1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-accesses"
71 
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74                     cl::desc("Sets the SIMD width. Zero is autoselect."),
75                     cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
77 
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80                         cl::desc("Sets the vectorization interleave count. "
81                                  "Zero is autoselect."),
82                         cl::location(
83                             VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
85 
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87     "runtime-memory-check-threshold", cl::Hidden,
88     cl::desc("When performing memory disambiguation checks at runtime do not "
89              "generate more than this number of comparisons (default = 8)."),
90     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
92 
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95     "memory-check-merge-threshold", cl::Hidden,
96     cl::desc("Maximum number of comparisons done when trying to merge "
97              "runtime memory checks. (default = 100)"),
98     cl::init(100));
99 
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
102 
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105     MaxDependences("max-dependences", cl::Hidden,
106                    cl::desc("Maximum number of dependences collected by "
107                             "loop-access analysis (default = 100)"),
108                    cl::init(100));
109 
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 ///   for (i = 0; i < N; ++i)
113 ///     A[i * Stride1] += B[i * Stride2] ...
114 ///
115 /// Will be roughly translated to
116 ///    if (Stride1 == 1 && Stride2 == 1) {
117 ///      for (i = 0; i < N; i+=4)
118 ///       A[i:i+3] += ...
119 ///    } else
120 ///      ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123     cl::desc("Enable symbolic stride memory access versioning"));
124 
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128     "store-to-load-forwarding-conflict-detection", cl::Hidden,
129     cl::desc("Enable conflict detection in loop-access analysis"),
130     cl::init(true));
131 
132 bool VectorizerParams::isInterleaveForced() {
133   return ::VectorizationInterleave.getNumOccurrences() > 0;
134 }
135 
136 Value *llvm::stripIntegerCast(Value *V) {
137   if (auto *CI = dyn_cast<CastInst>(V))
138     if (CI->getOperand(0)->getType()->isIntegerTy())
139       return CI->getOperand(0);
140   return V;
141 }
142 
143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
144                                             const ValueToValueMap &PtrToStride,
145                                             Value *Ptr) {
146   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
147 
148   // If there is an entry in the map return the SCEV of the pointer with the
149   // symbolic stride replaced by one.
150   ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
151   if (SI == PtrToStride.end())
152     // For a non-symbolic stride, just return the original expression.
153     return OrigSCEV;
154 
155   Value *StrideVal = stripIntegerCast(SI->second);
156 
157   ScalarEvolution *SE = PSE.getSE();
158   const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
159   const auto *CT =
160     static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
161 
162   PSE.addPredicate(*SE->getEqualPredicate(U, CT));
163   auto *Expr = PSE.getSCEV(Ptr);
164 
165   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
166 	     << " by: " << *Expr << "\n");
167   return Expr;
168 }
169 
170 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
171     unsigned Index, RuntimePointerChecking &RtCheck)
172     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
173       AddressSpace(RtCheck.Pointers[Index]
174                        .PointerValue->getType()
175                        ->getPointerAddressSpace()) {
176   Members.push_back(Index);
177 }
178 
179 /// Calculate Start and End points of memory access.
180 /// Let's assume A is the first access and B is a memory access on N-th loop
181 /// iteration. Then B is calculated as:
182 ///   B = A + Step*N .
183 /// Step value may be positive or negative.
184 /// N is a calculated back-edge taken count:
185 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
186 /// Start and End points are calculated in the following way:
187 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
188 /// where SizeOfElt is the size of single memory access in bytes.
189 ///
190 /// There is no conflict when the intervals are disjoint:
191 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
192 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
193                                     unsigned DepSetId, unsigned ASId,
194                                     const ValueToValueMap &Strides,
195                                     PredicatedScalarEvolution &PSE) {
196   // Get the stride replaced scev.
197   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
198   ScalarEvolution *SE = PSE.getSE();
199 
200   const SCEV *ScStart;
201   const SCEV *ScEnd;
202 
203   if (SE->isLoopInvariant(Sc, Lp)) {
204     ScStart = ScEnd = Sc;
205   } else {
206     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
207     assert(AR && "Invalid addrec expression");
208     const SCEV *Ex = PSE.getBackedgeTakenCount();
209 
210     ScStart = AR->getStart();
211     ScEnd = AR->evaluateAtIteration(Ex, *SE);
212     const SCEV *Step = AR->getStepRecurrence(*SE);
213 
214     // For expressions with negative step, the upper bound is ScStart and the
215     // lower bound is ScEnd.
216     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
217       if (CStep->getValue()->isNegative())
218         std::swap(ScStart, ScEnd);
219     } else {
220       // Fallback case: the step is not constant, but we can still
221       // get the upper and lower bounds of the interval by using min/max
222       // expressions.
223       ScStart = SE->getUMinExpr(ScStart, ScEnd);
224       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
225     }
226   }
227   // Add the size of the pointed element to ScEnd.
228   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
229   Type *IdxTy = DL.getIndexType(Ptr->getType());
230   const SCEV *EltSizeSCEV =
231       SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType());
232   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
233 
234   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
235 }
236 
237 SmallVector<RuntimePointerCheck, 4>
238 RuntimePointerChecking::generateChecks() const {
239   SmallVector<RuntimePointerCheck, 4> Checks;
240 
241   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
242     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
243       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
244       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
245 
246       if (needsChecking(CGI, CGJ))
247         Checks.push_back(std::make_pair(&CGI, &CGJ));
248     }
249   }
250   return Checks;
251 }
252 
253 void RuntimePointerChecking::generateChecks(
254     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
255   assert(Checks.empty() && "Checks is not empty");
256   groupChecks(DepCands, UseDependencies);
257   Checks = generateChecks();
258 }
259 
260 bool RuntimePointerChecking::needsChecking(
261     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
262   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
263     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
264       if (needsChecking(M.Members[I], N.Members[J]))
265         return true;
266   return false;
267 }
268 
269 /// Compare \p I and \p J and return the minimum.
270 /// Return nullptr in case we couldn't find an answer.
271 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
272                                    ScalarEvolution *SE) {
273   const SCEV *Diff = SE->getMinusSCEV(J, I);
274   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
275 
276   if (!C)
277     return nullptr;
278   if (C->getValue()->isNegative())
279     return J;
280   return I;
281 }
282 
283 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
284                                          RuntimePointerChecking &RtCheck) {
285   return addPointer(
286       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
287       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
288       *RtCheck.SE);
289 }
290 
291 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
292                                          const SCEV *End, unsigned AS,
293                                          ScalarEvolution &SE) {
294   assert(AddressSpace == AS &&
295          "all pointers in a checking group must be in the same address space");
296 
297   // Compare the starts and ends with the known minimum and maximum
298   // of this set. We need to know how we compare against the min/max
299   // of the set in order to be able to emit memchecks.
300   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
301   if (!Min0)
302     return false;
303 
304   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
305   if (!Min1)
306     return false;
307 
308   // Update the low bound  expression if we've found a new min value.
309   if (Min0 == Start)
310     Low = Start;
311 
312   // Update the high bound expression if we've found a new max value.
313   if (Min1 != End)
314     High = End;
315 
316   Members.push_back(Index);
317   return true;
318 }
319 
320 void RuntimePointerChecking::groupChecks(
321     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
322   // We build the groups from dependency candidates equivalence classes
323   // because:
324   //    - We know that pointers in the same equivalence class share
325   //      the same underlying object and therefore there is a chance
326   //      that we can compare pointers
327   //    - We wouldn't be able to merge two pointers for which we need
328   //      to emit a memcheck. The classes in DepCands are already
329   //      conveniently built such that no two pointers in the same
330   //      class need checking against each other.
331 
332   // We use the following (greedy) algorithm to construct the groups
333   // For every pointer in the equivalence class:
334   //   For each existing group:
335   //   - if the difference between this pointer and the min/max bounds
336   //     of the group is a constant, then make the pointer part of the
337   //     group and update the min/max bounds of that group as required.
338 
339   CheckingGroups.clear();
340 
341   // If we need to check two pointers to the same underlying object
342   // with a non-constant difference, we shouldn't perform any pointer
343   // grouping with those pointers. This is because we can easily get
344   // into cases where the resulting check would return false, even when
345   // the accesses are safe.
346   //
347   // The following example shows this:
348   // for (i = 0; i < 1000; ++i)
349   //   a[5000 + i * m] = a[i] + a[i + 9000]
350   //
351   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
352   // (0, 10000) which is always false. However, if m is 1, there is no
353   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
354   // us to perform an accurate check in this case.
355   //
356   // The above case requires that we have an UnknownDependence between
357   // accesses to the same underlying object. This cannot happen unless
358   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
359   // is also false. In this case we will use the fallback path and create
360   // separate checking groups for all pointers.
361 
362   // If we don't have the dependency partitions, construct a new
363   // checking pointer group for each pointer. This is also required
364   // for correctness, because in this case we can have checking between
365   // pointers to the same underlying object.
366   if (!UseDependencies) {
367     for (unsigned I = 0; I < Pointers.size(); ++I)
368       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
369     return;
370   }
371 
372   unsigned TotalComparisons = 0;
373 
374   DenseMap<Value *, unsigned> PositionMap;
375   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
376     PositionMap[Pointers[Index].PointerValue] = Index;
377 
378   // We need to keep track of what pointers we've already seen so we
379   // don't process them twice.
