 450 return true; 451 } 452 453 void RuntimePointerChecking::printChecks( 454 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 455 unsigned Depth) const { 456 unsigned N = 0; 457 for (const auto &Check : Checks) { 458 const auto &First = Check.first->Members, &Second = Check.second->Members; 459 460 OS.indent(Depth) << "Check " << N++ << ":\n"; 461 462 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 463 for (unsigned K = 0; K < First.size(); ++K) 464 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 465 466 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 467 for (unsigned K = 0; K < Second.size(); ++K) 468 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 469 } 470 } 471 472 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 473 474 OS.indent(Depth) << "Run-time memory checks:\n"; 475 printChecks(OS, Checks, Depth); 476 477 OS.indent(Depth) << "Grouped accesses:\n"; 478 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 479 const auto &CG = CheckingGroups[I]; 480 481 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 482 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 483 << ")\n"; 484 for (unsigned J = 0; J < CG.Members.size(); ++J) { 485 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 486 << "\n"; 487 } 488 } 489 } 490 491 namespace { 492 493 /// Analyses memory accesses in a loop. 494 /// 495 /// Checks whether run time pointer checks are needed and builds sets for data 496 /// dependence checking. 497 class AccessAnalysis { 498 public: 499 /// Read or write access location. 500 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 501 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 502 503 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 504 MemoryDepChecker::DepCandidates &DA, 505 PredicatedScalarEvolution &PSE) 506 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 507 PSE(PSE) {} 508 509 /// Register a load and whether it is only read from. 510 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 511 Value *Ptr = const_cast<Value*>(Loc.Ptr); 512 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 513 Accesses.insert(MemAccessInfo(Ptr, false)); 514 if (IsReadOnly) 515 ReadOnlyPtr.insert(Ptr); 516 } 517 518 /// Register a store. 519 void addStore(MemoryLocation &Loc) { 520 Value *Ptr = const_cast<Value*>(Loc.Ptr); 521 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 522 Accesses.insert(MemAccessInfo(Ptr, true)); 523 } 524 525 /// Check if we can emit a run-time no-alias check for \p Access. 526 /// 527 /// Returns true if we can emit a run-time no alias check for \p Access. 528 /// If we can check this access, this also adds it to a dependence set and 529 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 530 /// we will attempt to use additional run-time checks in order to get 531 /// the bounds of the pointer. 532 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 533 MemAccessInfo Access, 534 const ValueToValueMap &Strides, 535 DenseMap<Value *, unsigned> &DepSetId, 536 Loop *TheLoop, unsigned &RunningDepId, 537 unsigned ASId, bool ShouldCheckStride, 538 bool Assume); 539 540 /// Check whether we can check the pointers at runtime for 541 /// non-intersection. 542 /// 543 /// Returns true if we need no check or if we do and we can generate them 544 /// (i.e. the pointers have computable bounds). 545 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 546 Loop *TheLoop, const ValueToValueMap &Strides, 547 bool ShouldCheckWrap = false); 548 549 /// Goes over all memory accesses, checks whether a RT check is needed 550 /// and builds sets of dependent accesses. 551 void buildDependenceSets() { 552 processMemAccesses(); 553 } 554 555 /// Initial processing of memory accesses determined that we need to 556 /// perform dependency checking. 557 /// 558 /// Note that this can later be cleared if we retry memcheck analysis without 559 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 560 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 561 562 /// We decided that no dependence analysis would be used. Reset the state. 563 void resetDepChecks(MemoryDepChecker &DepChecker) { 564 CheckDeps.clear(); 565 DepChecker.clearDependences(); 566 } 567 568 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 569 570 private: 571 typedef SetVector<MemAccessInfo> PtrAccessSet; 572 573 /// Go over all memory access and check whether runtime pointer checks 574 /// are needed and build sets of dependency check candidates. 575 void processMemAccesses(); 576 577 /// Set of all accesses. 578 PtrAccessSet Accesses; 579 580 const DataLayout &DL; 581 582 /// List of accesses that need a further dependence check. 583 MemAccessInfoList CheckDeps; 584 585 /// Set of pointers that are read only. 586 SmallPtrSet<Value*, 16> ReadOnlyPtr; 587 588 /// An alias set tracker to partition the access set by underlying object and 589 //intrinsic property (such as TBAA metadata). 590 AliasSetTracker AST; 591 592 LoopInfo *LI; 593 594 /// Sets of potentially dependent accesses - members of one set share an 595 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 596 /// dependence check. 597 MemoryDepChecker::DepCandidates &DepCands; 598 599 /// Initial processing of memory accesses determined that we may need 600 /// to add memchecks. Perform the analysis to determine the necessary checks. 601 /// 602 /// Note that, this is different from isDependencyCheckNeeded. When we retry 603 /// memcheck analysis without dependency checking 604 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 605 /// while this remains set if we have potentially dependent accesses. 606 bool IsRTCheckAnalysisNeeded; 607 608 /// The SCEV predicate containing all the SCEV-related assumptions. 609 PredicatedScalarEvolution &PSE; 610 }; 611 612 } // end anonymous namespace 613 614 /// Check whether a pointer can participate in a runtime bounds check. 615 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 616 /// by adding run-time checks (overflow checks) if necessary. 617 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 618 const ValueToValueMap &Strides, Value *Ptr, 619 Loop *L, bool Assume) { 620 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 621 622 // The bounds for loop-invariant pointer is trivial. 623 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 624 return true; 625 626 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 627 628 if (!AR && Assume) 629 AR = PSE.getAsAddRec(Ptr); 630 631 if (!AR) 632 return false; 633 634 return AR->isAffine(); 635 } 636 637 /// Check whether a pointer address cannot wrap. 638 static bool isNoWrap(PredicatedScalarEvolution &PSE, 639 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 640 const SCEV *PtrScev = PSE.getSCEV(Ptr); 641 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 642 return true; 643 644 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 645 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 646 return true; 647 648 return false; 649 } 650 651 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 652 MemAccessInfo Access, 653 const ValueToValueMap &StridesMap, 654 DenseMap<Value *, unsigned> &DepSetId, 655 Loop *TheLoop, unsigned &RunningDepId, 656 unsigned ASId, bool ShouldCheckWrap, 657 bool Assume) { 658 Value *Ptr = Access.getPointer(); 659 660 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 661 return false; 662 663 // When we run after a failing dependency check we have to make sure 664 // we don't have wrapping pointers. 665 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 666 auto *Expr = PSE.getSCEV(Ptr); 667 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 668 return false; 669 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 670 } 671 672 // The id of the dependence set. 673 unsigned DepId; 674 675 if (isDependencyCheckNeeded()) { 676 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 677 unsigned &LeaderId = DepSetId[Leader]; 678 if (!LeaderId) 679 LeaderId = RunningDepId++; 680 DepId = LeaderId; 681 } else 682 // Each access has its own dependence set. 683 DepId = RunningDepId++; 684 685 bool IsWrite = Access.getInt(); 686 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 687 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 688 689 return true; 690 } 691 692 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 693 ScalarEvolution *SE, Loop *TheLoop, 694 const ValueToValueMap &StridesMap, 695 bool ShouldCheckWrap) { 696 // Find pointers with computable bounds. We are going to use this information 697 // to place a runtime bound check. 698 bool CanDoRT = true; 699 700 bool NeedRTCheck = false; 701 if (!IsRTCheckAnalysisNeeded) return true; 702 703 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 704 705 // We assign a consecutive id to access from different alias sets. 706 // Accesses between different groups doesn't need to be checked. 