1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DiagnosticInfo.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Transforms/Utils/VectorUtils.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "loop-vectorize" 27 28 void VectorizationReport::emitAnalysis(VectorizationReport &Message, 29 const Function *TheFunction, 30 const Loop *TheLoop) { 31 DebugLoc DL = TheLoop->getStartLoc(); 32 if (Instruction *I = Message.getInstr()) 33 DL = I->getDebugLoc(); 34 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 35 *TheFunction, DL, Message.str()); 36 } 37 38 Value *llvm::stripIntegerCast(Value *V) { 39 if (CastInst *CI = dyn_cast<CastInst>(V)) 40 if (CI->getOperand(0)->getType()->isIntegerTy()) 41 return CI->getOperand(0); 42 return V; 43 } 44 45 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 46 ValueToValueMap &PtrToStride, 47 Value *Ptr, Value *OrigPtr) { 48 49 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 50 51 // If there is an entry in the map return the SCEV of the pointer with the 52 // symbolic stride replaced by one. 53 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 54 if (SI != PtrToStride.end()) { 55 Value *StrideVal = SI->second; 56 57 // Strip casts. 58 StrideVal = stripIntegerCast(StrideVal); 59 60 // Replace symbolic stride by one. 61 Value *One = ConstantInt::get(StrideVal->getType(), 1); 62 ValueToValueMap RewriteMap; 63 RewriteMap[StrideVal] = One; 64 65 const SCEV *ByOne = 66 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 67 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 68 << "\n"); 69 return ByOne; 70 } 71 72 // Otherwise, just return the SCEV of the original pointer. 73 return SE->getSCEV(Ptr); 74 } 75 76 void LoopAccessAnalysis::RuntimePointerCheck::insert(ScalarEvolution *SE, 77 Loop *Lp, Value *Ptr, 78 bool WritePtr, 79 unsigned DepSetId, 80 unsigned ASId, 81 ValueToValueMap &Strides) { 82 // Get the stride replaced scev. 83 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 84 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 85 assert(AR && "Invalid addrec expression"); 86 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 87 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 88 Pointers.push_back(Ptr); 89 Starts.push_back(AR->getStart()); 90 Ends.push_back(ScEnd); 91 IsWritePtr.push_back(WritePtr); 92 DependencySetId.push_back(DepSetId); 93 AliasSetId.push_back(ASId); 94 } 95 96 namespace { 97 /// \brief Analyses memory accesses in a loop. 98 /// 99 /// Checks whether run time pointer checks are needed and builds sets for data 100 /// dependence checking. 101 class AccessAnalysis { 102 public: 103 /// \brief Read or write access location. 104 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 105 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 106 107 /// \brief Set of potential dependent memory accesses. 108 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 109 110 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 111 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 112 113 /// \brief Register a load and whether it is only read from. 114 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 115 Value *Ptr = const_cast<Value*>(Loc.Ptr); 116 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 117 Accesses.insert(MemAccessInfo(Ptr, false)); 118 if (IsReadOnly) 119 ReadOnlyPtr.insert(Ptr); 120 } 121 122 /// \brief Register a store. 123 void addStore(AliasAnalysis::Location &Loc) { 124 Value *Ptr = const_cast<Value*>(Loc.Ptr); 125 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 126 Accesses.insert(MemAccessInfo(Ptr, true)); 127 } 128 129 /// \brief Check whether we can check the pointers at runtime for 130 /// non-intersection. 131 bool canCheckPtrAtRT(LoopAccessAnalysis::RuntimePointerCheck &RtCheck, 132 unsigned &NumComparisons, 133 ScalarEvolution *SE, Loop *TheLoop, 134 ValueToValueMap &Strides, 135 bool ShouldCheckStride = false); 136 137 /// \brief Goes over all memory accesses, checks whether a RT check is needed 138 /// and builds sets of dependent accesses. 139 void buildDependenceSets() { 140 processMemAccesses(); 141 } 142 143 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 144 145 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 146 void resetDepChecks() { CheckDeps.clear(); } 147 148 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 149 150 private: 151 typedef SetVector<MemAccessInfo> PtrAccessSet; 152 153 /// \brief Go over all memory access and check whether runtime pointer checks 154 /// are needed /// and build sets of dependency check candidates. 155 void processMemAccesses(); 156 157 /// Set of all accesses. 158 PtrAccessSet Accesses; 159 160 /// Set of accesses that need a further dependence check. 161 MemAccessInfoSet CheckDeps; 162 163 /// Set of pointers that are read only. 164 SmallPtrSet<Value*, 16> ReadOnlyPtr; 165 166 const DataLayout *DL; 167 168 /// An alias set tracker to partition the access set by underlying object and 169 //intrinsic property (such as TBAA metadata). 170 AliasSetTracker AST; 171 172 /// Sets of potentially dependent accesses - members of one set share an 173 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 174 /// dependence check. 