380   SmallSet<unsigned, 2> Seen;
381 
382   // Go through all equivalence classes, get the "pointer check groups"
383   // and add them to the overall solution. We use the order in which accesses
384   // appear in 'Pointers' to enforce determinism.
385   for (unsigned I = 0; I < Pointers.size(); ++I) {
386     // We've seen this pointer before, and therefore already processed
387     // its equivalence class.
388     if (Seen.count(I))
389       continue;
390 
391     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
392                                            Pointers[I].IsWritePtr);
393 
394     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
395     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
396 
397     // Because DepCands is constructed by visiting accesses in the order in
398     // which they appear in alias sets (which is deterministic) and the
399     // iteration order within an equivalence class member is only dependent on
400     // the order in which unions and insertions are performed on the
401     // equivalence class, the iteration order is deterministic.
402     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
403          MI != ME; ++MI) {
404       auto PointerI = PositionMap.find(MI->getPointer());
405       assert(PointerI != PositionMap.end() &&
406              "pointer in equivalence class not found in PositionMap");
407       unsigned Pointer = PointerI->second;
408       bool Merged = false;
409       // Mark this pointer as seen.
410       Seen.insert(Pointer);
411 
412       // Go through all the existing sets and see if we can find one
413       // which can include this pointer.
414       for (RuntimeCheckingPtrGroup &Group : Groups) {
415         // Don't perform more than a certain amount of comparisons.
416         // This should limit the cost of grouping the pointers to something
417         // reasonable.  If we do end up hitting this threshold, the algorithm
418         // will create separate groups for all remaining pointers.
419         if (TotalComparisons > MemoryCheckMergeThreshold)
420           break;
421 
422         TotalComparisons++;
423 
424         if (Group.addPointer(Pointer, *this)) {
425           Merged = true;
426           break;
427         }
428       }
429 
430       if (!Merged)
431         // We couldn't add this pointer to any existing set or the threshold
432         // for the number of comparisons has been reached. Create a new group
433         // to hold the current pointer.
434         Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
435     }
436 
437     // We've computed the grouped checks for this partition.
438     // Save the results and continue with the next one.
439     llvm::copy(Groups, std::back_inserter(CheckingGroups));
440   }
441 }
442 
443 bool RuntimePointerChecking::arePointersInSamePartition(
444     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
445     unsigned PtrIdx2) {
446   return (PtrToPartition[PtrIdx1] != -1 &&
447           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
448 }
449 
450 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
451   const PointerInfo &PointerI = Pointers[I];
452   const PointerInfo &PointerJ = Pointers[J];
453 
454   // No need to check if two readonly pointers intersect.
455   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
456     return false;
457 
458   // Only need to check pointers between two different dependency sets.
459   if (PointerI.DependencySetId == PointerJ.DependencySetId)
460     return false;
461 
462   // Only need to check pointers in the same alias set.
463   if (PointerI.AliasSetId != PointerJ.AliasSetId)
464     return false;
465 
466   return true;
467 }
468 
469 void RuntimePointerChecking::printChecks(
470     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
471     unsigned Depth) const {
472   unsigned N = 0;
473   for (const auto &Check : Checks) {
474     const auto &First = Check.first->Members, &Second = Check.second->Members;
475 
476     OS.indent(Depth) << "Check " << N++ << ":\n";
477 
478     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
479     for (unsigned K = 0; K < First.size(); ++K)
480       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
481 
482     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
483     for (unsigned K = 0; K < Second.size(); ++K)
484       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
485   }
486 }
487 
488 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
489 
490   OS.indent(Depth) << "Run-time memory checks:\n";
491   printChecks(OS, Checks, Depth);
492 
493   OS.indent(Depth) << "Grouped accesses:\n";
494   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
495     const auto &CG = CheckingGroups[I];
496 
497     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
498     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
499                          << ")\n";
500     for (unsigned J = 0; J < CG.Members.size(); ++J) {
501       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
502                            << "\n";
503     }
504   }
505 }
506 
507 namespace {
508 
509 /// Analyses memory accesses in a loop.
510 ///
511 /// Checks whether run time pointer checks are needed and builds sets for data
512 /// dependence checking.
513 class AccessAnalysis {
514 public:
515   /// Read or write access location.
516   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
517   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
518 
519   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
520                  MemoryDepChecker::DepCandidates &DA,
521                  PredicatedScalarEvolution &PSE)
522       : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
523         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
524 
525   /// Register a load  and whether it is only read from.
526   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
527     Value *Ptr = const_cast<Value*>(Loc.Ptr);
528     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
529     Accesses.insert(MemAccessInfo(Ptr, false));
530     if (IsReadOnly)
531       ReadOnlyPtr.insert(Ptr);
532   }
533 
534   /// Register a store.
535   void addStore(MemoryLocation &Loc) {
536     Value *Ptr = const_cast<Value*>(Loc.Ptr);
537     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
538     Accesses.insert(MemAccessInfo(Ptr, true));
539   }
540 
541   /// Check if we can emit a run-time no-alias check for \p Access.
542   ///
543   /// Returns true if we can emit a run-time no alias check for \p Access.
544   /// If we can check this access, this also adds it to a dependence set and
545   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
546   /// we will attempt to use additional run-time checks in order to get
547   /// the bounds of the pointer.
548   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
549                             MemAccessInfo Access,
550                             const ValueToValueMap &Strides,
551                             DenseMap<Value *, unsigned> &DepSetId,
552                             Loop *TheLoop, unsigned &RunningDepId,
553                             unsigned ASId, bool ShouldCheckStride,
554                             bool Assume);
555 
556   /// Check whether we can check the pointers at runtime for
557   /// non-intersection.
558   ///
559   /// Returns true if we need no check or if we do and we can generate them
560   /// (i.e. the pointers have computable bounds).
561   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
562                        Loop *TheLoop, const ValueToValueMap &Strides,
563                        bool ShouldCheckWrap = false);
564 
565   /// Goes over all memory accesses, checks whether a RT check is needed
566   /// and builds sets of dependent accesses.
567   void buildDependenceSets() {
568     processMemAccesses();
569   }
570 
571   /// Initial processing of memory accesses determined that we need to
572   /// perform dependency checking.
573   ///
574   /// Note that this can later be cleared if we retry memcheck analysis without
575   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
576   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
577 
578   /// We decided that no dependence analysis would be used.  Reset the state.
579   void resetDepChecks(MemoryDepChecker &DepChecker) {
580     CheckDeps.clear();
581     DepChecker.clearDependences();
582   }
583 
584   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
585 
586 private:
587   typedef SetVector<MemAccessInfo> PtrAccessSet;
588 
589   /// Go over all memory access and check whether runtime pointer checks
590   /// are needed and build sets of dependency check candidates.
591   void processMemAccesses();
592 
593   /// Set of all accesses.
594   PtrAccessSet Accesses;
595 
596   /// The loop being checked.
597   const Loop *TheLoop;
598 
599   /// List of accesses that need a further dependence check.
600   MemAccessInfoList CheckDeps;
601 
602   /// Set of pointers that are read only.
603   SmallPtrSet<Value*, 16> ReadOnlyPtr;
604 
605   /// An alias set tracker to partition the access set by underlying object and
606   //intrinsic property (such as TBAA metadata).
607   AliasSetTracker AST;
608 
609   LoopInfo *LI;
610 
611   /// Sets of potentially dependent accesses - members of one set share an
612   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
613   /// dependence check.
614   MemoryDepChecker::DepCandidates &DepCands;
615 
616   /// Initial processing of memory accesses determined that we may need
617   /// to add memchecks.  Perform the analysis to determine the necessary checks.
618   ///
619   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
620   /// memcheck analysis without dependency checking
621   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
622   /// cleared while this remains set if we have potentially dependent accesses.
623   bool IsRTCheckAnalysisNeeded;
624 
625   /// The SCEV predicate containing all the SCEV-related assumptions.
626   PredicatedScalarEvolution &PSE;
627 };
628 
629 } // end anonymous namespace
630 
631 /// Check whether a pointer can participate in a runtime bounds check.
632 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
633 /// by adding run-time checks (overflow checks) if necessary.
634 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
635                                 const ValueToValueMap &Strides, Value *Ptr,
636                                 Loop *L, bool Assume) {
637   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
638 
639   // The bounds for loop-invariant pointer is trivial.
640   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
641     return true;
642 
643   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
644 
645   if (!AR && Assume)
646     AR = PSE.getAsAddRec(Ptr);
647 
648   if (!AR)
649     return false;
650 
651   return AR->isAffine();
652 }
653 
654 /// Check whether a pointer address cannot wrap.
655 static bool isNoWrap(PredicatedScalarEvolution &PSE,
656                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
657   const SCEV *PtrScev = PSE.getSCEV(Ptr);
658   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
659     return true;
660 
661   Type *AccessTy = Ptr->getType()->getPointerElementType();
662   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides);
663   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
664     return true;
665 
666   return false;
667 }
668 
669 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
670                                           MemAccessInfo Access,
671                                           const ValueToValueMap &StridesMap,
672                                           DenseMap<Value *, unsigned> &DepSetId,
673                                           Loop *TheLoop, unsigned &RunningDepId,
674                                           unsigned ASId, bool ShouldCheckWrap,
675                                           bool Assume) {
676   Value *Ptr = Access.getPointer();
677 
678   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
679     return false;
680 
681   // When we run after a failing dependency check we have to make sure
682   // we don't have wrapping pointers.
