1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect dependences up to this threshold.
62 static cl::opt<unsigned>
63     MaxDependences("max-dependences", cl::Hidden,
64                    cl::desc("Maximum number of dependences collected by "
65                             "loop-access analysis (default = 100)"),
66                    cl::init(100));
67 
68 /// \brief Enable store-to-load forwarding conflict detection. This option can
69 /// be disabled for correctness testing.
70 static cl::opt<bool> EnableForwardingConflictDetection(
71     "store-to-load-forwarding-conflict-detection", cl::Hidden,
72     cl::desc("Enable conflict detection in loop-access analysis"),
73     cl::init(true));
74 
75 bool VectorizerParams::isInterleaveForced() {
76   return ::VectorizationInterleave.getNumOccurrences() > 0;
77 }
78 
79 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
80                                     const Function *TheFunction,
81                                     const Loop *TheLoop,
82                                     const char *PassName) {
83   DebugLoc DL = TheLoop->getStartLoc();
84   if (const Instruction *I = Message.getInstr())
85     DL = I->getDebugLoc();
86   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
87                                  *TheFunction, DL, Message.str());
88 }
89 
90 Value *llvm::stripIntegerCast(Value *V) {
91   if (CastInst *CI = dyn_cast<CastInst>(V))
92     if (CI->getOperand(0)->getType()->isIntegerTy())
93       return CI->getOperand(0);
94   return V;
95 }
96 
97 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
98                                             const ValueToValueMap &PtrToStride,
99                                             Value *Ptr, Value *OrigPtr) {
100   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
101 
102   // If there is an entry in the map return the SCEV of the pointer with the
103   // symbolic stride replaced by one.
104   ValueToValueMap::const_iterator SI =
105       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
106   if (SI != PtrToStride.end()) {
107     Value *StrideVal = SI->second;
108 
109     // Strip casts.
110     StrideVal = stripIntegerCast(StrideVal);
111 
112     // Replace symbolic stride by one.
113     Value *One = ConstantInt::get(StrideVal->getType(), 1);
114     ValueToValueMap RewriteMap;
115     RewriteMap[StrideVal] = One;
116 
117     ScalarEvolution *SE = PSE.getSE();
118     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
119     const auto *CT =
120         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
121 
122     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
123     auto *Expr = PSE.getSCEV(Ptr);
124 
125     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
126                  << "\n");
127     return Expr;
128   }
129 
130   // Otherwise, just return the SCEV of the original pointer.
131   return OrigSCEV;
132 }
133 
134 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
135                                     unsigned DepSetId, unsigned ASId,
136                                     const ValueToValueMap &Strides,
137                                     PredicatedScalarEvolution &PSE) {
138   // Get the stride replaced scev.
139   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
140   ScalarEvolution *SE = PSE.getSE();
141 
142   const SCEV *ScStart;
143   const SCEV *ScEnd;
144 
145   if (SE->isLoopInvariant(Sc, Lp))
146     ScStart = ScEnd = Sc;
147   else {
148     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
149     assert(AR && "Invalid addrec expression");
150     const SCEV *Ex = PSE.getBackedgeTakenCount();
151 
152     ScStart = AR->getStart();
153     ScEnd = AR->evaluateAtIteration(Ex, *SE);
154     const SCEV *Step = AR->getStepRecurrence(*SE);
155 
156     // For expressions with negative step, the upper bound is ScStart and the
157     // lower bound is ScEnd.
158     if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
159       if (CStep->getValue()->isNegative())
160         std::swap(ScStart, ScEnd);
161     } else {
162       // Fallback case: the step is not constant, but the we can still
163       // get the upper and lower bounds of the interval by using min/max
164       // expressions.
165       ScStart = SE->getUMinExpr(ScStart, ScEnd);
166       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
167     }
168   }
169 
170   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
171 }
172 
173 SmallVector<RuntimePointerChecking::PointerCheck, 4>
174 RuntimePointerChecking::generateChecks() const {
175   SmallVector<PointerCheck, 4> Checks;
176 
177   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
178     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
179       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
180       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
181 
182       if (needsChecking(CGI, CGJ))
183         Checks.push_back(std::make_pair(&CGI, &CGJ));
184     }
185   }
186   return Checks;
187 }
188 
189 void RuntimePointerChecking::generateChecks(
190     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
191   assert(Checks.empty() && "Checks is not empty");
192   groupChecks(DepCands, UseDependencies);
193   Checks = generateChecks();
194 }
195 
196 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
197                                            const CheckingPtrGroup &N) const {
198   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
199     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
200       if (needsChecking(M.Members[I], N.Members[J]))
201         return true;
202   return false;
203 }
204 
205 /// Compare \p I and \p J and return the minimum.
206 /// Return nullptr in case we couldn't find an answer.
207 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
208                                    ScalarEvolution *SE) {
209   const SCEV *Diff = SE->getMinusSCEV(J, I);
210   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
211 
212   if (!C)
213     return nullptr;
214   if (C->getValue()->isNegative())
215     return J;
216   return I;
217 }
218 
219 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
220   const SCEV *Start = RtCheck.Pointers[Index].Start;
221   const SCEV *End = RtCheck.Pointers[Index].End;
222 
223   // Compare the starts and ends with the known minimum and maximum
224   // of this set. We need to know how we compare against the min/max
225   // of the set in order to be able to emit memchecks.
226   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
227   if (!Min0)
228     return false;
229 
230   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
231   if (!Min1)
232     return false;
233 
234   // Update the low bound  expression if we've found a new min value.
235   if (Min0 == Start)
236     Low = Start;
237 
238   // Update the high bound expression if we've found a new max value.
239   if (Min1 != End)
240     High = End;
241 
242   Members.push_back(Index);
243   return true;
244 }
245 
246 void RuntimePointerChecking::groupChecks(
247     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
248   // We build the groups from dependency candidates equivalence classes
249   // because:
250   //    - We know that pointers in the same equivalence class share
251   //      the same underlying object and therefore there is a chance
252   //      that we can compare pointers
253   //    - We wouldn't be able to merge two pointers for which we need
254   //      to emit a memcheck. The classes in DepCands are already
255   //      conveniently built such that no two pointers in the same
256   //      class need checking against each other.
257 
258   // We use the following (greedy) algorithm to construct the groups
259   // For every pointer in the equivalence class:
260   //   For each existing group:
261   //   - if the difference between this pointer and the min/max bounds
262   //     of the group is a constant, then make the pointer part of the
263   //     group and update the min/max bounds of that group as required.
264 
265   CheckingGroups.clear();
266 
267   // If we need to check two pointers to the same underlying object
268   // with a non-constant difference, we shouldn't perform any pointer
269   // grouping with those pointers. This is because we can easily get
270   // into cases where the resulting check would return false, even when
271   // the accesses are safe.
272   //
273   // The following example shows this:
274   // for (i = 0; i < 1000; ++i)
275   //   a[5000 + i * m] = a[i] + a[i + 9000]
276   //
277   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
278   // (0, 10000) which is always false. However, if m is 1, there is no
279   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
280   // us to perform an accurate check in this case.
281   //
282   // The above case requires that we have an UnknownDependence between
283   // accesses to the same underlying object. This cannot happen unless
284   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
285   // is also false. In this case we will use the fallback path and create
286   // separate checking groups for all pointers.
287 
288   // If we don't have the dependency partitions, construct a new
289   // checking pointer group for each pointer. This is also required
290   // for correctness, because in this case we can have checking between
291   // pointers to the same underlying object.
