1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// \brief The maximum iterations used to merge memory checks 52 static cl::opt<unsigned> MemoryCheckMergeThreshold( 53 "memory-check-merge-threshold", cl::Hidden, 54 cl::desc("Maximum number of comparisons done when trying to merge " 55 "runtime memory checks. (default = 100)"), 56 cl::init(100)); 57 58 /// Maximum SIMD width. 59 const unsigned VectorizerParams::MaxVectorWidth = 64; 60 61 /// \brief We collect interesting dependences up to this threshold. 62 static cl::opt<unsigned> MaxInterestingDependence( 63 "max-interesting-dependences", cl::Hidden, 64 cl::desc("Maximum number of interesting dependences collected by " 65 "loop-access analysis (default = 100)"), 66 cl::init(100)); 67 68 bool VectorizerParams::isInterleaveForced() { 69 return ::VectorizationInterleave.getNumOccurrences() > 0; 70 } 71 72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 73 const Function *TheFunction, 74 const Loop *TheLoop, 75 const char *PassName) { 76 DebugLoc DL = TheLoop->getStartLoc(); 77 if (const Instruction *I = Message.getInstr()) 78 DL = I->getDebugLoc(); 79 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 80 *TheFunction, DL, Message.str()); 81 } 82 83 Value *llvm::stripIntegerCast(Value *V) { 84 if (CastInst *CI = dyn_cast<CastInst>(V)) 85 if (CI->getOperand(0)->getType()->isIntegerTy()) 86 return CI->getOperand(0); 87 return V; 88 } 89 90 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 91 const ValueToValueMap &PtrToStride, 92 Value *Ptr, Value *OrigPtr) { 93 94 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 95 96 // If there is an entry in the map return the SCEV of the pointer with the 97 // symbolic stride replaced by one. 98 ValueToValueMap::const_iterator SI = 99 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 100 if (SI != PtrToStride.end()) { 101 Value *StrideVal = SI->second; 102 103 // Strip casts. 104 StrideVal = stripIntegerCast(StrideVal); 105 106 // Replace symbolic stride by one. 107 Value *One = ConstantInt::get(StrideVal->getType(), 1); 108 ValueToValueMap RewriteMap; 109 RewriteMap[StrideVal] = One; 110 111 const SCEV *ByOne = 112 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 113 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 114 << "\n"); 115 return ByOne; 116 } 117 118 // Otherwise, just return the SCEV of the original pointer. 119 return SE->getSCEV(Ptr); 120 } 121 122 void LoopAccessInfo::RuntimePointerCheck::insert( 123 Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, unsigned ASId, 124 const ValueToValueMap &Strides) { 125 // Get the stride replaced scev. 126 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 127 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 128 assert(AR && "Invalid addrec expression"); 129 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 130 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 131 Pointers.push_back(Ptr); 132 Starts.push_back(AR->getStart()); 133 Ends.push_back(ScEnd); 134 IsWritePtr.push_back(WritePtr); 135 DependencySetId.push_back(DepSetId); 136 AliasSetId.push_back(ASId); 137 Exprs.push_back(Sc); 138 } 139 140 bool LoopAccessInfo::RuntimePointerCheck::needsChecking( 141 const CheckingPtrGroup &M, const CheckingPtrGroup &N, 142 const SmallVectorImpl<int> *PtrPartition) const { 143 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 144 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 145 if (needsChecking(M.Members[I], N.Members[J], PtrPartition)) 146 return true; 147 return false; 148 } 149 150 /// Compare \p I and \p J and return the minimum. 151 /// Return nullptr in case we couldn't find an answer. 152 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 153 ScalarEvolution *SE) { 154 const SCEV *Diff = SE->getMinusSCEV(J, I); 155 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 156 157 if (!C) 158 return nullptr; 159 if (C->getValue()->isNegative()) 160 return J; 161 return I; 162 } 163 164 bool LoopAccessInfo::RuntimePointerCheck::CheckingPtrGroup::addPointer( 165 unsigned Index) { 166 // Compare the starts and ends with the known minimum and maximum 167 // of this set. We need to know how we compare against the min/max 168 // of the set in order to be able to emit memchecks. 169 const SCEV *Min0 = getMinFromExprs(RtCheck.Starts[Index], Low, RtCheck.SE); 170 if (!Min0) 171 return false; 172 173 const SCEV *Min1 = getMinFromExprs(RtCheck.Ends[Index], High, RtCheck.SE); 174 if (!Min1) 175 return false; 176 177 // Update the low bound expression if we've found a new min value. 178 if (Min0 == RtCheck.Starts[Index]) 179 Low = RtCheck.Starts[Index]; 180 181 // Update the high bound expression if we've found a new max value. 182 if (Min1 != RtCheck.Ends[Index]) 183 High = RtCheck.Ends[Index]; 184 185 Members.push_back(Index); 186 return true; 187 } 188 189 void LoopAccessInfo::RuntimePointerCheck::groupChecks( 190 MemoryDepChecker::DepCandidates &DepCands, 191 bool UseDependencies) { 192 // We build the groups from dependency candidates equivalence classes 193 // because: 194 // - We know that pointers in the same equivalence class share 195 // the same underlying object and therefore there is a chance 196 // that we can compare pointers 197 // - We wouldn't be able to merge two pointers for which we need 198 // to emit a memcheck. The classes in DepCands are already 199 // conveniently built such that no two pointers in the same 200 // class need checking against each other. 201 202 // We use the following (greedy) algorithm to construct the groups 203 // For every pointer in the equivalence class: 204 // For each existing group: 205 // - if the difference between this pointer and the min/max bounds 206 // of the group is a constant, then make the pointer part of the 207 // group and update the min/max bounds of that group as required. 208 209 CheckingGroups.clear(); 210 211 // If we don't have the dependency partitions, construct a new 212 // checking pointer group for each pointer. 213 if (!UseDependencies) { 214 for (unsigned I = 0; I < Pointers.size(); ++I) 215 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 216 return; 217 } 218 219 unsigned TotalComparisons = 0; 220 221 DenseMap<Value *, unsigned> PositionMap; 222 for (unsigned Pointer = 0; Pointer < Pointers.size(); ++Pointer) 223 PositionMap[Pointers[Pointer]] = Pointer; 224 225 // We need to keep track of what pointers we've already seen so we 226 // don't process them twice. 227 SmallSet<unsigned, 2> Seen; 228 229 // Go through all equivalence classes, get the the "pointer check groups" 230 // and add them to the overall solution. We use the order in which accesses 231 // appear in 'Pointers' to enforce determinism. 232 for (unsigned I = 0; I < Pointers.size(); ++I) { 233 // We've seen this pointer before, and therefore already processed 234 // its equivalence class. 235 if (Seen.count(I)) 236 continue; 237 238 MemoryDepChecker::MemAccessInfo Access(Pointers[I], IsWritePtr[I]); 239 240 SmallVector<CheckingPtrGroup, 2> Groups; 241 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 242 243 SmallVector<unsigned, 2> MemberIndices; 244 245 // Get all indeces of the members of this equivalence class and sort them. 246 // This will allow us to process all accesses in the order in which they 247 // were added to the RuntimePointerCheck. 248 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 249 MI != ME; ++MI) { 250 unsigned Pointer = PositionMap[MI->getPointer()]; 251 MemberIndices.push_back(Pointer); 252 } 253 std::sort(MemberIndices.begin(), MemberIndices.end()); 254 255 for (unsigned Pointer : MemberIndices) { 256 bool Merged = false; 257 // Mark this pointer as seen. 258 Seen.insert(Pointer); 259 260 // Go through all the existing sets and see if we can find one 261 // which can include this pointer. 