1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 bool VectorizerParams::isInterleaveForced() { 134 return ::VectorizationInterleave.getNumOccurrences() > 0; 135 } 136 137 Value *llvm::stripIntegerCast(Value *V) { 138 if (auto *CI = dyn_cast<CastInst>(V)) 139 if (CI->getOperand(0)->getType()->isIntegerTy()) 140 return CI->getOperand(0); 141 return V; 142 } 143 144 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 145 const ValueToValueMap &PtrToStride, 146 Value *Ptr) { 147 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 148 149 // If there is an entry in the map return the SCEV of the pointer with the 150 // symbolic stride replaced by one. 151 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 152 if (SI == PtrToStride.end()) 153 // For a non-symbolic stride, just return the original expression. 154 return OrigSCEV; 155 156 Value *StrideVal = stripIntegerCast(SI->second); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 172 unsigned Index, RuntimePointerChecking &RtCheck) 173 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 174 AddressSpace(RtCheck.Pointers[Index] 175 .PointerValue->getType() 176 ->getPointerAddressSpace()) { 177 Members.push_back(Index); 178 } 179 180 /// Calculate Start and End points of memory access. 181 /// Let's assume A is the first access and B is a memory access on N-th loop 182 /// iteration. Then B is calculated as: 183 /// B = A + Step*N . 184 /// Step value may be positive or negative. 185 /// N is a calculated back-edge taken count: 186 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 187 /// Start and End points are calculated in the following way: 188 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 189 /// where SizeOfElt is the size of single memory access in bytes. 190 /// 191 /// There is no conflict when the intervals are disjoint: 192 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 193 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 194 Type *AccessTy, bool WritePtr, 195 unsigned DepSetId, unsigned ASId, 196 PredicatedScalarEvolution &PSE) { 197 ScalarEvolution *SE = PSE.getSE(); 198 199 const SCEV *ScStart; 200 const SCEV *ScEnd; 201 202 if (SE->isLoopInvariant(PtrExpr, Lp)) { 203 ScStart = ScEnd = PtrExpr; 204 } else { 205 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 206 assert(AR && "Invalid addrec expression"); 207 const SCEV *Ex = PSE.getBackedgeTakenCount(); 208 209 ScStart = AR->getStart(); 210 ScEnd = AR->evaluateAtIteration(Ex, *SE); 211 const SCEV *Step = AR->getStepRecurrence(*SE); 212 213 // For expressions with negative step, the upper bound is ScStart and the 214 // lower bound is ScEnd. 215 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 216 if (CStep->getValue()->isNegative()) 217 std::swap(ScStart, ScEnd); 218 } else { 219 // Fallback case: the step is not constant, but we can still 220 // get the upper and lower bounds of the interval by using min/max 221 // expressions. 222 ScStart = SE->getUMinExpr(ScStart, ScEnd); 223 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 224 } 225 } 226 // Add the size of the pointed element to ScEnd. 227 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 228 Type *IdxTy = DL.getIndexType(Ptr->getType()); 229 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 230 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 231 232 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr); 233 } 234 235 SmallVector<RuntimePointerCheck, 4> 236 RuntimePointerChecking::generateChecks() const { 237 SmallVector<RuntimePointerCheck, 4> Checks; 238 239 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 240 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 241 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 242 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 243 244 if (needsChecking(CGI, CGJ)) 245 Checks.push_back(std::make_pair(&CGI, &CGJ)); 246 } 247 } 248 return Checks; 249 } 250 251 void RuntimePointerChecking::generateChecks( 252 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 253 assert(Checks.empty() && "Checks is not empty"); 254 groupChecks(DepCands, UseDependencies); 255 Checks = generateChecks(); 256 } 257 258 bool RuntimePointerChecking::needsChecking( 259 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 260 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 261 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 262 if (needsChecking(M.Members[I], N.Members[J])) 263 return true; 264 return false; 265 } 266 267 /// Compare \p I and \p J and return the minimum. 268 /// Return nullptr in case we couldn't find an answer. 269 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 270 ScalarEvolution *SE) { 271 const SCEV *Diff = SE->getMinusSCEV(J, I); 272 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 273 274 if (!C) 275 return nullptr; 276 if (C->getValue()->isNegative()) 277 return J; 278 return I; 279 } 280 281 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 282 RuntimePointerChecking &RtCheck) { 283 return addPointer( 284 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 285 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 286 *RtCheck.SE); 287 } 288 289 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 290 const SCEV *End, unsigned AS, 291 ScalarEvolution &SE) { 292 assert(AddressSpace == AS && 293 "all pointers in a checking group must be in the same address space"); 294 295 // Compare the starts and ends with the known minimum and maximum 296 // of this set. We need to know how we compare against the min/max 297 // of the set in order to be able to emit memchecks. 298 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 299 if (!Min0) 300 return false; 301 302 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 303 if (!Min1) 304 return false; 305 306 // Update the low bound expression if we've found a new min value. 307 if (Min0 == Start) 308 Low = Start; 309 310 // Update the high bound expression if we've found a new max value. 311 if (Min1 != End) 312 High = End; 313 314 Members.push_back(Index); 315 return true; 316 } 317 318 void RuntimePointerChecking::groupChecks( 319 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 320 // We build the groups from dependency candidates equivalence classes 321 // because: 322 // - We know that pointers in the same equivalence class share 323 // the same underlying object and therefore there is a chance 324 // that we can compare pointers 325 // - We wouldn't be able to merge two pointers for which we need 326 // to emit a memcheck. The classes in DepCands are already 327 // conveniently built such that no two pointers in the same 328 // class need checking against each other. 329 330 // We use the following (greedy) algorithm to construct the groups 331 // For every pointer in the equivalence class: 332 // For each existing group: 333 // - if the difference between this pointer and the min/max bounds 334 // of the group is a constant, then make the pointer part of the 335 // group and update the min/max bounds of that group as required. 336 337 CheckingGroups.clear(); 338 339 // If we need to check two pointers to the same underlying object 340 // with a non-constant difference, we shouldn't perform any pointer 341 // grouping with those pointers. This is because we can easily get 342 // into cases where the resulting check would return false, even when 343 // the accesses are safe. 344 // 345 // The following example shows this: 346 // for (i = 0; i < 1000; ++i) 347 // a[5000 + i * m] = a[i] + a[i + 9000] 348 // 349 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 350 // (0, 10000) which is always false. However, if m is 1, there is no 351 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 352 // us to perform an accurate check in this case. 353 // 354 // The above case requires that we have an UnknownDependence between 355 // accesses to the same underlying object. This cannot happen unless 356 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 357 // is also false. In this case we will use the fallback path and create 358 // separate checking groups for all pointers. 359 360 // If we don't have the dependency partitions, construct a new 361 // checking pointer group for each pointer. This is also required 362 // for correctness, because in this case we can have checking between 363 // pointers to the same underlying object. 364 if (!UseDependencies) { 365 for (unsigned I = 0; I < Pointers.size(); ++I) 366 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 367 return; 368 } 369 370 unsigned TotalComparisons = 0; 371 372 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 373 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 374 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 375 Iter.first->second.push_back(Index); 376 } 377 378 // We need to keep track of what pointers we've already seen so we 379 // don't process them twice. 380 SmallSet<unsigned, 2> Seen; 381 382 // Go through all equivalence classes, get the "pointer check groups" 383 // and add them to the overall solution. We use the order in which accesses 384 // appear in 'Pointers' to enforce determinism. 385 for (unsigned I = 0; I < Pointers.size(); ++I) { 386 // We've seen this pointer before, and therefore already processed 387 // its equivalence class. 388 if (Seen.count(I)) 389 continue; 390 391 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 392 Pointers[I].IsWritePtr); 393 394 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 395 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 396 397 // Because DepCands is constructed by visiting accesses in the order in 398 // which they appear in alias sets (which is deterministic) and the 399 // iteration order within an equivalence class member is only dependent on 400 // the order in which unions and insertions are performed on the 401 // equivalence class, the iteration order is deterministic. 402 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 403 MI != ME; ++MI) { 404 auto PointerI = PositionMap.find(MI->getPointer()); 405 assert(PointerI != PositionMap.end() && 406 "pointer in equivalence class not found in PositionMap"); 407 for (unsigned Pointer : PointerI->second) { 408 bool Merged = false; 409 // Mark this pointer as seen. 410 Seen.insert(Pointer); 411 412 // Go through all the existing sets and see if we can find one 413 // which can include this pointer. 414 for (RuntimeCheckingPtrGroup &Group : Groups) { 415 // Don't perform more than a certain amount of comparisons. 