292   if (!UseDependencies) {
293     for (unsigned I = 0; I < Pointers.size(); ++I)
294       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
295     return;
296   }
297 
298   unsigned TotalComparisons = 0;
299 
300   DenseMap<Value *, unsigned> PositionMap;
301   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
302     PositionMap[Pointers[Index].PointerValue] = Index;
303 
304   // We need to keep track of what pointers we've already seen so we
305   // don't process them twice.
306   SmallSet<unsigned, 2> Seen;
307 
308   // Go through all equivalence classes, get the "pointer check groups"
309   // and add them to the overall solution. We use the order in which accesses
310   // appear in 'Pointers' to enforce determinism.
311   for (unsigned I = 0; I < Pointers.size(); ++I) {
312     // We've seen this pointer before, and therefore already processed
313     // its equivalence class.
314     if (Seen.count(I))
315       continue;
316 
317     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
318                                            Pointers[I].IsWritePtr);
319 
320     SmallVector<CheckingPtrGroup, 2> Groups;
321     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
322 
323     // Because DepCands is constructed by visiting accesses in the order in
324     // which they appear in alias sets (which is deterministic) and the
325     // iteration order within an equivalence class member is only dependent on
326     // the order in which unions and insertions are performed on the
327     // equivalence class, the iteration order is deterministic.
328     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
329          MI != ME; ++MI) {
330       unsigned Pointer = PositionMap[MI->getPointer()];
331       bool Merged = false;
332       // Mark this pointer as seen.
333       Seen.insert(Pointer);
334 
335       // Go through all the existing sets and see if we can find one
336       // which can include this pointer.
337       for (CheckingPtrGroup &Group : Groups) {
338         // Don't perform more than a certain amount of comparisons.
339         // This should limit the cost of grouping the pointers to something
340         // reasonable.  If we do end up hitting this threshold, the algorithm
341         // will create separate groups for all remaining pointers.
342         if (TotalComparisons > MemoryCheckMergeThreshold)
343           break;
344 
345         TotalComparisons++;
346 
347         if (Group.addPointer(Pointer)) {
348           Merged = true;
349           break;
350         }
351       }
352 
353       if (!Merged)
354         // We couldn't add this pointer to any existing set or the threshold
355         // for the number of comparisons has been reached. Create a new group
356         // to hold the current pointer.
357         Groups.push_back(CheckingPtrGroup(Pointer, *this));
358     }
359 
360     // We've computed the grouped checks for this partition.
361     // Save the results and continue with the next one.
362     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
363   }
364 }
365 
366 bool RuntimePointerChecking::arePointersInSamePartition(
367     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
368     unsigned PtrIdx2) {
369   return (PtrToPartition[PtrIdx1] != -1 &&
370           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
371 }
372 
373 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
374   const PointerInfo &PointerI = Pointers[I];
375   const PointerInfo &PointerJ = Pointers[J];
376 
377   // No need to check if two readonly pointers intersect.
378   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
379     return false;
380 
381   // Only need to check pointers between two different dependency sets.
382   if (PointerI.DependencySetId == PointerJ.DependencySetId)
383     return false;
384 
385   // Only need to check pointers in the same alias set.
386   if (PointerI.AliasSetId != PointerJ.AliasSetId)
387     return false;
388 
389   return true;
390 }
391 
392 void RuntimePointerChecking::printChecks(
393     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
394     unsigned Depth) const {
395   unsigned N = 0;
396   for (const auto &Check : Checks) {
397     const auto &First = Check.first->Members, &Second = Check.second->Members;
398 
399     OS.indent(Depth) << "Check " << N++ << ":\n";
400 
401     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
402     for (unsigned K = 0; K < First.size(); ++K)
403       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
404 
405     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
406     for (unsigned K = 0; K < Second.size(); ++K)
407       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
408   }
409 }
410 
411 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
412 
413   OS.indent(Depth) << "Run-time memory checks:\n";
414   printChecks(OS, Checks, Depth);
415 
416   OS.indent(Depth) << "Grouped accesses:\n";
417   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
418     const auto &CG = CheckingGroups[I];
419 
420     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
421     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
422                          << ")\n";
423     for (unsigned J = 0; J < CG.Members.size(); ++J) {
424       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
425                            << "\n";
426     }
427   }
428 }
429 
430 namespace {
431 /// \brief Analyses memory accesses in a loop.
432 ///
433 /// Checks whether run time pointer checks are needed and builds sets for data
434 /// dependence checking.
435 class AccessAnalysis {
436 public:
437   /// \brief Read or write access location.
438   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
439   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
440 
441   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
442                  MemoryDepChecker::DepCandidates &DA,
443                  PredicatedScalarEvolution &PSE)
444       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
445         PSE(PSE) {}
446 
447   /// \brief Register a load  and whether it is only read from.
448   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
449     Value *Ptr = const_cast<Value*>(Loc.Ptr);
450     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
451     Accesses.insert(MemAccessInfo(Ptr, false));
452     if (IsReadOnly)
453       ReadOnlyPtr.insert(Ptr);
454   }
455 
456   /// \brief Register a store.
457   void addStore(MemoryLocation &Loc) {
458     Value *Ptr = const_cast<Value*>(Loc.Ptr);
459     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
460     Accesses.insert(MemAccessInfo(Ptr, true));
461   }
462 
463   /// \brief Check whether we can check the pointers at runtime for
464   /// non-intersection.
465   ///
466   /// Returns true if we need no check or if we do and we can generate them
467   /// (i.e. the pointers have computable bounds).
468   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
469                        Loop *TheLoop, const ValueToValueMap &Strides,
470                        bool ShouldCheckStride = false);
471 
472   /// \brief Goes over all memory accesses, checks whether a RT check is needed
473   /// and builds sets of dependent accesses.
474   void buildDependenceSets() {
475     processMemAccesses();
476   }
477 
478   /// \brief Initial processing of memory accesses determined that we need to
479   /// perform dependency checking.
480   ///
481   /// Note that this can later be cleared if we retry memcheck analysis without
482   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
483   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
484 
485   /// We decided that no dependence analysis would be used.  Reset the state.
486   void resetDepChecks(MemoryDepChecker &DepChecker) {
487     CheckDeps.clear();
488     DepChecker.clearDependences();
489   }
490 
491   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
492 
493 private:
494   typedef SetVector<MemAccessInfo> PtrAccessSet;
495 
496   /// \brief Go over all memory access and check whether runtime pointer checks
497   /// are needed and build sets of dependency check candidates.
498   void processMemAccesses();
499 
500   /// Set of all accesses.
501   PtrAccessSet Accesses;
502 
503   const DataLayout &DL;
504 
505   /// Set of accesses that need a further dependence check.
506   MemAccessInfoSet CheckDeps;
507 
508   /// Set of pointers that are read only.
509   SmallPtrSet<Value*, 16> ReadOnlyPtr;
510 
511   /// An alias set tracker to partition the access set by underlying object and
512   //intrinsic property (such as TBAA metadata).
513   AliasSetTracker AST;
514 
515   LoopInfo *LI;
516 
517   /// Sets of potentially dependent accesses - members of one set share an
518   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
519   /// dependence check.
520   MemoryDepChecker::DepCandidates &DepCands;
521 
522   /// \brief Initial processing of memory accesses determined that we may need
523   /// to add memchecks.  Perform the analysis to determine the necessary checks.
524   ///
525   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
526   /// memcheck analysis without dependency checking
527   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
528   /// while this remains set if we have potentially dependent accesses.
529   bool IsRTCheckAnalysisNeeded;
530 
531   /// The SCEV predicate containing all the SCEV-related assumptions.
532   PredicatedScalarEvolution &PSE;
533 };
534 
535 } // end anonymous namespace
536 
537 /// \brief Check whether a pointer can participate in a runtime bounds check.