175 DepCandidates &DepCands; 176 177 bool IsRTCheckNeeded; 178 }; 179 180 } // end anonymous namespace 181 182 /// \brief Check whether a pointer can participate in a runtime bounds check. 183 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 184 Value *Ptr) { 185 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 186 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 187 if (!AR) 188 return false; 189 190 return AR->isAffine(); 191 } 192 193 /// \brief Check the stride of the pointer and ensure that it does not wrap in 194 /// the address space. 195 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 196 const Loop *Lp, ValueToValueMap &StridesMap); 197 198 bool AccessAnalysis::canCheckPtrAtRT( 199 LoopAccessAnalysis::RuntimePointerCheck &RtCheck, 200 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 201 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 202 // Find pointers with computable bounds. We are going to use this information 203 // to place a runtime bound check. 204 bool CanDoRT = true; 205 206 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 207 NumComparisons = 0; 208 209 // We assign a consecutive id to access from different alias sets. 210 // Accesses between different groups doesn't need to be checked. 211 unsigned ASId = 1; 212 for (auto &AS : AST) { 213 unsigned NumReadPtrChecks = 0; 214 unsigned NumWritePtrChecks = 0; 215 216 // We assign consecutive id to access from different dependence sets. 217 // Accesses within the same set don't need a runtime check. 218 unsigned RunningDepId = 1; 219 DenseMap<Value *, unsigned> DepSetId; 220 221 for (auto A : AS) { 222 Value *Ptr = A.getValue(); 223 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 224 MemAccessInfo Access(Ptr, IsWrite); 225 226 if (IsWrite) 227 ++NumWritePtrChecks; 228 else 229 ++NumReadPtrChecks; 230 231 if (hasComputableBounds(SE, StridesMap, Ptr) && 232 // When we run after a failing dependency check we have to make sure we 233 // don't have wrapping pointers. 234 (!ShouldCheckStride || 235 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 236 // The id of the dependence set. 237 unsigned DepId; 238 239 if (IsDepCheckNeeded) { 240 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 241 unsigned &LeaderId = DepSetId[Leader]; 242 if (!LeaderId) 243 LeaderId = RunningDepId++; 244 DepId = LeaderId; 245 } else 246 // Each access has its own dependence set. 247 DepId = RunningDepId++; 248 249 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 250 251 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 252 } else { 253 CanDoRT = false; 254 } 255 } 256 257 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 258 NumComparisons += 0; // Only one dependence set. 259 else { 260 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 261 NumWritePtrChecks - 1)); 262 } 263 264 ++ASId; 265 } 266 267 // If the pointers that we would use for the bounds comparison have different 268 // address spaces, assume the values aren't directly comparable, so we can't 269 // use them for the runtime check. We also have to assume they could 270 // overlap. In the future there should be metadata for whether address spaces 271 // are disjoint. 272 unsigned NumPointers = RtCheck.Pointers.size(); 273 for (unsigned i = 0; i < NumPointers; ++i) { 274 for (unsigned j = i + 1; j < NumPointers; ++j) { 275 // Only need to check pointers between two different dependency sets. 276 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 277 continue; 278 // Only need to check pointers in the same alias set. 279 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 280 continue; 281 282 Value *PtrI = RtCheck.Pointers[i]; 283 Value *PtrJ = RtCheck.Pointers[j]; 284 285 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 286 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 287 if (ASi != ASj) { 288 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 289 " different address spaces\n"); 290 return false; 291 } 292 } 293 } 294 295 return CanDoRT; 296 } 297 298 void AccessAnalysis::processMemAccesses() { 299 // We process the set twice: first we process read-write pointers, last we 300 // process read-only pointers. This allows us to skip dependence tests for 301 // read-only pointers. 302 303 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 304 DEBUG(dbgs() << " AST: "; AST.dump()); 305 DEBUG(dbgs() << "LV: Accesses:\n"); 306 DEBUG({ 307 for (auto A : Accesses) 308 dbgs() << "\t" << *A.getPointer() << " (" << 309 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 310 "read-only" : "read")) << ")\n"; 311 }); 312 313 // The AliasSetTracker has nicely partitioned our pointers by metadata 314 // compatibility and potential for underlying-object overlap. As a result, we 315 // only need to check for potential pointer dependencies within each alias 316 // set. 317 for (auto &AS : AST) { 318 // Note that both the alias-set tracker and the alias sets themselves used 319 // linked lists internally and so the iteration order here is deterministic 320 // (matching the original instruction order within each set). 321 322 bool SetHasWrite = false; 323 324 // Map of pointers to last access encountered. 325 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 326 UnderlyingObjToAccessMap ObjToLastAccess; 327 328 // Set of access to check after all writes have been processed. 