1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 151 if (SI == PtrToStride.end()) 152 // For a non-symbolic stride, just return the original expression. 153 return OrigSCEV; 154 155 Value *StrideVal = stripIntegerCast(SI->second); 156 157 ScalarEvolution *SE = PSE.getSE(); 158 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 159 const auto *CT = 160 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 161 162 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 163 auto *Expr = PSE.getSCEV(Ptr); 164 165 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 166 << " by: " << *Expr << "\n"); 167 return Expr; 168 } 169 170 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 171 unsigned Index, RuntimePointerChecking &RtCheck) 172 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 173 AddressSpace(RtCheck.Pointers[Index] 174 .PointerValue->getType() 175 ->getPointerAddressSpace()) { 176 Members.push_back(Index); 177 } 178 179 /// Calculate Start and End points of memory access. 180 /// Let's assume A is the first access and B is a memory access on N-th loop 181 /// iteration. Then B is calculated as: 182 /// B = A + Step*N . 183 /// Step value may be positive or negative. 184 /// N is a calculated back-edge taken count: 185 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 186 /// Start and End points are calculated in the following way: 187 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 188 /// where SizeOfElt is the size of single memory access in bytes. 189 /// 190 /// There is no conflict when the intervals are disjoint: 191 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 192 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 193 unsigned DepSetId, unsigned ASId, 194 const ValueToValueMap &Strides, 195 PredicatedScalarEvolution &PSE) { 196 // Get the stride replaced scev. 197 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 198 ScalarEvolution *SE = PSE.getSE(); 199 200 const SCEV *ScStart; 201 const SCEV *ScEnd; 202 203 if (SE->isLoopInvariant(Sc, Lp)) { 204 ScStart = ScEnd = Sc; 205 } else { 206 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 207 assert(AR && "Invalid addrec expression"); 208 const SCEV *Ex = PSE.getBackedgeTakenCount(); 209 210 ScStart = AR->getStart(); 211 ScEnd = AR->evaluateAtIteration(Ex, *SE); 212 const SCEV *Step = AR->getStepRecurrence(*SE); 213 214 // For expressions with negative step, the upper bound is ScStart and the 215 // lower bound is ScEnd. 216 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 217 if (CStep->getValue()->isNegative()) 218 std::swap(ScStart, ScEnd); 219 } else { 220 // Fallback case: the step is not constant, but we can still 221 // get the upper and lower bounds of the interval by using min/max 222 // expressions. 223 ScStart = SE->getUMinExpr(ScStart, ScEnd); 224 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 225 } 226 } 227 // Add the size of the pointed element to ScEnd. 228 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 229 Type *IdxTy = DL.getIndexType(Ptr->getType()); 230 const SCEV *EltSizeSCEV = 231 SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType()); 232 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 233 234 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 235 } 236 237 SmallVector<RuntimePointerCheck, 4> 238 RuntimePointerChecking::generateChecks() const { 239 SmallVector<RuntimePointerCheck, 4> Checks; 240 241 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 242 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 243 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 244 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 245 246 if (needsChecking(CGI, CGJ)) 247 Checks.push_back(std::make_pair(&CGI, &CGJ)); 248 } 249 } 250 return Checks; 251 } 252 253 void RuntimePointerChecking::generateChecks( 254 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 255 assert(Checks.empty() && "Checks is not empty"); 256 groupChecks(DepCands, UseDependencies); 257 Checks = generateChecks(); 258 } 259 260 bool RuntimePointerChecking::needsChecking( 261 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 262 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 263 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 264 if (needsChecking(M.Members[I], N.Members[J])) 265 return true; 266 return false; 267 } 268 269 /// Compare \p I and \p J and return the minimum. 270 /// Return nullptr in case we couldn't find an answer. 271 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 272 ScalarEvolution *SE) { 273 const SCEV *Diff = SE->getMinusSCEV(J, I); 274 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 275 276 if (!C) 277 return nullptr; 278 if (C->getValue()->isNegative()) 279 return J; 280 return I; 281 } 282 283 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 284 RuntimePointerChecking &RtCheck) { 285 return addPointer( 286 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 287 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 288 *RtCheck.SE); 289 } 290 291 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 292 const SCEV *End, unsigned AS, 293 ScalarEvolution &SE) { 294 assert(AddressSpace == AS && 295 "all pointers in a checking group must be in the same address space"); 296 297 // Compare the starts and ends with the known minimum and maximum 298 // of this set. We need to know how we compare against the min/max 299 // of the set in order to be able to emit memchecks. 300 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 301 if (!Min0) 302 return false; 303 304 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 305 if (!Min1) 306 return false; 307 308 // Update the low bound expression if we've found a new min value. 309 if (Min0 == Start) 310 Low = Start; 311 312 // Update the high bound expression if we've found a new max value. 313 if (Min1 != End) 314 High = End; 315 316 Members.push_back(Index); 317 return true; 318 } 319 320 void RuntimePointerChecking::groupChecks( 321 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 322 // We build the groups from dependency candidates equivalence classes 323 // because: 324 // - We know that pointers in the same equivalence class share 325 // the same underlying object and therefore there is a chance 326 // that we can compare pointers 327 // - We wouldn't be able to merge two pointers for which we need 328 // to emit a memcheck. The classes in DepCands are already 329 // conveniently built such that no two pointers in the same 330 // class need checking against each other. 331 332 // We use the following (greedy) algorithm to construct the groups 333 // For every pointer in the equivalence class: 334 // For each existing group: 335 // - if the difference between this pointer and the min/max bounds 336 // of the group is a constant, then make the pointer part of the 337 // group and update the min/max bounds of that group as required. 338 339 CheckingGroups.clear(); 340 341 // If we need to check two pointers to the same underlying object 342 // with a non-constant difference, we shouldn't perform any pointer 343 // grouping with those pointers. This is because we can easily get 344 // into cases where the resulting check would return false, even when 345 // the accesses are safe. 346 // 347 // The following example shows this: 348 // for (i = 0; i < 1000; ++i) 349 // a[5000 + i * m] = a[i] + a[i + 9000] 350 // 351 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 352 // (0, 10000) which is always false. However, if m is 1, there is no 353 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 354 // us to perform an accurate check in this case. 355 // 356 // The above case requires that we have an UnknownDependence between 357 // accesses to the same underlying object. This cannot happen unless 358 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 359 // is also false. In this case we will use the fallback path and create 360 // separate checking groups for all pointers. 361 362 // If we don't have the dependency partitions, construct a new 363 // checking pointer group for each pointer. This is also required 364 // for correctness, because in this case we can have checking between 365 // pointers to the same underlying object. 366 if (!UseDependencies) { 367 for (unsigned I = 0; I < Pointers.size(); ++I) 368 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 369 return; 370 } 371 372 unsigned TotalComparisons = 0; 373 374 DenseMap<Value *, unsigned> PositionMap; 375 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 376 PositionMap[Pointers[Index].PointerValue] = Index; 377 378 // We need to keep track of what pointers we've already seen so we 379 // don't process them twice. 380 SmallSet<unsigned, 2> Seen; 381 382 // Go through all equivalence classes, get the "pointer check groups" 383 // and add them to the overall solution. We use the order in which accesses 384 // appear in 'Pointers' to enforce determinism. 385 for (unsigned I = 0; I < Pointers.size(); ++I) { 386 // We've seen this pointer before, and therefore already processed 387 // its equivalence class. 388 if (Seen.count(I)) 389 continue; 390 391 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 392 Pointers[I].IsWritePtr); 393 394 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 395 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 396 397 // Because DepCands is constructed by visiting accesses in the order in 398 // which they appear in alias sets (which is deterministic) and the 399 // iteration order within an equivalence class member is only dependent on 400 // the order in which unions and insertions are performed on the 401 // equivalence class, the iteration order is deterministic. 402 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 403 MI != ME; ++MI) { 404 auto PointerI = PositionMap.find(MI->getPointer()); 405 assert(PointerI != PositionMap.end() && 406 "pointer in equivalence class not found in PositionMap"); 407 unsigned Pointer = PointerI->second; 408 bool Merged = false; 409 // Mark this pointer as seen. 410 Seen.insert(Pointer); 411 412 // Go through all the existing sets and see if we can find one 413 // which can include this pointer. 