538 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
539                                 const ValueToValueMap &Strides, Value *Ptr,
540                                 Loop *L) {
541   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
542 
543   // The bounds for loop-invariant pointer is trivial.
544   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
545     return true;
546 
547   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
548   if (!AR)
549     return false;
550 
551   return AR->isAffine();
552 }
553 
554 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
555                                      ScalarEvolution *SE, Loop *TheLoop,
556                                      const ValueToValueMap &StridesMap,
557                                      bool ShouldCheckStride) {
558   // Find pointers with computable bounds. We are going to use this information
559   // to place a runtime bound check.
560   bool CanDoRT = true;
561 
562   bool NeedRTCheck = false;
563   if (!IsRTCheckAnalysisNeeded) return true;
564 
565   bool IsDepCheckNeeded = isDependencyCheckNeeded();
566 
567   // We assign a consecutive id to access from different alias sets.
568   // Accesses between different groups doesn't need to be checked.
569   unsigned ASId = 1;
570   for (auto &AS : AST) {
571     int NumReadPtrChecks = 0;
572     int NumWritePtrChecks = 0;
573 
574     // We assign consecutive id to access from different dependence sets.
575     // Accesses within the same set don't need a runtime check.
576     unsigned RunningDepId = 1;
577     DenseMap<Value *, unsigned> DepSetId;
578 
579     for (auto A : AS) {
580       Value *Ptr = A.getValue();
581       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
582       MemAccessInfo Access(Ptr, IsWrite);
583 
584       if (IsWrite)
585         ++NumWritePtrChecks;
586       else
587         ++NumReadPtrChecks;
588 
589       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
590           // When we run after a failing dependency check we have to make sure
591           // we don't have wrapping pointers.
592           (!ShouldCheckStride ||
593            getPtrStride(PSE, Ptr, TheLoop, StridesMap) == 1)) {
594         // The id of the dependence set.
595         unsigned DepId;
596 
597         if (IsDepCheckNeeded) {
598           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
599           unsigned &LeaderId = DepSetId[Leader];
600           if (!LeaderId)
601             LeaderId = RunningDepId++;
602           DepId = LeaderId;
603         } else
604           // Each access has its own dependence set.
605           DepId = RunningDepId++;
606 
607         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
608 
609         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
610       } else {
611         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
612         CanDoRT = false;
613       }
614     }
615 
616     // If we have at least two writes or one write and a read then we need to
617     // check them.  But there is no need to checks if there is only one
618     // dependence set for this alias set.
619     //
620     // Note that this function computes CanDoRT and NeedRTCheck independently.
621     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
622     // for which we couldn't find the bounds but we don't actually need to emit
623     // any checks so it does not matter.
624     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
625       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
626                                                  NumWritePtrChecks >= 1));
627 
628     ++ASId;
629   }
630 
631   // If the pointers that we would use for the bounds comparison have different
632   // address spaces, assume the values aren't directly comparable, so we can't
633   // use them for the runtime check. We also have to assume they could
634   // overlap. In the future there should be metadata for whether address spaces
635   // are disjoint.
636   unsigned NumPointers = RtCheck.Pointers.size();
637   for (unsigned i = 0; i < NumPointers; ++i) {
638     for (unsigned j = i + 1; j < NumPointers; ++j) {
639       // Only need to check pointers between two different dependency sets.
640       if (RtCheck.Pointers[i].DependencySetId ==
641           RtCheck.Pointers[j].DependencySetId)
642        continue;
643       // Only need to check pointers in the same alias set.
644       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
645         continue;
646 
647       Value *PtrI = RtCheck.Pointers[i].PointerValue;
648       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
649 
650       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
651       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
652       if (ASi != ASj) {
653         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
654                        " different address spaces\n");
655         return false;
656       }
657     }
658   }
659 
660   if (NeedRTCheck && CanDoRT)
661     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
662 
663   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
664                << " pointer comparisons.\n");
665 
666   RtCheck.Need = NeedRTCheck;
667 
668   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
669   if (!CanDoRTIfNeeded)
670     RtCheck.reset();
671   return CanDoRTIfNeeded;
672 }
673 
674 void AccessAnalysis::processMemAccesses() {
675   // We process the set twice: first we process read-write pointers, last we
676   // process read-only pointers. This allows us to skip dependence tests for
677   // read-only pointers.
678 
679   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
680   DEBUG(dbgs() << "  AST: "; AST.dump());
681   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
682   DEBUG({
683     for (auto A : Accesses)
684       dbgs() << "\t" << *A.getPointer() << " (" <<
685                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
686                                          "read-only" : "read")) << ")\n";
687   });
688 
689   // The AliasSetTracker has nicely partitioned our pointers by metadata
690   // compatibility and potential for underlying-object overlap. As a result, we
691   // only need to check for potential pointer dependencies within each alias
692   // set.
693   for (auto &AS : AST) {
694     // Note that both the alias-set tracker and the alias sets themselves used
695     // linked lists internally and so the iteration order here is deterministic
696     // (matching the original instruction order within each set).
697 
698     bool SetHasWrite = false;
699 
700     // Map of pointers to last access encountered.
701     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
702     UnderlyingObjToAccessMap ObjToLastAccess;
703 
704     // Set of access to check after all writes have been processed.
705     PtrAccessSet DeferredAccesses;
706 
707     // Iterate over each alias set twice, once to process read/write pointers,
708     // and then to process read-only pointers.
709     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
710       bool UseDeferred = SetIteration > 0;
711       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
712 
713       for (auto AV : AS) {
714         Value *Ptr = AV.getValue();
715 
716         // For a single memory access in AliasSetTracker, Accesses may contain
717         // both read and write, and they both need to be handled for CheckDeps.
718         for (auto AC : S) {
719           if (AC.getPointer() != Ptr)
720             continue;
721 
722           bool IsWrite = AC.getInt();
723 
724           // If we're using the deferred access set, then it contains only
725           // reads.
726           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
727           if (UseDeferred && !IsReadOnlyPtr)
728             continue;
729           // Otherwise, the pointer must be in the PtrAccessSet, either as a
730           // read or a write.
731           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
732                   S.count(MemAccessInfo(Ptr, false))) &&
733                  "Alias-set pointer not in the access set?");
734 
735           MemAccessInfo Access(Ptr, IsWrite);
736           DepCands.insert(Access);
737 
738           // Memorize read-only pointers for later processing and skip them in
739           // the first round (they need to be checked after we have seen all
740           // write pointers). Note: we also mark pointer that are not
741           // consecutive as "read-only" pointers (so that we check
742           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
743           if (!UseDeferred && IsReadOnlyPtr) {
744             DeferredAccesses.insert(Access);
745             continue;
746           }
747 
748           // If this is a write - check other reads and writes for conflicts. If
749           // this is a read only check other writes for conflicts (but only if
750           // there is no other write to the ptr - this is an optimization to
751           // catch "a[i] = a[i] + " without having to do a dependence check).
752           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
753             CheckDeps.insert(Access);
754             IsRTCheckAnalysisNeeded = true;
755           }
756 
757           if (IsWrite)
758             SetHasWrite = true;
759 
760           // Create sets of pointers connected by a shared alias set and
761           // underlying object.
762           typedef SmallVector<Value *, 16> ValueVector;
763           ValueVector TempObjects;
764 
765           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
766           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
767           for (Value *UnderlyingObj : TempObjects) {
768             // nullptr never alias, don't join sets for pointer that have "null"
769             // in their UnderlyingObjects list.