683   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
684     auto *Expr = PSE.getSCEV(Ptr);
685     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
686       return false;
687     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
688   }
689 
690   // The id of the dependence set.
691   unsigned DepId;
692 
693   if (isDependencyCheckNeeded()) {
694     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
695     unsigned &LeaderId = DepSetId[Leader];
696     if (!LeaderId)
697       LeaderId = RunningDepId++;
698     DepId = LeaderId;
699   } else
700     // Each access has its own dependence set.
701     DepId = RunningDepId++;
702 
703   bool IsWrite = Access.getInt();
704   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
705   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
706 
707   return true;
708  }
709 
710 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
711                                      ScalarEvolution *SE, Loop *TheLoop,
712                                      const ValueToValueMap &StridesMap,
713                                      bool ShouldCheckWrap) {
714   // Find pointers with computable bounds. We are going to use this information
715   // to place a runtime bound check.
716   bool CanDoRT = true;
717 
718   bool MayNeedRTCheck = false;
719   if (!IsRTCheckAnalysisNeeded) return true;
720 
721   bool IsDepCheckNeeded = isDependencyCheckNeeded();
722 
723   // We assign a consecutive id to access from different alias sets.
724   // Accesses between different groups doesn't need to be checked.
725   unsigned ASId = 0;
726   for (auto &AS : AST) {
727     int NumReadPtrChecks = 0;
728     int NumWritePtrChecks = 0;
729     bool CanDoAliasSetRT = true;
730     ++ASId;
731 
732     // We assign consecutive id to access from different dependence sets.
733     // Accesses within the same set don't need a runtime check.
734     unsigned RunningDepId = 1;
735     DenseMap<Value *, unsigned> DepSetId;
736 
737     SmallVector<MemAccessInfo, 4> Retries;
738 
739     // First, count how many write and read accesses are in the alias set. Also
740     // collect MemAccessInfos for later.
741     SmallVector<MemAccessInfo, 4> AccessInfos;
742     for (const auto &A : AS) {
743       Value *Ptr = A.getValue();
744       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
745 
746       if (IsWrite)
747         ++NumWritePtrChecks;
748       else
749         ++NumReadPtrChecks;
750       AccessInfos.emplace_back(Ptr, IsWrite);
751     }
752 
753     // We do not need runtime checks for this alias set, if there are no writes
754     // or a single write and no reads.
755     if (NumWritePtrChecks == 0 ||
756         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
757       assert((AS.size() <= 1 ||
758               all_of(AS,
759                      [this](auto AC) {
760                        MemAccessInfo AccessWrite(AC.getValue(), true);
761                        return DepCands.findValue(AccessWrite) == DepCands.end();
762                      })) &&
763              "Can only skip updating CanDoRT below, if all entries in AS "
764              "are reads or there is at most 1 entry");
765       continue;
766     }
767 
768     for (auto &Access : AccessInfos) {
769       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
770                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
771         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
772                           << *Access.getPointer() << '\n');
773         Retries.push_back(Access);
774         CanDoAliasSetRT = false;
775       }
776     }
777 
778     // Note that this function computes CanDoRT and MayNeedRTCheck
779     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
780     // we have a pointer for which we couldn't find the bounds but we don't
781     // actually need to emit any checks so it does not matter.
782     //
783     // We need runtime checks for this alias set, if there are at least 2
784     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
785     // any bound checks (because in that case the number of dependence sets is
786     // incomplete).
787     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
788 
789     // We need to perform run-time alias checks, but some pointers had bounds
790     // that couldn't be checked.
791     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
792       // Reset the CanDoSetRt flag and retry all accesses that have failed.
793       // We know that we need these checks, so we can now be more aggressive
794       // and add further checks if required (overflow checks).
795       CanDoAliasSetRT = true;
796       for (auto Access : Retries)
797         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
798                                   TheLoop, RunningDepId, ASId,
799                                   ShouldCheckWrap, /*Assume=*/true)) {
800           CanDoAliasSetRT = false;
801           break;
802         }
803     }
804 
805     CanDoRT &= CanDoAliasSetRT;
806     MayNeedRTCheck |= NeedsAliasSetRTCheck;
807     ++ASId;
808   }
809 
810   // If the pointers that we would use for the bounds comparison have different
811   // address spaces, assume the values aren't directly comparable, so we can't
812   // use them for the runtime check. We also have to assume they could
813   // overlap. In the future there should be metadata for whether address spaces
814   // are disjoint.
815   unsigned NumPointers = RtCheck.Pointers.size();
816   for (unsigned i = 0; i < NumPointers; ++i) {
817     for (unsigned j = i + 1; j < NumPointers; ++j) {
818       // Only need to check pointers between two different dependency sets.
819       if (RtCheck.Pointers[i].DependencySetId ==
820           RtCheck.Pointers[j].DependencySetId)
821        continue;
822       // Only need to check pointers in the same alias set.
823       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
824         continue;
825 
826       Value *PtrI = RtCheck.Pointers[i].PointerValue;
827       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
828 
829       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
830       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
831       if (ASi != ASj) {
832         LLVM_DEBUG(
833             dbgs() << "LAA: Runtime check would require comparison between"
834                       " different address spaces\n");
835         return false;
836       }
837     }
838   }
839 
840   if (MayNeedRTCheck && CanDoRT)
841     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
842 
843   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
844                     << " pointer comparisons.\n");
845 
846   // If we can do run-time checks, but there are no checks, no runtime checks
847   // are needed. This can happen when all pointers point to the same underlying
848   // object for example.
849   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
850 
851   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
852   if (!CanDoRTIfNeeded)
853     RtCheck.reset();
854   return CanDoRTIfNeeded;
855 }
856 
857 void AccessAnalysis::processMemAccesses() {
858   // We process the set twice: first we process read-write pointers, last we
859   // process read-only pointers. This allows us to skip dependence tests for
860   // read-only pointers.
861 
862   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
863   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
864   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
865   LLVM_DEBUG({
866     for (auto A : Accesses)
867       dbgs() << "\t" << *A.getPointer() << " (" <<
868                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
869                                          "read-only" : "read")) << ")\n";
870   });
871 
872   // The AliasSetTracker has nicely partitioned our pointers by metadata
873   // compatibility and potential for underlying-object overlap. As a result, we
874   // only need to check for potential pointer dependencies within each alias
875   // set.
876   for (const auto &AS : AST) {
877     // Note that both the alias-set tracker and the alias sets themselves used
878     // linked lists internally and so the iteration order here is deterministic
879     // (matching the original instruction order within each set).
880 
881     bool SetHasWrite = false;
882 
883     // Map of pointers to last access encountered.
884     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
885     UnderlyingObjToAccessMap ObjToLastAccess;
886 
887     // Set of access to check after all writes have been processed.
888     PtrAccessSet DeferredAccesses;
889 
890     // Iterate over each alias set twice, once to process read/write pointers,
891     // and then to process read-only pointers.
892     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
893       bool UseDeferred = SetIteration > 0;
894       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
895 
896       for (const auto &AV : AS) {
897         Value *Ptr = AV.getValue();
898 
899         // For a single memory access in AliasSetTracker, Accesses may contain
900         // both read and write, and they both need to be handled for CheckDeps.
901         for (const auto &AC : S) {
902           if (AC.getPointer() != Ptr)
903             continue;
904 
905           bool IsWrite = AC.getInt();
906 
907           // If we're using the deferred access set, then it contains only
908           // reads.
909           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
910           if (UseDeferred && !IsReadOnlyPtr)
911             continue;
912           // Otherwise, the pointer must be in the PtrAccessSet, either as a
913           // read or a write.
914           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
915                   S.count(MemAccessInfo(Ptr, false))) &&
916                  "Alias-set pointer not in the access set?");
917 
918           MemAccessInfo Access(Ptr, IsWrite);
919           DepCands.insert(Access);
920 
921           // Memorize read-only pointers for later processing and skip them in
922           // the first round (they need to be checked after we have seen all
923           // write pointers). Note: we also mark pointer that are not
924           // consecutive as "read-only" pointers (so that we check
925           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
926           if (!UseDeferred && IsReadOnlyPtr) {
927             DeferredAccesses.insert(Access);
928             continue;
929           }
930 
931           // If this is a write - check other reads and writes for conflicts. If
932           // this is a read only check other writes for conflicts (but only if
933           // there is no other write to the ptr - this is an optimization to
934           // catch "a[i] = a[i] + " without having to do a dependence check).
935           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
936             CheckDeps.push_back(Access);
937             IsRTCheckAnalysisNeeded = true;
938           }
939 
940           if (IsWrite)
941             SetHasWrite = true;
942 
943           // Create sets of pointers connected by a shared alias set and
944           // underlying object.