414 for (RuntimeCheckingPtrGroup &Group : Groups) { 415 // Don't perform more than a certain amount of comparisons. 416 // This should limit the cost of grouping the pointers to something 417 // reasonable. If we do end up hitting this threshold, the algorithm 418 // will create separate groups for all remaining pointers. 419 if (TotalComparisons > MemoryCheckMergeThreshold) 420 break; 421 422 TotalComparisons++; 423 424 if (Group.addPointer(Pointer, *this)) { 425 Merged = true; 426 break; 427 } 428 } 429 430 if (!Merged) 431 // We couldn't add this pointer to any existing set or the threshold 432 // for the number of comparisons has been reached. Create a new group 433 // to hold the current pointer. 434 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 435 } 436 437 // We've computed the grouped checks for this partition. 438 // Save the results and continue with the next one. 439 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 440 } 441 } 442 443 bool RuntimePointerChecking::arePointersInSamePartition( 444 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 445 unsigned PtrIdx2) { 446 return (PtrToPartition[PtrIdx1] != -1 && 447 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 448 } 449 450 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 451 const PointerInfo &PointerI = Pointers[I]; 452 const PointerInfo &PointerJ = Pointers[J]; 453 454 // No need to check if two readonly pointers intersect. 455 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 456 return false; 457 458 // Only need to check pointers between two different dependency sets. 459 if (PointerI.DependencySetId == PointerJ.DependencySetId) 460 return false; 461 462 // Only need to check pointers in the same alias set. 463 if (PointerI.AliasSetId != PointerJ.AliasSetId) 464 return false; 465 466 return true; 467 } 468 469 void RuntimePointerChecking::printChecks( 470 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 471 unsigned Depth) const { 472 unsigned N = 0; 473 for (const auto &Check : Checks) { 474 const auto &First = Check.first->Members, &Second = Check.second->Members; 475 476 OS.indent(Depth) << "Check " << N++ << ":\n"; 477 478 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 479 for (unsigned K = 0; K < First.size(); ++K) 480 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 481 482 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 483 for (unsigned K = 0; K < Second.size(); ++K) 484 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 485 } 486 } 487 488 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 489 490 OS.indent(Depth) << "Run-time memory checks:\n"; 491 printChecks(OS, Checks, Depth); 492 493 OS.indent(Depth) << "Grouped accesses:\n"; 494 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 495 const auto &CG = CheckingGroups[I]; 496 497 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 498 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 499 << ")\n"; 500 for (unsigned J = 0; J < CG.Members.size(); ++J) { 501 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 502 << "\n"; 503 } 504 } 505 } 506 507 namespace { 508 509 /// Analyses memory accesses in a loop. 510 /// 511 /// Checks whether run time pointer checks are needed and builds sets for data 512 /// dependence checking. 513 class AccessAnalysis { 514 public: 515 /// Read or write access location. 516 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 517 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 518 519 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 520 MemoryDepChecker::DepCandidates &DA, 521 PredicatedScalarEvolution &PSE) 522 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 523 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 524 525 /// Register a load and whether it is only read from. 526 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 527 Value *Ptr = const_cast<Value*>(Loc.Ptr); 528 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 529 Accesses.insert(MemAccessInfo(Ptr, false)); 530 if (IsReadOnly) 531 ReadOnlyPtr.insert(Ptr); 532 } 533 534 /// Register a store. 535 void addStore(MemoryLocation &Loc) { 536 Value *Ptr = const_cast<Value*>(Loc.Ptr); 537 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 538 Accesses.insert(MemAccessInfo(Ptr, true)); 539 } 540 541 /// Check if we can emit a run-time no-alias check for \p Access. 542 /// 543 /// Returns true if we can emit a run-time no alias check for \p Access. 544 /// If we can check this access, this also adds it to a dependence set and 545 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 546 /// we will attempt to use additional run-time checks in order to get 547 /// the bounds of the pointer. 548 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 549 MemAccessInfo Access, 550 const ValueToValueMap &Strides, 551 DenseMap<Value *, unsigned> &DepSetId, 552 Loop *TheLoop, unsigned &RunningDepId, 553 unsigned ASId, bool ShouldCheckStride, 554 bool Assume); 555 556 /// Check whether we can check the pointers at runtime for 557 /// non-intersection. 558 /// 559 /// Returns true if we need no check or if we do and we can generate them 560 /// (i.e. the pointers have computable bounds). 561 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 562 Loop *TheLoop, const ValueToValueMap &Strides, 563 bool ShouldCheckWrap = false); 564 565 /// Goes over all memory accesses, checks whether a RT check is needed 566 /// and builds sets of dependent accesses. 567 void buildDependenceSets() { 568 processMemAccesses(); 569 } 570 571 /// Initial processing of memory accesses determined that we need to 572 /// perform dependency checking. 573 /// 574 /// Note that this can later be cleared if we retry memcheck analysis without 575 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 576 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 577 578 /// We decided that no dependence analysis would be used. Reset the state. 579 void resetDepChecks(MemoryDepChecker &DepChecker) { 580 CheckDeps.clear(); 581 DepChecker.clearDependences(); 582 } 583 584 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 585 586 private: 587 typedef SetVector<MemAccessInfo> PtrAccessSet; 588 589 /// Go over all memory access and check whether runtime pointer checks 590 /// are needed and build sets of dependency check candidates. 591 void processMemAccesses(); 592 593 /// Set of all accesses. 594 PtrAccessSet Accesses; 595 596 /// The loop being checked. 597 const Loop *TheLoop; 598 599 /// List of accesses that need a further dependence check. 600 MemAccessInfoList CheckDeps; 601 602 /// Set of pointers that are read only. 603 SmallPtrSet<Value*, 16> ReadOnlyPtr; 604 605 /// An alias set tracker to partition the access set by underlying object and 606 //intrinsic property (such as TBAA metadata). 607 AliasSetTracker AST; 608 609 LoopInfo *LI; 610 611 /// Sets of potentially dependent accesses - members of one set share an 612 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 613 /// dependence check. 614 MemoryDepChecker::DepCandidates &DepCands; 615 616 /// Initial processing of memory accesses determined that we may need 617 /// to add memchecks. Perform the analysis to determine the necessary checks. 618 /// 619 /// Note that, this is different from isDependencyCheckNeeded. When we retry 620 /// memcheck analysis without dependency checking 621 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 622 /// cleared while this remains set if we have potentially dependent accesses. 623 bool IsRTCheckAnalysisNeeded; 624 625 /// The SCEV predicate containing all the SCEV-related assumptions. 626 PredicatedScalarEvolution &PSE; 627 }; 628 629 } // end anonymous namespace 630 631 /// Check whether a pointer can participate in a runtime bounds check. 632 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 633 /// by adding run-time checks (overflow checks) if necessary. 634 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 635 const ValueToValueMap &Strides, Value *Ptr, 636 Loop *L, bool Assume) { 637 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 638 639 // The bounds for loop-invariant pointer is trivial. 640 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 641 return true; 642 643 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 644 645 if (!AR && Assume) 646 AR = PSE.getAsAddRec(Ptr); 647 648 if (!AR) 649 return false; 650 651 return AR->isAffine(); 652 } 653 654 /// Check whether a pointer address cannot wrap. 655 static bool isNoWrap(PredicatedScalarEvolution &PSE, 656 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 657 const SCEV *PtrScev = PSE.getSCEV(Ptr); 658 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 659 return true; 660 661 Type *AccessTy = Ptr->getType()->getPointerElementType(); 662 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 663 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 664 return true; 665 666 return false; 667 } 668 669 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 670 MemAccessInfo Access, 671 const ValueToValueMap &StridesMap, 672 DenseMap<Value *, unsigned> &DepSetId, 673 Loop *TheLoop, unsigned &RunningDepId, 674 unsigned ASId, bool ShouldCheckWrap, 675 bool Assume) { 676 Value *Ptr = Access.getPointer(); 677 678 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 679 return false; 680 681 // When we run after a failing dependency check we have to make sure 682 // we don't have wrapping pointers. 683 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 684 auto *Expr = PSE.getSCEV(Ptr); 685 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 686 return false; 687 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 688 } 689 690 // The id of the dependence set. 691 unsigned DepId; 692 693 if (isDependencyCheckNeeded()) { 694 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 695 unsigned &LeaderId = DepSetId[Leader]; 696 if (!LeaderId) 697 LeaderId = RunningDepId++; 698 DepId = LeaderId; 699 } else 700 // Each access has its own dependence set. 701 DepId = RunningDepId++; 702 703 bool IsWrite = Access.getInt(); 704 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 705 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 706 707 return true; 708 } 709 710 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 711 ScalarEvolution *SE, Loop *TheLoop, 712 const ValueToValueMap &StridesMap, 713 bool ShouldCheckWrap) { 714 // Find pointers with computable bounds. We are going to use this information 715 // to place a runtime bound check. 