1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <cstdlib> 65 #include <iterator> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 bool VectorizerParams::isInterleaveForced() { 134 return ::VectorizationInterleave.getNumOccurrences() > 0; 135 } 136 137 Value *llvm::stripIntegerCast(Value *V) { 138 if (auto *CI = dyn_cast<CastInst>(V)) 139 if (CI->getOperand(0)->getType()->isIntegerTy()) 140 return CI->getOperand(0); 141 return V; 142 } 143 144 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 145 const ValueToValueMap &PtrToStride, 146 Value *Ptr, Value *OrigPtr) { 147 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 148 149 // If there is an entry in the map return the SCEV of the pointer with the 150 // symbolic stride replaced by one. 151 ValueToValueMap::const_iterator SI = 152 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 153 if (SI != PtrToStride.end()) { 154 Value *StrideVal = SI->second; 155 156 // Strip casts. 157 StrideVal = stripIntegerCast(StrideVal); 158 159 ScalarEvolution *SE = PSE.getSE(); 160 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 161 const auto *CT = 162 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 163 164 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 165 auto *Expr = PSE.getSCEV(Ptr); 166 167 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 168 << " by: " << *Expr << "\n"); 169 return Expr; 170 } 171 172 // Otherwise, just return the SCEV of the original pointer. 173 return OrigSCEV; 174 } 175 176 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 177 unsigned Index, RuntimePointerChecking &RtCheck) 178 : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End), 179 Low(RtCheck.Pointers[Index].Start) { 180 Members.push_back(Index); 181 } 182 183 /// Calculate Start and End points of memory access. 184 /// Let's assume A is the first access and B is a memory access on N-th loop 185 /// iteration. Then B is calculated as: 186 /// B = A + Step*N . 187 /// Step value may be positive or negative. 188 /// N is a calculated back-edge taken count: 189 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 190 /// Start and End points are calculated in the following way: 191 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 192 /// where SizeOfElt is the size of single memory access in bytes. 193 /// 194 /// There is no conflict when the intervals are disjoint: 195 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 196 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 197 unsigned DepSetId, unsigned ASId, 198 const ValueToValueMap &Strides, 199 PredicatedScalarEvolution &PSE) { 200 // Get the stride replaced scev. 201 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 202 ScalarEvolution *SE = PSE.getSE(); 203 204 const SCEV *ScStart; 205 const SCEV *ScEnd; 206 207 if (SE->isLoopInvariant(Sc, Lp)) 208 ScStart = ScEnd = Sc; 209 else { 210 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 211 assert(AR && "Invalid addrec expression"); 212 const SCEV *Ex = PSE.getBackedgeTakenCount(); 213 214 ScStart = AR->getStart(); 215 ScEnd = AR->evaluateAtIteration(Ex, *SE); 216 const SCEV *Step = AR->getStepRecurrence(*SE); 217 218 // For expressions with negative step, the upper bound is ScStart and the 219 // lower bound is ScEnd. 220 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 221 if (CStep->getValue()->isNegative()) 222 std::swap(ScStart, ScEnd); 223 } else { 224 // Fallback case: the step is not constant, but we can still 225 // get the upper and lower bounds of the interval by using min/max 226 // expressions. 227 ScStart = SE->getUMinExpr(ScStart, ScEnd); 228 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 229 } 230 // Add the size of the pointed element to ScEnd. 231 unsigned EltSize = 232 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 233 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 234 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 235 } 236 237 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 238 } 239 240 SmallVector<RuntimePointerCheck, 4> 241 RuntimePointerChecking::generateChecks() const { 242 SmallVector<RuntimePointerCheck, 4> Checks; 243 244 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 245 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 246 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 247 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 248 249 if (needsChecking(CGI, CGJ)) 250 Checks.push_back(std::make_pair(&CGI, &CGJ)); 251 } 252 } 253 return Checks; 254 } 255 256 void RuntimePointerChecking::generateChecks( 257 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 258 assert(Checks.empty() && "Checks is not empty"); 259 groupChecks(DepCands, UseDependencies); 260 Checks = generateChecks(); 261 } 262 263 bool RuntimePointerChecking::needsChecking( 264 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 265 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 266 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 267 if (needsChecking(M.Members[I], N.Members[J])) 268 return true; 269 return false; 270 } 271 272 /// Compare \p I and \p J and return the minimum. 273 /// Return nullptr in case we couldn't find an answer. 274 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 275 ScalarEvolution *SE) { 276 const SCEV *Diff = SE->getMinusSCEV(J, I); 277 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 278 279 if (!C) 280 return nullptr; 281 if (C->getValue()->isNegative()) 282 return J; 283 return I; 284 } 285 286 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) { 287 const SCEV *Start = RtCheck.Pointers[Index].Start; 288 const SCEV *End = RtCheck.Pointers[Index].End; 289 290 // Compare the starts and ends with the known minimum and maximum 291 // of this set. We need to know how we compare against the min/max 292 // of the set in order to be able to emit memchecks. 293 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 294 if (!Min0) 295 return false; 296 297 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 298 if (!Min1) 299 return false; 300 301 // Update the low bound expression if we've found a new min value. 302 if (Min0 == Start) 303 Low = Start; 304 305 // Update the high bound expression if we've found a new max value. 306 if (Min1 != End) 307 High = End; 308 309 Members.push_back(Index); 310 return true; 311 } 312 313 void RuntimePointerChecking::groupChecks( 314 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 315 // We build the groups from dependency candidates equivalence classes 316 // because: 317 // - We know that pointers in the same equivalence class share 318 // the same underlying object and therefore there is a chance 319 // that we can compare pointers 320 // - We wouldn't be able to merge two pointers for which we need 321 // to emit a memcheck. The classes in DepCands are already 322 // conveniently built such that no two pointers in the same 323 // class need checking against each other. 324 325 // We use the following (greedy) algorithm to construct the groups 326 // For every pointer in the equivalence class: 327 // For each existing group: 328 // - if the difference between this pointer and the min/max bounds 329 // of the group is a constant, then make the pointer part of the 330 // group and update the min/max bounds of that group as required. 331 332 CheckingGroups.clear(); 333 334 // If we need to check two pointers to the same underlying object 335 // with a non-constant difference, we shouldn't perform any pointer 336 // grouping with those pointers. This is because we can easily get 337 // into cases where the resulting check would return false, even when 338 // the accesses are safe. 339 // 340 // The following example shows this: 341 // for (i = 0; i < 1000; ++i) 342 // a[5000 + i * m] = a[i] + a[i + 9000] 343 // 344 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 345 // (0, 10000) which is always false. However, if m is 1, there is no 346 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 347 // us to perform an accurate check in this case. 348 // 349 // The above case requires that we have an UnknownDependence between 350 // accesses to the same underlying object. This cannot happen unless 351 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 352 // is also false. In this case we will use the fallback path and create 353 // separate checking groups for all pointers. 354 355 // If we don't have the dependency partitions, construct a new 356 // checking pointer group for each pointer. This is also required 357 // for correctness, because in this case we can have checking between 358 // pointers to the same underlying object. 359 if (!UseDependencies) { 360 for (unsigned I = 0; I < Pointers.size(); ++I) 361 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 362 return; 363 } 364 365 unsigned TotalComparisons = 0; 366 367 DenseMap<Value *, unsigned> PositionMap; 368 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 369 PositionMap[Pointers[Index].PointerValue] = Index; 370 371 // We need to keep track of what pointers we've already seen so we 372 // don't process them twice. 373 SmallSet<unsigned, 2> Seen; 374 375 // Go through all equivalence classes, get the "pointer check groups" 376 // and add them to the overall solution. We use the order in which accesses 377 // appear in 'Pointers' to enforce determinism. 378 for (unsigned I = 0; I < Pointers.size(); ++I) { 379 // We've seen this pointer before, and therefore already processed 380 // its equivalence class. 381 if (Seen.count(I)) 382 continue; 383 384 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 385 Pointers[I].IsWritePtr); 386 387 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 388 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 389 390 // Because DepCands is constructed by visiting accesses in the order in 391 // which they appear in alias sets (which is deterministic) and the 392 // iteration order within an equivalence class member is only dependent on 393 // the order in which unions and insertions are performed on the 394 // equivalence class, the iteration order is deterministic. 