329 PtrAccessSet DeferredAccesses; 330 331 // Iterate over each alias set twice, once to process read/write pointers, 332 // and then to process read-only pointers. 333 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 334 bool UseDeferred = SetIteration > 0; 335 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 336 337 for (auto AV : AS) { 338 Value *Ptr = AV.getValue(); 339 340 // For a single memory access in AliasSetTracker, Accesses may contain 341 // both read and write, and they both need to be handled for CheckDeps. 342 for (auto AC : S) { 343 if (AC.getPointer() != Ptr) 344 continue; 345 346 bool IsWrite = AC.getInt(); 347 348 // If we're using the deferred access set, then it contains only 349 // reads. 350 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 351 if (UseDeferred && !IsReadOnlyPtr) 352 continue; 353 // Otherwise, the pointer must be in the PtrAccessSet, either as a 354 // read or a write. 355 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 356 S.count(MemAccessInfo(Ptr, false))) && 357 "Alias-set pointer not in the access set?"); 358 359 MemAccessInfo Access(Ptr, IsWrite); 360 DepCands.insert(Access); 361 362 // Memorize read-only pointers for later processing and skip them in 363 // the first round (they need to be checked after we have seen all 364 // write pointers). Note: we also mark pointer that are not 365 // consecutive as "read-only" pointers (so that we check 366 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 367 if (!UseDeferred && IsReadOnlyPtr) { 368 DeferredAccesses.insert(Access); 369 continue; 370 } 371 372 // If this is a write - check other reads and writes for conflicts. If 373 // this is a read only check other writes for conflicts (but only if 374 // there is no other write to the ptr - this is an optimization to 375 // catch "a[i] = a[i] + " without having to do a dependence check). 376 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 377 CheckDeps.insert(Access); 378 IsRTCheckNeeded = true; 379 } 380 381 if (IsWrite) 382 SetHasWrite = true; 383 384 // Create sets of pointers connected by a shared alias set and 385 // underlying object. 386 typedef SmallVector<Value *, 16> ValueVector; 387 ValueVector TempObjects; 388 GetUnderlyingObjects(Ptr, TempObjects, DL); 389 for (Value *UnderlyingObj : TempObjects) { 390 UnderlyingObjToAccessMap::iterator Prev = 391 ObjToLastAccess.find(UnderlyingObj); 392 if (Prev != ObjToLastAccess.end()) 393 DepCands.unionSets(Access, Prev->second); 394 395 ObjToLastAccess[UnderlyingObj] = Access; 396 } 397 } 398 } 399 } 400 } 401 } 402 403 namespace { 404 /// \brief Checks memory dependences among accesses to the same underlying 405 /// object to determine whether there vectorization is legal or not (and at 406 /// which vectorization factor). 407 /// 408 /// This class works under the assumption that we already checked that memory 409 /// locations with different underlying pointers are "must-not alias". 410 /// We use the ScalarEvolution framework to symbolically evalutate access 411 /// functions pairs. Since we currently don't restructure the loop we can rely 412 /// on the program order of memory accesses to determine their safety. 413 /// At the moment we will only deem accesses as safe for: 414 /// * A negative constant distance assuming program order. 415 /// 416 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 417 /// a[i] = tmp; y = a[i]; 418 /// 419 /// The latter case is safe because later checks guarantuee that there can't 420 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 421 /// the same variable: a header phi can only be an induction or a reduction, a 422 /// reduction can't have a memory sink, an induction can't have a memory 423 /// source). This is important and must not be violated (or we have to 424 /// resort to checking for cycles through memory). 425 /// 426 /// * A positive constant distance assuming program order that is bigger 427 /// than the biggest memory access. 428 /// 429 /// tmp = a[i] OR b[i] = x 430 /// a[i+2] = tmp y = b[i+2]; 431 /// 432 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 433 /// 434 /// * Zero distances and all accesses have the same size. 435 /// 436 class MemoryDepChecker { 437 public: 438 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 439 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 440 441 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L, 442 const LoopAccessAnalysis::VectorizerParams &VectParams) 443 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 444 ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {} 445 446 /// \brief Register the location (instructions are given increasing numbers) 447 /// of a write access. 448 void addAccess(StoreInst *SI) { 449 Value *Ptr = SI->getPointerOperand(); 450 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 451 InstMap.push_back(SI); 452 ++AccessIdx; 453 } 454 455 /// \brief Register the location (instructions are given increasing numbers) 456 /// of a write access. 457 void addAccess(LoadInst *LI) { 458 Value *Ptr = LI->getPointerOperand(); 459 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 460 InstMap.push_back(LI); 461 ++AccessIdx; 462 } 463 464 /// \brief Check whether the dependencies between the accesses are safe. 465 /// 466 /// Only checks sets with elements in \p CheckDeps. 