716 bool CanDoRT = true; 717 718 bool MayNeedRTCheck = false; 719 if (!IsRTCheckAnalysisNeeded) return true; 720 721 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 722 723 // We assign a consecutive id to access from different alias sets. 724 // Accesses between different groups doesn't need to be checked. 725 unsigned ASId = 0; 726 for (auto &AS : AST) { 727 int NumReadPtrChecks = 0; 728 int NumWritePtrChecks = 0; 729 bool CanDoAliasSetRT = true; 730 ++ASId; 731 732 // We assign consecutive id to access from different dependence sets. 733 // Accesses within the same set don't need a runtime check. 734 unsigned RunningDepId = 1; 735 DenseMap<Value *, unsigned> DepSetId; 736 737 SmallVector<MemAccessInfo, 4> Retries; 738 739 // First, count how many write and read accesses are in the alias set. Also 740 // collect MemAccessInfos for later. 741 SmallVector<MemAccessInfo, 4> AccessInfos; 742 for (const auto &A : AS) { 743 Value *Ptr = A.getValue(); 744 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 745 746 if (IsWrite) 747 ++NumWritePtrChecks; 748 else 749 ++NumReadPtrChecks; 750 AccessInfos.emplace_back(Ptr, IsWrite); 751 } 752 753 // We do not need runtime checks for this alias set, if there are no writes 754 // or a single write and no reads. 755 if (NumWritePtrChecks == 0 || 756 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 757 assert((AS.size() <= 1 || 758 all_of(AS, 759 [this](auto AC) { 760 MemAccessInfo AccessWrite(AC.getValue(), true); 761 return DepCands.findValue(AccessWrite) == DepCands.end(); 762 })) && 763 "Can only skip updating CanDoRT below, if all entries in AS " 764 "are reads or there is at most 1 entry"); 765 continue; 766 } 767 768 for (auto &Access : AccessInfos) { 769 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 770 RunningDepId, ASId, ShouldCheckWrap, false)) { 771 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 772 << *Access.getPointer() << '\n'); 773 Retries.push_back(Access); 774 CanDoAliasSetRT = false; 775 } 776 } 777 778 // Note that this function computes CanDoRT and MayNeedRTCheck 779 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 780 // we have a pointer for which we couldn't find the bounds but we don't 781 // actually need to emit any checks so it does not matter. 782 // 783 // We need runtime checks for this alias set, if there are at least 2 784 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 785 // any bound checks (because in that case the number of dependence sets is 786 // incomplete). 787 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 788 789 // We need to perform run-time alias checks, but some pointers had bounds 790 // that couldn't be checked. 791 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 792 // Reset the CanDoSetRt flag and retry all accesses that have failed. 793 // We know that we need these checks, so we can now be more aggressive 794 // and add further checks if required (overflow checks). 795 CanDoAliasSetRT = true; 796 for (auto Access : Retries) 797 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 798 TheLoop, RunningDepId, ASId, 799 ShouldCheckWrap, /*Assume=*/true)) { 800 CanDoAliasSetRT = false; 801 break; 802 } 803 } 804 805 CanDoRT &= CanDoAliasSetRT; 806 MayNeedRTCheck |= NeedsAliasSetRTCheck; 807 ++ASId; 808 } 809 810 // If the pointers that we would use for the bounds comparison have different 811 // address spaces, assume the values aren't directly comparable, so we can't 812 // use them for the runtime check. We also have to assume they could 813 // overlap. In the future there should be metadata for whether address spaces 814 // are disjoint. 815 unsigned NumPointers = RtCheck.Pointers.size(); 816 for (unsigned i = 0; i < NumPointers; ++i) { 817 for (unsigned j = i + 1; j < NumPointers; ++j) { 818 // Only need to check pointers between two different dependency sets. 819 if (RtCheck.Pointers[i].DependencySetId == 820 RtCheck.Pointers[j].DependencySetId) 821 continue; 822 // Only need to check pointers in the same alias set. 823 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 824 continue; 825 826 Value *PtrI = RtCheck.Pointers[i].PointerValue; 827 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 828 829 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 830 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 831 if (ASi != ASj) { 832 LLVM_DEBUG( 833 dbgs() << "LAA: Runtime check would require comparison between" 834 " different address spaces\n"); 835 return false; 836 } 837 } 838 } 839 840 if (MayNeedRTCheck && CanDoRT) 841 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 842 843 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 844 << " pointer comparisons.\n"); 845 846 // If we can do run-time checks, but there are no checks, no runtime checks 847 // are needed. This can happen when all pointers point to the same underlying 848 // object for example. 849 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 850 851 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 852 if (!CanDoRTIfNeeded) 853 RtCheck.reset(); 854 return CanDoRTIfNeeded; 855 } 856 857 void AccessAnalysis::processMemAccesses() { 858 // We process the set twice: first we process read-write pointers, last we 859 // process read-only pointers. This allows us to skip dependence tests for 860 // read-only pointers. 861 862 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 863 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 864 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 865 LLVM_DEBUG({ 866 for (auto A : Accesses) 867 dbgs() << "\t" << *A.getPointer() << " (" << 868 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 869 "read-only" : "read")) << ")\n"; 870 }); 871 872 // The AliasSetTracker has nicely partitioned our pointers by metadata 873 // compatibility and potential for underlying-object overlap. As a result, we 874 // only need to check for potential pointer dependencies within each alias 875 // set. 876 for (const auto &AS : AST) { 877 // Note that both the alias-set tracker and the alias sets themselves used 878 // linked lists internally and so the iteration order here is deterministic 879 // (matching the original instruction order within each set). 880 881 bool SetHasWrite = false; 882 883 // Map of pointers to last access encountered. 884 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 885 UnderlyingObjToAccessMap ObjToLastAccess; 886 887 // Set of access to check after all writes have been processed. 888 PtrAccessSet DeferredAccesses; 889 890 // Iterate over each alias set twice, once to process read/write pointers, 891 // and then to process read-only pointers. 892 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 893 bool UseDeferred = SetIteration > 0; 894 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 895 896 for (const auto &AV : AS) { 897 Value *Ptr = AV.getValue(); 898 899 // For a single memory access in AliasSetTracker, Accesses may contain 900 // both read and write, and they both need to be handled for CheckDeps. 901 for (const auto &AC : S) { 902 if (AC.getPointer() != Ptr) 903 continue; 904 905 bool IsWrite = AC.getInt(); 906 907 // If we're using the deferred access set, then it contains only 908 // reads. 909 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 910 if (UseDeferred && !IsReadOnlyPtr) 911 continue; 912 // Otherwise, the pointer must be in the PtrAccessSet, either as a 913 // read or a write. 914 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 915 S.count(MemAccessInfo(Ptr, false))) && 916 "Alias-set pointer not in the access set?"); 917 918 MemAccessInfo Access(Ptr, IsWrite); 919 DepCands.insert(Access); 920 921 // Memorize read-only pointers for later processing and skip them in 922 // the first round (they need to be checked after we have seen all 923 // write pointers). Note: we also mark pointer that are not 924 // consecutive as "read-only" pointers (so that we check 925 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 926 if (!UseDeferred && IsReadOnlyPtr) { 927 DeferredAccesses.insert(Access); 928 continue; 929 } 930 931 // If this is a write - check other reads and writes for conflicts. If 932 // this is a read only check other writes for conflicts (but only if 933 // there is no other write to the ptr - this is an optimization to 934 // catch "a[i] = a[i] + " without having to do a dependence check). 935 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 936 CheckDeps.push_back(Access); 937 IsRTCheckAnalysisNeeded = true; 938 } 939 940 if (IsWrite) 941 SetHasWrite = true; 942 943 // Create sets of pointers connected by a shared alias set and 944 // underlying object. 945 typedef SmallVector<const Value *, 16> ValueVector; 946 ValueVector TempObjects; 947 948 getUnderlyingObjects(Ptr, TempObjects, LI); 949 LLVM_DEBUG(dbgs() 950 << "Underlying objects for pointer " << *Ptr << "\n"); 951 for (const Value *UnderlyingObj : TempObjects) { 952 // nullptr never alias, don't join sets for pointer that have "null" 953 // in their UnderlyingObjects list. 954 if (isa<ConstantPointerNull>(UnderlyingObj) && 955 !NullPointerIsDefined( 956 TheLoop->getHeader()->getParent(), 957 UnderlyingObj->getType()->getPointerAddressSpace())) 958 continue; 959 960 UnderlyingObjToAccessMap::iterator Prev = 961 ObjToLastAccess.find(UnderlyingObj); 962 if (Prev != ObjToLastAccess.end()) 963 DepCands.unionSets(Access, Prev->second); 964 965 ObjToLastAccess[UnderlyingObj] = Access; 966 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 967 } 968 } 969 } 970 } 971 } 972 } 973 974 static bool isInBoundsGep(Value *Ptr) { 975 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 976 return GEP->isInBounds(); 977 return false; 978 } 979 980 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 981 /// i.e. monotonically increasing/decreasing. 