262 for (CheckingPtrGroup &Group : Groups) { 263 // Don't perform more than a certain amount of comparisons. 264 // This should limit the cost of grouping the pointers to something 265 // reasonable. If we do end up hitting this threshold, the algorithm 266 // will create separate groups for all remaining pointers. 267 if (TotalComparisons > MemoryCheckMergeThreshold) 268 break; 269 270 TotalComparisons++; 271 272 if (Group.addPointer(Pointer)) { 273 Merged = true; 274 break; 275 } 276 } 277 278 if (!Merged) 279 // We couldn't add this pointer to any existing set or the threshold 280 // for the number of comparisons has been reached. Create a new group 281 // to hold the current pointer. 282 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 283 } 284 285 // We've computed the grouped checks for this partition. 286 // Save the results and continue with the next one. 287 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 288 } 289 } 290 291 bool LoopAccessInfo::RuntimePointerCheck::needsChecking( 292 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { 293 // No need to check if two readonly pointers intersect. 294 if (!IsWritePtr[I] && !IsWritePtr[J]) 295 return false; 296 297 // Only need to check pointers between two different dependency sets. 298 if (DependencySetId[I] == DependencySetId[J]) 299 return false; 300 301 // Only need to check pointers in the same alias set. 302 if (AliasSetId[I] != AliasSetId[J]) 303 return false; 304 305 // If PtrPartition is set omit checks between pointers of the same partition. 306 // Partition number -1 means that the pointer is used in multiple partitions. 307 // In this case we can't omit the check. 308 if (PtrPartition && (*PtrPartition)[I] != -1 && 309 (*PtrPartition)[I] == (*PtrPartition)[J]) 310 return false; 311 312 return true; 313 } 314 315 void LoopAccessInfo::RuntimePointerCheck::print( 316 raw_ostream &OS, unsigned Depth, 317 const SmallVectorImpl<int> *PtrPartition) const { 318 319 OS.indent(Depth) << "Run-time memory checks:\n"; 320 321 unsigned N = 0; 322 for (unsigned I = 0; I < CheckingGroups.size(); ++I) 323 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) 324 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) { 325 OS.indent(Depth) << "Check " << N++ << ":\n"; 326 OS.indent(Depth + 2) << "Comparing group " << I << ":\n"; 327 328 for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) { 329 OS.indent(Depth + 2) << *Pointers[CheckingGroups[I].Members[K]] 330 << "\n"; 331 if (PtrPartition) 332 OS << " (Partition: " 333 << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")" 334 << "\n"; 335 } 336 337 OS.indent(Depth + 2) << "Against group " << J << ":\n"; 338 339 for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) { 340 OS.indent(Depth + 2) << *Pointers[CheckingGroups[J].Members[K]] 341 << "\n"; 342 if (PtrPartition) 343 OS << " (Partition: " 344 << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")" 345 << "\n"; 346 } 347 } 348 349 OS.indent(Depth) << "Grouped accesses:\n"; 350 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 351 OS.indent(Depth + 2) << "Group " << I << ":\n"; 352 OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low 353 << " High: " << *CheckingGroups[I].High << ")\n"; 354 for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) { 355 OS.indent(Depth + 6) << "Member: " << *Exprs[CheckingGroups[I].Members[J]] 356 << "\n"; 357 } 358 } 359 } 360 361 unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks( 362 const SmallVectorImpl<int> *PtrPartition) const { 363 364 unsigned NumPartitions = CheckingGroups.size(); 365 unsigned CheckCount = 0; 366 367 for (unsigned I = 0; I < NumPartitions; ++I) 368 for (unsigned J = I + 1; J < NumPartitions; ++J) 369 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) 370 CheckCount++; 371 return CheckCount; 372 } 373 374 bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking( 375 const SmallVectorImpl<int> *PtrPartition) const { 376 unsigned NumPointers = Pointers.size(); 377 378 for (unsigned I = 0; I < NumPointers; ++I) 379 for (unsigned J = I + 1; J < NumPointers; ++J) 380 if (needsChecking(I, J, PtrPartition)) 381 return true; 382 return false; 383 } 384 385 namespace { 386 /// \brief Analyses memory accesses in a loop. 387 /// 388 /// Checks whether run time pointer checks are needed and builds sets for data 389 /// dependence checking. 390 class AccessAnalysis { 391 public: 392 /// \brief Read or write access location. 393 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 394 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 395 396 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 397 MemoryDepChecker::DepCandidates &DA) 398 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), 399 IsRTCheckAnalysisNeeded(false) {} 400 401 /// \brief Register a load and whether it is only read from. 402 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 403 Value *Ptr = const_cast<Value*>(Loc.Ptr); 404 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 405 Accesses.insert(MemAccessInfo(Ptr, false)); 406 if (IsReadOnly) 407 ReadOnlyPtr.insert(Ptr); 408 } 409 410 /// \brief Register a store. 411 void addStore(MemoryLocation &Loc) { 412 Value *Ptr = const_cast<Value*>(Loc.Ptr); 413 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 414 Accesses.insert(MemAccessInfo(Ptr, true)); 415 } 416 417 /// \brief Check whether we can check the pointers at runtime for 418 /// non-intersection. 419 /// 420 /// Returns true if we need no check or if we do and we can generate them 421 /// (i.e. the pointers have computable bounds). 422 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, 423 ScalarEvolution *SE, Loop *TheLoop, 424 const ValueToValueMap &Strides, 425 bool ShouldCheckStride = false); 426 427 /// \brief Goes over all memory accesses, checks whether a RT check is needed 428 /// and builds sets of dependent accesses. 429 void buildDependenceSets() { 430 processMemAccesses(); 431 } 432 433 /// \brief Initial processing of memory accesses determined that we need to 434 /// perform dependency checking. 435 /// 436 /// Note that this can later be cleared if we retry memcheck analysis without 437 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 438 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 439 440 /// We decided that no dependence analysis would be used. Reset the state. 441 void resetDepChecks(MemoryDepChecker &DepChecker) { 442 CheckDeps.clear(); 443 DepChecker.clearInterestingDependences(); 444 } 445 446 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 447 448 private: 449 typedef SetVector<MemAccessInfo> PtrAccessSet; 450 451 /// \brief Go over all memory access and check whether runtime pointer checks 452 /// are needed and build sets of dependency check candidates. 453 void processMemAccesses(); 454 455 /// Set of all accesses. 456 PtrAccessSet Accesses; 457 458 const DataLayout &DL; 459 460 /// Set of accesses that need a further dependence check. 461 MemAccessInfoSet CheckDeps; 462 463 /// Set of pointers that are read only. 464 SmallPtrSet<Value*, 16> ReadOnlyPtr; 465 466 /// An alias set tracker to partition the access set by underlying object and 467 //intrinsic property (such as TBAA metadata). 468 AliasSetTracker AST; 469 470 LoopInfo *LI; 471 472 /// Sets of potentially dependent accesses - members of one set share an 473 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 474 /// dependence check. 475 MemoryDepChecker::DepCandidates &DepCands; 476 477 /// \brief Initial processing of memory accesses determined that we may need 478 /// to add memchecks. Perform the analysis to determine the necessary checks. 