467 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 468 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 469 470 /// \brief The maximum number of bytes of a vector register we can vectorize 471 /// the accesses safely with. 472 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 473 474 /// \brief In same cases when the dependency check fails we can still 475 /// vectorize the loop with a dynamic array access check. 476 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 477 478 private: 479 ScalarEvolution *SE; 480 const DataLayout *DL; 481 const Loop *InnermostLoop; 482 483 /// \brief Maps access locations (ptr, read/write) to program order. 484 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 485 486 /// \brief Memory access instructions in program order. 487 SmallVector<Instruction *, 16> InstMap; 488 489 /// \brief The program order index to be used for the next instruction. 490 unsigned AccessIdx; 491 492 // We can access this many bytes in parallel safely. 493 unsigned MaxSafeDepDistBytes; 494 495 /// \brief If we see a non-constant dependence distance we can still try to 496 /// vectorize this loop with runtime checks. 497 bool ShouldRetryWithRuntimeCheck; 498 499 /// \brief Vectorizer parameters used by the analysis. 500 LoopAccessAnalysis::VectorizerParams VectParams; 501 502 /// \brief Check whether there is a plausible dependence between the two 503 /// accesses. 504 /// 505 /// Access \p A must happen before \p B in program order. The two indices 506 /// identify the index into the program order map. 507 /// 508 /// This function checks whether there is a plausible dependence (or the 509 /// absence of such can't be proved) between the two accesses. If there is a 510 /// plausible dependence but the dependence distance is bigger than one 511 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 512 /// distance is smaller than any other distance encountered so far). 513 /// Otherwise, this function returns true signaling a possible dependence. 514 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 515 const MemAccessInfo &B, unsigned BIdx, 516 ValueToValueMap &Strides); 517 518 /// \brief Check whether the data dependence could prevent store-load 519 /// forwarding. 520 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 521 }; 522 523 } // end anonymous namespace 524 525 static bool isInBoundsGep(Value *Ptr) { 526 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 527 return GEP->isInBounds(); 528 return false; 529 } 530 531 /// \brief Check whether the access through \p Ptr has a constant stride. 532 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 533 const Loop *Lp, ValueToValueMap &StridesMap) { 534 const Type *Ty = Ptr->getType(); 535 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 536 537 // Make sure that the pointer does not point to aggregate types. 538 const PointerType *PtrTy = cast<PointerType>(Ty); 539 if (PtrTy->getElementType()->isAggregateType()) { 540 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 541 "\n"); 542 return 0; 543 } 544 545 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 546 547 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 548 if (!AR) { 549 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 550 << *Ptr << " SCEV: " << *PtrScev << "\n"); 551 return 0; 552 } 553 554 // The accesss function must stride over the innermost loop. 555 if (Lp != AR->getLoop()) { 556 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 557 *Ptr << " SCEV: " << *PtrScev << "\n"); 558 } 559 560 // The address calculation must not wrap. Otherwise, a dependence could be 561 // inverted. 562 // An inbounds getelementptr that is a AddRec with a unit stride 563 // cannot wrap per definition. The unit stride requirement is checked later. 564 // An getelementptr without an inbounds attribute and unit stride would have 565 // to access the pointer value "0" which is undefined behavior in address 566 // space 0, therefore we can also vectorize this case. 567 bool IsInBoundsGEP = isInBoundsGep(Ptr); 568 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 569 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 570 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 571 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 572 << *Ptr << " SCEV: " << *PtrScev << "\n"); 573 return 0; 574 } 575 576 // Check the step is constant. 577 const SCEV *Step = AR->getStepRecurrence(*SE); 578 579 // Calculate the pointer stride and check if it is consecutive. 580 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 581 if (!C) { 582 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 583 " SCEV: " << *PtrScev << "\n"); 584 return 0; 585 } 586 587 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 588 const APInt &APStepVal = C->getValue()->getValue(); 589 590 // Huge step value - give up. 591 if (APStepVal.getBitWidth() > 64) 592 return 0; 593 594 int64_t StepVal = APStepVal.getSExtValue(); 595 596 // Strided access. 