982 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 983 PredicatedScalarEvolution &PSE, const Loop *L) { 984 // FIXME: This should probably only return true for NUW. 985 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 986 return true; 987 988 // Scalar evolution does not propagate the non-wrapping flags to values that 989 // are derived from a non-wrapping induction variable because non-wrapping 990 // could be flow-sensitive. 991 // 992 // Look through the potentially overflowing instruction to try to prove 993 // non-wrapping for the *specific* value of Ptr. 994 995 // The arithmetic implied by an inbounds GEP can't overflow. 996 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 997 if (!GEP || !GEP->isInBounds()) 998 return false; 999 1000 // Make sure there is only one non-const index and analyze that. 1001 Value *NonConstIndex = nullptr; 1002 for (Value *Index : GEP->indices()) 1003 if (!isa<ConstantInt>(Index)) { 1004 if (NonConstIndex) 1005 return false; 1006 NonConstIndex = Index; 1007 } 1008 if (!NonConstIndex) 1009 // The recurrence is on the pointer, ignore for now. 1010 return false; 1011 1012 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1013 // AddRec using a NSW operation. 1014 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1015 if (OBO->hasNoSignedWrap() && 1016 // Assume constant for other the operand so that the AddRec can be 1017 // easily found. 1018 isa<ConstantInt>(OBO->getOperand(1))) { 1019 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1020 1021 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1022 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1023 } 1024 1025 return false; 1026 } 1027 1028 /// Check whether the access through \p Ptr has a constant stride. 1029 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1030 Value *Ptr, const Loop *Lp, 1031 const ValueToValueMap &StridesMap, bool Assume, 1032 bool ShouldCheckWrap) { 1033 Type *Ty = Ptr->getType(); 1034 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1035 assert(!AccessTy->isAggregateType() && "Bad stride - Not a pointer to a scalar type"); 1036 1037 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1038 1039 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1040 if (Assume && !AR) 1041 AR = PSE.getAsAddRec(Ptr); 1042 1043 if (!AR) { 1044 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1045 << " SCEV: " << *PtrScev << "\n"); 1046 return 0; 1047 } 1048 1049 // The access function must stride over the innermost loop. 1050 if (Lp != AR->getLoop()) { 1051 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1052 << *Ptr << " SCEV: " << *AR << "\n"); 1053 return 0; 1054 } 1055 1056 // The address calculation must not wrap. Otherwise, a dependence could be 1057 // inverted. 1058 // An inbounds getelementptr that is a AddRec with a unit stride 1059 // cannot wrap per definition. The unit stride requirement is checked later. 1060 // An getelementptr without an inbounds attribute and unit stride would have 1061 // to access the pointer value "0" which is undefined behavior in address 1062 // space 0, therefore we can also vectorize this case. 1063 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1064 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1065 bool IsNoWrapAddRec = !ShouldCheckWrap || 1066 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1067 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1068 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1069 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1070 if (Assume) { 1071 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1072 IsNoWrapAddRec = true; 1073 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1074 << "LAA: Pointer: " << *Ptr << "\n" 1075 << "LAA: SCEV: " << *AR << "\n" 1076 << "LAA: Added an overflow assumption\n"); 1077 } else { 1078 LLVM_DEBUG( 1079 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1080 << *Ptr << " SCEV: " << *AR << "\n"); 1081 return 0; 1082 } 1083 } 1084 1085 // Check the step is constant. 1086 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1087 1088 // Calculate the pointer stride and check if it is constant. 1089 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1090 if (!C) { 1091 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1092 << " SCEV: " << *AR << "\n"); 1093 return 0; 1094 } 1095 1096 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1097 int64_t Size = DL.getTypeAllocSize(AccessTy); 1098 const APInt &APStepVal = C->getAPInt(); 1099 1100 // Huge step value - give up. 1101 if (APStepVal.getBitWidth() > 64) 1102 return 0; 1103 1104 int64_t StepVal = APStepVal.getSExtValue(); 1105 1106 // Strided access. 1107 int64_t Stride = StepVal / Size; 1108 int64_t Rem = StepVal % Size; 1109 if (Rem) 1110 return 0; 1111 1112 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1113 // know we can't "wrap around the address space". In case of address space 1114 // zero we know that this won't happen without triggering undefined behavior. 1115 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1116 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1117 AddrSpace))) { 1118 if (Assume) { 1119 // We can avoid this case by adding a run-time check. 1120 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1121 << "inbounds or in address space 0 may wrap:\n" 1122 << "LAA: Pointer: " << *Ptr << "\n" 1123 << "LAA: SCEV: " << *AR << "\n" 1124 << "LAA: Added an overflow assumption\n"); 1125 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1126 } else 1127 return 0; 1128 } 1129 1130 return Stride; 1131 } 1132 1133 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1134 Value *PtrB, const DataLayout &DL, 1135 ScalarEvolution &SE, bool StrictCheck, 1136 bool CheckType) { 1137 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1138 assert(cast<PointerType>(PtrA->getType()) 1139 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1140 assert(cast<PointerType>(PtrB->getType()) 1141 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1142 1143 // Make sure that A and B are different pointers. 1144 if (PtrA == PtrB) 1145 return 0; 1146 1147 // Make sure that the element types are the same if required. 1148 if (CheckType && ElemTyA != ElemTyB) 1149 return None; 1150 1151 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1152 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1153 1154 // Check that the address spaces match. 1155 if (ASA != ASB) 1156 return None; 1157 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1158 1159 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1160 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1161 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1162 1163 int Val; 1164 if (PtrA1 == PtrB1) { 1165 // Retrieve the address space again as pointer stripping now tracks through 1166 // `addrspacecast`. 1167 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1168 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1169 // Check that the address spaces match and that the pointers are valid. 1170 if (ASA != ASB) 1171 return None; 1172 1173 IdxWidth = DL.getIndexSizeInBits(ASA); 1174 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1175 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1176 1177 OffsetB -= OffsetA; 1178 Val = OffsetB.getSExtValue(); 1179 } else { 1180 // Otherwise compute the distance with SCEV between the base pointers. 1181 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1182 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1183 const auto *Diff = 1184 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1185 if (!Diff) 1186 return None; 1187 Val = Diff->getAPInt().getSExtValue(); 1188 } 1189 int Size = DL.getTypeStoreSize(ElemTyA); 1190 int Dist = Val / Size; 1191 1192 // Ensure that the calculated distance matches the type-based one after all 1193 // the bitcasts removal in the provided pointers. 1194 if (!StrictCheck || Dist * Size == Val) 1195 return Dist; 1196 return None; 1197 } 1198 1199 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1200 const DataLayout &DL, ScalarEvolution &SE, 1201 SmallVectorImpl<unsigned> &SortedIndices) { 1202 assert(llvm::all_of( 1203 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1204 "Expected list of pointer operands."); 1205 // Walk over the pointers, and map each of them to an offset relative to 1206 // first pointer in the array. 1207 Value *Ptr0 = VL[0]; 1208 1209 using DistOrdPair = std::pair<int64_t, int>; 1210 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1211 return L.first < R.first; 1212 }; 1213 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1214 Offsets.emplace(0, 0); 1215 int Cnt = 1; 1216 bool IsConsecutive = true; 1217 for (auto *Ptr : VL.drop_front()) { 1218 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1219 /*StrictCheck=*/true); 1220 if (!Diff) 1221 return false; 1222 1223 // Check if the pointer with the same offset is found. 1224 int64_t Offset = *Diff; 1225 auto Res = Offsets.emplace(Offset, Cnt); 1226 if (!Res.second) 1227 return false; 1228 // Consecutive order if the inserted element is the last one. 1229 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1230 ++Cnt; 1231 } 1232 SortedIndices.clear(); 1233 if (!IsConsecutive) { 1234 // Fill SortedIndices array only if it is non-consecutive. 1235 SortedIndices.resize(VL.size()); 1236 Cnt = 0; 1237 for (const std::pair<int64_t, int> &Pair : Offsets) { 1238 SortedIndices[Cnt] = Pair.second; 1239 ++Cnt; 1240 } 1241 } 1242 return true; 1243 } 1244 1245 /// Returns true if the memory operations \p A and \p B are consecutive. 