1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopPassManager.h" 18 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 19 #include "llvm/Analysis/ScalarEvolutionExpander.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PassManager.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "loop-accesses" 31 32 static cl::opt<unsigned, true> 33 VectorizationFactor("force-vector-width", cl::Hidden, 34 cl::desc("Sets the SIMD width. Zero is autoselect."), 35 cl::location(VectorizerParams::VectorizationFactor)); 36 unsigned VectorizerParams::VectorizationFactor; 37 38 static cl::opt<unsigned, true> 39 VectorizationInterleave("force-vector-interleave", cl::Hidden, 40 cl::desc("Sets the vectorization interleave count. " 41 "Zero is autoselect."), 42 cl::location( 43 VectorizerParams::VectorizationInterleave)); 44 unsigned VectorizerParams::VectorizationInterleave; 45 46 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 47 "runtime-memory-check-threshold", cl::Hidden, 48 cl::desc("When performing memory disambiguation checks at runtime do not " 49 "generate more than this number of comparisons (default = 8)."), 50 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 51 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 52 53 /// \brief The maximum iterations used to merge memory checks 54 static cl::opt<unsigned> MemoryCheckMergeThreshold( 55 "memory-check-merge-threshold", cl::Hidden, 56 cl::desc("Maximum number of comparisons done when trying to merge " 57 "runtime memory checks. (default = 100)"), 58 cl::init(100)); 59 60 /// Maximum SIMD width. 61 const unsigned VectorizerParams::MaxVectorWidth = 64; 62 63 /// \brief We collect dependences up to this threshold. 64 static cl::opt<unsigned> 65 MaxDependences("max-dependences", cl::Hidden, 66 cl::desc("Maximum number of dependences collected by " 67 "loop-access analysis (default = 100)"), 68 cl::init(100)); 69 70 /// This enables versioning on the strides of symbolically striding memory 71 /// accesses in code like the following. 72 /// for (i = 0; i < N; ++i) 73 /// A[i * Stride1] += B[i * Stride2] ... 74 /// 75 /// Will be roughly translated to 76 /// if (Stride1 == 1 && Stride2 == 1) { 77 /// for (i = 0; i < N; i+=4) 78 /// A[i:i+3] += ... 79 /// } else 80 /// ... 81 static cl::opt<bool> EnableMemAccessVersioning( 82 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 83 cl::desc("Enable symbolic stride memory access versioning")); 84 85 /// \brief Enable store-to-load forwarding conflict detection. This option can 86 /// be disabled for correctness testing. 87 static cl::opt<bool> EnableForwardingConflictDetection( 88 "store-to-load-forwarding-conflict-detection", cl::Hidden, 89 cl::desc("Enable conflict detection in loop-access analysis"), 90 cl::init(true)); 91 92 bool VectorizerParams::isInterleaveForced() { 93 return ::VectorizationInterleave.getNumOccurrences() > 0; 94 } 95 96 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 97 const Loop *TheLoop, const char *PassName, 98 OptimizationRemarkEmitter &ORE) { 99 DebugLoc DL = TheLoop->getStartLoc(); 100 const Value *V = TheLoop->getHeader(); 101 if (const Instruction *I = Message.getInstr()) { 102 // If there is no debug location attached to the instruction, revert back to 103 // using the loop's. 104 if (I->getDebugLoc()) 105 DL = I->getDebugLoc(); 106 V = I->getParent(); 107 } 108 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str()); 109 } 110 111 Value *llvm::stripIntegerCast(Value *V) { 112 if (auto *CI = dyn_cast<CastInst>(V)) 113 if (CI->getOperand(0)->getType()->isIntegerTy()) 114 return CI->getOperand(0); 115 return V; 116 } 117 118 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 119 const ValueToValueMap &PtrToStride, 120 Value *Ptr, Value *OrigPtr) { 121 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 122 123 // If there is an entry in the map return the SCEV of the pointer with the 124 // symbolic stride replaced by one. 125 ValueToValueMap::const_iterator SI = 126 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 127 if (SI != PtrToStride.end()) { 128 Value *StrideVal = SI->second; 129 130 // Strip casts. 131 StrideVal = stripIntegerCast(StrideVal); 132 133 // Replace symbolic stride by one. 134 Value *One = ConstantInt::get(StrideVal->getType(), 1); 135 ValueToValueMap RewriteMap; 136 RewriteMap[StrideVal] = One; 137 138 ScalarEvolution *SE = PSE.getSE(); 139 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 140 const auto *CT = 141 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 142 143 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 144 auto *Expr = PSE.getSCEV(Ptr); 145 146 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 147 << "\n"); 148 return Expr; 149 } 150 151 // Otherwise, just return the SCEV of the original pointer. 152 return OrigSCEV; 153 } 154 155 /// Calculate Start and End points of memory access. 156 /// Let's assume A is the first access and B is a memory access on N-th loop 157 /// iteration. Then B is calculated as: 158 /// B = A + Step*N . 159 /// Step value may be positive or negative. 160 /// N is a calculated back-edge taken count: 161 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 162 /// Start and End points are calculated in the following way: 163 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 164 /// where SizeOfElt is the size of single memory access in bytes. 165 /// 166 /// There is no conflict when the intervals are disjoint: 167 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 168 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 169 unsigned DepSetId, unsigned ASId, 170 const ValueToValueMap &Strides, 171 PredicatedScalarEvolution &PSE) { 172 // Get the stride replaced scev. 173 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 174 ScalarEvolution *SE = PSE.getSE(); 175 176 const SCEV *ScStart; 177 const SCEV *ScEnd; 178 179 if (SE->isLoopInvariant(Sc, Lp)) 180 ScStart = ScEnd = Sc; 181 else { 182 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 183 assert(AR && "Invalid addrec expression"); 184 const SCEV *Ex = PSE.getBackedgeTakenCount(); 185 186 ScStart = AR->getStart(); 187 ScEnd = AR->evaluateAtIteration(Ex, *SE); 188 const SCEV *Step = AR->getStepRecurrence(*SE); 189 190 // For expressions with negative step, the upper bound is ScStart and the 191 // lower bound is ScEnd. 192 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 193 if (CStep->getValue()->isNegative()) 194 std::swap(ScStart, ScEnd); 195 } else { 196 // Fallback case: the step is not constant, but we can still 197 // get the upper and lower bounds of the interval by using min/max 198 // expressions. 199 ScStart = SE->getUMinExpr(ScStart, ScEnd); 200 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 201 } 202 // Add the size of the pointed element to ScEnd. 203 unsigned EltSize = 204 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 205 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 206 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 207 } 208 209 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 210 } 211 212 SmallVector<RuntimePointerChecking::PointerCheck, 4> 213 RuntimePointerChecking::generateChecks() const { 214 SmallVector<PointerCheck, 4> Checks; 215 216 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 217 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 218 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 219 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 220 221 if (needsChecking(CGI, CGJ)) 222 Checks.push_back(std::make_pair(&CGI, &CGJ)); 223 } 224 } 225 return Checks; 226 } 227 228 void RuntimePointerChecking::generateChecks( 229 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 230 assert(Checks.empty() && "Checks is not empty"); 231 groupChecks(DepCands, UseDependencies); 232 Checks = generateChecks(); 233 } 234 235 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 236 const CheckingPtrGroup &N) const { 237 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 238 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 239 if (needsChecking(M.Members[I], N.Members[J])) 240 return true; 241 return false; 242 } 243 244 /// Compare \p I and \p J and return the minimum. 245 /// Return nullptr in case we couldn't find an answer. 246 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 247 ScalarEvolution *SE) { 248 const SCEV *Diff = SE->getMinusSCEV(J, I); 249 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 250 251 if (!C) 252 return nullptr; 253 if (C->getValue()->isNegative()) 254 return J; 255 return I; 256 } 257 258 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 259 const SCEV *Start = RtCheck.Pointers[Index].Start; 260 const SCEV *End = RtCheck.Pointers[Index].End; 261 262 // Compare the starts and ends with the known minimum and maximum 263 // of this set. We need to know how we compare against the min/max 264 // of the set in order to be able to emit memchecks. 265 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 266 if (!Min0) 267 return false; 268 269 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 270 if (!Min1) 271 return false; 272 273 // Update the low bound expression if we've found a new min value. 274 if (Min0 == Start) 275 Low = Start; 276 277 // Update the high bound expression if we've found a new max value. 