1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-accesses"
71 
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74                     cl::desc("Sets the SIMD width. Zero is autoselect."),
75                     cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
77 
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80                         cl::desc("Sets the vectorization interleave count. "
81                                  "Zero is autoselect."),
82                         cl::location(
83                             VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
85 
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87     "runtime-memory-check-threshold", cl::Hidden,
88     cl::desc("When performing memory disambiguation checks at runtime do not "
89              "generate more than this number of comparisons (default = 8)."),
90     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
92 
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95     "memory-check-merge-threshold", cl::Hidden,
96     cl::desc("Maximum number of comparisons done when trying to merge "
97              "runtime memory checks. (default = 100)"),
98     cl::init(100));
99 
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
102 
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105     MaxDependences("max-dependences", cl::Hidden,
106                    cl::desc("Maximum number of dependences collected by "
107                             "loop-access analysis (default = 100)"),
108                    cl::init(100));
109 
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 ///   for (i = 0; i < N; ++i)
113 ///     A[i * Stride1] += B[i * Stride2] ...
114 ///
115 /// Will be roughly translated to
116 ///    if (Stride1 == 1 && Stride2 == 1) {
117 ///      for (i = 0; i < N; i+=4)
118 ///       A[i:i+3] += ...
119 ///    } else
120 ///      ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123     cl::desc("Enable symbolic stride memory access versioning"));
124 
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128     "store-to-load-forwarding-conflict-detection", cl::Hidden,
129     cl::desc("Enable conflict detection in loop-access analysis"),
130     cl::init(true));
131 
132 bool VectorizerParams::isInterleaveForced() {
133   return ::VectorizationInterleave.getNumOccurrences() > 0;
134 }
135 
136 Value *llvm::stripIntegerCast(Value *V) {
137   if (auto *CI = dyn_cast<CastInst>(V))
138     if (CI->getOperand(0)->getType()->isIntegerTy())
139       return CI->getOperand(0);
140   return V;
141 }
142 
143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
144                                             const ValueToValueMap &PtrToStride,
145                                             Value *Ptr, Value *OrigPtr) {
146   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
147 
148   // If there is an entry in the map return the SCEV of the pointer with the
149   // symbolic stride replaced by one.
150   ValueToValueMap::const_iterator SI =
151       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
152   if (SI != PtrToStride.end()) {
153     Value *StrideVal = SI->second;
154 
155     // Strip casts.
156     StrideVal = stripIntegerCast(StrideVal);
157 
158     ScalarEvolution *SE = PSE.getSE();
159     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
160     const auto *CT =
161         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
162 
163     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
164     auto *Expr = PSE.getSCEV(Ptr);
165 
166     LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
167                       << " by: " << *Expr << "\n");
168     return Expr;
169   }
170 
171   // Otherwise, just return the SCEV of the original pointer.
172   return OrigSCEV;
173 }
174 
175 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
176     unsigned Index, RuntimePointerChecking &RtCheck)
177     : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
178       Low(RtCheck.Pointers[Index].Start) {
179   Members.push_back(Index);
180 }
181 
182 /// Calculate Start and End points of memory access.
183 /// Let's assume A is the first access and B is a memory access on N-th loop
184 /// iteration. Then B is calculated as:
185 ///   B = A + Step*N .
186 /// Step value may be positive or negative.
187 /// N is a calculated back-edge taken count:
188 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
189 /// Start and End points are calculated in the following way:
190 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
191 /// where SizeOfElt is the size of single memory access in bytes.
192 ///
193 /// There is no conflict when the intervals are disjoint:
194 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
195 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
196                                     unsigned DepSetId, unsigned ASId,
197                                     const ValueToValueMap &Strides,
198                                     PredicatedScalarEvolution &PSE) {
199   // Get the stride replaced scev.
200   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
201   ScalarEvolution *SE = PSE.getSE();
202 
203   const SCEV *ScStart;
204   const SCEV *ScEnd;
205 
206   if (SE->isLoopInvariant(Sc, Lp))
207     ScStart = ScEnd = Sc;
208   else {
209     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
210     assert(AR && "Invalid addrec expression");
211     const SCEV *Ex = PSE.getBackedgeTakenCount();
212 
213     ScStart = AR->getStart();
214     ScEnd = AR->evaluateAtIteration(Ex, *SE);
215     const SCEV *Step = AR->getStepRecurrence(*SE);
216 
217     // For expressions with negative step, the upper bound is ScStart and the
218     // lower bound is ScEnd.
219     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
220       if (CStep->getValue()->isNegative())
221         std::swap(ScStart, ScEnd);
222     } else {
223       // Fallback case: the step is not constant, but we can still
224       // get the upper and lower bounds of the interval by using min/max
225       // expressions.
226       ScStart = SE->getUMinExpr(ScStart, ScEnd);
227       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
228     }
229     // Add the size of the pointed element to ScEnd.
230     unsigned EltSize =
231       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
232     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
233     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
234   }
235 
236   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
237 }
238 
239 SmallVector<RuntimePointerCheck, 4>
240 RuntimePointerChecking::generateChecks() const {
241   SmallVector<RuntimePointerCheck, 4> Checks;
242 
243   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
244     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
245       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
246       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
247 
248       if (needsChecking(CGI, CGJ))
249         Checks.push_back(std::make_pair(&CGI, &CGJ));
250     }
251   }
252   return Checks;
253 }
254 
255 void RuntimePointerChecking::generateChecks(
256     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
257   assert(Checks.empty() && "Checks is not empty");
258   groupChecks(DepCands, UseDependencies);
259   Checks = generateChecks();
260 }
261 
262 bool RuntimePointerChecking::needsChecking(
263     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
264   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
265     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
266       if (needsChecking(M.Members[I], N.Members[J]))
267         return true;
268   return false;
269 }
270 
271 /// Compare \p I and \p J and return the minimum.
272 /// Return nullptr in case we couldn't find an answer.
273 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
274                                    ScalarEvolution *SE) {
275   const SCEV *Diff = SE->getMinusSCEV(J, I);
276   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
277 
278   if (!C)
279     return nullptr;
280   if (C->getValue()->isNegative())
281     return J;
282   return I;
283 }
284 
285 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) {
286   const SCEV *Start = RtCheck.Pointers[Index].Start;
287   const SCEV *End = RtCheck.Pointers[Index].End;
288 
289   // Compare the starts and ends with the known minimum and maximum
290   // of this set. We need to know how we compare against the min/max
291   // of the set in order to be able to emit memchecks.
292   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
293   if (!Min0)
294     return false;
295 
296   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
297   if (!Min1)
298     return false;
299 
300   // Update the low bound  expression if we've found a new min value.
301   if (Min0 == Start)
302     Low = Start;
303 
304   // Update the high bound expression if we've found a new max value.
305   if (Min1 != End)
306     High = End;
307 
308   Members.push_back(Index);
309   return true;
310 }
311 
312 void RuntimePointerChecking::groupChecks(
313     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
314   // We build the groups from dependency candidates equivalence classes
315   // because:
316   //    - We know that pointers in the same equivalence class share
317   //      the same underlying object and therefore there is a chance
318   //      that we can compare pointers
319   //    - We wouldn't be able to merge two pointers for which we need
320   //      to emit a memcheck. The classes in DepCands are already
321   //      conveniently built such that no two pointers in the same
322   //      class need checking against each other.
323 
324   // We use the following (greedy) algorithm to construct the groups
325   // For every pointer in the equivalence class:
326   //   For each existing group:
327   //   - if the difference between this pointer and the min/max bounds
328   //     of the group is a constant, then make the pointer part of the
329   //     group and update the min/max bounds of that group as required.
330 
331   CheckingGroups.clear();
332 
333   // If we need to check two pointers to the same underlying object
334   // with a non-constant difference, we shouldn't perform any pointer
335   // grouping with those pointers. This is because we can easily get
336   // into cases where the resulting check would return false, even when
337   // the accesses are safe.
338   //
339   // The following example shows this:
340   // for (i = 0; i < 1000; ++i)
341   //   a[5000 + i * m] = a[i] + a[i + 9000]
342   //
343   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
344   // (0, 10000) which is always false. However, if m is 1, there is no
345   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
346   // us to perform an accurate check in this case.
347   //
348   // The above case requires that we have an UnknownDependence between
349   // accesses to the same underlying object. This cannot happen unless
350   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
351   // is also false. In this case we will use the fallback path and create
352   // separate checking groups for all pointers.
353 
354   // If we don't have the dependency partitions, construct a new
355   // checking pointer group for each pointer. This is also required
356   // for correctness, because in this case we can have checking between
357   // pointers to the same underlying object.
358   if (!UseDependencies) {
359     for (unsigned I = 0; I < Pointers.size(); ++I)
360       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
361     return;
362   }
363 
364   unsigned TotalComparisons = 0;
365 
366   DenseMap<Value *, unsigned> PositionMap;
367   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
368     PositionMap[Pointers[Index].PointerValue] = Index;
369 
370   // We need to keep track of what pointers we've already seen so we
371   // don't process them twice.