416 // This should limit the cost of grouping the pointers to something 417 // reasonable. If we do end up hitting this threshold, the algorithm 418 // will create separate groups for all remaining pointers. 419 if (TotalComparisons > MemoryCheckMergeThreshold) 420 break; 421 422 TotalComparisons++; 423 424 if (Group.addPointer(Pointer, *this)) { 425 Merged = true; 426 break; 427 } 428 } 429 430 if (!Merged) 431 // We couldn't add this pointer to any existing set or the threshold 432 // for the number of comparisons has been reached. Create a new group 433 // to hold the current pointer. 434 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 435 } 436 } 437 438 // We've computed the grouped checks for this partition. 439 // Save the results and continue with the next one. 440 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 441 } 442 } 443 444 bool RuntimePointerChecking::arePointersInSamePartition( 445 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 446 unsigned PtrIdx2) { 447 return (PtrToPartition[PtrIdx1] != -1 && 448 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 449 } 450 451 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 452 const PointerInfo &PointerI = Pointers[I]; 453 const PointerInfo &PointerJ = Pointers[J]; 454 455 // No need to check if two readonly pointers intersect. 456 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 457 return false; 458 459 // Only need to check pointers between two different dependency sets. 460 if (PointerI.DependencySetId == PointerJ.DependencySetId) 461 return false; 462 463 // Only need to check pointers in the same alias set. 464 if (PointerI.AliasSetId != PointerJ.AliasSetId) 465 return false; 466 467 return true; 468 } 469 470 void RuntimePointerChecking::printChecks( 471 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 472 unsigned Depth) const { 473 unsigned N = 0; 474 for (const auto &Check : Checks) { 475 const auto &First = Check.first->Members, &Second = Check.second->Members; 476 477 OS.indent(Depth) << "Check " << N++ << ":\n"; 478 479 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 480 for (unsigned K = 0; K < First.size(); ++K) 481 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 482 483 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 484 for (unsigned K = 0; K < Second.size(); ++K) 485 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 486 } 487 } 488 489 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 490 491 OS.indent(Depth) << "Run-time memory checks:\n"; 492 printChecks(OS, Checks, Depth); 493 494 OS.indent(Depth) << "Grouped accesses:\n"; 495 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 496 const auto &CG = CheckingGroups[I]; 497 498 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 499 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 500 << ")\n"; 501 for (unsigned J = 0; J < CG.Members.size(); ++J) { 502 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 503 << "\n"; 504 } 505 } 506 } 507 508 namespace { 509 510 /// Analyses memory accesses in a loop. 511 /// 512 /// Checks whether run time pointer checks are needed and builds sets for data 513 /// dependence checking. 514 class AccessAnalysis { 515 public: 516 /// Read or write access location. 517 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 518 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 519 520 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 521 MemoryDepChecker::DepCandidates &DA, 522 PredicatedScalarEvolution &PSE) 523 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {} 524 525 /// Register a load and whether it is only read from. 526 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 527 Value *Ptr = const_cast<Value*>(Loc.Ptr); 528 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 529 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 530 if (IsReadOnly) 531 ReadOnlyPtr.insert(Ptr); 532 } 533 534 /// Register a store. 535 void addStore(MemoryLocation &Loc, Type *AccessTy) { 536 Value *Ptr = const_cast<Value*>(Loc.Ptr); 537 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 538 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 539 } 540 541 /// Check if we can emit a run-time no-alias check for \p Access. 542 /// 543 /// Returns true if we can emit a run-time no alias check for \p Access. 544 /// If we can check this access, this also adds it to a dependence set and 545 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 546 /// we will attempt to use additional run-time checks in order to get 547 /// the bounds of the pointer. 548 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 549 MemAccessInfo Access, Type *AccessTy, 550 const ValueToValueMap &Strides, 551 DenseMap<Value *, unsigned> &DepSetId, 552 Loop *TheLoop, unsigned &RunningDepId, 553 unsigned ASId, bool ShouldCheckStride, bool Assume); 554 555 /// Check whether we can check the pointers at runtime for 556 /// non-intersection. 557 /// 558 /// Returns true if we need no check or if we do and we can generate them 559 /// (i.e. the pointers have computable bounds). 560 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 561 Loop *TheLoop, const ValueToValueMap &Strides, 562 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 563 564 /// Goes over all memory accesses, checks whether a RT check is needed 565 /// and builds sets of dependent accesses. 566 void buildDependenceSets() { 567 processMemAccesses(); 568 } 569 570 /// Initial processing of memory accesses determined that we need to 571 /// perform dependency checking. 572 /// 573 /// Note that this can later be cleared if we retry memcheck analysis without 574 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 575 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 576 577 /// We decided that no dependence analysis would be used. Reset the state. 578 void resetDepChecks(MemoryDepChecker &DepChecker) { 579 CheckDeps.clear(); 580 DepChecker.clearDependences(); 581 } 582 583 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 584 585 private: 586 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 587 588 /// Go over all memory access and check whether runtime pointer checks 589 /// are needed and build sets of dependency check candidates. 590 void processMemAccesses(); 591 592 /// Map of all accesses. Values are the types used to access memory pointed to 593 /// by the pointer. 594 PtrAccessMap Accesses; 595 596 /// The loop being checked. 597 const Loop *TheLoop; 598 599 /// List of accesses that need a further dependence check. 600 MemAccessInfoList CheckDeps; 601 602 /// Set of pointers that are read only. 603 SmallPtrSet<Value*, 16> ReadOnlyPtr; 604 605 /// An alias set tracker to partition the access set by underlying object and 606 //intrinsic property (such as TBAA metadata). 607 AliasSetTracker AST; 608 609 LoopInfo *LI; 610 611 /// Sets of potentially dependent accesses - members of one set share an 612 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 613 /// dependence check. 614 MemoryDepChecker::DepCandidates &DepCands; 615 616 /// Initial processing of memory accesses determined that we may need 617 /// to add memchecks. Perform the analysis to determine the necessary checks. 618 /// 619 /// Note that, this is different from isDependencyCheckNeeded. When we retry 620 /// memcheck analysis without dependency checking 621 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 622 /// cleared while this remains set if we have potentially dependent accesses. 623 bool IsRTCheckAnalysisNeeded = false; 624 625 /// The SCEV predicate containing all the SCEV-related assumptions. 626 PredicatedScalarEvolution &PSE; 627 }; 628 629 } // end anonymous namespace 630 631 /// Check whether a pointer can participate in a runtime bounds check. 632 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 633 /// by adding run-time checks (overflow checks) if necessary. 634 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 635 const SCEV *PtrScev, Loop *L, bool Assume) { 636 // The bounds for loop-invariant pointer is trivial. 637 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 638 return true; 639 640 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 641 642 if (!AR && Assume) 643 AR = PSE.getAsAddRec(Ptr); 644 645 if (!AR) 646 return false; 647 648 return AR->isAffine(); 649 } 650 651 /// Check whether a pointer address cannot wrap. 652 static bool isNoWrap(PredicatedScalarEvolution &PSE, 653 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 654 Loop *L) { 655 const SCEV *PtrScev = PSE.getSCEV(Ptr); 656 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 657 return true; 658 659 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 660 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 661 return true; 662 663 return false; 664 } 665 666 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 667 function_ref<void(Value *)> AddPointer) { 668 SmallPtrSet<Value *, 8> Visited; 669 SmallVector<Value *> WorkList; 670 WorkList.push_back(StartPtr); 671 672 while (!WorkList.empty()) { 673 Value *Ptr = WorkList.pop_back_val(); 674 if (!Visited.insert(Ptr).second) 675 continue; 676 auto *PN = dyn_cast<PHINode>(Ptr); 677 // SCEV does not look through non-header PHIs inside the loop. Such phis 678 // can be analyzed by adding separate accesses for each incoming pointer 679 // value. 680 if (PN && InnermostLoop.contains(PN->getParent()) && 681 PN->getParent() != InnermostLoop.getHeader()) { 682 for (const Use &Inc : PN->incoming_values()) 683 WorkList.push_back(Inc); 684 } else 685 AddPointer(Ptr); 686 } 687 } 688 689 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 690 MemAccessInfo Access, Type *AccessTy, 691 const ValueToValueMap &StridesMap, 692 DenseMap<Value *, unsigned> &DepSetId, 693 Loop *TheLoop, unsigned &RunningDepId, 694 unsigned ASId, bool ShouldCheckWrap, 695 bool Assume) { 696 Value *Ptr = Access.getPointer(); 697 698 ScalarEvolution &SE = *PSE.getSE(); 699 SmallVector<const SCEV *> TranslatedPtrs; 700 if (auto *SI = dyn_cast<SelectInst>(Ptr)) 701 TranslatedPtrs = {SE.getSCEV(SI->getOperand(1)), 702 SE.getSCEV(SI->getOperand(2))}; 703 else 704 TranslatedPtrs = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr)}; 705 706 for (const SCEV *PtrExpr : TranslatedPtrs) { 707 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 708 return false; 709 710 // When we run after a failing dependency check we have to make sure 711 // we don't have wrapping pointers. 712 if (ShouldCheckWrap) { 713 // Skip wrap checking when translating pointers. 