945           typedef SmallVector<const Value *, 16> ValueVector;
946           ValueVector TempObjects;
947 
948           getUnderlyingObjects(Ptr, TempObjects, LI);
949           LLVM_DEBUG(dbgs()
950                      << "Underlying objects for pointer " << *Ptr << "\n");
951           for (const Value *UnderlyingObj : TempObjects) {
952             // nullptr never alias, don't join sets for pointer that have "null"
953             // in their UnderlyingObjects list.
954             if (isa<ConstantPointerNull>(UnderlyingObj) &&
955                 !NullPointerIsDefined(
956                     TheLoop->getHeader()->getParent(),
957                     UnderlyingObj->getType()->getPointerAddressSpace()))
958               continue;
959 
960             UnderlyingObjToAccessMap::iterator Prev =
961                 ObjToLastAccess.find(UnderlyingObj);
962             if (Prev != ObjToLastAccess.end())
963               DepCands.unionSets(Access, Prev->second);
964 
965             ObjToLastAccess[UnderlyingObj] = Access;
966             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
967           }
968         }
969       }
970     }
971   }
972 }
973 
974 static bool isInBoundsGep(Value *Ptr) {
975   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
976     return GEP->isInBounds();
977   return false;
978 }
979 
980 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
981 /// i.e. monotonically increasing/decreasing.
982 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
983                            PredicatedScalarEvolution &PSE, const Loop *L) {
984   // FIXME: This should probably only return true for NUW.
985   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
986     return true;
987 
988   // Scalar evolution does not propagate the non-wrapping flags to values that
989   // are derived from a non-wrapping induction variable because non-wrapping
990   // could be flow-sensitive.
991   //
992   // Look through the potentially overflowing instruction to try to prove
993   // non-wrapping for the *specific* value of Ptr.
994 
995   // The arithmetic implied by an inbounds GEP can't overflow.
996   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
997   if (!GEP || !GEP->isInBounds())
998     return false;
999 
1000   // Make sure there is only one non-const index and analyze that.
1001   Value *NonConstIndex = nullptr;
1002   for (Value *Index : GEP->indices())
1003     if (!isa<ConstantInt>(Index)) {
1004       if (NonConstIndex)
1005         return false;
1006       NonConstIndex = Index;
1007     }
1008   if (!NonConstIndex)
1009     // The recurrence is on the pointer, ignore for now.
1010     return false;
1011 
1012   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1013   // AddRec using a NSW operation.
1014   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1015     if (OBO->hasNoSignedWrap() &&
1016         // Assume constant for other the operand so that the AddRec can be
1017         // easily found.
1018         isa<ConstantInt>(OBO->getOperand(1))) {
1019       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1020 
1021       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1022         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1023     }
1024 
1025   return false;
1026 }
1027 
1028 /// Check whether the access through \p Ptr has a constant stride.
1029 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy,
1030                            Value *Ptr, const Loop *Lp,
1031                            const ValueToValueMap &StridesMap, bool Assume,
1032                            bool ShouldCheckWrap) {
1033   Type *Ty = Ptr->getType();
1034   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1035   assert(!AccessTy->isAggregateType() && "Bad stride - Not a pointer to a scalar type");
1036 
1037   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1038 
1039   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1040   if (Assume && !AR)
1041     AR = PSE.getAsAddRec(Ptr);
1042 
1043   if (!AR) {
1044     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1045                       << " SCEV: " << *PtrScev << "\n");
1046     return 0;
1047   }
1048 
1049   // The access function must stride over the innermost loop.
1050   if (Lp != AR->getLoop()) {
1051     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1052                       << *Ptr << " SCEV: " << *AR << "\n");
1053     return 0;
1054   }
1055 
1056   // The address calculation must not wrap. Otherwise, a dependence could be
1057   // inverted.
1058   // An inbounds getelementptr that is a AddRec with a unit stride
1059   // cannot wrap per definition. The unit stride requirement is checked later.
1060   // An getelementptr without an inbounds attribute and unit stride would have
1061   // to access the pointer value "0" which is undefined behavior in address
1062   // space 0, therefore we can also vectorize this case.
1063   unsigned AddrSpace = Ty->getPointerAddressSpace();
1064   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1065   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1066     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1067     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1068   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1069       NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
1070     if (Assume) {
1071       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1072       IsNoWrapAddRec = true;
1073       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1074                         << "LAA:   Pointer: " << *Ptr << "\n"
1075                         << "LAA:   SCEV: " << *AR << "\n"
1076                         << "LAA:   Added an overflow assumption\n");
1077     } else {
1078       LLVM_DEBUG(
1079           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1080                  << *Ptr << " SCEV: " << *AR << "\n");
1081       return 0;
1082     }
1083   }
1084 
1085   // Check the step is constant.
1086   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1087 
1088   // Calculate the pointer stride and check if it is constant.
1089   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1090   if (!C) {
1091     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1092                       << " SCEV: " << *AR << "\n");
1093     return 0;
1094   }
1095 
1096   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1097   int64_t Size = DL.getTypeAllocSize(AccessTy);
1098   const APInt &APStepVal = C->getAPInt();
1099 
1100   // Huge step value - give up.
1101   if (APStepVal.getBitWidth() > 64)
1102     return 0;
1103 
1104   int64_t StepVal = APStepVal.getSExtValue();
1105 
1106   // Strided access.
1107   int64_t Stride = StepVal / Size;
1108   int64_t Rem = StepVal % Size;
1109   if (Rem)
1110     return 0;
1111 
1112   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1113   // know we can't "wrap around the address space". In case of address space
1114   // zero we know that this won't happen without triggering undefined behavior.
1115   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1116       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1117                                               AddrSpace))) {
1118     if (Assume) {
1119       // We can avoid this case by adding a run-time check.
1120       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1121                         << "inbounds or in address space 0 may wrap:\n"
1122                         << "LAA:   Pointer: " << *Ptr << "\n"
1123                         << "LAA:   SCEV: " << *AR << "\n"
1124                         << "LAA:   Added an overflow assumption\n");
1125       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1126     } else
1127       return 0;
1128   }
1129 
1130   return Stride;
1131 }
1132 
1133 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
1134                                     Value *PtrB, const DataLayout &DL,
1135                                     ScalarEvolution &SE, bool StrictCheck,
1136                                     bool CheckType) {
1137   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1138   assert(cast<PointerType>(PtrA->getType())
1139              ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
1140   assert(cast<PointerType>(PtrB->getType())
1141              ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
1142 
1143   // Make sure that A and B are different pointers.
1144   if (PtrA == PtrB)
1145     return 0;
1146 
1147   // Make sure that the element types are the same if required.
1148   if (CheckType && ElemTyA != ElemTyB)
1149     return None;
1150 
1151   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1152   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1153 
1154   // Check that the address spaces match.
1155   if (ASA != ASB)
1156     return None;
1157   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1158 
1159   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1160   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1161   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1162 
1163   int Val;
1164   if (PtrA1 == PtrB1) {
1165     // Retrieve the address space again as pointer stripping now tracks through
1166     // `addrspacecast`.
1167     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1168     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1169     // Check that the address spaces match and that the pointers are valid.
1170     if (ASA != ASB)
1171       return None;
1172 
1173     IdxWidth = DL.getIndexSizeInBits(ASA);
1174     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1175     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1176 
1177     OffsetB -= OffsetA;
1178     Val = OffsetB.getSExtValue();
1179   } else {
1180     // Otherwise compute the distance with SCEV between the base pointers.
1181     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1182     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1183     const auto *Diff =
1184         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1185     if (!Diff)
1186       return None;
1187     Val = Diff->getAPInt().getSExtValue();
1188   }
1189   int Size = DL.getTypeStoreSize(ElemTyA);
1190   int Dist = Val / Size;
1191 
1192   // Ensure that the calculated distance matches the type-based one after all
1193   // the bitcasts removal in the provided pointers.
1194   if (!StrictCheck || Dist * Size == Val)
1195     return Dist;
1196   return None;
1197 }
1198 
1199 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1200                            const DataLayout &DL, ScalarEvolution &SE,
1201                            SmallVectorImpl<unsigned> &SortedIndices) {
1202   assert(llvm::all_of(
1203              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1204          "Expected list of pointer operands.");
1205   // Walk over the pointers, and map each of them to an offset relative to
1206   // first pointer in the array.
1207   Value *Ptr0 = VL[0];
1208 
1209   using DistOrdPair = std::pair<int64_t, int>;
1210   auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) {
1211     return L.first < R.first;
1212   };
1213   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1214   Offsets.emplace(0, 0);
1215   int Cnt = 1;
1216   bool IsConsecutive = true;
1217   for (auto *Ptr : VL.drop_front()) {
1218     Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1219                                          /*StrictCheck=*/true);
1220     if (!Diff)
1221       return false;
1222 
1223     // Check if the pointer with the same offset is found.
1224     int64_t Offset = *Diff;
1225     auto Res = Offsets.emplace(Offset, Cnt);
1226     if (!Res.second)
1227       return false;
1228     // Consecutive order if the inserted element is the last one.
1229     IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1230     ++Cnt;
1231   }
1232   SortedIndices.clear();
1233   if (!IsConsecutive) {
1234     // Fill SortedIndices array only if it is non-consecutive.