372   SmallSet<unsigned, 2> Seen;
373 
374   // Go through all equivalence classes, get the "pointer check groups"
375   // and add them to the overall solution. We use the order in which accesses
376   // appear in 'Pointers' to enforce determinism.
377   for (unsigned I = 0; I < Pointers.size(); ++I) {
378     // We've seen this pointer before, and therefore already processed
379     // its equivalence class.
380     if (Seen.count(I))
381       continue;
382 
383     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
384                                            Pointers[I].IsWritePtr);
385 
386     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
387     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
388 
389     // Because DepCands is constructed by visiting accesses in the order in
390     // which they appear in alias sets (which is deterministic) and the
391     // iteration order within an equivalence class member is only dependent on
392     // the order in which unions and insertions are performed on the
393     // equivalence class, the iteration order is deterministic.
394     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
395          MI != ME; ++MI) {
396       unsigned Pointer = PositionMap[MI->getPointer()];
397       bool Merged = false;
398       // Mark this pointer as seen.
399       Seen.insert(Pointer);
400 
401       // Go through all the existing sets and see if we can find one
402       // which can include this pointer.
403       for (RuntimeCheckingPtrGroup &Group : Groups) {
404         // Don't perform more than a certain amount of comparisons.
405         // This should limit the cost of grouping the pointers to something
406         // reasonable.  If we do end up hitting this threshold, the algorithm
407         // will create separate groups for all remaining pointers.
408         if (TotalComparisons > MemoryCheckMergeThreshold)
409           break;
410 
411         TotalComparisons++;
412 
413         if (Group.addPointer(Pointer)) {
414           Merged = true;
415           break;
416         }
417       }
418 
419       if (!Merged)
420         // We couldn't add this pointer to any existing set or the threshold
421         // for the number of comparisons has been reached. Create a new group
422         // to hold the current pointer.
423         Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
424     }
425 
426     // We've computed the grouped checks for this partition.
427     // Save the results and continue with the next one.
428     llvm::copy(Groups, std::back_inserter(CheckingGroups));
429   }
430 }
431 
432 bool RuntimePointerChecking::arePointersInSamePartition(
433     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
434     unsigned PtrIdx2) {
435   return (PtrToPartition[PtrIdx1] != -1 &&
436           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
437 }
438 
439 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
440   const PointerInfo &PointerI = Pointers[I];
441   const PointerInfo &PointerJ = Pointers[J];
442 
443   // No need to check if two readonly pointers intersect.
444   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
445     return false;
446 
447   // Only need to check pointers between two different dependency sets.
448   if (PointerI.DependencySetId == PointerJ.DependencySetId)
449     return false;
450 
451   // Only need to check pointers in the same alias set.
452   if (PointerI.AliasSetId != PointerJ.AliasSetId)
453     return false;
454 
455   return true;
456 }
457 
458 void RuntimePointerChecking::printChecks(
459     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
460     unsigned Depth) const {
461   unsigned N = 0;
462   for (const auto &Check : Checks) {
463     const auto &First = Check.first->Members, &Second = Check.second->Members;
464 
465     OS.indent(Depth) << "Check " << N++ << ":\n";
466 
467     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
468     for (unsigned K = 0; K < First.size(); ++K)
469       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
470 
471     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
472     for (unsigned K = 0; K < Second.size(); ++K)
473       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
474   }
475 }
476 
477 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
478 
479   OS.indent(Depth) << "Run-time memory checks:\n";
480   printChecks(OS, Checks, Depth);
481 
482   OS.indent(Depth) << "Grouped accesses:\n";
483   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
484     const auto &CG = CheckingGroups[I];
485 
486     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
487     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
488                          << ")\n";
489     for (unsigned J = 0; J < CG.Members.size(); ++J) {
490       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
491                            << "\n";
492     }
493   }
494 }
495 
496 namespace {
497 
498 /// Analyses memory accesses in a loop.
499 ///
500 /// Checks whether run time pointer checks are needed and builds sets for data
501 /// dependence checking.
502 class AccessAnalysis {
503 public:
504   /// Read or write access location.
505   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
506   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
507 
508   AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
509                  LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
510                  PredicatedScalarEvolution &PSE)
511       : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
512         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
513 
514   /// Register a load  and whether it is only read from.
515   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
516     Value *Ptr = const_cast<Value*>(Loc.Ptr);
517     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
518     Accesses.insert(MemAccessInfo(Ptr, false));
519     if (IsReadOnly)
520       ReadOnlyPtr.insert(Ptr);
521   }
522 
523   /// Register a store.
524   void addStore(MemoryLocation &Loc) {
525     Value *Ptr = const_cast<Value*>(Loc.Ptr);
526     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
527     Accesses.insert(MemAccessInfo(Ptr, true));
528   }
529 
530   /// Check if we can emit a run-time no-alias check for \p Access.
531   ///
532   /// Returns true if we can emit a run-time no alias check for \p Access.
533   /// If we can check this access, this also adds it to a dependence set and
534   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
535   /// we will attempt to use additional run-time checks in order to get
536   /// the bounds of the pointer.
537   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
538                             MemAccessInfo Access,
539                             const ValueToValueMap &Strides,
540                             DenseMap<Value *, unsigned> &DepSetId,
541                             Loop *TheLoop, unsigned &RunningDepId,
542                             unsigned ASId, bool ShouldCheckStride,
543                             bool Assume);
544 
545   /// Check whether we can check the pointers at runtime for
546   /// non-intersection.
547   ///
548   /// Returns true if we need no check or if we do and we can generate them
549   /// (i.e. the pointers have computable bounds).
550   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551                        Loop *TheLoop, const ValueToValueMap &Strides,
552                        bool ShouldCheckWrap = false);
553 
554   /// Goes over all memory accesses, checks whether a RT check is needed
555   /// and builds sets of dependent accesses.
556   void buildDependenceSets() {
557     processMemAccesses();
558   }
559 
560   /// Initial processing of memory accesses determined that we need to
561   /// perform dependency checking.
562   ///
563   /// Note that this can later be cleared if we retry memcheck analysis without
564   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
565   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
566 
567   /// We decided that no dependence analysis would be used.  Reset the state.
568   void resetDepChecks(MemoryDepChecker &DepChecker) {
569     CheckDeps.clear();
570     DepChecker.clearDependences();
571   }
572 
573   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
574 
575 private:
576   typedef SetVector<MemAccessInfo> PtrAccessSet;
577 
578   /// Go over all memory access and check whether runtime pointer checks
579   /// are needed and build sets of dependency check candidates.
580   void processMemAccesses();
581 
582   /// Set of all accesses.
583   PtrAccessSet Accesses;
584 
585   const DataLayout &DL;
586 
587   /// The loop being checked.
588   const Loop *TheLoop;
589 
590   /// List of accesses that need a further dependence check.
591   MemAccessInfoList CheckDeps;
592 
593   /// Set of pointers that are read only.
594   SmallPtrSet<Value*, 16> ReadOnlyPtr;
595 
596   /// An alias set tracker to partition the access set by underlying object and
597   //intrinsic property (such as TBAA metadata).
598   AliasSetTracker AST;
599 
600   LoopInfo *LI;
601 
602   /// Sets of potentially dependent accesses - members of one set share an
603   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
604   /// dependence check.
605   MemoryDepChecker::DepCandidates &DepCands;
606 
607   /// Initial processing of memory accesses determined that we may need
608   /// to add memchecks.  Perform the analysis to determine the necessary checks.
609   ///
610   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
611   /// memcheck analysis without dependency checking
612   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
613   /// cleared while this remains set if we have potentially dependent accesses.
614   bool IsRTCheckAnalysisNeeded;
615 
616   /// The SCEV predicate containing all the SCEV-related assumptions.
617   PredicatedScalarEvolution &PSE;
618 };
619 
620 } // end anonymous namespace
621 
622 /// Check whether a pointer can participate in a runtime bounds check.
623 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
624 /// by adding run-time checks (overflow checks) if necessary.
625 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
626                                 const ValueToValueMap &Strides, Value *Ptr,
627                                 Loop *L, bool Assume) {
628   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
629 
630   // The bounds for loop-invariant pointer is trivial.
631   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
632     return true;
633 
634   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
635 
636   if (!AR && Assume)
637     AR = PSE.getAsAddRec(Ptr);
638 
639   if (!AR)
640     return false;
641 
642   return AR->isAffine();
643 }
644 
645 /// Check whether a pointer address cannot wrap.