1246 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1247 ScalarEvolution &SE, bool CheckType) { 1248 Value *PtrA = getLoadStorePointerOperand(A); 1249 Value *PtrB = getLoadStorePointerOperand(B); 1250 if (!PtrA || !PtrB) 1251 return false; 1252 Type *ElemTyA = getLoadStoreType(A); 1253 Type *ElemTyB = getLoadStoreType(B); 1254 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1255 /*StrictCheck=*/true, CheckType); 1256 return Diff && *Diff == 1; 1257 } 1258 1259 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 1260 function_ref<void(Value *)> AddPointer) { 1261 SmallPtrSet<Value *, 8> Visited; 1262 SmallVector<Value *> WorkList; 1263 WorkList.push_back(StartPtr); 1264 1265 while (!WorkList.empty()) { 1266 Value *Ptr = WorkList.pop_back_val(); 1267 if (!Visited.insert(Ptr).second) 1268 continue; 1269 auto *PN = dyn_cast<PHINode>(Ptr); 1270 // SCEV does not look through non-header PHIs inside the loop. Such phis 1271 // can be analyzed by adding separate accesses for each incoming pointer 1272 // value. 1273 if (PN && InnermostLoop.contains(PN->getParent()) && 1274 PN->getParent() != InnermostLoop.getHeader()) { 1275 for (const Use &Inc : PN->incoming_values()) 1276 WorkList.push_back(Inc); 1277 } else 1278 AddPointer(Ptr); 1279 } 1280 } 1281 1282 void MemoryDepChecker::addAccess(StoreInst *SI) { 1283 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1284 [this, SI](Value *Ptr) { 1285 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1286 InstMap.push_back(SI); 1287 ++AccessIdx; 1288 }); 1289 } 1290 1291 void MemoryDepChecker::addAccess(LoadInst *LI) { 1292 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1293 [this, LI](Value *Ptr) { 1294 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1295 InstMap.push_back(LI); 1296 ++AccessIdx; 1297 }); 1298 } 1299 1300 MemoryDepChecker::VectorizationSafetyStatus 1301 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1302 switch (Type) { 1303 case NoDep: 1304 case Forward: 1305 case BackwardVectorizable: 1306 return VectorizationSafetyStatus::Safe; 1307 1308 case Unknown: 1309 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1310 case ForwardButPreventsForwarding: 1311 case Backward: 1312 case BackwardVectorizableButPreventsForwarding: 1313 return VectorizationSafetyStatus::Unsafe; 1314 } 1315 llvm_unreachable("unexpected DepType!"); 1316 } 1317 1318 bool MemoryDepChecker::Dependence::isBackward() const { 1319 switch (Type) { 1320 case NoDep: 1321 case Forward: 1322 case ForwardButPreventsForwarding: 1323 case Unknown: 1324 return false; 1325 1326 case BackwardVectorizable: 1327 case Backward: 1328 case BackwardVectorizableButPreventsForwarding: 1329 return true; 1330 } 1331 llvm_unreachable("unexpected DepType!"); 1332 } 1333 1334 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1335 return isBackward() || Type == Unknown; 1336 } 1337 1338 bool MemoryDepChecker::Dependence::isForward() const { 1339 switch (Type) { 1340 case Forward: 1341 case ForwardButPreventsForwarding: 1342 return true; 1343 1344 case NoDep: 1345 case Unknown: 1346 case BackwardVectorizable: 1347 case Backward: 1348 case BackwardVectorizableButPreventsForwarding: 1349 return false; 1350 } 1351 llvm_unreachable("unexpected DepType!"); 1352 } 1353 1354 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1355 uint64_t TypeByteSize) { 1356 // If loads occur at a distance that is not a multiple of a feasible vector 1357 // factor store-load forwarding does not take place. 1358 // Positive dependences might cause troubles because vectorizing them might 1359 // prevent store-load forwarding making vectorized code run a lot slower. 1360 // a[i] = a[i-3] ^ a[i-8]; 1361 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1362 // hence on your typical architecture store-load forwarding does not take 1363 // place. Vectorizing in such cases does not make sense. 1364 // Store-load forwarding distance. 1365 1366 // After this many iterations store-to-load forwarding conflicts should not 1367 // cause any slowdowns. 1368 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1369 // Maximum vector factor. 1370 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1371 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1372 1373 // Compute the smallest VF at which the store and load would be misaligned. 1374 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1375 VF *= 2) { 1376 // If the number of vector iteration between the store and the load are 1377 // small we could incur conflicts. 1378 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1379 MaxVFWithoutSLForwardIssues = (VF >> 1); 1380 break; 1381 } 1382 } 1383 1384 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1385 LLVM_DEBUG( 1386 dbgs() << "LAA: Distance " << Distance 1387 << " that could cause a store-load forwarding conflict\n"); 1388 return true; 1389 } 1390 1391 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1392 MaxVFWithoutSLForwardIssues != 1393 VectorizerParams::MaxVectorWidth * TypeByteSize) 1394 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1395 return false; 1396 } 1397 1398 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1399 if (Status < S) 1400 Status = S; 1401 } 1402 1403 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1404 /// memory accesses, that have the same stride whose absolute value is given 1405 /// in \p Stride, and that have the same type size \p TypeByteSize, 1406 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1407 /// possible to prove statically that the dependence distance is larger 1408 /// than the range that the accesses will travel through the execution of 1409 /// the loop. If so, return true; false otherwise. This is useful for 1410 /// example in loops such as the following (PR31098): 1411 /// for (i = 0; i < D; ++i) { 1412 /// = out[i]; 1413 /// out[i+D] = 1414 /// } 1415 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1416 const SCEV &BackedgeTakenCount, 1417 const SCEV &Dist, uint64_t Stride, 1418 uint64_t TypeByteSize) { 1419 1420 // If we can prove that 1421 // (**) |Dist| > BackedgeTakenCount * Step 1422 // where Step is the absolute stride of the memory accesses in bytes, 1423 // then there is no dependence. 1424 // 1425 // Rationale: 1426 // We basically want to check if the absolute distance (|Dist/Step|) 1427 // is >= the loop iteration count (or > BackedgeTakenCount). 1428 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1429 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1430 // that the dependence distance is >= VF; This is checked elsewhere. 1431 // But in some cases we can prune unknown dependence distances early, and 1432 // even before selecting the VF, and without a runtime test, by comparing 1433 // the distance against the loop iteration count. Since the vectorized code 1434 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1435 // also guarantees that distance >= VF. 1436 // 1437 const uint64_t ByteStride = Stride * TypeByteSize; 1438 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1439 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1440 1441 const SCEV *CastedDist = &Dist; 1442 const SCEV *CastedProduct = Product; 1443 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1444 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1445 1446 // The dependence distance can be positive/negative, so we sign extend Dist; 1447 // The multiplication of the absolute stride in bytes and the 1448 // backedgeTakenCount is non-negative, so we zero extend Product. 1449 if (DistTypeSize > ProductTypeSize) 1450 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1451 else 1452 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1453 1454 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1455 // (If so, then we have proven (**) because |Dist| >= Dist) 1456 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1457 if (SE.isKnownPositive(Minus)) 1458 return true; 1459 1460 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1461 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1462 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1463 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1464 if (SE.isKnownPositive(Minus)) 1465 return true; 1466 1467 return false; 1468 } 1469 1470 /// Check the dependence for two accesses with the same stride \p Stride. 1471 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1472 /// bytes. 1473 /// 1474 /// \returns true if they are independent. 1475 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1476 uint64_t TypeByteSize) { 1477 assert(Stride > 1 && "The stride must be greater than 1"); 1478 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1479 assert(Distance > 0 && "The distance must be non-zero"); 1480 1481 // Skip if the distance is not multiple of type byte size. 1482 if (Distance % TypeByteSize) 1483 return false; 1484 1485 uint64_t ScaledDist = Distance / TypeByteSize; 1486 1487 // No dependence if the scaled distance is not multiple of the stride. 1488 // E.g. 1489 // for (i = 0; i < 1024 ; i += 4) 1490 // A[i+2] = A[i] + 1; 1491 // 1492 // Two accesses in memory (scaled distance is 2, stride is 4): 1493 // | A[0] | | | | A[4] | | | | 1494 // | | | A[2] | | | | A[6] | | 1495 // 1496 // E.g. 1497 // for (i = 0; i < 1024 ; i += 3) 1498 // A[i+4] = A[i] + 1; 1499 // 1500 // Two accesses in memory (scaled distance is 4, stride is 3): 1501 // | A[0] | | | A[3] | | | A[6] | | | 1502 // | | | | | A[4] | | | A[7] | | 1503 return ScaledDist % Stride; 1504 } 1505 1506 MemoryDepChecker::Dependence::DepType 1507 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1508 const MemAccessInfo &B, unsigned BIdx, 1509 const ValueToValueMap &Strides) { 1510 assert (AIdx < BIdx && "Must pass arguments in program order"); 1511 1512 Value *APtr = A.getPointer(); 1513 Value *BPtr = B.getPointer(); 1514 bool AIsWrite = A.getInt(); 1515 bool BIsWrite = B.getInt(); 1516 Type *ATy = APtr->getType()->getPointerElementType(); 1517 Type *BTy = BPtr->getType()->getPointerElementType(); 1518 1519 // Two reads are independent. 1520 if (!AIsWrite && !BIsWrite) 1521 return Dependence::NoDep; 1522 1523 // We cannot check pointers in different address spaces. 