714 if (TranslatedPtrs.size() > 1) 715 return false; 716 717 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 718 auto *Expr = PSE.getSCEV(Ptr); 719 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 720 return false; 721 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 722 } 723 } 724 // If there's only one option for Ptr, look it up after bounds and wrap 725 // checking, because assumptions might have been added to PSE. 726 if (TranslatedPtrs.size() == 1) 727 TranslatedPtrs[0] = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 728 } 729 730 for (const SCEV *PtrExpr : TranslatedPtrs) { 731 // The id of the dependence set. 732 unsigned DepId; 733 734 if (isDependencyCheckNeeded()) { 735 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 736 unsigned &LeaderId = DepSetId[Leader]; 737 if (!LeaderId) 738 LeaderId = RunningDepId++; 739 DepId = LeaderId; 740 } else 741 // Each access has its own dependence set. 742 DepId = RunningDepId++; 743 744 bool IsWrite = Access.getInt(); 745 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE); 746 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 747 } 748 749 return true; 750 } 751 752 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 753 ScalarEvolution *SE, Loop *TheLoop, 754 const ValueToValueMap &StridesMap, 755 Value *&UncomputablePtr, bool ShouldCheckWrap) { 756 // Find pointers with computable bounds. We are going to use this information 757 // to place a runtime bound check. 758 bool CanDoRT = true; 759 760 bool MayNeedRTCheck = false; 761 if (!IsRTCheckAnalysisNeeded) return true; 762 763 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 764 765 // We assign a consecutive id to access from different alias sets. 766 // Accesses between different groups doesn't need to be checked. 767 unsigned ASId = 0; 768 for (auto &AS : AST) { 769 int NumReadPtrChecks = 0; 770 int NumWritePtrChecks = 0; 771 bool CanDoAliasSetRT = true; 772 ++ASId; 773 774 // We assign consecutive id to access from different dependence sets. 775 // Accesses within the same set don't need a runtime check. 776 unsigned RunningDepId = 1; 777 DenseMap<Value *, unsigned> DepSetId; 778 779 SmallVector<MemAccessInfo, 4> Retries; 780 781 // First, count how many write and read accesses are in the alias set. Also 782 // collect MemAccessInfos for later. 783 SmallVector<MemAccessInfo, 4> AccessInfos; 784 for (const auto &A : AS) { 785 Value *Ptr = A.getValue(); 786 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 787 788 if (IsWrite) 789 ++NumWritePtrChecks; 790 else 791 ++NumReadPtrChecks; 792 AccessInfos.emplace_back(Ptr, IsWrite); 793 } 794 795 // We do not need runtime checks for this alias set, if there are no writes 796 // or a single write and no reads. 797 if (NumWritePtrChecks == 0 || 798 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 799 assert((AS.size() <= 1 || 800 all_of(AS, 801 [this](auto AC) { 802 MemAccessInfo AccessWrite(AC.getValue(), true); 803 return DepCands.findValue(AccessWrite) == DepCands.end(); 804 })) && 805 "Can only skip updating CanDoRT below, if all entries in AS " 806 "are reads or there is at most 1 entry"); 807 continue; 808 } 809 810 for (auto &Access : AccessInfos) { 811 for (auto &AccessTy : Accesses[Access]) { 812 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 813 DepSetId, TheLoop, RunningDepId, ASId, 814 ShouldCheckWrap, false)) { 815 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 816 << *Access.getPointer() << '\n'); 817 Retries.push_back(Access); 818 CanDoAliasSetRT = false; 819 } 820 } 821 } 822 823 // Note that this function computes CanDoRT and MayNeedRTCheck 824 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 825 // we have a pointer for which we couldn't find the bounds but we don't 826 // actually need to emit any checks so it does not matter. 827 // 828 // We need runtime checks for this alias set, if there are at least 2 829 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 830 // any bound checks (because in that case the number of dependence sets is 831 // incomplete). 832 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 833 834 // We need to perform run-time alias checks, but some pointers had bounds 835 // that couldn't be checked. 836 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 837 // Reset the CanDoSetRt flag and retry all accesses that have failed. 838 // We know that we need these checks, so we can now be more aggressive 839 // and add further checks if required (overflow checks). 840 CanDoAliasSetRT = true; 841 for (auto Access : Retries) { 842 for (auto &AccessTy : Accesses[Access]) { 843 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 844 DepSetId, TheLoop, RunningDepId, ASId, 845 ShouldCheckWrap, /*Assume=*/true)) { 846 CanDoAliasSetRT = false; 847 UncomputablePtr = Access.getPointer(); 848 break; 849 } 850 } 851 } 852 } 853 854 CanDoRT &= CanDoAliasSetRT; 855 MayNeedRTCheck |= NeedsAliasSetRTCheck; 856 ++ASId; 857 } 858 859 // If the pointers that we would use for the bounds comparison have different 860 // address spaces, assume the values aren't directly comparable, so we can't 861 // use them for the runtime check. We also have to assume they could 862 // overlap. In the future there should be metadata for whether address spaces 863 // are disjoint. 864 unsigned NumPointers = RtCheck.Pointers.size(); 865 for (unsigned i = 0; i < NumPointers; ++i) { 866 for (unsigned j = i + 1; j < NumPointers; ++j) { 867 // Only need to check pointers between two different dependency sets. 868 if (RtCheck.Pointers[i].DependencySetId == 869 RtCheck.Pointers[j].DependencySetId) 870 continue; 871 // Only need to check pointers in the same alias set. 872 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 873 continue; 874 875 Value *PtrI = RtCheck.Pointers[i].PointerValue; 876 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 877 878 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 879 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 880 if (ASi != ASj) { 881 LLVM_DEBUG( 882 dbgs() << "LAA: Runtime check would require comparison between" 883 " different address spaces\n"); 884 return false; 885 } 886 } 887 } 888 889 if (MayNeedRTCheck && CanDoRT) 890 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 891 892 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 893 << " pointer comparisons.\n"); 894 895 // If we can do run-time checks, but there are no checks, no runtime checks 896 // are needed. This can happen when all pointers point to the same underlying 897 // object for example. 898 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 899 900 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 901 if (!CanDoRTIfNeeded) 902 RtCheck.reset(); 903 return CanDoRTIfNeeded; 904 } 905 906 void AccessAnalysis::processMemAccesses() { 907 // We process the set twice: first we process read-write pointers, last we 908 // process read-only pointers. This allows us to skip dependence tests for 909 // read-only pointers. 910 911 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 912 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 913 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 914 LLVM_DEBUG({ 915 for (auto A : Accesses) 916 dbgs() << "\t" << *A.first.getPointer() << " (" 917 << (A.first.getInt() 918 ? "write" 919 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 920 : "read")) 921 << ")\n"; 922 }); 923 924 // The AliasSetTracker has nicely partitioned our pointers by metadata 925 // compatibility and potential for underlying-object overlap. As a result, we 926 // only need to check for potential pointer dependencies within each alias 927 // set. 928 for (const auto &AS : AST) { 929 // Note that both the alias-set tracker and the alias sets themselves used 930 // linked lists internally and so the iteration order here is deterministic 931 // (matching the original instruction order within each set). 932 933 bool SetHasWrite = false; 934 935 // Map of pointers to last access encountered. 936 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 937 UnderlyingObjToAccessMap ObjToLastAccess; 938 939 // Set of access to check after all writes have been processed. 940 PtrAccessMap DeferredAccesses; 941 942 // Iterate over each alias set twice, once to process read/write pointers, 943 // and then to process read-only pointers. 944 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 945 bool UseDeferred = SetIteration > 0; 946 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 947 948 for (const auto &AV : AS) { 949 Value *Ptr = AV.getValue(); 950 951 // For a single memory access in AliasSetTracker, Accesses may contain 952 // both read and write, and they both need to be handled for CheckDeps. 953 for (const auto &AC : S) { 954 if (AC.first.getPointer() != Ptr) 955 continue; 956 957 bool IsWrite = AC.first.getInt(); 958 959 // If we're using the deferred access set, then it contains only 960 // reads. 961 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 962 if (UseDeferred && !IsReadOnlyPtr) 963 continue; 964 // Otherwise, the pointer must be in the PtrAccessSet, either as a 965 // read or a write. 966 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 967 S.count(MemAccessInfo(Ptr, false))) && 968 "Alias-set pointer not in the access set?"); 969 970 MemAccessInfo Access(Ptr, IsWrite); 971 DepCands.insert(Access); 972 973 // Memorize read-only pointers for later processing and skip them in 974 // the first round (they need to be checked after we have seen all 975 // write pointers). Note: we also mark pointer that are not 976 // consecutive as "read-only" pointers (so that we check 977 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 978 if (!UseDeferred && IsReadOnlyPtr) { 979 // We only use the pointer keys, the types vector values don't 980 // matter. 981 DeferredAccesses.insert({Access, {}}); 982 continue; 983 } 984 985 // If this is a write - check other reads and writes for conflicts. If 986 // this is a read only check other writes for conflicts (but only if 987 // there is no other write to the ptr - this is an optimization to 988 // catch "a[i] = a[i] + " without having to do a dependence check). 989 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 990 CheckDeps.push_back(Access); 991 IsRTCheckAnalysisNeeded = true; 992 } 993 994 if (IsWrite) 995 SetHasWrite = true; 996 997 // Create sets of pointers connected by a shared alias set and 998 // underlying object. 