646 static bool isNoWrap(PredicatedScalarEvolution &PSE,
647                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
648   const SCEV *PtrScev = PSE.getSCEV(Ptr);
649   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
650     return true;
651 
652   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
653   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
654     return true;
655 
656   return false;
657 }
658 
659 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
660                                           MemAccessInfo Access,
661                                           const ValueToValueMap &StridesMap,
662                                           DenseMap<Value *, unsigned> &DepSetId,
663                                           Loop *TheLoop, unsigned &RunningDepId,
664                                           unsigned ASId, bool ShouldCheckWrap,
665                                           bool Assume) {
666   Value *Ptr = Access.getPointer();
667 
668   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
669     return false;
670 
671   // When we run after a failing dependency check we have to make sure
672   // we don't have wrapping pointers.
673   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
674     auto *Expr = PSE.getSCEV(Ptr);
675     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
676       return false;
677     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
678   }
679 
680   // The id of the dependence set.
681   unsigned DepId;
682 
683   if (isDependencyCheckNeeded()) {
684     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
685     unsigned &LeaderId = DepSetId[Leader];
686     if (!LeaderId)
687       LeaderId = RunningDepId++;
688     DepId = LeaderId;
689   } else
690     // Each access has its own dependence set.
691     DepId = RunningDepId++;
692 
693   bool IsWrite = Access.getInt();
694   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
695   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
696 
697   return true;
698  }
699 
700 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
701                                      ScalarEvolution *SE, Loop *TheLoop,
702                                      const ValueToValueMap &StridesMap,
703                                      bool ShouldCheckWrap) {
704   // Find pointers with computable bounds. We are going to use this information
705   // to place a runtime bound check.
706   bool CanDoRT = true;
707 
708   bool NeedRTCheck = false;
709   if (!IsRTCheckAnalysisNeeded) return true;
710 
711   bool IsDepCheckNeeded = isDependencyCheckNeeded();
712 
713   // We assign a consecutive id to access from different alias sets.
714   // Accesses between different groups doesn't need to be checked.
715   unsigned ASId = 1;
716   for (auto &AS : AST) {
717     int NumReadPtrChecks = 0;
718     int NumWritePtrChecks = 0;
719     bool CanDoAliasSetRT = true;
720 
721     // We assign consecutive id to access from different dependence sets.
722     // Accesses within the same set don't need a runtime check.
723     unsigned RunningDepId = 1;
724     DenseMap<Value *, unsigned> DepSetId;
725 
726     SmallVector<MemAccessInfo, 4> Retries;
727 
728     for (auto A : AS) {
729       Value *Ptr = A.getValue();
730       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
731       MemAccessInfo Access(Ptr, IsWrite);
732 
733       if (IsWrite)
734         ++NumWritePtrChecks;
735       else
736         ++NumReadPtrChecks;
737 
738       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
739                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
740         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
741         Retries.push_back(Access);
742         CanDoAliasSetRT = false;
743       }
744     }
745 
746     // If we have at least two writes or one write and a read then we need to
747     // check them.  But there is no need to checks if there is only one
748     // dependence set for this alias set.
749     //
750     // Note that this function computes CanDoRT and NeedRTCheck independently.
751     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
752     // for which we couldn't find the bounds but we don't actually need to emit
753     // any checks so it does not matter.
754     bool NeedsAliasSetRTCheck = false;
755     if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
756       NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
757                              (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
758 
759     // We need to perform run-time alias checks, but some pointers had bounds
760     // that couldn't be checked.
761     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
762       // Reset the CanDoSetRt flag and retry all accesses that have failed.
763       // We know that we need these checks, so we can now be more aggressive
764       // and add further checks if required (overflow checks).
765       CanDoAliasSetRT = true;
766       for (auto Access : Retries)
767         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
768                                   TheLoop, RunningDepId, ASId,
769                                   ShouldCheckWrap, /*Assume=*/true)) {
770           CanDoAliasSetRT = false;
771           break;
772         }
773     }
774 
775     CanDoRT &= CanDoAliasSetRT;
776     NeedRTCheck |= NeedsAliasSetRTCheck;
777     ++ASId;
778   }
779 
780   // If the pointers that we would use for the bounds comparison have different
781   // address spaces, assume the values aren't directly comparable, so we can't
782   // use them for the runtime check. We also have to assume they could
783   // overlap. In the future there should be metadata for whether address spaces
784   // are disjoint.
785   unsigned NumPointers = RtCheck.Pointers.size();
786   for (unsigned i = 0; i < NumPointers; ++i) {
787     for (unsigned j = i + 1; j < NumPointers; ++j) {
788       // Only need to check pointers between two different dependency sets.
789       if (RtCheck.Pointers[i].DependencySetId ==
790           RtCheck.Pointers[j].DependencySetId)
791        continue;
792       // Only need to check pointers in the same alias set.
793       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
794         continue;
795 
796       Value *PtrI = RtCheck.Pointers[i].PointerValue;
797       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
798 
799       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
800       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
801       if (ASi != ASj) {
802         LLVM_DEBUG(
803             dbgs() << "LAA: Runtime check would require comparison between"
804                       " different address spaces\n");
805         return false;
806       }
807     }
808   }
809 
810   if (NeedRTCheck && CanDoRT)
811     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
812 
813   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
814                     << " pointer comparisons.\n");
815 
816   RtCheck.Need = NeedRTCheck;
817 
818   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
819   if (!CanDoRTIfNeeded)
820     RtCheck.reset();
821   return CanDoRTIfNeeded;
822 }
823 
824 void AccessAnalysis::processMemAccesses() {
825   // We process the set twice: first we process read-write pointers, last we
826   // process read-only pointers. This allows us to skip dependence tests for
827   // read-only pointers.
828 
829   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
830   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
831   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
832   LLVM_DEBUG({
833     for (auto A : Accesses)
834       dbgs() << "\t" << *A.getPointer() << " (" <<
835                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
836                                          "read-only" : "read")) << ")\n";
837   });
838 
839   // The AliasSetTracker has nicely partitioned our pointers by metadata
840   // compatibility and potential for underlying-object overlap. As a result, we
841   // only need to check for potential pointer dependencies within each alias
842   // set.
843   for (auto &AS : AST) {
844     // Note that both the alias-set tracker and the alias sets themselves used
845     // linked lists internally and so the iteration order here is deterministic
846     // (matching the original instruction order within each set).
847 
848     bool SetHasWrite = false;
849 
850     // Map of pointers to last access encountered.
851     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
852     UnderlyingObjToAccessMap ObjToLastAccess;
853 
854     // Set of access to check after all writes have been processed.
855     PtrAccessSet DeferredAccesses;
856 
857     // Iterate over each alias set twice, once to process read/write pointers,
858     // and then to process read-only pointers.
859     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
860       bool UseDeferred = SetIteration > 0;
861       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
862 
863       for (auto AV : AS) {
864         Value *Ptr = AV.getValue();
865 
866         // For a single memory access in AliasSetTracker, Accesses may contain
867         // both read and write, and they both need to be handled for CheckDeps.
868         for (auto AC : S) {
869           if (AC.getPointer() != Ptr)
870             continue;
871 
872           bool IsWrite = AC.getInt();
873 
874           // If we're using the deferred access set, then it contains only
875           // reads.
876           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
877           if (UseDeferred && !IsReadOnlyPtr)
878             continue;
879           // Otherwise, the pointer must be in the PtrAccessSet, either as a
880           // read or a write.
881           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
882                   S.count(MemAccessInfo(Ptr, false))) &&
883                  "Alias-set pointer not in the access set?");
884 
885           MemAccessInfo Access(Ptr, IsWrite);
886           DepCands.insert(Access);
887 
888           // Memorize read-only pointers for later processing and skip them in
889           // the first round (they need to be checked after we have seen all
890           // write pointers). Note: we also mark pointer that are not
891           // consecutive as "read-only" pointers (so that we check
892           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
893           if (!UseDeferred && IsReadOnlyPtr) {
894             DeferredAccesses.insert(Access);
895             continue;
896           }
897 
898           // If this is a write - check other reads and writes for conflicts. If
899           // this is a read only check other writes for conflicts (but only if
900           // there is no other write to the ptr - this is an optimization to
901           // catch "a[i] = a[i] + " without having to do a dependence check).
902           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
903             CheckDeps.push_back(Access);
904             IsRTCheckAnalysisNeeded = true;
905           }
906 
907           if (IsWrite)
908             SetHasWrite = true;
909 
910           // Create sets of pointers connected by a shared alias set and
911           // underlying object.
912           typedef SmallVector<const Value *, 16> ValueVector;
913           ValueVector TempObjects;
914 
915           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
916           LLVM_DEBUG(dbgs()
917                      << "Underlying objects for pointer " << *Ptr << "\n");
918           for (const Value *UnderlyingObj : TempObjects) {
919             // nullptr never alias, don't join sets for pointer that have "null"
920             // in their UnderlyingObjects list.