395 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 396 MI != ME; ++MI) { 397 unsigned Pointer = PositionMap[MI->getPointer()]; 398 bool Merged = false; 399 // Mark this pointer as seen. 400 Seen.insert(Pointer); 401 402 // Go through all the existing sets and see if we can find one 403 // which can include this pointer. 404 for (RuntimeCheckingPtrGroup &Group : Groups) { 405 // Don't perform more than a certain amount of comparisons. 406 // This should limit the cost of grouping the pointers to something 407 // reasonable. If we do end up hitting this threshold, the algorithm 408 // will create separate groups for all remaining pointers. 409 if (TotalComparisons > MemoryCheckMergeThreshold) 410 break; 411 412 TotalComparisons++; 413 414 if (Group.addPointer(Pointer)) { 415 Merged = true; 416 break; 417 } 418 } 419 420 if (!Merged) 421 // We couldn't add this pointer to any existing set or the threshold 422 // for the number of comparisons has been reached. Create a new group 423 // to hold the current pointer. 424 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 425 } 426 427 // We've computed the grouped checks for this partition. 428 // Save the results and continue with the next one. 429 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 430 } 431 } 432 433 bool RuntimePointerChecking::arePointersInSamePartition( 434 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 435 unsigned PtrIdx2) { 436 return (PtrToPartition[PtrIdx1] != -1 && 437 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 438 } 439 440 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 441 const PointerInfo &PointerI = Pointers[I]; 442 const PointerInfo &PointerJ = Pointers[J]; 443 444 // No need to check if two readonly pointers intersect. 445 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 446 return false; 447 448 // Only need to check pointers between two different dependency sets. 449 if (PointerI.DependencySetId == PointerJ.DependencySetId) 450 return false; 451 452 // Only need to check pointers in the same alias set. 453 if (PointerI.AliasSetId != PointerJ.AliasSetId) 454 return false; 455 456 return true; 457 } 458 459 void RuntimePointerChecking::printChecks( 460 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 461 unsigned Depth) const { 462 unsigned N = 0; 463 for (const auto &Check : Checks) { 464 const auto &First = Check.first->Members, &Second = Check.second->Members; 465 466 OS.indent(Depth) << "Check " << N++ << ":\n"; 467 468 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 469 for (unsigned K = 0; K < First.size(); ++K) 470 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 471 472 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 473 for (unsigned K = 0; K < Second.size(); ++K) 474 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 475 } 476 } 477 478 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 479 480 OS.indent(Depth) << "Run-time memory checks:\n"; 481 printChecks(OS, Checks, Depth); 482 483 OS.indent(Depth) << "Grouped accesses:\n"; 484 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 485 const auto &CG = CheckingGroups[I]; 486 487 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 488 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 489 << ")\n"; 490 for (unsigned J = 0; J < CG.Members.size(); ++J) { 491 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 492 << "\n"; 493 } 494 } 495 } 496 497 namespace { 498 499 /// Analyses memory accesses in a loop. 500 /// 501 /// Checks whether run time pointer checks are needed and builds sets for data 502 /// dependence checking. 503 class AccessAnalysis { 504 public: 505 /// Read or write access location. 506 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 507 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 508 509 AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, 510 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, 511 PredicatedScalarEvolution &PSE) 512 : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 513 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 514 515 /// Register a load and whether it is only read from. 516 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 517 Value *Ptr = const_cast<Value*>(Loc.Ptr); 518 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 519 Accesses.insert(MemAccessInfo(Ptr, false)); 520 if (IsReadOnly) 521 ReadOnlyPtr.insert(Ptr); 522 } 523 524 /// Register a store. 525 void addStore(MemoryLocation &Loc) { 526 Value *Ptr = const_cast<Value*>(Loc.Ptr); 527 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 528 Accesses.insert(MemAccessInfo(Ptr, true)); 529 } 530 531 /// Check if we can emit a run-time no-alias check for \p Access. 532 /// 533 /// Returns true if we can emit a run-time no alias check for \p Access. 534 /// If we can check this access, this also adds it to a dependence set and 535 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 536 /// we will attempt to use additional run-time checks in order to get 537 /// the bounds of the pointer. 538 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 539 MemAccessInfo Access, 540 const ValueToValueMap &Strides, 541 DenseMap<Value *, unsigned> &DepSetId, 542 Loop *TheLoop, unsigned &RunningDepId, 543 unsigned ASId, bool ShouldCheckStride, 544 bool Assume); 545 546 /// Check whether we can check the pointers at runtime for 547 /// non-intersection. 548 /// 549 /// Returns true if we need no check or if we do and we can generate them 550 /// (i.e. the pointers have computable bounds). 551 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 552 Loop *TheLoop, const ValueToValueMap &Strides, 553 bool ShouldCheckWrap = false); 554 555 /// Goes over all memory accesses, checks whether a RT check is needed 556 /// and builds sets of dependent accesses. 557 void buildDependenceSets() { 558 processMemAccesses(); 559 } 560 561 /// Initial processing of memory accesses determined that we need to 562 /// perform dependency checking. 563 /// 564 /// Note that this can later be cleared if we retry memcheck analysis without 565 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 566 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 567 568 /// We decided that no dependence analysis would be used. Reset the state. 569 void resetDepChecks(MemoryDepChecker &DepChecker) { 570 CheckDeps.clear(); 571 DepChecker.clearDependences(); 572 } 573 574 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 575 576 private: 577 typedef SetVector<MemAccessInfo> PtrAccessSet; 578 579 /// Go over all memory access and check whether runtime pointer checks 580 /// are needed and build sets of dependency check candidates. 581 void processMemAccesses(); 582 583 /// Set of all accesses. 584 PtrAccessSet Accesses; 585 586 const DataLayout &DL; 587 588 /// The loop being checked. 589 const Loop *TheLoop; 590 591 /// List of accesses that need a further dependence check. 592 MemAccessInfoList CheckDeps; 593 594 /// Set of pointers that are read only. 595 SmallPtrSet<Value*, 16> ReadOnlyPtr; 596 597 /// An alias set tracker to partition the access set by underlying object and 598 //intrinsic property (such as TBAA metadata). 599 AliasSetTracker AST; 600 601 LoopInfo *LI; 602 603 /// Sets of potentially dependent accesses - members of one set share an 604 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 605 /// dependence check. 606 MemoryDepChecker::DepCandidates &DepCands; 607 608 /// Initial processing of memory accesses determined that we may need 609 /// to add memchecks. Perform the analysis to determine the necessary checks. 610 /// 611 /// Note that, this is different from isDependencyCheckNeeded. When we retry 612 /// memcheck analysis without dependency checking 613 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 614 /// cleared while this remains set if we have potentially dependent accesses. 615 bool IsRTCheckAnalysisNeeded; 616 617 /// The SCEV predicate containing all the SCEV-related assumptions. 618 PredicatedScalarEvolution &PSE; 619 }; 620 621 } // end anonymous namespace 622 623 /// Check whether a pointer can participate in a runtime bounds check. 624 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 625 /// by adding run-time checks (overflow checks) if necessary. 626 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 627 const ValueToValueMap &Strides, Value *Ptr, 628 Loop *L, bool Assume) { 629 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 630 631 // The bounds for loop-invariant pointer is trivial. 632 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 633 return true; 634 635 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 636 637 if (!AR && Assume) 638 AR = PSE.getAsAddRec(Ptr); 639 640 if (!AR) 641 return false; 642 643 return AR->isAffine(); 644 } 645 646 /// Check whether a pointer address cannot wrap. 647 static bool isNoWrap(PredicatedScalarEvolution &PSE, 648 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 649 const SCEV *PtrScev = PSE.getSCEV(Ptr); 650 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 651 return true; 652 653 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 654 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 655 return true; 656 657 return false; 658 } 659 660 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 661 MemAccessInfo Access, 662 const ValueToValueMap &StridesMap, 663 DenseMap<Value *, unsigned> &DepSetId, 664 Loop *TheLoop, unsigned &RunningDepId, 665 unsigned ASId, bool ShouldCheckWrap, 666 bool Assume) { 667 Value *Ptr = Access.getPointer(); 668 669 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 670 return false; 671 672 // When we run after a failing dependency check we have to make sure 673 // we don't have wrapping pointers. 