278 if (Min1 != End) 279 High = End; 280 281 Members.push_back(Index); 282 return true; 283 } 284 285 void RuntimePointerChecking::groupChecks( 286 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 287 // We build the groups from dependency candidates equivalence classes 288 // because: 289 // - We know that pointers in the same equivalence class share 290 // the same underlying object and therefore there is a chance 291 // that we can compare pointers 292 // - We wouldn't be able to merge two pointers for which we need 293 // to emit a memcheck. The classes in DepCands are already 294 // conveniently built such that no two pointers in the same 295 // class need checking against each other. 296 297 // We use the following (greedy) algorithm to construct the groups 298 // For every pointer in the equivalence class: 299 // For each existing group: 300 // - if the difference between this pointer and the min/max bounds 301 // of the group is a constant, then make the pointer part of the 302 // group and update the min/max bounds of that group as required. 303 304 CheckingGroups.clear(); 305 306 // If we need to check two pointers to the same underlying object 307 // with a non-constant difference, we shouldn't perform any pointer 308 // grouping with those pointers. This is because we can easily get 309 // into cases where the resulting check would return false, even when 310 // the accesses are safe. 311 // 312 // The following example shows this: 313 // for (i = 0; i < 1000; ++i) 314 // a[5000 + i * m] = a[i] + a[i + 9000] 315 // 316 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 317 // (0, 10000) which is always false. However, if m is 1, there is no 318 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 319 // us to perform an accurate check in this case. 320 // 321 // The above case requires that we have an UnknownDependence between 322 // accesses to the same underlying object. This cannot happen unless 323 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 324 // is also false. In this case we will use the fallback path and create 325 // separate checking groups for all pointers. 326 327 // If we don't have the dependency partitions, construct a new 328 // checking pointer group for each pointer. This is also required 329 // for correctness, because in this case we can have checking between 330 // pointers to the same underlying object. 331 if (!UseDependencies) { 332 for (unsigned I = 0; I < Pointers.size(); ++I) 333 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 334 return; 335 } 336 337 unsigned TotalComparisons = 0; 338 339 DenseMap<Value *, unsigned> PositionMap; 340 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 341 PositionMap[Pointers[Index].PointerValue] = Index; 342 343 // We need to keep track of what pointers we've already seen so we 344 // don't process them twice. 345 SmallSet<unsigned, 2> Seen; 346 347 // Go through all equivalence classes, get the "pointer check groups" 348 // and add them to the overall solution. We use the order in which accesses 349 // appear in 'Pointers' to enforce determinism. 350 for (unsigned I = 0; I < Pointers.size(); ++I) { 351 // We've seen this pointer before, and therefore already processed 352 // its equivalence class. 353 if (Seen.count(I)) 354 continue; 355 356 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 357 Pointers[I].IsWritePtr); 358 359 SmallVector<CheckingPtrGroup, 2> Groups; 360 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 361 362 // Because DepCands is constructed by visiting accesses in the order in 363 // which they appear in alias sets (which is deterministic) and the 364 // iteration order within an equivalence class member is only dependent on 365 // the order in which unions and insertions are performed on the 366 // equivalence class, the iteration order is deterministic. 367 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 368 MI != ME; ++MI) { 369 unsigned Pointer = PositionMap[MI->getPointer()]; 370 bool Merged = false; 371 // Mark this pointer as seen. 372 Seen.insert(Pointer); 373 374 // Go through all the existing sets and see if we can find one 375 // which can include this pointer. 376 for (CheckingPtrGroup &Group : Groups) { 377 // Don't perform more than a certain amount of comparisons. 378 // This should limit the cost of grouping the pointers to something 379 // reasonable. If we do end up hitting this threshold, the algorithm 380 // will create separate groups for all remaining pointers. 381 if (TotalComparisons > MemoryCheckMergeThreshold) 382 break; 383 384 TotalComparisons++; 385 386 if (Group.addPointer(Pointer)) { 387 Merged = true; 388 break; 389 } 390 } 391 392 if (!Merged) 393 // We couldn't add this pointer to any existing set or the threshold 394 // for the number of comparisons has been reached. Create a new group 395 // to hold the current pointer. 396 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 397 } 398 399 // We've computed the grouped checks for this partition. 400 // Save the results and continue with the next one. 401 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 402 } 403 } 404 405 bool RuntimePointerChecking::arePointersInSamePartition( 406 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 407 unsigned PtrIdx2) { 408 return (PtrToPartition[PtrIdx1] != -1 && 409 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 410 } 411 412 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 413 const PointerInfo &PointerI = Pointers[I]; 414 const PointerInfo &PointerJ = Pointers[J]; 415 416 // No need to check if two readonly pointers intersect. 417 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 418 return false; 419 420 // Only need to check pointers between two different dependency sets. 421 if (PointerI.DependencySetId == PointerJ.DependencySetId) 422 return false; 423 424 // Only need to check pointers in the same alias set. 425 if (PointerI.AliasSetId != PointerJ.AliasSetId) 426 return false; 427 428 return true; 429 } 430 431 void RuntimePointerChecking::printChecks( 432 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 433 unsigned Depth) const { 434 unsigned N = 0; 435 for (const auto &Check : Checks) { 436 const auto &First = Check.first->Members, &Second = Check.second->Members; 437 438 OS.indent(Depth) << "Check " << N++ << ":\n"; 439 440 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 441 for (unsigned K = 0; K < First.size(); ++K) 442 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 443 444 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 445 for (unsigned K = 0; K < Second.size(); ++K) 446 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 447 } 448 } 449 450 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 451 452 OS.indent(Depth) << "Run-time memory checks:\n"; 453 printChecks(OS, Checks, Depth); 454 455 OS.indent(Depth) << "Grouped accesses:\n"; 456 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 457 const auto &CG = CheckingGroups[I]; 458 459 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 460 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 461 << ")\n"; 462 for (unsigned J = 0; J < CG.Members.size(); ++J) { 463 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 464 << "\n"; 465 } 466 } 467 } 468 469 namespace { 470 /// \brief Analyses memory accesses in a loop. 471 /// 472 /// Checks whether run time pointer checks are needed and builds sets for data 473 /// dependence checking. 474 class AccessAnalysis { 475 public: 476 /// \brief Read or write access location. 477 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 478 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 479 480 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 481 MemoryDepChecker::DepCandidates &DA, 482 PredicatedScalarEvolution &PSE) 483 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 484 PSE(PSE) {} 485 486 /// \brief Register a load and whether it is only read from. 487 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 488 Value *Ptr = const_cast<Value*>(Loc.Ptr); 489 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 490 Accesses.insert(MemAccessInfo(Ptr, false)); 491 if (IsReadOnly) 492 ReadOnlyPtr.insert(Ptr); 493 } 494 495 /// \brief Register a store. 496 void addStore(MemoryLocation &Loc) { 497 Value *Ptr = const_cast<Value*>(Loc.Ptr); 498 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 499 Accesses.insert(MemAccessInfo(Ptr, true)); 500 } 501 502 /// \brief Check whether we can check the pointers at runtime for 503 /// non-intersection. 504 /// 505 /// Returns true if we need no check or if we do and we can generate them 506 /// (i.e. the pointers have computable bounds). 507 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 508 Loop *TheLoop, const ValueToValueMap &Strides, 509 bool ShouldCheckWrap = false); 510 511 /// \brief Goes over all memory accesses, checks whether a RT check is needed 512 /// and builds sets of dependent accesses. 513 void buildDependenceSets() { 514 processMemAccesses(); 515 } 516 517 /// \brief Initial processing of memory accesses determined that we need to 518 /// perform dependency checking. 519 /// 520 /// Note that this can later be cleared if we retry memcheck analysis without 521 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 522 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 523 524 /// We decided that no dependence analysis would be used. Reset the state. 525 void resetDepChecks(MemoryDepChecker &DepChecker) { 526 CheckDeps.clear(); 527 DepChecker.clearDependences(); 528 } 529 530 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 531 532 private: 533 typedef SetVector<MemAccessInfo> PtrAccessSet; 534 535 /// \brief Go over all memory access and check whether runtime pointer checks 536 /// are needed and build sets of dependency check candidates. 