1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 151 if (SI == PtrToStride.end()) 152 // For a non-symbolic stride, just return the original expression. 153 return OrigSCEV; 154 155 Value *StrideVal = stripIntegerCast(SI->second); 156 157 ScalarEvolution *SE = PSE.getSE(); 158 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 159 const auto *CT = 160 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 161 162 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 163 auto *Expr = PSE.getSCEV(Ptr); 164 165 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 166 << " by: " << *Expr << "\n"); 167 return Expr; 168 } 169 170 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 171 unsigned Index, RuntimePointerChecking &RtCheck) 172 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 173 AddressSpace(RtCheck.Pointers[Index] 174 .PointerValue->getType() 175 ->getPointerAddressSpace()) { 176 Members.push_back(Index); 177 } 178 179 /// Calculate Start and End points of memory access. 180 /// Let's assume A is the first access and B is a memory access on N-th loop 181 /// iteration. Then B is calculated as: 182 /// B = A + Step*N . 183 /// Step value may be positive or negative. 184 /// N is a calculated back-edge taken count: 185 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 186 /// Start and End points are calculated in the following way: 187 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 188 /// where SizeOfElt is the size of single memory access in bytes. 189 /// 190 /// There is no conflict when the intervals are disjoint: 191 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 192 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, Type *AccessTy, 193 bool WritePtr, unsigned DepSetId, 194 unsigned ASId, 195 const ValueToValueMap &Strides, 196 PredicatedScalarEvolution &PSE) { 197 // Get the stride replaced scev. 198 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 199 ScalarEvolution *SE = PSE.getSE(); 200 201 const SCEV *ScStart; 202 const SCEV *ScEnd; 203 204 if (SE->isLoopInvariant(Sc, Lp)) { 205 ScStart = ScEnd = Sc; 206 } else { 207 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 208 assert(AR && "Invalid addrec expression"); 209 const SCEV *Ex = PSE.getBackedgeTakenCount(); 210 211 ScStart = AR->getStart(); 212 ScEnd = AR->evaluateAtIteration(Ex, *SE); 213 const SCEV *Step = AR->getStepRecurrence(*SE); 214 215 // For expressions with negative step, the upper bound is ScStart and the 216 // lower bound is ScEnd. 217 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 218 if (CStep->getValue()->isNegative()) 219 std::swap(ScStart, ScEnd); 220 } else { 221 // Fallback case: the step is not constant, but we can still 222 // get the upper and lower bounds of the interval by using min/max 223 // expressions. 224 ScStart = SE->getUMinExpr(ScStart, ScEnd); 225 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 226 } 227 } 228 // Add the size of the pointed element to ScEnd. 229 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 230 Type *IdxTy = DL.getIndexType(Ptr->getType()); 231 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 232 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 233 234 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 235 } 236 237 SmallVector<RuntimePointerCheck, 4> 238 RuntimePointerChecking::generateChecks() const { 239 SmallVector<RuntimePointerCheck, 4> Checks; 240 241 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 242 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 243 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 244 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 245 246 if (needsChecking(CGI, CGJ)) 247 Checks.push_back(std::make_pair(&CGI, &CGJ)); 248 } 249 } 250 return Checks; 251 } 252 253 void RuntimePointerChecking::generateChecks( 254 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 255 assert(Checks.empty() && "Checks is not empty"); 256 groupChecks(DepCands, UseDependencies); 257 Checks = generateChecks(); 258 } 259 260 bool RuntimePointerChecking::needsChecking( 261 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 262 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 263 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 264 if (needsChecking(M.Members[I], N.Members[J])) 265 return true; 266 return false; 267 } 268 269 /// Compare \p I and \p J and return the minimum. 270 /// Return nullptr in case we couldn't find an answer. 271 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 272 ScalarEvolution *SE) { 273 const SCEV *Diff = SE->getMinusSCEV(J, I); 274 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 275 276 if (!C) 277 return nullptr; 278 if (C->getValue()->isNegative()) 279 return J; 280 return I; 281 } 282 283 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 284 RuntimePointerChecking &RtCheck) { 285 return addPointer( 286 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 287 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 288 *RtCheck.SE); 289 } 290 291 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 292 const SCEV *End, unsigned AS, 293 ScalarEvolution &SE) { 294 assert(AddressSpace == AS && 295 "all pointers in a checking group must be in the same address space"); 296 297 // Compare the starts and ends with the known minimum and maximum 298 // of this set. We need to know how we compare against the min/max 299 // of the set in order to be able to emit memchecks. 300 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 301 if (!Min0) 302 return false; 303 304 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 305 if (!Min1) 306 return false; 307 308 // Update the low bound expression if we've found a new min value. 309 if (Min0 == Start) 310 Low = Start; 311 312 // Update the high bound expression if we've found a new max value. 313 if (Min1 != End) 314 High = End; 315 316 Members.push_back(Index); 317 return true; 318 } 319 320 void RuntimePointerChecking::groupChecks( 321 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 322 // We build the groups from dependency candidates equivalence classes 323 // because: 324 // - We know that pointers in the same equivalence class share 325 // the same underlying object and therefore there is a chance 326 // that we can compare pointers 327 // - We wouldn't be able to merge two pointers for which we need 328 // to emit a memcheck. The classes in DepCands are already 329 // conveniently built such that no two pointers in the same 330 // class need checking against each other. 331 332 // We use the following (greedy) algorithm to construct the groups 333 // For every pointer in the equivalence class: 334 // For each existing group: 335 // - if the difference between this pointer and the min/max bounds 336 // of the group is a constant, then make the pointer part of the 337 // group and update the min/max bounds of that group as required. 338 339 CheckingGroups.clear(); 340 341 // If we need to check two pointers to the same underlying object 342 // with a non-constant difference, we shouldn't perform any pointer 343 // grouping with those pointers. This is because we can easily get 344 // into cases where the resulting check would return false, even when 345 // the accesses are safe. 346 // 347 // The following example shows this: 348 // for (i = 0; i < 1000; ++i) 349 // a[5000 + i * m] = a[i] + a[i + 9000] 350 // 351 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 352 // (0, 10000) which is always false. However, if m is 1, there is no 353 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 354 // us to perform an accurate check in this case. 355 // 356 // The above case requires that we have an UnknownDependence between 357 // accesses to the same underlying object. This cannot happen unless 358 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 359 // is also false. In this case we will use the fallback path and create 360 // separate checking groups for all pointers. 361 362 // If we don't have the dependency partitions, construct a new 363 // checking pointer group for each pointer. This is also required 364 // for correctness, because in this case we can have checking between 365 // pointers to the same underlying object. 366 if (!UseDependencies) { 367 for (unsigned I = 0; I < Pointers.size(); ++I) 368 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 369 return; 370 } 371 372 unsigned TotalComparisons = 0; 373 374 DenseMap<Value *, unsigned> PositionMap; 375 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 376 PositionMap[Pointers[Index].PointerValue] = Index; 377 378 // We need to keep track of what pointers we've already seen so we 379 // don't process them twice. 380 SmallSet<unsigned, 2> Seen; 381 382 // Go through all equivalence classes, get the "pointer check groups" 383 // and add them to the overall solution. We use the order in which accesses 384 // appear in 'Pointers' to enforce determinism. 385 for (unsigned I = 0; I < Pointers.size(); ++I) { 386 // We've seen this pointer before, and therefore already processed 387 // its equivalence class. 388 if (Seen.count(I)) 389 continue; 390 391 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 392 Pointers[I].IsWritePtr); 393 394 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 395 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 396 397 // Because DepCands is constructed by visiting accesses in the order in 398 // which they appear in alias sets (which is deterministic) and the 399 // iteration order within an equivalence class member is only dependent on 400 // the order in which unions and insertions are performed on the 401 // equivalence class, the iteration order is deterministic. 402 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 403 MI != ME; ++MI) { 404 auto PointerI = PositionMap.find(MI->getPointer()); 405 assert(PointerI != PositionMap.end() && 406 "pointer in equivalence class not found in PositionMap"); 407 unsigned Pointer = PointerI->second; 408 bool Merged = false; 409 // Mark this pointer as seen. 410 Seen.insert(Pointer); 411 412 // Go through all the existing sets and see if we can find one 413 // which can include this pointer. 414 for (RuntimeCheckingPtrGroup &Group : Groups) { 415 // Don't perform more than a certain amount of comparisons. 416 // This should limit the cost of grouping the pointers to something 417 // reasonable. If we do end up hitting this threshold, the algorithm 418 // will create separate groups for all remaining pointers. 