597 int64_t Stride = StepVal / Size; 598 int64_t Rem = StepVal % Size; 599 if (Rem) 600 return 0; 601 602 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 603 // know we can't "wrap around the address space". In case of address space 604 // zero we know that this won't happen without triggering undefined behavior. 605 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 606 Stride != 1 && Stride != -1) 607 return 0; 608 609 return Stride; 610 } 611 612 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 613 unsigned TypeByteSize) { 614 // If loads occur at a distance that is not a multiple of a feasible vector 615 // factor store-load forwarding does not take place. 616 // Positive dependences might cause troubles because vectorizing them might 617 // prevent store-load forwarding making vectorized code run a lot slower. 618 // a[i] = a[i-3] ^ a[i-8]; 619 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 620 // hence on your typical architecture store-load forwarding does not take 621 // place. Vectorizing in such cases does not make sense. 622 // Store-load forwarding distance. 623 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 624 // Maximum vector factor. 625 unsigned MaxVFWithoutSLForwardIssues = VectParams.MaxVectorWidth*TypeByteSize; 626 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 627 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 628 629 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 630 vf *= 2) { 631 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 632 MaxVFWithoutSLForwardIssues = (vf >>=1); 633 break; 634 } 635 } 636 637 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 638 DEBUG(dbgs() << "LV: Distance " << Distance << 639 " that could cause a store-load forwarding conflict\n"); 640 return true; 641 } 642 643 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 644 MaxVFWithoutSLForwardIssues != VectParams.MaxVectorWidth*TypeByteSize) 645 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 646 return false; 647 } 648 649 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 650 const MemAccessInfo &B, unsigned BIdx, 651 ValueToValueMap &Strides) { 652 assert (AIdx < BIdx && "Must pass arguments in program order"); 653 654 Value *APtr = A.getPointer(); 655 Value *BPtr = B.getPointer(); 656 bool AIsWrite = A.getInt(); 657 bool BIsWrite = B.getInt(); 658 659 // Two reads are independent. 660 if (!AIsWrite && !BIsWrite) 661 return false; 662 663 // We cannot check pointers in different address spaces. 664 if (APtr->getType()->getPointerAddressSpace() != 665 BPtr->getType()->getPointerAddressSpace()) 666 return true; 667 668 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 669 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 670 671 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 672 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 673 674 const SCEV *Src = AScev; 675 const SCEV *Sink = BScev; 676 677 // If the induction step is negative we have to invert source and sink of the 678 // dependence. 679 if (StrideAPtr < 0) { 680 //Src = BScev; 681 //Sink = AScev; 682 std::swap(APtr, BPtr); 683 std::swap(Src, Sink); 684 std::swap(AIsWrite, BIsWrite); 685 std::swap(AIdx, BIdx); 686 std::swap(StrideAPtr, StrideBPtr); 687 } 688 689 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 690 691 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 692 << "(Induction step: " << StrideAPtr << ")\n"); 693 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 694 << *InstMap[BIdx] << ": " << *Dist << "\n"); 695 696 // Need consecutive accesses. We don't want to vectorize 697 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 698 // the address space. 699 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 700 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 701 return true; 702 } 703 704 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 705 if (!C) { 706 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 707 ShouldRetryWithRuntimeCheck = true; 708 return true; 709 } 710 711 Type *ATy = APtr->getType()->getPointerElementType(); 712 Type *BTy = BPtr->getType()->getPointerElementType(); 713 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 714 715 // Negative distances are not plausible dependencies. 716 const APInt &Val = C->getValue()->getValue(); 717 if (Val.isNegative()) { 718 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 719 if (IsTrueDataDependence && 720 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 721 ATy != BTy)) 722 return true; 723 724 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 725 return false; 726 } 727 728 // Write to the same location with the same size. 729 // Could be improved to assert type sizes are the same (i32 == float, etc). 730 if (Val == 0) { 731 if (ATy == BTy) 732 return false; 733 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 734 return true; 735 } 736 737 assert(Val.isStrictlyPositive() && "Expect a positive value"); 738 739 // Positive distance bigger than max vectorization factor. 740 if (ATy != BTy) { 741 DEBUG(dbgs() << 742 "LV: ReadWrite-Write positive dependency with different types\n"); 743 return false; 744 } 745 746 unsigned Distance = (unsigned) Val.getZExtValue(); 747 748 // Bail out early if passed-in parameters make vectorization not feasible. 749 unsigned ForcedFactor = (VectParams.VectorizationFactor ? 