999 typedef SmallVector<const Value *, 16> ValueVector; 1000 ValueVector TempObjects; 1001 1002 getUnderlyingObjects(Ptr, TempObjects, LI); 1003 LLVM_DEBUG(dbgs() 1004 << "Underlying objects for pointer " << *Ptr << "\n"); 1005 for (const Value *UnderlyingObj : TempObjects) { 1006 // nullptr never alias, don't join sets for pointer that have "null" 1007 // in their UnderlyingObjects list. 1008 if (isa<ConstantPointerNull>(UnderlyingObj) && 1009 !NullPointerIsDefined( 1010 TheLoop->getHeader()->getParent(), 1011 UnderlyingObj->getType()->getPointerAddressSpace())) 1012 continue; 1013 1014 UnderlyingObjToAccessMap::iterator Prev = 1015 ObjToLastAccess.find(UnderlyingObj); 1016 if (Prev != ObjToLastAccess.end()) 1017 DepCands.unionSets(Access, Prev->second); 1018 1019 ObjToLastAccess[UnderlyingObj] = Access; 1020 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1021 } 1022 } 1023 } 1024 } 1025 } 1026 } 1027 1028 static bool isInBoundsGep(Value *Ptr) { 1029 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1030 return GEP->isInBounds(); 1031 return false; 1032 } 1033 1034 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1035 /// i.e. monotonically increasing/decreasing. 1036 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1037 PredicatedScalarEvolution &PSE, const Loop *L) { 1038 // FIXME: This should probably only return true for NUW. 1039 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1040 return true; 1041 1042 // Scalar evolution does not propagate the non-wrapping flags to values that 1043 // are derived from a non-wrapping induction variable because non-wrapping 1044 // could be flow-sensitive. 1045 // 1046 // Look through the potentially overflowing instruction to try to prove 1047 // non-wrapping for the *specific* value of Ptr. 1048 1049 // The arithmetic implied by an inbounds GEP can't overflow. 1050 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1051 if (!GEP || !GEP->isInBounds()) 1052 return false; 1053 1054 // Make sure there is only one non-const index and analyze that. 1055 Value *NonConstIndex = nullptr; 1056 for (Value *Index : GEP->indices()) 1057 if (!isa<ConstantInt>(Index)) { 1058 if (NonConstIndex) 1059 return false; 1060 NonConstIndex = Index; 1061 } 1062 if (!NonConstIndex) 1063 // The recurrence is on the pointer, ignore for now. 1064 return false; 1065 1066 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1067 // AddRec using a NSW operation. 1068 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1069 if (OBO->hasNoSignedWrap() && 1070 // Assume constant for other the operand so that the AddRec can be 1071 // easily found. 1072 isa<ConstantInt>(OBO->getOperand(1))) { 1073 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1074 1075 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1076 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1077 } 1078 1079 return false; 1080 } 1081 1082 /// Check whether the access through \p Ptr has a constant stride. 1083 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1084 Value *Ptr, const Loop *Lp, 1085 const ValueToValueMap &StridesMap, bool Assume, 1086 bool ShouldCheckWrap) { 1087 Type *Ty = Ptr->getType(); 1088 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1089 1090 if (isa<ScalableVectorType>(AccessTy)) { 1091 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1092 << "\n"); 1093 return 0; 1094 } 1095 1096 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1097 1098 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1099 if (Assume && !AR) 1100 AR = PSE.getAsAddRec(Ptr); 1101 1102 if (!AR) { 1103 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1104 << " SCEV: " << *PtrScev << "\n"); 1105 return 0; 1106 } 1107 1108 // The access function must stride over the innermost loop. 1109 if (Lp != AR->getLoop()) { 1110 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1111 << *Ptr << " SCEV: " << *AR << "\n"); 1112 return 0; 1113 } 1114 1115 // The address calculation must not wrap. Otherwise, a dependence could be 1116 // inverted. 1117 // An inbounds getelementptr that is a AddRec with a unit stride 1118 // cannot wrap per definition. The unit stride requirement is checked later. 1119 // An getelementptr without an inbounds attribute and unit stride would have 1120 // to access the pointer value "0" which is undefined behavior in address 1121 // space 0, therefore we can also vectorize this case. 1122 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1123 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1124 bool IsNoWrapAddRec = !ShouldCheckWrap || 1125 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1126 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1127 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1128 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1129 if (Assume) { 1130 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1131 IsNoWrapAddRec = true; 1132 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1133 << "LAA: Pointer: " << *Ptr << "\n" 1134 << "LAA: SCEV: " << *AR << "\n" 1135 << "LAA: Added an overflow assumption\n"); 1136 } else { 1137 LLVM_DEBUG( 1138 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1139 << *Ptr << " SCEV: " << *AR << "\n"); 1140 return 0; 1141 } 1142 } 1143 1144 // Check the step is constant. 1145 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1146 1147 // Calculate the pointer stride and check if it is constant. 1148 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1149 if (!C) { 1150 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1151 << " SCEV: " << *AR << "\n"); 1152 return 0; 1153 } 1154 1155 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1156 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1157 int64_t Size = AllocSize.getFixedSize(); 1158 const APInt &APStepVal = C->getAPInt(); 1159 1160 // Huge step value - give up. 1161 if (APStepVal.getBitWidth() > 64) 1162 return 0; 1163 1164 int64_t StepVal = APStepVal.getSExtValue(); 1165 1166 // Strided access. 1167 int64_t Stride = StepVal / Size; 1168 int64_t Rem = StepVal % Size; 1169 if (Rem) 1170 return 0; 1171 1172 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1173 // know we can't "wrap around the address space". In case of address space 1174 // zero we know that this won't happen without triggering undefined behavior. 1175 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1176 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1177 AddrSpace))) { 1178 if (Assume) { 1179 // We can avoid this case by adding a run-time check. 1180 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1181 << "inbounds or in address space 0 may wrap:\n" 1182 << "LAA: Pointer: " << *Ptr << "\n" 1183 << "LAA: SCEV: " << *AR << "\n" 1184 << "LAA: Added an overflow assumption\n"); 1185 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1186 } else 1187 return 0; 1188 } 1189 1190 return Stride; 1191 } 1192 1193 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1194 Value *PtrB, const DataLayout &DL, 1195 ScalarEvolution &SE, bool StrictCheck, 1196 bool CheckType) { 1197 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1198 assert(cast<PointerType>(PtrA->getType()) 1199 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1200 assert(cast<PointerType>(PtrB->getType()) 1201 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1202 1203 // Make sure that A and B are different pointers. 1204 if (PtrA == PtrB) 1205 return 0; 1206 1207 // Make sure that the element types are the same if required. 1208 if (CheckType && ElemTyA != ElemTyB) 1209 return None; 1210 1211 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1212 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1213 1214 // Check that the address spaces match. 1215 if (ASA != ASB) 1216 return None; 1217 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1218 1219 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1220 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1221 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1222 1223 int Val; 1224 if (PtrA1 == PtrB1) { 1225 // Retrieve the address space again as pointer stripping now tracks through 1226 // `addrspacecast`. 1227 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1228 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1229 // Check that the address spaces match and that the pointers are valid. 1230 if (ASA != ASB) 1231 return None; 1232 1233 IdxWidth = DL.getIndexSizeInBits(ASA); 1234 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1235 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1236 1237 OffsetB -= OffsetA; 1238 Val = OffsetB.getSExtValue(); 1239 } else { 1240 // Otherwise compute the distance with SCEV between the base pointers. 1241 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1242 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1243 const auto *Diff = 1244 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1245 if (!Diff) 1246 return None; 1247 Val = Diff->getAPInt().getSExtValue(); 1248 } 1249 int Size = DL.getTypeStoreSize(ElemTyA); 1250 int Dist = Val / Size; 1251 1252 // Ensure that the calculated distance matches the type-based one after all 1253 // the bitcasts removal in the provided pointers. 1254 if (!StrictCheck || Dist * Size == Val) 1255 return Dist; 1256 return None; 1257 } 1258 1259 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1260 const DataLayout &DL, ScalarEvolution &SE, 1261 SmallVectorImpl<unsigned> &SortedIndices) { 1262 assert(llvm::all_of( 1263 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1264 "Expected list of pointer operands."); 1265 // Walk over the pointers, and map each of them to an offset relative to 1266 // first pointer in the array. 1267 Value *Ptr0 = VL[0]; 1268 1269 using DistOrdPair = std::pair<int64_t, int>; 1270 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1271 return L.first < R.first; 1272 }; 1273 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1274 Offsets.emplace(0, 0); 1275 int Cnt = 1; 1276 bool IsConsecutive = true; 1277 for (auto *Ptr : VL.drop_front()) { 1278 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1279 /*StrictCheck=*/true); 1280 if (!Diff) 1281 return false; 1282 1283 // Check if the pointer with the same offset is found. 1284 int64_t Offset = *Diff; 1285 auto Res = Offsets.emplace(Offset, Cnt); 1286 if (!Res.second) 1287 return false; 1288 // Consecutive order if the inserted element is the last one. 1289 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1290 ++Cnt; 1291 } 1292 SortedIndices.clear(); 1293 if (!IsConsecutive) { 1294 // Fill SortedIndices array only if it is non-consecutive. 