674 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 675 auto *Expr = PSE.getSCEV(Ptr); 676 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 677 return false; 678 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 679 } 680 681 // The id of the dependence set. 682 unsigned DepId; 683 684 if (isDependencyCheckNeeded()) { 685 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 686 unsigned &LeaderId = DepSetId[Leader]; 687 if (!LeaderId) 688 LeaderId = RunningDepId++; 689 DepId = LeaderId; 690 } else 691 // Each access has its own dependence set. 692 DepId = RunningDepId++; 693 694 bool IsWrite = Access.getInt(); 695 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 696 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 697 698 return true; 699 } 700 701 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 702 ScalarEvolution *SE, Loop *TheLoop, 703 const ValueToValueMap &StridesMap, 704 bool ShouldCheckWrap) { 705 // Find pointers with computable bounds. We are going to use this information 706 // to place a runtime bound check. 707 bool CanDoRT = true; 708 709 bool NeedRTCheck = false; 710 if (!IsRTCheckAnalysisNeeded) return true; 711 712 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 713 714 // We assign a consecutive id to access from different alias sets. 715 // Accesses between different groups doesn't need to be checked. 716 unsigned ASId = 1; 717 for (auto &AS : AST) { 718 int NumReadPtrChecks = 0; 719 int NumWritePtrChecks = 0; 720 bool CanDoAliasSetRT = true; 721 722 // We assign consecutive id to access from different dependence sets. 723 // Accesses within the same set don't need a runtime check. 724 unsigned RunningDepId = 1; 725 DenseMap<Value *, unsigned> DepSetId; 726 727 SmallVector<MemAccessInfo, 4> Retries; 728 729 for (auto A : AS) { 730 Value *Ptr = A.getValue(); 731 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 732 MemAccessInfo Access(Ptr, IsWrite); 733 734 if (IsWrite) 735 ++NumWritePtrChecks; 736 else 737 ++NumReadPtrChecks; 738 739 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 740 RunningDepId, ASId, ShouldCheckWrap, false)) { 741 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 742 Retries.push_back(Access); 743 CanDoAliasSetRT = false; 744 } 745 } 746 747 // If we have at least two writes or one write and a read then we need to 748 // check them. But there is no need to checks if there is only one 749 // dependence set for this alias set. 750 // 751 // Note that this function computes CanDoRT and NeedRTCheck independently. 752 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 753 // for which we couldn't find the bounds but we don't actually need to emit 754 // any checks so it does not matter. 755 bool NeedsAliasSetRTCheck = false; 756 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 757 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 758 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 759 760 // We need to perform run-time alias checks, but some pointers had bounds 761 // that couldn't be checked. 762 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 763 // Reset the CanDoSetRt flag and retry all accesses that have failed. 764 // We know that we need these checks, so we can now be more aggressive 765 // and add further checks if required (overflow checks). 766 CanDoAliasSetRT = true; 767 for (auto Access : Retries) 768 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 769 TheLoop, RunningDepId, ASId, 770 ShouldCheckWrap, /*Assume=*/true)) { 771 CanDoAliasSetRT = false; 772 break; 773 } 774 } 775 776 CanDoRT &= CanDoAliasSetRT; 777 NeedRTCheck |= NeedsAliasSetRTCheck; 778 ++ASId; 779 } 780 781 // If the pointers that we would use for the bounds comparison have different 782 // address spaces, assume the values aren't directly comparable, so we can't 783 // use them for the runtime check. We also have to assume they could 784 // overlap. In the future there should be metadata for whether address spaces 785 // are disjoint. 786 unsigned NumPointers = RtCheck.Pointers.size(); 787 for (unsigned i = 0; i < NumPointers; ++i) { 788 for (unsigned j = i + 1; j < NumPointers; ++j) { 789 // Only need to check pointers between two different dependency sets. 790 if (RtCheck.Pointers[i].DependencySetId == 791 RtCheck.Pointers[j].DependencySetId) 792 continue; 793 // Only need to check pointers in the same alias set. 794 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 795 continue; 796 797 Value *PtrI = RtCheck.Pointers[i].PointerValue; 798 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 799 800 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 801 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 802 if (ASi != ASj) { 803 LLVM_DEBUG( 804 dbgs() << "LAA: Runtime check would require comparison between" 805 " different address spaces\n"); 806 return false; 807 } 808 } 809 } 810 811 if (NeedRTCheck && CanDoRT) 812 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 813 814 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 815 << " pointer comparisons.\n"); 816 817 RtCheck.Need = NeedRTCheck; 818 819 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 820 if (!CanDoRTIfNeeded) 821 RtCheck.reset(); 822 return CanDoRTIfNeeded; 823 } 824 825 void AccessAnalysis::processMemAccesses() { 826 // We process the set twice: first we process read-write pointers, last we 827 // process read-only pointers. This allows us to skip dependence tests for 828 // read-only pointers. 829 830 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 831 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 832 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 833 LLVM_DEBUG({ 834 for (auto A : Accesses) 835 dbgs() << "\t" << *A.getPointer() << " (" << 836 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 837 "read-only" : "read")) << ")\n"; 838 }); 839 840 // The AliasSetTracker has nicely partitioned our pointers by metadata 841 // compatibility and potential for underlying-object overlap. As a result, we 842 // only need to check for potential pointer dependencies within each alias 843 // set. 844 for (auto &AS : AST) { 845 // Note that both the alias-set tracker and the alias sets themselves used 846 // linked lists internally and so the iteration order here is deterministic 847 // (matching the original instruction order within each set). 848 849 bool SetHasWrite = false; 850 851 // Map of pointers to last access encountered. 852 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 853 UnderlyingObjToAccessMap ObjToLastAccess; 854 855 // Set of access to check after all writes have been processed. 856 PtrAccessSet DeferredAccesses; 857 858 // Iterate over each alias set twice, once to process read/write pointers, 859 // and then to process read-only pointers. 860 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 861 bool UseDeferred = SetIteration > 0; 862 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 863 864 for (auto AV : AS) { 865 Value *Ptr = AV.getValue(); 866 867 // For a single memory access in AliasSetTracker, Accesses may contain 868 // both read and write, and they both need to be handled for CheckDeps. 869 for (auto AC : S) { 870 if (AC.getPointer() != Ptr) 871 continue; 872 873 bool IsWrite = AC.getInt(); 874 875 // If we're using the deferred access set, then it contains only 876 // reads. 877 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 878 if (UseDeferred && !IsReadOnlyPtr) 879 continue; 880 // Otherwise, the pointer must be in the PtrAccessSet, either as a 881 // read or a write. 882 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 883 S.count(MemAccessInfo(Ptr, false))) && 884 "Alias-set pointer not in the access set?"); 885 886 MemAccessInfo Access(Ptr, IsWrite); 887 DepCands.insert(Access); 888 889 // Memorize read-only pointers for later processing and skip them in 890 // the first round (they need to be checked after we have seen all 891 // write pointers). Note: we also mark pointer that are not 892 // consecutive as "read-only" pointers (so that we check 893 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 894 if (!UseDeferred && IsReadOnlyPtr) { 895 DeferredAccesses.insert(Access); 896 continue; 897 } 898 899 // If this is a write - check other reads and writes for conflicts. If 900 // this is a read only check other writes for conflicts (but only if 901 // there is no other write to the ptr - this is an optimization to 902 // catch "a[i] = a[i] + " without having to do a dependence check). 903 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 904 CheckDeps.push_back(Access); 905 IsRTCheckAnalysisNeeded = true; 906 } 907 908 if (IsWrite) 909 SetHasWrite = true; 910 911 // Create sets of pointers connected by a shared alias set and 912 // underlying object. 913 typedef SmallVector<const Value *, 16> ValueVector; 914 ValueVector TempObjects; 915 916 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 917 LLVM_DEBUG(dbgs() 918 << "Underlying objects for pointer " << *Ptr << "\n"); 919 for (const Value *UnderlyingObj : TempObjects) { 920 // nullptr never alias, don't join sets for pointer that have "null" 921 // in their UnderlyingObjects list. 922 if (isa<ConstantPointerNull>(UnderlyingObj) && 923 !NullPointerIsDefined( 924 TheLoop->getHeader()->getParent(), 925 UnderlyingObj->getType()->getPointerAddressSpace())) 926 continue; 927 928 UnderlyingObjToAccessMap::iterator Prev = 929 ObjToLastAccess.find(UnderlyingObj); 930 if (Prev != ObjToLastAccess.end()) 931 DepCands.unionSets(Access, Prev->second); 932 933 ObjToLastAccess[UnderlyingObj] = Access; 934 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 935 } 936 } 937 } 938 } 939 } 940 } 941 942 static bool isInBoundsGep(Value *Ptr) { 943 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 944 return GEP->isInBounds(); 945 return false; 946 } 947 948 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 949 /// i.e. monotonically increasing/decreasing. 