707 unsigned ASId = 1; 708 for (auto &AS : AST) { 709 int NumReadPtrChecks = 0; 710 int NumWritePtrChecks = 0; 711 bool CanDoAliasSetRT = true; 712 713 // We assign consecutive id to access from different dependence sets. 714 // Accesses within the same set don't need a runtime check. 715 unsigned RunningDepId = 1; 716 DenseMap<Value *, unsigned> DepSetId; 717 718 SmallVector<MemAccessInfo, 4> Retries; 719 720 for (auto A : AS) { 721 Value *Ptr = A.getValue(); 722 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 723 MemAccessInfo Access(Ptr, IsWrite); 724 725 if (IsWrite) 726 ++NumWritePtrChecks; 727 else 728 ++NumReadPtrChecks; 729 730 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 731 RunningDepId, ASId, ShouldCheckWrap, false)) { 732 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 733 Retries.push_back(Access); 734 CanDoAliasSetRT = false; 735 } 736 } 737 738 // If we have at least two writes or one write and a read then we need to 739 // check them. But there is no need to checks if there is only one 740 // dependence set for this alias set. 741 // 742 // Note that this function computes CanDoRT and NeedRTCheck independently. 743 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 744 // for which we couldn't find the bounds but we don't actually need to emit 745 // any checks so it does not matter. 746 bool NeedsAliasSetRTCheck = false; 747 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 748 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 749 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 750 751 // We need to perform run-time alias checks, but some pointers had bounds 752 // that couldn't be checked. 753 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 754 // Reset the CanDoSetRt flag and retry all accesses that have failed. 755 // We know that we need these checks, so we can now be more aggressive 756 // and add further checks if required (overflow checks). 757 CanDoAliasSetRT = true; 758 for (auto Access : Retries) 759 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 760 TheLoop, RunningDepId, ASId, 761 ShouldCheckWrap, /*Assume=*/true)) { 762 CanDoAliasSetRT = false; 763 break; 764 } 765 } 766 767 CanDoRT &= CanDoAliasSetRT; 768 NeedRTCheck |= NeedsAliasSetRTCheck; 769 ++ASId; 770 } 771 772 // If the pointers that we would use for the bounds comparison have different 773 // address spaces, assume the values aren't directly comparable, so we can't 774 // use them for the runtime check. We also have to assume they could 775 // overlap. In the future there should be metadata for whether address spaces 776 // are disjoint. 777 unsigned NumPointers = RtCheck.Pointers.size(); 778 for (unsigned i = 0; i < NumPointers; ++i) { 779 for (unsigned j = i + 1; j < NumPointers; ++j) { 780 // Only need to check pointers between two different dependency sets. 781 if (RtCheck.Pointers[i].DependencySetId == 782 RtCheck.Pointers[j].DependencySetId) 783 continue; 784 // Only need to check pointers in the same alias set. 785 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 786 continue; 787 788 Value *PtrI = RtCheck.Pointers[i].PointerValue; 789 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 790 791 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 792 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 793 if (ASi != ASj) { 794 LLVM_DEBUG( 795 dbgs() << "LAA: Runtime check would require comparison between" 796 " different address spaces\n"); 797 return false; 798 } 799 } 800 } 801 802 if (NeedRTCheck && CanDoRT) 803 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 804 805 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 806 << " pointer comparisons.\n"); 807 808 RtCheck.Need = NeedRTCheck; 809 810 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 811 if (!CanDoRTIfNeeded) 812 RtCheck.reset(); 813 return CanDoRTIfNeeded; 814 } 815 816 void AccessAnalysis::processMemAccesses() { 817 // We process the set twice: first we process read-write pointers, last we 818 // process read-only pointers. This allows us to skip dependence tests for 819 // read-only pointers. 820 821 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 822 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 823 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 824 LLVM_DEBUG({ 825 for (auto A : Accesses) 826 dbgs() << "\t" << *A.getPointer() << " (" << 827 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 828 "read-only" : "read")) << ")\n"; 829 }); 830 831 // The AliasSetTracker has nicely partitioned our pointers by metadata 832 // compatibility and potential for underlying-object overlap. As a result, we 833 // only need to check for potential pointer dependencies within each alias 834 // set. 835 for (auto &AS : AST) { 836 // Note that both the alias-set tracker and the alias sets themselves used 837 // linked lists internally and so the iteration order here is deterministic 838 // (matching the original instruction order within each set). 839 840 bool SetHasWrite = false; 841 842 // Map of pointers to last access encountered. 843 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 844 UnderlyingObjToAccessMap ObjToLastAccess; 845 846 // Set of access to check after all writes have been processed. 847 PtrAccessSet DeferredAccesses; 848 849 // Iterate over each alias set twice, once to process read/write pointers, 850 // and then to process read-only pointers. 851 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 852 bool UseDeferred = SetIteration > 0; 853 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 854 855 for (auto AV : AS) { 856 Value *Ptr = AV.getValue(); 857 858 // For a single memory access in AliasSetTracker, Accesses may contain 859 // both read and write, and they both need to be handled for CheckDeps. 860 for (auto AC : S) { 861 if (AC.getPointer() != Ptr) 862 continue; 863 864 bool IsWrite = AC.getInt(); 865 866 // If we're using the deferred access set, then it contains only 867 // reads. 868 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 869 if (UseDeferred && !IsReadOnlyPtr) 870 continue; 871 // Otherwise, the pointer must be in the PtrAccessSet, either as a 872 // read or a write. 873 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 874 S.count(MemAccessInfo(Ptr, false))) && 875 "Alias-set pointer not in the access set?"); 876 877 MemAccessInfo Access(Ptr, IsWrite); 878 DepCands.insert(Access); 879 880 // Memorize read-only pointers for later processing and skip them in 881 // the first round (they need to be checked after we have seen all 882 // write pointers). Note: we also mark pointer that are not 883 // consecutive as "read-only" pointers (so that we check 884 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 885 if (!UseDeferred && IsReadOnlyPtr) { 886 DeferredAccesses.insert(Access); 887 continue; 888 } 889 890 // If this is a write - check other reads and writes for conflicts. If 891 // this is a read only check other writes for conflicts (but only if 892 // there is no other write to the ptr - this is an optimization to 893 // catch "a[i] = a[i] + " without having to do a dependence check). 894 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 895 CheckDeps.push_back(Access); 896 IsRTCheckAnalysisNeeded = true; 897 } 898 899 if (IsWrite) 900 SetHasWrite = true; 901 902 // Create sets of pointers connected by a shared alias set and 903 // underlying object. 904 typedef SmallVector<Value *, 16> ValueVector; 905 ValueVector TempObjects; 906 907 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 908 LLVM_DEBUG(dbgs() 909 << "Underlying objects for pointer " << *Ptr << "\n"); 910 for (Value *UnderlyingObj : TempObjects) { 911 // nullptr never alias, don't join sets for pointer that have "null" 912 // in their UnderlyingObjects list. 913 if (isa<ConstantPointerNull>(UnderlyingObj)) 914 continue; 915 916 UnderlyingObjToAccessMap::iterator Prev = 917 ObjToLastAccess.find(UnderlyingObj); 918 if (Prev != ObjToLastAccess.end()) 919 DepCands.unionSets(Access, Prev->second); 920 921 ObjToLastAccess[UnderlyingObj] = Access; 922 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 923 } 924 } 925 } 926 } 927 } 928 } 929 930 static bool isInBoundsGep(Value *Ptr) { 931 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 932 return GEP->isInBounds(); 933 return false; 934 } 935 936 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 937 /// i.e. monotonically increasing/decreasing. 938 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 939 PredicatedScalarEvolution &PSE, const Loop *L) { 940 // FIXME: This should probably only return true for NUW. 941 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 942 return true; 943 944 // Scalar evolution does not propagate the non-wrapping flags to values that 945 // are derived from a non-wrapping induction variable because non-wrapping 946 // could be flow-sensitive. 