479 /// 480 /// Note that, this is different from isDependencyCheckNeeded. When we retry 481 /// memcheck analysis without dependency checking 482 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 483 /// while this remains set if we have potentially dependent accesses. 484 bool IsRTCheckAnalysisNeeded; 485 }; 486 487 } // end anonymous namespace 488 489 /// \brief Check whether a pointer can participate in a runtime bounds check. 490 static bool hasComputableBounds(ScalarEvolution *SE, 491 const ValueToValueMap &Strides, Value *Ptr) { 492 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 493 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 494 if (!AR) 495 return false; 496 497 return AR->isAffine(); 498 } 499 500 bool AccessAnalysis::canCheckPtrAtRT( 501 LoopAccessInfo::RuntimePointerCheck &RtCheck, ScalarEvolution *SE, 502 Loop *TheLoop, const ValueToValueMap &StridesMap, bool ShouldCheckStride) { 503 // Find pointers with computable bounds. We are going to use this information 504 // to place a runtime bound check. 505 bool CanDoRT = true; 506 507 bool NeedRTCheck = false; 508 if (!IsRTCheckAnalysisNeeded) return true; 509 510 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 511 512 // We assign a consecutive id to access from different alias sets. 513 // Accesses between different groups doesn't need to be checked. 514 unsigned ASId = 1; 515 for (auto &AS : AST) { 516 int NumReadPtrChecks = 0; 517 int NumWritePtrChecks = 0; 518 519 // We assign consecutive id to access from different dependence sets. 520 // Accesses within the same set don't need a runtime check. 521 unsigned RunningDepId = 1; 522 DenseMap<Value *, unsigned> DepSetId; 523 524 for (auto A : AS) { 525 Value *Ptr = A.getValue(); 526 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 527 MemAccessInfo Access(Ptr, IsWrite); 528 529 if (IsWrite) 530 ++NumWritePtrChecks; 531 else 532 ++NumReadPtrChecks; 533 534 if (hasComputableBounds(SE, StridesMap, Ptr) && 535 // When we run after a failing dependency check we have to make sure 536 // we don't have wrapping pointers. 537 (!ShouldCheckStride || 538 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 539 // The id of the dependence set. 540 unsigned DepId; 541 542 if (IsDepCheckNeeded) { 543 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 544 unsigned &LeaderId = DepSetId[Leader]; 545 if (!LeaderId) 546 LeaderId = RunningDepId++; 547 DepId = LeaderId; 548 } else 549 // Each access has its own dependence set. 550 DepId = RunningDepId++; 551 552 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 553 554 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 555 } else { 556 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 557 CanDoRT = false; 558 } 559 } 560 561 // If we have at least two writes or one write and a read then we need to 562 // check them. But there is no need to checks if there is only one 563 // dependence set for this alias set. 564 // 565 // Note that this function computes CanDoRT and NeedRTCheck independently. 566 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 567 // for which we couldn't find the bounds but we don't actually need to emit 568 // any checks so it does not matter. 569 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 570 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 571 NumWritePtrChecks >= 1)); 572 573 ++ASId; 574 } 575 576 // If the pointers that we would use for the bounds comparison have different 577 // address spaces, assume the values aren't directly comparable, so we can't 578 // use them for the runtime check. We also have to assume they could 579 // overlap. In the future there should be metadata for whether address spaces 580 // are disjoint. 581 unsigned NumPointers = RtCheck.Pointers.size(); 582 for (unsigned i = 0; i < NumPointers; ++i) { 583 for (unsigned j = i + 1; j < NumPointers; ++j) { 584 // Only need to check pointers between two different dependency sets. 585 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 586 continue; 587 // Only need to check pointers in the same alias set. 588 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 589 continue; 590 591 Value *PtrI = RtCheck.Pointers[i]; 592 Value *PtrJ = RtCheck.Pointers[j]; 593 594 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 595 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 596 if (ASi != ASj) { 597 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 598 " different address spaces\n"); 599 return false; 600 } 601 } 602 } 603 604 if (NeedRTCheck && CanDoRT) 605 RtCheck.groupChecks(DepCands, IsDepCheckNeeded); 606 607 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr) 608 << " pointer comparisons.\n"); 609 610 RtCheck.Need = NeedRTCheck; 611 612 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 613 if (!CanDoRTIfNeeded) 614 RtCheck.reset(); 615 return CanDoRTIfNeeded; 616 } 617 618 void AccessAnalysis::processMemAccesses() { 619 // We process the set twice: first we process read-write pointers, last we 620 // process read-only pointers. This allows us to skip dependence tests for 621 // read-only pointers. 622 623 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 624 DEBUG(dbgs() << " AST: "; AST.dump()); 625 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 626 DEBUG({ 627 for (auto A : Accesses) 628 dbgs() << "\t" << *A.getPointer() << " (" << 629 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 630 "read-only" : "read")) << ")\n"; 631 }); 632 633 // The AliasSetTracker has nicely partitioned our pointers by metadata 634 // compatibility and potential for underlying-object overlap. As a result, we 635 // only need to check for potential pointer dependencies within each alias 636 // set. 637 for (auto &AS : AST) { 638 // Note that both the alias-set tracker and the alias sets themselves used 639 // linked lists internally and so the iteration order here is deterministic 640 // (matching the original instruction order within each set). 641 642 bool SetHasWrite = false; 643 644 // Map of pointers to last access encountered. 645 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 646 UnderlyingObjToAccessMap ObjToLastAccess; 647 648 // Set of access to check after all writes have been processed. 649 PtrAccessSet DeferredAccesses; 650 651 // Iterate over each alias set twice, once to process read/write pointers, 652 // and then to process read-only pointers. 653 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 654 bool UseDeferred = SetIteration > 0; 655 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 656 657 for (auto AV : AS) { 658 Value *Ptr = AV.getValue(); 659 660 // For a single memory access in AliasSetTracker, Accesses may contain 661 // both read and write, and they both need to be handled for CheckDeps. 662 for (auto AC : S) { 663 if (AC.getPointer() != Ptr) 664 continue; 665 666 bool IsWrite = AC.getInt(); 667 668 // If we're using the deferred access set, then it contains only 669 // reads. 670 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 671 if (UseDeferred && !IsReadOnlyPtr) 672 continue; 673 // Otherwise, the pointer must be in the PtrAccessSet, either as a 674 // read or a write. 675 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 676 S.count(MemAccessInfo(Ptr, false))) && 677 "Alias-set pointer not in the access set?"); 678 679 MemAccessInfo Access(Ptr, IsWrite); 680 DepCands.insert(Access); 681 682 // Memorize read-only pointers for later processing and skip them in 683 // the first round (they need to be checked after we have seen all 684 // write pointers). Note: we also mark pointer that are not 685 // consecutive as "read-only" pointers (so that we check 686 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 687 if (!UseDeferred && IsReadOnlyPtr) { 688 DeferredAccesses.insert(Access); 689 continue; 690 } 691 692 // If this is a write - check other reads and writes for conflicts. If 693 // this is a read only check other writes for conflicts (but only if 694 // there is no other write to the ptr - this is an optimization to 695 // catch "a[i] = a[i] + " without having to do a dependence check). 