1524 if (APtr->getType()->getPointerAddressSpace() != 1525 BPtr->getType()->getPointerAddressSpace()) 1526 return Dependence::Unknown; 1527 1528 int64_t StrideAPtr = 1529 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1530 int64_t StrideBPtr = 1531 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1532 1533 const SCEV *Src = PSE.getSCEV(APtr); 1534 const SCEV *Sink = PSE.getSCEV(BPtr); 1535 1536 // If the induction step is negative we have to invert source and sink of the 1537 // dependence. 1538 if (StrideAPtr < 0) { 1539 std::swap(APtr, BPtr); 1540 std::swap(ATy, BTy); 1541 std::swap(Src, Sink); 1542 std::swap(AIsWrite, BIsWrite); 1543 std::swap(AIdx, BIdx); 1544 std::swap(StrideAPtr, StrideBPtr); 1545 } 1546 1547 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1548 1549 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1550 << "(Induction step: " << StrideAPtr << ")\n"); 1551 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1552 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1553 1554 // Need accesses with constant stride. We don't want to vectorize 1555 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1556 // the address space. 1557 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1558 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1559 return Dependence::Unknown; 1560 } 1561 1562 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1563 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1564 uint64_t Stride = std::abs(StrideAPtr); 1565 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1566 if (!C) { 1567 if (!isa<SCEVCouldNotCompute>(Dist) && 1568 TypeByteSize == DL.getTypeAllocSize(BTy) && 1569 isSafeDependenceDistance(DL, *(PSE.getSE()), 1570 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1571 TypeByteSize)) 1572 return Dependence::NoDep; 1573 1574 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1575 FoundNonConstantDistanceDependence = true; 1576 return Dependence::Unknown; 1577 } 1578 1579 const APInt &Val = C->getAPInt(); 1580 int64_t Distance = Val.getSExtValue(); 1581 1582 // Attempt to prove strided accesses independent. 1583 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1584 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1585 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1586 return Dependence::NoDep; 1587 } 1588 1589 // Negative distances are not plausible dependencies. 1590 if (Val.isNegative()) { 1591 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1592 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1593 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1594 ATy != BTy)) { 1595 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1596 return Dependence::ForwardButPreventsForwarding; 1597 } 1598 1599 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1600 return Dependence::Forward; 1601 } 1602 1603 // Write to the same location with the same size. 1604 // Could be improved to assert type sizes are the same (i32 == float, etc). 1605 if (Val == 0) { 1606 if (ATy == BTy) 1607 return Dependence::Forward; 1608 LLVM_DEBUG( 1609 dbgs() << "LAA: Zero dependence difference but different types\n"); 1610 return Dependence::Unknown; 1611 } 1612 1613 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1614 1615 if (ATy != BTy) { 1616 LLVM_DEBUG( 1617 dbgs() 1618 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1619 return Dependence::Unknown; 1620 } 1621 1622 // Bail out early if passed-in parameters make vectorization not feasible. 1623 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1624 VectorizerParams::VectorizationFactor : 1); 1625 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1626 VectorizerParams::VectorizationInterleave : 1); 1627 // The minimum number of iterations for a vectorized/unrolled version. 1628 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1629 1630 // It's not vectorizable if the distance is smaller than the minimum distance 1631 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1632 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1633 // TypeByteSize (No need to plus the last gap distance). 1634 // 1635 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1636 // foo(int *A) { 1637 // int *B = (int *)((char *)A + 14); 1638 // for (i = 0 ; i < 1024 ; i += 2) 1639 // B[i] = A[i] + 1; 1640 // } 1641 // 1642 // Two accesses in memory (stride is 2): 1643 // | A[0] | | A[2] | | A[4] | | A[6] | | 1644 // | B[0] | | B[2] | | B[4] | 1645 // 1646 // Distance needs for vectorizing iterations except the last iteration: 1647 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1648 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1649 // 1650 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1651 // 12, which is less than distance. 1652 // 1653 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1654 // the minimum distance needed is 28, which is greater than distance. It is 1655 // not safe to do vectorization. 1656 uint64_t MinDistanceNeeded = 1657 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1658 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1659 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1660 << Distance << '\n'); 1661 return Dependence::Backward; 1662 } 1663 1664 // Unsafe if the minimum distance needed is greater than max safe distance. 1665 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1666 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1667 << MinDistanceNeeded << " size in bytes"); 1668 return Dependence::Backward; 1669 } 1670 1671 // Positive distance bigger than max vectorization factor. 1672 // FIXME: Should use max factor instead of max distance in bytes, which could 1673 // not handle different types. 1674 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1675 // void foo (int *A, char *B) { 1676 // for (unsigned i = 0; i < 1024; i++) { 1677 // A[i+2] = A[i] + 1; 1678 // B[i+2] = B[i] + 1; 1679 // } 1680 // } 1681 // 1682 // This case is currently unsafe according to the max safe distance. If we 1683 // analyze the two accesses on array B, the max safe dependence distance 1684 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1685 // is 8, which is less than 2 and forbidden vectorization, But actually 1686 // both A and B could be vectorized by 2 iterations. 1687 MaxSafeDepDistBytes = 1688 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1689 1690 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1691 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1692 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1693 return Dependence::BackwardVectorizableButPreventsForwarding; 1694 1695 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1696 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1697 << " with max VF = " << MaxVF << '\n'); 1698 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1699 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1700 return Dependence::BackwardVectorizable; 1701 } 1702 1703 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1704 MemAccessInfoList &CheckDeps, 1705 const ValueToValueMap &Strides) { 1706 1707 MaxSafeDepDistBytes = -1; 1708 SmallPtrSet<MemAccessInfo, 8> Visited; 1709 for (MemAccessInfo CurAccess : CheckDeps) { 1710 if (Visited.count(CurAccess)) 1711 continue; 1712 1713 // Get the relevant memory access set. 1714 EquivalenceClasses<MemAccessInfo>::iterator I = 1715 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1716 1717 // Check accesses within this set. 1718 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1719 AccessSets.member_begin(I); 1720 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1721 AccessSets.member_end(); 1722 1723 // Check every access pair. 1724 while (AI != AE) { 1725 Visited.insert(*AI); 1726 bool AIIsWrite = AI->getInt(); 1727 // Check loads only against next equivalent class, but stores also against 1728 // other stores in the same equivalence class - to the same address. 1729 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1730 (AIIsWrite ? AI : std::next(AI)); 1731 while (OI != AE) { 1732 // Check every accessing instruction pair in program order. 1733 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1734 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1735 // Scan all accesses of another equivalence class, but only the next 1736 // accesses of the same equivalent class. 1737 for (std::vector<unsigned>::iterator 1738 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1739 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1740 I2 != I2E; ++I2) { 1741 auto A = std::make_pair(&*AI, *I1); 1742 auto B = std::make_pair(&*OI, *I2); 1743 1744 assert(*I1 != *I2); 1745 if (*I1 > *I2) 1746 std::swap(A, B); 1747 1748 Dependence::DepType Type = 1749 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1750 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1751 1752 // Gather dependences unless we accumulated MaxDependences 1753 // dependences. In that case return as soon as we find the first 1754 // unsafe dependence. This puts a limit on this quadratic 1755 // algorithm. 1756 if (RecordDependences) { 1757 if (Type != Dependence::NoDep) 1758 Dependences.push_back(Dependence(A.second, B.second, Type)); 1759 1760 if (Dependences.size() >= MaxDependences) { 1761 RecordDependences = false; 1762 Dependences.clear(); 1763 LLVM_DEBUG(dbgs() 1764 << "Too many dependences, stopped recording\n"); 1765 } 1766 } 1767 if (!RecordDependences && !isSafeForVectorization()) 1768 return false; 1769 } 1770 ++OI; 1771 } 1772 AI++; 1773 } 1774 } 1775 1776 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1777 return isSafeForVectorization(); 1778 } 1779 1780 SmallVector<Instruction *, 4> 1781 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1782 MemAccessInfo Access(Ptr, isWrite); 1783 auto &IndexVector = Accesses.find(Access)->second; 1784 1785 SmallVector<Instruction *, 4> Insts; 1786 transform(IndexVector, 1787 std::back_inserter(Insts), 1788 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1789 return Insts; 1790 } 1791 1792 const char *MemoryDepChecker::Dependence::DepName[] = { 1793 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1794 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1795 1796 void MemoryDepChecker::Dependence::print( 1797 raw_ostream &OS, unsigned Depth, 1798 const SmallVectorImpl<Instruction *> &Instrs) const { 1799 OS.indent(Depth) << DepName[Type] << ":\n"; 1800 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1801 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1802 } 1803 1804 bool LoopAccessInfo::canAnalyzeLoop() { 1805 // We need to have a loop header. 