537 void processMemAccesses(); 538 539 /// Set of all accesses. 540 PtrAccessSet Accesses; 541 542 const DataLayout &DL; 543 544 /// Set of accesses that need a further dependence check. 545 MemAccessInfoSet CheckDeps; 546 547 /// Set of pointers that are read only. 548 SmallPtrSet<Value*, 16> ReadOnlyPtr; 549 550 /// An alias set tracker to partition the access set by underlying object and 551 //intrinsic property (such as TBAA metadata). 552 AliasSetTracker AST; 553 554 LoopInfo *LI; 555 556 /// Sets of potentially dependent accesses - members of one set share an 557 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 558 /// dependence check. 559 MemoryDepChecker::DepCandidates &DepCands; 560 561 /// \brief Initial processing of memory accesses determined that we may need 562 /// to add memchecks. Perform the analysis to determine the necessary checks. 563 /// 564 /// Note that, this is different from isDependencyCheckNeeded. When we retry 565 /// memcheck analysis without dependency checking 566 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 567 /// while this remains set if we have potentially dependent accesses. 568 bool IsRTCheckAnalysisNeeded; 569 570 /// The SCEV predicate containing all the SCEV-related assumptions. 571 PredicatedScalarEvolution &PSE; 572 }; 573 574 } // end anonymous namespace 575 576 /// \brief Check whether a pointer can participate in a runtime bounds check. 577 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 578 const ValueToValueMap &Strides, Value *Ptr, 579 Loop *L) { 580 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 581 582 // The bounds for loop-invariant pointer is trivial. 583 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 584 return true; 585 586 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 587 if (!AR) 588 return false; 589 590 return AR->isAffine(); 591 } 592 593 /// \brief Check whether a pointer address cannot wrap. 594 static bool isNoWrap(PredicatedScalarEvolution &PSE, 595 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 596 const SCEV *PtrScev = PSE.getSCEV(Ptr); 597 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 598 return true; 599 600 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 601 return Stride == 1; 602 } 603 604 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 605 ScalarEvolution *SE, Loop *TheLoop, 606 const ValueToValueMap &StridesMap, 607 bool ShouldCheckWrap) { 608 // Find pointers with computable bounds. We are going to use this information 609 // to place a runtime bound check. 610 bool CanDoRT = true; 611 612 bool NeedRTCheck = false; 613 if (!IsRTCheckAnalysisNeeded) return true; 614 615 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 616 617 // We assign a consecutive id to access from different alias sets. 618 // Accesses between different groups doesn't need to be checked. 619 unsigned ASId = 1; 620 for (auto &AS : AST) { 621 int NumReadPtrChecks = 0; 622 int NumWritePtrChecks = 0; 623 624 // We assign consecutive id to access from different dependence sets. 625 // Accesses within the same set don't need a runtime check. 626 unsigned RunningDepId = 1; 627 DenseMap<Value *, unsigned> DepSetId; 628 629 for (auto A : AS) { 630 Value *Ptr = A.getValue(); 631 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 632 MemAccessInfo Access(Ptr, IsWrite); 633 634 if (IsWrite) 635 ++NumWritePtrChecks; 636 else 637 ++NumReadPtrChecks; 638 639 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 640 // When we run after a failing dependency check we have to make sure 641 // we don't have wrapping pointers. 642 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 643 // The id of the dependence set. 644 unsigned DepId; 645 646 if (IsDepCheckNeeded) { 647 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 648 unsigned &LeaderId = DepSetId[Leader]; 649 if (!LeaderId) 650 LeaderId = RunningDepId++; 651 DepId = LeaderId; 652 } else 653 // Each access has its own dependence set. 654 DepId = RunningDepId++; 655 656 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 657 658 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 659 } else { 660 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 661 CanDoRT = false; 662 } 663 } 664 665 // If we have at least two writes or one write and a read then we need to 666 // check them. But there is no need to checks if there is only one 667 // dependence set for this alias set. 668 // 669 // Note that this function computes CanDoRT and NeedRTCheck independently. 670 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 671 // for which we couldn't find the bounds but we don't actually need to emit 672 // any checks so it does not matter. 673 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 674 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 675 NumWritePtrChecks >= 1)); 676 677 ++ASId; 678 } 679 680 // If the pointers that we would use for the bounds comparison have different 681 // address spaces, assume the values aren't directly comparable, so we can't 682 // use them for the runtime check. We also have to assume they could 683 // overlap. In the future there should be metadata for whether address spaces 684 // are disjoint. 685 unsigned NumPointers = RtCheck.Pointers.size(); 686 for (unsigned i = 0; i < NumPointers; ++i) { 687 for (unsigned j = i + 1; j < NumPointers; ++j) { 688 // Only need to check pointers between two different dependency sets. 689 if (RtCheck.Pointers[i].DependencySetId == 690 RtCheck.Pointers[j].DependencySetId) 691 continue; 692 // Only need to check pointers in the same alias set. 693 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 694 continue; 695 696 Value *PtrI = RtCheck.Pointers[i].PointerValue; 697 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 698 699 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 700 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 701 if (ASi != ASj) { 702 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 703 " different address spaces\n"); 704 return false; 705 } 706 } 707 } 708 709 if (NeedRTCheck && CanDoRT) 710 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 711 712 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 713 << " pointer comparisons.\n"); 714 715 RtCheck.Need = NeedRTCheck; 716 717 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 718 if (!CanDoRTIfNeeded) 719 RtCheck.reset(); 720 return CanDoRTIfNeeded; 721 } 722 723 void AccessAnalysis::processMemAccesses() { 724 // We process the set twice: first we process read-write pointers, last we 725 // process read-only pointers. This allows us to skip dependence tests for 726 // read-only pointers. 727 728 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 729 DEBUG(dbgs() << " AST: "; AST.dump()); 730 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 731 DEBUG({ 732 for (auto A : Accesses) 733 dbgs() << "\t" << *A.getPointer() << " (" << 734 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 735 "read-only" : "read")) << ")\n"; 736 }); 737 738 // The AliasSetTracker has nicely partitioned our pointers by metadata 739 // compatibility and potential for underlying-object overlap. As a result, we 740 // only need to check for potential pointer dependencies within each alias 741 // set. 742 for (auto &AS : AST) { 743 // Note that both the alias-set tracker and the alias sets themselves used 744 // linked lists internally and so the iteration order here is deterministic 745 // (matching the original instruction order within each set). 746 747 bool SetHasWrite = false; 748 749 // Map of pointers to last access encountered. 750 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 751 UnderlyingObjToAccessMap ObjToLastAccess; 752 753 // Set of access to check after all writes have been processed. 754 PtrAccessSet DeferredAccesses; 755 756 // Iterate over each alias set twice, once to process read/write pointers, 757 // and then to process read-only pointers. 758 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 759 bool UseDeferred = SetIteration > 0; 760 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 761 762 for (auto AV : AS) { 763 Value *Ptr = AV.getValue(); 764 765 // For a single memory access in AliasSetTracker, Accesses may contain 766 // both read and write, and they both need to be handled for CheckDeps. 767 for (auto AC : S) { 768 if (AC.getPointer() != Ptr) 769 continue; 770 771 bool IsWrite = AC.getInt(); 772 773 // If we're using the deferred access set, then it contains only 774 // reads. 775 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 776 if (UseDeferred && !IsReadOnlyPtr) 777 continue; 778 // Otherwise, the pointer must be in the PtrAccessSet, either as a 779 // read or a write. 780 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 781 S.count(MemAccessInfo(Ptr, false))) && 782 "Alias-set pointer not in the access set?"); 783 784 MemAccessInfo Access(Ptr, IsWrite); 785 DepCands.insert(Access); 786 787 // Memorize read-only pointers for later processing and skip them in 788 // the first round (they need to be checked after we have seen all 789 // write pointers). Note: we also mark pointer that are not 790 // consecutive as "read-only" pointers (so that we check 791 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 792 if (!UseDeferred && IsReadOnlyPtr) { 793 DeferredAccesses.insert(Access); 794 continue; 795 } 796 797 // If this is a write - check other reads and writes for conflicts. If 798 // this is a read only check other writes for conflicts (but only if 799 // there is no other write to the ptr - this is an optimization to 800 // catch "a[i] = a[i] + " without having to do a dependence check). 