696 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 697 CheckDeps.insert(Access); 698 IsRTCheckAnalysisNeeded = true; 699 } 700 701 if (IsWrite) 702 SetHasWrite = true; 703 704 // Create sets of pointers connected by a shared alias set and 705 // underlying object. 706 typedef SmallVector<Value *, 16> ValueVector; 707 ValueVector TempObjects; 708 709 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 710 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 711 for (Value *UnderlyingObj : TempObjects) { 712 UnderlyingObjToAccessMap::iterator Prev = 713 ObjToLastAccess.find(UnderlyingObj); 714 if (Prev != ObjToLastAccess.end()) 715 DepCands.unionSets(Access, Prev->second); 716 717 ObjToLastAccess[UnderlyingObj] = Access; 718 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 719 } 720 } 721 } 722 } 723 } 724 } 725 726 static bool isInBoundsGep(Value *Ptr) { 727 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 728 return GEP->isInBounds(); 729 return false; 730 } 731 732 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 733 /// i.e. monotonically increasing/decreasing. 734 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 735 ScalarEvolution *SE, const Loop *L) { 736 // FIXME: This should probably only return true for NUW. 737 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 738 return true; 739 740 // Scalar evolution does not propagate the non-wrapping flags to values that 741 // are derived from a non-wrapping induction variable because non-wrapping 742 // could be flow-sensitive. 743 // 744 // Look through the potentially overflowing instruction to try to prove 745 // non-wrapping for the *specific* value of Ptr. 746 747 // The arithmetic implied by an inbounds GEP can't overflow. 748 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 749 if (!GEP || !GEP->isInBounds()) 750 return false; 751 752 // Make sure there is only one non-const index and analyze that. 753 Value *NonConstIndex = nullptr; 754 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 755 if (!isa<ConstantInt>(*Index)) { 756 if (NonConstIndex) 757 return false; 758 NonConstIndex = *Index; 759 } 760 if (!NonConstIndex) 761 // The recurrence is on the pointer, ignore for now. 762 return false; 763 764 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 765 // AddRec using a NSW operation. 766 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 767 if (OBO->hasNoSignedWrap() && 768 // Assume constant for other the operand so that the AddRec can be 769 // easily found. 770 isa<ConstantInt>(OBO->getOperand(1))) { 771 auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 772 773 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 774 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 775 } 776 777 return false; 778 } 779 780 /// \brief Check whether the access through \p Ptr has a constant stride. 781 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 782 const ValueToValueMap &StridesMap) { 783 const Type *Ty = Ptr->getType(); 784 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 785 786 // Make sure that the pointer does not point to aggregate types. 787 const PointerType *PtrTy = cast<PointerType>(Ty); 788 if (PtrTy->getElementType()->isAggregateType()) { 789 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 790 << *Ptr << "\n"); 791 return 0; 792 } 793 794 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 795 796 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 797 if (!AR) { 798 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 799 << *Ptr << " SCEV: " << *PtrScev << "\n"); 800 return 0; 801 } 802 803 // The accesss function must stride over the innermost loop. 804 if (Lp != AR->getLoop()) { 805 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 806 *Ptr << " SCEV: " << *PtrScev << "\n"); 807 } 808 809 // The address calculation must not wrap. Otherwise, a dependence could be 810 // inverted. 811 // An inbounds getelementptr that is a AddRec with a unit stride 812 // cannot wrap per definition. The unit stride requirement is checked later. 813 // An getelementptr without an inbounds attribute and unit stride would have 814 // to access the pointer value "0" which is undefined behavior in address 815 // space 0, therefore we can also vectorize this case. 816 bool IsInBoundsGEP = isInBoundsGep(Ptr); 817 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); 818 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 819 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 820 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 821 << *Ptr << " SCEV: " << *PtrScev << "\n"); 822 return 0; 823 } 824 825 // Check the step is constant. 826 const SCEV *Step = AR->getStepRecurrence(*SE); 827 828 // Calculate the pointer stride and check if it is constant. 829 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 830 if (!C) { 831 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 832 " SCEV: " << *PtrScev << "\n"); 833 return 0; 834 } 835 836 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 837 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 838 const APInt &APStepVal = C->getValue()->getValue(); 839 840 // Huge step value - give up. 841 if (APStepVal.getBitWidth() > 64) 842 return 0; 843 844 int64_t StepVal = APStepVal.getSExtValue(); 845 846 // Strided access. 847 int64_t Stride = StepVal / Size; 848 int64_t Rem = StepVal % Size; 849 if (Rem) 850 return 0; 851 852 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 853 // know we can't "wrap around the address space". In case of address space 854 // zero we know that this won't happen without triggering undefined behavior. 855 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 856 Stride != 1 && Stride != -1) 857 return 0; 858 859 return Stride; 860 } 861 862 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 863 switch (Type) { 864 case NoDep: 865 case Forward: 866 case BackwardVectorizable: 867 return true; 868 869 case Unknown: 870 case ForwardButPreventsForwarding: 871 case Backward: 872 case BackwardVectorizableButPreventsForwarding: 873 return false; 874 } 875 llvm_unreachable("unexpected DepType!"); 876 } 877 878 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 879 switch (Type) { 880 case NoDep: 881 case Forward: 882 return false; 883 884 case BackwardVectorizable: 885 case Unknown: 886 case ForwardButPreventsForwarding: 887 case Backward: 888 case BackwardVectorizableButPreventsForwarding: 889 return true; 890 } 891 llvm_unreachable("unexpected DepType!"); 892 } 893 894 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 895 switch (Type) { 896 case NoDep: 897 case Forward: 898 case ForwardButPreventsForwarding: 899 return false; 900 901 case Unknown: 902 case BackwardVectorizable: 903 case Backward: 904 case BackwardVectorizableButPreventsForwarding: 905 return true; 906 } 907 llvm_unreachable("unexpected DepType!"); 908 } 909 910 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 911 unsigned TypeByteSize) { 912 // If loads occur at a distance that is not a multiple of a feasible vector 913 // factor store-load forwarding does not take place. 914 // Positive dependences might cause troubles because vectorizing them might 915 // prevent store-load forwarding making vectorized code run a lot slower. 