947 // 948 // Look through the potentially overflowing instruction to try to prove 949 // non-wrapping for the *specific* value of Ptr. 950 951 // The arithmetic implied by an inbounds GEP can't overflow. 952 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 953 if (!GEP || !GEP->isInBounds()) 954 return false; 955 956 // Make sure there is only one non-const index and analyze that. 957 Value *NonConstIndex = nullptr; 958 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 959 if (!isa<ConstantInt>(Index)) { 960 if (NonConstIndex) 961 return false; 962 NonConstIndex = Index; 963 } 964 if (!NonConstIndex) 965 // The recurrence is on the pointer, ignore for now. 966 return false; 967 968 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 969 // AddRec using a NSW operation. 970 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 971 if (OBO->hasNoSignedWrap() && 972 // Assume constant for other the operand so that the AddRec can be 973 // easily found. 974 isa<ConstantInt>(OBO->getOperand(1))) { 975 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 976 977 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 978 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 979 } 980 981 return false; 982 } 983 984 /// Check whether the access through \p Ptr has a constant stride. 985 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 986 const Loop *Lp, const ValueToValueMap &StridesMap, 987 bool Assume, bool ShouldCheckWrap) { 988 Type *Ty = Ptr->getType(); 989 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 990 991 // Make sure that the pointer does not point to aggregate types. 992 auto *PtrTy = cast<PointerType>(Ty); 993 if (PtrTy->getElementType()->isAggregateType()) { 994 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 995 << *Ptr << "\n"); 996 return 0; 997 } 998 999 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1000 1001 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1002 if (Assume && !AR) 1003 AR = PSE.getAsAddRec(Ptr); 1004 1005 if (!AR) { 1006 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1007 << " SCEV: " << *PtrScev << "\n"); 1008 return 0; 1009 } 1010 1011 // The accesss function must stride over the innermost loop. 1012 if (Lp != AR->getLoop()) { 1013 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1014 << *Ptr << " SCEV: " << *AR << "\n"); 1015 return 0; 1016 } 1017 1018 // The address calculation must not wrap. Otherwise, a dependence could be 1019 // inverted. 1020 // An inbounds getelementptr that is a AddRec with a unit stride 1021 // cannot wrap per definition. The unit stride requirement is checked later. 1022 // An getelementptr without an inbounds attribute and unit stride would have 1023 // to access the pointer value "0" which is undefined behavior in address 1024 // space 0, therefore we can also vectorize this case. 1025 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1026 bool IsNoWrapAddRec = !ShouldCheckWrap || 1027 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1028 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1029 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 1030 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 1031 if (Assume) { 1032 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1033 IsNoWrapAddRec = true; 1034 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1035 << "LAA: Pointer: " << *Ptr << "\n" 1036 << "LAA: SCEV: " << *AR << "\n" 1037 << "LAA: Added an overflow assumption\n"); 1038 } else { 1039 LLVM_DEBUG( 1040 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1041 << *Ptr << " SCEV: " << *AR << "\n"); 1042 return 0; 1043 } 1044 } 1045 1046 // Check the step is constant. 1047 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1048 1049 // Calculate the pointer stride and check if it is constant. 1050 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1051 if (!C) { 1052 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1053 << " SCEV: " << *AR << "\n"); 1054 return 0; 1055 } 1056 1057 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1058 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1059 const APInt &APStepVal = C->getAPInt(); 1060 1061 // Huge step value - give up. 1062 if (APStepVal.getBitWidth() > 64) 1063 return 0; 1064 1065 int64_t StepVal = APStepVal.getSExtValue(); 1066 1067 // Strided access. 1068 int64_t Stride = StepVal / Size; 1069 int64_t Rem = StepVal % Size; 1070 if (Rem) 1071 return 0; 1072 1073 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1074 // know we can't "wrap around the address space". In case of address space 1075 // zero we know that this won't happen without triggering undefined behavior. 1076 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 1077 Stride != 1 && Stride != -1) { 1078 if (Assume) { 1079 // We can avoid this case by adding a run-time check. 1080 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1081 << "inbouds or in address space 0 may wrap:\n" 1082 << "LAA: Pointer: " << *Ptr << "\n" 1083 << "LAA: SCEV: " << *AR << "\n" 1084 << "LAA: Added an overflow assumption\n"); 1085 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1086 } else 1087 return 0; 1088 } 1089 1090 return Stride; 1091 } 1092 1093 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1094 ScalarEvolution &SE, 1095 SmallVectorImpl<unsigned> &SortedIndices) { 1096 assert(llvm::all_of( 1097 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1098 "Expected list of pointer operands."); 1099 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1100 OffValPairs.reserve(VL.size()); 1101 1102 // Walk over the pointers, and map each of them to an offset relative to 1103 // first pointer in the array. 1104 Value *Ptr0 = VL[0]; 1105 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1106 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1107 1108 llvm::SmallSet<int64_t, 4> Offsets; 1109 for (auto *Ptr : VL) { 1110 // TODO: Outline this code as a special, more time consuming, version of 1111 // computeConstantDifference() function. 1112 if (Ptr->getType()->getPointerAddressSpace() != 1113 Ptr0->getType()->getPointerAddressSpace()) 1114 return false; 1115 // If a pointer refers to a different underlying object, bail - the 1116 // pointers are by definition incomparable. 1117 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1118 if (CurrObj != Obj0) 1119 return false; 1120 1121 const SCEV *Scev = SE.getSCEV(Ptr); 1122 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1123 // The pointers may not have a constant offset from each other, or SCEV 1124 // may just not be smart enough to figure out they do. Regardless, 1125 // there's nothing we can do. 1126 if (!Diff) 1127 return false; 1128 1129 // Check if the pointer with the same offset is found. 1130 int64_t Offset = Diff->getAPInt().getSExtValue(); 1131 if (!Offsets.insert(Offset).second) 1132 return false; 1133 OffValPairs.emplace_back(Offset, Ptr); 1134 } 1135 SortedIndices.clear(); 1136 SortedIndices.resize(VL.size()); 1137 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1138 1139 // Sort the memory accesses and keep the order of their uses in UseOrder. 1140 std::stable_sort(SortedIndices.begin(), SortedIndices.end(), 1141 [&OffValPairs](unsigned Left, unsigned Right) { 1142 return OffValPairs[Left].first < OffValPairs[Right].first; 1143 }); 1144 1145 // Check if the order is consecutive already. 1146 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1147 return I == SortedIndices[I]; 1148 })) 1149 SortedIndices.clear(); 1150 1151 return true; 1152 } 1153 1154 /// Take the address space operand from the Load/Store instruction. 1155 /// Returns -1 if this is not a valid Load/Store instruction. 1156 static unsigned getAddressSpaceOperand(Value *I) { 1157 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1158 return L->getPointerAddressSpace(); 1159 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1160 return S->getPointerAddressSpace(); 1161 return -1; 1162 } 1163 1164 /// Returns true if the memory operations \p A and \p B are consecutive. 1165 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1166 ScalarEvolution &SE, bool CheckType) { 1167 Value *PtrA = getLoadStorePointerOperand(A); 1168 Value *PtrB = getLoadStorePointerOperand(B); 1169 unsigned ASA = getAddressSpaceOperand(A); 1170 unsigned ASB = getAddressSpaceOperand(B); 1171 1172 // Check that the address spaces match and that the pointers are valid. 1173 if (!PtrA || !PtrB || (ASA != ASB)) 1174 return false; 1175 1176 // Make sure that A and B are different pointers. 1177 if (PtrA == PtrB) 1178 return false; 1179 1180 // Make sure that A and B have the same type if required. 