1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect interesting dependences up to this threshold.
62 static cl::opt<unsigned> MaxInterestingDependence(
63     "max-interesting-dependences", cl::Hidden,
64     cl::desc("Maximum number of interesting dependences collected by "
65              "loop-access analysis (default = 100)"),
66     cl::init(100));
67 
68 bool VectorizerParams::isInterleaveForced() {
69   return ::VectorizationInterleave.getNumOccurrences() > 0;
70 }
71 
72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                     const Function *TheFunction,
74                                     const Loop *TheLoop,
75                                     const char *PassName) {
76   DebugLoc DL = TheLoop->getStartLoc();
77   if (const Instruction *I = Message.getInstr())
78     DL = I->getDebugLoc();
79   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                  *TheFunction, DL, Message.str());
81 }
82 
83 Value *llvm::stripIntegerCast(Value *V) {
84   if (CastInst *CI = dyn_cast<CastInst>(V))
85     if (CI->getOperand(0)->getType()->isIntegerTy())
86       return CI->getOperand(0);
87   return V;
88 }
89 
90 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
91                                             const ValueToValueMap &PtrToStride,
92                                             Value *Ptr, Value *OrigPtr) {
93 
94   const SCEV *OrigSCEV = SE->getSCEV(Ptr);
95 
96   // If there is an entry in the map return the SCEV of the pointer with the
97   // symbolic stride replaced by one.
98   ValueToValueMap::const_iterator SI =
99       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
100   if (SI != PtrToStride.end()) {
101     Value *StrideVal = SI->second;
102 
103     // Strip casts.
104     StrideVal = stripIntegerCast(StrideVal);
105 
106     // Replace symbolic stride by one.
107     Value *One = ConstantInt::get(StrideVal->getType(), 1);
108     ValueToValueMap RewriteMap;
109     RewriteMap[StrideVal] = One;
110 
111     const SCEV *ByOne =
112         SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
113     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
114                  << "\n");
115     return ByOne;
116   }
117 
118   // Otherwise, just return the SCEV of the original pointer.
119   return SE->getSCEV(Ptr);
120 }
121 
122 void LoopAccessInfo::RuntimePointerCheck::insert(
123     Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, unsigned ASId,
124     const ValueToValueMap &Strides) {
125   // Get the stride replaced scev.
126   const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
127   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
128   assert(AR && "Invalid addrec expression");
129   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
130   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
131   Pointers.push_back(Ptr);
132   Starts.push_back(AR->getStart());
133   Ends.push_back(ScEnd);
134   IsWritePtr.push_back(WritePtr);
135   DependencySetId.push_back(DepSetId);
136   AliasSetId.push_back(ASId);
137   Exprs.push_back(Sc);
138 }
139 
140 bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
141     const CheckingPtrGroup &M, const CheckingPtrGroup &N,
142     const SmallVectorImpl<int> *PtrPartition) const {
143   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
144     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
145       if (needsChecking(M.Members[I], N.Members[J], PtrPartition))
146         return true;
147   return false;
148 }
149 
150 /// Compare \p I and \p J and return the minimum.
151 /// Return nullptr in case we couldn't find an answer.
152 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
153                                    ScalarEvolution *SE) {
154   const SCEV *Diff = SE->getMinusSCEV(J, I);
155   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
156 
157   if (!C)
158     return nullptr;
159   if (C->getValue()->isNegative())
160     return J;
161   return I;
162 }
163 
164 bool LoopAccessInfo::RuntimePointerCheck::CheckingPtrGroup::addPointer(
165     unsigned Index) {
166   // Compare the starts and ends with the known minimum and maximum
167   // of this set. We need to know how we compare against the min/max
168   // of the set in order to be able to emit memchecks.
169   const SCEV *Min0 = getMinFromExprs(RtCheck.Starts[Index], Low, RtCheck.SE);
170   if (!Min0)
171     return false;
172 
173   const SCEV *Min1 = getMinFromExprs(RtCheck.Ends[Index], High, RtCheck.SE);
174   if (!Min1)
175     return false;
176 
177   // Update the low bound  expression if we've found a new min value.
178   if (Min0 == RtCheck.Starts[Index])
179     Low = RtCheck.Starts[Index];
180 
181   // Update the high bound expression if we've found a new max value.
182   if (Min1 != RtCheck.Ends[Index])
183     High = RtCheck.Ends[Index];
184 
185   Members.push_back(Index);
186   return true;
187 }
188 
189 void LoopAccessInfo::RuntimePointerCheck::groupChecks(
190     MemoryDepChecker::DepCandidates &DepCands,
191     bool UseDependencies) {
192   // We build the groups from dependency candidates equivalence classes
193   // because:
194   //    - We know that pointers in the same equivalence class share
195   //      the same underlying object and therefore there is a chance
196   //      that we can compare pointers
197   //    - We wouldn't be able to merge two pointers for which we need
198   //      to emit a memcheck. The classes in DepCands are already
199   //      conveniently built such that no two pointers in the same
200   //      class need checking against each other.
201 
202   // We use the following (greedy) algorithm to construct the groups
203   // For every pointer in the equivalence class:
204   //   For each existing group:
205   //   - if the difference between this pointer and the min/max bounds
206   //     of the group is a constant, then make the pointer part of the
207   //     group and update the min/max bounds of that group as required.
208 
209   CheckingGroups.clear();
210 
211   // If we don't have the dependency partitions, construct a new
212   // checking pointer group for each pointer.
213   if (!UseDependencies) {
214     for (unsigned I = 0; I < Pointers.size(); ++I)
215       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
216     return;
217   }
218 
219   unsigned TotalComparisons = 0;
220 
221   DenseMap<Value *, unsigned> PositionMap;
222   for (unsigned Pointer = 0; Pointer < Pointers.size(); ++Pointer)
223     PositionMap[Pointers[Pointer]] = Pointer;
224 
225   // We need to keep track of what pointers we've already seen so we
226   // don't process them twice.
227   SmallSet<unsigned, 2> Seen;
228 
229   // Go through all equivalence classes, get the the "pointer check groups"
230   // and add them to the overall solution. We use the order in which accesses
231   // appear in 'Pointers' to enforce determinism.
232   for (unsigned I = 0; I < Pointers.size(); ++I) {
233     // We've seen this pointer before, and therefore already processed
234     // its equivalence class.
235     if (Seen.count(I))
236       continue;
237 
238     MemoryDepChecker::MemAccessInfo Access(Pointers[I], IsWritePtr[I]);
239 
240     SmallVector<CheckingPtrGroup, 2> Groups;
241     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
242 
243     // Because DepCands is constructed by visiting accesses in the order in
244     // which they appear in alias sets (which is deterministic) and the
245     // iteration order within an equivalence class member is only dependent on
246     // the order in which unions and insertions are performed on the
247     // equivalence class, the iteration order is deterministic.
248     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
249          MI != ME; ++MI) {
250       unsigned Pointer = PositionMap[MI->getPointer()];
251       bool Merged = false;
252       // Mark this pointer as seen.