419 if (TotalComparisons > MemoryCheckMergeThreshold) 420 break; 421 422 TotalComparisons++; 423 424 if (Group.addPointer(Pointer, *this)) { 425 Merged = true; 426 break; 427 } 428 } 429 430 if (!Merged) 431 // We couldn't add this pointer to any existing set or the threshold 432 // for the number of comparisons has been reached. Create a new group 433 // to hold the current pointer. 434 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 435 } 436 437 // We've computed the grouped checks for this partition. 438 // Save the results and continue with the next one. 439 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 440 } 441 } 442 443 bool RuntimePointerChecking::arePointersInSamePartition( 444 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 445 unsigned PtrIdx2) { 446 return (PtrToPartition[PtrIdx1] != -1 && 447 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 448 } 449 450 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 451 const PointerInfo &PointerI = Pointers[I]; 452 const PointerInfo &PointerJ = Pointers[J]; 453 454 // No need to check if two readonly pointers intersect. 455 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 456 return false; 457 458 // Only need to check pointers between two different dependency sets. 459 if (PointerI.DependencySetId == PointerJ.DependencySetId) 460 return false; 461 462 // Only need to check pointers in the same alias set. 463 if (PointerI.AliasSetId != PointerJ.AliasSetId) 464 return false; 465 466 return true; 467 } 468 469 void RuntimePointerChecking::printChecks( 470 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 471 unsigned Depth) const { 472 unsigned N = 0; 473 for (const auto &Check : Checks) { 474 const auto &First = Check.first->Members, &Second = Check.second->Members; 475 476 OS.indent(Depth) << "Check " << N++ << ":\n"; 477 478 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 479 for (unsigned K = 0; K < First.size(); ++K) 480 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 481 482 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 483 for (unsigned K = 0; K < Second.size(); ++K) 484 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 485 } 486 } 487 488 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 489 490 OS.indent(Depth) << "Run-time memory checks:\n"; 491 printChecks(OS, Checks, Depth); 492 493 OS.indent(Depth) << "Grouped accesses:\n"; 494 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 495 const auto &CG = CheckingGroups[I]; 496 497 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 498 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 499 << ")\n"; 500 for (unsigned J = 0; J < CG.Members.size(); ++J) { 501 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 502 << "\n"; 503 } 504 } 505 } 506 507 namespace { 508 509 /// Analyses memory accesses in a loop. 510 /// 511 /// Checks whether run time pointer checks are needed and builds sets for data 512 /// dependence checking. 513 class AccessAnalysis { 514 public: 515 /// Read or write access location. 516 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 517 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 518 519 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 520 MemoryDepChecker::DepCandidates &DA, 521 PredicatedScalarEvolution &PSE) 522 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {} 523 524 /// Register a load and whether it is only read from. 525 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 526 Value *Ptr = const_cast<Value*>(Loc.Ptr); 527 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 528 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 529 if (IsReadOnly) 530 ReadOnlyPtr.insert(Ptr); 531 } 532 533 /// Register a store. 534 void addStore(MemoryLocation &Loc, Type *AccessTy) { 535 Value *Ptr = const_cast<Value*>(Loc.Ptr); 536 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 537 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 538 } 539 540 /// Check if we can emit a run-time no-alias check for \p Access. 541 /// 542 /// Returns true if we can emit a run-time no alias check for \p Access. 543 /// If we can check this access, this also adds it to a dependence set and 544 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 545 /// we will attempt to use additional run-time checks in order to get 546 /// the bounds of the pointer. 547 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 548 MemAccessInfo Access, Type *AccessTy, 549 const ValueToValueMap &Strides, 550 DenseMap<Value *, unsigned> &DepSetId, 551 Loop *TheLoop, unsigned &RunningDepId, 552 unsigned ASId, bool ShouldCheckStride, bool Assume); 553 554 /// Check whether we can check the pointers at runtime for 555 /// non-intersection. 556 /// 557 /// Returns true if we need no check or if we do and we can generate them 558 /// (i.e. the pointers have computable bounds). 559 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 560 Loop *TheLoop, const ValueToValueMap &Strides, 561 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 562 563 /// Goes over all memory accesses, checks whether a RT check is needed 564 /// and builds sets of dependent accesses. 565 void buildDependenceSets() { 566 processMemAccesses(); 567 } 568 569 /// Initial processing of memory accesses determined that we need to 570 /// perform dependency checking. 571 /// 572 /// Note that this can later be cleared if we retry memcheck analysis without 573 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 574 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 575 576 /// We decided that no dependence analysis would be used. Reset the state. 577 void resetDepChecks(MemoryDepChecker &DepChecker) { 578 CheckDeps.clear(); 579 DepChecker.clearDependences(); 580 } 581 582 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 583 584 private: 585 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 586 587 /// Go over all memory access and check whether runtime pointer checks 588 /// are needed and build sets of dependency check candidates. 589 void processMemAccesses(); 590 591 /// Map of all accesses. Values are the types used to access memory pointed to 592 /// by the pointer. 593 PtrAccessMap Accesses; 594 595 /// The loop being checked. 596 const Loop *TheLoop; 597 598 /// List of accesses that need a further dependence check. 599 MemAccessInfoList CheckDeps; 600 601 /// Set of pointers that are read only. 602 SmallPtrSet<Value*, 16> ReadOnlyPtr; 603 604 /// An alias set tracker to partition the access set by underlying object and 605 //intrinsic property (such as TBAA metadata). 606 AliasSetTracker AST; 607 608 LoopInfo *LI; 609 610 /// Sets of potentially dependent accesses - members of one set share an 611 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 612 /// dependence check. 613 MemoryDepChecker::DepCandidates &DepCands; 614 615 /// Initial processing of memory accesses determined that we may need 616 /// to add memchecks. Perform the analysis to determine the necessary checks. 617 /// 618 /// Note that, this is different from isDependencyCheckNeeded. When we retry 619 /// memcheck analysis without dependency checking 620 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 621 /// cleared while this remains set if we have potentially dependent accesses. 622 bool IsRTCheckAnalysisNeeded = false; 623 624 /// The SCEV predicate containing all the SCEV-related assumptions. 625 PredicatedScalarEvolution &PSE; 626 }; 627 628 } // end anonymous namespace 629 630 /// Check whether a pointer can participate in a runtime bounds check. 631 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 632 /// by adding run-time checks (overflow checks) if necessary. 633 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 634 const ValueToValueMap &Strides, Value *Ptr, 635 Loop *L, bool Assume) { 636 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 637 638 // The bounds for loop-invariant pointer is trivial. 639 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 640 return true; 641 642 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 643 644 if (!AR && Assume) 645 AR = PSE.getAsAddRec(Ptr); 646 647 if (!AR) 648 return false; 649 650 return AR->isAffine(); 651 } 652 653 /// Check whether a pointer address cannot wrap. 654 static bool isNoWrap(PredicatedScalarEvolution &PSE, 655 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 656 Loop *L) { 657 const SCEV *PtrScev = PSE.getSCEV(Ptr); 658 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 659 return true; 660 661 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 662 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 663 return true; 664 665 return false; 666 } 667 668 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 669 function_ref<void(Value *)> AddPointer) { 670 SmallPtrSet<Value *, 8> Visited; 671 SmallVector<Value *> WorkList; 672 WorkList.push_back(StartPtr); 673 674 while (!WorkList.empty()) { 675 Value *Ptr = WorkList.pop_back_val(); 676 if (!Visited.insert(Ptr).second) 677 continue; 678 auto *PN = dyn_cast<PHINode>(Ptr); 679 // SCEV does not look through non-header PHIs inside the loop. Such phis 680 // can be analyzed by adding separate accesses for each incoming pointer 681 // value. 682 if (PN && InnermostLoop.contains(PN->getParent()) && 683 PN->getParent() != InnermostLoop.getHeader()) { 684 for (const Use &Inc : PN->incoming_values()) 685 WorkList.push_back(Inc); 686 } else 687 AddPointer(Ptr); 688 } 689 } 690 691 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 692 MemAccessInfo Access, Type *AccessTy, 693 const ValueToValueMap &StridesMap, 694 DenseMap<Value *, unsigned> &DepSetId, 695 Loop *TheLoop, unsigned &RunningDepId, 696 unsigned ASId, bool ShouldCheckWrap, 697 bool Assume) { 698 Value *Ptr = Access.getPointer(); 699 700 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 701 return false; 702 703 // When we run after a failing dependency check we have to make sure 704 // we don't have wrapping pointers. 