950 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 951 PredicatedScalarEvolution &PSE, const Loop *L) { 952 // FIXME: This should probably only return true for NUW. 953 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 954 return true; 955 956 // Scalar evolution does not propagate the non-wrapping flags to values that 957 // are derived from a non-wrapping induction variable because non-wrapping 958 // could be flow-sensitive. 959 // 960 // Look through the potentially overflowing instruction to try to prove 961 // non-wrapping for the *specific* value of Ptr. 962 963 // The arithmetic implied by an inbounds GEP can't overflow. 964 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 965 if (!GEP || !GEP->isInBounds()) 966 return false; 967 968 // Make sure there is only one non-const index and analyze that. 969 Value *NonConstIndex = nullptr; 970 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 971 if (!isa<ConstantInt>(Index)) { 972 if (NonConstIndex) 973 return false; 974 NonConstIndex = Index; 975 } 976 if (!NonConstIndex) 977 // The recurrence is on the pointer, ignore for now. 978 return false; 979 980 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 981 // AddRec using a NSW operation. 982 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 983 if (OBO->hasNoSignedWrap() && 984 // Assume constant for other the operand so that the AddRec can be 985 // easily found. 986 isa<ConstantInt>(OBO->getOperand(1))) { 987 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 988 989 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 990 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 991 } 992 993 return false; 994 } 995 996 /// Check whether the access through \p Ptr has a constant stride. 997 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 998 const Loop *Lp, const ValueToValueMap &StridesMap, 999 bool Assume, bool ShouldCheckWrap) { 1000 Type *Ty = Ptr->getType(); 1001 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1002 1003 // Make sure that the pointer does not point to aggregate types. 1004 auto *PtrTy = cast<PointerType>(Ty); 1005 if (PtrTy->getElementType()->isAggregateType()) { 1006 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1007 << *Ptr << "\n"); 1008 return 0; 1009 } 1010 1011 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1012 1013 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1014 if (Assume && !AR) 1015 AR = PSE.getAsAddRec(Ptr); 1016 1017 if (!AR) { 1018 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1019 << " SCEV: " << *PtrScev << "\n"); 1020 return 0; 1021 } 1022 1023 // The access function must stride over the innermost loop. 1024 if (Lp != AR->getLoop()) { 1025 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1026 << *Ptr << " SCEV: " << *AR << "\n"); 1027 return 0; 1028 } 1029 1030 // The address calculation must not wrap. Otherwise, a dependence could be 1031 // inverted. 1032 // An inbounds getelementptr that is a AddRec with a unit stride 1033 // cannot wrap per definition. The unit stride requirement is checked later. 1034 // An getelementptr without an inbounds attribute and unit stride would have 1035 // to access the pointer value "0" which is undefined behavior in address 1036 // space 0, therefore we can also vectorize this case. 1037 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1038 bool IsNoWrapAddRec = !ShouldCheckWrap || 1039 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1040 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1041 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1042 NullPointerIsDefined(Lp->getHeader()->getParent(), 1043 PtrTy->getAddressSpace())) { 1044 if (Assume) { 1045 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1046 IsNoWrapAddRec = true; 1047 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1048 << "LAA: Pointer: " << *Ptr << "\n" 1049 << "LAA: SCEV: " << *AR << "\n" 1050 << "LAA: Added an overflow assumption\n"); 1051 } else { 1052 LLVM_DEBUG( 1053 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1054 << *Ptr << " SCEV: " << *AR << "\n"); 1055 return 0; 1056 } 1057 } 1058 1059 // Check the step is constant. 1060 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1061 1062 // Calculate the pointer stride and check if it is constant. 1063 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1064 if (!C) { 1065 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1066 << " SCEV: " << *AR << "\n"); 1067 return 0; 1068 } 1069 1070 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1071 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1072 const APInt &APStepVal = C->getAPInt(); 1073 1074 // Huge step value - give up. 1075 if (APStepVal.getBitWidth() > 64) 1076 return 0; 1077 1078 int64_t StepVal = APStepVal.getSExtValue(); 1079 1080 // Strided access. 1081 int64_t Stride = StepVal / Size; 1082 int64_t Rem = StepVal % Size; 1083 if (Rem) 1084 return 0; 1085 1086 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1087 // know we can't "wrap around the address space". In case of address space 1088 // zero we know that this won't happen without triggering undefined behavior. 1089 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1090 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1091 PtrTy->getAddressSpace()))) { 1092 if (Assume) { 1093 // We can avoid this case by adding a run-time check. 1094 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1095 << "inbounds or in address space 0 may wrap:\n" 1096 << "LAA: Pointer: " << *Ptr << "\n" 1097 << "LAA: SCEV: " << *AR << "\n" 1098 << "LAA: Added an overflow assumption\n"); 1099 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1100 } else 1101 return 0; 1102 } 1103 1104 return Stride; 1105 } 1106 1107 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1108 ScalarEvolution &SE, 1109 SmallVectorImpl<unsigned> &SortedIndices) { 1110 assert(llvm::all_of( 1111 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1112 "Expected list of pointer operands."); 1113 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1114 OffValPairs.reserve(VL.size()); 1115 1116 // Walk over the pointers, and map each of them to an offset relative to 1117 // first pointer in the array. 1118 Value *Ptr0 = VL[0]; 1119 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1120 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1121 1122 llvm::SmallSet<int64_t, 4> Offsets; 1123 for (auto *Ptr : VL) { 1124 // TODO: Outline this code as a special, more time consuming, version of 1125 // computeConstantDifference() function. 1126 if (Ptr->getType()->getPointerAddressSpace() != 1127 Ptr0->getType()->getPointerAddressSpace()) 1128 return false; 1129 // If a pointer refers to a different underlying object, bail - the 1130 // pointers are by definition incomparable. 1131 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1132 if (CurrObj != Obj0) 1133 return false; 1134 1135 const SCEV *Scev = SE.getSCEV(Ptr); 1136 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1137 // The pointers may not have a constant offset from each other, or SCEV 1138 // may just not be smart enough to figure out they do. Regardless, 1139 // there's nothing we can do. 1140 if (!Diff) 1141 return false; 1142 1143 // Check if the pointer with the same offset is found. 1144 int64_t Offset = Diff->getAPInt().getSExtValue(); 1145 if (!Offsets.insert(Offset).second) 1146 return false; 1147 OffValPairs.emplace_back(Offset, Ptr); 1148 } 1149 SortedIndices.clear(); 1150 SortedIndices.resize(VL.size()); 1151 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1152 1153 // Sort the memory accesses and keep the order of their uses in UseOrder. 1154 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1155 return OffValPairs[Left].first < OffValPairs[Right].first; 1156 }); 1157 1158 // Check if the order is consecutive already. 1159 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1160 return I == SortedIndices[I]; 1161 })) 1162 SortedIndices.clear(); 1163 1164 return true; 1165 } 1166 1167 /// Take the address space operand from the Load/Store instruction. 1168 /// Returns -1 if this is not a valid Load/Store instruction. 1169 static unsigned getAddressSpaceOperand(Value *I) { 1170 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1171 return L->getPointerAddressSpace(); 1172 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1173 return S->getPointerAddressSpace(); 1174 return -1; 1175 } 1176 1177 /// Returns true if the memory operations \p A and \p B are consecutive. 1178 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1179 ScalarEvolution &SE, bool CheckType) { 1180 Value *PtrA = getLoadStorePointerOperand(A); 1181 Value *PtrB = getLoadStorePointerOperand(B); 1182 unsigned ASA = getAddressSpaceOperand(A); 1183 unsigned ASB = getAddressSpaceOperand(B); 1184 1185 // Check that the address spaces match and that the pointers are valid. 1186 if (!PtrA || !PtrB || (ASA != ASB)) 1187 return false; 1188 1189 // Make sure that A and B are different pointers. 1190 if (PtrA == PtrB) 1191 return false; 1192 1193 // Make sure that A and B have the same type if required. 1194 if (CheckType && PtrA->getType() != PtrB->getType()) 1195 return false; 1196 1197 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1198 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1199 1200 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1201 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1202 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1203 1204 // Retrieve the address space again as pointer stripping now tracks through 1205 // `addrspacecast`. 1206 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1207 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1208 // Check that the address spaces match and that the pointers are valid. 1209 if (ASA != ASB) 1210 return false; 1211 1212 IdxWidth = DL.getIndexSizeInBits(ASA); 1213 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1214 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1215 1216 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1217 1218 // OffsetDelta = OffsetB - OffsetA; 1219 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1220 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1221 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1222 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1223 1224 // Check if they are based on the same pointer. That makes the offsets 1225 // sufficient. 