801 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 802 CheckDeps.insert(Access); 803 IsRTCheckAnalysisNeeded = true; 804 } 805 806 if (IsWrite) 807 SetHasWrite = true; 808 809 // Create sets of pointers connected by a shared alias set and 810 // underlying object. 811 typedef SmallVector<Value *, 16> ValueVector; 812 ValueVector TempObjects; 813 814 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 815 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 816 for (Value *UnderlyingObj : TempObjects) { 817 // nullptr never alias, don't join sets for pointer that have "null" 818 // in their UnderlyingObjects list. 819 if (isa<ConstantPointerNull>(UnderlyingObj)) 820 continue; 821 822 UnderlyingObjToAccessMap::iterator Prev = 823 ObjToLastAccess.find(UnderlyingObj); 824 if (Prev != ObjToLastAccess.end()) 825 DepCands.unionSets(Access, Prev->second); 826 827 ObjToLastAccess[UnderlyingObj] = Access; 828 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 829 } 830 } 831 } 832 } 833 } 834 } 835 836 static bool isInBoundsGep(Value *Ptr) { 837 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 838 return GEP->isInBounds(); 839 return false; 840 } 841 842 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 843 /// i.e. monotonically increasing/decreasing. 844 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 845 PredicatedScalarEvolution &PSE, const Loop *L) { 846 // FIXME: This should probably only return true for NUW. 847 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 848 return true; 849 850 // Scalar evolution does not propagate the non-wrapping flags to values that 851 // are derived from a non-wrapping induction variable because non-wrapping 852 // could be flow-sensitive. 853 // 854 // Look through the potentially overflowing instruction to try to prove 855 // non-wrapping for the *specific* value of Ptr. 856 857 // The arithmetic implied by an inbounds GEP can't overflow. 858 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 859 if (!GEP || !GEP->isInBounds()) 860 return false; 861 862 // Make sure there is only one non-const index and analyze that. 863 Value *NonConstIndex = nullptr; 864 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 865 if (!isa<ConstantInt>(Index)) { 866 if (NonConstIndex) 867 return false; 868 NonConstIndex = Index; 869 } 870 if (!NonConstIndex) 871 // The recurrence is on the pointer, ignore for now. 872 return false; 873 874 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 875 // AddRec using a NSW operation. 876 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 877 if (OBO->hasNoSignedWrap() && 878 // Assume constant for other the operand so that the AddRec can be 879 // easily found. 880 isa<ConstantInt>(OBO->getOperand(1))) { 881 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 882 883 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 884 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 885 } 886 887 return false; 888 } 889 890 /// \brief Check whether the access through \p Ptr has a constant stride. 891 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 892 const Loop *Lp, const ValueToValueMap &StridesMap, 893 bool Assume, bool ShouldCheckWrap) { 894 Type *Ty = Ptr->getType(); 895 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 896 897 // Make sure that the pointer does not point to aggregate types. 898 auto *PtrTy = cast<PointerType>(Ty); 899 if (PtrTy->getElementType()->isAggregateType()) { 900 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 901 << "\n"); 902 return 0; 903 } 904 905 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 906 907 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 908 if (Assume && !AR) 909 AR = PSE.getAsAddRec(Ptr); 910 911 if (!AR) { 912 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 913 << " SCEV: " << *PtrScev << "\n"); 914 return 0; 915 } 916 917 // The accesss function must stride over the innermost loop. 918 if (Lp != AR->getLoop()) { 919 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 920 *Ptr << " SCEV: " << *AR << "\n"); 921 return 0; 922 } 923 924 // The address calculation must not wrap. Otherwise, a dependence could be 925 // inverted. 926 // An inbounds getelementptr that is a AddRec with a unit stride 927 // cannot wrap per definition. The unit stride requirement is checked later. 928 // An getelementptr without an inbounds attribute and unit stride would have 929 // to access the pointer value "0" which is undefined behavior in address 930 // space 0, therefore we can also vectorize this case. 931 bool IsInBoundsGEP = isInBoundsGep(Ptr); 932 bool IsNoWrapAddRec = !ShouldCheckWrap || 933 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 934 isNoWrapAddRec(Ptr, AR, PSE, Lp); 935 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 936 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 937 if (Assume) { 938 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 939 IsNoWrapAddRec = true; 940 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 941 << "LAA: Pointer: " << *Ptr << "\n" 942 << "LAA: SCEV: " << *AR << "\n" 943 << "LAA: Added an overflow assumption\n"); 944 } else { 945 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 946 << *Ptr << " SCEV: " << *AR << "\n"); 947 return 0; 948 } 949 } 950 951 // Check the step is constant. 952 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 953 954 // Calculate the pointer stride and check if it is constant. 955 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 956 if (!C) { 957 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 958 " SCEV: " << *AR << "\n"); 959 return 0; 960 } 961 962 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 963 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 964 const APInt &APStepVal = C->getAPInt(); 965 966 // Huge step value - give up. 967 if (APStepVal.getBitWidth() > 64) 968 return 0; 969 970 int64_t StepVal = APStepVal.getSExtValue(); 971 972 // Strided access. 973 int64_t Stride = StepVal / Size; 974 int64_t Rem = StepVal % Size; 975 if (Rem) 976 return 0; 977 978 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 979 // know we can't "wrap around the address space". In case of address space 980 // zero we know that this won't happen without triggering undefined behavior. 981 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 982 Stride != 1 && Stride != -1) { 983 if (Assume) { 984 // We can avoid this case by adding a run-time check. 985 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 986 << "inbouds or in address space 0 may wrap:\n" 987 << "LAA: Pointer: " << *Ptr << "\n" 988 << "LAA: SCEV: " << *AR << "\n" 989 << "LAA: Added an overflow assumption\n"); 990 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 991 } else 992 return 0; 993 } 994 995 return Stride; 996 } 997 998 /// Take the pointer operand from the Load/Store instruction. 999 /// Returns NULL if this is not a valid Load/Store instruction. 1000 static Value *getPointerOperand(Value *I) { 1001 if (auto *LI = dyn_cast<LoadInst>(I)) 1002 return LI->getPointerOperand(); 1003 if (auto *SI = dyn_cast<StoreInst>(I)) 1004 return SI->getPointerOperand(); 1005 return nullptr; 1006 } 1007 1008 /// Take the address space operand from the Load/Store instruction. 1009 /// Returns -1 if this is not a valid Load/Store instruction. 1010 static unsigned getAddressSpaceOperand(Value *I) { 1011 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1012 return L->getPointerAddressSpace(); 1013 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1014 return S->getPointerAddressSpace(); 1015 return -1; 1016 } 1017 1018 /// Returns true if the memory operations \p A and \p B are consecutive. 1019 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1020 ScalarEvolution &SE, bool CheckType) { 1021 Value *PtrA = getPointerOperand(A); 1022 Value *PtrB = getPointerOperand(B); 1023 unsigned ASA = getAddressSpaceOperand(A); 1024 unsigned ASB = getAddressSpaceOperand(B); 1025 1026 // Check that the address spaces match and that the pointers are valid. 1027 if (!PtrA || !PtrB || (ASA != ASB)) 1028 return false; 1029 1030 // Make sure that A and B are different pointers. 1031 if (PtrA == PtrB) 1032 return false; 1033 1034 // Make sure that A and B have the same type if required. 1035 if (CheckType && PtrA->getType() != PtrB->getType()) 1036 return false; 1037 1038 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1039 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1040 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1041 1042 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1043 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1044 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1045 1046 // OffsetDelta = OffsetB - OffsetA; 1047 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1048 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1049 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1050 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1051 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1052 // Check if they are based on the same pointer. That makes the offsets 1053 // sufficient. 1054 if (PtrA == PtrB) 1055 return OffsetDelta == Size; 1056 1057 // Compute the necessary base pointer delta to have the necessary final delta 1058 // equal to the size. 1059 // BaseDelta = Size - OffsetDelta; 1060 const SCEV *SizeSCEV = SE.getConstant(Size); 1061 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1062 1063 // Otherwise compute the distance with SCEV between the base pointers. 