1181 if (CheckType && PtrA->getType() != PtrB->getType()) 1182 return false; 1183 1184 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1185 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1186 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1187 1188 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1189 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1190 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1191 1192 // OffsetDelta = OffsetB - OffsetA; 1193 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1194 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1195 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1196 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1197 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1198 // Check if they are based on the same pointer. That makes the offsets 1199 // sufficient. 1200 if (PtrA == PtrB) 1201 return OffsetDelta == Size; 1202 1203 // Compute the necessary base pointer delta to have the necessary final delta 1204 // equal to the size. 1205 // BaseDelta = Size - OffsetDelta; 1206 const SCEV *SizeSCEV = SE.getConstant(Size); 1207 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1208 1209 // Otherwise compute the distance with SCEV between the base pointers. 1210 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1211 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1212 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1213 return X == PtrSCEVB; 1214 } 1215 1216 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1217 switch (Type) { 1218 case NoDep: 1219 case Forward: 1220 case BackwardVectorizable: 1221 return true; 1222 1223 case Unknown: 1224 case ForwardButPreventsForwarding: 1225 case Backward: 1226 case BackwardVectorizableButPreventsForwarding: 1227 return false; 1228 } 1229 llvm_unreachable("unexpected DepType!"); 1230 } 1231 1232 bool MemoryDepChecker::Dependence::isBackward() const { 1233 switch (Type) { 1234 case NoDep: 1235 case Forward: 1236 case ForwardButPreventsForwarding: 1237 case Unknown: 1238 return false; 1239 1240 case BackwardVectorizable: 1241 case Backward: 1242 case BackwardVectorizableButPreventsForwarding: 1243 return true; 1244 } 1245 llvm_unreachable("unexpected DepType!"); 1246 } 1247 1248 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1249 return isBackward() || Type == Unknown; 1250 } 1251 1252 bool MemoryDepChecker::Dependence::isForward() const { 1253 switch (Type) { 1254 case Forward: 1255 case ForwardButPreventsForwarding: 1256 return true; 1257 1258 case NoDep: 1259 case Unknown: 1260 case BackwardVectorizable: 1261 case Backward: 1262 case BackwardVectorizableButPreventsForwarding: 1263 return false; 1264 } 1265 llvm_unreachable("unexpected DepType!"); 1266 } 1267 1268 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1269 uint64_t TypeByteSize) { 1270 // If loads occur at a distance that is not a multiple of a feasible vector 1271 // factor store-load forwarding does not take place. 1272 // Positive dependences might cause troubles because vectorizing them might 1273 // prevent store-load forwarding making vectorized code run a lot slower. 1274 // a[i] = a[i-3] ^ a[i-8]; 1275 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1276 // hence on your typical architecture store-load forwarding does not take 1277 // place. Vectorizing in such cases does not make sense. 1278 // Store-load forwarding distance. 1279 1280 // After this many iterations store-to-load forwarding conflicts should not 1281 // cause any slowdowns. 1282 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1283 // Maximum vector factor. 1284 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1285 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1286 1287 // Compute the smallest VF at which the store and load would be misaligned. 1288 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1289 VF *= 2) { 1290 // If the number of vector iteration between the store and the load are 1291 // small we could incur conflicts. 1292 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1293 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1294 break; 1295 } 1296 } 1297 1298 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1299 LLVM_DEBUG( 1300 dbgs() << "LAA: Distance " << Distance 1301 << " that could cause a store-load forwarding conflict\n"); 1302 return true; 1303 } 1304 1305 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1306 MaxVFWithoutSLForwardIssues != 1307 VectorizerParams::MaxVectorWidth * TypeByteSize) 1308 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1309 return false; 1310 } 1311 1312 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1313 /// memory accesses, that have the same stride whose absolute value is given 1314 /// in \p Stride, and that have the same type size \p TypeByteSize, 1315 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1316 /// possible to prove statically that the dependence distance is larger 1317 /// than the range that the accesses will travel through the execution of 1318 /// the loop. If so, return true; false otherwise. This is useful for 1319 /// example in loops such as the following (PR31098): 1320 /// for (i = 0; i < D; ++i) { 1321 /// = out[i]; 1322 /// out[i+D] = 1323 /// } 1324 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1325 const SCEV &BackedgeTakenCount, 1326 const SCEV &Dist, uint64_t Stride, 1327 uint64_t TypeByteSize) { 1328 1329 // If we can prove that 1330 // (**) |Dist| > BackedgeTakenCount * Step 1331 // where Step is the absolute stride of the memory accesses in bytes, 1332 // then there is no dependence. 1333 // 1334 // Ratioanle: 1335 // We basically want to check if the absolute distance (|Dist/Step|) 1336 // is >= the loop iteration count (or > BackedgeTakenCount). 1337 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1338 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1339 // that the dependence distance is >= VF; This is checked elsewhere. 1340 // But in some cases we can prune unknown dependence distances early, and 1341 // even before selecting the VF, and without a runtime test, by comparing 1342 // the distance against the loop iteration count. Since the vectorized code 1343 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1344 // also guarantees that distance >= VF. 1345 // 1346 const uint64_t ByteStride = Stride * TypeByteSize; 1347 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1348 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1349 1350 const SCEV *CastedDist = &Dist; 1351 const SCEV *CastedProduct = Product; 1352 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1353 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1354 1355 // The dependence distance can be positive/negative, so we sign extend Dist; 1356 // The multiplication of the absolute stride in bytes and the 1357 // backdgeTakenCount is non-negative, so we zero extend Product. 1358 if (DistTypeSize > ProductTypeSize) 1359 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1360 else 1361 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1362 1363 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1364 // (If so, then we have proven (**) because |Dist| >= Dist) 1365 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1366 if (SE.isKnownPositive(Minus)) 1367 return true; 1368 1369 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1370 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1371 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1372 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1373 if (SE.isKnownPositive(Minus)) 1374 return true; 1375 1376 return false; 1377 } 1378 1379 /// Check the dependence for two accesses with the same stride \p Stride. 1380 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1381 /// bytes. 1382 /// 1383 /// \returns true if they are independent. 1384 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1385 uint64_t TypeByteSize) { 1386 assert(Stride > 1 && "The stride must be greater than 1"); 1387 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1388 assert(Distance > 0 && "The distance must be non-zero"); 1389 1390 // Skip if the distance is not multiple of type byte size. 1391 if (Distance % TypeByteSize) 1392 return false; 1393 1394 uint64_t ScaledDist = Distance / TypeByteSize; 1395 1396 // No dependence if the scaled distance is not multiple of the stride. 1397 // E.g. 1398 // for (i = 0; i < 1024 ; i += 4) 1399 // A[i+2] = A[i] + 1; 1400 // 1401 // Two accesses in memory (scaled distance is 2, stride is 4): 1402 // | A[0] | | | | A[4] | | | | 1403 // | | | A[2] | | | | A[6] | | 1404 // 1405 // E.g. 1406 // for (i = 0; i < 1024 ; i += 3) 1407 // A[i+4] = A[i] + 1; 1408 // 1409 // Two accesses in memory (scaled distance is 4, stride is 3): 1410 // | A[0] | | | A[3] | | | A[6] | | | 1411 // | | | | | A[4] | | | A[7] | | 1412 return ScaledDist % Stride; 1413 } 1414 1415 MemoryDepChecker::Dependence::DepType 1416 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1417 const MemAccessInfo &B, unsigned BIdx, 1418 const ValueToValueMap &Strides) { 1419 assert (AIdx < BIdx && "Must pass arguments in program order"); 1420 1421 Value *APtr = A.getPointer(); 1422 Value *BPtr = B.getPointer(); 1423 bool AIsWrite = A.getInt(); 1424 bool BIsWrite = B.getInt(); 1425 1426 // Two reads are independent. 