1226 if (PtrA == PtrB) 1227 return OffsetDelta == Size; 1228 1229 // Compute the necessary base pointer delta to have the necessary final delta 1230 // equal to the size. 1231 // BaseDelta = Size - OffsetDelta; 1232 const SCEV *SizeSCEV = SE.getConstant(Size); 1233 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1234 1235 // Otherwise compute the distance with SCEV between the base pointers. 1236 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1237 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1238 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1239 return X == PtrSCEVB; 1240 } 1241 1242 MemoryDepChecker::VectorizationSafetyStatus 1243 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1244 switch (Type) { 1245 case NoDep: 1246 case Forward: 1247 case BackwardVectorizable: 1248 return VectorizationSafetyStatus::Safe; 1249 1250 case Unknown: 1251 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1252 case ForwardButPreventsForwarding: 1253 case Backward: 1254 case BackwardVectorizableButPreventsForwarding: 1255 return VectorizationSafetyStatus::Unsafe; 1256 } 1257 llvm_unreachable("unexpected DepType!"); 1258 } 1259 1260 bool MemoryDepChecker::Dependence::isBackward() const { 1261 switch (Type) { 1262 case NoDep: 1263 case Forward: 1264 case ForwardButPreventsForwarding: 1265 case Unknown: 1266 return false; 1267 1268 case BackwardVectorizable: 1269 case Backward: 1270 case BackwardVectorizableButPreventsForwarding: 1271 return true; 1272 } 1273 llvm_unreachable("unexpected DepType!"); 1274 } 1275 1276 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1277 return isBackward() || Type == Unknown; 1278 } 1279 1280 bool MemoryDepChecker::Dependence::isForward() const { 1281 switch (Type) { 1282 case Forward: 1283 case ForwardButPreventsForwarding: 1284 return true; 1285 1286 case NoDep: 1287 case Unknown: 1288 case BackwardVectorizable: 1289 case Backward: 1290 case BackwardVectorizableButPreventsForwarding: 1291 return false; 1292 } 1293 llvm_unreachable("unexpected DepType!"); 1294 } 1295 1296 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1297 uint64_t TypeByteSize) { 1298 // If loads occur at a distance that is not a multiple of a feasible vector 1299 // factor store-load forwarding does not take place. 1300 // Positive dependences might cause troubles because vectorizing them might 1301 // prevent store-load forwarding making vectorized code run a lot slower. 1302 // a[i] = a[i-3] ^ a[i-8]; 1303 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1304 // hence on your typical architecture store-load forwarding does not take 1305 // place. Vectorizing in such cases does not make sense. 1306 // Store-load forwarding distance. 1307 1308 // After this many iterations store-to-load forwarding conflicts should not 1309 // cause any slowdowns. 1310 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1311 // Maximum vector factor. 1312 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1313 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1314 1315 // Compute the smallest VF at which the store and load would be misaligned. 1316 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1317 VF *= 2) { 1318 // If the number of vector iteration between the store and the load are 1319 // small we could incur conflicts. 1320 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1321 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1322 break; 1323 } 1324 } 1325 1326 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1327 LLVM_DEBUG( 1328 dbgs() << "LAA: Distance " << Distance 1329 << " that could cause a store-load forwarding conflict\n"); 1330 return true; 1331 } 1332 1333 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1334 MaxVFWithoutSLForwardIssues != 1335 VectorizerParams::MaxVectorWidth * TypeByteSize) 1336 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1337 return false; 1338 } 1339 1340 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1341 if (Status < S) 1342 Status = S; 1343 } 1344 1345 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1346 /// memory accesses, that have the same stride whose absolute value is given 1347 /// in \p Stride, and that have the same type size \p TypeByteSize, 1348 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1349 /// possible to prove statically that the dependence distance is larger 1350 /// than the range that the accesses will travel through the execution of 1351 /// the loop. If so, return true; false otherwise. This is useful for 1352 /// example in loops such as the following (PR31098): 1353 /// for (i = 0; i < D; ++i) { 1354 /// = out[i]; 1355 /// out[i+D] = 1356 /// } 1357 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1358 const SCEV &BackedgeTakenCount, 1359 const SCEV &Dist, uint64_t Stride, 1360 uint64_t TypeByteSize) { 1361 1362 // If we can prove that 1363 // (**) |Dist| > BackedgeTakenCount * Step 1364 // where Step is the absolute stride of the memory accesses in bytes, 1365 // then there is no dependence. 1366 // 1367 // Rationale: 1368 // We basically want to check if the absolute distance (|Dist/Step|) 1369 // is >= the loop iteration count (or > BackedgeTakenCount). 1370 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1371 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1372 // that the dependence distance is >= VF; This is checked elsewhere. 1373 // But in some cases we can prune unknown dependence distances early, and 1374 // even before selecting the VF, and without a runtime test, by comparing 1375 // the distance against the loop iteration count. Since the vectorized code 1376 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1377 // also guarantees that distance >= VF. 1378 // 1379 const uint64_t ByteStride = Stride * TypeByteSize; 1380 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1381 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1382 1383 const SCEV *CastedDist = &Dist; 1384 const SCEV *CastedProduct = Product; 1385 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1386 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1387 1388 // The dependence distance can be positive/negative, so we sign extend Dist; 1389 // The multiplication of the absolute stride in bytes and the 1390 // backedgeTakenCount is non-negative, so we zero extend Product. 1391 if (DistTypeSize > ProductTypeSize) 1392 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1393 else 1394 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1395 1396 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1397 // (If so, then we have proven (**) because |Dist| >= Dist) 1398 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1399 if (SE.isKnownPositive(Minus)) 1400 return true; 1401 1402 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1403 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1404 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1405 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1406 if (SE.isKnownPositive(Minus)) 1407 return true; 1408 1409 return false; 1410 } 1411 1412 /// Check the dependence for two accesses with the same stride \p Stride. 1413 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1414 /// bytes. 1415 /// 1416 /// \returns true if they are independent. 1417 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1418 uint64_t TypeByteSize) { 1419 assert(Stride > 1 && "The stride must be greater than 1"); 1420 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1421 assert(Distance > 0 && "The distance must be non-zero"); 1422 1423 // Skip if the distance is not multiple of type byte size. 1424 if (Distance % TypeByteSize) 1425 return false; 1426 1427 uint64_t ScaledDist = Distance / TypeByteSize; 1428 1429 // No dependence if the scaled distance is not multiple of the stride. 1430 // E.g. 1431 // for (i = 0; i < 1024 ; i += 4) 1432 // A[i+2] = A[i] + 1; 1433 // 1434 // Two accesses in memory (scaled distance is 2, stride is 4): 1435 // | A[0] | | | | A[4] | | | | 1436 // | | | A[2] | | | | A[6] | | 1437 // 1438 // E.g. 1439 // for (i = 0; i < 1024 ; i += 3) 1440 // A[i+4] = A[i] + 1; 1441 // 1442 // Two accesses in memory (scaled distance is 4, stride is 3): 1443 // | A[0] | | | A[3] | | | A[6] | | | 1444 // | | | | | A[4] | | | A[7] | | 1445 return ScaledDist % Stride; 1446 } 1447 1448 MemoryDepChecker::Dependence::DepType 1449 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1450 const MemAccessInfo &B, unsigned BIdx, 1451 const ValueToValueMap &Strides) { 1452 assert (AIdx < BIdx && "Must pass arguments in program order"); 1453 1454 Value *APtr = A.getPointer(); 1455 Value *BPtr = B.getPointer(); 1456 bool AIsWrite = A.getInt(); 1457 bool BIsWrite = B.getInt(); 1458 1459 // Two reads are independent. 1460 if (!AIsWrite && !BIsWrite) 1461 return Dependence::NoDep; 1462 1463 // We cannot check pointers in different address spaces. 1464 if (APtr->getType()->getPointerAddressSpace() != 1465 BPtr->getType()->getPointerAddressSpace()) 1466 return Dependence::Unknown; 1467 1468 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1469 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1470 1471 const SCEV *Src = PSE.getSCEV(APtr); 1472 const SCEV *Sink = PSE.getSCEV(BPtr); 1473 1474 // If the induction step is negative we have to invert source and sink of the 1475 // dependence. 1476 if (StrideAPtr < 0) { 1477 std::swap(APtr, BPtr); 1478 std::swap(Src, Sink); 1479 std::swap(AIsWrite, BIsWrite); 1480 std::swap(AIdx, BIdx); 1481 std::swap(StrideAPtr, StrideBPtr); 1482 } 1483 1484 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1485 1486 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1487 << "(Induction step: " << StrideAPtr << ")\n"); 1488 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1489 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1490 1491 // Need accesses with constant stride. We don't want to vectorize 1492 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1493 // the address space. 