1295 SortedIndices.resize(VL.size()); 1296 Cnt = 0; 1297 for (const std::pair<int64_t, int> &Pair : Offsets) { 1298 SortedIndices[Cnt] = Pair.second; 1299 ++Cnt; 1300 } 1301 } 1302 return true; 1303 } 1304 1305 /// Returns true if the memory operations \p A and \p B are consecutive. 1306 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1307 ScalarEvolution &SE, bool CheckType) { 1308 Value *PtrA = getLoadStorePointerOperand(A); 1309 Value *PtrB = getLoadStorePointerOperand(B); 1310 if (!PtrA || !PtrB) 1311 return false; 1312 Type *ElemTyA = getLoadStoreType(A); 1313 Type *ElemTyB = getLoadStoreType(B); 1314 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1315 /*StrictCheck=*/true, CheckType); 1316 return Diff && *Diff == 1; 1317 } 1318 1319 void MemoryDepChecker::addAccess(StoreInst *SI) { 1320 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1321 [this, SI](Value *Ptr) { 1322 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1323 InstMap.push_back(SI); 1324 ++AccessIdx; 1325 }); 1326 } 1327 1328 void MemoryDepChecker::addAccess(LoadInst *LI) { 1329 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1330 [this, LI](Value *Ptr) { 1331 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1332 InstMap.push_back(LI); 1333 ++AccessIdx; 1334 }); 1335 } 1336 1337 MemoryDepChecker::VectorizationSafetyStatus 1338 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1339 switch (Type) { 1340 case NoDep: 1341 case Forward: 1342 case BackwardVectorizable: 1343 return VectorizationSafetyStatus::Safe; 1344 1345 case Unknown: 1346 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1347 case ForwardButPreventsForwarding: 1348 case Backward: 1349 case BackwardVectorizableButPreventsForwarding: 1350 return VectorizationSafetyStatus::Unsafe; 1351 } 1352 llvm_unreachable("unexpected DepType!"); 1353 } 1354 1355 bool MemoryDepChecker::Dependence::isBackward() const { 1356 switch (Type) { 1357 case NoDep: 1358 case Forward: 1359 case ForwardButPreventsForwarding: 1360 case Unknown: 1361 return false; 1362 1363 case BackwardVectorizable: 1364 case Backward: 1365 case BackwardVectorizableButPreventsForwarding: 1366 return true; 1367 } 1368 llvm_unreachable("unexpected DepType!"); 1369 } 1370 1371 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1372 return isBackward() || Type == Unknown; 1373 } 1374 1375 bool MemoryDepChecker::Dependence::isForward() const { 1376 switch (Type) { 1377 case Forward: 1378 case ForwardButPreventsForwarding: 1379 return true; 1380 1381 case NoDep: 1382 case Unknown: 1383 case BackwardVectorizable: 1384 case Backward: 1385 case BackwardVectorizableButPreventsForwarding: 1386 return false; 1387 } 1388 llvm_unreachable("unexpected DepType!"); 1389 } 1390 1391 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1392 uint64_t TypeByteSize) { 1393 // If loads occur at a distance that is not a multiple of a feasible vector 1394 // factor store-load forwarding does not take place. 1395 // Positive dependences might cause troubles because vectorizing them might 1396 // prevent store-load forwarding making vectorized code run a lot slower. 1397 // a[i] = a[i-3] ^ a[i-8]; 1398 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1399 // hence on your typical architecture store-load forwarding does not take 1400 // place. Vectorizing in such cases does not make sense. 1401 // Store-load forwarding distance. 1402 1403 // After this many iterations store-to-load forwarding conflicts should not 1404 // cause any slowdowns. 1405 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1406 // Maximum vector factor. 1407 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1408 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1409 1410 // Compute the smallest VF at which the store and load would be misaligned. 1411 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1412 VF *= 2) { 1413 // If the number of vector iteration between the store and the load are 1414 // small we could incur conflicts. 1415 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1416 MaxVFWithoutSLForwardIssues = (VF >> 1); 1417 break; 1418 } 1419 } 1420 1421 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1422 LLVM_DEBUG( 1423 dbgs() << "LAA: Distance " << Distance 1424 << " that could cause a store-load forwarding conflict\n"); 1425 return true; 1426 } 1427 1428 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1429 MaxVFWithoutSLForwardIssues != 1430 VectorizerParams::MaxVectorWidth * TypeByteSize) 1431 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1432 return false; 1433 } 1434 1435 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1436 if (Status < S) 1437 Status = S; 1438 } 1439 1440 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1441 /// memory accesses, that have the same stride whose absolute value is given 1442 /// in \p Stride, and that have the same type size \p TypeByteSize, 1443 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1444 /// possible to prove statically that the dependence distance is larger 1445 /// than the range that the accesses will travel through the execution of 1446 /// the loop. If so, return true; false otherwise. This is useful for 1447 /// example in loops such as the following (PR31098): 1448 /// for (i = 0; i < D; ++i) { 1449 /// = out[i]; 1450 /// out[i+D] = 1451 /// } 1452 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1453 const SCEV &BackedgeTakenCount, 1454 const SCEV &Dist, uint64_t Stride, 1455 uint64_t TypeByteSize) { 1456 1457 // If we can prove that 1458 // (**) |Dist| > BackedgeTakenCount * Step 1459 // where Step is the absolute stride of the memory accesses in bytes, 1460 // then there is no dependence. 1461 // 1462 // Rationale: 1463 // We basically want to check if the absolute distance (|Dist/Step|) 1464 // is >= the loop iteration count (or > BackedgeTakenCount). 1465 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1466 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1467 // that the dependence distance is >= VF; This is checked elsewhere. 1468 // But in some cases we can prune unknown dependence distances early, and 1469 // even before selecting the VF, and without a runtime test, by comparing 1470 // the distance against the loop iteration count. Since the vectorized code 1471 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1472 // also guarantees that distance >= VF. 1473 // 1474 const uint64_t ByteStride = Stride * TypeByteSize; 1475 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1476 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1477 1478 const SCEV *CastedDist = &Dist; 1479 const SCEV *CastedProduct = Product; 1480 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1481 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1482 1483 // The dependence distance can be positive/negative, so we sign extend Dist; 1484 // The multiplication of the absolute stride in bytes and the 1485 // backedgeTakenCount is non-negative, so we zero extend Product. 1486 if (DistTypeSizeBits > ProductTypeSizeBits) 1487 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1488 else 1489 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1490 1491 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1492 // (If so, then we have proven (**) because |Dist| >= Dist) 1493 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1494 if (SE.isKnownPositive(Minus)) 1495 return true; 1496 1497 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1498 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1499 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1500 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1501 if (SE.isKnownPositive(Minus)) 1502 return true; 1503 1504 return false; 1505 } 1506 1507 /// Check the dependence for two accesses with the same stride \p Stride. 1508 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1509 /// bytes. 1510 /// 1511 /// \returns true if they are independent. 1512 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1513 uint64_t TypeByteSize) { 1514 assert(Stride > 1 && "The stride must be greater than 1"); 1515 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1516 assert(Distance > 0 && "The distance must be non-zero"); 1517 1518 // Skip if the distance is not multiple of type byte size. 1519 if (Distance % TypeByteSize) 1520 return false; 1521 1522 uint64_t ScaledDist = Distance / TypeByteSize; 1523 1524 // No dependence if the scaled distance is not multiple of the stride. 1525 // E.g. 1526 // for (i = 0; i < 1024 ; i += 4) 1527 // A[i+2] = A[i] + 1; 1528 // 1529 // Two accesses in memory (scaled distance is 2, stride is 4): 1530 // | A[0] | | | | A[4] | | | | 1531 // | | | A[2] | | | | A[6] | | 1532 // 1533 // E.g. 1534 // for (i = 0; i < 1024 ; i += 3) 1535 // A[i+4] = A[i] + 1; 1536 // 1537 // Two accesses in memory (scaled distance is 4, stride is 3): 1538 // | A[0] | | | A[3] | | | A[6] | | | 1539 // | | | | | A[4] | | | A[7] | | 1540 return ScaledDist % Stride; 1541 } 1542 1543 MemoryDepChecker::Dependence::DepType 1544 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1545 const MemAccessInfo &B, unsigned BIdx, 1546 const ValueToValueMap &Strides) { 1547 assert (AIdx < BIdx && "Must pass arguments in program order"); 1548 1549 Value *APtr = A.getPointer(); 1550 Value *BPtr = B.getPointer(); 1551 bool AIsWrite = A.getInt(); 1552 bool BIsWrite = B.getInt(); 1553 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1554 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1555 1556 // Two reads are independent. 1557 if (!AIsWrite && !BIsWrite) 1558 return Dependence::NoDep; 1559 1560 // We cannot check pointers in different address spaces. 1561 if (APtr->getType()->getPointerAddressSpace() != 1562 BPtr->getType()->getPointerAddressSpace()) 1563 return Dependence::Unknown; 1564 1565 int64_t StrideAPtr = 1566 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1567 int64_t StrideBPtr = 1568 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1569 1570 const SCEV *Src = PSE.getSCEV(APtr); 1571 const SCEV *Sink = PSE.getSCEV(BPtr); 1572 1573 // If the induction step is negative we have to invert source and sink of the 1574 // dependence. 1575 if (StrideAPtr < 0) { 1576 std::swap(APtr, BPtr); 1577 std::swap(ATy, BTy); 1578 std::swap(Src, Sink); 1579 std::swap(AIsWrite, BIsWrite); 1580 std::swap(AIdx, BIdx); 1581 std::swap(StrideAPtr, StrideBPtr); 1582 } 1583 1584 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1585 1586 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1587 << "(Induction step: " << StrideAPtr << ")\n"); 1588 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1589 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1590 1591 // Need accesses with constant stride. We don't want to vectorize 1592 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1593 // the address space. 