1427 if (!AIsWrite && !BIsWrite) 1428 return Dependence::NoDep; 1429 1430 // We cannot check pointers in different address spaces. 1431 if (APtr->getType()->getPointerAddressSpace() != 1432 BPtr->getType()->getPointerAddressSpace()) 1433 return Dependence::Unknown; 1434 1435 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1436 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1437 1438 const SCEV *Src = PSE.getSCEV(APtr); 1439 const SCEV *Sink = PSE.getSCEV(BPtr); 1440 1441 // If the induction step is negative we have to invert source and sink of the 1442 // dependence. 1443 if (StrideAPtr < 0) { 1444 std::swap(APtr, BPtr); 1445 std::swap(Src, Sink); 1446 std::swap(AIsWrite, BIsWrite); 1447 std::swap(AIdx, BIdx); 1448 std::swap(StrideAPtr, StrideBPtr); 1449 } 1450 1451 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1452 1453 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1454 << "(Induction step: " << StrideAPtr << ")\n"); 1455 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1456 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1457 1458 // Need accesses with constant stride. We don't want to vectorize 1459 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1460 // the address space. 1461 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1462 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1463 return Dependence::Unknown; 1464 } 1465 1466 Type *ATy = APtr->getType()->getPointerElementType(); 1467 Type *BTy = BPtr->getType()->getPointerElementType(); 1468 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1469 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1470 uint64_t Stride = std::abs(StrideAPtr); 1471 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1472 if (!C) { 1473 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1474 isSafeDependenceDistance(DL, *(PSE.getSE()), 1475 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1476 TypeByteSize)) 1477 return Dependence::NoDep; 1478 1479 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1480 ShouldRetryWithRuntimeCheck = true; 1481 return Dependence::Unknown; 1482 } 1483 1484 const APInt &Val = C->getAPInt(); 1485 int64_t Distance = Val.getSExtValue(); 1486 1487 // Attempt to prove strided accesses independent. 1488 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1489 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1490 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1491 return Dependence::NoDep; 1492 } 1493 1494 // Negative distances are not plausible dependencies. 1495 if (Val.isNegative()) { 1496 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1497 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1498 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1499 ATy != BTy)) { 1500 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1501 return Dependence::ForwardButPreventsForwarding; 1502 } 1503 1504 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1505 return Dependence::Forward; 1506 } 1507 1508 // Write to the same location with the same size. 1509 // Could be improved to assert type sizes are the same (i32 == float, etc). 1510 if (Val == 0) { 1511 if (ATy == BTy) 1512 return Dependence::Forward; 1513 LLVM_DEBUG( 1514 dbgs() << "LAA: Zero dependence difference but different types\n"); 1515 return Dependence::Unknown; 1516 } 1517 1518 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1519 1520 if (ATy != BTy) { 1521 LLVM_DEBUG( 1522 dbgs() 1523 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1524 return Dependence::Unknown; 1525 } 1526 1527 // Bail out early if passed-in parameters make vectorization not feasible. 1528 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1529 VectorizerParams::VectorizationFactor : 1); 1530 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1531 VectorizerParams::VectorizationInterleave : 1); 1532 // The minimum number of iterations for a vectorized/unrolled version. 1533 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1534 1535 // It's not vectorizable if the distance is smaller than the minimum distance 1536 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1537 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1538 // TypeByteSize (No need to plus the last gap distance). 1539 // 1540 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1541 // foo(int *A) { 1542 // int *B = (int *)((char *)A + 14); 1543 // for (i = 0 ; i < 1024 ; i += 2) 1544 // B[i] = A[i] + 1; 1545 // } 1546 // 1547 // Two accesses in memory (stride is 2): 1548 // | A[0] | | A[2] | | A[4] | | A[6] | | 1549 // | B[0] | | B[2] | | B[4] | 1550 // 1551 // Distance needs for vectorizing iterations except the last iteration: 1552 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1553 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1554 // 1555 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1556 // 12, which is less than distance. 1557 // 1558 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1559 // the minimum distance needed is 28, which is greater than distance. It is 1560 // not safe to do vectorization. 1561 uint64_t MinDistanceNeeded = 1562 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1563 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1564 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1565 << Distance << '\n'); 1566 return Dependence::Backward; 1567 } 1568 1569 // Unsafe if the minimum distance needed is greater than max safe distance. 1570 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1571 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1572 << MinDistanceNeeded << " size in bytes"); 1573 return Dependence::Backward; 1574 } 1575 1576 // Positive distance bigger than max vectorization factor. 1577 // FIXME: Should use max factor instead of max distance in bytes, which could 1578 // not handle different types. 1579 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1580 // void foo (int *A, char *B) { 1581 // for (unsigned i = 0; i < 1024; i++) { 1582 // A[i+2] = A[i] + 1; 1583 // B[i+2] = B[i] + 1; 1584 // } 1585 // } 1586 // 1587 // This case is currently unsafe according to the max safe distance. If we 1588 // analyze the two accesses on array B, the max safe dependence distance 1589 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1590 // is 8, which is less than 2 and forbidden vectorization, But actually 1591 // both A and B could be vectorized by 2 iterations. 1592 MaxSafeDepDistBytes = 1593 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1594 1595 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1596 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1597 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1598 return Dependence::BackwardVectorizableButPreventsForwarding; 1599 1600 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1601 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1602 << " with max VF = " << MaxVF << '\n'); 1603 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1604 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1605 return Dependence::BackwardVectorizable; 1606 } 1607 1608 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1609 MemAccessInfoList &CheckDeps, 1610 const ValueToValueMap &Strides) { 1611 1612 MaxSafeDepDistBytes = -1; 1613 SmallPtrSet<MemAccessInfo, 8> Visited; 1614 for (MemAccessInfo CurAccess : CheckDeps) { 1615 if (Visited.count(CurAccess)) 1616 continue; 1617 1618 // Get the relevant memory access set. 1619 EquivalenceClasses<MemAccessInfo>::iterator I = 1620 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1621 1622 // Check accesses within this set. 1623 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1624 AccessSets.member_begin(I); 1625 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1626 AccessSets.member_end(); 1627 1628 // Check every access pair. 1629 while (AI != AE) { 1630 Visited.insert(*AI); 1631 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1632 while (OI != AE) { 1633 // Check every accessing instruction pair in program order. 1634 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1635 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1636 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1637 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1638 auto A = std::make_pair(&*AI, *I1); 1639 auto B = std::make_pair(&*OI, *I2); 1640 1641 assert(*I1 != *I2); 1642 if (*I1 > *I2) 1643 std::swap(A, B); 1644 1645 Dependence::DepType Type = 1646 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1647 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1648 1649 // Gather dependences unless we accumulated MaxDependences 1650 // dependences. In that case return as soon as we find the first 1651 // unsafe dependence. This puts a limit on this quadratic 1652 // algorithm. 