921             if (isa<ConstantPointerNull>(UnderlyingObj) &&
922                 !NullPointerIsDefined(
923                     TheLoop->getHeader()->getParent(),
924                     UnderlyingObj->getType()->getPointerAddressSpace()))
925               continue;
926 
927             UnderlyingObjToAccessMap::iterator Prev =
928                 ObjToLastAccess.find(UnderlyingObj);
929             if (Prev != ObjToLastAccess.end())
930               DepCands.unionSets(Access, Prev->second);
931 
932             ObjToLastAccess[UnderlyingObj] = Access;
933             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
934           }
935         }
936       }
937     }
938   }
939 }
940 
941 static bool isInBoundsGep(Value *Ptr) {
942   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
943     return GEP->isInBounds();
944   return false;
945 }
946 
947 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
948 /// i.e. monotonically increasing/decreasing.
949 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
950                            PredicatedScalarEvolution &PSE, const Loop *L) {
951   // FIXME: This should probably only return true for NUW.
952   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
953     return true;
954 
955   // Scalar evolution does not propagate the non-wrapping flags to values that
956   // are derived from a non-wrapping induction variable because non-wrapping
957   // could be flow-sensitive.
958   //
959   // Look through the potentially overflowing instruction to try to prove
960   // non-wrapping for the *specific* value of Ptr.
961 
962   // The arithmetic implied by an inbounds GEP can't overflow.
963   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
964   if (!GEP || !GEP->isInBounds())
965     return false;
966 
967   // Make sure there is only one non-const index and analyze that.
968   Value *NonConstIndex = nullptr;
969   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
970     if (!isa<ConstantInt>(Index)) {
971       if (NonConstIndex)
972         return false;
973       NonConstIndex = Index;
974     }
975   if (!NonConstIndex)
976     // The recurrence is on the pointer, ignore for now.
977     return false;
978 
979   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
980   // AddRec using a NSW operation.
981   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
982     if (OBO->hasNoSignedWrap() &&
983         // Assume constant for other the operand so that the AddRec can be
984         // easily found.
985         isa<ConstantInt>(OBO->getOperand(1))) {
986       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
987 
988       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
989         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
990     }
991 
992   return false;
993 }
994 
995 /// Check whether the access through \p Ptr has a constant stride.
996 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
997                            const Loop *Lp, const ValueToValueMap &StridesMap,
998                            bool Assume, bool ShouldCheckWrap) {
999   Type *Ty = Ptr->getType();
1000   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1001 
1002   // Make sure that the pointer does not point to aggregate types.
1003   auto *PtrTy = cast<PointerType>(Ty);
1004   if (PtrTy->getElementType()->isAggregateType()) {
1005     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1006                       << *Ptr << "\n");
1007     return 0;
1008   }
1009 
1010   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1011 
1012   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1013   if (Assume && !AR)
1014     AR = PSE.getAsAddRec(Ptr);
1015 
1016   if (!AR) {
1017     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1018                       << " SCEV: " << *PtrScev << "\n");
1019     return 0;
1020   }
1021 
1022   // The access function must stride over the innermost loop.
1023   if (Lp != AR->getLoop()) {
1024     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1025                       << *Ptr << " SCEV: " << *AR << "\n");
1026     return 0;
1027   }
1028 
1029   // The address calculation must not wrap. Otherwise, a dependence could be
1030   // inverted.
1031   // An inbounds getelementptr that is a AddRec with a unit stride
1032   // cannot wrap per definition. The unit stride requirement is checked later.
1033   // An getelementptr without an inbounds attribute and unit stride would have
1034   // to access the pointer value "0" which is undefined behavior in address
1035   // space 0, therefore we can also vectorize this case.
1036   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1037   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1038     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1039     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1040   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1041       NullPointerIsDefined(Lp->getHeader()->getParent(),
1042                            PtrTy->getAddressSpace())) {
1043     if (Assume) {
1044       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1045       IsNoWrapAddRec = true;
1046       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1047                         << "LAA:   Pointer: " << *Ptr << "\n"
1048                         << "LAA:   SCEV: " << *AR << "\n"
1049                         << "LAA:   Added an overflow assumption\n");
1050     } else {
1051       LLVM_DEBUG(
1052           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1053                  << *Ptr << " SCEV: " << *AR << "\n");
1054       return 0;
1055     }
1056   }
1057 
1058   // Check the step is constant.
1059   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1060 
1061   // Calculate the pointer stride and check if it is constant.
1062   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1063   if (!C) {
1064     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1065                       << " SCEV: " << *AR << "\n");
1066     return 0;
1067   }
1068 
1069   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1070   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1071   const APInt &APStepVal = C->getAPInt();
1072 
1073   // Huge step value - give up.
1074   if (APStepVal.getBitWidth() > 64)
1075     return 0;
1076 
1077   int64_t StepVal = APStepVal.getSExtValue();
1078 
1079   // Strided access.
1080   int64_t Stride = StepVal / Size;
1081   int64_t Rem = StepVal % Size;
1082   if (Rem)
1083     return 0;
1084 
1085   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1086   // know we can't "wrap around the address space". In case of address space
1087   // zero we know that this won't happen without triggering undefined behavior.
1088   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1089       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1090                                               PtrTy->getAddressSpace()))) {
1091     if (Assume) {
1092       // We can avoid this case by adding a run-time check.
1093       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1094                         << "inbounds or in address space 0 may wrap:\n"
1095                         << "LAA:   Pointer: " << *Ptr << "\n"
1096                         << "LAA:   SCEV: " << *AR << "\n"
1097                         << "LAA:   Added an overflow assumption\n");
1098       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1099     } else
1100       return 0;
1101   }
1102 
1103   return Stride;
1104 }
1105 
1106 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1107                            ScalarEvolution &SE,
1108                            SmallVectorImpl<unsigned> &SortedIndices) {
1109   assert(llvm::all_of(
1110              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1111          "Expected list of pointer operands.");
1112   SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1113   OffValPairs.reserve(VL.size());
1114 
1115   // Walk over the pointers, and map each of them to an offset relative to
1116   // first pointer in the array.
1117   Value *Ptr0 = VL[0];
1118   const SCEV *Scev0 = SE.getSCEV(Ptr0);
1119   Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1120 
1121   llvm::SmallSet<int64_t, 4> Offsets;
1122   for (auto *Ptr : VL) {
1123     // TODO: Outline this code as a special, more time consuming, version of
1124     // computeConstantDifference() function.
1125     if (Ptr->getType()->getPointerAddressSpace() !=
1126         Ptr0->getType()->getPointerAddressSpace())
1127       return false;
1128     // If a pointer refers to a different underlying object, bail - the
1129     // pointers are by definition incomparable.
1130     Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1131     if (CurrObj != Obj0)
1132       return false;
1133 
1134     const SCEV *Scev = SE.getSCEV(Ptr);
1135     const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1136     // The pointers may not have a constant offset from each other, or SCEV
1137     // may just not be smart enough to figure out they do. Regardless,
1138     // there's nothing we can do.
1139     if (!Diff)
1140       return false;
1141 
1142     // Check if the pointer with the same offset is found.
1143     int64_t Offset = Diff->getAPInt().getSExtValue();
1144     if (!Offsets.insert(Offset).second)
1145       return false;
1146     OffValPairs.emplace_back(Offset, Ptr);
1147   }
1148   SortedIndices.clear();
1149   SortedIndices.resize(VL.size());
1150   std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1151 
1152   // Sort the memory accesses and keep the order of their uses in UseOrder.
1153   llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
1154     return OffValPairs[Left].first < OffValPairs[Right].first;
1155   });
1156 
1157   // Check if the order is consecutive already.
1158   if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1159         return I == SortedIndices[I];
1160       }))
1161     SortedIndices.clear();
1162 
1163   return true;
1164 }
1165 
1166 /// Take the address space operand from the Load/Store instruction.
1167 /// Returns -1 if this is not a valid Load/Store instruction.
1168 static unsigned getAddressSpaceOperand(Value *I) {
1169   if (LoadInst *L = dyn_cast<LoadInst>(I))
1170     return L->getPointerAddressSpace();
1171   if (StoreInst *S = dyn_cast<StoreInst>(I))
1172     return S->getPointerAddressSpace();
1173   return -1;
1174 }
1175 
1176 /// Returns true if the memory operations \p A and \p B are consecutive.
1177 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1178                                ScalarEvolution &SE, bool CheckType) {
1179   Value *PtrA = getLoadStorePointerOperand(A);
1180   Value *PtrB = getLoadStorePointerOperand(B);
1181   unsigned ASA = getAddressSpaceOperand(A);
1182   unsigned ASB = getAddressSpaceOperand(B);
1183 
1184   // Check that the address spaces match and that the pointers are valid.
1185   if (!PtrA || !PtrB || (ASA != ASB))
1186     return false;
1187 
1188   // Make sure that A and B are different pointers.
1189   if (PtrA == PtrB)
1190     return false;
1191 
1192   // Make sure that A and B have the same type if required.
1193   if (CheckType && PtrA->getType() != PtrB->getType())
1194     return false;
1195 
1196   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1197   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1198 
1199   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1200   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1201   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1202 
1203   // Retrieve the address space again as pointer stripping now tracks through
1204   // `addrspacecast`.