1806 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1807 << TheLoop->getHeader()->getParent()->getName() << ": " 1808 << TheLoop->getHeader()->getName() << '\n'); 1809 1810 // We can only analyze innermost loops. 1811 if (!TheLoop->isInnermost()) { 1812 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1813 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1814 return false; 1815 } 1816 1817 // We must have a single backedge. 1818 if (TheLoop->getNumBackEdges() != 1) { 1819 LLVM_DEBUG( 1820 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1821 recordAnalysis("CFGNotUnderstood") 1822 << "loop control flow is not understood by analyzer"; 1823 return false; 1824 } 1825 1826 // ScalarEvolution needs to be able to find the exit count. 1827 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1828 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1829 recordAnalysis("CantComputeNumberOfIterations") 1830 << "could not determine number of loop iterations"; 1831 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1832 return false; 1833 } 1834 1835 return true; 1836 } 1837 1838 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1839 const TargetLibraryInfo *TLI, 1840 DominatorTree *DT) { 1841 typedef SmallPtrSet<Value*, 16> ValueSet; 1842 1843 // Holds the Load and Store instructions. 1844 SmallVector<LoadInst *, 16> Loads; 1845 SmallVector<StoreInst *, 16> Stores; 1846 1847 // Holds all the different accesses in the loop. 1848 unsigned NumReads = 0; 1849 unsigned NumReadWrites = 0; 1850 1851 bool HasComplexMemInst = false; 1852 1853 // A runtime check is only legal to insert if there are no convergent calls. 1854 HasConvergentOp = false; 1855 1856 PtrRtChecking->Pointers.clear(); 1857 PtrRtChecking->Need = false; 1858 1859 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1860 1861 const bool EnableMemAccessVersioningOfLoop = 1862 EnableMemAccessVersioning && 1863 !TheLoop->getHeader()->getParent()->hasOptSize(); 1864 1865 // For each block. 1866 for (BasicBlock *BB : TheLoop->blocks()) { 1867 // Scan the BB and collect legal loads and stores. Also detect any 1868 // convergent instructions. 1869 for (Instruction &I : *BB) { 1870 if (auto *Call = dyn_cast<CallBase>(&I)) { 1871 if (Call->isConvergent()) 1872 HasConvergentOp = true; 1873 } 1874 1875 // With both a non-vectorizable memory instruction and a convergent 1876 // operation, found in this loop, no reason to continue the search. 1877 if (HasComplexMemInst && HasConvergentOp) { 1878 CanVecMem = false; 1879 return; 1880 } 1881 1882 // Avoid hitting recordAnalysis multiple times. 1883 if (HasComplexMemInst) 1884 continue; 1885 1886 // If this is a load, save it. If this instruction can read from memory 1887 // but is not a load, then we quit. Notice that we don't handle function 1888 // calls that read or write. 1889 if (I.mayReadFromMemory()) { 1890 // Many math library functions read the rounding mode. We will only 1891 // vectorize a loop if it contains known function calls that don't set 1892 // the flag. Therefore, it is safe to ignore this read from memory. 1893 auto *Call = dyn_cast<CallInst>(&I); 1894 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1895 continue; 1896 1897 // If the function has an explicit vectorized counterpart, we can safely 1898 // assume that it can be vectorized. 1899 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1900 !VFDatabase::getMappings(*Call).empty()) 1901 continue; 1902 1903 auto *Ld = dyn_cast<LoadInst>(&I); 1904 if (!Ld) { 1905 recordAnalysis("CantVectorizeInstruction", Ld) 1906 << "instruction cannot be vectorized"; 1907 HasComplexMemInst = true; 1908 continue; 1909 } 1910 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1911 recordAnalysis("NonSimpleLoad", Ld) 1912 << "read with atomic ordering or volatile read"; 1913 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1914 HasComplexMemInst = true; 1915 continue; 1916 } 1917 NumLoads++; 1918 Loads.push_back(Ld); 1919 DepChecker->addAccess(Ld); 1920 if (EnableMemAccessVersioningOfLoop) 1921 collectStridedAccess(Ld); 1922 continue; 1923 } 1924 1925 // Save 'store' instructions. Abort if other instructions write to memory. 1926 if (I.mayWriteToMemory()) { 1927 auto *St = dyn_cast<StoreInst>(&I); 1928 if (!St) { 1929 recordAnalysis("CantVectorizeInstruction", St) 1930 << "instruction cannot be vectorized"; 1931 HasComplexMemInst = true; 1932 continue; 1933 } 1934 if (!St->isSimple() && !IsAnnotatedParallel) { 1935 recordAnalysis("NonSimpleStore", St) 1936 << "write with atomic ordering or volatile write"; 1937 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1938 HasComplexMemInst = true; 1939 continue; 1940 } 1941 NumStores++; 1942 Stores.push_back(St); 1943 DepChecker->addAccess(St); 1944 if (EnableMemAccessVersioningOfLoop) 1945 collectStridedAccess(St); 1946 } 1947 } // Next instr. 1948 } // Next block. 1949 1950 if (HasComplexMemInst) { 1951 CanVecMem = false; 1952 return; 1953 } 1954 1955 // Now we have two lists that hold the loads and the stores. 1956 // Next, we find the pointers that they use. 1957 1958 // Check if we see any stores. If there are no stores, then we don't 1959 // care if the pointers are *restrict*. 1960 if (!Stores.size()) { 1961 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1962 CanVecMem = true; 1963 return; 1964 } 1965 1966 MemoryDepChecker::DepCandidates DependentAccesses; 1967 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1968 1969 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1970 // multiple times on the same object. If the ptr is accessed twice, once 1971 // for read and once for write, it will only appear once (on the write 1972 // list). This is okay, since we are going to check for conflicts between 1973 // writes and between reads and writes, but not between reads and reads. 1974 ValueSet Seen; 1975 1976 // Record uniform store addresses to identify if we have multiple stores 1977 // to the same address. 1978 ValueSet UniformStores; 1979 1980 for (StoreInst *ST : Stores) { 1981 Value *Ptr = ST->getPointerOperand(); 1982 1983 if (isUniform(Ptr)) 1984 HasDependenceInvolvingLoopInvariantAddress |= 1985 !UniformStores.insert(Ptr).second; 1986 1987 // If we did *not* see this pointer before, insert it to the read-write 1988 // list. At this phase it is only a 'write' list. 1989 if (Seen.insert(Ptr).second) { 1990 ++NumReadWrites; 1991 1992 MemoryLocation Loc = MemoryLocation::get(ST); 1993 // The TBAA metadata could have a control dependency on the predication 1994 // condition, so we cannot rely on it when determining whether or not we 1995 // need runtime pointer checks. 1996 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1997 Loc.AATags.TBAA = nullptr; 1998 1999 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2000 [&Accesses, Loc](Value *Ptr) { 2001 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2002 Accesses.addStore(NewLoc); 2003 }); 2004 } 2005 } 2006 2007 if (IsAnnotatedParallel) { 2008 LLVM_DEBUG( 2009 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2010 << "checks.\n"); 2011 CanVecMem = true; 2012 return; 2013 } 2014 2015 for (LoadInst *LD : Loads) { 2016 Value *Ptr = LD->getPointerOperand(); 2017 // If we did *not* see this pointer before, insert it to the 2018 // read list. If we *did* see it before, then it is already in 2019 // the read-write list. This allows us to vectorize expressions 2020 // such as A[i] += x; Because the address of A[i] is a read-write 2021 // pointer. This only works if the index of A[i] is consecutive. 2022 // If the address of i is unknown (for example A[B[i]]) then we may 2023 // read a few words, modify, and write a few words, and some of the 2024 // words may be written to the same address. 2025 bool IsReadOnlyPtr = false; 2026 if (Seen.insert(Ptr).second || 2027 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2028 ++NumReads; 2029 IsReadOnlyPtr = true; 2030 } 2031 2032 // See if there is an unsafe dependency between a load to a uniform address and 2033 // store to the same uniform address. 2034 if (UniformStores.count(Ptr)) { 2035 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2036 "load and uniform store to the same address!\n"); 2037 HasDependenceInvolvingLoopInvariantAddress = true; 2038 } 2039 2040 MemoryLocation Loc = MemoryLocation::get(LD); 2041 // The TBAA metadata could have a control dependency on the predication 2042 // condition, so we cannot rely on it when determining whether or not we 2043 // need runtime pointer checks. 2044 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2045 Loc.AATags.TBAA = nullptr; 2046 2047 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2048 [&Accesses, Loc, IsReadOnlyPtr](Value *Ptr) { 2049 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2050 Accesses.addLoad(NewLoc, IsReadOnlyPtr); 2051 }); 2052 } 2053 2054 // If we write (or read-write) to a single destination and there are no 2055 // other reads in this loop then is it safe to vectorize. 2056 if (NumReadWrites == 1 && NumReads == 0) { 2057 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2058 CanVecMem = true; 2059 return; 2060 } 2061 2062 // Build dependence sets and check whether we need a runtime pointer bounds 2063 // check. 2064 Accesses.buildDependenceSets(); 2065 2066 // Find pointers with computable bounds. We are going to use this information 2067 // to place a runtime bound check. 2068 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2069 TheLoop, SymbolicStrides); 2070 if (!CanDoRTIfNeeded) { 2071 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2072 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2073 << "the array bounds.