770             if (isa<ConstantPointerNull>(UnderlyingObj))
771               continue;
772 
773             UnderlyingObjToAccessMap::iterator Prev =
774                 ObjToLastAccess.find(UnderlyingObj);
775             if (Prev != ObjToLastAccess.end())
776               DepCands.unionSets(Access, Prev->second);
777 
778             ObjToLastAccess[UnderlyingObj] = Access;
779             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
780           }
781         }
782       }
783     }
784   }
785 }
786 
787 static bool isInBoundsGep(Value *Ptr) {
788   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
789     return GEP->isInBounds();
790   return false;
791 }
792 
793 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
794 /// i.e. monotonically increasing/decreasing.
795 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
796                            PredicatedScalarEvolution &PSE, const Loop *L) {
797   // FIXME: This should probably only return true for NUW.
798   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
799     return true;
800 
801   // Scalar evolution does not propagate the non-wrapping flags to values that
802   // are derived from a non-wrapping induction variable because non-wrapping
803   // could be flow-sensitive.
804   //
805   // Look through the potentially overflowing instruction to try to prove
806   // non-wrapping for the *specific* value of Ptr.
807 
808   // The arithmetic implied by an inbounds GEP can't overflow.
809   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
810   if (!GEP || !GEP->isInBounds())
811     return false;
812 
813   // Make sure there is only one non-const index and analyze that.
814   Value *NonConstIndex = nullptr;
815   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
816     if (!isa<ConstantInt>(*Index)) {
817       if (NonConstIndex)
818         return false;
819       NonConstIndex = *Index;
820     }
821   if (!NonConstIndex)
822     // The recurrence is on the pointer, ignore for now.
823     return false;
824 
825   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
826   // AddRec using a NSW operation.
827   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
828     if (OBO->hasNoSignedWrap() &&
829         // Assume constant for other the operand so that the AddRec can be
830         // easily found.
831         isa<ConstantInt>(OBO->getOperand(1))) {
832       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
833 
834       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
835         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
836     }
837 
838   return false;
839 }
840 
841 /// \brief Check whether the access through \p Ptr has a constant stride.
842 int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
843                        const Loop *Lp, const ValueToValueMap &StridesMap,
844                        bool Assume) {
845   Type *Ty = Ptr->getType();
846   assert(Ty->isPointerTy() && "Unexpected non-ptr");
847 
848   // Make sure that the pointer does not point to aggregate types.
849   auto *PtrTy = cast<PointerType>(Ty);
850   if (PtrTy->getElementType()->isAggregateType()) {
851     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
852                  << "\n");
853     return 0;
854   }
855 
856   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
857 
858   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
859   if (Assume && !AR)
860     AR = PSE.getAsAddRec(Ptr);
861 
862   if (!AR) {
863     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
864                  << " SCEV: " << *PtrScev << "\n");
865     return 0;
866   }
867 
868   // The accesss function must stride over the innermost loop.
869   if (Lp != AR->getLoop()) {
870     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
871           *Ptr << " SCEV: " << *AR << "\n");
872     return 0;
873   }
874 
875   // The address calculation must not wrap. Otherwise, a dependence could be
876   // inverted.
877   // An inbounds getelementptr that is a AddRec with a unit stride
878   // cannot wrap per definition. The unit stride requirement is checked later.
879   // An getelementptr without an inbounds attribute and unit stride would have
880   // to access the pointer value "0" which is undefined behavior in address
881   // space 0, therefore we can also vectorize this case.
882   bool IsInBoundsGEP = isInBoundsGep(Ptr);
883   bool IsNoWrapAddRec =
884       PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
885       isNoWrapAddRec(Ptr, AR, PSE, Lp);
886   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
887   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
888     if (Assume) {
889       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
890       IsNoWrapAddRec = true;
891       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
892                    << "LAA:   Pointer: " << *Ptr << "\n"
893                    << "LAA:   SCEV: " << *AR << "\n"
894                    << "LAA:   Added an overflow assumption\n");
895     } else {
896       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
897                    << *Ptr << " SCEV: " << *AR << "\n");
898       return 0;
899     }
900   }
901 
902   // Check the step is constant.
903   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
904 
905   // Calculate the pointer stride and check if it is constant.
906   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
907   if (!C) {
908     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
909           " SCEV: " << *AR << "\n");
910     return 0;
911   }
912 
913   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
914   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
915   const APInt &APStepVal = C->getAPInt();
916 
917   // Huge step value - give up.
918   if (APStepVal.getBitWidth() > 64)
919     return 0;
920 
921   int64_t StepVal = APStepVal.getSExtValue();
922 
923   // Strided access.
924   int64_t Stride = StepVal / Size;
925   int64_t Rem = StepVal % Size;
926   if (Rem)
927     return 0;
928 
929   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
930   // know we can't "wrap around the address space". In case of address space
931   // zero we know that this won't happen without triggering undefined behavior.
932   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
933       Stride != 1 && Stride != -1) {
934     if (Assume) {
935       // We can avoid this case by adding a run-time check.
936       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
937                    << "inbouds or in address space 0 may wrap:\n"
938                    << "LAA:   Pointer: " << *Ptr << "\n"
939                    << "LAA:   SCEV: " << *AR << "\n"
940                    << "LAA:   Added an overflow assumption\n");
941       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
942     } else
943       return 0;
944   }
945 
946   return Stride;
947 }
948 
949 /// Take the pointer operand from the Load/Store instruction.
950 /// Returns NULL if this is not a valid Load/Store instruction.
951 static Value *getPointerOperand(Value *I) {
952   if (LoadInst *LI = dyn_cast<LoadInst>(I))
953     return LI->getPointerOperand();
954   if (StoreInst *SI = dyn_cast<StoreInst>(I))
955     return SI->getPointerOperand();
956   return nullptr;
957 }
958 
959 /// Take the address space operand from the Load/Store instruction.
960 /// Returns -1 if this is not a valid Load/Store instruction.
961 static unsigned getAddressSpaceOperand(Value *I) {
962   if (LoadInst *L = dyn_cast<LoadInst>(I))
963     return L->getPointerAddressSpace();
964   if (StoreInst *S = dyn_cast<StoreInst>(I))
965     return S->getPointerAddressSpace();
966   return -1;
967 }
968 
969 /// Returns true if the memory operations \p A and \p B are consecutive.
970 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
971                                ScalarEvolution &SE, bool CheckType) {
972   Value *PtrA = getPointerOperand(A);
973   Value *PtrB = getPointerOperand(B);
974   unsigned ASA = getAddressSpaceOperand(A);
975   unsigned ASB = getAddressSpaceOperand(B);
976 
977   // Check that the address spaces match and that the pointers are valid.
978   if (!PtrA || !PtrB || (ASA != ASB))
979     return false;
980 
981   // Make sure that A and B are different pointers.
982   if (PtrA == PtrB)
983     return false;
984 
985   // Make sure that A and B have the same type if required.
986   if(CheckType && PtrA->getType() != PtrB->getType())
987       return false;
988 
989   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
990   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
991   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
992 
993   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
994   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
995   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
996 
997   //  OffsetDelta = OffsetB - OffsetA;
998   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
999   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1000   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1001   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1002   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1003   // Check if they are based on the same pointer. That makes the offsets
1004   // sufficient.
1005   if (PtrA == PtrB)
1006     return OffsetDelta == Size;
1007 
1008   // Compute the necessary base pointer delta to have the necessary final delta
1009   // equal to the size.
1010   // BaseDelta = Size - OffsetDelta;
1011   const SCEV *SizeSCEV = SE.getConstant(Size);
1012   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1013 
1014   // Otherwise compute the distance with SCEV between the base pointers.