1235     SortedIndices.resize(VL.size());
1236     Cnt = 0;
1237     for (const std::pair<int64_t, int> &Pair : Offsets) {
1238       SortedIndices[Cnt] = Pair.second;
1239       ++Cnt;
1240     }
1241   }
1242   return true;
1243 }
1244 
1245 /// Returns true if the memory operations \p A and \p B are consecutive.
1246 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1247                                ScalarEvolution &SE, bool CheckType) {
1248   Value *PtrA = getLoadStorePointerOperand(A);
1249   Value *PtrB = getLoadStorePointerOperand(B);
1250   if (!PtrA || !PtrB)
1251     return false;
1252   Type *ElemTyA = getLoadStoreType(A);
1253   Type *ElemTyB = getLoadStoreType(B);
1254   Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1255                                        /*StrictCheck=*/true, CheckType);
1256   return Diff && *Diff == 1;
1257 }
1258 
1259 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
1260                           function_ref<void(Value *)> AddPointer) {
1261   SmallPtrSet<Value *, 8> Visited;
1262   SmallVector<Value *> WorkList;
1263   WorkList.push_back(StartPtr);
1264 
1265   while (!WorkList.empty()) {
1266     Value *Ptr = WorkList.pop_back_val();
1267     if (!Visited.insert(Ptr).second)
1268       continue;
1269     auto *PN = dyn_cast<PHINode>(Ptr);
1270     // SCEV does not look through non-header PHIs inside the loop. Such phis
1271     // can be analyzed by adding separate accesses for each incoming pointer
1272     // value.
1273     if (PN && InnermostLoop.contains(PN->getParent()) &&
1274         PN->getParent() != InnermostLoop.getHeader()) {
1275       for (const Use &Inc : PN->incoming_values())
1276         WorkList.push_back(Inc);
1277     } else
1278       AddPointer(Ptr);
1279   }
1280 }
1281 
1282 void MemoryDepChecker::addAccess(StoreInst *SI) {
1283   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1284                 [this, SI](Value *Ptr) {
1285                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1286                   InstMap.push_back(SI);
1287                   ++AccessIdx;
1288                 });
1289 }
1290 
1291 void MemoryDepChecker::addAccess(LoadInst *LI) {
1292   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1293                 [this, LI](Value *Ptr) {
1294                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1295                   InstMap.push_back(LI);
1296                   ++AccessIdx;
1297                 });
1298 }
1299 
1300 MemoryDepChecker::VectorizationSafetyStatus
1301 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1302   switch (Type) {
1303   case NoDep:
1304   case Forward:
1305   case BackwardVectorizable:
1306     return VectorizationSafetyStatus::Safe;
1307 
1308   case Unknown:
1309     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1310   case ForwardButPreventsForwarding:
1311   case Backward:
1312   case BackwardVectorizableButPreventsForwarding:
1313     return VectorizationSafetyStatus::Unsafe;
1314   }
1315   llvm_unreachable("unexpected DepType!");
1316 }
1317 
1318 bool MemoryDepChecker::Dependence::isBackward() const {
1319   switch (Type) {
1320   case NoDep:
1321   case Forward:
1322   case ForwardButPreventsForwarding:
1323   case Unknown:
1324     return false;
1325 
1326   case BackwardVectorizable:
1327   case Backward:
1328   case BackwardVectorizableButPreventsForwarding:
1329     return true;
1330   }
1331   llvm_unreachable("unexpected DepType!");
1332 }
1333 
1334 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1335   return isBackward() || Type == Unknown;
1336 }
1337 
1338 bool MemoryDepChecker::Dependence::isForward() const {
1339   switch (Type) {
1340   case Forward:
1341   case ForwardButPreventsForwarding:
1342     return true;
1343 
1344   case NoDep:
1345   case Unknown:
1346   case BackwardVectorizable:
1347   case Backward:
1348   case BackwardVectorizableButPreventsForwarding:
1349     return false;
1350   }
1351   llvm_unreachable("unexpected DepType!");
1352 }
1353 
1354 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1355                                                     uint64_t TypeByteSize) {
1356   // If loads occur at a distance that is not a multiple of a feasible vector
1357   // factor store-load forwarding does not take place.
1358   // Positive dependences might cause troubles because vectorizing them might
1359   // prevent store-load forwarding making vectorized code run a lot slower.
1360   //   a[i] = a[i-3] ^ a[i-8];
1361   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1362   //   hence on your typical architecture store-load forwarding does not take
1363   //   place. Vectorizing in such cases does not make sense.
1364   // Store-load forwarding distance.
1365 
1366   // After this many iterations store-to-load forwarding conflicts should not
1367   // cause any slowdowns.
1368   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1369   // Maximum vector factor.
1370   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1371       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1372 
1373   // Compute the smallest VF at which the store and load would be misaligned.
1374   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1375        VF *= 2) {
1376     // If the number of vector iteration between the store and the load are
1377     // small we could incur conflicts.
1378     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1379       MaxVFWithoutSLForwardIssues = (VF >> 1);
1380       break;
1381     }
1382   }
1383 
1384   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1385     LLVM_DEBUG(
1386         dbgs() << "LAA: Distance " << Distance
1387                << " that could cause a store-load forwarding conflict\n");
1388     return true;
1389   }
1390 
1391   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1392       MaxVFWithoutSLForwardIssues !=
1393           VectorizerParams::MaxVectorWidth * TypeByteSize)
1394     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1395   return false;
1396 }
1397 
1398 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1399   if (Status < S)
1400     Status = S;
1401 }
1402 
1403 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1404 /// memory accesses, that have the same stride whose absolute value is given
1405 /// in \p Stride, and that have the same type size \p TypeByteSize,
1406 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1407 /// possible to prove statically that the dependence distance is larger
1408 /// than the range that the accesses will travel through the execution of
1409 /// the loop. If so, return true; false otherwise. This is useful for
1410 /// example in loops such as the following (PR31098):
1411 ///     for (i = 0; i < D; ++i) {
1412 ///                = out[i];
1413 ///       out[i+D] =
1414 ///     }
1415 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1416                                      const SCEV &BackedgeTakenCount,
1417                                      const SCEV &Dist, uint64_t Stride,
1418                                      uint64_t TypeByteSize) {
1419 
1420   // If we can prove that
1421   //      (**) |Dist| > BackedgeTakenCount * Step
1422   // where Step is the absolute stride of the memory accesses in bytes,
1423   // then there is no dependence.
1424   //
1425   // Rationale:
1426   // We basically want to check if the absolute distance (|Dist/Step|)
1427   // is >= the loop iteration count (or > BackedgeTakenCount).
1428   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1429   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1430   // that the dependence distance is >= VF; This is checked elsewhere.
1431   // But in some cases we can prune unknown dependence distances early, and
1432   // even before selecting the VF, and without a runtime test, by comparing
1433   // the distance against the loop iteration count. Since the vectorized code
1434   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1435   // also guarantees that distance >= VF.
1436   //
1437   const uint64_t ByteStride = Stride * TypeByteSize;
1438   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1439   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1440 
1441   const SCEV *CastedDist = &Dist;
1442   const SCEV *CastedProduct = Product;
1443   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1444   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1445 
1446   // The dependence distance can be positive/negative, so we sign extend Dist;
1447   // The multiplication of the absolute stride in bytes and the
1448   // backedgeTakenCount is non-negative, so we zero extend Product.
1449   if (DistTypeSize > ProductTypeSize)
1450     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1451   else
1452     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1453 
1454   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1455   // (If so, then we have proven (**) because |Dist| >= Dist)
1456   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1457   if (SE.isKnownPositive(Minus))
1458     return true;
1459 
1460   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1461   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1462   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1463   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1464   if (SE.isKnownPositive(Minus))
1465     return true;
1466 
1467   return false;
1468 }
1469 
1470 /// Check the dependence for two accesses with the same stride \p Stride.
1471 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1472 /// bytes.
1473 ///
1474 /// \returns true if they are independent.
1475 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1476                                           uint64_t TypeByteSize) {
1477   assert(Stride > 1 && "The stride must be greater than 1");
1478   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1479   assert(Distance > 0 && "The distance must be non-zero");
1480 
1481   // Skip if the distance is not multiple of type byte size.
1482   if (Distance % TypeByteSize)
1483     return false;
1484 
1485   uint64_t ScaledDist = Distance / TypeByteSize;
1486 
1487   // No dependence if the scaled distance is not multiple of the stride.
1488   // E.g.
1489   //      for (i = 0; i < 1024 ; i += 4)
1490   //        A[i+2] = A[i] + 1;
1491   //
1492   // Two accesses in memory (scaled distance is 2, stride is 4):
1493   //     | A[0] |      |      |      | A[4] |      |      |      |
1494   //     |      |      | A[2] |      |      |      | A[6] |      |
1495   //
1496   // E.g.