916 // a[i] = a[i-3] ^ a[i-8]; 917 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 918 // hence on your typical architecture store-load forwarding does not take 919 // place. Vectorizing in such cases does not make sense. 920 // Store-load forwarding distance. 921 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 922 // Maximum vector factor. 923 unsigned MaxVFWithoutSLForwardIssues = 924 VectorizerParams::MaxVectorWidth * TypeByteSize; 925 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 926 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 927 928 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 929 vf *= 2) { 930 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 931 MaxVFWithoutSLForwardIssues = (vf >>=1); 932 break; 933 } 934 } 935 936 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 937 DEBUG(dbgs() << "LAA: Distance " << Distance << 938 " that could cause a store-load forwarding conflict\n"); 939 return true; 940 } 941 942 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 943 MaxVFWithoutSLForwardIssues != 944 VectorizerParams::MaxVectorWidth * TypeByteSize) 945 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 946 return false; 947 } 948 949 /// \brief Check the dependence for two accesses with the same stride \p Stride. 950 /// \p Distance is the positive distance and \p TypeByteSize is type size in 951 /// bytes. 952 /// 953 /// \returns true if they are independent. 954 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 955 unsigned TypeByteSize) { 956 assert(Stride > 1 && "The stride must be greater than 1"); 957 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 958 assert(Distance > 0 && "The distance must be non-zero"); 959 960 // Skip if the distance is not multiple of type byte size. 961 if (Distance % TypeByteSize) 962 return false; 963 964 unsigned ScaledDist = Distance / TypeByteSize; 965 966 // No dependence if the scaled distance is not multiple of the stride. 967 // E.g. 968 // for (i = 0; i < 1024 ; i += 4) 969 // A[i+2] = A[i] + 1; 970 // 971 // Two accesses in memory (scaled distance is 2, stride is 4): 972 // | A[0] | | | | A[4] | | | | 973 // | | | A[2] | | | | A[6] | | 974 // 975 // E.g. 976 // for (i = 0; i < 1024 ; i += 3) 977 // A[i+4] = A[i] + 1; 978 // 979 // Two accesses in memory (scaled distance is 4, stride is 3): 980 // | A[0] | | | A[3] | | | A[6] | | | 981 // | | | | | A[4] | | | A[7] | | 982 return ScaledDist % Stride; 983 } 984 985 MemoryDepChecker::Dependence::DepType 986 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 987 const MemAccessInfo &B, unsigned BIdx, 988 const ValueToValueMap &Strides) { 989 assert (AIdx < BIdx && "Must pass arguments in program order"); 990 991 Value *APtr = A.getPointer(); 992 Value *BPtr = B.getPointer(); 993 bool AIsWrite = A.getInt(); 994 bool BIsWrite = B.getInt(); 995 996 // Two reads are independent. 997 if (!AIsWrite && !BIsWrite) 998 return Dependence::NoDep; 999 1000 // We cannot check pointers in different address spaces. 1001 if (APtr->getType()->getPointerAddressSpace() != 1002 BPtr->getType()->getPointerAddressSpace()) 1003 return Dependence::Unknown; 1004 1005 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 1006 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 1007 1008 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 1009 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 1010 1011 const SCEV *Src = AScev; 1012 const SCEV *Sink = BScev; 1013 1014 // If the induction step is negative we have to invert source and sink of the 1015 // dependence. 1016 if (StrideAPtr < 0) { 1017 //Src = BScev; 1018 //Sink = AScev; 1019 std::swap(APtr, BPtr); 1020 std::swap(Src, Sink); 1021 std::swap(AIsWrite, BIsWrite); 1022 std::swap(AIdx, BIdx); 1023 std::swap(StrideAPtr, StrideBPtr); 1024 } 1025 1026 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 1027 1028 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1029 << "(Induction step: " << StrideAPtr << ")\n"); 1030 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1031 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1032 1033 // Need accesses with constant stride. We don't want to vectorize 1034 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1035 // the address space. 1036 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1037 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1038 return Dependence::Unknown; 1039 } 1040 1041 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1042 if (!C) { 1043 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1044 ShouldRetryWithRuntimeCheck = true; 1045 return Dependence::Unknown; 1046 } 1047 1048 Type *ATy = APtr->getType()->getPointerElementType(); 1049 Type *BTy = BPtr->getType()->getPointerElementType(); 1050 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1051 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 1052 1053 // Negative distances are not plausible dependencies. 1054 const APInt &Val = C->getValue()->getValue(); 1055 if (Val.isNegative()) { 1056 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1057 if (IsTrueDataDependence && 1058 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1059 ATy != BTy)) 1060 return Dependence::ForwardButPreventsForwarding; 1061 1062 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 1063 return Dependence::Forward; 1064 } 1065 1066 // Write to the same location with the same size. 1067 // Could be improved to assert type sizes are the same (i32 == float, etc). 1068 if (Val == 0) { 1069 if (ATy == BTy) 1070 return Dependence::NoDep; 1071 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1072 return Dependence::Unknown; 1073 } 1074 1075 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1076 1077 if (ATy != BTy) { 1078 DEBUG(dbgs() << 1079 "LAA: ReadWrite-Write positive dependency with different types\n"); 1080 return Dependence::Unknown; 1081 } 1082 1083 unsigned Distance = (unsigned) Val.getZExtValue(); 1084 1085 unsigned Stride = std::abs(StrideAPtr); 1086 if (Stride > 1 && 1087 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 1088 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1089 return Dependence::NoDep; 1090 } 1091 1092 // Bail out early if passed-in parameters make vectorization not feasible. 1093 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1094 VectorizerParams::VectorizationFactor : 1); 1095 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1096 VectorizerParams::VectorizationInterleave : 1); 1097 // The minimum number of iterations for a vectorized/unrolled version. 1098 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1099 1100 // It's not vectorizable if the distance is smaller than the minimum distance 1101 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1102 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1103 // TypeByteSize (No need to plus the last gap distance). 1104 // 1105 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1106 // foo(int *A) { 1107 // int *B = (int *)((char *)A + 14); 1108 // for (i = 0 ; i < 1024 ; i += 2) 1109 // B[i] = A[i] + 1; 1110 // } 1111 // 1112 // Two accesses in memory (stride is 2): 1113 // | A[0] | | A[2] | | A[4] | | A[6] | | 1114 // | B[0] | | B[2] | | B[4] | 1115 // 1116 // Distance needs for vectorizing iterations except the last iteration: 1117 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1118 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1119 // 1120 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1121 // 12, which is less than distance. 1122 // 1123 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1124 // the minimum distance needed is 28, which is greater than distance. It is 1125 // not safe to do vectorization. 