705 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 706 auto *Expr = PSE.getSCEV(Ptr); 707 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 708 return false; 709 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 710 } 711 712 // The id of the dependence set. 713 unsigned DepId; 714 715 if (isDependencyCheckNeeded()) { 716 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 717 unsigned &LeaderId = DepSetId[Leader]; 718 if (!LeaderId) 719 LeaderId = RunningDepId++; 720 DepId = LeaderId; 721 } else 722 // Each access has its own dependence set. 723 DepId = RunningDepId++; 724 725 bool IsWrite = Access.getInt(); 726 RtCheck.insert(TheLoop, Ptr, AccessTy, IsWrite, DepId, ASId, StridesMap, PSE); 727 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 728 729 return true; 730 } 731 732 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 733 ScalarEvolution *SE, Loop *TheLoop, 734 const ValueToValueMap &StridesMap, 735 Value *&UncomputablePtr, bool ShouldCheckWrap) { 736 // Find pointers with computable bounds. We are going to use this information 737 // to place a runtime bound check. 738 bool CanDoRT = true; 739 740 bool MayNeedRTCheck = false; 741 if (!IsRTCheckAnalysisNeeded) return true; 742 743 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 744 745 // We assign a consecutive id to access from different alias sets. 746 // Accesses between different groups doesn't need to be checked. 747 unsigned ASId = 0; 748 for (auto &AS : AST) { 749 int NumReadPtrChecks = 0; 750 int NumWritePtrChecks = 0; 751 bool CanDoAliasSetRT = true; 752 ++ASId; 753 754 // We assign consecutive id to access from different dependence sets. 755 // Accesses within the same set don't need a runtime check. 756 unsigned RunningDepId = 1; 757 DenseMap<Value *, unsigned> DepSetId; 758 759 SmallVector<MemAccessInfo, 4> Retries; 760 761 // First, count how many write and read accesses are in the alias set. Also 762 // collect MemAccessInfos for later. 763 SmallVector<MemAccessInfo, 4> AccessInfos; 764 for (const auto &A : AS) { 765 Value *Ptr = A.getValue(); 766 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 767 768 if (IsWrite) 769 ++NumWritePtrChecks; 770 else 771 ++NumReadPtrChecks; 772 AccessInfos.emplace_back(Ptr, IsWrite); 773 } 774 775 // We do not need runtime checks for this alias set, if there are no writes 776 // or a single write and no reads. 777 if (NumWritePtrChecks == 0 || 778 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 779 assert((AS.size() <= 1 || 780 all_of(AS, 781 [this](auto AC) { 782 MemAccessInfo AccessWrite(AC.getValue(), true); 783 return DepCands.findValue(AccessWrite) == DepCands.end(); 784 })) && 785 "Can only skip updating CanDoRT below, if all entries in AS " 786 "are reads or there is at most 1 entry"); 787 continue; 788 } 789 790 for (auto &Access : AccessInfos) { 791 for (auto &AccessTy : Accesses[Access]) { 792 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 793 DepSetId, TheLoop, RunningDepId, ASId, 794 ShouldCheckWrap, false)) { 795 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 796 << *Access.getPointer() << '\n'); 797 Retries.push_back(Access); 798 CanDoAliasSetRT = false; 799 } 800 } 801 } 802 803 // Note that this function computes CanDoRT and MayNeedRTCheck 804 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 805 // we have a pointer for which we couldn't find the bounds but we don't 806 // actually need to emit any checks so it does not matter. 807 // 808 // We need runtime checks for this alias set, if there are at least 2 809 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 810 // any bound checks (because in that case the number of dependence sets is 811 // incomplete). 812 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 813 814 // We need to perform run-time alias checks, but some pointers had bounds 815 // that couldn't be checked. 816 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 817 // Reset the CanDoSetRt flag and retry all accesses that have failed. 818 // We know that we need these checks, so we can now be more aggressive 819 // and add further checks if required (overflow checks). 820 CanDoAliasSetRT = true; 821 for (auto Access : Retries) { 822 for (auto &AccessTy : Accesses[Access]) { 823 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 824 DepSetId, TheLoop, RunningDepId, ASId, 825 ShouldCheckWrap, /*Assume=*/true)) { 826 CanDoAliasSetRT = false; 827 UncomputablePtr = Access.getPointer(); 828 break; 829 } 830 } 831 } 832 } 833 834 CanDoRT &= CanDoAliasSetRT; 835 MayNeedRTCheck |= NeedsAliasSetRTCheck; 836 ++ASId; 837 } 838 839 // If the pointers that we would use for the bounds comparison have different 840 // address spaces, assume the values aren't directly comparable, so we can't 841 // use them for the runtime check. We also have to assume they could 842 // overlap. In the future there should be metadata for whether address spaces 843 // are disjoint. 844 unsigned NumPointers = RtCheck.Pointers.size(); 845 for (unsigned i = 0; i < NumPointers; ++i) { 846 for (unsigned j = i + 1; j < NumPointers; ++j) { 847 // Only need to check pointers between two different dependency sets. 848 if (RtCheck.Pointers[i].DependencySetId == 849 RtCheck.Pointers[j].DependencySetId) 850 continue; 851 // Only need to check pointers in the same alias set. 852 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 853 continue; 854 855 Value *PtrI = RtCheck.Pointers[i].PointerValue; 856 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 857 858 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 859 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 860 if (ASi != ASj) { 861 LLVM_DEBUG( 862 dbgs() << "LAA: Runtime check would require comparison between" 863 " different address spaces\n"); 864 return false; 865 } 866 } 867 } 868 869 if (MayNeedRTCheck && CanDoRT) 870 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 871 872 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 873 << " pointer comparisons.\n"); 874 875 // If we can do run-time checks, but there are no checks, no runtime checks 876 // are needed. This can happen when all pointers point to the same underlying 877 // object for example. 878 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 879 880 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 881 if (!CanDoRTIfNeeded) 882 RtCheck.reset(); 883 return CanDoRTIfNeeded; 884 } 885 886 void AccessAnalysis::processMemAccesses() { 887 // We process the set twice: first we process read-write pointers, last we 888 // process read-only pointers. This allows us to skip dependence tests for 889 // read-only pointers. 890 891 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 892 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 893 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 894 LLVM_DEBUG({ 895 for (auto A : Accesses) 896 dbgs() << "\t" << *A.first.getPointer() << " (" 897 << (A.first.getInt() 898 ? "write" 899 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 900 : "read")) 901 << ")\n"; 902 }); 903 904 // The AliasSetTracker has nicely partitioned our pointers by metadata 905 // compatibility and potential for underlying-object overlap. As a result, we 906 // only need to check for potential pointer dependencies within each alias 907 // set. 908 for (const auto &AS : AST) { 909 // Note that both the alias-set tracker and the alias sets themselves used 910 // linked lists internally and so the iteration order here is deterministic 911 // (matching the original instruction order within each set). 912 913 bool SetHasWrite = false; 914 915 // Map of pointers to last access encountered. 916 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 917 UnderlyingObjToAccessMap ObjToLastAccess; 918 919 // Set of access to check after all writes have been processed. 920 PtrAccessMap DeferredAccesses; 921 922 // Iterate over each alias set twice, once to process read/write pointers, 923 // and then to process read-only pointers. 924 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 925 bool UseDeferred = SetIteration > 0; 926 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 927 928 for (const auto &AV : AS) { 929 Value *Ptr = AV.getValue(); 930 931 // For a single memory access in AliasSetTracker, Accesses may contain 932 // both read and write, and they both need to be handled for CheckDeps. 933 for (const auto &AC : S) { 934 if (AC.first.getPointer() != Ptr) 935 continue; 936 937 bool IsWrite = AC.first.getInt(); 938 939 // If we're using the deferred access set, then it contains only 940 // reads. 941 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 942 if (UseDeferred && !IsReadOnlyPtr) 943 continue; 944 // Otherwise, the pointer must be in the PtrAccessSet, either as a 945 // read or a write. 946 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 947 S.count(MemAccessInfo(Ptr, false))) && 948 "Alias-set pointer not in the access set?"); 949 950 MemAccessInfo Access(Ptr, IsWrite); 951 DepCands.insert(Access); 952 953 // Memorize read-only pointers for later processing and skip them in 954 // the first round (they need to be checked after we have seen all 955 // write pointers). Note: we also mark pointer that are not 956 // consecutive as "read-only" pointers (so that we check 957 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 958 if (!UseDeferred && IsReadOnlyPtr) { 959 // We only use the pointer keys, the types vector values don't 960 // matter. 961 DeferredAccesses.insert({Access, {}}); 962 continue; 963 } 964 965 // If this is a write - check other reads and writes for conflicts. If 966 // this is a read only check other writes for conflicts (but only if 967 // there is no other write to the ptr - this is an optimization to 968 // catch "a[i] = a[i] + " without having to do a dependence check). 969 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 970 CheckDeps.push_back(Access); 971 IsRTCheckAnalysisNeeded = true; 972 } 973 974 if (IsWrite) 975 SetHasWrite = true; 976 977 // Create sets of pointers connected by a shared alias set and 978 // underlying object. 979 typedef SmallVector<const Value *, 16> ValueVector; 980 ValueVector TempObjects; 981 982 getUnderlyingObjects(Ptr, TempObjects, LI); 983 LLVM_DEBUG(dbgs() 984 << "Underlying objects for pointer " << *Ptr << "\n"); 985 for (const Value *UnderlyingObj : TempObjects) { 986 // nullptr never alias, don't join sets for pointer that have "null" 987 // in their UnderlyingObjects list. 988 if (isa<ConstantPointerNull>(UnderlyingObj) && 989 !NullPointerIsDefined( 990 TheLoop->getHeader()->getParent(), 991 UnderlyingObj->getType()->getPointerAddressSpace())) 992 continue; 993 994 UnderlyingObjToAccessMap::iterator Prev = 995 ObjToLastAccess.find(UnderlyingObj); 996 if (Prev != ObjToLastAccess.end()) 997 DepCands.unionSets(Access, Prev->second); 998 999 ObjToLastAccess[UnderlyingObj] = Access; 1000 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1001 } 1002 } 1003 } 1004 } 1005 } 1006 } 1007 1008 static bool isInBoundsGep(Value *Ptr) { 1009 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1010 return GEP->isInBounds(); 1011 return false; 1012 } 1013 1014 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1015 /// i.e. monotonically increasing/decreasing. 