1653 if (RecordDependences) { 1654 if (Type != Dependence::NoDep) 1655 Dependences.push_back(Dependence(A.second, B.second, Type)); 1656 1657 if (Dependences.size() >= MaxDependences) { 1658 RecordDependences = false; 1659 Dependences.clear(); 1660 LLVM_DEBUG(dbgs() 1661 << "Too many dependences, stopped recording\n"); 1662 } 1663 } 1664 if (!RecordDependences && !SafeForVectorization) 1665 return false; 1666 } 1667 ++OI; 1668 } 1669 AI++; 1670 } 1671 } 1672 1673 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1674 return SafeForVectorization; 1675 } 1676 1677 SmallVector<Instruction *, 4> 1678 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1679 MemAccessInfo Access(Ptr, isWrite); 1680 auto &IndexVector = Accesses.find(Access)->second; 1681 1682 SmallVector<Instruction *, 4> Insts; 1683 transform(IndexVector, 1684 std::back_inserter(Insts), 1685 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1686 return Insts; 1687 } 1688 1689 const char *MemoryDepChecker::Dependence::DepName[] = { 1690 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1691 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1692 1693 void MemoryDepChecker::Dependence::print( 1694 raw_ostream &OS, unsigned Depth, 1695 const SmallVectorImpl<Instruction *> &Instrs) const { 1696 OS.indent(Depth) << DepName[Type] << ":\n"; 1697 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1698 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1699 } 1700 1701 bool LoopAccessInfo::canAnalyzeLoop() { 1702 // We need to have a loop header. 1703 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1704 << TheLoop->getHeader()->getParent()->getName() << ": " 1705 << TheLoop->getHeader()->getName() << '\n'); 1706 1707 // We can only analyze innermost loops. 1708 if (!TheLoop->empty()) { 1709 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1710 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1711 return false; 1712 } 1713 1714 // We must have a single backedge. 1715 if (TheLoop->getNumBackEdges() != 1) { 1716 LLVM_DEBUG( 1717 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1718 recordAnalysis("CFGNotUnderstood") 1719 << "loop control flow is not understood by analyzer"; 1720 return false; 1721 } 1722 1723 // We must have a single exiting block. 1724 if (!TheLoop->getExitingBlock()) { 1725 LLVM_DEBUG( 1726 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1727 recordAnalysis("CFGNotUnderstood") 1728 << "loop control flow is not understood by analyzer"; 1729 return false; 1730 } 1731 1732 // We only handle bottom-tested loops, i.e. loop in which the condition is 1733 // checked at the end of each iteration. With that we can assume that all 1734 // instructions in the loop are executed the same number of times. 1735 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1736 LLVM_DEBUG( 1737 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1738 recordAnalysis("CFGNotUnderstood") 1739 << "loop control flow is not understood by analyzer"; 1740 return false; 1741 } 1742 1743 // ScalarEvolution needs to be able to find the exit count. 1744 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1745 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1746 recordAnalysis("CantComputeNumberOfIterations") 1747 << "could not determine number of loop iterations"; 1748 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1749 return false; 1750 } 1751 1752 return true; 1753 } 1754 1755 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1756 const TargetLibraryInfo *TLI, 1757 DominatorTree *DT) { 1758 typedef SmallPtrSet<Value*, 16> ValueSet; 1759 1760 // Holds the Load and Store instructions. 1761 SmallVector<LoadInst *, 16> Loads; 1762 SmallVector<StoreInst *, 16> Stores; 1763 1764 // Holds all the different accesses in the loop. 1765 unsigned NumReads = 0; 1766 unsigned NumReadWrites = 0; 1767 1768 PtrRtChecking->Pointers.clear(); 1769 PtrRtChecking->Need = false; 1770 1771 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1772 1773 // For each block. 1774 for (BasicBlock *BB : TheLoop->blocks()) { 1775 // Scan the BB and collect legal loads and stores. 1776 for (Instruction &I : *BB) { 1777 // If this is a load, save it. If this instruction can read from memory 1778 // but is not a load, then we quit. Notice that we don't handle function 1779 // calls that read or write. 1780 if (I.mayReadFromMemory()) { 1781 // Many math library functions read the rounding mode. We will only 1782 // vectorize a loop if it contains known function calls that don't set 1783 // the flag. Therefore, it is safe to ignore this read from memory. 1784 auto *Call = dyn_cast<CallInst>(&I); 1785 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1786 continue; 1787 1788 // If the function has an explicit vectorized counterpart, we can safely 1789 // assume that it can be vectorized. 1790 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1791 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1792 continue; 1793 1794 auto *Ld = dyn_cast<LoadInst>(&I); 1795 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1796 recordAnalysis("NonSimpleLoad", Ld) 1797 << "read with atomic ordering or volatile read"; 1798 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1799 CanVecMem = false; 1800 return; 1801 } 1802 NumLoads++; 1803 Loads.push_back(Ld); 1804 DepChecker->addAccess(Ld); 1805 if (EnableMemAccessVersioning) 1806 collectStridedAccess(Ld); 1807 continue; 1808 } 1809 1810 // Save 'store' instructions. Abort if other instructions write to memory. 1811 if (I.mayWriteToMemory()) { 1812 auto *St = dyn_cast<StoreInst>(&I); 1813 if (!St) { 1814 recordAnalysis("CantVectorizeInstruction", St) 1815 << "instruction cannot be vectorized"; 1816 CanVecMem = false; 1817 return; 1818 } 1819 if (!St->isSimple() && !IsAnnotatedParallel) { 1820 recordAnalysis("NonSimpleStore", St) 1821 << "write with atomic ordering or volatile write"; 1822 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1823 CanVecMem = false; 1824 return; 1825 } 1826 NumStores++; 1827 Stores.push_back(St); 1828 DepChecker->addAccess(St); 1829 if (EnableMemAccessVersioning) 1830 collectStridedAccess(St); 1831 } 1832 } // Next instr. 1833 } // Next block. 1834 1835 // Now we have two lists that hold the loads and the stores. 1836 // Next, we find the pointers that they use. 1837 1838 // Check if we see any stores. If there are no stores, then we don't 1839 // care if the pointers are *restrict*. 1840 if (!Stores.size()) { 1841 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1842 CanVecMem = true; 1843 return; 1844 } 1845 1846 MemoryDepChecker::DepCandidates DependentAccesses; 1847 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1848 AA, LI, DependentAccesses, *PSE); 1849 1850 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1851 // multiple times on the same object. If the ptr is accessed twice, once 1852 // for read and once for write, it will only appear once (on the write 1853 // list). This is okay, since we are going to check for conflicts between 1854 // writes and between reads and writes, but not between reads and reads. 1855 ValueSet Seen; 1856 1857 for (StoreInst *ST : Stores) { 1858 Value *Ptr = ST->getPointerOperand(); 1859 // Check for store to loop invariant address. 1860 StoreToLoopInvariantAddress |= isUniform(Ptr); 1861 // If we did *not* see this pointer before, insert it to the read-write 1862 // list. At this phase it is only a 'write' list. 1863 if (Seen.insert(Ptr).second) { 1864 ++NumReadWrites; 1865 1866 MemoryLocation Loc = MemoryLocation::get(ST); 1867 // The TBAA metadata could have a control dependency on the predication 1868 // condition, so we cannot rely on it when determining whether or not we 1869 // need runtime pointer checks. 1870 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1871 Loc.AATags.TBAA = nullptr; 1872 1873 Accesses.addStore(Loc); 1874 } 1875 } 1876 1877 if (IsAnnotatedParallel) { 1878 LLVM_DEBUG( 1879 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1880 << "checks.\n"); 1881 CanVecMem = true; 1882 return; 1883 } 1884 1885 for (LoadInst *LD : Loads) { 1886 Value *Ptr = LD->getPointerOperand(); 1887 // If we did *not* see this pointer before, insert it to the 1888 // read list. If we *did* see it before, then it is already in 1889 // the read-write list. This allows us to vectorize expressions 1890 // such as A[i] += x; Because the address of A[i] is a read-write 1891 // pointer. This only works if the index of A[i] is consecutive. 