1015   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1016   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1017   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1018   return X == PtrSCEVB;
1019 }
1020 
1021 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1022   switch (Type) {
1023   case NoDep:
1024   case Forward:
1025   case BackwardVectorizable:
1026     return true;
1027 
1028   case Unknown:
1029   case ForwardButPreventsForwarding:
1030   case Backward:
1031   case BackwardVectorizableButPreventsForwarding:
1032     return false;
1033   }
1034   llvm_unreachable("unexpected DepType!");
1035 }
1036 
1037 bool MemoryDepChecker::Dependence::isBackward() const {
1038   switch (Type) {
1039   case NoDep:
1040   case Forward:
1041   case ForwardButPreventsForwarding:
1042   case Unknown:
1043     return false;
1044 
1045   case BackwardVectorizable:
1046   case Backward:
1047   case BackwardVectorizableButPreventsForwarding:
1048     return true;
1049   }
1050   llvm_unreachable("unexpected DepType!");
1051 }
1052 
1053 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1054   return isBackward() || Type == Unknown;
1055 }
1056 
1057 bool MemoryDepChecker::Dependence::isForward() const {
1058   switch (Type) {
1059   case Forward:
1060   case ForwardButPreventsForwarding:
1061     return true;
1062 
1063   case NoDep:
1064   case Unknown:
1065   case BackwardVectorizable:
1066   case Backward:
1067   case BackwardVectorizableButPreventsForwarding:
1068     return false;
1069   }
1070   llvm_unreachable("unexpected DepType!");
1071 }
1072 
1073 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1074                                                     unsigned TypeByteSize) {
1075   // If loads occur at a distance that is not a multiple of a feasible vector
1076   // factor store-load forwarding does not take place.
1077   // Positive dependences might cause troubles because vectorizing them might
1078   // prevent store-load forwarding making vectorized code run a lot slower.
1079   //   a[i] = a[i-3] ^ a[i-8];
1080   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1081   //   hence on your typical architecture store-load forwarding does not take
1082   //   place. Vectorizing in such cases does not make sense.
1083   // Store-load forwarding distance.
1084 
1085   // After this many iterations store-to-load forwarding conflicts should not
1086   // cause any slowdowns.
1087   const unsigned NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1088   // Maximum vector factor.
1089   unsigned MaxVFWithoutSLForwardIssues = std::min(
1090       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1091 
1092   // Compute the smallest VF at which the store and load would be misaligned.
1093   for (unsigned VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1094        VF *= 2) {
1095     // If the number of vector iteration between the store and the load are
1096     // small we could incur conflicts.
1097     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1098       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1099       break;
1100     }
1101   }
1102 
1103   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1104     DEBUG(dbgs() << "LAA: Distance " << Distance
1105                  << " that could cause a store-load forwarding conflict\n");
1106     return true;
1107   }
1108 
1109   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1110       MaxVFWithoutSLForwardIssues !=
1111           VectorizerParams::MaxVectorWidth * TypeByteSize)
1112     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1113   return false;
1114 }
1115 
1116 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1117 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1118 /// bytes.
1119 ///
1120 /// \returns true if they are independent.
1121 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1122                                           unsigned TypeByteSize) {
1123   assert(Stride > 1 && "The stride must be greater than 1");
1124   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1125   assert(Distance > 0 && "The distance must be non-zero");
1126 
1127   // Skip if the distance is not multiple of type byte size.
1128   if (Distance % TypeByteSize)
1129     return false;
1130 
1131   unsigned ScaledDist = Distance / TypeByteSize;
1132 
1133   // No dependence if the scaled distance is not multiple of the stride.
1134   // E.g.
1135   //      for (i = 0; i < 1024 ; i += 4)
1136   //        A[i+2] = A[i] + 1;
1137   //
1138   // Two accesses in memory (scaled distance is 2, stride is 4):
1139   //     | A[0] |      |      |      | A[4] |      |      |      |
1140   //     |      |      | A[2] |      |      |      | A[6] |      |
1141   //
1142   // E.g.
1143   //      for (i = 0; i < 1024 ; i += 3)
1144   //        A[i+4] = A[i] + 1;
1145   //
1146   // Two accesses in memory (scaled distance is 4, stride is 3):
1147   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1148   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1149   return ScaledDist % Stride;
1150 }
1151 
1152 MemoryDepChecker::Dependence::DepType
1153 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1154                               const MemAccessInfo &B, unsigned BIdx,
1155                               const ValueToValueMap &Strides) {
1156   assert (AIdx < BIdx && "Must pass arguments in program order");
1157 
1158   Value *APtr = A.getPointer();
1159   Value *BPtr = B.getPointer();
1160   bool AIsWrite = A.getInt();
1161   bool BIsWrite = B.getInt();
1162 
1163   // Two reads are independent.
1164   if (!AIsWrite && !BIsWrite)
1165     return Dependence::NoDep;
1166 
1167   // We cannot check pointers in different address spaces.
1168   if (APtr->getType()->getPointerAddressSpace() !=
1169       BPtr->getType()->getPointerAddressSpace())
1170     return Dependence::Unknown;
1171 
1172   int StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1173   int StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1174 
1175   const SCEV *Src = PSE.getSCEV(APtr);
1176   const SCEV *Sink = PSE.getSCEV(BPtr);
1177 
1178   // If the induction step is negative we have to invert source and sink of the
1179   // dependence.
1180   if (StrideAPtr < 0) {
1181     std::swap(APtr, BPtr);
1182     std::swap(Src, Sink);
1183     std::swap(AIsWrite, BIsWrite);
1184     std::swap(AIdx, BIdx);
1185     std::swap(StrideAPtr, StrideBPtr);
1186   }
1187 
1188   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1189 
1190   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1191                << "(Induction step: " << StrideAPtr << ")\n");
1192   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1193                << *InstMap[BIdx] << ": " << *Dist << "\n");
1194 
1195   // Need accesses with constant stride. We don't want to vectorize
1196   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1197   // the address space.
1198   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1199     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1200     return Dependence::Unknown;
1201   }
1202 
1203   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1204   if (!C) {
1205     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1206     ShouldRetryWithRuntimeCheck = true;
1207     return Dependence::Unknown;
1208   }
1209 
1210   Type *ATy = APtr->getType()->getPointerElementType();
1211   Type *BTy = BPtr->getType()->getPointerElementType();
1212   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1213   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1214 
1215   const APInt &Val = C->getAPInt();
1216   int64_t Distance = Val.getSExtValue();
1217   unsigned Stride = std::abs(StrideAPtr);
1218 
1219   // Attempt to prove strided accesses independent.
1220   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1221       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1222     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1223     return Dependence::NoDep;
1224   }
1225 
1226   // Negative distances are not plausible dependencies.
1227   if (Val.isNegative()) {
1228     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1229     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1230         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1231          ATy != BTy)) {
1232       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1233       return Dependence::ForwardButPreventsForwarding;
1234     }
1235 
1236     DEBUG(dbgs() << "LAA: Dependence is negative\n");
1237     return Dependence::Forward;
1238   }
1239 
1240   // Write to the same location with the same size.
1241   // Could be improved to assert type sizes are the same (i32 == float, etc).
1242   if (Val == 0) {
1243     if (ATy == BTy)
1244       return Dependence::Forward;
1245     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1246     return Dependence::Unknown;
1247   }
1248 
1249   assert(Val.isStrictlyPositive() && "Expect a positive value");
1250 
1251   if (ATy != BTy) {
1252     DEBUG(dbgs() <<
1253           "LAA: ReadWrite-Write positive dependency with different types\n");
1254     return Dependence::Unknown;
1255   }
1256 
1257   // Bail out early if passed-in parameters make vectorization not feasible.
1258   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1259                            VectorizerParams::VectorizationFactor : 1);
1260   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1261                            VectorizerParams::VectorizationInterleave : 1);
1262   // The minimum number of iterations for a vectorized/unrolled version.