1126 unsigned MinDistanceNeeded = 1127 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1128 if (MinDistanceNeeded > Distance) { 1129 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1130 << '\n'); 1131 return Dependence::Backward; 1132 } 1133 1134 // Unsafe if the minimum distance needed is greater than max safe distance. 1135 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1136 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1137 << MinDistanceNeeded << " size in bytes"); 1138 return Dependence::Backward; 1139 } 1140 1141 // Positive distance bigger than max vectorization factor. 1142 // FIXME: Should use max factor instead of max distance in bytes, which could 1143 // not handle different types. 1144 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1145 // void foo (int *A, char *B) { 1146 // for (unsigned i = 0; i < 1024; i++) { 1147 // A[i+2] = A[i] + 1; 1148 // B[i+2] = B[i] + 1; 1149 // } 1150 // } 1151 // 1152 // This case is currently unsafe according to the max safe distance. If we 1153 // analyze the two accesses on array B, the max safe dependence distance 1154 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1155 // is 8, which is less than 2 and forbidden vectorization, But actually 1156 // both A and B could be vectorized by 2 iterations. 1157 MaxSafeDepDistBytes = 1158 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 1159 1160 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1161 if (IsTrueDataDependence && 1162 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1163 return Dependence::BackwardVectorizableButPreventsForwarding; 1164 1165 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1166 << " with max VF = " 1167 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1168 1169 return Dependence::BackwardVectorizable; 1170 } 1171 1172 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1173 MemAccessInfoSet &CheckDeps, 1174 const ValueToValueMap &Strides) { 1175 1176 MaxSafeDepDistBytes = -1U; 1177 while (!CheckDeps.empty()) { 1178 MemAccessInfo CurAccess = *CheckDeps.begin(); 1179 1180 // Get the relevant memory access set. 1181 EquivalenceClasses<MemAccessInfo>::iterator I = 1182 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1183 1184 // Check accesses within this set. 1185 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 1186 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 1187 1188 // Check every access pair. 1189 while (AI != AE) { 1190 CheckDeps.erase(*AI); 1191 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1192 while (OI != AE) { 1193 // Check every accessing instruction pair in program order. 1194 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1195 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1196 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1197 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1198 auto A = std::make_pair(&*AI, *I1); 1199 auto B = std::make_pair(&*OI, *I2); 1200 1201 assert(*I1 != *I2); 1202 if (*I1 > *I2) 1203 std::swap(A, B); 1204 1205 Dependence::DepType Type = 1206 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1207 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1208 1209 // Gather dependences unless we accumulated MaxInterestingDependence 1210 // dependences. In that case return as soon as we find the first 1211 // unsafe dependence. This puts a limit on this quadratic 1212 // algorithm. 1213 if (RecordInterestingDependences) { 1214 if (Dependence::isInterestingDependence(Type)) 1215 InterestingDependences.push_back( 1216 Dependence(A.second, B.second, Type)); 1217 1218 if (InterestingDependences.size() >= MaxInterestingDependence) { 1219 RecordInterestingDependences = false; 1220 InterestingDependences.clear(); 1221 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1222 } 1223 } 1224 if (!RecordInterestingDependences && !SafeForVectorization) 1225 return false; 1226 } 1227 ++OI; 1228 } 1229 AI++; 1230 } 1231 } 1232 1233 DEBUG(dbgs() << "Total Interesting Dependences: " 1234 << InterestingDependences.size() << "\n"); 1235 return SafeForVectorization; 1236 } 1237 1238 SmallVector<Instruction *, 4> 1239 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1240 MemAccessInfo Access(Ptr, isWrite); 1241 auto &IndexVector = Accesses.find(Access)->second; 1242 1243 SmallVector<Instruction *, 4> Insts; 1244 std::transform(IndexVector.begin(), IndexVector.end(), 1245 std::back_inserter(Insts), 1246 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1247 return Insts; 1248 } 1249 1250 const char *MemoryDepChecker::Dependence::DepName[] = { 1251 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1252 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1253 1254 void MemoryDepChecker::Dependence::print( 1255 raw_ostream &OS, unsigned Depth, 1256 const SmallVectorImpl<Instruction *> &Instrs) const { 1257 OS.indent(Depth) << DepName[Type] << ":\n"; 1258 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1259 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1260 } 1261 1262 bool LoopAccessInfo::canAnalyzeLoop() { 1263 // We need to have a loop header. 1264 DEBUG(dbgs() << "LAA: Found a loop: " << 1265 TheLoop->getHeader()->getName() << '\n'); 1266 1267 // We can only analyze innermost loops. 1268 if (!TheLoop->empty()) { 1269 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1270 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1271 return false; 1272 } 1273 1274 // We must have a single backedge. 1275 if (TheLoop->getNumBackEdges() != 1) { 1276 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1277 emitAnalysis( 1278 LoopAccessReport() << 1279 "loop control flow is not understood by analyzer"); 1280 return false; 1281 } 1282 1283 // We must have a single exiting block. 1284 if (!TheLoop->getExitingBlock()) { 1285 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1286 emitAnalysis( 1287 LoopAccessReport() << 1288 "loop control flow is not understood by analyzer"); 1289 return false; 1290 } 1291 1292 // We only handle bottom-tested loops, i.e. loop in which the condition is 1293 // checked at the end of each iteration. With that we can assume that all 1294 // instructions in the loop are executed the same number of times. 1295 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1296 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1297 emitAnalysis( 1298 LoopAccessReport() << 1299 "loop control flow is not understood by analyzer"); 1300 return false; 1301 } 1302 1303 // ScalarEvolution needs to be able to find the exit count. 1304 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 1305 if (ExitCount == SE->getCouldNotCompute()) { 1306 emitAnalysis(LoopAccessReport() << 1307 "could not determine number of loop iterations"); 1308 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1309 return false; 1310 } 1311 1312 return true; 1313 } 1314 1315 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1316 1317 typedef SmallVector<Value*, 16> ValueVector; 1318 typedef SmallPtrSet<Value*, 16> ValueSet; 1319 1320 // Holds the Load and Store *instructions*. 1321 ValueVector Loads; 1322 ValueVector Stores; 1323 1324 // Holds all the different accesses in the loop. 1325 unsigned NumReads = 0; 1326 unsigned NumReadWrites = 0; 1327 1328 PtrRtCheck.Pointers.clear(); 1329 PtrRtCheck.Need = false; 1330 1331 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1332 1333 // For each block. 1334 for (Loop::block_iterator bb = TheLoop->block_begin(), 1335 be = TheLoop->block_end(); bb != be; ++bb) { 1336 1337 // Scan the BB and collect legal loads and stores. 1338 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1339 ++it) { 1340 1341 // If this is a load, save it. If this instruction can read from memory 1342 // but is not a load, then we quit. Notice that we don't handle function 1343 // calls that read or write. 