1064 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1065 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1066 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1067 return X == PtrSCEVB; 1068 } 1069 1070 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1071 switch (Type) { 1072 case NoDep: 1073 case Forward: 1074 case BackwardVectorizable: 1075 return true; 1076 1077 case Unknown: 1078 case ForwardButPreventsForwarding: 1079 case Backward: 1080 case BackwardVectorizableButPreventsForwarding: 1081 return false; 1082 } 1083 llvm_unreachable("unexpected DepType!"); 1084 } 1085 1086 bool MemoryDepChecker::Dependence::isBackward() const { 1087 switch (Type) { 1088 case NoDep: 1089 case Forward: 1090 case ForwardButPreventsForwarding: 1091 case Unknown: 1092 return false; 1093 1094 case BackwardVectorizable: 1095 case Backward: 1096 case BackwardVectorizableButPreventsForwarding: 1097 return true; 1098 } 1099 llvm_unreachable("unexpected DepType!"); 1100 } 1101 1102 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1103 return isBackward() || Type == Unknown; 1104 } 1105 1106 bool MemoryDepChecker::Dependence::isForward() const { 1107 switch (Type) { 1108 case Forward: 1109 case ForwardButPreventsForwarding: 1110 return true; 1111 1112 case NoDep: 1113 case Unknown: 1114 case BackwardVectorizable: 1115 case Backward: 1116 case BackwardVectorizableButPreventsForwarding: 1117 return false; 1118 } 1119 llvm_unreachable("unexpected DepType!"); 1120 } 1121 1122 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1123 uint64_t TypeByteSize) { 1124 // If loads occur at a distance that is not a multiple of a feasible vector 1125 // factor store-load forwarding does not take place. 1126 // Positive dependences might cause troubles because vectorizing them might 1127 // prevent store-load forwarding making vectorized code run a lot slower. 1128 // a[i] = a[i-3] ^ a[i-8]; 1129 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1130 // hence on your typical architecture store-load forwarding does not take 1131 // place. Vectorizing in such cases does not make sense. 1132 // Store-load forwarding distance. 1133 1134 // After this many iterations store-to-load forwarding conflicts should not 1135 // cause any slowdowns. 1136 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1137 // Maximum vector factor. 1138 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1139 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1140 1141 // Compute the smallest VF at which the store and load would be misaligned. 1142 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1143 VF *= 2) { 1144 // If the number of vector iteration between the store and the load are 1145 // small we could incur conflicts. 1146 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1147 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1148 break; 1149 } 1150 } 1151 1152 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1153 DEBUG(dbgs() << "LAA: Distance " << Distance 1154 << " that could cause a store-load forwarding conflict\n"); 1155 return true; 1156 } 1157 1158 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1159 MaxVFWithoutSLForwardIssues != 1160 VectorizerParams::MaxVectorWidth * TypeByteSize) 1161 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1162 return false; 1163 } 1164 1165 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1166 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1167 /// bytes. 1168 /// 1169 /// \returns true if they are independent. 1170 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1171 uint64_t TypeByteSize) { 1172 assert(Stride > 1 && "The stride must be greater than 1"); 1173 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1174 assert(Distance > 0 && "The distance must be non-zero"); 1175 1176 // Skip if the distance is not multiple of type byte size. 1177 if (Distance % TypeByteSize) 1178 return false; 1179 1180 uint64_t ScaledDist = Distance / TypeByteSize; 1181 1182 // No dependence if the scaled distance is not multiple of the stride. 1183 // E.g. 1184 // for (i = 0; i < 1024 ; i += 4) 1185 // A[i+2] = A[i] + 1; 1186 // 1187 // Two accesses in memory (scaled distance is 2, stride is 4): 1188 // | A[0] | | | | A[4] | | | | 1189 // | | | A[2] | | | | A[6] | | 1190 // 1191 // E.g. 1192 // for (i = 0; i < 1024 ; i += 3) 1193 // A[i+4] = A[i] + 1; 1194 // 1195 // Two accesses in memory (scaled distance is 4, stride is 3): 1196 // | A[0] | | | A[3] | | | A[6] | | | 1197 // | | | | | A[4] | | | A[7] | | 1198 return ScaledDist % Stride; 1199 } 1200 1201 MemoryDepChecker::Dependence::DepType 1202 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1203 const MemAccessInfo &B, unsigned BIdx, 1204 const ValueToValueMap &Strides) { 1205 assert (AIdx < BIdx && "Must pass arguments in program order"); 1206 1207 Value *APtr = A.getPointer(); 1208 Value *BPtr = B.getPointer(); 1209 bool AIsWrite = A.getInt(); 1210 bool BIsWrite = B.getInt(); 1211 1212 // Two reads are independent. 1213 if (!AIsWrite && !BIsWrite) 1214 return Dependence::NoDep; 1215 1216 // We cannot check pointers in different address spaces. 1217 if (APtr->getType()->getPointerAddressSpace() != 1218 BPtr->getType()->getPointerAddressSpace()) 1219 return Dependence::Unknown; 1220 1221 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1222 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1223 1224 const SCEV *Src = PSE.getSCEV(APtr); 1225 const SCEV *Sink = PSE.getSCEV(BPtr); 1226 1227 // If the induction step is negative we have to invert source and sink of the 1228 // dependence. 1229 if (StrideAPtr < 0) { 1230 std::swap(APtr, BPtr); 1231 std::swap(Src, Sink); 1232 std::swap(AIsWrite, BIsWrite); 1233 std::swap(AIdx, BIdx); 1234 std::swap(StrideAPtr, StrideBPtr); 1235 } 1236 1237 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1238 1239 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1240 << "(Induction step: " << StrideAPtr << ")\n"); 1241 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1242 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1243 1244 // Need accesses with constant stride. We don't want to vectorize 1245 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1246 // the address space. 1247 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1248 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1249 return Dependence::Unknown; 1250 } 1251 1252 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1253 if (!C) { 1254 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1255 ShouldRetryWithRuntimeCheck = true; 1256 return Dependence::Unknown; 1257 } 1258 1259 Type *ATy = APtr->getType()->getPointerElementType(); 1260 Type *BTy = BPtr->getType()->getPointerElementType(); 1261 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1262 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1263 1264 const APInt &Val = C->getAPInt(); 1265 int64_t Distance = Val.getSExtValue(); 1266 uint64_t Stride = std::abs(StrideAPtr); 1267 1268 // Attempt to prove strided accesses independent. 1269 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1270 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1271 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1272 return Dependence::NoDep; 1273 } 1274 1275 // Negative distances are not plausible dependencies. 1276 if (Val.isNegative()) { 1277 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1278 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1279 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1280 ATy != BTy)) { 1281 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1282 return Dependence::ForwardButPreventsForwarding; 1283 } 1284 1285 DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1286 return Dependence::Forward; 1287 } 1288 1289 // Write to the same location with the same size. 1290 // Could be improved to assert type sizes are the same (i32 == float, etc). 1291 if (Val == 0) { 1292 if (ATy == BTy) 1293 return Dependence::Forward; 1294 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1295 return Dependence::Unknown; 1296 } 1297 1298 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1299 1300 if (ATy != BTy) { 1301 DEBUG(dbgs() << 1302 "LAA: ReadWrite-Write positive dependency with different types\n"); 1303 return Dependence::Unknown; 1304 } 1305 1306 // Bail out early if passed-in parameters make vectorization not feasible. 1307 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1308 VectorizerParams::VectorizationFactor : 1); 1309 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1310 VectorizerParams::VectorizationInterleave : 1); 1311 // The minimum number of iterations for a vectorized/unrolled version. 1312 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1313 1314 // It's not vectorizable if the distance is smaller than the minimum distance 1315 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1316 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1317 // TypeByteSize (No need to plus the last gap distance). 1318 // 1319 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1320 // foo(int *A) { 1321 // int *B = (int *)((char *)A + 14); 1322 // for (i = 0 ; i < 1024 ; i += 2) 1323 // B[i] = A[i] + 1; 1324 // } 1325 // 1326 // Two accesses in memory (stride is 2): 1327 // | A[0] | | A[2] | | A[4] | | A[6] | | 1328 // | B[0] | | B[2] | | B[4] | 1329 // 1330 // Distance needs for vectorizing iterations except the last iteration: 1331 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1332 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1333 // 1334 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1335 // 12, which is less than distance. 