750 VectParams.VectorizationFactor : 1); 751 unsigned ForcedUnroll = (VectParams.VectorizationInterleave ? 752 VectParams.VectorizationInterleave : 1); 753 754 // The distance must be bigger than the size needed for a vectorized version 755 // of the operation and the size of the vectorized operation must not be 756 // bigger than the currrent maximum size. 757 if (Distance < 2*TypeByteSize || 758 2*TypeByteSize > MaxSafeDepDistBytes || 759 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 760 DEBUG(dbgs() << "LV: Failure because of Positive distance " 761 << Val.getSExtValue() << '\n'); 762 return true; 763 } 764 765 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 766 Distance : MaxSafeDepDistBytes; 767 768 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 769 if (IsTrueDataDependence && 770 couldPreventStoreLoadForward(Distance, TypeByteSize)) 771 return true; 772 773 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 774 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 775 776 return false; 777 } 778 779 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 780 MemAccessInfoSet &CheckDeps, 781 ValueToValueMap &Strides) { 782 783 MaxSafeDepDistBytes = -1U; 784 while (!CheckDeps.empty()) { 785 MemAccessInfo CurAccess = *CheckDeps.begin(); 786 787 // Get the relevant memory access set. 788 EquivalenceClasses<MemAccessInfo>::iterator I = 789 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 790 791 // Check accesses within this set. 792 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 793 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 794 795 // Check every access pair. 796 while (AI != AE) { 797 CheckDeps.erase(*AI); 798 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 799 while (OI != AE) { 800 // Check every accessing instruction pair in program order. 801 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 802 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 803 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 804 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 805 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 806 return false; 807 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 808 return false; 809 } 810 ++OI; 811 } 812 AI++; 813 } 814 } 815 return true; 816 } 817 818 bool LoopAccessAnalysis::canVectorizeMemory(ValueToValueMap &Strides) { 819 820 typedef SmallVector<Value*, 16> ValueVector; 821 typedef SmallPtrSet<Value*, 16> ValueSet; 822 823 // Holds the Load and Store *instructions*. 824 ValueVector Loads; 825 ValueVector Stores; 826 827 // Holds all the different accesses in the loop. 828 unsigned NumReads = 0; 829 unsigned NumReadWrites = 0; 830 831 PtrRtCheck.Pointers.clear(); 832 PtrRtCheck.Need = false; 833 834 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 835 MemoryDepChecker DepChecker(SE, DL, TheLoop, VectParams); 836 837 // For each block. 838 for (Loop::block_iterator bb = TheLoop->block_begin(), 839 be = TheLoop->block_end(); bb != be; ++bb) { 840 841 // Scan the BB and collect legal loads and stores. 842 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 843 ++it) { 844 845 // If this is a load, save it. If this instruction can read from memory 846 // but is not a load, then we quit. Notice that we don't handle function 847 // calls that read or write. 848 if (it->mayReadFromMemory()) { 849 // Many math library functions read the rounding mode. We will only 850 // vectorize a loop if it contains known function calls that don't set 851 // the flag. Therefore, it is safe to ignore this read from memory. 852 CallInst *Call = dyn_cast<CallInst>(it); 853 if (Call && getIntrinsicIDForCall(Call, TLI)) 854 continue; 855 856 LoadInst *Ld = dyn_cast<LoadInst>(it); 857 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 858 emitAnalysis(VectorizationReport(Ld) 859 << "read with atomic ordering or volatile read"); 860 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 861 return false; 862 } 863 NumLoads++; 864 Loads.push_back(Ld); 865 DepChecker.addAccess(Ld); 866 continue; 867 } 868 869 // Save 'store' instructions. Abort if other instructions write to memory. 870 if (it->mayWriteToMemory()) { 871 StoreInst *St = dyn_cast<StoreInst>(it); 872 if (!St) { 873 emitAnalysis(VectorizationReport(it) << 874 "instruction cannot be vectorized"); 875 return false; 876 } 877 if (!St->isSimple() && !IsAnnotatedParallel) { 878 emitAnalysis(VectorizationReport(St) 879 << "write with atomic ordering or volatile write"); 880 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 881 return false; 882 } 883 NumStores++; 884 Stores.push_back(St); 885 DepChecker.addAccess(St); 886 } 887 } // Next instr. 888 } // Next block. 889 890 // Now we have two lists that hold the loads and the stores. 891 // Next, we find the pointers that they use. 892 893 // Check if we see any stores. If there are no stores, then we don't 894 // care if the pointers are *restrict*. 895 if (!Stores.size()) { 896 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 897 return true; 898 } 899 900 AccessAnalysis::DepCandidates DependentAccesses; 901 AccessAnalysis Accesses(DL, AA, DependentAccesses); 902 903 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 904 // multiple times on the same object. If the ptr is accessed twice, once 905 // for read and once for write, it will only appear once (on the write 906 // list). This is okay, since we are going to check for conflicts between 907 // writes and between reads and writes, but not between reads and reads. 