1497   //      for (i = 0; i < 1024 ; i += 3)
1498   //        A[i+4] = A[i] + 1;
1499   //
1500   // Two accesses in memory (scaled distance is 4, stride is 3):
1501   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1502   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1503   return ScaledDist % Stride;
1504 }
1505 
1506 MemoryDepChecker::Dependence::DepType
1507 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1508                               const MemAccessInfo &B, unsigned BIdx,
1509                               const ValueToValueMap &Strides) {
1510   assert (AIdx < BIdx && "Must pass arguments in program order");
1511 
1512   Value *APtr = A.getPointer();
1513   Value *BPtr = B.getPointer();
1514   bool AIsWrite = A.getInt();
1515   bool BIsWrite = B.getInt();
1516   Type *ATy = APtr->getType()->getPointerElementType();
1517   Type *BTy = BPtr->getType()->getPointerElementType();
1518 
1519   // Two reads are independent.
1520   if (!AIsWrite && !BIsWrite)
1521     return Dependence::NoDep;
1522 
1523   // We cannot check pointers in different address spaces.
1524   if (APtr->getType()->getPointerAddressSpace() !=
1525       BPtr->getType()->getPointerAddressSpace())
1526     return Dependence::Unknown;
1527 
1528   int64_t StrideAPtr =
1529       getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true);
1530   int64_t StrideBPtr =
1531       getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true);
1532 
1533   const SCEV *Src = PSE.getSCEV(APtr);
1534   const SCEV *Sink = PSE.getSCEV(BPtr);
1535 
1536   // If the induction step is negative we have to invert source and sink of the
1537   // dependence.
1538   if (StrideAPtr < 0) {
1539     std::swap(APtr, BPtr);
1540     std::swap(ATy, BTy);
1541     std::swap(Src, Sink);
1542     std::swap(AIsWrite, BIsWrite);
1543     std::swap(AIdx, BIdx);
1544     std::swap(StrideAPtr, StrideBPtr);
1545   }
1546 
1547   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1548 
1549   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1550                     << "(Induction step: " << StrideAPtr << ")\n");
1551   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1552                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1553 
1554   // Need accesses with constant stride. We don't want to vectorize
1555   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1556   // the address space.
1557   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1558     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1559     return Dependence::Unknown;
1560   }
1561 
1562   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1563   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1564   uint64_t Stride = std::abs(StrideAPtr);
1565   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1566   if (!C) {
1567     if (!isa<SCEVCouldNotCompute>(Dist) &&
1568         TypeByteSize == DL.getTypeAllocSize(BTy) &&
1569         isSafeDependenceDistance(DL, *(PSE.getSE()),
1570                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1571                                  TypeByteSize))
1572       return Dependence::NoDep;
1573 
1574     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1575     FoundNonConstantDistanceDependence = true;
1576     return Dependence::Unknown;
1577   }
1578 
1579   const APInt &Val = C->getAPInt();
1580   int64_t Distance = Val.getSExtValue();
1581 
1582   // Attempt to prove strided accesses independent.
1583   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1584       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1585     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1586     return Dependence::NoDep;
1587   }
1588 
1589   // Negative distances are not plausible dependencies.
1590   if (Val.isNegative()) {
1591     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1592     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1593         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1594          ATy != BTy)) {
1595       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1596       return Dependence::ForwardButPreventsForwarding;
1597     }
1598 
1599     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1600     return Dependence::Forward;
1601   }
1602 
1603   // Write to the same location with the same size.
1604   // Could be improved to assert type sizes are the same (i32 == float, etc).
1605   if (Val == 0) {
1606     if (ATy == BTy)
1607       return Dependence::Forward;
1608     LLVM_DEBUG(
1609         dbgs() << "LAA: Zero dependence difference but different types\n");
1610     return Dependence::Unknown;
1611   }
1612 
1613   assert(Val.isStrictlyPositive() && "Expect a positive value");
1614 
1615   if (ATy != BTy) {
1616     LLVM_DEBUG(
1617         dbgs()
1618         << "LAA: ReadWrite-Write positive dependency with different types\n");
1619     return Dependence::Unknown;
1620   }
1621 
1622   // Bail out early if passed-in parameters make vectorization not feasible.
1623   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1624                            VectorizerParams::VectorizationFactor : 1);
1625   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1626                            VectorizerParams::VectorizationInterleave : 1);
1627   // The minimum number of iterations for a vectorized/unrolled version.
1628   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1629 
1630   // It's not vectorizable if the distance is smaller than the minimum distance
1631   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1632   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1633   // TypeByteSize (No need to plus the last gap distance).
1634   //
1635   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1636   //      foo(int *A) {
1637   //        int *B = (int *)((char *)A + 14);
1638   //        for (i = 0 ; i < 1024 ; i += 2)
1639   //          B[i] = A[i] + 1;
1640   //      }
1641   //
1642   // Two accesses in memory (stride is 2):
1643   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1644   //                              | B[0] |      | B[2] |      | B[4] |
1645   //
1646   // Distance needs for vectorizing iterations except the last iteration:
1647   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1648   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1649   //
1650   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1651   // 12, which is less than distance.
1652   //
1653   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1654   // the minimum distance needed is 28, which is greater than distance. It is
1655   // not safe to do vectorization.
1656   uint64_t MinDistanceNeeded =
1657       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1658   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1659     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1660                       << Distance << '\n');
1661     return Dependence::Backward;
1662   }
1663 
1664   // Unsafe if the minimum distance needed is greater than max safe distance.
1665   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1666     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1667                       << MinDistanceNeeded << " size in bytes");
1668     return Dependence::Backward;
1669   }
1670 
1671   // Positive distance bigger than max vectorization factor.
1672   // FIXME: Should use max factor instead of max distance in bytes, which could
1673   // not handle different types.
1674   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1675   //      void foo (int *A, char *B) {
1676   //        for (unsigned i = 0; i < 1024; i++) {
1677   //          A[i+2] = A[i] + 1;
1678   //          B[i+2] = B[i] + 1;
1679   //        }
1680   //      }
1681   //
1682   // This case is currently unsafe according to the max safe distance. If we
1683   // analyze the two accesses on array B, the max safe dependence distance
1684   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1685   // is 8, which is less than 2 and forbidden vectorization, But actually
1686   // both A and B could be vectorized by 2 iterations.
1687   MaxSafeDepDistBytes =
1688       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1689 
1690   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1691   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1692       couldPreventStoreLoadForward(Distance, TypeByteSize))
1693     return Dependence::BackwardVectorizableButPreventsForwarding;
1694 
1695   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1696   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1697                     << " with max VF = " << MaxVF << '\n');
1698   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1699   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
1700   return Dependence::BackwardVectorizable;
1701 }
1702 
1703 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1704                                    MemAccessInfoList &CheckDeps,
1705                                    const ValueToValueMap &Strides) {
1706 
1707   MaxSafeDepDistBytes = -1;
1708   SmallPtrSet<MemAccessInfo, 8> Visited;
1709   for (MemAccessInfo CurAccess : CheckDeps) {
1710     if (Visited.count(CurAccess))
1711       continue;
1712 
1713     // Get the relevant memory access set.
1714     EquivalenceClasses<MemAccessInfo>::iterator I =
1715       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1716 
1717     // Check accesses within this set.
1718     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1719         AccessSets.member_begin(I);
1720     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1721         AccessSets.member_end();
1722 
1723     // Check every access pair.
1724     while (AI != AE) {
1725       Visited.insert(*AI);
1726       bool AIIsWrite = AI->getInt();
1727       // Check loads only against next equivalent class, but stores also against
1728       // other stores in the same equivalence class - to the same address.
1729       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1730           (AIIsWrite ? AI : std::next(AI));
1731       while (OI != AE) {
1732         // Check every accessing instruction pair in program order.
1733         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1734              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1735           // Scan all accesses of another equivalence class, but only the next
1736           // accesses of the same equivalent class.
1737           for (std::vector<unsigned>::iterator
1738                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1739                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
1740                I2 != I2E; ++I2) {
1741             auto A = std::make_pair(&*AI, *I1);
1742             auto B = std::make_pair(&*OI, *I2);
1743 
1744             assert(*I1 != *I2);
1745             if (*I1 > *I2)
1746               std::swap(A, B);
1747 
1748             Dependence::DepType Type =
1749                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1750             mergeInStatus(Dependence::isSafeForVectorization(Type));
1751 
1752             // Gather dependences unless we accumulated MaxDependences
1753             // dependences.  In that case return as soon as we find the first
1754             // unsafe dependence.  This puts a limit on this quadratic
1755             // algorithm.
1756             if (RecordDependences) {
1757               if (Type != Dependence::NoDep)
1758                 Dependences.push_back(Dependence(A.second, B.second, Type));
1759 
1760               if (Dependences.size() >= MaxDependences) {
1761                 RecordDependences = false;
1762                 Dependences.clear();
1763                 LLVM_DEBUG(dbgs()
1764                            << "Too many dependences, stopped recording\n");
1765               }
1766             }
1767             if (!RecordDependences && !isSafeForVectorization())
1768               return false;
1769           }
1770         ++OI;
1771       }
1772       AI++;
1773     }
1774   }
1775 
1776   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1777   return isSafeForVectorization();
1778 }
1779 
1780 SmallVector<Instruction *, 4>
1781 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1782   MemAccessInfo Access(Ptr, isWrite);
1783   auto &IndexVector = Accesses.find(Access)->second;
1784 
1785   SmallVector<Instruction *, 4> Insts;
1786   transform(IndexVector,
1787                  std::back_inserter(Insts),
1788                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1789   return Insts;
1790 }
1791 
1792 const char *MemoryDepChecker::Dependence::DepName[] = {
1793     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1794     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1795 
1796 void MemoryDepChecker::Dependence::print(
1797     raw_ostream &OS, unsigned Depth,
1798     const SmallVectorImpl<Instruction *> &Instrs) const {
1799   OS.indent(Depth) << DepName[Type] << ":\n";
1800   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1801   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1802 }
1803 
1804 bool LoopAccessInfo::canAnalyzeLoop() {
1805   // We need to have a loop header.