1016 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1017 PredicatedScalarEvolution &PSE, const Loop *L) { 1018 // FIXME: This should probably only return true for NUW. 1019 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1020 return true; 1021 1022 // Scalar evolution does not propagate the non-wrapping flags to values that 1023 // are derived from a non-wrapping induction variable because non-wrapping 1024 // could be flow-sensitive. 1025 // 1026 // Look through the potentially overflowing instruction to try to prove 1027 // non-wrapping for the *specific* value of Ptr. 1028 1029 // The arithmetic implied by an inbounds GEP can't overflow. 1030 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1031 if (!GEP || !GEP->isInBounds()) 1032 return false; 1033 1034 // Make sure there is only one non-const index and analyze that. 1035 Value *NonConstIndex = nullptr; 1036 for (Value *Index : GEP->indices()) 1037 if (!isa<ConstantInt>(Index)) { 1038 if (NonConstIndex) 1039 return false; 1040 NonConstIndex = Index; 1041 } 1042 if (!NonConstIndex) 1043 // The recurrence is on the pointer, ignore for now. 1044 return false; 1045 1046 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1047 // AddRec using a NSW operation. 1048 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1049 if (OBO->hasNoSignedWrap() && 1050 // Assume constant for other the operand so that the AddRec can be 1051 // easily found. 1052 isa<ConstantInt>(OBO->getOperand(1))) { 1053 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1054 1055 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1056 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1057 } 1058 1059 return false; 1060 } 1061 1062 /// Check whether the access through \p Ptr has a constant stride. 1063 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1064 Value *Ptr, const Loop *Lp, 1065 const ValueToValueMap &StridesMap, bool Assume, 1066 bool ShouldCheckWrap) { 1067 Type *Ty = Ptr->getType(); 1068 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1069 1070 if (isa<ScalableVectorType>(AccessTy)) { 1071 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1072 << "\n"); 1073 return 0; 1074 } 1075 1076 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1077 1078 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1079 if (Assume && !AR) 1080 AR = PSE.getAsAddRec(Ptr); 1081 1082 if (!AR) { 1083 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1084 << " SCEV: " << *PtrScev << "\n"); 1085 return 0; 1086 } 1087 1088 // The access function must stride over the innermost loop. 1089 if (Lp != AR->getLoop()) { 1090 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1091 << *Ptr << " SCEV: " << *AR << "\n"); 1092 return 0; 1093 } 1094 1095 // The address calculation must not wrap. Otherwise, a dependence could be 1096 // inverted. 1097 // An inbounds getelementptr that is a AddRec with a unit stride 1098 // cannot wrap per definition. The unit stride requirement is checked later. 1099 // An getelementptr without an inbounds attribute and unit stride would have 1100 // to access the pointer value "0" which is undefined behavior in address 1101 // space 0, therefore we can also vectorize this case. 1102 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1103 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1104 bool IsNoWrapAddRec = !ShouldCheckWrap || 1105 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1106 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1107 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1108 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1109 if (Assume) { 1110 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1111 IsNoWrapAddRec = true; 1112 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1113 << "LAA: Pointer: " << *Ptr << "\n" 1114 << "LAA: SCEV: " << *AR << "\n" 1115 << "LAA: Added an overflow assumption\n"); 1116 } else { 1117 LLVM_DEBUG( 1118 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1119 << *Ptr << " SCEV: " << *AR << "\n"); 1120 return 0; 1121 } 1122 } 1123 1124 // Check the step is constant. 1125 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1126 1127 // Calculate the pointer stride and check if it is constant. 1128 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1129 if (!C) { 1130 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1131 << " SCEV: " << *AR << "\n"); 1132 return 0; 1133 } 1134 1135 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1136 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1137 int64_t Size = AllocSize.getFixedSize(); 1138 const APInt &APStepVal = C->getAPInt(); 1139 1140 // Huge step value - give up. 1141 if (APStepVal.getBitWidth() > 64) 1142 return 0; 1143 1144 int64_t StepVal = APStepVal.getSExtValue(); 1145 1146 // Strided access. 1147 int64_t Stride = StepVal / Size; 1148 int64_t Rem = StepVal % Size; 1149 if (Rem) 1150 return 0; 1151 1152 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1153 // know we can't "wrap around the address space". In case of address space 1154 // zero we know that this won't happen without triggering undefined behavior. 1155 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1156 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1157 AddrSpace))) { 1158 if (Assume) { 1159 // We can avoid this case by adding a run-time check. 1160 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1161 << "inbounds or in address space 0 may wrap:\n" 1162 << "LAA: Pointer: " << *Ptr << "\n" 1163 << "LAA: SCEV: " << *AR << "\n" 1164 << "LAA: Added an overflow assumption\n"); 1165 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1166 } else 1167 return 0; 1168 } 1169 1170 return Stride; 1171 } 1172 1173 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1174 Value *PtrB, const DataLayout &DL, 1175 ScalarEvolution &SE, bool StrictCheck, 1176 bool CheckType) { 1177 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1178 assert(cast<PointerType>(PtrA->getType()) 1179 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1180 assert(cast<PointerType>(PtrB->getType()) 1181 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1182 1183 // Make sure that A and B are different pointers. 1184 if (PtrA == PtrB) 1185 return 0; 1186 1187 // Make sure that the element types are the same if required. 1188 if (CheckType && ElemTyA != ElemTyB) 1189 return None; 1190 1191 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1192 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1193 1194 // Check that the address spaces match. 1195 if (ASA != ASB) 1196 return None; 1197 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1198 1199 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1200 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1201 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1202 1203 int Val; 1204 if (PtrA1 == PtrB1) { 1205 // Retrieve the address space again as pointer stripping now tracks through 1206 // `addrspacecast`. 1207 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1208 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1209 // Check that the address spaces match and that the pointers are valid. 1210 if (ASA != ASB) 1211 return None; 1212 1213 IdxWidth = DL.getIndexSizeInBits(ASA); 1214 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1215 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1216 1217 OffsetB -= OffsetA; 1218 Val = OffsetB.getSExtValue(); 1219 } else { 1220 // Otherwise compute the distance with SCEV between the base pointers. 1221 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1222 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1223 const auto *Diff = 1224 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1225 if (!Diff) 1226 return None; 1227 Val = Diff->getAPInt().getSExtValue(); 1228 } 1229 int Size = DL.getTypeStoreSize(ElemTyA); 1230 int Dist = Val / Size; 1231 1232 // Ensure that the calculated distance matches the type-based one after all 1233 // the bitcasts removal in the provided pointers. 1234 if (!StrictCheck || Dist * Size == Val) 1235 return Dist; 1236 return None; 1237 } 1238 1239 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1240 const DataLayout &DL, ScalarEvolution &SE, 1241 SmallVectorImpl<unsigned> &SortedIndices) { 1242 assert(llvm::all_of( 1243 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1244 "Expected list of pointer operands."); 1245 // Walk over the pointers, and map each of them to an offset relative to 1246 // first pointer in the array. 1247 Value *Ptr0 = VL[0]; 1248 1249 using DistOrdPair = std::pair<int64_t, int>; 1250 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1251 return L.first < R.first; 1252 }; 1253 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1254 Offsets.emplace(0, 0); 1255 int Cnt = 1; 1256 bool IsConsecutive = true; 1257 for (auto *Ptr : VL.drop_front()) { 1258 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1259 /*StrictCheck=*/true); 1260 if (!Diff) 1261 return false; 1262 1263 // Check if the pointer with the same offset is found. 1264 int64_t Offset = *Diff; 1265 auto Res = Offsets.emplace(Offset, Cnt); 1266 if (!Res.second) 1267 return false; 1268 // Consecutive order if the inserted element is the last one. 1269 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1270 ++Cnt; 1271 } 1272 SortedIndices.clear(); 1273 if (!IsConsecutive) { 1274 // Fill SortedIndices array only if it is non-consecutive. 1275 SortedIndices.resize(VL.size()); 1276 Cnt = 0; 1277 for (const std::pair<int64_t, int> &Pair : Offsets) { 1278 SortedIndices[Cnt] = Pair.second; 1279 ++Cnt; 1280 } 1281 } 1282 return true; 1283 } 1284 1285 /// Returns true if the memory operations \p A and \p B are consecutive. 