1344 if (it->mayReadFromMemory()) { 1345 // Many math library functions read the rounding mode. We will only 1346 // vectorize a loop if it contains known function calls that don't set 1347 // the flag. Therefore, it is safe to ignore this read from memory. 1348 CallInst *Call = dyn_cast<CallInst>(it); 1349 if (Call && getIntrinsicIDForCall(Call, TLI)) 1350 continue; 1351 1352 // If the function has an explicit vectorized counterpart, we can safely 1353 // assume that it can be vectorized. 1354 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1355 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1356 continue; 1357 1358 LoadInst *Ld = dyn_cast<LoadInst>(it); 1359 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1360 emitAnalysis(LoopAccessReport(Ld) 1361 << "read with atomic ordering or volatile read"); 1362 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1363 CanVecMem = false; 1364 return; 1365 } 1366 NumLoads++; 1367 Loads.push_back(Ld); 1368 DepChecker.addAccess(Ld); 1369 continue; 1370 } 1371 1372 // Save 'store' instructions. Abort if other instructions write to memory. 1373 if (it->mayWriteToMemory()) { 1374 StoreInst *St = dyn_cast<StoreInst>(it); 1375 if (!St) { 1376 emitAnalysis(LoopAccessReport(it) << 1377 "instruction cannot be vectorized"); 1378 CanVecMem = false; 1379 return; 1380 } 1381 if (!St->isSimple() && !IsAnnotatedParallel) { 1382 emitAnalysis(LoopAccessReport(St) 1383 << "write with atomic ordering or volatile write"); 1384 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1385 CanVecMem = false; 1386 return; 1387 } 1388 NumStores++; 1389 Stores.push_back(St); 1390 DepChecker.addAccess(St); 1391 } 1392 } // Next instr. 1393 } // Next block. 1394 1395 // Now we have two lists that hold the loads and the stores. 1396 // Next, we find the pointers that they use. 1397 1398 // Check if we see any stores. If there are no stores, then we don't 1399 // care if the pointers are *restrict*. 1400 if (!Stores.size()) { 1401 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1402 CanVecMem = true; 1403 return; 1404 } 1405 1406 MemoryDepChecker::DepCandidates DependentAccesses; 1407 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1408 AA, LI, DependentAccesses); 1409 1410 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1411 // multiple times on the same object. If the ptr is accessed twice, once 1412 // for read and once for write, it will only appear once (on the write 1413 // list). This is okay, since we are going to check for conflicts between 1414 // writes and between reads and writes, but not between reads and reads. 1415 ValueSet Seen; 1416 1417 ValueVector::iterator I, IE; 1418 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1419 StoreInst *ST = cast<StoreInst>(*I); 1420 Value* Ptr = ST->getPointerOperand(); 1421 // Check for store to loop invariant address. 1422 StoreToLoopInvariantAddress |= isUniform(Ptr); 1423 // If we did *not* see this pointer before, insert it to the read-write 1424 // list. At this phase it is only a 'write' list. 1425 if (Seen.insert(Ptr).second) { 1426 ++NumReadWrites; 1427 1428 MemoryLocation Loc = MemoryLocation::get(ST); 1429 // The TBAA metadata could have a control dependency on the predication 1430 // condition, so we cannot rely on it when determining whether or not we 1431 // need runtime pointer checks. 1432 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1433 Loc.AATags.TBAA = nullptr; 1434 1435 Accesses.addStore(Loc); 1436 } 1437 } 1438 1439 if (IsAnnotatedParallel) { 1440 DEBUG(dbgs() 1441 << "LAA: A loop annotated parallel, ignore memory dependency " 1442 << "checks.\n"); 1443 CanVecMem = true; 1444 return; 1445 } 1446 1447 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1448 LoadInst *LD = cast<LoadInst>(*I); 1449 Value* Ptr = LD->getPointerOperand(); 1450 // If we did *not* see this pointer before, insert it to the 1451 // read list. If we *did* see it before, then it is already in 1452 // the read-write list. This allows us to vectorize expressions 1453 // such as A[i] += x; Because the address of A[i] is a read-write 1454 // pointer. This only works if the index of A[i] is consecutive. 1455 // If the address of i is unknown (for example A[B[i]]) then we may 1456 // read a few words, modify, and write a few words, and some of the 1457 // words may be written to the same address. 1458 bool IsReadOnlyPtr = false; 1459 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1460 ++NumReads; 1461 IsReadOnlyPtr = true; 1462 } 1463 1464 MemoryLocation Loc = MemoryLocation::get(LD); 1465 // The TBAA metadata could have a control dependency on the predication 1466 // condition, so we cannot rely on it when determining whether or not we 1467 // need runtime pointer checks. 1468 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1469 Loc.AATags.TBAA = nullptr; 1470 1471 Accesses.addLoad(Loc, IsReadOnlyPtr); 1472 } 1473 1474 // If we write (or read-write) to a single destination and there are no 1475 // other reads in this loop then is it safe to vectorize. 1476 if (NumReadWrites == 1 && NumReads == 0) { 1477 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1478 CanVecMem = true; 1479 return; 1480 } 1481 1482 // Build dependence sets and check whether we need a runtime pointer bounds 1483 // check. 1484 Accesses.buildDependenceSets(); 1485 1486 // Find pointers with computable bounds. We are going to use this information 1487 // to place a runtime bound check. 1488 bool CanDoRTIfNeeded = 1489 Accesses.canCheckPtrAtRT(PtrRtCheck, SE, TheLoop, Strides); 1490 if (!CanDoRTIfNeeded) { 1491 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1492 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1493 << "the array bounds.\n"); 1494 CanVecMem = false; 1495 return; 1496 } 1497 1498 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1499 1500 CanVecMem = true; 1501 if (Accesses.isDependencyCheckNeeded()) { 1502 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1503 CanVecMem = DepChecker.areDepsSafe( 1504 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1505 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1506 1507 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1508 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1509 1510 // Clear the dependency checks. We assume they are not needed. 1511 Accesses.resetDepChecks(DepChecker); 1512 1513 PtrRtCheck.reset(); 1514 PtrRtCheck.Need = true; 1515 1516 CanDoRTIfNeeded = 1517 Accesses.canCheckPtrAtRT(PtrRtCheck, SE, TheLoop, Strides, true); 1518 1519 // Check that we found the bounds for the pointer. 1520 if (!CanDoRTIfNeeded) { 1521 emitAnalysis(LoopAccessReport() 1522 << "cannot check memory dependencies at runtime"); 1523 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1524 CanVecMem = false; 1525 return; 1526 } 1527 1528 CanVecMem = true; 1529 } 1530 } 1531 1532 if (CanVecMem) 1533 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1534 << (PtrRtCheck.Need ? "" : " don't") 1535 << " need runtime memory checks.\n"); 1536 else { 1537 emitAnalysis(LoopAccessReport() << 1538 "unsafe dependent memory operations in loop"); 1539 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1540 } 1541 } 1542 1543 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1544 DominatorTree *DT) { 1545 assert(TheLoop->contains(BB) && "Unknown block used"); 1546 1547 // Blocks that do not dominate the latch need predication. 