\n"); 2074 CanVecMem = false; 2075 return; 2076 } 2077 2078 LLVM_DEBUG( 2079 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2080 2081 CanVecMem = true; 2082 if (Accesses.isDependencyCheckNeeded()) { 2083 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2084 CanVecMem = DepChecker->areDepsSafe( 2085 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2086 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2087 2088 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2089 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2090 2091 // Clear the dependency checks. We assume they are not needed. 2092 Accesses.resetDepChecks(*DepChecker); 2093 2094 PtrRtChecking->reset(); 2095 PtrRtChecking->Need = true; 2096 2097 auto *SE = PSE->getSE(); 2098 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2099 SymbolicStrides, true); 2100 2101 // Check that we found the bounds for the pointer. 2102 if (!CanDoRTIfNeeded) { 2103 recordAnalysis("CantCheckMemDepsAtRunTime") 2104 << "cannot check memory dependencies at runtime"; 2105 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2106 CanVecMem = false; 2107 return; 2108 } 2109 2110 CanVecMem = true; 2111 } 2112 } 2113 2114 if (HasConvergentOp) { 2115 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2116 << "cannot add control dependency to convergent operation"; 2117 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2118 "would be needed with a convergent operation\n"); 2119 CanVecMem = false; 2120 return; 2121 } 2122 2123 if (CanVecMem) 2124 LLVM_DEBUG( 2125 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2126 << (PtrRtChecking->Need ? "" : " don't") 2127 << " need runtime memory checks.\n"); 2128 else { 2129 recordAnalysis("UnsafeMemDep") 2130 << "unsafe dependent memory operations in loop. Use " 2131 "#pragma loop distribute(enable) to allow loop distribution " 2132 "to attempt to isolate the offending operations into a separate " 2133 "loop"; 2134 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2135 } 2136 } 2137 2138 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2139 DominatorTree *DT) { 2140 assert(TheLoop->contains(BB) && "Unknown block used"); 2141 2142 // Blocks that do not dominate the latch need predication. 2143 BasicBlock* Latch = TheLoop->getLoopLatch(); 2144 return !DT->dominates(BB, Latch); 2145 } 2146 2147 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2148 Instruction *I) { 2149 assert(!Report && "Multiple reports generated"); 2150 2151 Value *CodeRegion = TheLoop->getHeader(); 2152 DebugLoc DL = TheLoop->getStartLoc(); 2153 2154 if (I) { 2155 CodeRegion = I->getParent(); 2156 // If there is no debug location attached to the instruction, revert back to 2157 // using the loop's. 2158 if (I->getDebugLoc()) 2159 DL = I->getDebugLoc(); 2160 } 2161 2162 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2163 CodeRegion); 2164 return *Report; 2165 } 2166 2167 bool LoopAccessInfo::isUniform(Value *V) const { 2168 auto *SE = PSE->getSE(); 2169 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2170 // never considered uniform. 2171 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2172 // trivially loop-invariant FP values to be considered uniform. 2173 if (!SE->isSCEVable(V->getType())) 2174 return false; 2175 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2176 } 2177 2178 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2179 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2180 if (!Ptr) 2181 return; 2182 2183 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2184 if (!Stride) 2185 return; 2186 2187 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2188 "versioning:"); 2189 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2190 2191 // Avoid adding the "Stride == 1" predicate when we know that 2192 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2193 // or zero iteration loop, as Trip-Count <= Stride == 1. 2194 // 2195 // TODO: We are currently not making a very informed decision on when it is 2196 // beneficial to apply stride versioning. It might make more sense that the 2197 // users of this analysis (such as the vectorizer) will trigger it, based on 2198 // their specific cost considerations; For example, in cases where stride 2199 // versioning does not help resolving memory accesses/dependences, the 2200 // vectorizer should evaluate the cost of the runtime test, and the benefit 2201 // of various possible stride specializations, considering the alternatives 2202 // of using gather/scatters (if available). 2203 2204 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2205 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2206 2207 // Match the types so we can compare the stride and the BETakenCount. 2208 // The Stride can be positive/negative, so we sign extend Stride; 2209 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2210 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2211 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2212 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2213 const SCEV *CastedStride = StrideExpr; 2214 const SCEV *CastedBECount = BETakenCount; 2215 ScalarEvolution *SE = PSE->getSE(); 2216 if (BETypeSize >= StrideTypeSize) 2217 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2218 else 2219 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2220 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2221 // Since TripCount == BackEdgeTakenCount + 1, checking: 2222 // "Stride >= TripCount" is equivalent to checking: 2223 // Stride - BETakenCount > 0 2224 if (SE->isKnownPositive(StrideMinusBETaken)) { 2225 LLVM_DEBUG( 2226 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2227 "Stride==1 predicate will imply that the loop executes " 2228 "at most once.\n"); 2229 return; 2230 } 2231 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2232 2233 SymbolicStrides[Ptr] = Stride; 2234 StrideSet.insert(Stride); 2235 } 2236 2237 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2238 const TargetLibraryInfo *TLI, AAResults *AA, 2239 DominatorTree *DT, LoopInfo *LI) 2240 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2241 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2242 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2243 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2244 HasConvergentOp(false), 2245 HasDependenceInvolvingLoopInvariantAddress(false) { 2246 if (canAnalyzeLoop()) 2247 analyzeLoop(AA, LI, TLI, DT); 2248 } 2249 2250 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2251 if (CanVecMem) { 2252 OS.indent(Depth) << "Memory dependences are safe"; 2253 if (MaxSafeDepDistBytes != -1ULL) 2254 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2255 << " bytes"; 2256 if (PtrRtChecking->Need) 2257 OS << " with run-time checks"; 2258 OS << "\n"; 2259 } 2260 2261 if (HasConvergentOp) 2262 OS.indent(Depth) << "Has convergent operation in loop\n"; 2263 2264 if (Report) 2265 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2266 2267 if (auto *Dependences = DepChecker->getDependences()) { 2268 OS.indent(Depth) << "Dependences:\n"; 2269 for (auto &Dep : *Dependences) { 2270 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2271 OS << "\n"; 2272 } 2273 } else 2274 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2275 2276 // List the pair of accesses need run-time checks to prove independence. 2277 PtrRtChecking->print(OS, Depth); 2278 OS << "\n"; 2279 2280 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2281 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2282 << "found in loop.\n"; 2283 2284 OS.indent(Depth) << "SCEV assumptions:\n"; 2285 PSE->getUnionPredicate().print(OS, Depth); 2286 2287 OS << "\n"; 2288 2289 OS.indent(Depth) << "Expressions re-written:\n"; 2290 PSE->print(OS, Depth); 2291 } 2292 2293 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2294 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2295 } 2296 2297 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2298 auto &LAI = LoopAccessInfoMap[L]; 2299 2300 if (!LAI) 2301 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2302 2303 return *LAI.get(); 2304 } 2305 2306 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2307 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2308 2309 for (Loop *TopLevelLoop : *LI) 2310 for (Loop *L : depth_first(TopLevelLoop)) { 2311 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2312 auto &LAI = LAA.getInfo(L); 2313 LAI.print(OS, 4); 2314 } 2315 } 2316 2317 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2318 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2319 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2320 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2321 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2322 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2323 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2324 2325 return false; 2326 } 2327 2328 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2329 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2330 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2331 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2332 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2333 2334 AU.setPreservesAll(); 2335 } 2336 2337 char LoopAccessLegacyAnalysis::ID = 0; 2338 static const char laa_name[] = "Loop Access Analysis"; 2339 #define LAA_NAME "loop-accesses" 2340 2341 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2342 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2343 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2344 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2345 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2346 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2347 2348 AnalysisKey LoopAccessAnalysis::Key; 2349 2350 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2351 LoopStandardAnalysisResults &AR) { 2352 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2353 } 2354 2355 namespace llvm { 2356 2357 Pass *createLAAPass() { 2358 return new LoopAccessLegacyAnalysis(); 2359 } 2360 2361 } // end namespace llvm 2362