1286 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1287 ScalarEvolution &SE, bool CheckType) { 1288 Value *PtrA = getLoadStorePointerOperand(A); 1289 Value *PtrB = getLoadStorePointerOperand(B); 1290 if (!PtrA || !PtrB) 1291 return false; 1292 Type *ElemTyA = getLoadStoreType(A); 1293 Type *ElemTyB = getLoadStoreType(B); 1294 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1295 /*StrictCheck=*/true, CheckType); 1296 return Diff && *Diff == 1; 1297 } 1298 1299 void MemoryDepChecker::addAccess(StoreInst *SI) { 1300 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1301 [this, SI](Value *Ptr) { 1302 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1303 InstMap.push_back(SI); 1304 ++AccessIdx; 1305 }); 1306 } 1307 1308 void MemoryDepChecker::addAccess(LoadInst *LI) { 1309 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1310 [this, LI](Value *Ptr) { 1311 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1312 InstMap.push_back(LI); 1313 ++AccessIdx; 1314 }); 1315 } 1316 1317 MemoryDepChecker::VectorizationSafetyStatus 1318 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1319 switch (Type) { 1320 case NoDep: 1321 case Forward: 1322 case BackwardVectorizable: 1323 return VectorizationSafetyStatus::Safe; 1324 1325 case Unknown: 1326 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1327 case ForwardButPreventsForwarding: 1328 case Backward: 1329 case BackwardVectorizableButPreventsForwarding: 1330 return VectorizationSafetyStatus::Unsafe; 1331 } 1332 llvm_unreachable("unexpected DepType!"); 1333 } 1334 1335 bool MemoryDepChecker::Dependence::isBackward() const { 1336 switch (Type) { 1337 case NoDep: 1338 case Forward: 1339 case ForwardButPreventsForwarding: 1340 case Unknown: 1341 return false; 1342 1343 case BackwardVectorizable: 1344 case Backward: 1345 case BackwardVectorizableButPreventsForwarding: 1346 return true; 1347 } 1348 llvm_unreachable("unexpected DepType!"); 1349 } 1350 1351 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1352 return isBackward() || Type == Unknown; 1353 } 1354 1355 bool MemoryDepChecker::Dependence::isForward() const { 1356 switch (Type) { 1357 case Forward: 1358 case ForwardButPreventsForwarding: 1359 return true; 1360 1361 case NoDep: 1362 case Unknown: 1363 case BackwardVectorizable: 1364 case Backward: 1365 case BackwardVectorizableButPreventsForwarding: 1366 return false; 1367 } 1368 llvm_unreachable("unexpected DepType!"); 1369 } 1370 1371 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1372 uint64_t TypeByteSize) { 1373 // If loads occur at a distance that is not a multiple of a feasible vector 1374 // factor store-load forwarding does not take place. 1375 // Positive dependences might cause troubles because vectorizing them might 1376 // prevent store-load forwarding making vectorized code run a lot slower. 1377 // a[i] = a[i-3] ^ a[i-8]; 1378 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1379 // hence on your typical architecture store-load forwarding does not take 1380 // place. Vectorizing in such cases does not make sense. 1381 // Store-load forwarding distance. 1382 1383 // After this many iterations store-to-load forwarding conflicts should not 1384 // cause any slowdowns. 1385 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1386 // Maximum vector factor. 1387 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1388 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1389 1390 // Compute the smallest VF at which the store and load would be misaligned. 1391 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1392 VF *= 2) { 1393 // If the number of vector iteration between the store and the load are 1394 // small we could incur conflicts. 1395 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1396 MaxVFWithoutSLForwardIssues = (VF >> 1); 1397 break; 1398 } 1399 } 1400 1401 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1402 LLVM_DEBUG( 1403 dbgs() << "LAA: Distance " << Distance 1404 << " that could cause a store-load forwarding conflict\n"); 1405 return true; 1406 } 1407 1408 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1409 MaxVFWithoutSLForwardIssues != 1410 VectorizerParams::MaxVectorWidth * TypeByteSize) 1411 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1412 return false; 1413 } 1414 1415 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1416 if (Status < S) 1417 Status = S; 1418 } 1419 1420 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1421 /// memory accesses, that have the same stride whose absolute value is given 1422 /// in \p Stride, and that have the same type size \p TypeByteSize, 1423 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1424 /// possible to prove statically that the dependence distance is larger 1425 /// than the range that the accesses will travel through the execution of 1426 /// the loop. If so, return true; false otherwise. This is useful for 1427 /// example in loops such as the following (PR31098): 1428 /// for (i = 0; i < D; ++i) { 1429 /// = out[i]; 1430 /// out[i+D] = 1431 /// } 1432 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1433 const SCEV &BackedgeTakenCount, 1434 const SCEV &Dist, uint64_t Stride, 1435 uint64_t TypeByteSize) { 1436 1437 // If we can prove that 1438 // (**) |Dist| > BackedgeTakenCount * Step 1439 // where Step is the absolute stride of the memory accesses in bytes, 1440 // then there is no dependence. 1441 // 1442 // Rationale: 1443 // We basically want to check if the absolute distance (|Dist/Step|) 1444 // is >= the loop iteration count (or > BackedgeTakenCount). 1445 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1446 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1447 // that the dependence distance is >= VF; This is checked elsewhere. 1448 // But in some cases we can prune unknown dependence distances early, and 1449 // even before selecting the VF, and without a runtime test, by comparing 1450 // the distance against the loop iteration count. Since the vectorized code 1451 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1452 // also guarantees that distance >= VF. 1453 // 1454 const uint64_t ByteStride = Stride * TypeByteSize; 1455 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1456 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1457 1458 const SCEV *CastedDist = &Dist; 1459 const SCEV *CastedProduct = Product; 1460 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1461 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1462 1463 // The dependence distance can be positive/negative, so we sign extend Dist; 1464 // The multiplication of the absolute stride in bytes and the 1465 // backedgeTakenCount is non-negative, so we zero extend Product. 1466 if (DistTypeSize > ProductTypeSize) 1467 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1468 else 1469 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1470 1471 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1472 // (If so, then we have proven (**) because |Dist| >= Dist) 1473 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1474 if (SE.isKnownPositive(Minus)) 1475 return true; 1476 1477 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1478 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1479 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1480 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1481 if (SE.isKnownPositive(Minus)) 1482 return true; 1483 1484 return false; 1485 } 1486 1487 /// Check the dependence for two accesses with the same stride \p Stride. 1488 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1489 /// bytes. 1490 /// 1491 /// \returns true if they are independent. 1492 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1493 uint64_t TypeByteSize) { 1494 assert(Stride > 1 && "The stride must be greater than 1"); 1495 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1496 assert(Distance > 0 && "The distance must be non-zero"); 1497 1498 // Skip if the distance is not multiple of type byte size. 1499 if (Distance % TypeByteSize) 1500 return false; 1501 1502 uint64_t ScaledDist = Distance / TypeByteSize; 1503 1504 // No dependence if the scaled distance is not multiple of the stride. 1505 // E.g. 1506 // for (i = 0; i < 1024 ; i += 4) 1507 // A[i+2] = A[i] + 1; 1508 // 1509 // Two accesses in memory (scaled distance is 2, stride is 4): 1510 // | A[0] | | | | A[4] | | | | 1511 // | | | A[2] | | | | A[6] | | 1512 // 1513 // E.g. 1514 // for (i = 0; i < 1024 ; i += 3) 1515 // A[i+4] = A[i] + 1; 1516 // 1517 // Two accesses in memory (scaled distance is 4, stride is 3): 1518 // | A[0] | | | A[3] | | | A[6] | | | 1519 // | | | | | A[4] | | | A[7] | | 1520 return ScaledDist % Stride; 1521 } 1522 1523 MemoryDepChecker::Dependence::DepType 1524 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1525 const MemAccessInfo &B, unsigned BIdx, 1526 const ValueToValueMap &Strides) { 1527 assert (AIdx < BIdx && "Must pass arguments in program order"); 1528 1529 Value *APtr = A.getPointer(); 1530 Value *BPtr = B.getPointer(); 1531 bool AIsWrite = A.getInt(); 1532 bool BIsWrite = B.getInt(); 1533 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1534 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1535 1536 // Two reads are independent. 1537 if (!AIsWrite && !BIsWrite) 1538 return Dependence::NoDep; 1539 1540 // We cannot check pointers in different address spaces. 1541 if (APtr->getType()->getPointerAddressSpace() != 1542 BPtr->getType()->getPointerAddressSpace()) 1543 return Dependence::Unknown; 1544 1545 int64_t StrideAPtr = 1546 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1547 int64_t StrideBPtr = 1548 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1549 1550 const SCEV *Src = PSE.getSCEV(APtr); 1551 const SCEV *Sink = PSE.getSCEV(BPtr); 1552 1553 // If the induction step is negative we have to invert source and sink of the 1554 // dependence. 1555 if (StrideAPtr < 0) { 1556 std::swap(APtr, BPtr); 1557 std::swap(ATy, BTy); 1558 std::swap(Src, Sink); 1559 std::swap(AIsWrite, BIsWrite); 1560 std::swap(AIdx, BIdx); 1561 std::swap(StrideAPtr, StrideBPtr); 1562 } 1563 1564 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1565 1566 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1567 << "(Induction step: " << StrideAPtr << ")\n"); 1568 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1569 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1570 1571 // Need accesses with constant stride. We don't want to vectorize 1572 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1573 // the address space. 