1806   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1807                     << TheLoop->getHeader()->getParent()->getName() << ": "
1808                     << TheLoop->getHeader()->getName() << '\n');
1809 
1810   // We can only analyze innermost loops.
1811   if (!TheLoop->isInnermost()) {
1812     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1813     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1814     return false;
1815   }
1816 
1817   // We must have a single backedge.
1818   if (TheLoop->getNumBackEdges() != 1) {
1819     LLVM_DEBUG(
1820         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1821     recordAnalysis("CFGNotUnderstood")
1822         << "loop control flow is not understood by analyzer";
1823     return false;
1824   }
1825 
1826   // ScalarEvolution needs to be able to find the exit count.
1827   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1828   if (isa<SCEVCouldNotCompute>(ExitCount)) {
1829     recordAnalysis("CantComputeNumberOfIterations")
1830         << "could not determine number of loop iterations";
1831     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1832     return false;
1833   }
1834 
1835   return true;
1836 }
1837 
1838 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
1839                                  const TargetLibraryInfo *TLI,
1840                                  DominatorTree *DT) {
1841   typedef SmallPtrSet<Value*, 16> ValueSet;
1842 
1843   // Holds the Load and Store instructions.
1844   SmallVector<LoadInst *, 16> Loads;
1845   SmallVector<StoreInst *, 16> Stores;
1846 
1847   // Holds all the different accesses in the loop.
1848   unsigned NumReads = 0;
1849   unsigned NumReadWrites = 0;
1850 
1851   bool HasComplexMemInst = false;
1852 
1853   // A runtime check is only legal to insert if there are no convergent calls.
1854   HasConvergentOp = false;
1855 
1856   PtrRtChecking->Pointers.clear();
1857   PtrRtChecking->Need = false;
1858 
1859   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1860 
1861   const bool EnableMemAccessVersioningOfLoop =
1862       EnableMemAccessVersioning &&
1863       !TheLoop->getHeader()->getParent()->hasOptSize();
1864 
1865   // For each block.
1866   for (BasicBlock *BB : TheLoop->blocks()) {
1867     // Scan the BB and collect legal loads and stores. Also detect any
1868     // convergent instructions.
1869     for (Instruction &I : *BB) {
1870       if (auto *Call = dyn_cast<CallBase>(&I)) {
1871         if (Call->isConvergent())
1872           HasConvergentOp = true;
1873       }
1874 
1875       // With both a non-vectorizable memory instruction and a convergent
1876       // operation, found in this loop, no reason to continue the search.
1877       if (HasComplexMemInst && HasConvergentOp) {
1878         CanVecMem = false;
1879         return;
1880       }
1881 
1882       // Avoid hitting recordAnalysis multiple times.
1883       if (HasComplexMemInst)
1884         continue;
1885 
1886       // If this is a load, save it. If this instruction can read from memory
1887       // but is not a load, then we quit. Notice that we don't handle function
1888       // calls that read or write.
1889       if (I.mayReadFromMemory()) {
1890         // Many math library functions read the rounding mode. We will only
1891         // vectorize a loop if it contains known function calls that don't set
1892         // the flag. Therefore, it is safe to ignore this read from memory.
1893         auto *Call = dyn_cast<CallInst>(&I);
1894         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1895           continue;
1896 
1897         // If the function has an explicit vectorized counterpart, we can safely
1898         // assume that it can be vectorized.
1899         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1900             !VFDatabase::getMappings(*Call).empty())
1901           continue;
1902 
1903         auto *Ld = dyn_cast<LoadInst>(&I);
1904         if (!Ld) {
1905           recordAnalysis("CantVectorizeInstruction", Ld)
1906             << "instruction cannot be vectorized";
1907           HasComplexMemInst = true;
1908           continue;
1909         }
1910         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1911           recordAnalysis("NonSimpleLoad", Ld)
1912               << "read with atomic ordering or volatile read";
1913           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1914           HasComplexMemInst = true;
1915           continue;
1916         }
1917         NumLoads++;
1918         Loads.push_back(Ld);
1919         DepChecker->addAccess(Ld);
1920         if (EnableMemAccessVersioningOfLoop)
1921           collectStridedAccess(Ld);
1922         continue;
1923       }
1924 
1925       // Save 'store' instructions. Abort if other instructions write to memory.
1926       if (I.mayWriteToMemory()) {
1927         auto *St = dyn_cast<StoreInst>(&I);
1928         if (!St) {
1929           recordAnalysis("CantVectorizeInstruction", St)
1930               << "instruction cannot be vectorized";
1931           HasComplexMemInst = true;
1932           continue;
1933         }
1934         if (!St->isSimple() && !IsAnnotatedParallel) {
1935           recordAnalysis("NonSimpleStore", St)
1936               << "write with atomic ordering or volatile write";
1937           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1938           HasComplexMemInst = true;
1939           continue;
1940         }
1941         NumStores++;
1942         Stores.push_back(St);
1943         DepChecker->addAccess(St);
1944         if (EnableMemAccessVersioningOfLoop)
1945           collectStridedAccess(St);
1946       }
1947     } // Next instr.
1948   } // Next block.
1949 
1950   if (HasComplexMemInst) {
1951     CanVecMem = false;
1952     return;
1953   }
1954 
1955   // Now we have two lists that hold the loads and the stores.
1956   // Next, we find the pointers that they use.
1957 
1958   // Check if we see any stores. If there are no stores, then we don't
1959   // care if the pointers are *restrict*.
1960   if (!Stores.size()) {
1961     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1962     CanVecMem = true;
1963     return;
1964   }
1965 
1966   MemoryDepChecker::DepCandidates DependentAccesses;
1967   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
1968 
1969   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
1970   // multiple times on the same object. If the ptr is accessed twice, once
1971   // for read and once for write, it will only appear once (on the write
1972   // list). This is okay, since we are going to check for conflicts between
1973   // writes and between reads and writes, but not between reads and reads.
1974   ValueSet Seen;
1975 
1976   // Record uniform store addresses to identify if we have multiple stores
1977   // to the same address.
1978   ValueSet UniformStores;
1979 
1980   for (StoreInst *ST : Stores) {
1981     Value *Ptr = ST->getPointerOperand();
1982 
1983     if (isUniform(Ptr))
1984       HasDependenceInvolvingLoopInvariantAddress |=
1985           !UniformStores.insert(Ptr).second;
1986 
1987     // If we did *not* see this pointer before, insert it to  the read-write
1988     // list. At this phase it is only a 'write' list.
1989     if (Seen.insert(Ptr).second) {
1990       ++NumReadWrites;
1991 
1992       MemoryLocation Loc = MemoryLocation::get(ST);
1993       // The TBAA metadata could have a control dependency on the predication
1994       // condition, so we cannot rely on it when determining whether or not we
1995       // need runtime pointer checks.
1996       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1997         Loc.AATags.TBAA = nullptr;
1998 
1999       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2000                     [&Accesses, Loc](Value *Ptr) {
2001                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2002                       Accesses.addStore(NewLoc);
2003                     });
2004     }
2005   }
2006 
2007   if (IsAnnotatedParallel) {
2008     LLVM_DEBUG(
2009         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2010                << "checks.\n");
2011     CanVecMem = true;
2012     return;
2013   }
2014 
2015   for (LoadInst *LD : Loads) {
2016     Value *Ptr = LD->getPointerOperand();
2017     // If we did *not* see this pointer before, insert it to the
2018     // read list. If we *did* see it before, then it is already in
2019     // the read-write list. This allows us to vectorize expressions
2020     // such as A[i] += x;  Because the address of A[i] is a read-write
2021     // pointer. This only works if the index of A[i] is consecutive.
2022     // If the address of i is unknown (for example A[B[i]]) then we may
2023     // read a few words, modify, and write a few words, and some of the
2024     // words may be written to the same address.
2025     bool IsReadOnlyPtr = false;
2026     if (Seen.insert(Ptr).second ||
2027         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) {
2028       ++NumReads;
2029       IsReadOnlyPtr = true;
2030     }
2031 
2032     // See if there is an unsafe dependency between a load to a uniform address and
2033     // store to the same uniform address.
2034     if (UniformStores.count(Ptr)) {
2035       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2036                            "load and uniform store to the same address!\n");
2037       HasDependenceInvolvingLoopInvariantAddress = true;
2038     }
2039 
2040     MemoryLocation Loc = MemoryLocation::get(LD);
2041     // The TBAA metadata could have a control dependency on the predication
2042     // condition, so we cannot rely on it when determining whether or not we
2043     // need runtime pointer checks.