253       Seen.insert(Pointer);
254 
255       // Go through all the existing sets and see if we can find one
256       // which can include this pointer.
257       for (CheckingPtrGroup &Group : Groups) {
258         // Don't perform more than a certain amount of comparisons.
259         // This should limit the cost of grouping the pointers to something
260         // reasonable.  If we do end up hitting this threshold, the algorithm
261         // will create separate groups for all remaining pointers.
262         if (TotalComparisons > MemoryCheckMergeThreshold)
263           break;
264 
265         TotalComparisons++;
266 
267         if (Group.addPointer(Pointer)) {
268           Merged = true;
269           break;
270         }
271       }
272 
273       if (!Merged)
274         // We couldn't add this pointer to any existing set or the threshold
275         // for the number of comparisons has been reached. Create a new group
276         // to hold the current pointer.
277         Groups.push_back(CheckingPtrGroup(Pointer, *this));
278     }
279 
280     // We've computed the grouped checks for this partition.
281     // Save the results and continue with the next one.
282     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
283   }
284 }
285 
286 bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
287     unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const {
288   // No need to check if two readonly pointers intersect.
289   if (!IsWritePtr[I] && !IsWritePtr[J])
290     return false;
291 
292   // Only need to check pointers between two different dependency sets.
293   if (DependencySetId[I] == DependencySetId[J])
294     return false;
295 
296   // Only need to check pointers in the same alias set.
297   if (AliasSetId[I] != AliasSetId[J])
298     return false;
299 
300   // If PtrPartition is set omit checks between pointers of the same partition.
301   // Partition number -1 means that the pointer is used in multiple partitions.
302   // In this case we can't omit the check.
303   if (PtrPartition && (*PtrPartition)[I] != -1 &&
304       (*PtrPartition)[I] == (*PtrPartition)[J])
305     return false;
306 
307   return true;
308 }
309 
310 void LoopAccessInfo::RuntimePointerCheck::print(
311     raw_ostream &OS, unsigned Depth,
312     const SmallVectorImpl<int> *PtrPartition) const {
313 
314   OS.indent(Depth) << "Run-time memory checks:\n";
315 
316   unsigned N = 0;
317   for (unsigned I = 0; I < CheckingGroups.size(); ++I)
318     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J)
319       if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) {
320         OS.indent(Depth) << "Check " << N++ << ":\n";
321         OS.indent(Depth + 2) << "Comparing group " << I << ":\n";
322 
323         for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) {
324           OS.indent(Depth + 2) << *Pointers[CheckingGroups[I].Members[K]]
325                                << "\n";
326           if (PtrPartition)
327             OS << " (Partition: "
328                << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")"
329                << "\n";
330         }
331 
332         OS.indent(Depth + 2) << "Against group " << J << ":\n";
333 
334         for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) {
335           OS.indent(Depth + 2) << *Pointers[CheckingGroups[J].Members[K]]
336                                << "\n";
337           if (PtrPartition)
338             OS << " (Partition: "
339                << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")"
340                << "\n";
341         }
342       }
343 
344   OS.indent(Depth) << "Grouped accesses:\n";
345   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
346     OS.indent(Depth + 2) << "Group " << I << ":\n";
347     OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low
348                          << " High: " << *CheckingGroups[I].High << ")\n";
349     for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) {
350       OS.indent(Depth + 6) << "Member: " << *Exprs[CheckingGroups[I].Members[J]]
351                            << "\n";
352     }
353   }
354 }
355 
356 unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks(
357     const SmallVectorImpl<int> *PtrPartition) const {
358 
359   unsigned NumPartitions = CheckingGroups.size();
360   unsigned CheckCount = 0;
361 
362   for (unsigned I = 0; I < NumPartitions; ++I)
363     for (unsigned J = I + 1; J < NumPartitions; ++J)
364       if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition))
365         CheckCount++;
366   return CheckCount;
367 }
368 
369 bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking(
370     const SmallVectorImpl<int> *PtrPartition) const {
371   unsigned NumPointers = Pointers.size();
372 
373   for (unsigned I = 0; I < NumPointers; ++I)
374     for (unsigned J = I + 1; J < NumPointers; ++J)
375       if (needsChecking(I, J, PtrPartition))
376         return true;
377   return false;
378 }
379 
380 namespace {
381 /// \brief Analyses memory accesses in a loop.
382 ///
383 /// Checks whether run time pointer checks are needed and builds sets for data
384 /// dependence checking.
385 class AccessAnalysis {
386 public:
387   /// \brief Read or write access location.
388   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
389   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
390 
391   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
392                  MemoryDepChecker::DepCandidates &DA)
393       : DL(Dl), AST(*AA), LI(LI), DepCands(DA),
394         IsRTCheckAnalysisNeeded(false) {}
395 
396   /// \brief Register a load  and whether it is only read from.
397   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
398     Value *Ptr = const_cast<Value*>(Loc.Ptr);
399     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
400     Accesses.insert(MemAccessInfo(Ptr, false));
401     if (IsReadOnly)
402       ReadOnlyPtr.insert(Ptr);
403   }
404 
405   /// \brief Register a store.
406   void addStore(MemoryLocation &Loc) {
407     Value *Ptr = const_cast<Value*>(Loc.Ptr);
408     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
409     Accesses.insert(MemAccessInfo(Ptr, true));
410   }
411 
412   /// \brief Check whether we can check the pointers at runtime for
413   /// non-intersection.
414   ///
415   /// Returns true if we need no check or if we do and we can generate them
416   /// (i.e. the pointers have computable bounds).
417   bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
418                        ScalarEvolution *SE, Loop *TheLoop,
419                        const ValueToValueMap &Strides,
420                        bool ShouldCheckStride = false);
421 
422   /// \brief Goes over all memory accesses, checks whether a RT check is needed
423   /// and builds sets of dependent accesses.
424   void buildDependenceSets() {
425     processMemAccesses();
426   }
427 
428   /// \brief Initial processing of memory accesses determined that we need to
429   /// perform dependency checking.
430   ///
431   /// Note that this can later be cleared if we retry memcheck analysis without
432   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
433   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
434 
435   /// We decided that no dependence analysis would be used.  Reset the state.
436   void resetDepChecks(MemoryDepChecker &DepChecker) {
437     CheckDeps.clear();
438     DepChecker.clearInterestingDependences();
439   }
440 
441   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
442 
443 private:
444   typedef SetVector<MemAccessInfo> PtrAccessSet;
445 
446   /// \brief Go over all memory access and check whether runtime pointer checks
447   /// are needed and build sets of dependency check candidates.
448   void processMemAccesses();
449 
450   /// Set of all accesses.
451   PtrAccessSet Accesses;
452 
453   const DataLayout &DL;
454 
455   /// Set of accesses that need a further dependence check.
456   MemAccessInfoSet CheckDeps;
457 
458   /// Set of pointers that are read only.
459   SmallPtrSet<Value*, 16> ReadOnlyPtr;
460 
461   /// An alias set tracker to partition the access set by underlying object and
462   //intrinsic property (such as TBAA metadata).