1574 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1575 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1576 return Dependence::Unknown; 1577 } 1578 1579 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1580 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1581 bool HasSameSize = 1582 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1583 uint64_t Stride = std::abs(StrideAPtr); 1584 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1585 if (!C) { 1586 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1587 isSafeDependenceDistance(DL, *(PSE.getSE()), 1588 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1589 TypeByteSize)) 1590 return Dependence::NoDep; 1591 1592 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1593 FoundNonConstantDistanceDependence = true; 1594 return Dependence::Unknown; 1595 } 1596 1597 const APInt &Val = C->getAPInt(); 1598 int64_t Distance = Val.getSExtValue(); 1599 1600 // Attempt to prove strided accesses independent. 1601 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1602 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1603 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1604 return Dependence::NoDep; 1605 } 1606 1607 // Negative distances are not plausible dependencies. 1608 if (Val.isNegative()) { 1609 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1610 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1611 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1612 !HasSameSize)) { 1613 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1614 return Dependence::ForwardButPreventsForwarding; 1615 } 1616 1617 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1618 return Dependence::Forward; 1619 } 1620 1621 // Write to the same location with the same size. 1622 if (Val == 0) { 1623 if (HasSameSize) 1624 return Dependence::Forward; 1625 LLVM_DEBUG( 1626 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1627 return Dependence::Unknown; 1628 } 1629 1630 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1631 1632 if (!HasSameSize) { 1633 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1634 "different type sizes\n"); 1635 return Dependence::Unknown; 1636 } 1637 1638 // Bail out early if passed-in parameters make vectorization not feasible. 1639 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1640 VectorizerParams::VectorizationFactor : 1); 1641 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1642 VectorizerParams::VectorizationInterleave : 1); 1643 // The minimum number of iterations for a vectorized/unrolled version. 1644 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1645 1646 // It's not vectorizable if the distance is smaller than the minimum distance 1647 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1648 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1649 // TypeByteSize (No need to plus the last gap distance). 1650 // 1651 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1652 // foo(int *A) { 1653 // int *B = (int *)((char *)A + 14); 1654 // for (i = 0 ; i < 1024 ; i += 2) 1655 // B[i] = A[i] + 1; 1656 // } 1657 // 1658 // Two accesses in memory (stride is 2): 1659 // | A[0] | | A[2] | | A[4] | | A[6] | | 1660 // | B[0] | | B[2] | | B[4] | 1661 // 1662 // Distance needs for vectorizing iterations except the last iteration: 1663 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1664 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1665 // 1666 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1667 // 12, which is less than distance. 1668 // 1669 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1670 // the minimum distance needed is 28, which is greater than distance. It is 1671 // not safe to do vectorization. 1672 uint64_t MinDistanceNeeded = 1673 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1674 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1675 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1676 << Distance << '\n'); 1677 return Dependence::Backward; 1678 } 1679 1680 // Unsafe if the minimum distance needed is greater than max safe distance. 1681 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1682 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1683 << MinDistanceNeeded << " size in bytes"); 1684 return Dependence::Backward; 1685 } 1686 1687 // Positive distance bigger than max vectorization factor. 1688 // FIXME: Should use max factor instead of max distance in bytes, which could 1689 // not handle different types. 1690 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1691 // void foo (int *A, char *B) { 1692 // for (unsigned i = 0; i < 1024; i++) { 1693 // A[i+2] = A[i] + 1; 1694 // B[i+2] = B[i] + 1; 1695 // } 1696 // } 1697 // 1698 // This case is currently unsafe according to the max safe distance. If we 1699 // analyze the two accesses on array B, the max safe dependence distance 1700 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1701 // is 8, which is less than 2 and forbidden vectorization, But actually 1702 // both A and B could be vectorized by 2 iterations. 1703 MaxSafeDepDistBytes = 1704 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1705 1706 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1707 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1708 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1709 return Dependence::BackwardVectorizableButPreventsForwarding; 1710 1711 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1712 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1713 << " with max VF = " << MaxVF << '\n'); 1714 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1715 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1716 return Dependence::BackwardVectorizable; 1717 } 1718 1719 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1720 MemAccessInfoList &CheckDeps, 1721 const ValueToValueMap &Strides) { 1722 1723 MaxSafeDepDistBytes = -1; 1724 SmallPtrSet<MemAccessInfo, 8> Visited; 1725 for (MemAccessInfo CurAccess : CheckDeps) { 1726 if (Visited.count(CurAccess)) 1727 continue; 1728 1729 // Get the relevant memory access set. 1730 EquivalenceClasses<MemAccessInfo>::iterator I = 1731 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1732 1733 // Check accesses within this set. 1734 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1735 AccessSets.member_begin(I); 1736 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1737 AccessSets.member_end(); 1738 1739 // Check every access pair. 1740 while (AI != AE) { 1741 Visited.insert(*AI); 1742 bool AIIsWrite = AI->getInt(); 1743 // Check loads only against next equivalent class, but stores also against 1744 // other stores in the same equivalence class - to the same address. 1745 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1746 (AIIsWrite ? AI : std::next(AI)); 1747 while (OI != AE) { 1748 // Check every accessing instruction pair in program order. 1749 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1750 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1751 // Scan all accesses of another equivalence class, but only the next 1752 // accesses of the same equivalent class. 1753 for (std::vector<unsigned>::iterator 1754 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1755 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1756 I2 != I2E; ++I2) { 1757 auto A = std::make_pair(&*AI, *I1); 1758 auto B = std::make_pair(&*OI, *I2); 1759 1760 assert(*I1 != *I2); 1761 if (*I1 > *I2) 1762 std::swap(A, B); 1763 1764 Dependence::DepType Type = 1765 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1766 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1767 1768 // Gather dependences unless we accumulated MaxDependences 1769 // dependences. In that case return as soon as we find the first 1770 // unsafe dependence. This puts a limit on this quadratic 1771 // algorithm. 1772 if (RecordDependences) { 1773 if (Type != Dependence::NoDep) 1774 Dependences.push_back(Dependence(A.second, B.second, Type)); 1775 1776 if (Dependences.size() >= MaxDependences) { 1777 RecordDependences = false; 1778 Dependences.clear(); 1779 LLVM_DEBUG(dbgs() 1780 << "Too many dependences, stopped recording\n"); 1781 } 1782 } 1783 if (!RecordDependences && !isSafeForVectorization()) 1784 return false; 1785 } 1786 ++OI; 1787 } 1788 AI++; 1789 } 1790 } 1791 1792 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1793 return isSafeForVectorization(); 1794 } 1795 1796 SmallVector<Instruction *, 4> 1797 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1798 MemAccessInfo Access(Ptr, isWrite); 1799 auto &IndexVector = Accesses.find(Access)->second; 1800 1801 SmallVector<Instruction *, 4> Insts; 1802 transform(IndexVector, 1803 std::back_inserter(Insts), 1804 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1805 return Insts; 1806 } 1807 1808 const char *MemoryDepChecker::Dependence::DepName[] = { 1809 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1810 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1811 1812 void MemoryDepChecker::Dependence::print( 1813 raw_ostream &OS, unsigned Depth, 1814 const SmallVectorImpl<Instruction *> &Instrs) const { 1815 OS.indent(Depth) << DepName[Type] << ":\n"; 1816 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1817 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1818 } 1819 1820 bool LoopAccessInfo::canAnalyzeLoop() { 1821 // We need to have a loop header. 1822 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1823 << TheLoop->getHeader()->getParent()->getName() << ": " 1824 << TheLoop->getHeader()->getName() << '\n'); 1825 1826 // We can only analyze innermost loops. 1827 if (!TheLoop->isInnermost()) { 1828 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1829 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1830 return false; 1831 } 1832 1833 // We must have a single backedge. 1834 if (TheLoop->getNumBackEdges() != 1) { 1835 LLVM_DEBUG( 1836 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1837 recordAnalysis("CFGNotUnderstood") 1838 << "loop control flow is not understood by analyzer"; 1839 return false; 1840 } 1841 1842 // ScalarEvolution needs to be able to find the exit count. 