1336 // 1337 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1338 // the minimum distance needed is 28, which is greater than distance. It is 1339 // not safe to do vectorization. 1340 uint64_t MinDistanceNeeded = 1341 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1342 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1343 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1344 << '\n'); 1345 return Dependence::Backward; 1346 } 1347 1348 // Unsafe if the minimum distance needed is greater than max safe distance. 1349 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1350 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1351 << MinDistanceNeeded << " size in bytes"); 1352 return Dependence::Backward; 1353 } 1354 1355 // Positive distance bigger than max vectorization factor. 1356 // FIXME: Should use max factor instead of max distance in bytes, which could 1357 // not handle different types. 1358 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1359 // void foo (int *A, char *B) { 1360 // for (unsigned i = 0; i < 1024; i++) { 1361 // A[i+2] = A[i] + 1; 1362 // B[i+2] = B[i] + 1; 1363 // } 1364 // } 1365 // 1366 // This case is currently unsafe according to the max safe distance. If we 1367 // analyze the two accesses on array B, the max safe dependence distance 1368 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1369 // is 8, which is less than 2 and forbidden vectorization, But actually 1370 // both A and B could be vectorized by 2 iterations. 1371 MaxSafeDepDistBytes = 1372 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1373 1374 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1375 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1376 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1377 return Dependence::BackwardVectorizableButPreventsForwarding; 1378 1379 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1380 << " with max VF = " 1381 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1382 1383 return Dependence::BackwardVectorizable; 1384 } 1385 1386 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1387 MemAccessInfoSet &CheckDeps, 1388 const ValueToValueMap &Strides) { 1389 1390 MaxSafeDepDistBytes = -1; 1391 while (!CheckDeps.empty()) { 1392 MemAccessInfo CurAccess = *CheckDeps.begin(); 1393 1394 // Get the relevant memory access set. 1395 EquivalenceClasses<MemAccessInfo>::iterator I = 1396 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1397 1398 // Check accesses within this set. 1399 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1400 AccessSets.member_begin(I); 1401 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1402 AccessSets.member_end(); 1403 1404 // Check every access pair. 1405 while (AI != AE) { 1406 CheckDeps.erase(*AI); 1407 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1408 while (OI != AE) { 1409 // Check every accessing instruction pair in program order. 1410 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1411 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1412 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1413 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1414 auto A = std::make_pair(&*AI, *I1); 1415 auto B = std::make_pair(&*OI, *I2); 1416 1417 assert(*I1 != *I2); 1418 if (*I1 > *I2) 1419 std::swap(A, B); 1420 1421 Dependence::DepType Type = 1422 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1423 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1424 1425 // Gather dependences unless we accumulated MaxDependences 1426 // dependences. In that case return as soon as we find the first 1427 // unsafe dependence. This puts a limit on this quadratic 1428 // algorithm. 1429 if (RecordDependences) { 1430 if (Type != Dependence::NoDep) 1431 Dependences.push_back(Dependence(A.second, B.second, Type)); 1432 1433 if (Dependences.size() >= MaxDependences) { 1434 RecordDependences = false; 1435 Dependences.clear(); 1436 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1437 } 1438 } 1439 if (!RecordDependences && !SafeForVectorization) 1440 return false; 1441 } 1442 ++OI; 1443 } 1444 AI++; 1445 } 1446 } 1447 1448 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1449 return SafeForVectorization; 1450 } 1451 1452 SmallVector<Instruction *, 4> 1453 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1454 MemAccessInfo Access(Ptr, isWrite); 1455 auto &IndexVector = Accesses.find(Access)->second; 1456 1457 SmallVector<Instruction *, 4> Insts; 1458 transform(IndexVector, 1459 std::back_inserter(Insts), 1460 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1461 return Insts; 1462 } 1463 1464 const char *MemoryDepChecker::Dependence::DepName[] = { 1465 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1466 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1467 1468 void MemoryDepChecker::Dependence::print( 1469 raw_ostream &OS, unsigned Depth, 1470 const SmallVectorImpl<Instruction *> &Instrs) const { 1471 OS.indent(Depth) << DepName[Type] << ":\n"; 1472 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1473 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1474 } 1475 1476 bool LoopAccessInfo::canAnalyzeLoop() { 1477 // We need to have a loop header. 1478 DEBUG(dbgs() << "LAA: Found a loop in " 1479 << TheLoop->getHeader()->getParent()->getName() << ": " 1480 << TheLoop->getHeader()->getName() << '\n'); 1481 1482 // We can only analyze innermost loops. 1483 if (!TheLoop->empty()) { 1484 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1485 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1486 return false; 1487 } 1488 1489 // We must have a single backedge. 1490 if (TheLoop->getNumBackEdges() != 1) { 1491 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1492 recordAnalysis("CFGNotUnderstood") 1493 << "loop control flow is not understood by analyzer"; 1494 return false; 1495 } 1496 1497 // We must have a single exiting block. 1498 if (!TheLoop->getExitingBlock()) { 1499 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1500 recordAnalysis("CFGNotUnderstood") 1501 << "loop control flow is not understood by analyzer"; 1502 return false; 1503 } 1504 1505 // We only handle bottom-tested loops, i.e. loop in which the condition is 1506 // checked at the end of each iteration. With that we can assume that all 1507 // instructions in the loop are executed the same number of times. 1508 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1509 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1510 recordAnalysis("CFGNotUnderstood") 1511 << "loop control flow is not understood by analyzer"; 1512 return false; 1513 } 1514 1515 // ScalarEvolution needs to be able to find the exit count. 1516 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1517 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1518 recordAnalysis("CantComputeNumberOfIterations") 1519 << "could not determine number of loop iterations"; 1520 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1521 return false; 1522 } 1523 1524 return true; 1525 } 1526 1527 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1528 const TargetLibraryInfo *TLI, 1529 DominatorTree *DT) { 1530 typedef SmallPtrSet<Value*, 16> ValueSet; 1531 1532 // Holds the Load and Store instructions. 1533 SmallVector<LoadInst *, 16> Loads; 1534 SmallVector<StoreInst *, 16> Stores; 1535 1536 // Holds all the different accesses in the loop. 1537 unsigned NumReads = 0; 1538 unsigned NumReadWrites = 0; 1539 1540 PtrRtChecking->Pointers.clear(); 1541 PtrRtChecking->Need = false; 1542 1543 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1544 1545 // For each block. 1546 for (BasicBlock *BB : TheLoop->blocks()) { 1547 // Scan the BB and collect legal loads and stores. 1548 for (Instruction &I : *BB) { 1549 // If this is a load, save it. If this instruction can read from memory 1550 // but is not a load, then we quit. Notice that we don't handle function 1551 // calls that read or write. 1552 if (I.mayReadFromMemory()) { 1553 // Many math library functions read the rounding mode. We will only 1554 // vectorize a loop if it contains known function calls that don't set 1555 // the flag. Therefore, it is safe to ignore this read from memory. 1556 auto *Call = dyn_cast<CallInst>(&I); 1557 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1558 continue; 1559 1560 // If the function has an explicit vectorized counterpart, we can safely 1561 // assume that it can be vectorized. 1562 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1563 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1564 continue; 1565 1566 auto *Ld = dyn_cast<LoadInst>(&I); 1567 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1568 recordAnalysis("NonSimpleLoad", Ld) 1569 << "read with atomic ordering or volatile read"; 1570 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1571 CanVecMem = false; 1572 return; 1573 } 1574 NumLoads++; 1575 Loads.push_back(Ld); 1576 DepChecker->addAccess(Ld); 1577 if (EnableMemAccessVersioning) 1578 collectStridedAccess(Ld); 1579 continue; 1580 } 1581 1582 // Save 'store' instructions. Abort if other instructions write to memory. 