463   AliasSetTracker AST;
464 
465   LoopInfo *LI;
466 
467   /// Sets of potentially dependent accesses - members of one set share an
468   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
469   /// dependence check.
470   MemoryDepChecker::DepCandidates &DepCands;
471 
472   /// \brief Initial processing of memory accesses determined that we may need
473   /// to add memchecks.  Perform the analysis to determine the necessary checks.
474   ///
475   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
476   /// memcheck analysis without dependency checking
477   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
478   /// while this remains set if we have potentially dependent accesses.
479   bool IsRTCheckAnalysisNeeded;
480 };
481 
482 } // end anonymous namespace
483 
484 /// \brief Check whether a pointer can participate in a runtime bounds check.
485 static bool hasComputableBounds(ScalarEvolution *SE,
486                                 const ValueToValueMap &Strides, Value *Ptr) {
487   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
488   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
489   if (!AR)
490     return false;
491 
492   return AR->isAffine();
493 }
494 
495 bool AccessAnalysis::canCheckPtrAtRT(
496     LoopAccessInfo::RuntimePointerCheck &RtCheck, ScalarEvolution *SE,
497     Loop *TheLoop, const ValueToValueMap &StridesMap, bool ShouldCheckStride) {
498   // Find pointers with computable bounds. We are going to use this information
499   // to place a runtime bound check.
500   bool CanDoRT = true;
501 
502   bool NeedRTCheck = false;
503   if (!IsRTCheckAnalysisNeeded) return true;
504 
505   bool IsDepCheckNeeded = isDependencyCheckNeeded();
506 
507   // We assign a consecutive id to access from different alias sets.
508   // Accesses between different groups doesn't need to be checked.
509   unsigned ASId = 1;
510   for (auto &AS : AST) {
511     int NumReadPtrChecks = 0;
512     int NumWritePtrChecks = 0;
513 
514     // We assign consecutive id to access from different dependence sets.
515     // Accesses within the same set don't need a runtime check.
516     unsigned RunningDepId = 1;
517     DenseMap<Value *, unsigned> DepSetId;
518 
519     for (auto A : AS) {
520       Value *Ptr = A.getValue();
521       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
522       MemAccessInfo Access(Ptr, IsWrite);
523 
524       if (IsWrite)
525         ++NumWritePtrChecks;
526       else
527         ++NumReadPtrChecks;
528 
529       if (hasComputableBounds(SE, StridesMap, Ptr) &&
530           // When we run after a failing dependency check we have to make sure
531           // we don't have wrapping pointers.
532           (!ShouldCheckStride ||
533            isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) {
534         // The id of the dependence set.
535         unsigned DepId;
536 
537         if (IsDepCheckNeeded) {
538           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
539           unsigned &LeaderId = DepSetId[Leader];
540           if (!LeaderId)
541             LeaderId = RunningDepId++;
542           DepId = LeaderId;
543         } else
544           // Each access has its own dependence set.
545           DepId = RunningDepId++;
546 
547         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
548 
549         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
550       } else {
551         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
552         CanDoRT = false;
553       }
554     }
555 
556     // If we have at least two writes or one write and a read then we need to
557     // check them.  But there is no need to checks if there is only one
558     // dependence set for this alias set.
559     //
560     // Note that this function computes CanDoRT and NeedRTCheck independently.
561     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
562     // for which we couldn't find the bounds but we don't actually need to emit
563     // any checks so it does not matter.
564     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
565       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
566                                                  NumWritePtrChecks >= 1));
567 
568     ++ASId;
569   }
570 
571   // If the pointers that we would use for the bounds comparison have different
572   // address spaces, assume the values aren't directly comparable, so we can't
573   // use them for the runtime check. We also have to assume they could
574   // overlap. In the future there should be metadata for whether address spaces
575   // are disjoint.
576   unsigned NumPointers = RtCheck.Pointers.size();
577   for (unsigned i = 0; i < NumPointers; ++i) {
578     for (unsigned j = i + 1; j < NumPointers; ++j) {
579       // Only need to check pointers between two different dependency sets.
580       if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
581        continue;
582       // Only need to check pointers in the same alias set.
583       if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
584         continue;
585 
586       Value *PtrI = RtCheck.Pointers[i];
587       Value *PtrJ = RtCheck.Pointers[j];
588 
589       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
590       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
591       if (ASi != ASj) {
592         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
593                        " different address spaces\n");
594         return false;
595       }
596     }
597   }
598 
599   if (NeedRTCheck && CanDoRT)
600     RtCheck.groupChecks(DepCands, IsDepCheckNeeded);
601 
602   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr)
603                << " pointer comparisons.\n");
604 
605   RtCheck.Need = NeedRTCheck;
606 
607   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
608   if (!CanDoRTIfNeeded)
609     RtCheck.reset();
610   return CanDoRTIfNeeded;
611 }
612 
613 void AccessAnalysis::processMemAccesses() {
614   // We process the set twice: first we process read-write pointers, last we
615   // process read-only pointers. This allows us to skip dependence tests for
616   // read-only pointers.
617 
618   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
619   DEBUG(dbgs() << "  AST: "; AST.dump());
620   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
621   DEBUG({
622     for (auto A : Accesses)
623       dbgs() << "\t" << *A.getPointer() << " (" <<
624                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
625                                          "read-only" : "read")) << ")\n";
626   });
627 
628   // The AliasSetTracker has nicely partitioned our pointers by metadata
629   // compatibility and potential for underlying-object overlap. As a result, we
630   // only need to check for potential pointer dependencies within each alias
631   // set.
632   for (auto &AS : AST) {
633     // Note that both the alias-set tracker and the alias sets themselves used
634     // linked lists internally and so the iteration order here is deterministic
635     // (matching the original instruction order within each set).
636 
637     bool SetHasWrite = false;
638 
639     // Map of pointers to last access encountered.
640     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
641     UnderlyingObjToAccessMap ObjToLastAccess;
642 
643     // Set of access to check after all writes have been processed.
644     PtrAccessSet DeferredAccesses;
645 
646     // Iterate over each alias set twice, once to process read/write pointers,
647     // and then to process read-only pointers.
648     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
649       bool UseDeferred = SetIteration > 0;
650       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
651 
652       for (auto AV : AS) {
653         Value *Ptr = AV.getValue();
654 
655         // For a single memory access in AliasSetTracker, Accesses may contain
656         // both read and write, and they both need to be handled for CheckDeps.
657         for (auto AC : S) {
658           if (AC.getPointer() != Ptr)
659             continue;
660 
661           bool IsWrite = AC.getInt();
662 
663           // If we're using the deferred access set, then it contains only
664           // reads.
665           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
666           if (UseDeferred && !IsReadOnlyPtr)
667             continue;
668           // Otherwise, the pointer must be in the PtrAccessSet, either as a
669           // read or a write.