1263   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1264 
1265   // It's not vectorizable if the distance is smaller than the minimum distance
1266   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1267   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1268   // TypeByteSize (No need to plus the last gap distance).
1269   //
1270   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1271   //      foo(int *A) {
1272   //        int *B = (int *)((char *)A + 14);
1273   //        for (i = 0 ; i < 1024 ; i += 2)
1274   //          B[i] = A[i] + 1;
1275   //      }
1276   //
1277   // Two accesses in memory (stride is 2):
1278   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1279   //                              | B[0] |      | B[2] |      | B[4] |
1280   //
1281   // Distance needs for vectorizing iterations except the last iteration:
1282   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1283   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1284   //
1285   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1286   // 12, which is less than distance.
1287   //
1288   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1289   // the minimum distance needed is 28, which is greater than distance. It is
1290   // not safe to do vectorization.
1291   unsigned MinDistanceNeeded =
1292       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1293   if (MinDistanceNeeded > Distance) {
1294     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1295                  << '\n');
1296     return Dependence::Backward;
1297   }
1298 
1299   // Unsafe if the minimum distance needed is greater than max safe distance.
1300   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1301     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1302                  << MinDistanceNeeded << " size in bytes");
1303     return Dependence::Backward;
1304   }
1305 
1306   // Positive distance bigger than max vectorization factor.
1307   // FIXME: Should use max factor instead of max distance in bytes, which could
1308   // not handle different types.
1309   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1310   //      void foo (int *A, char *B) {
1311   //        for (unsigned i = 0; i < 1024; i++) {
1312   //          A[i+2] = A[i] + 1;
1313   //          B[i+2] = B[i] + 1;
1314   //        }
1315   //      }
1316   //
1317   // This case is currently unsafe according to the max safe distance. If we
1318   // analyze the two accesses on array B, the max safe dependence distance
1319   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1320   // is 8, which is less than 2 and forbidden vectorization, But actually
1321   // both A and B could be vectorized by 2 iterations.
1322   MaxSafeDepDistBytes =
1323       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1324 
1325   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1326   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1327       couldPreventStoreLoadForward(Distance, TypeByteSize))
1328     return Dependence::BackwardVectorizableButPreventsForwarding;
1329 
1330   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1331                << " with max VF = "
1332                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1333 
1334   return Dependence::BackwardVectorizable;
1335 }
1336 
1337 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1338                                    MemAccessInfoSet &CheckDeps,
1339                                    const ValueToValueMap &Strides) {
1340 
1341   MaxSafeDepDistBytes = -1U;
1342   while (!CheckDeps.empty()) {
1343     MemAccessInfo CurAccess = *CheckDeps.begin();
1344 
1345     // Get the relevant memory access set.
1346     EquivalenceClasses<MemAccessInfo>::iterator I =
1347       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1348 
1349     // Check accesses within this set.
1350     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1351         AccessSets.member_begin(I);
1352     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1353         AccessSets.member_end();
1354 
1355     // Check every access pair.
1356     while (AI != AE) {
1357       CheckDeps.erase(*AI);
1358       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1359       while (OI != AE) {
1360         // Check every accessing instruction pair in program order.
1361         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1362              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1363           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1364                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1365             auto A = std::make_pair(&*AI, *I1);
1366             auto B = std::make_pair(&*OI, *I2);
1367 
1368             assert(*I1 != *I2);
1369             if (*I1 > *I2)
1370               std::swap(A, B);
1371 
1372             Dependence::DepType Type =
1373                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1374             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1375 
1376             // Gather dependences unless we accumulated MaxDependences
1377             // dependences.  In that case return as soon as we find the first
1378             // unsafe dependence.  This puts a limit on this quadratic
1379             // algorithm.
1380             if (RecordDependences) {
1381               if (Type != Dependence::NoDep)
1382                 Dependences.push_back(Dependence(A.second, B.second, Type));
1383 
1384               if (Dependences.size() >= MaxDependences) {
1385                 RecordDependences = false;
1386                 Dependences.clear();
1387                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1388               }
1389             }
1390             if (!RecordDependences && !SafeForVectorization)
1391               return false;
1392           }
1393         ++OI;
1394       }
1395       AI++;
1396     }
1397   }
1398 
1399   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1400   return SafeForVectorization;
1401 }
1402 
1403 SmallVector<Instruction *, 4>
1404 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1405   MemAccessInfo Access(Ptr, isWrite);
1406   auto &IndexVector = Accesses.find(Access)->second;
1407 
1408   SmallVector<Instruction *, 4> Insts;
1409   std::transform(IndexVector.begin(), IndexVector.end(),
1410                  std::back_inserter(Insts),
1411                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1412   return Insts;
1413 }
1414 
1415 const char *MemoryDepChecker::Dependence::DepName[] = {
1416     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1417     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1418 
1419 void MemoryDepChecker::Dependence::print(
1420     raw_ostream &OS, unsigned Depth,
1421     const SmallVectorImpl<Instruction *> &Instrs) const {
1422   OS.indent(Depth) << DepName[Type] << ":\n";
1423   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1424   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1425 }
1426 
1427 bool LoopAccessInfo::canAnalyzeLoop() {
1428   // We need to have a loop header.
1429   DEBUG(dbgs() << "LAA: Found a loop in "
1430                << TheLoop->getHeader()->getParent()->getName() << ": "
1431                << TheLoop->getHeader()->getName() << '\n');
1432 
1433   // We can only analyze innermost loops.
1434   if (!TheLoop->empty()) {
1435     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1436     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1437     return false;
1438   }
1439 
1440   // We must have a single backedge.
1441   if (TheLoop->getNumBackEdges() != 1) {
1442     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1443     emitAnalysis(
1444         LoopAccessReport() <<
1445         "loop control flow is not understood by analyzer");
1446     return false;
1447   }
1448 
1449   // We must have a single exiting block.
1450   if (!TheLoop->getExitingBlock()) {
1451     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1452     emitAnalysis(
1453         LoopAccessReport() <<
1454         "loop control flow is not understood by analyzer");
1455     return false;
1456   }
1457 
1458   // We only handle bottom-tested loops, i.e. loop in which the condition is
1459   // checked at the end of each iteration. With that we can assume that all
1460   // instructions in the loop are executed the same number of times.
1461   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1462     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1463     emitAnalysis(
1464         LoopAccessReport() <<
1465         "loop control flow is not understood by analyzer");
1466     return false;
1467   }
1468 
1469   // ScalarEvolution needs to be able to find the exit count.
1470   const SCEV *ExitCount = PSE.getBackedgeTakenCount();
1471   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1472     emitAnalysis(LoopAccessReport()
1473                  << "could not determine number of loop iterations");
1474     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1475     return false;
1476   }
1477 
1478   return true;
1479 }
1480 
1481 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1482 
1483   typedef SmallVector<Value*, 16> ValueVector;
1484   typedef SmallPtrSet<Value*, 16> ValueSet;
1485 
1486   // Holds the Load and Store *instructions*.
1487   ValueVector Loads;
1488   ValueVector Stores;
1489 
1490   // Holds all the different accesses in the loop.
1491   unsigned NumReads = 0;
1492   unsigned NumReadWrites = 0;
1493 
1494   PtrRtChecking.Pointers.clear();
1495   PtrRtChecking.Need = false;
1496 
1497   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1498 
1499   // For each block.
1500   for (Loop::block_iterator bb = TheLoop->block_begin(),
1501        be = TheLoop->block_end(); bb != be; ++bb) {
1502 
1503     // Scan the BB and collect legal loads and stores.