1494 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1495 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1496 return Dependence::Unknown; 1497 } 1498 1499 Type *ATy = APtr->getType()->getPointerElementType(); 1500 Type *BTy = BPtr->getType()->getPointerElementType(); 1501 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1502 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1503 uint64_t Stride = std::abs(StrideAPtr); 1504 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1505 if (!C) { 1506 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1507 isSafeDependenceDistance(DL, *(PSE.getSE()), 1508 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1509 TypeByteSize)) 1510 return Dependence::NoDep; 1511 1512 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1513 FoundNonConstantDistanceDependence = true; 1514 return Dependence::Unknown; 1515 } 1516 1517 const APInt &Val = C->getAPInt(); 1518 int64_t Distance = Val.getSExtValue(); 1519 1520 // Attempt to prove strided accesses independent. 1521 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1522 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1523 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1524 return Dependence::NoDep; 1525 } 1526 1527 // Negative distances are not plausible dependencies. 1528 if (Val.isNegative()) { 1529 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1530 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1531 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1532 ATy != BTy)) { 1533 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1534 return Dependence::ForwardButPreventsForwarding; 1535 } 1536 1537 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1538 return Dependence::Forward; 1539 } 1540 1541 // Write to the same location with the same size. 1542 // Could be improved to assert type sizes are the same (i32 == float, etc). 1543 if (Val == 0) { 1544 if (ATy == BTy) 1545 return Dependence::Forward; 1546 LLVM_DEBUG( 1547 dbgs() << "LAA: Zero dependence difference but different types\n"); 1548 return Dependence::Unknown; 1549 } 1550 1551 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1552 1553 if (ATy != BTy) { 1554 LLVM_DEBUG( 1555 dbgs() 1556 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1557 return Dependence::Unknown; 1558 } 1559 1560 // Bail out early if passed-in parameters make vectorization not feasible. 1561 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1562 VectorizerParams::VectorizationFactor : 1); 1563 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1564 VectorizerParams::VectorizationInterleave : 1); 1565 // The minimum number of iterations for a vectorized/unrolled version. 1566 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1567 1568 // It's not vectorizable if the distance is smaller than the minimum distance 1569 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1570 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1571 // TypeByteSize (No need to plus the last gap distance). 1572 // 1573 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1574 // foo(int *A) { 1575 // int *B = (int *)((char *)A + 14); 1576 // for (i = 0 ; i < 1024 ; i += 2) 1577 // B[i] = A[i] + 1; 1578 // } 1579 // 1580 // Two accesses in memory (stride is 2): 1581 // | A[0] | | A[2] | | A[4] | | A[6] | | 1582 // | B[0] | | B[2] | | B[4] | 1583 // 1584 // Distance needs for vectorizing iterations except the last iteration: 1585 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1586 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1587 // 1588 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1589 // 12, which is less than distance. 1590 // 1591 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1592 // the minimum distance needed is 28, which is greater than distance. It is 1593 // not safe to do vectorization. 1594 uint64_t MinDistanceNeeded = 1595 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1596 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1597 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1598 << Distance << '\n'); 1599 return Dependence::Backward; 1600 } 1601 1602 // Unsafe if the minimum distance needed is greater than max safe distance. 1603 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1604 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1605 << MinDistanceNeeded << " size in bytes"); 1606 return Dependence::Backward; 1607 } 1608 1609 // Positive distance bigger than max vectorization factor. 1610 // FIXME: Should use max factor instead of max distance in bytes, which could 1611 // not handle different types. 1612 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1613 // void foo (int *A, char *B) { 1614 // for (unsigned i = 0; i < 1024; i++) { 1615 // A[i+2] = A[i] + 1; 1616 // B[i+2] = B[i] + 1; 1617 // } 1618 // } 1619 // 1620 // This case is currently unsafe according to the max safe distance. If we 1621 // analyze the two accesses on array B, the max safe dependence distance 1622 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1623 // is 8, which is less than 2 and forbidden vectorization, But actually 1624 // both A and B could be vectorized by 2 iterations. 1625 MaxSafeDepDistBytes = 1626 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1627 1628 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1629 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1630 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1631 return Dependence::BackwardVectorizableButPreventsForwarding; 1632 1633 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1634 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1635 << " with max VF = " << MaxVF << '\n'); 1636 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1637 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1638 return Dependence::BackwardVectorizable; 1639 } 1640 1641 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1642 MemAccessInfoList &CheckDeps, 1643 const ValueToValueMap &Strides) { 1644 1645 MaxSafeDepDistBytes = -1; 1646 SmallPtrSet<MemAccessInfo, 8> Visited; 1647 for (MemAccessInfo CurAccess : CheckDeps) { 1648 if (Visited.count(CurAccess)) 1649 continue; 1650 1651 // Get the relevant memory access set. 1652 EquivalenceClasses<MemAccessInfo>::iterator I = 1653 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1654 1655 // Check accesses within this set. 1656 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1657 AccessSets.member_begin(I); 1658 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1659 AccessSets.member_end(); 1660 1661 // Check every access pair. 1662 while (AI != AE) { 1663 Visited.insert(*AI); 1664 bool AIIsWrite = AI->getInt(); 1665 // Check loads only against next equivalent class, but stores also against 1666 // other stores in the same equivalence class - to the same address. 1667 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1668 (AIIsWrite ? AI : std::next(AI)); 1669 while (OI != AE) { 1670 // Check every accessing instruction pair in program order. 1671 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1672 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1673 // Scan all accesses of another equivalence class, but only the next 1674 // accesses of the same equivalent class. 1675 for (std::vector<unsigned>::iterator 1676 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1677 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1678 I2 != I2E; ++I2) { 1679 auto A = std::make_pair(&*AI, *I1); 1680 auto B = std::make_pair(&*OI, *I2); 1681 1682 assert(*I1 != *I2); 1683 if (*I1 > *I2) 1684 std::swap(A, B); 1685 1686 Dependence::DepType Type = 1687 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1688 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1689 1690 // Gather dependences unless we accumulated MaxDependences 1691 // dependences. In that case return as soon as we find the first 1692 // unsafe dependence. This puts a limit on this quadratic 1693 // algorithm. 1694 if (RecordDependences) { 1695 if (Type != Dependence::NoDep) 1696 Dependences.push_back(Dependence(A.second, B.second, Type)); 1697 1698 if (Dependences.size() >= MaxDependences) { 1699 RecordDependences = false; 1700 Dependences.clear(); 1701 LLVM_DEBUG(dbgs() 1702 << "Too many dependences, stopped recording\n"); 1703 } 1704 } 1705 if (!RecordDependences && !isSafeForVectorization()) 1706 return false; 1707 } 1708 ++OI; 1709 } 1710 AI++; 1711 } 1712 } 1713 1714 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1715 return isSafeForVectorization(); 1716 } 1717 1718 SmallVector<Instruction *, 4> 1719 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1720 MemAccessInfo Access(Ptr, isWrite); 1721 auto &IndexVector = Accesses.find(Access)->second; 1722 1723 SmallVector<Instruction *, 4> Insts; 1724 transform(IndexVector, 1725 std::back_inserter(Insts), 1726 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1727 return Insts; 1728 } 1729 1730 const char *MemoryDepChecker::Dependence::DepName[] = { 1731 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1732 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1733 1734 void MemoryDepChecker::Dependence::print( 1735 raw_ostream &OS, unsigned Depth, 1736 const SmallVectorImpl<Instruction *> &Instrs) const { 1737 OS.indent(Depth) << DepName[Type] << ":\n"; 1738 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1739 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1740 } 1741 1742 bool LoopAccessInfo::canAnalyzeLoop() { 1743 // We need to have a loop header. 1744 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1745 << TheLoop->getHeader()->getParent()->getName() << ": " 1746 << TheLoop->getHeader()->getName() << '\n'); 1747 1748 // We can only analyze innermost loops. 