1205   ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
1206   ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
1207   // Check that the address spaces match and that the pointers are valid.
1208   if (ASA != ASB)
1209     return false;
1210 
1211   IdxWidth = DL.getIndexSizeInBits(ASA);
1212   OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1213   OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1214 
1215   APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
1216 
1217   //  OffsetDelta = OffsetB - OffsetA;
1218   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1219   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1220   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1221   const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt();
1222 
1223   // Check if they are based on the same pointer. That makes the offsets
1224   // sufficient.
1225   if (PtrA == PtrB)
1226     return OffsetDelta == Size;
1227 
1228   // Compute the necessary base pointer delta to have the necessary final delta
1229   // equal to the size.
1230   // BaseDelta = Size - OffsetDelta;
1231   const SCEV *SizeSCEV = SE.getConstant(Size);
1232   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1233 
1234   // Otherwise compute the distance with SCEV between the base pointers.
1235   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1236   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1237   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1238   return X == PtrSCEVB;
1239 }
1240 
1241 MemoryDepChecker::VectorizationSafetyStatus
1242 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1243   switch (Type) {
1244   case NoDep:
1245   case Forward:
1246   case BackwardVectorizable:
1247     return VectorizationSafetyStatus::Safe;
1248 
1249   case Unknown:
1250     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1251   case ForwardButPreventsForwarding:
1252   case Backward:
1253   case BackwardVectorizableButPreventsForwarding:
1254     return VectorizationSafetyStatus::Unsafe;
1255   }
1256   llvm_unreachable("unexpected DepType!");
1257 }
1258 
1259 bool MemoryDepChecker::Dependence::isBackward() const {
1260   switch (Type) {
1261   case NoDep:
1262   case Forward:
1263   case ForwardButPreventsForwarding:
1264   case Unknown:
1265     return false;
1266 
1267   case BackwardVectorizable:
1268   case Backward:
1269   case BackwardVectorizableButPreventsForwarding:
1270     return true;
1271   }
1272   llvm_unreachable("unexpected DepType!");
1273 }
1274 
1275 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1276   return isBackward() || Type == Unknown;
1277 }
1278 
1279 bool MemoryDepChecker::Dependence::isForward() const {
1280   switch (Type) {
1281   case Forward:
1282   case ForwardButPreventsForwarding:
1283     return true;
1284 
1285   case NoDep:
1286   case Unknown:
1287   case BackwardVectorizable:
1288   case Backward:
1289   case BackwardVectorizableButPreventsForwarding:
1290     return false;
1291   }
1292   llvm_unreachable("unexpected DepType!");
1293 }
1294 
1295 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1296                                                     uint64_t TypeByteSize) {
1297   // If loads occur at a distance that is not a multiple of a feasible vector
1298   // factor store-load forwarding does not take place.
1299   // Positive dependences might cause troubles because vectorizing them might
1300   // prevent store-load forwarding making vectorized code run a lot slower.
1301   //   a[i] = a[i-3] ^ a[i-8];
1302   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1303   //   hence on your typical architecture store-load forwarding does not take
1304   //   place. Vectorizing in such cases does not make sense.
1305   // Store-load forwarding distance.
1306 
1307   // After this many iterations store-to-load forwarding conflicts should not
1308   // cause any slowdowns.
1309   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1310   // Maximum vector factor.
1311   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1312       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1313 
1314   // Compute the smallest VF at which the store and load would be misaligned.
1315   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1316        VF *= 2) {
1317     // If the number of vector iteration between the store and the load are
1318     // small we could incur conflicts.
1319     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1320       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1321       break;
1322     }
1323   }
1324 
1325   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1326     LLVM_DEBUG(
1327         dbgs() << "LAA: Distance " << Distance
1328                << " that could cause a store-load forwarding conflict\n");
1329     return true;
1330   }
1331 
1332   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1333       MaxVFWithoutSLForwardIssues !=
1334           VectorizerParams::MaxVectorWidth * TypeByteSize)
1335     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1336   return false;
1337 }
1338 
1339 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1340   if (Status < S)
1341     Status = S;
1342 }
1343 
1344 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1345 /// memory accesses, that have the same stride whose absolute value is given
1346 /// in \p Stride, and that have the same type size \p TypeByteSize,
1347 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1348 /// possible to prove statically that the dependence distance is larger
1349 /// than the range that the accesses will travel through the execution of
1350 /// the loop. If so, return true; false otherwise. This is useful for
1351 /// example in loops such as the following (PR31098):
1352 ///     for (i = 0; i < D; ++i) {
1353 ///                = out[i];
1354 ///       out[i+D] =
1355 ///     }
1356 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1357                                      const SCEV &BackedgeTakenCount,
1358                                      const SCEV &Dist, uint64_t Stride,
1359                                      uint64_t TypeByteSize) {
1360 
1361   // If we can prove that
1362   //      (**) |Dist| > BackedgeTakenCount * Step
1363   // where Step is the absolute stride of the memory accesses in bytes,
1364   // then there is no dependence.
1365   //
1366   // Rationale:
1367   // We basically want to check if the absolute distance (|Dist/Step|)
1368   // is >= the loop iteration count (or > BackedgeTakenCount).
1369   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1370   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1371   // that the dependence distance is >= VF; This is checked elsewhere.
1372   // But in some cases we can prune unknown dependence distances early, and
1373   // even before selecting the VF, and without a runtime test, by comparing
1374   // the distance against the loop iteration count. Since the vectorized code
1375   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1376   // also guarantees that distance >= VF.
1377   //
1378   const uint64_t ByteStride = Stride * TypeByteSize;
1379   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1380   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1381 
1382   const SCEV *CastedDist = &Dist;
1383   const SCEV *CastedProduct = Product;
1384   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1385   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1386 
1387   // The dependence distance can be positive/negative, so we sign extend Dist;
1388   // The multiplication of the absolute stride in bytes and the
1389   // backedgeTakenCount is non-negative, so we zero extend Product.
1390   if (DistTypeSize > ProductTypeSize)
1391     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1392   else
1393     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1394 
1395   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1396   // (If so, then we have proven (**) because |Dist| >= Dist)
1397   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1398   if (SE.isKnownPositive(Minus))
1399     return true;
1400 
1401   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1402   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1403   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1404   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1405   if (SE.isKnownPositive(Minus))
1406     return true;
1407 
1408   return false;
1409 }
1410 
1411 /// Check the dependence for two accesses with the same stride \p Stride.
1412 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1413 /// bytes.
1414 ///
1415 /// \returns true if they are independent.
1416 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1417                                           uint64_t TypeByteSize) {
1418   assert(Stride > 1 && "The stride must be greater than 1");
1419   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1420   assert(Distance > 0 && "The distance must be non-zero");
1421 
1422   // Skip if the distance is not multiple of type byte size.
1423   if (Distance % TypeByteSize)
1424     return false;
1425 
1426   uint64_t ScaledDist = Distance / TypeByteSize;
1427 
1428   // No dependence if the scaled distance is not multiple of the stride.
1429   // E.g.
1430   //      for (i = 0; i < 1024 ; i += 4)
1431   //        A[i+2] = A[i] + 1;
1432   //
1433   // Two accesses in memory (scaled distance is 2, stride is 4):
1434   //     | A[0] |      |      |      | A[4] |      |      |      |
1435   //     |      |      | A[2] |      |      |      | A[6] |      |
1436   //
1437   // E.g.
1438   //      for (i = 0; i < 1024 ; i += 3)
1439   //        A[i+4] = A[i] + 1;
1440   //
1441   // Two accesses in memory (scaled distance is 4, stride is 3):
1442   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1443   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1444   return ScaledDist % Stride;
1445 }
1446 
1447 MemoryDepChecker::Dependence::DepType
1448 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1449                               const MemAccessInfo &B, unsigned BIdx,
1450                               const ValueToValueMap &Strides) {
1451   assert (AIdx < BIdx && "Must pass arguments in program order");
1452 
1453   Value *APtr = A.getPointer();
1454   Value *BPtr = B.getPointer();
1455   bool AIsWrite = A.getInt();
1456   bool BIsWrite = B.getInt();
1457 
1458   // Two reads are independent.
1459   if (!AIsWrite && !BIsWrite)
1460     return Dependence::NoDep;
1461 
1462   // We cannot check pointers in different address spaces.
1463   if (APtr->getType()->getPointerAddressSpace() !=
1464       BPtr->getType()->getPointerAddressSpace())
1465     return Dependence::Unknown;
1466 
1467   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1468   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1469 
1470   const SCEV *Src = PSE.getSCEV(APtr);
1471   const SCEV *Sink = PSE.getSCEV(BPtr);
1472 
1473   // If the induction step is negative we have to invert source and sink of the
1474   // dependence.