1892 // If the address of i is unknown (for example A[B[i]]) then we may 1893 // read a few words, modify, and write a few words, and some of the 1894 // words may be written to the same address. 1895 bool IsReadOnlyPtr = false; 1896 if (Seen.insert(Ptr).second || 1897 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1898 ++NumReads; 1899 IsReadOnlyPtr = true; 1900 } 1901 1902 MemoryLocation Loc = MemoryLocation::get(LD); 1903 // The TBAA metadata could have a control dependency on the predication 1904 // condition, so we cannot rely on it when determining whether or not we 1905 // need runtime pointer checks. 1906 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1907 Loc.AATags.TBAA = nullptr; 1908 1909 Accesses.addLoad(Loc, IsReadOnlyPtr); 1910 } 1911 1912 // If we write (or read-write) to a single destination and there are no 1913 // other reads in this loop then is it safe to vectorize. 1914 if (NumReadWrites == 1 && NumReads == 0) { 1915 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1916 CanVecMem = true; 1917 return; 1918 } 1919 1920 // Build dependence sets and check whether we need a runtime pointer bounds 1921 // check. 1922 Accesses.buildDependenceSets(); 1923 1924 // Find pointers with computable bounds. We are going to use this information 1925 // to place a runtime bound check. 1926 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1927 TheLoop, SymbolicStrides); 1928 if (!CanDoRTIfNeeded) { 1929 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1930 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1931 << "the array bounds.\n"); 1932 CanVecMem = false; 1933 return; 1934 } 1935 1936 LLVM_DEBUG( 1937 dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1938 1939 CanVecMem = true; 1940 if (Accesses.isDependencyCheckNeeded()) { 1941 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1942 CanVecMem = DepChecker->areDepsSafe( 1943 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1944 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 1945 1946 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1947 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1948 1949 // Clear the dependency checks. We assume they are not needed. 1950 Accesses.resetDepChecks(*DepChecker); 1951 1952 PtrRtChecking->reset(); 1953 PtrRtChecking->Need = true; 1954 1955 auto *SE = PSE->getSE(); 1956 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1957 SymbolicStrides, true); 1958 1959 // Check that we found the bounds for the pointer. 1960 if (!CanDoRTIfNeeded) { 1961 recordAnalysis("CantCheckMemDepsAtRunTime") 1962 << "cannot check memory dependencies at runtime"; 1963 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1964 CanVecMem = false; 1965 return; 1966 } 1967 1968 CanVecMem = true; 1969 } 1970 } 1971 1972 if (CanVecMem) 1973 LLVM_DEBUG( 1974 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1975 << (PtrRtChecking->Need ? "" : " don't") 1976 << " need runtime memory checks.\n"); 1977 else { 1978 recordAnalysis("UnsafeMemDep") 1979 << "unsafe dependent memory operations in loop. Use " 1980 "#pragma loop distribute(enable) to allow loop distribution " 1981 "to attempt to isolate the offending operations into a separate " 1982 "loop"; 1983 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1984 } 1985 } 1986 1987 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1988 DominatorTree *DT) { 1989 assert(TheLoop->contains(BB) && "Unknown block used"); 1990 1991 // Blocks that do not dominate the latch need predication. 1992 BasicBlock* Latch = TheLoop->getLoopLatch(); 1993 return !DT->dominates(BB, Latch); 1994 } 1995 1996 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 1997 Instruction *I) { 1998 assert(!Report && "Multiple reports generated"); 1999 2000 Value *CodeRegion = TheLoop->getHeader(); 2001 DebugLoc DL = TheLoop->getStartLoc(); 2002 2003 if (I) { 2004 CodeRegion = I->getParent(); 2005 // If there is no debug location attached to the instruction, revert back to 2006 // using the loop's. 2007 if (I->getDebugLoc()) 2008 DL = I->getDebugLoc(); 2009 } 2010 2011 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2012 CodeRegion); 2013 return *Report; 2014 } 2015 2016 bool LoopAccessInfo::isUniform(Value *V) const { 2017 auto *SE = PSE->getSE(); 2018 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2019 // never considered uniform. 2020 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2021 // trivially loop-invariant FP values to be considered uniform. 2022 if (!SE->isSCEVable(V->getType())) 2023 return false; 2024 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2025 } 2026 2027 // FIXME: this function is currently a duplicate of the one in 2028 // LoopVectorize.cpp. 2029 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2030 Instruction *Loc) { 2031 if (FirstInst) 2032 return FirstInst; 2033 if (Instruction *I = dyn_cast<Instruction>(V)) 2034 return I->getParent() == Loc->getParent() ? I : nullptr; 2035 return nullptr; 2036 } 2037 2038 namespace { 2039 2040 /// IR Values for the lower and upper bounds of a pointer evolution. We 2041 /// need to use value-handles because SCEV expansion can invalidate previously 2042 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 2043 /// a previous one. 2044 struct PointerBounds { 2045 TrackingVH<Value> Start; 2046 TrackingVH<Value> End; 2047 }; 2048 2049 } // end anonymous namespace 2050 2051 /// Expand code for the lower and upper bound of the pointer group \p CG 2052 /// in \p TheLoop. \return the values for the bounds. 2053 static PointerBounds 2054 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 2055 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 2056 const RuntimePointerChecking &PtrRtChecking) { 2057 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 2058 const SCEV *Sc = SE->getSCEV(Ptr); 2059 2060 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2061 LLVMContext &Ctx = Loc->getContext(); 2062 2063 // Use this type for pointer arithmetic. 2064 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2065 2066 if (SE->isLoopInvariant(Sc, TheLoop)) { 2067 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 2068 << *Ptr << "\n"); 2069 // Ptr could be in the loop body. If so, expand a new one at the correct 2070 // location. 2071 Instruction *Inst = dyn_cast<Instruction>(Ptr); 2072 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 2073 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 2074 : Ptr; 2075 // We must return a half-open range, which means incrementing Sc. 2076 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 2077 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 2078 return {NewPtr, NewPtrPlusOne}; 2079 } else { 2080 Value *Start = nullptr, *End = nullptr; 2081 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 2082 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 2083 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2084 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 2085 << "\n"); 2086 return {Start, End}; 2087 } 2088 } 2089 2090 /// Turns a collection of checks into a collection of expanded upper and 2091 /// lower bounds for both pointers in the check. 2092 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 2093 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 2094 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 2095 const RuntimePointerChecking &PtrRtChecking) { 2096 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 2097 2098 // Here we're relying on the SCEV Expander's cache to only emit code for the 2099 // same bounds once. 2100 transform( 2101 PointerChecks, std::back_inserter(ChecksWithBounds), 2102 [&](const RuntimePointerChecking::PointerCheck &Check) { 2103 PointerBounds 2104 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 2105 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 2106 return std::make_pair(First, Second); 2107 }); 2108 2109 return ChecksWithBounds; 2110 } 2111 2112 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 2113 Instruction *Loc, 2114 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 2115 const { 2116 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2117 auto *SE = PSE->getSE(); 2118 SCEVExpander Exp(*SE, DL, "induction"); 2119 auto ExpandedChecks = 2120 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 2121 2122 LLVMContext &Ctx = Loc->getContext(); 2123 Instruction *FirstInst = nullptr; 2124 IRBuilder<> ChkBuilder(Loc); 2125 // Our instructions might fold to a constant. 