1749 if (!TheLoop->empty()) { 1750 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1751 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1752 return false; 1753 } 1754 1755 // We must have a single backedge. 1756 if (TheLoop->getNumBackEdges() != 1) { 1757 LLVM_DEBUG( 1758 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1759 recordAnalysis("CFGNotUnderstood") 1760 << "loop control flow is not understood by analyzer"; 1761 return false; 1762 } 1763 1764 // We must have a single exiting block. 1765 if (!TheLoop->getExitingBlock()) { 1766 LLVM_DEBUG( 1767 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1768 recordAnalysis("CFGNotUnderstood") 1769 << "loop control flow is not understood by analyzer"; 1770 return false; 1771 } 1772 1773 // We only handle bottom-tested loops, i.e. loop in which the condition is 1774 // checked at the end of each iteration. With that we can assume that all 1775 // instructions in the loop are executed the same number of times. 1776 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1777 LLVM_DEBUG( 1778 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1779 recordAnalysis("CFGNotUnderstood") 1780 << "loop control flow is not understood by analyzer"; 1781 return false; 1782 } 1783 1784 // ScalarEvolution needs to be able to find the exit count. 1785 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1786 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1787 recordAnalysis("CantComputeNumberOfIterations") 1788 << "could not determine number of loop iterations"; 1789 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1790 return false; 1791 } 1792 1793 return true; 1794 } 1795 1796 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1797 const TargetLibraryInfo *TLI, 1798 DominatorTree *DT) { 1799 typedef SmallPtrSet<Value*, 16> ValueSet; 1800 1801 // Holds the Load and Store instructions. 1802 SmallVector<LoadInst *, 16> Loads; 1803 SmallVector<StoreInst *, 16> Stores; 1804 1805 // Holds all the different accesses in the loop. 1806 unsigned NumReads = 0; 1807 unsigned NumReadWrites = 0; 1808 1809 bool HasComplexMemInst = false; 1810 1811 // A runtime check is only legal to insert if there are no convergent calls. 1812 HasConvergentOp = false; 1813 1814 PtrRtChecking->Pointers.clear(); 1815 PtrRtChecking->Need = false; 1816 1817 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1818 1819 // For each block. 1820 for (BasicBlock *BB : TheLoop->blocks()) { 1821 // Scan the BB and collect legal loads and stores. Also detect any 1822 // convergent instructions. 1823 for (Instruction &I : *BB) { 1824 if (auto *Call = dyn_cast<CallBase>(&I)) { 1825 if (Call->isConvergent()) 1826 HasConvergentOp = true; 1827 } 1828 1829 // With both a non-vectorizable memory instruction and a convergent 1830 // operation, found in this loop, no reason to continue the search. 1831 if (HasComplexMemInst && HasConvergentOp) { 1832 CanVecMem = false; 1833 return; 1834 } 1835 1836 // Avoid hitting recordAnalysis multiple times. 1837 if (HasComplexMemInst) 1838 continue; 1839 1840 // If this is a load, save it. If this instruction can read from memory 1841 // but is not a load, then we quit. Notice that we don't handle function 1842 // calls that read or write. 1843 if (I.mayReadFromMemory()) { 1844 // Many math library functions read the rounding mode. We will only 1845 // vectorize a loop if it contains known function calls that don't set 1846 // the flag. Therefore, it is safe to ignore this read from memory. 1847 auto *Call = dyn_cast<CallInst>(&I); 1848 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1849 continue; 1850 1851 // If the function has an explicit vectorized counterpart, we can safely 1852 // assume that it can be vectorized. 1853 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1854 !VFDatabase::getMappings(*Call).empty()) 1855 continue; 1856 1857 auto *Ld = dyn_cast<LoadInst>(&I); 1858 if (!Ld) { 1859 recordAnalysis("CantVectorizeInstruction", Ld) 1860 << "instruction cannot be vectorized"; 1861 HasComplexMemInst = true; 1862 continue; 1863 } 1864 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1865 recordAnalysis("NonSimpleLoad", Ld) 1866 << "read with atomic ordering or volatile read"; 1867 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1868 HasComplexMemInst = true; 1869 continue; 1870 } 1871 NumLoads++; 1872 Loads.push_back(Ld); 1873 DepChecker->addAccess(Ld); 1874 if (EnableMemAccessVersioning) 1875 collectStridedAccess(Ld); 1876 continue; 1877 } 1878 1879 // Save 'store' instructions. Abort if other instructions write to memory. 1880 if (I.mayWriteToMemory()) { 1881 auto *St = dyn_cast<StoreInst>(&I); 1882 if (!St) { 1883 recordAnalysis("CantVectorizeInstruction", St) 1884 << "instruction cannot be vectorized"; 1885 HasComplexMemInst = true; 1886 continue; 1887 } 1888 if (!St->isSimple() && !IsAnnotatedParallel) { 1889 recordAnalysis("NonSimpleStore", St) 1890 << "write with atomic ordering or volatile write"; 1891 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1892 HasComplexMemInst = true; 1893 continue; 1894 } 1895 NumStores++; 1896 Stores.push_back(St); 1897 DepChecker->addAccess(St); 1898 if (EnableMemAccessVersioning) 1899 collectStridedAccess(St); 1900 } 1901 } // Next instr. 1902 } // Next block. 1903 1904 if (HasComplexMemInst) { 1905 CanVecMem = false; 1906 return; 1907 } 1908 1909 // Now we have two lists that hold the loads and the stores. 1910 // Next, we find the pointers that they use. 1911 1912 // Check if we see any stores. If there are no stores, then we don't 1913 // care if the pointers are *restrict*. 1914 if (!Stores.size()) { 1915 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1916 CanVecMem = true; 1917 return; 1918 } 1919 1920 MemoryDepChecker::DepCandidates DependentAccesses; 1921 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1922 TheLoop, AA, LI, DependentAccesses, *PSE); 1923 1924 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1925 // multiple times on the same object. If the ptr is accessed twice, once 1926 // for read and once for write, it will only appear once (on the write 1927 // list). This is okay, since we are going to check for conflicts between 1928 // writes and between reads and writes, but not between reads and reads. 1929 ValueSet Seen; 1930 1931 // Record uniform store addresses to identify if we have multiple stores 1932 // to the same address. 1933 ValueSet UniformStores; 1934 1935 for (StoreInst *ST : Stores) { 1936 Value *Ptr = ST->getPointerOperand(); 1937 1938 if (isUniform(Ptr)) 1939 HasDependenceInvolvingLoopInvariantAddress |= 1940 !UniformStores.insert(Ptr).second; 1941 1942 // If we did *not* see this pointer before, insert it to the read-write 1943 // list. At this phase it is only a 'write' list. 1944 if (Seen.insert(Ptr).second) { 1945 ++NumReadWrites; 1946 1947 MemoryLocation Loc = MemoryLocation::get(ST); 1948 // The TBAA metadata could have a control dependency on the predication 1949 // condition, so we cannot rely on it when determining whether or not we 1950 // need runtime pointer checks. 1951 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1952 Loc.AATags.TBAA = nullptr; 1953 1954 Accesses.addStore(Loc); 1955 } 1956 } 1957 1958 if (IsAnnotatedParallel) { 1959 LLVM_DEBUG( 1960 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1961 << "checks.\n"); 1962 CanVecMem = true; 1963 return; 1964 } 1965 1966 for (LoadInst *LD : Loads) { 1967 Value *Ptr = LD->getPointerOperand(); 1968 // If we did *not* see this pointer before, insert it to the 1969 // read list. If we *did* see it before, then it is already in 1970 // the read-write list. This allows us to vectorize expressions 1971 // such as A[i] += x; Because the address of A[i] is a read-write 1972 // pointer. This only works if the index of A[i] is consecutive. 1973 // If the address of i is unknown (for example A[B[i]]) then we may 1974 // read a few words, modify, and write a few words, and some of the 1975 // words may be written to the same address. 1976 bool IsReadOnlyPtr = false; 1977 if (Seen.insert(Ptr).second || 1978 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1979 ++NumReads; 1980 IsReadOnlyPtr = true; 1981 } 1982 1983 // See if there is an unsafe dependency between a load to a uniform address and 1984 // store to the same uniform address. 1985 if (UniformStores.count(Ptr)) { 1986 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1987 "load and uniform store to the same address!\n"); 1988 HasDependenceInvolvingLoopInvariantAddress = true; 1989 } 1990 1991 MemoryLocation Loc = MemoryLocation::get(LD); 1992 // The TBAA metadata could have a control dependency on the predication 1993 // condition, so we cannot rely on it when determining whether or not we 1994 // need runtime pointer checks. 1995 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1996 Loc.AATags.TBAA = nullptr; 1997 1998 Accesses.addLoad(Loc, IsReadOnlyPtr); 1999 } 2000 2001 // If we write (or read-write) to a single destination and there are no 2002 // other reads in this loop then is it safe to vectorize. 2003 if (NumReadWrites == 1 && NumReads == 0) { 2004 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2005 CanVecMem = true; 2006 return; 2007 } 2008 2009 // Build dependence sets and check whether we need a runtime pointer bounds 2010 // check. 2011 Accesses.buildDependenceSets(); 2012 2013 // Find pointers with computable bounds. We are going to use this information 2014 // to place a runtime bound check. 2015 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2016 TheLoop, SymbolicStrides); 2017 if (!CanDoRTIfNeeded) { 2018 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2019 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2020 << "the array bounds.