1594 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1595 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1596 return Dependence::Unknown; 1597 } 1598 1599 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1600 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1601 bool HasSameSize = 1602 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1603 uint64_t Stride = std::abs(StrideAPtr); 1604 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1605 if (!C) { 1606 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1607 isSafeDependenceDistance(DL, *(PSE.getSE()), 1608 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1609 TypeByteSize)) 1610 return Dependence::NoDep; 1611 1612 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1613 FoundNonConstantDistanceDependence = true; 1614 return Dependence::Unknown; 1615 } 1616 1617 const APInt &Val = C->getAPInt(); 1618 int64_t Distance = Val.getSExtValue(); 1619 1620 // Attempt to prove strided accesses independent. 1621 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1622 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1623 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1624 return Dependence::NoDep; 1625 } 1626 1627 // Negative distances are not plausible dependencies. 1628 if (Val.isNegative()) { 1629 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1630 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1631 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1632 !HasSameSize)) { 1633 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1634 return Dependence::ForwardButPreventsForwarding; 1635 } 1636 1637 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1638 return Dependence::Forward; 1639 } 1640 1641 // Write to the same location with the same size. 1642 if (Val == 0) { 1643 if (HasSameSize) 1644 return Dependence::Forward; 1645 LLVM_DEBUG( 1646 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1647 return Dependence::Unknown; 1648 } 1649 1650 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1651 1652 if (!HasSameSize) { 1653 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1654 "different type sizes\n"); 1655 return Dependence::Unknown; 1656 } 1657 1658 // Bail out early if passed-in parameters make vectorization not feasible. 1659 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1660 VectorizerParams::VectorizationFactor : 1); 1661 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1662 VectorizerParams::VectorizationInterleave : 1); 1663 // The minimum number of iterations for a vectorized/unrolled version. 1664 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1665 1666 // It's not vectorizable if the distance is smaller than the minimum distance 1667 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1668 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1669 // TypeByteSize (No need to plus the last gap distance). 1670 // 1671 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1672 // foo(int *A) { 1673 // int *B = (int *)((char *)A + 14); 1674 // for (i = 0 ; i < 1024 ; i += 2) 1675 // B[i] = A[i] + 1; 1676 // } 1677 // 1678 // Two accesses in memory (stride is 2): 1679 // | A[0] | | A[2] | | A[4] | | A[6] | | 1680 // | B[0] | | B[2] | | B[4] | 1681 // 1682 // Distance needs for vectorizing iterations except the last iteration: 1683 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1684 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1685 // 1686 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1687 // 12, which is less than distance. 1688 // 1689 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1690 // the minimum distance needed is 28, which is greater than distance. It is 1691 // not safe to do vectorization. 1692 uint64_t MinDistanceNeeded = 1693 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1694 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1695 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1696 << Distance << '\n'); 1697 return Dependence::Backward; 1698 } 1699 1700 // Unsafe if the minimum distance needed is greater than max safe distance. 1701 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1702 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1703 << MinDistanceNeeded << " size in bytes"); 1704 return Dependence::Backward; 1705 } 1706 1707 // Positive distance bigger than max vectorization factor. 1708 // FIXME: Should use max factor instead of max distance in bytes, which could 1709 // not handle different types. 1710 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1711 // void foo (int *A, char *B) { 1712 // for (unsigned i = 0; i < 1024; i++) { 1713 // A[i+2] = A[i] + 1; 1714 // B[i+2] = B[i] + 1; 1715 // } 1716 // } 1717 // 1718 // This case is currently unsafe according to the max safe distance. If we 1719 // analyze the two accesses on array B, the max safe dependence distance 1720 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1721 // is 8, which is less than 2 and forbidden vectorization, But actually 1722 // both A and B could be vectorized by 2 iterations. 1723 MaxSafeDepDistBytes = 1724 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1725 1726 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1727 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1728 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1729 return Dependence::BackwardVectorizableButPreventsForwarding; 1730 1731 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1732 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1733 << " with max VF = " << MaxVF << '\n'); 1734 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1735 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1736 return Dependence::BackwardVectorizable; 1737 } 1738 1739 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1740 MemAccessInfoList &CheckDeps, 1741 const ValueToValueMap &Strides) { 1742 1743 MaxSafeDepDistBytes = -1; 1744 SmallPtrSet<MemAccessInfo, 8> Visited; 1745 for (MemAccessInfo CurAccess : CheckDeps) { 1746 if (Visited.count(CurAccess)) 1747 continue; 1748 1749 // Get the relevant memory access set. 1750 EquivalenceClasses<MemAccessInfo>::iterator I = 1751 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1752 1753 // Check accesses within this set. 1754 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1755 AccessSets.member_begin(I); 1756 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1757 AccessSets.member_end(); 1758 1759 // Check every access pair. 1760 while (AI != AE) { 1761 Visited.insert(*AI); 1762 bool AIIsWrite = AI->getInt(); 1763 // Check loads only against next equivalent class, but stores also against 1764 // other stores in the same equivalence class - to the same address. 1765 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1766 (AIIsWrite ? AI : std::next(AI)); 1767 while (OI != AE) { 1768 // Check every accessing instruction pair in program order. 1769 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1770 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1771 // Scan all accesses of another equivalence class, but only the next 1772 // accesses of the same equivalent class. 1773 for (std::vector<unsigned>::iterator 1774 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1775 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1776 I2 != I2E; ++I2) { 1777 auto A = std::make_pair(&*AI, *I1); 1778 auto B = std::make_pair(&*OI, *I2); 1779 1780 assert(*I1 != *I2); 1781 if (*I1 > *I2) 1782 std::swap(A, B); 1783 1784 Dependence::DepType Type = 1785 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1786 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1787 1788 // Gather dependences unless we accumulated MaxDependences 1789 // dependences. In that case return as soon as we find the first 1790 // unsafe dependence. This puts a limit on this quadratic 1791 // algorithm. 1792 if (RecordDependences) { 1793 if (Type != Dependence::NoDep) 1794 Dependences.push_back(Dependence(A.second, B.second, Type)); 1795 1796 if (Dependences.size() >= MaxDependences) { 1797 RecordDependences = false; 1798 Dependences.clear(); 1799 LLVM_DEBUG(dbgs() 1800 << "Too many dependences, stopped recording\n"); 1801 } 1802 } 1803 if (!RecordDependences && !isSafeForVectorization()) 1804 return false; 1805 } 1806 ++OI; 1807 } 1808 AI++; 1809 } 1810 } 1811 1812 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1813 return isSafeForVectorization(); 1814 } 1815 1816 SmallVector<Instruction *, 4> 1817 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1818 MemAccessInfo Access(Ptr, isWrite); 1819 auto &IndexVector = Accesses.find(Access)->second; 1820 1821 SmallVector<Instruction *, 4> Insts; 1822 transform(IndexVector, 1823 std::back_inserter(Insts), 1824 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1825 return Insts; 1826 } 1827 1828 const char *MemoryDepChecker::Dependence::DepName[] = { 1829 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1830 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1831 1832 void MemoryDepChecker::Dependence::print( 1833 raw_ostream &OS, unsigned Depth, 1834 const SmallVectorImpl<Instruction *> &Instrs) const { 1835 OS.indent(Depth) << DepName[Type] << ":\n"; 1836 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1837 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1838 } 1839 1840 bool LoopAccessInfo::canAnalyzeLoop() { 1841 // We need to have a loop header. 1842 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1843 << TheLoop->getHeader()->getParent()->getName() << ": " 1844 << TheLoop->getHeader()->getName() << '\n'); 1845 1846 // We can only analyze innermost loops. 1847 if (!TheLoop->isInnermost()) { 1848 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1849 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1850 return false; 1851 } 1852 1853 // We must have a single backedge. 1854 if (TheLoop->getNumBackEdges() != 1) { 1855 LLVM_DEBUG( 1856 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1857 recordAnalysis("CFGNotUnderstood") 1858 << "loop control flow is not understood by analyzer"; 1859 return false; 1860 } 1861 1862 // ScalarEvolution needs to be able to find the exit count. 