908 ValueSet Seen; 909 910 ValueVector::iterator I, IE; 911 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 912 StoreInst *ST = cast<StoreInst>(*I); 913 Value* Ptr = ST->getPointerOperand(); 914 915 if (isUniform(Ptr)) { 916 emitAnalysis( 917 VectorizationReport(ST) 918 << "write to a loop invariant address could not be vectorized"); 919 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 920 return false; 921 } 922 923 // If we did *not* see this pointer before, insert it to the read-write 924 // list. At this phase it is only a 'write' list. 925 if (Seen.insert(Ptr).second) { 926 ++NumReadWrites; 927 928 AliasAnalysis::Location Loc = AA->getLocation(ST); 929 // The TBAA metadata could have a control dependency on the predication 930 // condition, so we cannot rely on it when determining whether or not we 931 // need runtime pointer checks. 932 if (blockNeedsPredication(ST->getParent())) 933 Loc.AATags.TBAA = nullptr; 934 935 Accesses.addStore(Loc); 936 } 937 } 938 939 if (IsAnnotatedParallel) { 940 DEBUG(dbgs() 941 << "LV: A loop annotated parallel, ignore memory dependency " 942 << "checks.\n"); 943 return true; 944 } 945 946 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 947 LoadInst *LD = cast<LoadInst>(*I); 948 Value* Ptr = LD->getPointerOperand(); 949 // If we did *not* see this pointer before, insert it to the 950 // read list. If we *did* see it before, then it is already in 951 // the read-write list. This allows us to vectorize expressions 952 // such as A[i] += x; Because the address of A[i] is a read-write 953 // pointer. This only works if the index of A[i] is consecutive. 954 // If the address of i is unknown (for example A[B[i]]) then we may 955 // read a few words, modify, and write a few words, and some of the 956 // words may be written to the same address. 957 bool IsReadOnlyPtr = false; 958 if (Seen.insert(Ptr).second || 959 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 960 ++NumReads; 961 IsReadOnlyPtr = true; 962 } 963 964 AliasAnalysis::Location Loc = AA->getLocation(LD); 965 // The TBAA metadata could have a control dependency on the predication 966 // condition, so we cannot rely on it when determining whether or not we 967 // need runtime pointer checks. 968 if (blockNeedsPredication(LD->getParent())) 969 Loc.AATags.TBAA = nullptr; 970 971 Accesses.addLoad(Loc, IsReadOnlyPtr); 972 } 973 974 // If we write (or read-write) to a single destination and there are no 975 // other reads in this loop then is it safe to vectorize. 976 if (NumReadWrites == 1 && NumReads == 0) { 977 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 978 return true; 979 } 980 981 // Build dependence sets and check whether we need a runtime pointer bounds 982 // check. 983 Accesses.buildDependenceSets(); 984 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 985 986 // Find pointers with computable bounds. We are going to use this information 987 // to place a runtime bound check. 988 unsigned NumComparisons = 0; 989 bool CanDoRT = false; 990 if (NeedRTCheck) 991 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 992 Strides); 993 994 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 995 " pointer comparisons.\n"); 996 997 // If we only have one set of dependences to check pointers among we don't 998 // need a runtime check. 999 if (NumComparisons == 0 && NeedRTCheck) 1000 NeedRTCheck = false; 1001 1002 // Check that we did not collect too many pointers or found an unsizeable 1003 // pointer. 1004 if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) { 1005 PtrRtCheck.reset(); 1006 CanDoRT = false; 1007 } 1008 1009 if (CanDoRT) { 1010 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 1011 } 1012 1013 if (NeedRTCheck && !CanDoRT) { 1014 emitAnalysis(VectorizationReport() << "cannot identify array bounds"); 1015 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 1016 "the array bounds.\n"); 1017 PtrRtCheck.reset(); 1018 return false; 1019 } 1020 1021 PtrRtCheck.Need = NeedRTCheck; 1022 1023 bool CanVecMem = true; 1024 if (Accesses.isDependencyCheckNeeded()) { 1025 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 1026 CanVecMem = DepChecker.areDepsSafe( 1027 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1028 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1029 1030 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1031 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 1032 NeedRTCheck = true; 1033 1034 // Clear the dependency checks. We assume they are not needed. 1035 Accesses.resetDepChecks(); 1036 1037 PtrRtCheck.reset(); 1038 PtrRtCheck.Need = true; 1039 1040 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 1041 TheLoop, Strides, true); 1042 // Check that we did not collect too many pointers or found an unsizeable 1043 // pointer. 