1583 if (I.mayWriteToMemory()) { 1584 auto *St = dyn_cast<StoreInst>(&I); 1585 if (!St) { 1586 recordAnalysis("CantVectorizeInstruction", St) 1587 << "instruction cannot be vectorized"; 1588 CanVecMem = false; 1589 return; 1590 } 1591 if (!St->isSimple() && !IsAnnotatedParallel) { 1592 recordAnalysis("NonSimpleStore", St) 1593 << "write with atomic ordering or volatile write"; 1594 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1595 CanVecMem = false; 1596 return; 1597 } 1598 NumStores++; 1599 Stores.push_back(St); 1600 DepChecker->addAccess(St); 1601 if (EnableMemAccessVersioning) 1602 collectStridedAccess(St); 1603 } 1604 } // Next instr. 1605 } // Next block. 1606 1607 // Now we have two lists that hold the loads and the stores. 1608 // Next, we find the pointers that they use. 1609 1610 // Check if we see any stores. If there are no stores, then we don't 1611 // care if the pointers are *restrict*. 1612 if (!Stores.size()) { 1613 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1614 CanVecMem = true; 1615 return; 1616 } 1617 1618 MemoryDepChecker::DepCandidates DependentAccesses; 1619 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1620 AA, LI, DependentAccesses, *PSE); 1621 1622 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1623 // multiple times on the same object. If the ptr is accessed twice, once 1624 // for read and once for write, it will only appear once (on the write 1625 // list). This is okay, since we are going to check for conflicts between 1626 // writes and between reads and writes, but not between reads and reads. 1627 ValueSet Seen; 1628 1629 for (StoreInst *ST : Stores) { 1630 Value *Ptr = ST->getPointerOperand(); 1631 // Check for store to loop invariant address. 1632 StoreToLoopInvariantAddress |= isUniform(Ptr); 1633 // If we did *not* see this pointer before, insert it to the read-write 1634 // list. At this phase it is only a 'write' list. 1635 if (Seen.insert(Ptr).second) { 1636 ++NumReadWrites; 1637 1638 MemoryLocation Loc = MemoryLocation::get(ST); 1639 // The TBAA metadata could have a control dependency on the predication 1640 // condition, so we cannot rely on it when determining whether or not we 1641 // need runtime pointer checks. 1642 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1643 Loc.AATags.TBAA = nullptr; 1644 1645 Accesses.addStore(Loc); 1646 } 1647 } 1648 1649 if (IsAnnotatedParallel) { 1650 DEBUG(dbgs() 1651 << "LAA: A loop annotated parallel, ignore memory dependency " 1652 << "checks.\n"); 1653 CanVecMem = true; 1654 return; 1655 } 1656 1657 for (LoadInst *LD : Loads) { 1658 Value *Ptr = LD->getPointerOperand(); 1659 // If we did *not* see this pointer before, insert it to the 1660 // read list. If we *did* see it before, then it is already in 1661 // the read-write list. This allows us to vectorize expressions 1662 // such as A[i] += x; Because the address of A[i] is a read-write 1663 // pointer. This only works if the index of A[i] is consecutive. 1664 // If the address of i is unknown (for example A[B[i]]) then we may 1665 // read a few words, modify, and write a few words, and some of the 1666 // words may be written to the same address. 1667 bool IsReadOnlyPtr = false; 1668 if (Seen.insert(Ptr).second || 1669 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1670 ++NumReads; 1671 IsReadOnlyPtr = true; 1672 } 1673 1674 MemoryLocation Loc = MemoryLocation::get(LD); 1675 // The TBAA metadata could have a control dependency on the predication 1676 // condition, so we cannot rely on it when determining whether or not we 1677 // need runtime pointer checks. 1678 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1679 Loc.AATags.TBAA = nullptr; 1680 1681 Accesses.addLoad(Loc, IsReadOnlyPtr); 1682 } 1683 1684 // If we write (or read-write) to a single destination and there are no 1685 // other reads in this loop then is it safe to vectorize. 1686 if (NumReadWrites == 1 && NumReads == 0) { 1687 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1688 CanVecMem = true; 1689 return; 1690 } 1691 1692 // Build dependence sets and check whether we need a runtime pointer bounds 1693 // check. 1694 Accesses.buildDependenceSets(); 1695 1696 // Find pointers with computable bounds. We are going to use this information 1697 // to place a runtime bound check. 1698 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1699 TheLoop, SymbolicStrides); 1700 if (!CanDoRTIfNeeded) { 1701 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1702 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1703 << "the array bounds.\n"); 1704 CanVecMem = false; 1705 return; 1706 } 1707 1708 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1709 1710 CanVecMem = true; 1711 if (Accesses.isDependencyCheckNeeded()) { 1712 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1713 CanVecMem = DepChecker->areDepsSafe( 1714 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1715 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 1716 1717 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1718 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1719 1720 // Clear the dependency checks. We assume they are not needed. 1721 Accesses.resetDepChecks(*DepChecker); 1722 1723 PtrRtChecking->reset(); 1724 PtrRtChecking->Need = true; 1725 1726 auto *SE = PSE->getSE(); 1727 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1728 SymbolicStrides, true); 1729 1730 // Check that we found the bounds for the pointer. 1731 if (!CanDoRTIfNeeded) { 1732 recordAnalysis("CantCheckMemDepsAtRunTime") 1733 << "cannot check memory dependencies at runtime"; 1734 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1735 CanVecMem = false; 1736 return; 1737 } 1738 1739 CanVecMem = true; 1740 } 1741 } 1742 1743 if (CanVecMem) 1744 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1745 << (PtrRtChecking->Need ? "" : " don't") 1746 << " need runtime memory checks.\n"); 1747 else { 1748 recordAnalysis("UnsafeMemDep") 1749 << "unsafe dependent memory operations in loop. Use " 1750 "#pragma loop distribute(enable) to allow loop distribution " 1751 "to attempt to isolate the offending operations into a separate " 1752 "loop"; 1753 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1754 } 1755 } 1756 1757 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1758 DominatorTree *DT) { 1759 assert(TheLoop->contains(BB) && "Unknown block used"); 1760 1761 // Blocks that do not dominate the latch need predication. 1762 BasicBlock* Latch = TheLoop->getLoopLatch(); 1763 return !DT->dominates(BB, Latch); 1764 } 1765 1766 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 1767 Instruction *I) { 1768 assert(!Report && "Multiple reports generated"); 1769 1770 Value *CodeRegion = TheLoop->getHeader(); 1771 DebugLoc DL = TheLoop->getStartLoc(); 1772 1773 if (I) { 1774 CodeRegion = I->getParent(); 1775 // If there is no debug location attached to the instruction, revert back to 1776 // using the loop's. 1777 if (I->getDebugLoc()) 1778 DL = I->getDebugLoc(); 1779 } 1780 1781 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 1782 CodeRegion); 1783 return *Report; 1784 } 1785 1786 bool LoopAccessInfo::isUniform(Value *V) const { 1787 auto *SE = PSE->getSE(); 1788 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 1789 // never considered uniform. 1790 // TODO: Is this really what we want? Even without FP SCEV, we may want some 1791 // trivially loop-invariant FP values to be considered uniform. 1792 if (!SE->isSCEVable(V->getType())) 1793 return false; 1794 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1795 } 1796 1797 // FIXME: this function is currently a duplicate of the one in 1798 // LoopVectorize.cpp. 1799 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1800 Instruction *Loc) { 1801 if (FirstInst) 1802 return FirstInst; 1803 if (Instruction *I = dyn_cast<Instruction>(V)) 1804 return I->getParent() == Loc->getParent() ? I : nullptr; 1805 return nullptr; 1806 } 1807 1808 namespace { 1809 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1810 /// need to use value-handles because SCEV expansion can invalidate previously 1811 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1812 /// a previous one. 1813 struct PointerBounds { 1814 TrackingVH<Value> Start; 1815 TrackingVH<Value> End; 1816 }; 1817 } // end anonymous namespace 1818 1819 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1820 /// in \p TheLoop. \return the values for the bounds. 1821 static PointerBounds 1822 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1823 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1824 const RuntimePointerChecking &PtrRtChecking) { 1825 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1826 const SCEV *Sc = SE->getSCEV(Ptr); 1827 1828 if (SE->isLoopInvariant(Sc, TheLoop)) { 1829 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1830 << "\n"); 1831 return {Ptr, Ptr}; 1832 } else { 1833 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1834 LLVMContext &Ctx = Loc->getContext(); 1835 1836 // Use this type for pointer arithmetic. 1837 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1838 Value *Start = nullptr, *End = nullptr; 1839 1840 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1841 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1842 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1843 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1844 return {Start, End}; 1845 } 1846 } 1847 1848 /// \brief Turns a collection of checks into a collection of expanded upper and 1849 /// lower bounds for both pointers in the check. 