1475   if (StrideAPtr < 0) {
1476     std::swap(APtr, BPtr);
1477     std::swap(Src, Sink);
1478     std::swap(AIsWrite, BIsWrite);
1479     std::swap(AIdx, BIdx);
1480     std::swap(StrideAPtr, StrideBPtr);
1481   }
1482 
1483   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1484 
1485   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1486                     << "(Induction step: " << StrideAPtr << ")\n");
1487   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1488                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1489 
1490   // Need accesses with constant stride. We don't want to vectorize
1491   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1492   // the address space.
1493   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1494     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1495     return Dependence::Unknown;
1496   }
1497 
1498   Type *ATy = APtr->getType()->getPointerElementType();
1499   Type *BTy = BPtr->getType()->getPointerElementType();
1500   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1501   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1502   uint64_t Stride = std::abs(StrideAPtr);
1503   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1504   if (!C) {
1505     if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1506         isSafeDependenceDistance(DL, *(PSE.getSE()),
1507                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1508                                  TypeByteSize))
1509       return Dependence::NoDep;
1510 
1511     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1512     FoundNonConstantDistanceDependence = true;
1513     return Dependence::Unknown;
1514   }
1515 
1516   const APInt &Val = C->getAPInt();
1517   int64_t Distance = Val.getSExtValue();
1518 
1519   // Attempt to prove strided accesses independent.
1520   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1521       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1522     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1523     return Dependence::NoDep;
1524   }
1525 
1526   // Negative distances are not plausible dependencies.
1527   if (Val.isNegative()) {
1528     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1529     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1530         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1531          ATy != BTy)) {
1532       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1533       return Dependence::ForwardButPreventsForwarding;
1534     }
1535 
1536     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1537     return Dependence::Forward;
1538   }
1539 
1540   // Write to the same location with the same size.
1541   // Could be improved to assert type sizes are the same (i32 == float, etc).
1542   if (Val == 0) {
1543     if (ATy == BTy)
1544       return Dependence::Forward;
1545     LLVM_DEBUG(
1546         dbgs() << "LAA: Zero dependence difference but different types\n");
1547     return Dependence::Unknown;
1548   }
1549 
1550   assert(Val.isStrictlyPositive() && "Expect a positive value");
1551 
1552   if (ATy != BTy) {
1553     LLVM_DEBUG(
1554         dbgs()
1555         << "LAA: ReadWrite-Write positive dependency with different types\n");
1556     return Dependence::Unknown;
1557   }
1558 
1559   // Bail out early if passed-in parameters make vectorization not feasible.
1560   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1561                            VectorizerParams::VectorizationFactor : 1);
1562   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1563                            VectorizerParams::VectorizationInterleave : 1);
1564   // The minimum number of iterations for a vectorized/unrolled version.
1565   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1566 
1567   // It's not vectorizable if the distance is smaller than the minimum distance
1568   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1569   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1570   // TypeByteSize (No need to plus the last gap distance).
1571   //
1572   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1573   //      foo(int *A) {
1574   //        int *B = (int *)((char *)A + 14);
1575   //        for (i = 0 ; i < 1024 ; i += 2)
1576   //          B[i] = A[i] + 1;
1577   //      }
1578   //
1579   // Two accesses in memory (stride is 2):
1580   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1581   //                              | B[0] |      | B[2] |      | B[4] |
1582   //
1583   // Distance needs for vectorizing iterations except the last iteration:
1584   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1585   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1586   //
1587   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1588   // 12, which is less than distance.
1589   //
1590   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1591   // the minimum distance needed is 28, which is greater than distance. It is
1592   // not safe to do vectorization.
1593   uint64_t MinDistanceNeeded =
1594       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1595   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1596     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1597                       << Distance << '\n');
1598     return Dependence::Backward;
1599   }
1600 
1601   // Unsafe if the minimum distance needed is greater than max safe distance.
1602   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1603     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1604                       << MinDistanceNeeded << " size in bytes");
1605     return Dependence::Backward;
1606   }
1607 
1608   // Positive distance bigger than max vectorization factor.
1609   // FIXME: Should use max factor instead of max distance in bytes, which could
1610   // not handle different types.
1611   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1612   //      void foo (int *A, char *B) {
1613   //        for (unsigned i = 0; i < 1024; i++) {
1614   //          A[i+2] = A[i] + 1;
1615   //          B[i+2] = B[i] + 1;
1616   //        }
1617   //      }
1618   //
1619   // This case is currently unsafe according to the max safe distance. If we
1620   // analyze the two accesses on array B, the max safe dependence distance
1621   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1622   // is 8, which is less than 2 and forbidden vectorization, But actually
1623   // both A and B could be vectorized by 2 iterations.
1624   MaxSafeDepDistBytes =
1625       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1626 
1627   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1628   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1629       couldPreventStoreLoadForward(Distance, TypeByteSize))
1630     return Dependence::BackwardVectorizableButPreventsForwarding;
1631 
1632   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1633   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1634                     << " with max VF = " << MaxVF << '\n');
1635   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1636   MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
1637   return Dependence::BackwardVectorizable;
1638 }
1639 
1640 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1641                                    MemAccessInfoList &CheckDeps,
1642                                    const ValueToValueMap &Strides) {
1643 
1644   MaxSafeDepDistBytes = -1;
1645   SmallPtrSet<MemAccessInfo, 8> Visited;
1646   for (MemAccessInfo CurAccess : CheckDeps) {
1647     if (Visited.count(CurAccess))
1648       continue;
1649 
1650     // Get the relevant memory access set.
1651     EquivalenceClasses<MemAccessInfo>::iterator I =
1652       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1653 
1654     // Check accesses within this set.
1655     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1656         AccessSets.member_begin(I);
1657     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1658         AccessSets.member_end();
1659 
1660     // Check every access pair.
1661     while (AI != AE) {
1662       Visited.insert(*AI);
1663       bool AIIsWrite = AI->getInt();
1664       // Check loads only against next equivalent class, but stores also against
1665       // other stores in the same equivalence class - to the same address.
1666       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1667           (AIIsWrite ? AI : std::next(AI));
1668       while (OI != AE) {
1669         // Check every accessing instruction pair in program order.
1670         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1671              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1672           // Scan all accesses of another equivalence class, but only the next
1673           // accesses of the same equivalent class.
1674           for (std::vector<unsigned>::iterator
1675                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1676                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
1677                I2 != I2E; ++I2) {
1678             auto A = std::make_pair(&*AI, *I1);
1679             auto B = std::make_pair(&*OI, *I2);
1680 
1681             assert(*I1 != *I2);
1682             if (*I1 > *I2)
1683               std::swap(A, B);
1684 
1685             Dependence::DepType Type =
1686                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1687             mergeInStatus(Dependence::isSafeForVectorization(Type));
1688 
1689             // Gather dependences unless we accumulated MaxDependences
1690             // dependences.  In that case return as soon as we find the first
1691             // unsafe dependence.  This puts a limit on this quadratic
1692             // algorithm.
1693             if (RecordDependences) {
1694               if (Type != Dependence::NoDep)
1695                 Dependences.push_back(Dependence(A.second, B.second, Type));
1696 
1697               if (Dependences.size() >= MaxDependences) {
1698                 RecordDependences = false;
1699                 Dependences.clear();
1700                 LLVM_DEBUG(dbgs()
1701                            << "Too many dependences, stopped recording\n");
1702               }
1703             }
1704             if (!RecordDependences && !isSafeForVectorization())
1705               return false;
1706           }
1707         ++OI;
1708       }
1709       AI++;
1710     }
1711   }
1712 
1713   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1714   return isSafeForVectorization();
1715 }
1716 
1717 SmallVector<Instruction *, 4>
1718 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1719   MemAccessInfo Access(Ptr, isWrite);
1720   auto &IndexVector = Accesses.find(Access)->second;
1721 
1722   SmallVector<Instruction *, 4> Insts;
1723   transform(IndexVector,
1724                  std::back_inserter(Insts),
1725                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1726   return Insts;
1727 }
1728 
1729 const char *MemoryDepChecker::Dependence::DepName[] = {
1730     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1731     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1732 
1733 void MemoryDepChecker::Dependence::print(
1734     raw_ostream &OS, unsigned Depth,
1735     const SmallVectorImpl<Instruction *> &Instrs) const {
1736   OS.indent(Depth) << DepName[Type] << ":\n";
1737   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1738   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1739 }
1740 
1741 bool LoopAccessInfo::canAnalyzeLoop() {
1742   // We need to have a loop header.
1743   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1744                     << TheLoop->getHeader()->getParent()->getName() << ": "
1745                     << TheLoop->getHeader()->getName() << '\n');
1746 
1747   // We can only analyze innermost loops.
1748   if (!TheLoop->empty()) {
1749     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1750     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1751     return false;
1752   }
1753 
1754   // We must have a single backedge.