670           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
671                   S.count(MemAccessInfo(Ptr, false))) &&
672                  "Alias-set pointer not in the access set?");
673 
674           MemAccessInfo Access(Ptr, IsWrite);
675           DepCands.insert(Access);
676 
677           // Memorize read-only pointers for later processing and skip them in
678           // the first round (they need to be checked after we have seen all
679           // write pointers). Note: we also mark pointer that are not
680           // consecutive as "read-only" pointers (so that we check
681           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
682           if (!UseDeferred && IsReadOnlyPtr) {
683             DeferredAccesses.insert(Access);
684             continue;
685           }
686 
687           // If this is a write - check other reads and writes for conflicts. If
688           // this is a read only check other writes for conflicts (but only if
689           // there is no other write to the ptr - this is an optimization to
690           // catch "a[i] = a[i] + " without having to do a dependence check).
691           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
692             CheckDeps.insert(Access);
693             IsRTCheckAnalysisNeeded = true;
694           }
695 
696           if (IsWrite)
697             SetHasWrite = true;
698 
699           // Create sets of pointers connected by a shared alias set and
700           // underlying object.
701           typedef SmallVector<Value *, 16> ValueVector;
702           ValueVector TempObjects;
703 
704           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
705           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
706           for (Value *UnderlyingObj : TempObjects) {
707             UnderlyingObjToAccessMap::iterator Prev =
708                 ObjToLastAccess.find(UnderlyingObj);
709             if (Prev != ObjToLastAccess.end())
710               DepCands.unionSets(Access, Prev->second);
711 
712             ObjToLastAccess[UnderlyingObj] = Access;
713             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
714           }
715         }
716       }
717     }
718   }
719 }
720 
721 static bool isInBoundsGep(Value *Ptr) {
722   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
723     return GEP->isInBounds();
724   return false;
725 }
726 
727 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
728 /// i.e. monotonically increasing/decreasing.
729 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
730                            ScalarEvolution *SE, const Loop *L) {
731   // FIXME: This should probably only return true for NUW.
732   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
733     return true;
734 
735   // Scalar evolution does not propagate the non-wrapping flags to values that
736   // are derived from a non-wrapping induction variable because non-wrapping
737   // could be flow-sensitive.
738   //
739   // Look through the potentially overflowing instruction to try to prove
740   // non-wrapping for the *specific* value of Ptr.
741 
742   // The arithmetic implied by an inbounds GEP can't overflow.
743   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
744   if (!GEP || !GEP->isInBounds())
745     return false;
746 
747   // Make sure there is only one non-const index and analyze that.
748   Value *NonConstIndex = nullptr;
749   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
750     if (!isa<ConstantInt>(*Index)) {
751       if (NonConstIndex)
752         return false;
753       NonConstIndex = *Index;
754     }
755   if (!NonConstIndex)
756     // The recurrence is on the pointer, ignore for now.
757     return false;
758 
759   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
760   // AddRec using a NSW operation.
761   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
762     if (OBO->hasNoSignedWrap() &&
763         // Assume constant for other the operand so that the AddRec can be
764         // easily found.
765         isa<ConstantInt>(OBO->getOperand(1))) {
766       auto *OpScev = SE->getSCEV(OBO->getOperand(0));
767 
768       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
769         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
770     }
771 
772   return false;
773 }
774 
775 /// \brief Check whether the access through \p Ptr has a constant stride.
776 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
777                        const ValueToValueMap &StridesMap) {
778   const Type *Ty = Ptr->getType();
779   assert(Ty->isPointerTy() && "Unexpected non-ptr");
780 
781   // Make sure that the pointer does not point to aggregate types.
782   const PointerType *PtrTy = cast<PointerType>(Ty);
783   if (PtrTy->getElementType()->isAggregateType()) {
784     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
785           << *Ptr << "\n");
786     return 0;
787   }
788 
789   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
790 
791   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
792   if (!AR) {
793     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
794           << *Ptr << " SCEV: " << *PtrScev << "\n");
795     return 0;
796   }
797 
798   // The accesss function must stride over the innermost loop.
799   if (Lp != AR->getLoop()) {
800     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
801           *Ptr << " SCEV: " << *PtrScev << "\n");
802   }
803 
804   // The address calculation must not wrap. Otherwise, a dependence could be
805   // inverted.
806   // An inbounds getelementptr that is a AddRec with a unit stride
807   // cannot wrap per definition. The unit stride requirement is checked later.
808   // An getelementptr without an inbounds attribute and unit stride would have
809   // to access the pointer value "0" which is undefined behavior in address
810   // space 0, therefore we can also vectorize this case.
811   bool IsInBoundsGEP = isInBoundsGep(Ptr);
812   bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
813   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
814   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
815     DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
816           << *Ptr << " SCEV: " << *PtrScev << "\n");
817     return 0;
818   }
819 
820   // Check the step is constant.
821   const SCEV *Step = AR->getStepRecurrence(*SE);
822 
823   // Calculate the pointer stride and check if it is constant.
824   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
825   if (!C) {
826     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
827           " SCEV: " << *PtrScev << "\n");
828     return 0;
829   }
830 
831   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
832   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
833   const APInt &APStepVal = C->getValue()->getValue();
834 
835   // Huge step value - give up.
836   if (APStepVal.getBitWidth() > 64)
837     return 0;
838 
839   int64_t StepVal = APStepVal.getSExtValue();
840 
841   // Strided access.
842   int64_t Stride = StepVal / Size;
843   int64_t Rem = StepVal % Size;
844   if (Rem)
845     return 0;
846 
847   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
848   // know we can't "wrap around the address space". In case of address space
849   // zero we know that this won't happen without triggering undefined behavior.
850   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
851       Stride != 1 && Stride != -1)
852     return 0;
853 
854   return Stride;
855 }
856 
857 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
858   switch (Type) {
859   case NoDep:
860   case Forward:
861   case BackwardVectorizable:
862     return true;
863 
864   case Unknown:
865   case ForwardButPreventsForwarding:
866   case Backward:
867   case BackwardVectorizableButPreventsForwarding:
868     return false;
869   }
870   llvm_unreachable("unexpected DepType!");
871 }
872 
873 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
874   switch (Type) {
875   case NoDep:
876   case Forward:
877     return false;
878 
879   case BackwardVectorizable:
880   case Unknown:
881   case ForwardButPreventsForwarding:
882   case Backward:
883   case BackwardVectorizableButPreventsForwarding:
884     return true;
885   }
886   llvm_unreachable("unexpected DepType!");
887 }
888 
889 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
890   switch (Type) {
891   case NoDep:
892   case Forward:
893   case ForwardButPreventsForwarding:
894     return false;
895 
896   case Unknown:
897   case BackwardVectorizable:
898   case Backward:
899   case BackwardVectorizableButPreventsForwarding:
900     return true;
901   }
902   llvm_unreachable("unexpected DepType!");
903 }
904 
905 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
906                                                     unsigned TypeByteSize) {
907   // If loads occur at a distance that is not a multiple of a feasible vector
908   // factor store-load forwarding does not take place.
909   // Positive dependences might cause troubles because vectorizing them might
910   // prevent store-load forwarding making vectorized code run a lot slower.