1863 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1864 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1865 recordAnalysis("CantComputeNumberOfIterations") 1866 << "could not determine number of loop iterations"; 1867 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1868 return false; 1869 } 1870 1871 return true; 1872 } 1873 1874 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1875 const TargetLibraryInfo *TLI, 1876 DominatorTree *DT) { 1877 // Holds the Load and Store instructions. 1878 SmallVector<LoadInst *, 16> Loads; 1879 SmallVector<StoreInst *, 16> Stores; 1880 1881 // Holds all the different accesses in the loop. 1882 unsigned NumReads = 0; 1883 unsigned NumReadWrites = 0; 1884 1885 bool HasComplexMemInst = false; 1886 1887 // A runtime check is only legal to insert if there are no convergent calls. 1888 HasConvergentOp = false; 1889 1890 PtrRtChecking->Pointers.clear(); 1891 PtrRtChecking->Need = false; 1892 1893 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1894 1895 const bool EnableMemAccessVersioningOfLoop = 1896 EnableMemAccessVersioning && 1897 !TheLoop->getHeader()->getParent()->hasOptSize(); 1898 1899 // For each block. 1900 for (BasicBlock *BB : TheLoop->blocks()) { 1901 // Scan the BB and collect legal loads and stores. Also detect any 1902 // convergent instructions. 1903 for (Instruction &I : *BB) { 1904 if (auto *Call = dyn_cast<CallBase>(&I)) { 1905 if (Call->isConvergent()) 1906 HasConvergentOp = true; 1907 } 1908 1909 // With both a non-vectorizable memory instruction and a convergent 1910 // operation, found in this loop, no reason to continue the search. 1911 if (HasComplexMemInst && HasConvergentOp) { 1912 CanVecMem = false; 1913 return; 1914 } 1915 1916 // Avoid hitting recordAnalysis multiple times. 1917 if (HasComplexMemInst) 1918 continue; 1919 1920 // If this is a load, save it. If this instruction can read from memory 1921 // but is not a load, then we quit. Notice that we don't handle function 1922 // calls that read or write. 1923 if (I.mayReadFromMemory()) { 1924 // Many math library functions read the rounding mode. We will only 1925 // vectorize a loop if it contains known function calls that don't set 1926 // the flag. Therefore, it is safe to ignore this read from memory. 1927 auto *Call = dyn_cast<CallInst>(&I); 1928 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1929 continue; 1930 1931 // If the function has an explicit vectorized counterpart, we can safely 1932 // assume that it can be vectorized. 1933 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1934 !VFDatabase::getMappings(*Call).empty()) 1935 continue; 1936 1937 auto *Ld = dyn_cast<LoadInst>(&I); 1938 if (!Ld) { 1939 recordAnalysis("CantVectorizeInstruction", Ld) 1940 << "instruction cannot be vectorized"; 1941 HasComplexMemInst = true; 1942 continue; 1943 } 1944 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1945 recordAnalysis("NonSimpleLoad", Ld) 1946 << "read with atomic ordering or volatile read"; 1947 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1948 HasComplexMemInst = true; 1949 continue; 1950 } 1951 NumLoads++; 1952 Loads.push_back(Ld); 1953 DepChecker->addAccess(Ld); 1954 if (EnableMemAccessVersioningOfLoop) 1955 collectStridedAccess(Ld); 1956 continue; 1957 } 1958 1959 // Save 'store' instructions. Abort if other instructions write to memory. 1960 if (I.mayWriteToMemory()) { 1961 auto *St = dyn_cast<StoreInst>(&I); 1962 if (!St) { 1963 recordAnalysis("CantVectorizeInstruction", St) 1964 << "instruction cannot be vectorized"; 1965 HasComplexMemInst = true; 1966 continue; 1967 } 1968 if (!St->isSimple() && !IsAnnotatedParallel) { 1969 recordAnalysis("NonSimpleStore", St) 1970 << "write with atomic ordering or volatile write"; 1971 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1972 HasComplexMemInst = true; 1973 continue; 1974 } 1975 NumStores++; 1976 Stores.push_back(St); 1977 DepChecker->addAccess(St); 1978 if (EnableMemAccessVersioningOfLoop) 1979 collectStridedAccess(St); 1980 } 1981 } // Next instr. 1982 } // Next block. 1983 1984 if (HasComplexMemInst) { 1985 CanVecMem = false; 1986 return; 1987 } 1988 1989 // Now we have two lists that hold the loads and the stores. 1990 // Next, we find the pointers that they use. 1991 1992 // Check if we see any stores. If there are no stores, then we don't 1993 // care if the pointers are *restrict*. 1994 if (!Stores.size()) { 1995 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1996 CanVecMem = true; 1997 return; 1998 } 1999 2000 MemoryDepChecker::DepCandidates DependentAccesses; 2001 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2002 2003 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2004 // multiple times on the same object. If the ptr is accessed twice, once 2005 // for read and once for write, it will only appear once (on the write 2006 // list). This is okay, since we are going to check for conflicts between 2007 // writes and between reads and writes, but not between reads and reads. 2008 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2009 2010 // Record uniform store addresses to identify if we have multiple stores 2011 // to the same address. 2012 SmallPtrSet<Value *, 16> UniformStores; 2013 2014 for (StoreInst *ST : Stores) { 2015 Value *Ptr = ST->getPointerOperand(); 2016 2017 if (isUniform(Ptr)) { 2018 // Record store instructions to loop invariant addresses 2019 StoresToInvariantAddresses.push_back(ST); 2020 HasDependenceInvolvingLoopInvariantAddress |= 2021 !UniformStores.insert(Ptr).second; 2022 } 2023 2024 // If we did *not* see this pointer before, insert it to the read-write 2025 // list. At this phase it is only a 'write' list. 2026 Type *AccessTy = getLoadStoreType(ST); 2027 if (Seen.insert({Ptr, AccessTy}).second) { 2028 ++NumReadWrites; 2029 2030 MemoryLocation Loc = MemoryLocation::get(ST); 2031 // The TBAA metadata could have a control dependency on the predication 2032 // condition, so we cannot rely on it when determining whether or not we 2033 // need runtime pointer checks. 2034 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2035 Loc.AATags.TBAA = nullptr; 2036 2037 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2038 [&Accesses, AccessTy, Loc](Value *Ptr) { 2039 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2040 Accesses.addStore(NewLoc, AccessTy); 2041 }); 2042 } 2043 } 2044 2045 if (IsAnnotatedParallel) { 2046 LLVM_DEBUG( 2047 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2048 << "checks.\n"); 2049 CanVecMem = true; 2050 return; 2051 } 2052 2053 for (LoadInst *LD : Loads) { 2054 Value *Ptr = LD->getPointerOperand(); 2055 // If we did *not* see this pointer before, insert it to the 2056 // read list. If we *did* see it before, then it is already in 2057 // the read-write list. This allows us to vectorize expressions 2058 // such as A[i] += x; Because the address of A[i] is a read-write 2059 // pointer. This only works if the index of A[i] is consecutive. 2060 // If the address of i is unknown (for example A[B[i]]) then we may 2061 // read a few words, modify, and write a few words, and some of the 2062 // words may be written to the same address. 2063 bool IsReadOnlyPtr = false; 2064 Type *AccessTy = getLoadStoreType(LD); 2065 if (Seen.insert({Ptr, AccessTy}).second || 2066 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2067 ++NumReads; 2068 IsReadOnlyPtr = true; 2069 } 2070 2071 // See if there is an unsafe dependency between a load to a uniform address and 2072 // store to the same uniform address. 2073 if (UniformStores.count(Ptr)) { 2074 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2075 "load and uniform store to the same address!\n"); 2076 HasDependenceInvolvingLoopInvariantAddress = true; 2077 } 2078 2079 MemoryLocation Loc = MemoryLocation::get(LD); 2080 // The TBAA metadata could have a control dependency on the predication 2081 // condition, so we cannot rely on it when determining whether or not we 2082 // need runtime pointer checks. 2083 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2084 Loc.AATags.TBAA = nullptr; 2085 2086 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2087 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2088 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2089 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2090 }); 2091 } 2092 2093 // If we write (or read-write) to a single destination and there are no 2094 // other reads in this loop then is it safe to vectorize. 2095 if (NumReadWrites == 1 && NumReads == 0) { 2096 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2097 CanVecMem = true; 2098 return; 2099 } 2100 2101 // Build dependence sets and check whether we need a runtime pointer bounds 2102 // check. 2103 Accesses.buildDependenceSets(); 2104 2105 // Find pointers with computable bounds. We are going to use this information 2106 // to place a runtime bound check. 2107 Value *UncomputablePtr = nullptr; 2108 bool CanDoRTIfNeeded = 2109 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2110 SymbolicStrides, UncomputablePtr, false); 2111 if (!CanDoRTIfNeeded) { 2112 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2113 recordAnalysis("CantIdentifyArrayBounds", I) 2114 << "cannot identify array bounds"; 2115 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2116 << "the array bounds.\n"); 2117 CanVecMem = false; 2118 return; 2119 } 2120 2121 LLVM_DEBUG( 2122 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2123 2124 CanVecMem = true; 2125 if (Accesses.isDependencyCheckNeeded()) { 2126 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2127 CanVecMem = DepChecker->areDepsSafe( 2128 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2129 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2130 2131 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2132 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2133 2134 // Clear the dependency checks. We assume they are not needed. 2135 Accesses.resetDepChecks(*DepChecker); 2136 2137 PtrRtChecking->reset(); 2138 PtrRtChecking->Need = true; 2139 2140 auto *SE = PSE->getSE(); 2141 UncomputablePtr = nullptr; 2142 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2143 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2144 2145 // Check that we found the bounds for the pointer. 