1548 BasicBlock* Latch = TheLoop->getLoopLatch(); 1549 return !DT->dominates(BB, Latch); 1550 } 1551 1552 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1553 assert(!Report && "Multiple reports generated"); 1554 Report = Message; 1555 } 1556 1557 bool LoopAccessInfo::isUniform(Value *V) const { 1558 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1559 } 1560 1561 // FIXME: this function is currently a duplicate of the one in 1562 // LoopVectorize.cpp. 1563 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1564 Instruction *Loc) { 1565 if (FirstInst) 1566 return FirstInst; 1567 if (Instruction *I = dyn_cast<Instruction>(V)) 1568 return I->getParent() == Loc->getParent() ? I : nullptr; 1569 return nullptr; 1570 } 1571 1572 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1573 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { 1574 if (!PtrRtCheck.Need) 1575 return std::make_pair(nullptr, nullptr); 1576 1577 SmallVector<TrackingVH<Value>, 2> Starts; 1578 SmallVector<TrackingVH<Value>, 2> Ends; 1579 1580 LLVMContext &Ctx = Loc->getContext(); 1581 SCEVExpander Exp(*SE, DL, "induction"); 1582 Instruction *FirstInst = nullptr; 1583 1584 for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) { 1585 const RuntimePointerCheck::CheckingPtrGroup &CG = 1586 PtrRtCheck.CheckingGroups[i]; 1587 Value *Ptr = PtrRtCheck.Pointers[CG.Members[0]]; 1588 const SCEV *Sc = SE->getSCEV(Ptr); 1589 1590 if (SE->isLoopInvariant(Sc, TheLoop)) { 1591 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1592 << "\n"); 1593 Starts.push_back(Ptr); 1594 Ends.push_back(Ptr); 1595 } else { 1596 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1597 1598 // Use this type for pointer arithmetic. 1599 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1600 Value *Start = nullptr, *End = nullptr; 1601 1602 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1603 Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc); 1604 End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc); 1605 DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n"); 1606 Starts.push_back(Start); 1607 Ends.push_back(End); 1608 } 1609 } 1610 1611 IRBuilder<> ChkBuilder(Loc); 1612 // Our instructions might fold to a constant. 1613 Value *MemoryRuntimeCheck = nullptr; 1614 for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) { 1615 for (unsigned j = i + 1; j < PtrRtCheck.CheckingGroups.size(); ++j) { 1616 const RuntimePointerCheck::CheckingPtrGroup &CGI = 1617 PtrRtCheck.CheckingGroups[i]; 1618 const RuntimePointerCheck::CheckingPtrGroup &CGJ = 1619 PtrRtCheck.CheckingGroups[j]; 1620 1621 if (!PtrRtCheck.needsChecking(CGI, CGJ, PtrPartition)) 1622 continue; 1623 1624 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1625 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1626 1627 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1628 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1629 "Trying to bounds check pointers with different address spaces"); 1630 1631 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1632 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1633 1634 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1635 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1636 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1637 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1638 1639 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1640 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1641 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1642 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1643 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1644 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1645 if (MemoryRuntimeCheck) { 1646 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1647 "conflict.rdx"); 1648 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1649 } 1650 MemoryRuntimeCheck = IsConflict; 1651 } 1652 } 1653 1654 if (!MemoryRuntimeCheck) 1655 return std::make_pair(nullptr, nullptr); 1656 1657 // We have to do this trickery because the IRBuilder might fold the check to a 1658 // constant expression in which case there is no Instruction anchored in a 1659 // the block. 1660 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1661 ConstantInt::getTrue(Ctx)); 1662 ChkBuilder.Insert(Check, "memcheck.conflict"); 1663 FirstInst = getFirstInst(FirstInst, Check, Loc); 1664 return std::make_pair(FirstInst, Check); 1665 } 1666 1667 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1668 const DataLayout &DL, 1669 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1670 DominatorTree *DT, LoopInfo *LI, 1671 const ValueToValueMap &Strides) 1672 : PtrRtCheck(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), TLI(TLI), 1673 AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1674 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1675 StoreToLoopInvariantAddress(false) { 1676 if (canAnalyzeLoop()) 1677 analyzeLoop(Strides); 1678 } 1679 1680 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1681 if (CanVecMem) { 1682 if (PtrRtCheck.Need) 1683 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1684 else 1685 OS.indent(Depth) << "Memory dependences are safe\n"; 1686 } 1687 1688 if (Report) 1689 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1690 1691 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1692 OS.indent(Depth) << "Interesting Dependences:\n"; 1693 for (auto &Dep : *InterestingDependences) { 1694 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1695 OS << "\n"; 1696 } 1697 } else 1698 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1699 1700 // List the pair of accesses need run-time checks to prove independence. 1701 PtrRtCheck.print(OS, Depth); 1702 OS << "\n"; 1703 1704 OS.indent(Depth) << "Store to invariant address was " 1705 << (StoreToLoopInvariantAddress ? "" : "not ") 1706 << "found in loop.\n"; 1707 } 1708 1709 const LoopAccessInfo & 1710 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1711 auto &LAI = LoopAccessInfoMap[L]; 1712 1713 #ifndef NDEBUG 1714 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1715 "Symbolic strides changed for loop"); 1716 #endif 1717 1718 if (!LAI) { 1719 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1720 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1721 Strides); 1722 #ifndef NDEBUG 1723 LAI->NumSymbolicStrides = Strides.size(); 1724 #endif 1725 } 1726 return *LAI.get(); 1727 } 1728 1729 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1730 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1731 1732 ValueToValueMap NoSymbolicStrides; 1733 1734 for (Loop *TopLevelLoop : *LI) 1735 for (Loop *L : depth_first(TopLevelLoop)) { 1736 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1737 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1738 LAI.print(OS, 4); 1739 } 1740 } 1741 1742 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1743 SE = &getAnalysis<ScalarEvolution>(); 1744 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1745 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1746 AA = &getAnalysis<AliasAnalysis>(); 1747 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1748 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1749 1750 return false; 1751 } 1752 1753 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1754 AU.addRequired<ScalarEvolution>(); 1755 AU.addRequired<AliasAnalysis>(); 1756 AU.addRequired<DominatorTreeWrapperPass>(); 1757 AU.addRequired<LoopInfoWrapperPass>(); 1758 1759 AU.setPreservesAll(); 1760 } 1761 1762 char LoopAccessAnalysis::ID = 0; 1763 static const char laa_name[] = "Loop Access Analysis"; 1764 #define LAA_NAME "loop-accesses" 1765 1766 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1767 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1768 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1770 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1771 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1772 1773 namespace llvm { 1774 Pass *createLAAPass() { 1775 return new LoopAccessAnalysis(); 1776 } 1777 } 1778