911   //   a[i] = a[i-3] ^ a[i-8];
912   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
913   //   hence on your typical architecture store-load forwarding does not take
914   //   place. Vectorizing in such cases does not make sense.
915   // Store-load forwarding distance.
916   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
917   // Maximum vector factor.
918   unsigned MaxVFWithoutSLForwardIssues =
919     VectorizerParams::MaxVectorWidth * TypeByteSize;
920   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
921     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
922 
923   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
924        vf *= 2) {
925     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
926       MaxVFWithoutSLForwardIssues = (vf >>=1);
927       break;
928     }
929   }
930 
931   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
932     DEBUG(dbgs() << "LAA: Distance " << Distance <<
933           " that could cause a store-load forwarding conflict\n");
934     return true;
935   }
936 
937   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
938       MaxVFWithoutSLForwardIssues !=
939       VectorizerParams::MaxVectorWidth * TypeByteSize)
940     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
941   return false;
942 }
943 
944 /// \brief Check the dependence for two accesses with the same stride \p Stride.
945 /// \p Distance is the positive distance and \p TypeByteSize is type size in
946 /// bytes.
947 ///
948 /// \returns true if they are independent.
949 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
950                                           unsigned TypeByteSize) {
951   assert(Stride > 1 && "The stride must be greater than 1");
952   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
953   assert(Distance > 0 && "The distance must be non-zero");
954 
955   // Skip if the distance is not multiple of type byte size.
956   if (Distance % TypeByteSize)
957     return false;
958 
959   unsigned ScaledDist = Distance / TypeByteSize;
960 
961   // No dependence if the scaled distance is not multiple of the stride.
962   // E.g.
963   //      for (i = 0; i < 1024 ; i += 4)
964   //        A[i+2] = A[i] + 1;
965   //
966   // Two accesses in memory (scaled distance is 2, stride is 4):
967   //     | A[0] |      |      |      | A[4] |      |      |      |
968   //     |      |      | A[2] |      |      |      | A[6] |      |
969   //
970   // E.g.
971   //      for (i = 0; i < 1024 ; i += 3)
972   //        A[i+4] = A[i] + 1;
973   //
974   // Two accesses in memory (scaled distance is 4, stride is 3):
975   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
976   //     |      |      |      |      | A[4] |      |      | A[7] |      |
977   return ScaledDist % Stride;
978 }
979 
980 MemoryDepChecker::Dependence::DepType
981 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
982                               const MemAccessInfo &B, unsigned BIdx,
983                               const ValueToValueMap &Strides) {
984   assert (AIdx < BIdx && "Must pass arguments in program order");
985 
986   Value *APtr = A.getPointer();
987   Value *BPtr = B.getPointer();
988   bool AIsWrite = A.getInt();
989   bool BIsWrite = B.getInt();
990 
991   // Two reads are independent.
992   if (!AIsWrite && !BIsWrite)
993     return Dependence::NoDep;
994 
995   // We cannot check pointers in different address spaces.
996   if (APtr->getType()->getPointerAddressSpace() !=
997       BPtr->getType()->getPointerAddressSpace())
998     return Dependence::Unknown;
999 
1000   const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
1001   const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
1002 
1003   int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides);
1004   int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides);
1005 
1006   const SCEV *Src = AScev;
1007   const SCEV *Sink = BScev;
1008 
1009   // If the induction step is negative we have to invert source and sink of the
1010   // dependence.
1011   if (StrideAPtr < 0) {
1012     //Src = BScev;
1013     //Sink = AScev;
1014     std::swap(APtr, BPtr);
1015     std::swap(Src, Sink);
1016     std::swap(AIsWrite, BIsWrite);
1017     std::swap(AIdx, BIdx);
1018     std::swap(StrideAPtr, StrideBPtr);
1019   }
1020 
1021   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
1022 
1023   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1024         << "(Induction step: " << StrideAPtr <<  ")\n");
1025   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1026         << *InstMap[BIdx] << ": " << *Dist << "\n");
1027 
1028   // Need accesses with constant stride. We don't want to vectorize
1029   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1030   // the address space.
1031   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1032     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1033     return Dependence::Unknown;
1034   }
1035 
1036   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1037   if (!C) {
1038     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1039     ShouldRetryWithRuntimeCheck = true;
1040     return Dependence::Unknown;
1041   }
1042 
1043   Type *ATy = APtr->getType()->getPointerElementType();
1044   Type *BTy = BPtr->getType()->getPointerElementType();
1045   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1046   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1047 
1048   // Negative distances are not plausible dependencies.
1049   const APInt &Val = C->getValue()->getValue();
1050   if (Val.isNegative()) {
1051     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1052     if (IsTrueDataDependence &&
1053         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1054          ATy != BTy))
1055       return Dependence::ForwardButPreventsForwarding;
1056 
1057     DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1058     return Dependence::Forward;
1059   }
1060 
1061   // Write to the same location with the same size.
1062   // Could be improved to assert type sizes are the same (i32 == float, etc).
1063   if (Val == 0) {
1064     if (ATy == BTy)
1065       return Dependence::NoDep;
1066     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1067     return Dependence::Unknown;
1068   }
1069 
1070   assert(Val.isStrictlyPositive() && "Expect a positive value");
1071 
1072   if (ATy != BTy) {
1073     DEBUG(dbgs() <<
1074           "LAA: ReadWrite-Write positive dependency with different types\n");
1075     return Dependence::Unknown;
1076   }
1077 
1078   unsigned Distance = (unsigned) Val.getZExtValue();
1079 
1080   unsigned Stride = std::abs(StrideAPtr);
1081   if (Stride > 1 &&
1082       areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1083     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1084     return Dependence::NoDep;
1085   }
1086 
1087   // Bail out early if passed-in parameters make vectorization not feasible.
1088   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1089                            VectorizerParams::VectorizationFactor : 1);
1090   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1091                            VectorizerParams::VectorizationInterleave : 1);
1092   // The minimum number of iterations for a vectorized/unrolled version.
1093   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1094 
1095   // It's not vectorizable if the distance is smaller than the minimum distance
1096   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1097   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1098   // TypeByteSize (No need to plus the last gap distance).
1099   //
1100   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1101   //      foo(int *A) {
1102   //        int *B = (int *)((char *)A + 14);
1103   //        for (i = 0 ; i < 1024 ; i += 2)
1104   //          B[i] = A[i] + 1;
1105   //      }
1106   //
1107   // Two accesses in memory (stride is 2):
1108   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1109   //                              | B[0] |      | B[2] |      | B[4] |
1110   //
1111   // Distance needs for vectorizing iterations except the last iteration:
1112   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1113   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1114   //
1115   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1116   // 12, which is less than distance.
1117   //
1118   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1119   // the minimum distance needed is 28, which is greater than distance. It is
1120   // not safe to do vectorization.
1121   unsigned MinDistanceNeeded =
1122       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1123   if (MinDistanceNeeded > Distance) {
1124     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1125                  << '\n');
1126     return Dependence::Backward;
1127   }
1128 
1129   // Unsafe if the minimum distance needed is greater than max safe distance.