2044     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2045       Loc.AATags.TBAA = nullptr;
2046 
2047     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2048                   [&Accesses, Loc, IsReadOnlyPtr](Value *Ptr) {
2049                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2050                     Accesses.addLoad(NewLoc, IsReadOnlyPtr);
2051                   });
2052   }
2053 
2054   // If we write (or read-write) to a single destination and there are no
2055   // other reads in this loop then is it safe to vectorize.
2056   if (NumReadWrites == 1 && NumReads == 0) {
2057     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2058     CanVecMem = true;
2059     return;
2060   }
2061 
2062   // Build dependence sets and check whether we need a runtime pointer bounds
2063   // check.
2064   Accesses.buildDependenceSets();
2065 
2066   // Find pointers with computable bounds. We are going to use this information
2067   // to place a runtime bound check.
2068   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2069                                                   TheLoop, SymbolicStrides);
2070   if (!CanDoRTIfNeeded) {
2071     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2072     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2073                       << "the array bounds.\n");
2074     CanVecMem = false;
2075     return;
2076   }
2077 
2078   LLVM_DEBUG(
2079     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2080 
2081   CanVecMem = true;
2082   if (Accesses.isDependencyCheckNeeded()) {
2083     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2084     CanVecMem = DepChecker->areDepsSafe(
2085         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2086     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2087 
2088     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2089       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2090 
2091       // Clear the dependency checks. We assume they are not needed.
2092       Accesses.resetDepChecks(*DepChecker);
2093 
2094       PtrRtChecking->reset();
2095       PtrRtChecking->Need = true;
2096 
2097       auto *SE = PSE->getSE();
2098       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2099                                                  SymbolicStrides, true);
2100 
2101       // Check that we found the bounds for the pointer.
2102       if (!CanDoRTIfNeeded) {
2103         recordAnalysis("CantCheckMemDepsAtRunTime")
2104             << "cannot check memory dependencies at runtime";
2105         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2106         CanVecMem = false;
2107         return;
2108       }
2109 
2110       CanVecMem = true;
2111     }
2112   }
2113 
2114   if (HasConvergentOp) {
2115     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2116       << "cannot add control dependency to convergent operation";
2117     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2118                          "would be needed with a convergent operation\n");
2119     CanVecMem = false;
2120     return;
2121   }
2122 
2123   if (CanVecMem)
2124     LLVM_DEBUG(
2125         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2126                << (PtrRtChecking->Need ? "" : " don't")
2127                << " need runtime memory checks.\n");
2128   else {
2129     recordAnalysis("UnsafeMemDep")
2130         << "unsafe dependent memory operations in loop. Use "
2131            "#pragma loop distribute(enable) to allow loop distribution "
2132            "to attempt to isolate the offending operations into a separate "
2133            "loop";
2134     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2135   }
2136 }
2137 
2138 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2139                                            DominatorTree *DT)  {
2140   assert(TheLoop->contains(BB) && "Unknown block used");
2141 
2142   // Blocks that do not dominate the latch need predication.
2143   BasicBlock* Latch = TheLoop->getLoopLatch();
2144   return !DT->dominates(BB, Latch);
2145 }
2146 
2147 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2148                                                            Instruction *I) {
2149   assert(!Report && "Multiple reports generated");
2150 
2151   Value *CodeRegion = TheLoop->getHeader();
2152   DebugLoc DL = TheLoop->getStartLoc();
2153 
2154   if (I) {
2155     CodeRegion = I->getParent();
2156     // If there is no debug location attached to the instruction, revert back to
2157     // using the loop's.
2158     if (I->getDebugLoc())
2159       DL = I->getDebugLoc();
2160   }
2161 
2162   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2163                                                    CodeRegion);
2164   return *Report;
2165 }
2166 
2167 bool LoopAccessInfo::isUniform(Value *V) const {
2168   auto *SE = PSE->getSE();
2169   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2170   // never considered uniform.
2171   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2172   // trivially loop-invariant FP values to be considered uniform.
2173   if (!SE->isSCEVable(V->getType()))
2174     return false;
2175   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2176 }
2177 
2178 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2179   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2180   if (!Ptr)
2181     return;
2182 
2183   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2184   if (!Stride)
2185     return;
2186 
2187   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2188                        "versioning:");
2189   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2190 
2191   // Avoid adding the "Stride == 1" predicate when we know that
2192   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2193   // or zero iteration loop, as Trip-Count <= Stride == 1.
2194   //
2195   // TODO: We are currently not making a very informed decision on when it is
2196   // beneficial to apply stride versioning. It might make more sense that the
2197   // users of this analysis (such as the vectorizer) will trigger it, based on
2198   // their specific cost considerations; For example, in cases where stride
2199   // versioning does  not help resolving memory accesses/dependences, the
2200   // vectorizer should evaluate the cost of the runtime test, and the benefit
2201   // of various possible stride specializations, considering the alternatives
2202   // of using gather/scatters (if available).
2203 
2204   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2205   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2206 
2207   // Match the types so we can compare the stride and the BETakenCount.
2208   // The Stride can be positive/negative, so we sign extend Stride;
2209   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2210   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2211   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2212   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2213   const SCEV *CastedStride = StrideExpr;
2214   const SCEV *CastedBECount = BETakenCount;
2215   ScalarEvolution *SE = PSE->getSE();
2216   if (BETypeSize >= StrideTypeSize)
2217     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2218   else
2219     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2220   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2221   // Since TripCount == BackEdgeTakenCount + 1, checking:
2222   // "Stride >= TripCount" is equivalent to checking:
2223   // Stride - BETakenCount > 0
2224   if (SE->isKnownPositive(StrideMinusBETaken)) {
2225     LLVM_DEBUG(
2226         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2227                   "Stride==1 predicate will imply that the loop executes "
2228                   "at most once.\n");
2229     return;
2230   }
2231   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2232 
2233   SymbolicStrides[Ptr] = Stride;
2234   StrideSet.insert(Stride);
2235 }
2236 
2237 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2238                                const TargetLibraryInfo *TLI, AAResults *AA,
2239                                DominatorTree *DT, LoopInfo *LI)
2240     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2241       PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2242       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2243       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2244       HasConvergentOp(false),
2245       HasDependenceInvolvingLoopInvariantAddress(false) {
2246   if (canAnalyzeLoop())
2247     analyzeLoop(AA, LI, TLI, DT);
2248 }
2249 
2250 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2251   if (CanVecMem) {
2252     OS.indent(Depth) << "Memory dependences are safe";
2253     if (MaxSafeDepDistBytes != -1ULL)
2254       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2255          << " bytes";
2256     if (PtrRtChecking->Need)
2257       OS << " with run-time checks";
2258     OS << "\n";
2259   }
2260 
2261   if (HasConvergentOp)
2262     OS.indent(Depth) << "Has convergent operation in loop\n";
2263 
2264   if (Report)
2265     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2266 
2267   if (auto *Dependences = DepChecker->getDependences()) {
2268     OS.indent(Depth) << "Dependences:\n";
2269     for (auto &Dep : *Dependences) {
2270       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2271       OS << "\n";
2272     }
2273   } else
2274     OS.indent(Depth) << "Too many dependences, not recorded\n";
2275 
2276   // List the pair of accesses need run-time checks to prove independence.
2277   PtrRtChecking->print(OS, Depth);
2278   OS << "\n";
2279 
2280   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2281                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2282                    << "found in loop.\n";
2283 
2284   OS.indent(Depth) << "SCEV assumptions:\n";
2285   PSE->getUnionPredicate().print(OS, Depth);
2286 
2287   OS << "\n";
2288 
2289   OS.indent(Depth) << "Expressions re-written:\n";
2290   PSE->print(OS, Depth);
2291 }
2292 
2293 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2294   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2295 }
2296 
2297 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2298   auto &LAI = LoopAccessInfoMap[L];
2299 
2300   if (!LAI)
2301     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2302 
2303   return *LAI.get();
2304 }
2305 
2306 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2307   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2308 
2309   for (Loop *TopLevelLoop : *LI)
2310     for (Loop *L : depth_first(TopLevelLoop)) {
2311       OS.indent(2) << L->getHeader()->getName() << ":\n";
2312       auto &LAI = LAA.getInfo(L);
2313       LAI.print(OS, 4);
2314     }
2315 }
2316 
2317 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2318   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2319   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2320   TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2321   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2322   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2323   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2324 
2325   return false;
2326 }
2327 
2328 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2329   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2330   AU.addRequiredTransitive<AAResultsWrapperPass>();
2331   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2332   AU.addRequiredTransitive<LoopInfoWrapperPass>();
2333 
2334   AU.setPreservesAll();
2335 }
2336 
2337 char LoopAccessLegacyAnalysis::ID = 0;
2338 static const char laa_name[] = "Loop Access Analysis";
2339 #define LAA_NAME "loop-accesses"
2340 
2341 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2342 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2343 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2344 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2345 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2346 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2347 
2348 AnalysisKey LoopAccessAnalysis::Key;
2349 
2350 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2351                                        LoopStandardAnalysisResults &AR) {
2352   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2353 }
2354 
2355 namespace llvm {
2356 
2357   Pass *createLAAPass() {
2358     return new LoopAccessLegacyAnalysis();
2359   }
2360 
2361 } // end namespace llvm
2362