1850 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1851 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1852 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1853 const RuntimePointerChecking &PtrRtChecking) { 1854 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1855 1856 // Here we're relying on the SCEV Expander's cache to only emit code for the 1857 // same bounds once. 1858 transform( 1859 PointerChecks, std::back_inserter(ChecksWithBounds), 1860 [&](const RuntimePointerChecking::PointerCheck &Check) { 1861 PointerBounds 1862 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1863 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1864 return std::make_pair(First, Second); 1865 }); 1866 1867 return ChecksWithBounds; 1868 } 1869 1870 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 1871 Instruction *Loc, 1872 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1873 const { 1874 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1875 auto *SE = PSE->getSE(); 1876 SCEVExpander Exp(*SE, DL, "induction"); 1877 auto ExpandedChecks = 1878 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 1879 1880 LLVMContext &Ctx = Loc->getContext(); 1881 Instruction *FirstInst = nullptr; 1882 IRBuilder<> ChkBuilder(Loc); 1883 // Our instructions might fold to a constant. 1884 Value *MemoryRuntimeCheck = nullptr; 1885 1886 for (const auto &Check : ExpandedChecks) { 1887 const PointerBounds &A = Check.first, &B = Check.second; 1888 // Check if two pointers (A and B) conflict where conflict is computed as: 1889 // start(A) <= end(B) && start(B) <= end(A) 1890 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1891 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1892 1893 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1894 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1895 "Trying to bounds check pointers with different address spaces"); 1896 1897 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1898 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1899 1900 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1901 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1902 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1903 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1904 1905 // [A|B].Start points to the first accessed byte under base [A|B]. 1906 // [A|B].End points to the last accessed byte, plus one. 1907 // There is no conflict when the intervals are disjoint: 1908 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1909 // 1910 // bound0 = (B.Start < A.End) 1911 // bound1 = (A.Start < B.End) 1912 // IsConflict = bound0 & bound1 1913 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1914 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1915 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1916 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1917 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1918 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1919 if (MemoryRuntimeCheck) { 1920 IsConflict = 1921 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1922 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1923 } 1924 MemoryRuntimeCheck = IsConflict; 1925 } 1926 1927 if (!MemoryRuntimeCheck) 1928 return std::make_pair(nullptr, nullptr); 1929 1930 // We have to do this trickery because the IRBuilder might fold the check to a 1931 // constant expression in which case there is no Instruction anchored in a 1932 // the block. 1933 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1934 ConstantInt::getTrue(Ctx)); 1935 ChkBuilder.Insert(Check, "memcheck.conflict"); 1936 FirstInst = getFirstInst(FirstInst, Check, Loc); 1937 return std::make_pair(FirstInst, Check); 1938 } 1939 1940 std::pair<Instruction *, Instruction *> 1941 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1942 if (!PtrRtChecking->Need) 1943 return std::make_pair(nullptr, nullptr); 1944 1945 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 1946 } 1947 1948 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 1949 Value *Ptr = nullptr; 1950 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 1951 Ptr = LI->getPointerOperand(); 1952 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 1953 Ptr = SI->getPointerOperand(); 1954 else 1955 return; 1956 1957 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 1958 if (!Stride) 1959 return; 1960 1961 DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 1962 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 1963 SymbolicStrides[Ptr] = Stride; 1964 StrideSet.insert(Stride); 1965 } 1966 1967 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1968 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1969 DominatorTree *DT, LoopInfo *LI) 1970 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 1971 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 1972 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 1973 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 1974 StoreToLoopInvariantAddress(false) { 1975 if (canAnalyzeLoop()) 1976 analyzeLoop(AA, LI, TLI, DT); 1977 } 1978 1979 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1980 if (CanVecMem) { 1981 OS.indent(Depth) << "Memory dependences are safe"; 1982 if (MaxSafeDepDistBytes != -1ULL) 1983 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 1984 << " bytes"; 1985 if (PtrRtChecking->Need) 1986 OS << " with run-time checks"; 1987 OS << "\n"; 1988 } 1989 1990 if (Report) 1991 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 1992 1993 if (auto *Dependences = DepChecker->getDependences()) { 1994 OS.indent(Depth) << "Dependences:\n"; 1995 for (auto &Dep : *Dependences) { 1996 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 1997 OS << "\n"; 1998 } 1999 } else 2000 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2001 2002 // List the pair of accesses need run-time checks to prove independence. 2003 PtrRtChecking->print(OS, Depth); 2004 OS << "\n"; 2005 2006 OS.indent(Depth) << "Store to invariant address was " 2007 << (StoreToLoopInvariantAddress ? "" : "not ") 2008 << "found in loop.\n"; 2009 2010 OS.indent(Depth) << "SCEV assumptions:\n"; 2011 PSE->getUnionPredicate().print(OS, Depth); 2012 2013 OS << "\n"; 2014 2015 OS.indent(Depth) << "Expressions re-written:\n"; 2016 PSE->print(OS, Depth); 2017 } 2018 2019 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2020 auto &LAI = LoopAccessInfoMap[L]; 2021 2022 if (!LAI) 2023 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2024 2025 return *LAI.get(); 2026 } 2027 2028 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2029 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2030 2031 for (Loop *TopLevelLoop : *LI) 2032 for (Loop *L : depth_first(TopLevelLoop)) { 2033 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2034 auto &LAI = LAA.getInfo(L); 2035 LAI.print(OS, 4); 2036 } 2037 } 2038 2039 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2040 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2041 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2042 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2043 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2044 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2045 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2046 2047 return false; 2048 } 2049 2050 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2051 AU.addRequired<ScalarEvolutionWrapperPass>(); 2052 AU.addRequired<AAResultsWrapperPass>(); 2053 AU.addRequired<DominatorTreeWrapperPass>(); 2054 AU.addRequired<LoopInfoWrapperPass>(); 2055 2056 AU.setPreservesAll(); 2057 } 2058 2059 char LoopAccessLegacyAnalysis::ID = 0; 2060 static const char laa_name[] = "Loop Access Analysis"; 2061 #define LAA_NAME "loop-accesses" 2062 2063 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2064 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2065 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2066 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2067 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2068 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2069 2070 char LoopAccessAnalysis::PassID; 2071 2072 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM) { 2073 const FunctionAnalysisManager &FAM = 2074 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 2075 Function &F = *L.getHeader()->getParent(); 2076 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F); 2077 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F); 2078 auto *AA = FAM.getCachedResult<AAManager>(F); 2079 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2080 auto *LI = FAM.getCachedResult<LoopAnalysis>(F); 2081 if (!SE) 2082 report_fatal_error( 2083 "ScalarEvolution must have been cached at a higher level"); 2084 if (!AA) 2085 report_fatal_error("AliasAnalysis must have been cached at a higher level"); 2086 if (!DT) 2087 report_fatal_error("DominatorTree must have been cached at a higher level"); 2088 if (!LI) 2089 report_fatal_error("LoopInfo must have been cached at a higher level"); 2090 return LoopAccessInfo(&L, SE, TLI, AA, DT, LI); 2091 } 2092 2093 PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L, 2094 LoopAnalysisManager &AM) { 2095 Function &F = *L.getHeader()->getParent(); 2096 auto &LAI = AM.getResult<LoopAccessAnalysis>(L); 2097 OS << "Loop access info in function '" << F.getName() << "':\n"; 2098 OS.indent(2) << L.getHeader()->getName() << ":\n"; 2099 LAI.print(OS, 4); 2100 return PreservedAnalyses::all(); 2101 } 2102 2103 namespace llvm { 2104 Pass *createLAAPass() { 2105 return new LoopAccessLegacyAnalysis(); 2106 } 2107 } 2108