1843 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1844 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1845 recordAnalysis("CantComputeNumberOfIterations") 1846 << "could not determine number of loop iterations"; 1847 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1848 return false; 1849 } 1850 1851 return true; 1852 } 1853 1854 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1855 const TargetLibraryInfo *TLI, 1856 DominatorTree *DT) { 1857 // Holds the Load and Store instructions. 1858 SmallVector<LoadInst *, 16> Loads; 1859 SmallVector<StoreInst *, 16> Stores; 1860 1861 // Holds all the different accesses in the loop. 1862 unsigned NumReads = 0; 1863 unsigned NumReadWrites = 0; 1864 1865 bool HasComplexMemInst = false; 1866 1867 // A runtime check is only legal to insert if there are no convergent calls. 1868 HasConvergentOp = false; 1869 1870 PtrRtChecking->Pointers.clear(); 1871 PtrRtChecking->Need = false; 1872 1873 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1874 1875 const bool EnableMemAccessVersioningOfLoop = 1876 EnableMemAccessVersioning && 1877 !TheLoop->getHeader()->getParent()->hasOptSize(); 1878 1879 // For each block. 1880 for (BasicBlock *BB : TheLoop->blocks()) { 1881 // Scan the BB and collect legal loads and stores. Also detect any 1882 // convergent instructions. 1883 for (Instruction &I : *BB) { 1884 if (auto *Call = dyn_cast<CallBase>(&I)) { 1885 if (Call->isConvergent()) 1886 HasConvergentOp = true; 1887 } 1888 1889 // With both a non-vectorizable memory instruction and a convergent 1890 // operation, found in this loop, no reason to continue the search. 1891 if (HasComplexMemInst && HasConvergentOp) { 1892 CanVecMem = false; 1893 return; 1894 } 1895 1896 // Avoid hitting recordAnalysis multiple times. 1897 if (HasComplexMemInst) 1898 continue; 1899 1900 // If this is a load, save it. If this instruction can read from memory 1901 // but is not a load, then we quit. Notice that we don't handle function 1902 // calls that read or write. 1903 if (I.mayReadFromMemory()) { 1904 // Many math library functions read the rounding mode. We will only 1905 // vectorize a loop if it contains known function calls that don't set 1906 // the flag. Therefore, it is safe to ignore this read from memory. 1907 auto *Call = dyn_cast<CallInst>(&I); 1908 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1909 continue; 1910 1911 // If the function has an explicit vectorized counterpart, we can safely 1912 // assume that it can be vectorized. 1913 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1914 !VFDatabase::getMappings(*Call).empty()) 1915 continue; 1916 1917 auto *Ld = dyn_cast<LoadInst>(&I); 1918 if (!Ld) { 1919 recordAnalysis("CantVectorizeInstruction", Ld) 1920 << "instruction cannot be vectorized"; 1921 HasComplexMemInst = true; 1922 continue; 1923 } 1924 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1925 recordAnalysis("NonSimpleLoad", Ld) 1926 << "read with atomic ordering or volatile read"; 1927 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1928 HasComplexMemInst = true; 1929 continue; 1930 } 1931 NumLoads++; 1932 Loads.push_back(Ld); 1933 DepChecker->addAccess(Ld); 1934 if (EnableMemAccessVersioningOfLoop) 1935 collectStridedAccess(Ld); 1936 continue; 1937 } 1938 1939 // Save 'store' instructions. Abort if other instructions write to memory. 1940 if (I.mayWriteToMemory()) { 1941 auto *St = dyn_cast<StoreInst>(&I); 1942 if (!St) { 1943 recordAnalysis("CantVectorizeInstruction", St) 1944 << "instruction cannot be vectorized"; 1945 HasComplexMemInst = true; 1946 continue; 1947 } 1948 if (!St->isSimple() && !IsAnnotatedParallel) { 1949 recordAnalysis("NonSimpleStore", St) 1950 << "write with atomic ordering or volatile write"; 1951 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1952 HasComplexMemInst = true; 1953 continue; 1954 } 1955 NumStores++; 1956 Stores.push_back(St); 1957 DepChecker->addAccess(St); 1958 if (EnableMemAccessVersioningOfLoop) 1959 collectStridedAccess(St); 1960 } 1961 } // Next instr. 1962 } // Next block. 1963 1964 if (HasComplexMemInst) { 1965 CanVecMem = false; 1966 return; 1967 } 1968 1969 // Now we have two lists that hold the loads and the stores. 1970 // Next, we find the pointers that they use. 1971 1972 // Check if we see any stores. If there are no stores, then we don't 1973 // care if the pointers are *restrict*. 1974 if (!Stores.size()) { 1975 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1976 CanVecMem = true; 1977 return; 1978 } 1979 1980 MemoryDepChecker::DepCandidates DependentAccesses; 1981 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1982 1983 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1984 // multiple times on the same object. If the ptr is accessed twice, once 1985 // for read and once for write, it will only appear once (on the write 1986 // list). This is okay, since we are going to check for conflicts between 1987 // writes and between reads and writes, but not between reads and reads. 1988 SmallSet<std::pair<Value *, Type *>, 16> Seen; 1989 1990 // Record uniform store addresses to identify if we have multiple stores 1991 // to the same address. 1992 SmallPtrSet<Value *, 16> UniformStores; 1993 1994 for (StoreInst *ST : Stores) { 1995 Value *Ptr = ST->getPointerOperand(); 1996 1997 if (isUniform(Ptr)) 1998 HasDependenceInvolvingLoopInvariantAddress |= 1999 !UniformStores.insert(Ptr).second; 2000 2001 // If we did *not* see this pointer before, insert it to the read-write 2002 // list. At this phase it is only a 'write' list. 2003 Type *AccessTy = getLoadStoreType(ST); 2004 if (Seen.insert({Ptr, AccessTy}).second) { 2005 ++NumReadWrites; 2006 2007 MemoryLocation Loc = MemoryLocation::get(ST); 2008 // The TBAA metadata could have a control dependency on the predication 2009 // condition, so we cannot rely on it when determining whether or not we 2010 // need runtime pointer checks. 2011 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2012 Loc.AATags.TBAA = nullptr; 2013 2014 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2015 [&Accesses, AccessTy, Loc](Value *Ptr) { 2016 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2017 Accesses.addStore(NewLoc, AccessTy); 2018 }); 2019 } 2020 } 2021 2022 if (IsAnnotatedParallel) { 2023 LLVM_DEBUG( 2024 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2025 << "checks.\n"); 2026 CanVecMem = true; 2027 return; 2028 } 2029 2030 for (LoadInst *LD : Loads) { 2031 Value *Ptr = LD->getPointerOperand(); 2032 // If we did *not* see this pointer before, insert it to the 2033 // read list. If we *did* see it before, then it is already in 2034 // the read-write list. This allows us to vectorize expressions 2035 // such as A[i] += x; Because the address of A[i] is a read-write 2036 // pointer. This only works if the index of A[i] is consecutive. 2037 // If the address of i is unknown (for example A[B[i]]) then we may 2038 // read a few words, modify, and write a few words, and some of the 2039 // words may be written to the same address. 2040 bool IsReadOnlyPtr = false; 2041 Type *AccessTy = getLoadStoreType(LD); 2042 if (Seen.insert({Ptr, AccessTy}).second || 2043 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2044 ++NumReads; 2045 IsReadOnlyPtr = true; 2046 } 2047 2048 // See if there is an unsafe dependency between a load to a uniform address and 2049 // store to the same uniform address. 2050 if (UniformStores.count(Ptr)) { 2051 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2052 "load and uniform store to the same address!\n"); 2053 HasDependenceInvolvingLoopInvariantAddress = true; 2054 } 2055 2056 MemoryLocation Loc = MemoryLocation::get(LD); 2057 // The TBAA metadata could have a control dependency on the predication 2058 // condition, so we cannot rely on it when determining whether or not we 2059 // need runtime pointer checks. 2060 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2061 Loc.AATags.TBAA = nullptr; 2062 2063 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2064 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2065 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2066 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2067 }); 2068 } 2069 2070 // If we write (or read-write) to a single destination and there are no 2071 // other reads in this loop then is it safe to vectorize. 2072 if (NumReadWrites == 1 && NumReads == 0) { 2073 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2074 CanVecMem = true; 2075 return; 2076 } 2077 2078 // Build dependence sets and check whether we need a runtime pointer bounds 2079 // check. 2080 Accesses.buildDependenceSets(); 2081 2082 // Find pointers with computable bounds. We are going to use this information 2083 // to place a runtime bound check. 2084 Value *UncomputablePtr = nullptr; 2085 bool CanDoRTIfNeeded = 2086 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2087 SymbolicStrides, UncomputablePtr, false); 2088 if (!CanDoRTIfNeeded) { 2089 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2090 recordAnalysis("CantIdentifyArrayBounds", I) 2091 << "cannot identify array bounds"; 2092 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2093 << "the array bounds.\n"); 2094 CanVecMem = false; 2095 return; 2096 } 2097 2098 LLVM_DEBUG( 2099 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2100 2101 CanVecMem = true; 2102 if (Accesses.isDependencyCheckNeeded()) { 2103 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2104 CanVecMem = DepChecker->areDepsSafe( 2105 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2106 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2107 2108 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2109 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2110 2111 // Clear the dependency checks. We assume they are not needed. 2112 Accesses.resetDepChecks(*DepChecker); 2113 2114 PtrRtChecking->reset(); 2115 PtrRtChecking->Need = true; 2116 2117 auto *SE = PSE->getSE(); 2118 UncomputablePtr = nullptr; 2119 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2120 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2121 2122 // Check that we found the bounds for the pointer. 2123 if (!CanDoRTIfNeeded) { 2124 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2125 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2126 << "cannot check memory dependencies at runtime"; 2127 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2128 CanVecMem = false; 2129 return; 2130 } 2131 2132 CanVecMem = true; 2133 } 2134 } 2135 2136 if (HasConvergentOp) { 2137 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2138 << "cannot add control dependency to convergent operation"; 2139 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2140 "would be needed with a convergent operation\n"); 2141 CanVecMem = false; 2142 return; 2143 } 2144 2145 if (CanVecMem) 2146 LLVM_DEBUG( 2147 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2148 << (PtrRtChecking->Need ? "" : " don't") 2149 << " need runtime memory checks.