1130   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1131     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1132                  << MinDistanceNeeded << " size in bytes");
1133     return Dependence::Backward;
1134   }
1135 
1136   // Positive distance bigger than max vectorization factor.
1137   // FIXME: Should use max factor instead of max distance in bytes, which could
1138   // not handle different types.
1139   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1140   //      void foo (int *A, char *B) {
1141   //        for (unsigned i = 0; i < 1024; i++) {
1142   //          A[i+2] = A[i] + 1;
1143   //          B[i+2] = B[i] + 1;
1144   //        }
1145   //      }
1146   //
1147   // This case is currently unsafe according to the max safe distance. If we
1148   // analyze the two accesses on array B, the max safe dependence distance
1149   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1150   // is 8, which is less than 2 and forbidden vectorization, But actually
1151   // both A and B could be vectorized by 2 iterations.
1152   MaxSafeDepDistBytes =
1153       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1154 
1155   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1156   if (IsTrueDataDependence &&
1157       couldPreventStoreLoadForward(Distance, TypeByteSize))
1158     return Dependence::BackwardVectorizableButPreventsForwarding;
1159 
1160   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1161                << " with max VF = "
1162                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1163 
1164   return Dependence::BackwardVectorizable;
1165 }
1166 
1167 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1168                                    MemAccessInfoSet &CheckDeps,
1169                                    const ValueToValueMap &Strides) {
1170 
1171   MaxSafeDepDistBytes = -1U;
1172   while (!CheckDeps.empty()) {
1173     MemAccessInfo CurAccess = *CheckDeps.begin();
1174 
1175     // Get the relevant memory access set.
1176     EquivalenceClasses<MemAccessInfo>::iterator I =
1177       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1178 
1179     // Check accesses within this set.
1180     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1181     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1182 
1183     // Check every access pair.
1184     while (AI != AE) {
1185       CheckDeps.erase(*AI);
1186       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1187       while (OI != AE) {
1188         // Check every accessing instruction pair in program order.
1189         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1190              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1191           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1192                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1193             auto A = std::make_pair(&*AI, *I1);
1194             auto B = std::make_pair(&*OI, *I2);
1195 
1196             assert(*I1 != *I2);
1197             if (*I1 > *I2)
1198               std::swap(A, B);
1199 
1200             Dependence::DepType Type =
1201                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1202             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1203 
1204             // Gather dependences unless we accumulated MaxInterestingDependence
1205             // dependences.  In that case return as soon as we find the first
1206             // unsafe dependence.  This puts a limit on this quadratic
1207             // algorithm.
1208             if (RecordInterestingDependences) {
1209               if (Dependence::isInterestingDependence(Type))
1210                 InterestingDependences.push_back(
1211                     Dependence(A.second, B.second, Type));
1212 
1213               if (InterestingDependences.size() >= MaxInterestingDependence) {
1214                 RecordInterestingDependences = false;
1215                 InterestingDependences.clear();
1216                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1217               }
1218             }
1219             if (!RecordInterestingDependences && !SafeForVectorization)
1220               return false;
1221           }
1222         ++OI;
1223       }
1224       AI++;
1225     }
1226   }
1227 
1228   DEBUG(dbgs() << "Total Interesting Dependences: "
1229                << InterestingDependences.size() << "\n");
1230   return SafeForVectorization;
1231 }
1232 
1233 SmallVector<Instruction *, 4>
1234 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1235   MemAccessInfo Access(Ptr, isWrite);
1236   auto &IndexVector = Accesses.find(Access)->second;
1237 
1238   SmallVector<Instruction *, 4> Insts;
1239   std::transform(IndexVector.begin(), IndexVector.end(),
1240                  std::back_inserter(Insts),
1241                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1242   return Insts;
1243 }
1244 
1245 const char *MemoryDepChecker::Dependence::DepName[] = {
1246     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1247     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1248 
1249 void MemoryDepChecker::Dependence::print(
1250     raw_ostream &OS, unsigned Depth,
1251     const SmallVectorImpl<Instruction *> &Instrs) const {
1252   OS.indent(Depth) << DepName[Type] << ":\n";
1253   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1254   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1255 }
1256 
1257 bool LoopAccessInfo::canAnalyzeLoop() {
1258   // We need to have a loop header.
1259   DEBUG(dbgs() << "LAA: Found a loop: " <<
1260         TheLoop->getHeader()->getName() << '\n');
1261 
1262     // We can only analyze innermost loops.
1263   if (!TheLoop->empty()) {
1264     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1265     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1266     return false;
1267   }
1268 
1269   // We must have a single backedge.
1270   if (TheLoop->getNumBackEdges() != 1) {
1271     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1272     emitAnalysis(
1273         LoopAccessReport() <<
1274         "loop control flow is not understood by analyzer");
1275     return false;
1276   }
1277 
1278   // We must have a single exiting block.
1279   if (!TheLoop->getExitingBlock()) {
1280     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1281     emitAnalysis(
1282         LoopAccessReport() <<
1283         "loop control flow is not understood by analyzer");
1284     return false;
1285   }
1286 
1287   // We only handle bottom-tested loops, i.e. loop in which the condition is
1288   // checked at the end of each iteration. With that we can assume that all
1289   // instructions in the loop are executed the same number of times.
1290   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1291     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1292     emitAnalysis(
1293         LoopAccessReport() <<
1294         "loop control flow is not understood by analyzer");
1295     return false;
1296   }
1297 
1298   // ScalarEvolution needs to be able to find the exit count.
1299   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
1300   if (ExitCount == SE->getCouldNotCompute()) {
1301     emitAnalysis(LoopAccessReport() <<
1302                  "could not determine number of loop iterations");
1303     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1304     return false;
1305   }
1306 
1307   return true;
1308 }
1309 
1310 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1311 
1312   typedef SmallVector<Value*, 16> ValueVector;
1313   typedef SmallPtrSet<Value*, 16> ValueSet;
1314 
1315   // Holds the Load and Store *instructions*.
1316   ValueVector Loads;
1317   ValueVector Stores;
1318 
1319   // Holds all the different accesses in the loop.
1320   unsigned NumReads = 0;
1321   unsigned NumReadWrites = 0;
1322 
1323   PtrRtCheck.Pointers.clear();
1324   PtrRtCheck.Need = false;
1325 
1326   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1327 
1328   // For each block.
1329   for (Loop::block_iterator bb = TheLoop->block_begin(),
1330        be = TheLoop->block_end(); bb != be; ++bb) {
1331 
1332     // Scan the BB and collect legal loads and stores.
1333     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1334          ++it) {
1335 
1336       // If this is a load, save it. If this instruction can read from memory
1337       // but is not a load, then we quit. Notice that we don't handle function
1338       // calls that read or write.
1339       if (it->mayReadFromMemory()) {
1340         // Many math library functions read the rounding mode. We will only
1341         // vectorize a loop if it contains known function calls that don't set
1342         // the flag. Therefore, it is safe to ignore this read from memory.