1504     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1505          ++it) {
1506 
1507       // If this is a load, save it. If this instruction can read from memory
1508       // but is not a load, then we quit. Notice that we don't handle function
1509       // calls that read or write.
1510       if (it->mayReadFromMemory()) {
1511         // Many math library functions read the rounding mode. We will only
1512         // vectorize a loop if it contains known function calls that don't set
1513         // the flag. Therefore, it is safe to ignore this read from memory.
1514         CallInst *Call = dyn_cast<CallInst>(it);
1515         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1516           continue;
1517 
1518         // If the function has an explicit vectorized counterpart, we can safely
1519         // assume that it can be vectorized.
1520         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1521             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1522           continue;
1523 
1524         LoadInst *Ld = dyn_cast<LoadInst>(it);
1525         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1526           emitAnalysis(LoopAccessReport(Ld)
1527                        << "read with atomic ordering or volatile read");
1528           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1529           CanVecMem = false;
1530           return;
1531         }
1532         NumLoads++;
1533         Loads.push_back(Ld);
1534         DepChecker.addAccess(Ld);
1535         continue;
1536       }
1537 
1538       // Save 'store' instructions. Abort if other instructions write to memory.
1539       if (it->mayWriteToMemory()) {
1540         StoreInst *St = dyn_cast<StoreInst>(it);
1541         if (!St) {
1542           emitAnalysis(LoopAccessReport(&*it) <<
1543                        "instruction cannot be vectorized");
1544           CanVecMem = false;
1545           return;
1546         }
1547         if (!St->isSimple() && !IsAnnotatedParallel) {
1548           emitAnalysis(LoopAccessReport(St)
1549                        << "write with atomic ordering or volatile write");
1550           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1551           CanVecMem = false;
1552           return;
1553         }
1554         NumStores++;
1555         Stores.push_back(St);
1556         DepChecker.addAccess(St);
1557       }
1558     } // Next instr.
1559   } // Next block.
1560 
1561   // Now we have two lists that hold the loads and the stores.
1562   // Next, we find the pointers that they use.
1563 
1564   // Check if we see any stores. If there are no stores, then we don't
1565   // care if the pointers are *restrict*.
1566   if (!Stores.size()) {
1567     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1568     CanVecMem = true;
1569     return;
1570   }
1571 
1572   MemoryDepChecker::DepCandidates DependentAccesses;
1573   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1574                           AA, LI, DependentAccesses, PSE);
1575 
1576   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1577   // multiple times on the same object. If the ptr is accessed twice, once
1578   // for read and once for write, it will only appear once (on the write
1579   // list). This is okay, since we are going to check for conflicts between
1580   // writes and between reads and writes, but not between reads and reads.
1581   ValueSet Seen;
1582 
1583   ValueVector::iterator I, IE;
1584   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1585     StoreInst *ST = cast<StoreInst>(*I);
1586     Value* Ptr = ST->getPointerOperand();
1587     // Check for store to loop invariant address.
1588     StoreToLoopInvariantAddress |= isUniform(Ptr);
1589     // If we did *not* see this pointer before, insert it to  the read-write
1590     // list. At this phase it is only a 'write' list.
1591     if (Seen.insert(Ptr).second) {
1592       ++NumReadWrites;
1593 
1594       MemoryLocation Loc = MemoryLocation::get(ST);
1595       // The TBAA metadata could have a control dependency on the predication
1596       // condition, so we cannot rely on it when determining whether or not we
1597       // need runtime pointer checks.
1598       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1599         Loc.AATags.TBAA = nullptr;
1600 
1601       Accesses.addStore(Loc);
1602     }
1603   }
1604 
1605   if (IsAnnotatedParallel) {
1606     DEBUG(dbgs()
1607           << "LAA: A loop annotated parallel, ignore memory dependency "
1608           << "checks.\n");
1609     CanVecMem = true;
1610     return;
1611   }
1612 
1613   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1614     LoadInst *LD = cast<LoadInst>(*I);
1615     Value* Ptr = LD->getPointerOperand();
1616     // If we did *not* see this pointer before, insert it to the
1617     // read list. If we *did* see it before, then it is already in
1618     // the read-write list. This allows us to vectorize expressions
1619     // such as A[i] += x;  Because the address of A[i] is a read-write
1620     // pointer. This only works if the index of A[i] is consecutive.
1621     // If the address of i is unknown (for example A[B[i]]) then we may
1622     // read a few words, modify, and write a few words, and some of the
1623     // words may be written to the same address.
1624     bool IsReadOnlyPtr = false;
1625     if (Seen.insert(Ptr).second || !getPtrStride(PSE, Ptr, TheLoop, Strides)) {
1626       ++NumReads;
1627       IsReadOnlyPtr = true;
1628     }
1629 
1630     MemoryLocation Loc = MemoryLocation::get(LD);
1631     // The TBAA metadata could have a control dependency on the predication
1632     // condition, so we cannot rely on it when determining whether or not we
1633     // need runtime pointer checks.
1634     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1635       Loc.AATags.TBAA = nullptr;
1636 
1637     Accesses.addLoad(Loc, IsReadOnlyPtr);
1638   }
1639 
1640   // If we write (or read-write) to a single destination and there are no
1641   // other reads in this loop then is it safe to vectorize.
1642   if (NumReadWrites == 1 && NumReads == 0) {
1643     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1644     CanVecMem = true;
1645     return;
1646   }
1647 
1648   // Build dependence sets and check whether we need a runtime pointer bounds
1649   // check.
1650   Accesses.buildDependenceSets();
1651 
1652   // Find pointers with computable bounds. We are going to use this information
1653   // to place a runtime bound check.
1654   bool CanDoRTIfNeeded =
1655       Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1656   if (!CanDoRTIfNeeded) {
1657     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1658     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1659                  << "the array bounds.\n");
1660     CanVecMem = false;
1661     return;
1662   }
1663 
1664   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1665 
1666   CanVecMem = true;
1667   if (Accesses.isDependencyCheckNeeded()) {
1668     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1669     CanVecMem = DepChecker.areDepsSafe(
1670         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1671     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1672 
1673     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1674       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1675 
1676       // Clear the dependency checks. We assume they are not needed.
1677       Accesses.resetDepChecks(DepChecker);
1678 
1679       PtrRtChecking.reset();
1680       PtrRtChecking.Need = true;
1681 
1682       auto *SE = PSE.getSE();
1683       CanDoRTIfNeeded =
1684           Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1685 
1686       // Check that we found the bounds for the pointer.
1687       if (!CanDoRTIfNeeded) {
1688         emitAnalysis(LoopAccessReport()
1689                      << "cannot check memory dependencies at runtime");
1690         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1691         CanVecMem = false;
1692         return;
1693       }
1694 
1695       CanVecMem = true;
1696     }
1697   }
1698 
1699   if (CanVecMem)
1700     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1701                  << (PtrRtChecking.Need ? "" : " don't")
1702                  << " need runtime memory checks.\n");
1703   else {
1704     emitAnalysis(
1705         LoopAccessReport()
1706         << "unsafe dependent memory operations in loop. Use "
1707            "#pragma loop distribute(enable) to allow loop distribution "
1708            "to attempt to isolate the offending operations into a separate "
1709            "loop");
1710     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1711   }
1712 }
1713 
1714 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1715                                            DominatorTree *DT)  {
1716   assert(TheLoop->contains(BB) && "Unknown block used");
1717 
1718   // Blocks that do not dominate the latch need predication.
1719   BasicBlock* Latch = TheLoop->getLoopLatch();
1720   return !DT->dominates(BB, Latch);
1721 }
1722 
1723 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1724   assert(!Report && "Multiple reports generated");
1725   Report = Message;
1726 }
1727 
1728 bool LoopAccessInfo::isUniform(Value *V) const {
1729   return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1730 }
1731 
1732 // FIXME: this function is currently a duplicate of the one in
1733 // LoopVectorize.cpp.