\n"); 2150 else 2151 emitUnsafeDependenceRemark(); 2152 } 2153 2154 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2155 auto Deps = getDepChecker().getDependences(); 2156 if (!Deps) 2157 return; 2158 auto Found = std::find_if( 2159 Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) { 2160 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2161 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2162 }); 2163 if (Found == Deps->end()) 2164 return; 2165 MemoryDepChecker::Dependence Dep = *Found; 2166 2167 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2168 2169 // Emit remark for first unsafe dependence 2170 OptimizationRemarkAnalysis &R = 2171 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2172 << "unsafe dependent memory operations in loop. Use " 2173 "#pragma loop distribute(enable) to allow loop distribution " 2174 "to attempt to isolate the offending operations into a separate " 2175 "loop"; 2176 2177 switch (Dep.Type) { 2178 case MemoryDepChecker::Dependence::NoDep: 2179 case MemoryDepChecker::Dependence::Forward: 2180 case MemoryDepChecker::Dependence::BackwardVectorizable: 2181 llvm_unreachable("Unexpected dependence"); 2182 case MemoryDepChecker::Dependence::Backward: 2183 R << "\nBackward loop carried data dependence."; 2184 break; 2185 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2186 R << "\nForward loop carried data dependence that prevents " 2187 "store-to-load forwarding."; 2188 break; 2189 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2190 R << "\nBackward loop carried data dependence that prevents " 2191 "store-to-load forwarding."; 2192 break; 2193 case MemoryDepChecker::Dependence::Unknown: 2194 R << "\nUnknown data dependence."; 2195 break; 2196 } 2197 2198 if (Instruction *I = Dep.getSource(*this)) { 2199 DebugLoc SourceLoc = I->getDebugLoc(); 2200 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2201 SourceLoc = DD->getDebugLoc(); 2202 if (SourceLoc) 2203 R << " Memory location is the same as accessed at " 2204 << ore::NV("Location", SourceLoc); 2205 } 2206 } 2207 2208 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2209 DominatorTree *DT) { 2210 assert(TheLoop->contains(BB) && "Unknown block used"); 2211 2212 // Blocks that do not dominate the latch need predication. 2213 BasicBlock* Latch = TheLoop->getLoopLatch(); 2214 return !DT->dominates(BB, Latch); 2215 } 2216 2217 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2218 Instruction *I) { 2219 assert(!Report && "Multiple reports generated"); 2220 2221 Value *CodeRegion = TheLoop->getHeader(); 2222 DebugLoc DL = TheLoop->getStartLoc(); 2223 2224 if (I) { 2225 CodeRegion = I->getParent(); 2226 // If there is no debug location attached to the instruction, revert back to 2227 // using the loop's. 2228 if (I->getDebugLoc()) 2229 DL = I->getDebugLoc(); 2230 } 2231 2232 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2233 CodeRegion); 2234 return *Report; 2235 } 2236 2237 bool LoopAccessInfo::isUniform(Value *V) const { 2238 auto *SE = PSE->getSE(); 2239 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2240 // never considered uniform. 2241 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2242 // trivially loop-invariant FP values to be considered uniform. 2243 if (!SE->isSCEVable(V->getType())) 2244 return false; 2245 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2246 } 2247 2248 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2249 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2250 if (!Ptr) 2251 return; 2252 2253 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2254 if (!Stride) 2255 return; 2256 2257 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2258 "versioning:"); 2259 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2260 2261 // Avoid adding the "Stride == 1" predicate when we know that 2262 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2263 // or zero iteration loop, as Trip-Count <= Stride == 1. 2264 // 2265 // TODO: We are currently not making a very informed decision on when it is 2266 // beneficial to apply stride versioning. It might make more sense that the 2267 // users of this analysis (such as the vectorizer) will trigger it, based on 2268 // their specific cost considerations; For example, in cases where stride 2269 // versioning does not help resolving memory accesses/dependences, the 2270 // vectorizer should evaluate the cost of the runtime test, and the benefit 2271 // of various possible stride specializations, considering the alternatives 2272 // of using gather/scatters (if available). 2273 2274 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2275 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2276 2277 // Match the types so we can compare the stride and the BETakenCount. 2278 // The Stride can be positive/negative, so we sign extend Stride; 2279 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2280 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2281 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2282 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2283 const SCEV *CastedStride = StrideExpr; 2284 const SCEV *CastedBECount = BETakenCount; 2285 ScalarEvolution *SE = PSE->getSE(); 2286 if (BETypeSize >= StrideTypeSize) 2287 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2288 else 2289 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2290 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2291 // Since TripCount == BackEdgeTakenCount + 1, checking: 2292 // "Stride >= TripCount" is equivalent to checking: 2293 // Stride - BETakenCount > 0 2294 if (SE->isKnownPositive(StrideMinusBETaken)) { 2295 LLVM_DEBUG( 2296 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2297 "Stride==1 predicate will imply that the loop executes " 2298 "at most once.\n"); 2299 return; 2300 } 2301 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2302 2303 SymbolicStrides[Ptr] = Stride; 2304 StrideSet.insert(Stride); 2305 } 2306 2307 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2308 const TargetLibraryInfo *TLI, AAResults *AA, 2309 DominatorTree *DT, LoopInfo *LI) 2310 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2311 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2312 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2313 if (canAnalyzeLoop()) 2314 analyzeLoop(AA, LI, TLI, DT); 2315 } 2316 2317 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2318 if (CanVecMem) { 2319 OS.indent(Depth) << "Memory dependences are safe"; 2320 if (MaxSafeDepDistBytes != -1ULL) 2321 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2322 << " bytes"; 2323 if (PtrRtChecking->Need) 2324 OS << " with run-time checks"; 2325 OS << "\n"; 2326 } 2327 2328 if (HasConvergentOp) 2329 OS.indent(Depth) << "Has convergent operation in loop\n"; 2330 2331 if (Report) 2332 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2333 2334 if (auto *Dependences = DepChecker->getDependences()) { 2335 OS.indent(Depth) << "Dependences:\n"; 2336 for (auto &Dep : *Dependences) { 2337 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2338 OS << "\n"; 2339 } 2340 } else 2341 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2342 2343 // List the pair of accesses need run-time checks to prove independence. 2344 PtrRtChecking->print(OS, Depth); 2345 OS << "\n"; 2346 2347 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2348 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2349 << "found in loop.\n"; 2350 2351 OS.indent(Depth) << "SCEV assumptions:\n"; 2352 PSE->getPredicate().print(OS, Depth); 2353 2354 OS << "\n"; 2355 2356 OS.indent(Depth) << "Expressions re-written:\n"; 2357 PSE->print(OS, Depth); 2358 } 2359 2360 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2361 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2362 } 2363 2364 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2365 auto &LAI = LoopAccessInfoMap[L]; 2366 2367 if (!LAI) 2368 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2369 2370 return *LAI.get(); 2371 } 2372 2373 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2374 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2375 2376 for (Loop *TopLevelLoop : *LI) 2377 for (Loop *L : depth_first(TopLevelLoop)) { 2378 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2379 auto &LAI = LAA.getInfo(L); 2380 LAI.print(OS, 4); 2381 } 2382 } 2383 2384 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2385 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2386 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2387 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2388 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2389 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2390 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2391 2392 return false; 2393 } 2394 2395 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2396 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2397 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2398 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2399 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2400 2401 AU.setPreservesAll(); 2402 } 2403 2404 char LoopAccessLegacyAnalysis::ID = 0; 2405 static const char laa_name[] = "Loop Access Analysis"; 2406 #define LAA_NAME "loop-accesses" 2407 2408 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2409 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2410 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2411 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2412 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2413 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2414 2415 AnalysisKey LoopAccessAnalysis::Key; 2416 2417 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2418 LoopStandardAnalysisResults &AR) { 2419 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2420 } 2421 2422 namespace llvm { 2423 2424 Pass *createLAAPass() { 2425 return new LoopAccessLegacyAnalysis(); 2426 } 2427 2428 } // end namespace llvm 2429