1343         CallInst *Call = dyn_cast<CallInst>(it);
1344         if (Call && getIntrinsicIDForCall(Call, TLI))
1345           continue;
1346 
1347         // If the function has an explicit vectorized counterpart, we can safely
1348         // assume that it can be vectorized.
1349         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1350             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1351           continue;
1352 
1353         LoadInst *Ld = dyn_cast<LoadInst>(it);
1354         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1355           emitAnalysis(LoopAccessReport(Ld)
1356                        << "read with atomic ordering or volatile read");
1357           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1358           CanVecMem = false;
1359           return;
1360         }
1361         NumLoads++;
1362         Loads.push_back(Ld);
1363         DepChecker.addAccess(Ld);
1364         continue;
1365       }
1366 
1367       // Save 'store' instructions. Abort if other instructions write to memory.
1368       if (it->mayWriteToMemory()) {
1369         StoreInst *St = dyn_cast<StoreInst>(it);
1370         if (!St) {
1371           emitAnalysis(LoopAccessReport(it) <<
1372                        "instruction cannot be vectorized");
1373           CanVecMem = false;
1374           return;
1375         }
1376         if (!St->isSimple() && !IsAnnotatedParallel) {
1377           emitAnalysis(LoopAccessReport(St)
1378                        << "write with atomic ordering or volatile write");
1379           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1380           CanVecMem = false;
1381           return;
1382         }
1383         NumStores++;
1384         Stores.push_back(St);
1385         DepChecker.addAccess(St);
1386       }
1387     } // Next instr.
1388   } // Next block.
1389 
1390   // Now we have two lists that hold the loads and the stores.
1391   // Next, we find the pointers that they use.
1392 
1393   // Check if we see any stores. If there are no stores, then we don't
1394   // care if the pointers are *restrict*.
1395   if (!Stores.size()) {
1396     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1397     CanVecMem = true;
1398     return;
1399   }
1400 
1401   MemoryDepChecker::DepCandidates DependentAccesses;
1402   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1403                           AA, LI, DependentAccesses);
1404 
1405   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1406   // multiple times on the same object. If the ptr is accessed twice, once
1407   // for read and once for write, it will only appear once (on the write
1408   // list). This is okay, since we are going to check for conflicts between
1409   // writes and between reads and writes, but not between reads and reads.
1410   ValueSet Seen;
1411 
1412   ValueVector::iterator I, IE;
1413   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1414     StoreInst *ST = cast<StoreInst>(*I);
1415     Value* Ptr = ST->getPointerOperand();
1416     // Check for store to loop invariant address.
1417     StoreToLoopInvariantAddress |= isUniform(Ptr);
1418     // If we did *not* see this pointer before, insert it to  the read-write
1419     // list. At this phase it is only a 'write' list.
1420     if (Seen.insert(Ptr).second) {
1421       ++NumReadWrites;
1422 
1423       MemoryLocation Loc = MemoryLocation::get(ST);
1424       // The TBAA metadata could have a control dependency on the predication
1425       // condition, so we cannot rely on it when determining whether or not we
1426       // need runtime pointer checks.
1427       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1428         Loc.AATags.TBAA = nullptr;
1429 
1430       Accesses.addStore(Loc);
1431     }
1432   }
1433 
1434   if (IsAnnotatedParallel) {
1435     DEBUG(dbgs()
1436           << "LAA: A loop annotated parallel, ignore memory dependency "
1437           << "checks.\n");
1438     CanVecMem = true;
1439     return;
1440   }
1441 
1442   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1443     LoadInst *LD = cast<LoadInst>(*I);
1444     Value* Ptr = LD->getPointerOperand();
1445     // If we did *not* see this pointer before, insert it to the
1446     // read list. If we *did* see it before, then it is already in
1447     // the read-write list. This allows us to vectorize expressions
1448     // such as A[i] += x;  Because the address of A[i] is a read-write
1449     // pointer. This only works if the index of A[i] is consecutive.
1450     // If the address of i is unknown (for example A[B[i]]) then we may
1451     // read a few words, modify, and write a few words, and some of the
1452     // words may be written to the same address.
1453     bool IsReadOnlyPtr = false;
1454     if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) {
1455       ++NumReads;
1456       IsReadOnlyPtr = true;
1457     }
1458 
1459     MemoryLocation Loc = MemoryLocation::get(LD);
1460     // The TBAA metadata could have a control dependency on the predication
1461     // condition, so we cannot rely on it when determining whether or not we
1462     // need runtime pointer checks.
1463     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1464       Loc.AATags.TBAA = nullptr;
1465 
1466     Accesses.addLoad(Loc, IsReadOnlyPtr);
1467   }
1468 
1469   // If we write (or read-write) to a single destination and there are no
1470   // other reads in this loop then is it safe to vectorize.
1471   if (NumReadWrites == 1 && NumReads == 0) {
1472     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1473     CanVecMem = true;
1474     return;
1475   }
1476 
1477   // Build dependence sets and check whether we need a runtime pointer bounds
1478   // check.
1479   Accesses.buildDependenceSets();
1480 
1481   // Find pointers with computable bounds. We are going to use this information
1482   // to place a runtime bound check.
1483   bool CanDoRTIfNeeded =
1484       Accesses.canCheckPtrAtRT(PtrRtCheck, SE, TheLoop, Strides);
1485   if (!CanDoRTIfNeeded) {
1486     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1487     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1488                  << "the array bounds.\n");
1489     CanVecMem = false;
1490     return;
1491   }
1492 
1493   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1494 
1495   CanVecMem = true;
1496   if (Accesses.isDependencyCheckNeeded()) {
1497     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1498     CanVecMem = DepChecker.areDepsSafe(
1499         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1500     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1501 
1502     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1503       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1504 
1505       // Clear the dependency checks. We assume they are not needed.
1506       Accesses.resetDepChecks(DepChecker);
1507 
1508       PtrRtCheck.reset();
1509       PtrRtCheck.Need = true;
1510 
1511       CanDoRTIfNeeded =
1512           Accesses.canCheckPtrAtRT(PtrRtCheck, SE, TheLoop, Strides, true);
1513 
1514       // Check that we found the bounds for the pointer.
1515       if (!CanDoRTIfNeeded) {
1516         emitAnalysis(LoopAccessReport()
1517                      << "cannot check memory dependencies at runtime");
1518         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1519         CanVecMem = false;
1520         return;
1521       }
1522 
1523       CanVecMem = true;
1524     }
1525   }
1526 
1527   if (CanVecMem)
1528     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1529                  << (PtrRtCheck.Need ? "" : " don't")
1530                  << " need runtime memory checks.\n");
1531   else {
1532     emitAnalysis(LoopAccessReport() <<
1533                  "unsafe dependent memory operations in loop");
1534     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1535   }
1536 }
1537 
1538 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1539                                            DominatorTree *DT)  {
1540   assert(TheLoop->contains(BB) && "Unknown block used");
1541 
1542   // Blocks that do not dominate the latch need predication.