\n"); 2021 CanVecMem = false; 2022 return; 2023 } 2024 2025 LLVM_DEBUG( 2026 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2027 2028 CanVecMem = true; 2029 if (Accesses.isDependencyCheckNeeded()) { 2030 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2031 CanVecMem = DepChecker->areDepsSafe( 2032 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2033 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2034 2035 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2036 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2037 2038 // Clear the dependency checks. We assume they are not needed. 2039 Accesses.resetDepChecks(*DepChecker); 2040 2041 PtrRtChecking->reset(); 2042 PtrRtChecking->Need = true; 2043 2044 auto *SE = PSE->getSE(); 2045 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2046 SymbolicStrides, true); 2047 2048 // Check that we found the bounds for the pointer. 2049 if (!CanDoRTIfNeeded) { 2050 recordAnalysis("CantCheckMemDepsAtRunTime") 2051 << "cannot check memory dependencies at runtime"; 2052 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2053 CanVecMem = false; 2054 return; 2055 } 2056 2057 CanVecMem = true; 2058 } 2059 } 2060 2061 if (HasConvergentOp) { 2062 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2063 << "cannot add control dependency to convergent operation"; 2064 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2065 "would be needed with a convergent operation\n"); 2066 CanVecMem = false; 2067 return; 2068 } 2069 2070 if (CanVecMem) 2071 LLVM_DEBUG( 2072 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2073 << (PtrRtChecking->Need ? "" : " don't") 2074 << " need runtime memory checks.\n"); 2075 else { 2076 recordAnalysis("UnsafeMemDep") 2077 << "unsafe dependent memory operations in loop. Use " 2078 "#pragma loop distribute(enable) to allow loop distribution " 2079 "to attempt to isolate the offending operations into a separate " 2080 "loop"; 2081 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2082 } 2083 } 2084 2085 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2086 DominatorTree *DT) { 2087 assert(TheLoop->contains(BB) && "Unknown block used"); 2088 2089 // Blocks that do not dominate the latch need predication. 2090 BasicBlock* Latch = TheLoop->getLoopLatch(); 2091 return !DT->dominates(BB, Latch); 2092 } 2093 2094 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2095 Instruction *I) { 2096 assert(!Report && "Multiple reports generated"); 2097 2098 Value *CodeRegion = TheLoop->getHeader(); 2099 DebugLoc DL = TheLoop->getStartLoc(); 2100 2101 if (I) { 2102 CodeRegion = I->getParent(); 2103 // If there is no debug location attached to the instruction, revert back to 2104 // using the loop's. 2105 if (I->getDebugLoc()) 2106 DL = I->getDebugLoc(); 2107 } 2108 2109 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2110 CodeRegion); 2111 return *Report; 2112 } 2113 2114 bool LoopAccessInfo::isUniform(Value *V) const { 2115 auto *SE = PSE->getSE(); 2116 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2117 // never considered uniform. 2118 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2119 // trivially loop-invariant FP values to be considered uniform. 2120 if (!SE->isSCEVable(V->getType())) 2121 return false; 2122 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2123 } 2124 2125 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2126 Value *Ptr = nullptr; 2127 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2128 Ptr = LI->getPointerOperand(); 2129 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2130 Ptr = SI->getPointerOperand(); 2131 else 2132 return; 2133 2134 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2135 if (!Stride) 2136 return; 2137 2138 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2139 "versioning:"); 2140 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2141 2142 // Avoid adding the "Stride == 1" predicate when we know that 2143 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2144 // or zero iteration loop, as Trip-Count <= Stride == 1. 2145 // 2146 // TODO: We are currently not making a very informed decision on when it is 2147 // beneficial to apply stride versioning. It might make more sense that the 2148 // users of this analysis (such as the vectorizer) will trigger it, based on 2149 // their specific cost considerations; For example, in cases where stride 2150 // versioning does not help resolving memory accesses/dependences, the 2151 // vectorizer should evaluate the cost of the runtime test, and the benefit 2152 // of various possible stride specializations, considering the alternatives 2153 // of using gather/scatters (if available). 2154 2155 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2156 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2157 2158 // Match the types so we can compare the stride and the BETakenCount. 2159 // The Stride can be positive/negative, so we sign extend Stride; 2160 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2161 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2162 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2163 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2164 const SCEV *CastedStride = StrideExpr; 2165 const SCEV *CastedBECount = BETakenCount; 2166 ScalarEvolution *SE = PSE->getSE(); 2167 if (BETypeSize >= StrideTypeSize) 2168 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2169 else 2170 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2171 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2172 // Since TripCount == BackEdgeTakenCount + 1, checking: 2173 // "Stride >= TripCount" is equivalent to checking: 2174 // Stride - BETakenCount > 0 2175 if (SE->isKnownPositive(StrideMinusBETaken)) { 2176 LLVM_DEBUG( 2177 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2178 "Stride==1 predicate will imply that the loop executes " 2179 "at most once.\n"); 2180 return; 2181 } 2182 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2183 2184 SymbolicStrides[Ptr] = Stride; 2185 StrideSet.insert(Stride); 2186 } 2187 2188 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2189 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2190 DominatorTree *DT, LoopInfo *LI) 2191 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2192 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2193 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2194 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2195 HasConvergentOp(false), 2196 HasDependenceInvolvingLoopInvariantAddress(false) { 2197 if (canAnalyzeLoop()) 2198 analyzeLoop(AA, LI, TLI, DT); 2199 } 2200 2201 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2202 if (CanVecMem) { 2203 OS.indent(Depth) << "Memory dependences are safe"; 2204 if (MaxSafeDepDistBytes != -1ULL) 2205 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2206 << " bytes"; 2207 if (PtrRtChecking->Need) 2208 OS << " with run-time checks"; 2209 OS << "\n"; 2210 } 2211 2212 if (HasConvergentOp) 2213 OS.indent(Depth) << "Has convergent operation in loop\n"; 2214 2215 if (Report) 2216 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2217 2218 if (auto *Dependences = DepChecker->getDependences()) { 2219 OS.indent(Depth) << "Dependences:\n"; 2220 for (auto &Dep : *Dependences) { 2221 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2222 OS << "\n"; 2223 } 2224 } else 2225 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2226 2227 // List the pair of accesses need run-time checks to prove independence. 2228 PtrRtChecking->print(OS, Depth); 2229 OS << "\n"; 2230 2231 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2232 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2233 << "found in loop.\n"; 2234 2235 OS.indent(Depth) << "SCEV assumptions:\n"; 2236 PSE->getUnionPredicate().print(OS, Depth); 2237 2238 OS << "\n"; 2239 2240 OS.indent(Depth) << "Expressions re-written:\n"; 2241 PSE->print(OS, Depth); 2242 } 2243 2244 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2245 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2246 } 2247 2248 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2249 auto &LAI = LoopAccessInfoMap[L]; 2250 2251 if (!LAI) 2252 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2253 2254 return *LAI.get(); 2255 } 2256 2257 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2258 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2259 2260 for (Loop *TopLevelLoop : *LI) 2261 for (Loop *L : depth_first(TopLevelLoop)) { 2262 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2263 auto &LAI = LAA.getInfo(L); 2264 LAI.print(OS, 4); 2265 } 2266 } 2267 2268 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2269 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2270 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2271 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2272 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2273 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2274 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2275 2276 return false; 2277 } 2278 2279 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2280 AU.addRequired<ScalarEvolutionWrapperPass>(); 2281 AU.addRequired<AAResultsWrapperPass>(); 2282 AU.addRequired<DominatorTreeWrapperPass>(); 2283 AU.addRequired<LoopInfoWrapperPass>(); 2284 2285 AU.setPreservesAll(); 2286 } 2287 2288 char LoopAccessLegacyAnalysis::ID = 0; 2289 static const char laa_name[] = "Loop Access Analysis"; 2290 #define LAA_NAME "loop-accesses" 2291 2292 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2293 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2294 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2295 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2296 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2297 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2298 2299 AnalysisKey LoopAccessAnalysis::Key; 2300 2301 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2302 LoopStandardAnalysisResults &AR) { 2303 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2304 } 2305 2306 namespace llvm { 2307 2308 Pass *createLAAPass() { 2309 return new LoopAccessLegacyAnalysis(); 2310 } 2311 2312 } // end namespace llvm 2313