1734 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1735                                  Instruction *Loc) {
1736   if (FirstInst)
1737     return FirstInst;
1738   if (Instruction *I = dyn_cast<Instruction>(V))
1739     return I->getParent() == Loc->getParent() ? I : nullptr;
1740   return nullptr;
1741 }
1742 
1743 namespace {
1744 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1745 /// need to use value-handles because SCEV expansion can invalidate previously
1746 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1747 /// a previous one.
1748 struct PointerBounds {
1749   TrackingVH<Value> Start;
1750   TrackingVH<Value> End;
1751 };
1752 } // end anonymous namespace
1753 
1754 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1755 /// in \p TheLoop.  \return the values for the bounds.
1756 static PointerBounds
1757 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1758              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1759              const RuntimePointerChecking &PtrRtChecking) {
1760   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1761   const SCEV *Sc = SE->getSCEV(Ptr);
1762 
1763   if (SE->isLoopInvariant(Sc, TheLoop)) {
1764     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1765                  << "\n");
1766     return {Ptr, Ptr};
1767   } else {
1768     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1769     LLVMContext &Ctx = Loc->getContext();
1770 
1771     // Use this type for pointer arithmetic.
1772     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1773     Value *Start = nullptr, *End = nullptr;
1774 
1775     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1776     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1777     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1778     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1779     return {Start, End};
1780   }
1781 }
1782 
1783 /// \brief Turns a collection of checks into a collection of expanded upper and
1784 /// lower bounds for both pointers in the check.
1785 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1786     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1787     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1788     const RuntimePointerChecking &PtrRtChecking) {
1789   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1790 
1791   // Here we're relying on the SCEV Expander's cache to only emit code for the
1792   // same bounds once.
1793   std::transform(
1794       PointerChecks.begin(), PointerChecks.end(),
1795       std::back_inserter(ChecksWithBounds),
1796       [&](const RuntimePointerChecking::PointerCheck &Check) {
1797         PointerBounds
1798           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1799           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1800         return std::make_pair(First, Second);
1801       });
1802 
1803   return ChecksWithBounds;
1804 }
1805 
1806 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1807     Instruction *Loc,
1808     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1809     const {
1810   auto *SE = PSE.getSE();
1811   SCEVExpander Exp(*SE, DL, "induction");
1812   auto ExpandedChecks =
1813       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1814 
1815   LLVMContext &Ctx = Loc->getContext();
1816   Instruction *FirstInst = nullptr;
1817   IRBuilder<> ChkBuilder(Loc);
1818   // Our instructions might fold to a constant.
1819   Value *MemoryRuntimeCheck = nullptr;
1820 
1821   for (const auto &Check : ExpandedChecks) {
1822     const PointerBounds &A = Check.first, &B = Check.second;
1823     // Check if two pointers (A and B) conflict where conflict is computed as:
1824     // start(A) <= end(B) && start(B) <= end(A)
1825     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1826     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1827 
1828     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1829            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1830            "Trying to bounds check pointers with different address spaces");
1831 
1832     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1833     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1834 
1835     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1836     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1837     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1838     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1839 
1840     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1841     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1842     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1843     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1844     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1845     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1846     if (MemoryRuntimeCheck) {
1847       IsConflict =
1848           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1849       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1850     }
1851     MemoryRuntimeCheck = IsConflict;
1852   }
1853 
1854   if (!MemoryRuntimeCheck)
1855     return std::make_pair(nullptr, nullptr);
1856 
1857   // We have to do this trickery because the IRBuilder might fold the check to a
1858   // constant expression in which case there is no Instruction anchored in a
1859   // the block.
1860   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1861                                                  ConstantInt::getTrue(Ctx));
1862   ChkBuilder.Insert(Check, "memcheck.conflict");
1863   FirstInst = getFirstInst(FirstInst, Check, Loc);
1864   return std::make_pair(FirstInst, Check);
1865 }
1866 
1867 std::pair<Instruction *, Instruction *>
1868 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1869   if (!PtrRtChecking.Need)
1870     return std::make_pair(nullptr, nullptr);
1871 
1872   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1873 }
1874 
1875 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1876                                const DataLayout &DL,
1877                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1878                                DominatorTree *DT, LoopInfo *LI,
1879                                const ValueToValueMap &Strides)
1880     : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1881       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1882       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1883       StoreToLoopInvariantAddress(false) {
1884   if (canAnalyzeLoop())
1885     analyzeLoop(Strides);
1886 }
1887 
1888 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1889   if (CanVecMem) {
1890     OS.indent(Depth) << "Memory dependences are safe";
1891     if (MaxSafeDepDistBytes != -1U)
1892       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1893          << " bytes";
1894     if (PtrRtChecking.Need)
1895       OS << " with run-time checks";
1896     OS << "\n";
1897   }
1898 
1899   if (Report)
1900     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1901 
1902   if (auto *Dependences = DepChecker.getDependences()) {
1903     OS.indent(Depth) << "Dependences:\n";
1904     for (auto &Dep : *Dependences) {
1905       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1906       OS << "\n";
1907     }
1908   } else
1909     OS.indent(Depth) << "Too many dependences, not recorded\n";
1910 
1911   // List the pair of accesses need run-time checks to prove independence.
1912   PtrRtChecking.print(OS, Depth);
1913   OS << "\n";
1914 
1915   OS.indent(Depth) << "Store to invariant address was "
1916                    << (StoreToLoopInvariantAddress ? "" : "not ")
1917                    << "found in loop.\n";
1918 
1919   OS.indent(Depth) << "SCEV assumptions:\n";
1920   PSE.getUnionPredicate().print(OS, Depth);
1921 
1922   OS << "\n";
1923 
1924   OS.indent(Depth) << "Expressions re-written:\n";
1925   PSE.print(OS, Depth);
1926 }
1927 
1928 const LoopAccessInfo &
1929 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1930   auto &LAI = LoopAccessInfoMap[L];
1931 
1932 #ifndef NDEBUG
1933   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1934          "Symbolic strides changed for loop");
1935 #endif
1936 
1937   if (!LAI) {
1938     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1939     LAI =
1940         llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1941 #ifndef NDEBUG
1942     LAI->NumSymbolicStrides = Strides.size();
1943 #endif
1944   }
1945   return *LAI.get();
1946 }
1947 
1948 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1949   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1950 
1951   ValueToValueMap NoSymbolicStrides;
1952 
1953   for (Loop *TopLevelLoop : *LI)
1954     for (Loop *L : depth_first(TopLevelLoop)) {
1955       OS.indent(2) << L->getHeader()->getName() << ":\n";
1956       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1957       LAI.print(OS, 4);
1958     }
1959 }
1960 
1961 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1962   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1963   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1964   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1965   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1966   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1967   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1968 
1969   return false;
1970 }
1971 
1972 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1973     AU.addRequired<ScalarEvolutionWrapperPass>();
1974     AU.addRequired<AAResultsWrapperPass>();
1975     AU.addRequired<DominatorTreeWrapperPass>();
1976     AU.addRequired<LoopInfoWrapperPass>();
1977 
1978     AU.setPreservesAll();
1979 }
1980 
1981 char LoopAccessAnalysis::ID = 0;
1982 static const char laa_name[] = "Loop Access Analysis";
1983 #define LAA_NAME "loop-accesses"
1984 
1985 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1986 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1987 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1988 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1989 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1990 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1991 
1992 namespace llvm {
1993   Pass *createLAAPass() {
1994     return new LoopAccessAnalysis();
1995   }
1996 }
1997