1755   if (TheLoop->getNumBackEdges() != 1) {
1756     LLVM_DEBUG(
1757         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1758     recordAnalysis("CFGNotUnderstood")
1759         << "loop control flow is not understood by analyzer";
1760     return false;
1761   }
1762 
1763   // We must have a single exiting block.
1764   if (!TheLoop->getExitingBlock()) {
1765     LLVM_DEBUG(
1766         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1767     recordAnalysis("CFGNotUnderstood")
1768         << "loop control flow is not understood by analyzer";
1769     return false;
1770   }
1771 
1772   // We only handle bottom-tested loops, i.e. loop in which the condition is
1773   // checked at the end of each iteration. With that we can assume that all
1774   // instructions in the loop are executed the same number of times.
1775   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1776     LLVM_DEBUG(
1777         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1778     recordAnalysis("CFGNotUnderstood")
1779         << "loop control flow is not understood by analyzer";
1780     return false;
1781   }
1782 
1783   // ScalarEvolution needs to be able to find the exit count.
1784   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1785   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1786     recordAnalysis("CantComputeNumberOfIterations")
1787         << "could not determine number of loop iterations";
1788     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1789     return false;
1790   }
1791 
1792   return true;
1793 }
1794 
1795 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1796                                  const TargetLibraryInfo *TLI,
1797                                  DominatorTree *DT) {
1798   typedef SmallPtrSet<Value*, 16> ValueSet;
1799 
1800   // Holds the Load and Store instructions.
1801   SmallVector<LoadInst *, 16> Loads;
1802   SmallVector<StoreInst *, 16> Stores;
1803 
1804   // Holds all the different accesses in the loop.
1805   unsigned NumReads = 0;
1806   unsigned NumReadWrites = 0;
1807 
1808   bool HasComplexMemInst = false;
1809 
1810   // A runtime check is only legal to insert if there are no convergent calls.
1811   HasConvergentOp = false;
1812 
1813   PtrRtChecking->Pointers.clear();
1814   PtrRtChecking->Need = false;
1815 
1816   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1817 
1818   // For each block.
1819   for (BasicBlock *BB : TheLoop->blocks()) {
1820     // Scan the BB and collect legal loads and stores. Also detect any
1821     // convergent instructions.
1822     for (Instruction &I : *BB) {
1823       if (auto *Call = dyn_cast<CallBase>(&I)) {
1824         if (Call->isConvergent())
1825           HasConvergentOp = true;
1826       }
1827 
1828       // With both a non-vectorizable memory instruction and a convergent
1829       // operation, found in this loop, no reason to continue the search.
1830       if (HasComplexMemInst && HasConvergentOp) {
1831         CanVecMem = false;
1832         return;
1833       }
1834 
1835       // Avoid hitting recordAnalysis multiple times.
1836       if (HasComplexMemInst)
1837         continue;
1838 
1839       // If this is a load, save it. If this instruction can read from memory
1840       // but is not a load, then we quit. Notice that we don't handle function
1841       // calls that read or write.
1842       if (I.mayReadFromMemory()) {
1843         // Many math library functions read the rounding mode. We will only
1844         // vectorize a loop if it contains known function calls that don't set
1845         // the flag. Therefore, it is safe to ignore this read from memory.
1846         auto *Call = dyn_cast<CallInst>(&I);
1847         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1848           continue;
1849 
1850         // If the function has an explicit vectorized counterpart, we can safely
1851         // assume that it can be vectorized.
1852         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1853             !VFDatabase::getMappings(*Call).empty())
1854           continue;
1855 
1856         auto *Ld = dyn_cast<LoadInst>(&I);
1857         if (!Ld) {
1858           recordAnalysis("CantVectorizeInstruction", Ld)
1859             << "instruction cannot be vectorized";
1860           HasComplexMemInst = true;
1861           continue;
1862         }
1863         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1864           recordAnalysis("NonSimpleLoad", Ld)
1865               << "read with atomic ordering or volatile read";
1866           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1867           HasComplexMemInst = true;
1868           continue;
1869         }
1870         NumLoads++;
1871         Loads.push_back(Ld);
1872         DepChecker->addAccess(Ld);
1873         if (EnableMemAccessVersioning)
1874           collectStridedAccess(Ld);
1875         continue;
1876       }
1877 
1878       // Save 'store' instructions. Abort if other instructions write to memory.
1879       if (I.mayWriteToMemory()) {
1880         auto *St = dyn_cast<StoreInst>(&I);
1881         if (!St) {
1882           recordAnalysis("CantVectorizeInstruction", St)
1883               << "instruction cannot be vectorized";
1884           HasComplexMemInst = true;
1885           continue;
1886         }
1887         if (!St->isSimple() && !IsAnnotatedParallel) {
1888           recordAnalysis("NonSimpleStore", St)
1889               << "write with atomic ordering or volatile write";
1890           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1891           HasComplexMemInst = true;
1892           continue;
1893         }
1894         NumStores++;
1895         Stores.push_back(St);
1896         DepChecker->addAccess(St);
1897         if (EnableMemAccessVersioning)
1898           collectStridedAccess(St);
1899       }
1900     } // Next instr.
1901   } // Next block.
1902 
1903   if (HasComplexMemInst) {
1904     CanVecMem = false;
1905     return;
1906   }
1907 
1908   // Now we have two lists that hold the loads and the stores.
1909   // Next, we find the pointers that they use.
1910 
1911   // Check if we see any stores. If there are no stores, then we don't
1912   // care if the pointers are *restrict*.
1913   if (!Stores.size()) {
1914     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1915     CanVecMem = true;
1916     return;
1917   }
1918 
1919   MemoryDepChecker::DepCandidates DependentAccesses;
1920   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1921                           TheLoop, AA, LI, DependentAccesses, *PSE);
1922 
1923   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1924   // multiple times on the same object. If the ptr is accessed twice, once
1925   // for read and once for write, it will only appear once (on the write
1926   // list). This is okay, since we are going to check for conflicts between
1927   // writes and between reads and writes, but not between reads and reads.
1928   ValueSet Seen;
1929 
1930   // Record uniform store addresses to identify if we have multiple stores
1931   // to the same address.
1932   ValueSet UniformStores;
1933 
1934   for (StoreInst *ST : Stores) {
1935     Value *Ptr = ST->getPointerOperand();
1936 
1937     if (isUniform(Ptr))
1938       HasDependenceInvolvingLoopInvariantAddress |=
1939           !UniformStores.insert(Ptr).second;
1940 
1941     // If we did *not* see this pointer before, insert it to  the read-write
1942     // list. At this phase it is only a 'write' list.
1943     if (Seen.insert(Ptr).second) {
1944       ++NumReadWrites;
1945 
1946       MemoryLocation Loc = MemoryLocation::get(ST);
1947       // The TBAA metadata could have a control dependency on the predication
1948       // condition, so we cannot rely on it when determining whether or not we
1949       // need runtime pointer checks.
1950       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1951         Loc.AATags.TBAA = nullptr;
1952 
1953       Accesses.addStore(Loc);
1954     }
1955   }
1956 
1957   if (IsAnnotatedParallel) {
1958     LLVM_DEBUG(
1959         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1960                << "checks.\n");
1961     CanVecMem = true;
1962     return;
1963   }
1964 
1965   for (LoadInst *LD : Loads) {
1966     Value *Ptr = LD->getPointerOperand();
1967     // If we did *not* see this pointer before, insert it to the
1968     // read list. If we *did* see it before, then it is already in
1969     // the read-write list. This allows us to vectorize expressions
1970     // such as A[i] += x;  Because the address of A[i] is a read-write
1971     // pointer. This only works if the index of A[i] is consecutive.
1972     // If the address of i is unknown (for example A[B[i]]) then we may
1973     // read a few words, modify, and write a few words, and some of the
1974     // words may be written to the same address.
1975     bool IsReadOnlyPtr = false;
1976     if (Seen.insert(Ptr).second ||
1977         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1978       ++NumReads;
1979       IsReadOnlyPtr = true;
1980     }
1981 
1982     // See if there is an unsafe dependency between a load to a uniform address and
1983     // store to the same uniform address.
1984     if (UniformStores.count(Ptr)) {
1985       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
1986                            "load and uniform store to the same address!\n");
1987       HasDependenceInvolvingLoopInvariantAddress = true;
1988     }
1989 
1990     MemoryLocation Loc = MemoryLocation::get(LD);
1991     // The TBAA metadata could have a control dependency on the predication
1992     // condition, so we cannot rely on it when determining whether or not we
1993     // need runtime pointer checks.
1994     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1995       Loc.AATags.TBAA = nullptr;
1996 
1997     Accesses.addLoad(Loc, IsReadOnlyPtr);
1998   }
1999 
2000   // If we write (or read-write) to a single destination and there are no
2001   // other reads in this loop then is it safe to vectorize.
2002   if (NumReadWrites == 1 && NumReads == 0) {
2003     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2004     CanVecMem = true;
2005     return;
2006   }
2007 
2008   // Build dependence sets and check whether we need a runtime pointer bounds
2009   // check.