2126 Value *MemoryRuntimeCheck = nullptr; 2127 2128 for (const auto &Check : ExpandedChecks) { 2129 const PointerBounds &A = Check.first, &B = Check.second; 2130 // Check if two pointers (A and B) conflict where conflict is computed as: 2131 // start(A) <= end(B) && start(B) <= end(A) 2132 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 2133 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 2134 2135 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 2136 (AS1 == A.End->getType()->getPointerAddressSpace()) && 2137 "Trying to bounds check pointers with different address spaces"); 2138 2139 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2140 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2141 2142 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 2143 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 2144 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 2145 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 2146 2147 // [A|B].Start points to the first accessed byte under base [A|B]. 2148 // [A|B].End points to the last accessed byte, plus one. 2149 // There is no conflict when the intervals are disjoint: 2150 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 2151 // 2152 // bound0 = (B.Start < A.End) 2153 // bound1 = (A.Start < B.End) 2154 // IsConflict = bound0 & bound1 2155 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 2156 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2157 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 2158 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2159 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2160 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2161 if (MemoryRuntimeCheck) { 2162 IsConflict = 2163 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2164 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2165 } 2166 MemoryRuntimeCheck = IsConflict; 2167 } 2168 2169 if (!MemoryRuntimeCheck) 2170 return std::make_pair(nullptr, nullptr); 2171 2172 // We have to do this trickery because the IRBuilder might fold the check to a 2173 // constant expression in which case there is no Instruction anchored in a 2174 // the block. 2175 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2176 ConstantInt::getTrue(Ctx)); 2177 ChkBuilder.Insert(Check, "memcheck.conflict"); 2178 FirstInst = getFirstInst(FirstInst, Check, Loc); 2179 return std::make_pair(FirstInst, Check); 2180 } 2181 2182 std::pair<Instruction *, Instruction *> 2183 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2184 if (!PtrRtChecking->Need) 2185 return std::make_pair(nullptr, nullptr); 2186 2187 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 2188 } 2189 2190 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2191 Value *Ptr = nullptr; 2192 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2193 Ptr = LI->getPointerOperand(); 2194 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2195 Ptr = SI->getPointerOperand(); 2196 else 2197 return; 2198 2199 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2200 if (!Stride) 2201 return; 2202 2203 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2204 "versioning:"); 2205 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2206 2207 // Avoid adding the "Stride == 1" predicate when we know that 2208 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2209 // or zero iteration loop, as Trip-Count <= Stride == 1. 2210 // 2211 // TODO: We are currently not making a very informed decision on when it is 2212 // beneficial to apply stride versioning. It might make more sense that the 2213 // users of this analysis (such as the vectorizer) will trigger it, based on 2214 // their specific cost considerations; For example, in cases where stride 2215 // versioning does not help resolving memory accesses/dependences, the 2216 // vectorizer should evaluate the cost of the runtime test, and the benefit 2217 // of various possible stride specializations, considering the alternatives 2218 // of using gather/scatters (if available). 2219 2220 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2221 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2222 2223 // Match the types so we can compare the stride and the BETakenCount. 2224 // The Stride can be positive/negative, so we sign extend Stride; 2225 // The backdgeTakenCount is non-negative, so we zero extend BETakenCount. 2226 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2227 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2228 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2229 const SCEV *CastedStride = StrideExpr; 2230 const SCEV *CastedBECount = BETakenCount; 2231 ScalarEvolution *SE = PSE->getSE(); 2232 if (BETypeSize >= StrideTypeSize) 2233 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2234 else 2235 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2236 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2237 // Since TripCount == BackEdgeTakenCount + 1, checking: 2238 // "Stride >= TripCount" is equivalent to checking: 2239 // Stride - BETakenCount > 0 2240 if (SE->isKnownPositive(StrideMinusBETaken)) { 2241 LLVM_DEBUG( 2242 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2243 "Stride==1 predicate will imply that the loop executes " 2244 "at most once.\n"); 2245 return; 2246 } 2247 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2248 2249 SymbolicStrides[Ptr] = Stride; 2250 StrideSet.insert(Stride); 2251 } 2252 2253 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2254 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2255 DominatorTree *DT, LoopInfo *LI) 2256 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2257 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 2258 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2259 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2260 StoreToLoopInvariantAddress(false) { 2261 if (canAnalyzeLoop()) 2262 analyzeLoop(AA, LI, TLI, DT); 2263 } 2264 2265 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2266 if (CanVecMem) { 2267 OS.indent(Depth) << "Memory dependences are safe"; 2268 if (MaxSafeDepDistBytes != -1ULL) 2269 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2270 << " bytes"; 2271 if (PtrRtChecking->Need) 2272 OS << " with run-time checks"; 2273 OS << "\n"; 2274 } 2275 2276 if (Report) 2277 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2278 2279 if (auto *Dependences = DepChecker->getDependences()) { 2280 OS.indent(Depth) << "Dependences:\n"; 2281 for (auto &Dep : *Dependences) { 2282 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2283 OS << "\n"; 2284 } 2285 } else 2286 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2287 2288 // List the pair of accesses need run-time checks to prove independence. 2289 PtrRtChecking->print(OS, Depth); 2290 OS << "\n"; 2291 2292 OS.indent(Depth) << "Store to invariant address was " 2293 << (StoreToLoopInvariantAddress ? "" : "not ") 2294 << "found in loop.\n"; 2295 2296 OS.indent(Depth) << "SCEV assumptions:\n"; 2297 PSE->getUnionPredicate().print(OS, Depth); 2298 2299 OS << "\n"; 2300 2301 OS.indent(Depth) << "Expressions re-written:\n"; 2302 PSE->print(OS, Depth); 2303 } 2304 2305 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2306 auto &LAI = LoopAccessInfoMap[L]; 2307 2308 if (!LAI) 2309 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2310 2311 return *LAI.get(); 2312 } 2313 2314 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2315 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2316 2317 for (Loop *TopLevelLoop : *LI) 2318 for (Loop *L : depth_first(TopLevelLoop)) { 2319 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2320 auto &LAI = LAA.getInfo(L); 2321 LAI.print(OS, 4); 2322 } 2323 } 2324 2325 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2326 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2327 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2328 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2329 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2330 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2331 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2332 2333 return false; 2334 } 2335 2336 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2337 AU.addRequired<ScalarEvolutionWrapperPass>(); 2338 AU.addRequired<AAResultsWrapperPass>(); 2339 AU.addRequired<DominatorTreeWrapperPass>(); 2340 AU.addRequired<LoopInfoWrapperPass>(); 2341 2342 AU.setPreservesAll(); 2343 } 2344 2345 char LoopAccessLegacyAnalysis::ID = 0; 2346 static const char laa_name[] = "Loop Access Analysis"; 2347 #define LAA_NAME "loop-accesses" 2348 2349 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2350 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2351 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2352 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2353 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2354 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2355 2356 AnalysisKey LoopAccessAnalysis::Key; 2357 2358 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2359 LoopStandardAnalysisResults &AR) { 2360 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2361 } 2362 2363 namespace llvm { 2364 2365 Pass *createLAAPass() { 2366 return new LoopAccessLegacyAnalysis(); 2367 } 2368 2369 } // end namespace llvm 2370