1044 if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) { 1045 if (!CanDoRT && NumComparisons > 0) 1046 emitAnalysis(VectorizationReport() 1047 << "cannot check memory dependencies at runtime"); 1048 else 1049 emitAnalysis(VectorizationReport() 1050 << NumComparisons << " exceeds limit of " 1051 << VectParams.RuntimeMemoryCheckThreshold 1052 << " dependent memory operations checked at runtime"); 1053 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 1054 PtrRtCheck.reset(); 1055 return false; 1056 } 1057 1058 CanVecMem = true; 1059 } 1060 } 1061 1062 if (!CanVecMem) 1063 emitAnalysis(VectorizationReport() << 1064 "unsafe dependent memory operations in loop"); 1065 1066 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 1067 " need a runtime memory check.\n"); 1068 1069 return CanVecMem; 1070 } 1071 1072 bool LoopAccessAnalysis::blockNeedsPredication(BasicBlock *BB) { 1073 assert(TheLoop->contains(BB) && "Unknown block used"); 1074 1075 // Blocks that do not dominate the latch need predication. 1076 BasicBlock* Latch = TheLoop->getLoopLatch(); 1077 return !DT->dominates(BB, Latch); 1078 } 1079 1080 void LoopAccessAnalysis::emitAnalysis(VectorizationReport &Message) { 1081 VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop); 1082 } 1083 1084 bool LoopAccessAnalysis::isUniform(Value *V) { 1085 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1086 } 1087 1088 // FIXME: this function is currently a duplicate of the one in 1089 // LoopVectorize.cpp. 1090 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1091 Instruction *Loc) { 1092 if (FirstInst) 1093 return FirstInst; 1094 if (Instruction *I = dyn_cast<Instruction>(V)) 1095 return I->getParent() == Loc->getParent() ? I : nullptr; 1096 return nullptr; 1097 } 1098 1099 std::pair<Instruction *, Instruction *> 1100 LoopAccessAnalysis::addRuntimeCheck(Instruction *Loc) { 1101 Instruction *tnullptr = nullptr; 1102 if (!PtrRtCheck.Need) 1103 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1104 1105 unsigned NumPointers = PtrRtCheck.Pointers.size(); 1106 SmallVector<TrackingVH<Value> , 2> Starts; 1107 SmallVector<TrackingVH<Value> , 2> Ends; 1108 1109 LLVMContext &Ctx = Loc->getContext(); 1110 SCEVExpander Exp(*SE, "induction"); 1111 Instruction *FirstInst = nullptr; 1112 1113 for (unsigned i = 0; i < NumPointers; ++i) { 1114 Value *Ptr = PtrRtCheck.Pointers[i]; 1115 const SCEV *Sc = SE->getSCEV(Ptr); 1116 1117 if (SE->isLoopInvariant(Sc, TheLoop)) { 1118 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1119 *Ptr <<"\n"); 1120 Starts.push_back(Ptr); 1121 Ends.push_back(Ptr); 1122 } else { 1123 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1124 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1125 1126 // Use this type for pointer arithmetic. 1127 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1128 1129 Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); 1130 Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); 1131 Starts.push_back(Start); 1132 Ends.push_back(End); 1133 } 1134 } 1135 1136 IRBuilder<> ChkBuilder(Loc); 1137 // Our instructions might fold to a constant. 1138 Value *MemoryRuntimeCheck = nullptr; 1139 for (unsigned i = 0; i < NumPointers; ++i) { 1140 for (unsigned j = i+1; j < NumPointers; ++j) { 1141 // No need to check if two readonly pointers intersect. 1142 if (!PtrRtCheck.IsWritePtr[i] && !PtrRtCheck.IsWritePtr[j]) 1143 continue; 1144 1145 // Only need to check pointers between two different dependency sets. 1146 if (PtrRtCheck.DependencySetId[i] == PtrRtCheck.DependencySetId[j]) 1147 continue; 1148 // Only need to check pointers in the same alias set. 1149 if (PtrRtCheck.AliasSetId[i] != PtrRtCheck.AliasSetId[j]) 1150 continue; 1151 1152 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1153 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1154 1155 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1156 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1157 "Trying to bounds check pointers with different address spaces"); 1158 1159 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1160 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1161 1162 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1163 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1164 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1165 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1166 1167 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1168 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1169 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1170 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1171 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1172 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1173 if (MemoryRuntimeCheck) { 1174 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1175 "conflict.rdx"); 1176 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1177 } 1178 MemoryRuntimeCheck = IsConflict; 1179 } 1180 } 1181 1182 // We have to do this trickery because the IRBuilder might fold the check to a 1183 // constant expression in which case there is no Instruction anchored in a 1184 // the block. 1185 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1186 ConstantInt::getTrue(Ctx)); 1187 ChkBuilder.Insert(Check, "memcheck.conflict"); 1188 FirstInst = getFirstInst(FirstInst, Check, Loc); 1189 return std::make_pair(FirstInst, Check); 1190 } 1191