2010   Accesses.buildDependenceSets();
2011 
2012   // Find pointers with computable bounds. We are going to use this information
2013   // to place a runtime bound check.
2014   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2015                                                   TheLoop, SymbolicStrides);
2016   if (!CanDoRTIfNeeded) {
2017     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2018     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2019                       << "the array bounds.\n");
2020     CanVecMem = false;
2021     return;
2022   }
2023 
2024   LLVM_DEBUG(
2025     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2026 
2027   CanVecMem = true;
2028   if (Accesses.isDependencyCheckNeeded()) {
2029     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2030     CanVecMem = DepChecker->areDepsSafe(
2031         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2032     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2033 
2034     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2035       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2036 
2037       // Clear the dependency checks. We assume they are not needed.
2038       Accesses.resetDepChecks(*DepChecker);
2039 
2040       PtrRtChecking->reset();
2041       PtrRtChecking->Need = true;
2042 
2043       auto *SE = PSE->getSE();
2044       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2045                                                  SymbolicStrides, true);
2046 
2047       // Check that we found the bounds for the pointer.
2048       if (!CanDoRTIfNeeded) {
2049         recordAnalysis("CantCheckMemDepsAtRunTime")
2050             << "cannot check memory dependencies at runtime";
2051         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2052         CanVecMem = false;
2053         return;
2054       }
2055 
2056       CanVecMem = true;
2057     }
2058   }
2059 
2060   if (HasConvergentOp) {
2061     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2062       << "cannot add control dependency to convergent operation";
2063     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2064                          "would be needed with a convergent operation\n");
2065     CanVecMem = false;
2066     return;
2067   }
2068 
2069   if (CanVecMem)
2070     LLVM_DEBUG(
2071         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2072                << (PtrRtChecking->Need ? "" : " don't")
2073                << " need runtime memory checks.\n");
2074   else {
2075     recordAnalysis("UnsafeMemDep")
2076         << "unsafe dependent memory operations in loop. Use "
2077            "#pragma loop distribute(enable) to allow loop distribution "
2078            "to attempt to isolate the offending operations into a separate "
2079            "loop";
2080     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2081   }
2082 }
2083 
2084 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2085                                            DominatorTree *DT)  {
2086   assert(TheLoop->contains(BB) && "Unknown block used");
2087 
2088   // Blocks that do not dominate the latch need predication.
2089   BasicBlock* Latch = TheLoop->getLoopLatch();
2090   return !DT->dominates(BB, Latch);
2091 }
2092 
2093 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2094                                                            Instruction *I) {
2095   assert(!Report && "Multiple reports generated");
2096 
2097   Value *CodeRegion = TheLoop->getHeader();
2098   DebugLoc DL = TheLoop->getStartLoc();
2099 
2100   if (I) {
2101     CodeRegion = I->getParent();
2102     // If there is no debug location attached to the instruction, revert back to
2103     // using the loop's.
2104     if (I->getDebugLoc())
2105       DL = I->getDebugLoc();
2106   }
2107 
2108   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2109                                                    CodeRegion);
2110   return *Report;
2111 }
2112 
2113 bool LoopAccessInfo::isUniform(Value *V) const {
2114   auto *SE = PSE->getSE();
2115   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2116   // never considered uniform.
2117   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2118   // trivially loop-invariant FP values to be considered uniform.
2119   if (!SE->isSCEVable(V->getType()))
2120     return false;
2121   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2122 }
2123 
2124 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2125   Value *Ptr = nullptr;
2126   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2127     Ptr = LI->getPointerOperand();
2128   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2129     Ptr = SI->getPointerOperand();
2130   else
2131     return;
2132 
2133   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2134   if (!Stride)
2135     return;
2136 
2137   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2138                        "versioning:");
2139   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2140 
2141   // Avoid adding the "Stride == 1" predicate when we know that
2142   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2143   // or zero iteration loop, as Trip-Count <= Stride == 1.
2144   //
2145   // TODO: We are currently not making a very informed decision on when it is
2146   // beneficial to apply stride versioning. It might make more sense that the
2147   // users of this analysis (such as the vectorizer) will trigger it, based on
2148   // their specific cost considerations; For example, in cases where stride
2149   // versioning does  not help resolving memory accesses/dependences, the
2150   // vectorizer should evaluate the cost of the runtime test, and the benefit
2151   // of various possible stride specializations, considering the alternatives
2152   // of using gather/scatters (if available).
2153 
2154   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2155   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2156 
2157   // Match the types so we can compare the stride and the BETakenCount.
2158   // The Stride can be positive/negative, so we sign extend Stride;
2159   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2160   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2161   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2162   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2163   const SCEV *CastedStride = StrideExpr;
2164   const SCEV *CastedBECount = BETakenCount;
2165   ScalarEvolution *SE = PSE->getSE();
2166   if (BETypeSize >= StrideTypeSize)
2167     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2168   else
2169     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2170   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2171   // Since TripCount == BackEdgeTakenCount + 1, checking:
2172   // "Stride >= TripCount" is equivalent to checking:
2173   // Stride - BETakenCount > 0
2174   if (SE->isKnownPositive(StrideMinusBETaken)) {
2175     LLVM_DEBUG(
2176         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2177                   "Stride==1 predicate will imply that the loop executes "
2178                   "at most once.\n");
2179     return;
2180   }
2181   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2182 
2183   SymbolicStrides[Ptr] = Stride;
2184   StrideSet.insert(Stride);
2185 }
2186 
2187 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2188                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2189                                DominatorTree *DT, LoopInfo *LI)
2190     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2191       PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2192       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2193       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2194       HasConvergentOp(false),
2195       HasDependenceInvolvingLoopInvariantAddress(false) {
2196   if (canAnalyzeLoop())
2197     analyzeLoop(AA, LI, TLI, DT);
2198 }
2199 
2200 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2201   if (CanVecMem) {
2202     OS.indent(Depth) << "Memory dependences are safe";
2203     if (MaxSafeDepDistBytes != -1ULL)
2204       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2205          << " bytes";
2206     if (PtrRtChecking->Need)
2207       OS << " with run-time checks";
2208     OS << "\n";
2209   }
2210 
2211   if (HasConvergentOp)
2212     OS.indent(Depth) << "Has convergent operation in loop\n";
2213 
2214   if (Report)
2215     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2216 
2217   if (auto *Dependences = DepChecker->getDependences()) {
2218     OS.indent(Depth) << "Dependences:\n";
2219     for (auto &Dep : *Dependences) {
2220       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2221       OS << "\n";
2222     }
2223   } else
2224     OS.indent(Depth) << "Too many dependences, not recorded\n";
2225 
2226   // List the pair of accesses need run-time checks to prove independence.
2227   PtrRtChecking->print(OS, Depth);
2228   OS << "\n";
2229 
2230   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2231                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2232                    << "found in loop.\n";
2233 
2234   OS.indent(Depth) << "SCEV assumptions:\n";
2235   PSE->getUnionPredicate().print(OS, Depth);
2236 
2237   OS << "\n";
2238 
2239   OS.indent(Depth) << "Expressions re-written:\n";
2240   PSE->print(OS, Depth);
2241 }
2242 
2243 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2244   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2245 }
2246 
2247 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2248   auto &LAI = LoopAccessInfoMap[L];
2249 
2250   if (!LAI)
2251     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2252 
2253   return *LAI.get();
2254 }
2255 
2256 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2257   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2258 
2259   for (Loop *TopLevelLoop : *LI)
2260     for (Loop *L : depth_first(TopLevelLoop)) {
2261       OS.indent(2) << L->getHeader()->getName() << ":\n";
2262       auto &LAI = LAA.getInfo(L);
2263       LAI.print(OS, 4);
2264     }
2265 }
2266 
2267 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2268   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2269   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2270   TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2271   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2272   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2273   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2274 
2275   return false;
2276 }
2277 
2278 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2279     AU.addRequired<ScalarEvolutionWrapperPass>();
2280     AU.addRequired<AAResultsWrapperPass>();
2281     AU.addRequired<DominatorTreeWrapperPass>();
2282     AU.addRequired<LoopInfoWrapperPass>();
2283 
2284     AU.setPreservesAll();
2285 }
2286 
2287 char LoopAccessLegacyAnalysis::ID = 0;
2288 static const char laa_name[] = "Loop Access Analysis";
2289 #define LAA_NAME "loop-accesses"
2290 
2291 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2292 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2293 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2294 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2295 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2296 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2297 
2298 AnalysisKey LoopAccessAnalysis::Key;
2299 
2300 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2301                                        LoopStandardAnalysisResults &AR) {
2302   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2303 }
2304 
2305 namespace llvm {
2306 
2307   Pass *createLAAPass() {
2308     return new LoopAccessLegacyAnalysis();
2309   }
2310 
2311 } // end namespace llvm
2312