1543   BasicBlock* Latch = TheLoop->getLoopLatch();
1544   return !DT->dominates(BB, Latch);
1545 }
1546 
1547 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1548   assert(!Report && "Multiple reports generated");
1549   Report = Message;
1550 }
1551 
1552 bool LoopAccessInfo::isUniform(Value *V) const {
1553   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1554 }
1555 
1556 // FIXME: this function is currently a duplicate of the one in
1557 // LoopVectorize.cpp.
1558 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1559                                  Instruction *Loc) {
1560   if (FirstInst)
1561     return FirstInst;
1562   if (Instruction *I = dyn_cast<Instruction>(V))
1563     return I->getParent() == Loc->getParent() ? I : nullptr;
1564   return nullptr;
1565 }
1566 
1567 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck(
1568     Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const {
1569   if (!PtrRtCheck.Need)
1570     return std::make_pair(nullptr, nullptr);
1571 
1572   SmallVector<TrackingVH<Value>, 2> Starts;
1573   SmallVector<TrackingVH<Value>, 2> Ends;
1574 
1575   LLVMContext &Ctx = Loc->getContext();
1576   SCEVExpander Exp(*SE, DL, "induction");
1577   Instruction *FirstInst = nullptr;
1578 
1579   for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) {
1580     const RuntimePointerCheck::CheckingPtrGroup &CG =
1581         PtrRtCheck.CheckingGroups[i];
1582     Value *Ptr = PtrRtCheck.Pointers[CG.Members[0]];
1583     const SCEV *Sc = SE->getSCEV(Ptr);
1584 
1585     if (SE->isLoopInvariant(Sc, TheLoop)) {
1586       DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1587                    << "\n");
1588       Starts.push_back(Ptr);
1589       Ends.push_back(Ptr);
1590     } else {
1591       unsigned AS = Ptr->getType()->getPointerAddressSpace();
1592 
1593       // Use this type for pointer arithmetic.
1594       Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1595       Value *Start = nullptr, *End = nullptr;
1596 
1597       DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1598       Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc);
1599       End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc);
1600       DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n");
1601       Starts.push_back(Start);
1602       Ends.push_back(End);
1603     }
1604   }
1605 
1606   IRBuilder<> ChkBuilder(Loc);
1607   // Our instructions might fold to a constant.
1608   Value *MemoryRuntimeCheck = nullptr;
1609   for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) {
1610     for (unsigned j = i + 1; j < PtrRtCheck.CheckingGroups.size(); ++j) {
1611       const RuntimePointerCheck::CheckingPtrGroup &CGI =
1612           PtrRtCheck.CheckingGroups[i];
1613       const RuntimePointerCheck::CheckingPtrGroup &CGJ =
1614           PtrRtCheck.CheckingGroups[j];
1615 
1616       if (!PtrRtCheck.needsChecking(CGI, CGJ, PtrPartition))
1617         continue;
1618 
1619       unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1620       unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1621 
1622       assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1623              (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1624              "Trying to bounds check pointers with different address spaces");
1625 
1626       Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1627       Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1628 
1629       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1630       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1631       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
1632       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
1633 
1634       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1635       FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1636       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1637       FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1638       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1639       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1640       if (MemoryRuntimeCheck) {
1641         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1642                                          "conflict.rdx");
1643         FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1644       }
1645       MemoryRuntimeCheck = IsConflict;
1646     }
1647   }
1648 
1649   if (!MemoryRuntimeCheck)
1650     return std::make_pair(nullptr, nullptr);
1651 
1652   // We have to do this trickery because the IRBuilder might fold the check to a
1653   // constant expression in which case there is no Instruction anchored in a
1654   // the block.
1655   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1656                                                  ConstantInt::getTrue(Ctx));
1657   ChkBuilder.Insert(Check, "memcheck.conflict");
1658   FirstInst = getFirstInst(FirstInst, Check, Loc);
1659   return std::make_pair(FirstInst, Check);
1660 }
1661 
1662 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1663                                const DataLayout &DL,
1664                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1665                                DominatorTree *DT, LoopInfo *LI,
1666                                const ValueToValueMap &Strides)
1667     : PtrRtCheck(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), TLI(TLI),
1668       AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1669       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1670       StoreToLoopInvariantAddress(false) {
1671   if (canAnalyzeLoop())
1672     analyzeLoop(Strides);
1673 }
1674 
1675 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1676   if (CanVecMem) {
1677     if (PtrRtCheck.Need)
1678       OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1679     else
1680       OS.indent(Depth) << "Memory dependences are safe\n";
1681   }
1682 
1683   if (Report)
1684     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1685 
1686   if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
1687     OS.indent(Depth) << "Interesting Dependences:\n";
1688     for (auto &Dep : *InterestingDependences) {
1689       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1690       OS << "\n";
1691     }
1692   } else
1693     OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
1694 
1695   // List the pair of accesses need run-time checks to prove independence.
1696   PtrRtCheck.print(OS, Depth);
1697   OS << "\n";
1698 
1699   OS.indent(Depth) << "Store to invariant address was "
1700                    << (StoreToLoopInvariantAddress ? "" : "not ")
1701                    << "found in loop.\n";
1702 }
1703 
1704 const LoopAccessInfo &
1705 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1706   auto &LAI = LoopAccessInfoMap[L];
1707 
1708 #ifndef NDEBUG
1709   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1710          "Symbolic strides changed for loop");
1711 #endif
1712 
1713   if (!LAI) {
1714     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1715     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI,
1716                                             Strides);
1717 #ifndef NDEBUG
1718     LAI->NumSymbolicStrides = Strides.size();
1719 #endif
1720   }
1721   return *LAI.get();
1722 }
1723 
1724 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1725   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1726 
1727   ValueToValueMap NoSymbolicStrides;
1728 
1729   for (Loop *TopLevelLoop : *LI)
1730     for (Loop *L : depth_first(TopLevelLoop)) {
1731       OS.indent(2) << L->getHeader()->getName() << ":\n";
1732       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1733       LAI.print(OS, 4);
1734     }
1735 }
1736 
1737 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1738   SE = &getAnalysis<ScalarEvolution>();
1739   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1740   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1741   AA = &getAnalysis<AliasAnalysis>();
1742   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1743   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1744 
1745   return false;
1746 }
1747 
1748 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1749     AU.addRequired<ScalarEvolution>();
1750     AU.addRequired<AliasAnalysis>();
1751     AU.addRequired<DominatorTreeWrapperPass>();
1752     AU.addRequired<LoopInfoWrapperPass>();
1753 
1754     AU.setPreservesAll();
1755 }
1756 
1757 char LoopAccessAnalysis::ID = 0;
1758 static const char laa_name[] = "Loop Access Analysis";
1759 #define LAA_NAME "loop-accesses"
1760 
1761 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1762 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1763 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1764 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1765 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1766 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1767 
1768 namespace llvm {
1769   Pass *createLAAPass() {
1770     return new LoopAccessAnalysis();
1771   }
1772 }
1773