2146 if (!CanDoRTIfNeeded) { 2147 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2148 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2149 << "cannot check memory dependencies at runtime"; 2150 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2151 CanVecMem = false; 2152 return; 2153 } 2154 2155 CanVecMem = true; 2156 } 2157 } 2158 2159 if (HasConvergentOp) { 2160 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2161 << "cannot add control dependency to convergent operation"; 2162 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2163 "would be needed with a convergent operation\n"); 2164 CanVecMem = false; 2165 return; 2166 } 2167 2168 if (CanVecMem) 2169 LLVM_DEBUG( 2170 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2171 << (PtrRtChecking->Need ? "" : " don't") 2172 << " need runtime memory checks.\n"); 2173 else 2174 emitUnsafeDependenceRemark(); 2175 } 2176 2177 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2178 auto Deps = getDepChecker().getDependences(); 2179 if (!Deps) 2180 return; 2181 auto Found = std::find_if( 2182 Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) { 2183 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2184 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2185 }); 2186 if (Found == Deps->end()) 2187 return; 2188 MemoryDepChecker::Dependence Dep = *Found; 2189 2190 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2191 2192 // Emit remark for first unsafe dependence 2193 OptimizationRemarkAnalysis &R = 2194 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2195 << "unsafe dependent memory operations in loop. Use " 2196 "#pragma loop distribute(enable) to allow loop distribution " 2197 "to attempt to isolate the offending operations into a separate " 2198 "loop"; 2199 2200 switch (Dep.Type) { 2201 case MemoryDepChecker::Dependence::NoDep: 2202 case MemoryDepChecker::Dependence::Forward: 2203 case MemoryDepChecker::Dependence::BackwardVectorizable: 2204 llvm_unreachable("Unexpected dependence"); 2205 case MemoryDepChecker::Dependence::Backward: 2206 R << "\nBackward loop carried data dependence."; 2207 break; 2208 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2209 R << "\nForward loop carried data dependence that prevents " 2210 "store-to-load forwarding."; 2211 break; 2212 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2213 R << "\nBackward loop carried data dependence that prevents " 2214 "store-to-load forwarding."; 2215 break; 2216 case MemoryDepChecker::Dependence::Unknown: 2217 R << "\nUnknown data dependence."; 2218 break; 2219 } 2220 2221 if (Instruction *I = Dep.getSource(*this)) { 2222 DebugLoc SourceLoc = I->getDebugLoc(); 2223 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2224 SourceLoc = DD->getDebugLoc(); 2225 if (SourceLoc) 2226 R << " Memory location is the same as accessed at " 2227 << ore::NV("Location", SourceLoc); 2228 } 2229 } 2230 2231 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2232 DominatorTree *DT) { 2233 assert(TheLoop->contains(BB) && "Unknown block used"); 2234 2235 // Blocks that do not dominate the latch need predication. 2236 BasicBlock* Latch = TheLoop->getLoopLatch(); 2237 return !DT->dominates(BB, Latch); 2238 } 2239 2240 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2241 Instruction *I) { 2242 assert(!Report && "Multiple reports generated"); 2243 2244 Value *CodeRegion = TheLoop->getHeader(); 2245 DebugLoc DL = TheLoop->getStartLoc(); 2246 2247 if (I) { 2248 CodeRegion = I->getParent(); 2249 // If there is no debug location attached to the instruction, revert back to 2250 // using the loop's. 2251 if (I->getDebugLoc()) 2252 DL = I->getDebugLoc(); 2253 } 2254 2255 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2256 CodeRegion); 2257 return *Report; 2258 } 2259 2260 bool LoopAccessInfo::isUniform(Value *V) const { 2261 auto *SE = PSE->getSE(); 2262 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2263 // never considered uniform. 2264 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2265 // trivially loop-invariant FP values to be considered uniform. 2266 if (!SE->isSCEVable(V->getType())) 2267 return false; 2268 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2269 } 2270 2271 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2272 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2273 if (!Ptr) 2274 return; 2275 2276 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2277 if (!Stride) 2278 return; 2279 2280 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2281 "versioning:"); 2282 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2283 2284 // Avoid adding the "Stride == 1" predicate when we know that 2285 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2286 // or zero iteration loop, as Trip-Count <= Stride == 1. 2287 // 2288 // TODO: We are currently not making a very informed decision on when it is 2289 // beneficial to apply stride versioning. It might make more sense that the 2290 // users of this analysis (such as the vectorizer) will trigger it, based on 2291 // their specific cost considerations; For example, in cases where stride 2292 // versioning does not help resolving memory accesses/dependences, the 2293 // vectorizer should evaluate the cost of the runtime test, and the benefit 2294 // of various possible stride specializations, considering the alternatives 2295 // of using gather/scatters (if available). 2296 2297 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2298 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2299 2300 // Match the types so we can compare the stride and the BETakenCount. 2301 // The Stride can be positive/negative, so we sign extend Stride; 2302 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2303 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2304 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2305 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2306 const SCEV *CastedStride = StrideExpr; 2307 const SCEV *CastedBECount = BETakenCount; 2308 ScalarEvolution *SE = PSE->getSE(); 2309 if (BETypeSizeBits >= StrideTypeSizeBits) 2310 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2311 else 2312 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2313 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2314 // Since TripCount == BackEdgeTakenCount + 1, checking: 2315 // "Stride >= TripCount" is equivalent to checking: 2316 // Stride - BETakenCount > 0 2317 if (SE->isKnownPositive(StrideMinusBETaken)) { 2318 LLVM_DEBUG( 2319 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2320 "Stride==1 predicate will imply that the loop executes " 2321 "at most once.\n"); 2322 return; 2323 } 2324 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2325 2326 SymbolicStrides[Ptr] = Stride; 2327 StrideSet.insert(Stride); 2328 } 2329 2330 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2331 const TargetLibraryInfo *TLI, AAResults *AA, 2332 DominatorTree *DT, LoopInfo *LI) 2333 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2334 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2335 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2336 if (canAnalyzeLoop()) 2337 analyzeLoop(AA, LI, TLI, DT); 2338 } 2339 2340 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2341 if (CanVecMem) { 2342 OS.indent(Depth) << "Memory dependences are safe"; 2343 if (MaxSafeDepDistBytes != -1ULL) 2344 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2345 << " bytes"; 2346 if (PtrRtChecking->Need) 2347 OS << " with run-time checks"; 2348 OS << "\n"; 2349 } 2350 2351 if (HasConvergentOp) 2352 OS.indent(Depth) << "Has convergent operation in loop\n"; 2353 2354 if (Report) 2355 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2356 2357 if (auto *Dependences = DepChecker->getDependences()) { 2358 OS.indent(Depth) << "Dependences:\n"; 2359 for (auto &Dep : *Dependences) { 2360 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2361 OS << "\n"; 2362 } 2363 } else 2364 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2365 2366 // List the pair of accesses need run-time checks to prove independence. 2367 PtrRtChecking->print(OS, Depth); 2368 OS << "\n"; 2369 2370 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2371 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2372 << "found in loop.\n"; 2373 2374 OS.indent(Depth) << "SCEV assumptions:\n"; 2375 PSE->getPredicate().print(OS, Depth); 2376 2377 OS << "\n"; 2378 2379 OS.indent(Depth) << "Expressions re-written:\n"; 2380 PSE->print(OS, Depth); 2381 } 2382 2383 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2384 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2385 } 2386 2387 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2388 auto &LAI = LoopAccessInfoMap[L]; 2389 2390 if (!LAI) 2391 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2392 2393 return *LAI; 2394 } 2395 2396 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2397 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2398 2399 for (Loop *TopLevelLoop : *LI) 2400 for (Loop *L : depth_first(TopLevelLoop)) { 2401 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2402 auto &LAI = LAA.getInfo(L); 2403 LAI.print(OS, 4); 2404 } 2405 } 2406 2407 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2408 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2409 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2410 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2411 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2412 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2413 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2414 2415 return false; 2416 } 2417 2418 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2419 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2420 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2421 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2422 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2423 2424 AU.setPreservesAll(); 2425 } 2426 2427 char LoopAccessLegacyAnalysis::ID = 0; 2428 static const char laa_name[] = "Loop Access Analysis"; 2429 #define LAA_NAME "loop-accesses" 2430 2431 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2432 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2433 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2434 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2435 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2436 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2437 2438 AnalysisKey LoopAccessAnalysis::Key; 2439 2440 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2441 LoopStandardAnalysisResults &AR) { 2442 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2443 } 2444 2445 namespace llvm { 2446 2447 Pass *createLAAPass() { 2448 return new LoopAccessLegacyAnalysis(); 2449 } 2450 2451 } // end namespace llvm 2452