1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// \brief The maximum iterations used to merge memory checks 52 static cl::opt<unsigned> MemoryCheckMergeThreshold( 53 "memory-check-merge-threshold", cl::Hidden, 54 cl::desc("Maximum number of comparisons done when trying to merge " 55 "runtime memory checks. (default = 100)"), 56 cl::init(100)); 57 58 /// Maximum SIMD width. 59 const unsigned VectorizerParams::MaxVectorWidth = 64; 60 61 /// \brief We collect dependences up to this threshold. 62 static cl::opt<unsigned> 63 MaxDependences("max-dependences", cl::Hidden, 64 cl::desc("Maximum number of dependences collected by " 65 "loop-access analysis (default = 100)"), 66 cl::init(100)); 67 68 bool VectorizerParams::isInterleaveForced() { 69 return ::VectorizationInterleave.getNumOccurrences() > 0; 70 } 71 72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 73 const Function *TheFunction, 74 const Loop *TheLoop, 75 const char *PassName) { 76 DebugLoc DL = TheLoop->getStartLoc(); 77 if (const Instruction *I = Message.getInstr()) 78 DL = I->getDebugLoc(); 79 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 80 *TheFunction, DL, Message.str()); 81 } 82 83 Value *llvm::stripIntegerCast(Value *V) { 84 if (CastInst *CI = dyn_cast<CastInst>(V)) 85 if (CI->getOperand(0)->getType()->isIntegerTy()) 86 return CI->getOperand(0); 87 return V; 88 } 89 90 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 91 const ValueToValueMap &PtrToStride, 92 Value *Ptr, Value *OrigPtr) { 93 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 94 95 // If there is an entry in the map return the SCEV of the pointer with the 96 // symbolic stride replaced by one. 97 ValueToValueMap::const_iterator SI = 98 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 99 if (SI != PtrToStride.end()) { 100 Value *StrideVal = SI->second; 101 102 // Strip casts. 103 StrideVal = stripIntegerCast(StrideVal); 104 105 // Replace symbolic stride by one. 106 Value *One = ConstantInt::get(StrideVal->getType(), 1); 107 ValueToValueMap RewriteMap; 108 RewriteMap[StrideVal] = One; 109 110 ScalarEvolution *SE = PSE.getSE(); 111 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 112 const auto *CT = 113 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 114 115 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 116 auto *Expr = PSE.getSCEV(Ptr); 117 118 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 119 << "\n"); 120 return Expr; 121 } 122 123 // Otherwise, just return the SCEV of the original pointer. 124 return OrigSCEV; 125 } 126 127 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 128 unsigned DepSetId, unsigned ASId, 129 const ValueToValueMap &Strides, 130 PredicatedScalarEvolution &PSE) { 131 // Get the stride replaced scev. 132 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 133 ScalarEvolution *SE = PSE.getSE(); 134 135 const SCEV *ScStart; 136 const SCEV *ScEnd; 137 138 if (SE->isLoopInvariant(Sc, Lp)) 139 ScStart = ScEnd = Sc; 140 else { 141 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 142 assert(AR && "Invalid addrec expression"); 143 const SCEV *Ex = PSE.getBackedgeTakenCount(); 144 145 ScStart = AR->getStart(); 146 ScEnd = AR->evaluateAtIteration(Ex, *SE); 147 const SCEV *Step = AR->getStepRecurrence(*SE); 148 149 // For expressions with negative step, the upper bound is ScStart and the 150 // lower bound is ScEnd. 151 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 152 if (CStep->getValue()->isNegative()) 153 std::swap(ScStart, ScEnd); 154 } else { 155 // Fallback case: the step is not constant, but the we can still 156 // get the upper and lower bounds of the interval by using min/max 157 // expressions. 158 ScStart = SE->getUMinExpr(ScStart, ScEnd); 159 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 160 } 161 } 162 163 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 164 } 165 166 SmallVector<RuntimePointerChecking::PointerCheck, 4> 167 RuntimePointerChecking::generateChecks() const { 168 SmallVector<PointerCheck, 4> Checks; 169 170 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 171 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 172 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 173 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 174 175 if (needsChecking(CGI, CGJ)) 176 Checks.push_back(std::make_pair(&CGI, &CGJ)); 177 } 178 } 179 return Checks; 180 } 181 182 void RuntimePointerChecking::generateChecks( 183 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 184 assert(Checks.empty() && "Checks is not empty"); 185 groupChecks(DepCands, UseDependencies); 186 Checks = generateChecks(); 187 } 188 189 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 190 const CheckingPtrGroup &N) const { 191 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 192 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 193 if (needsChecking(M.Members[I], N.Members[J])) 194 return true; 195 return false; 196 } 197 198 /// Compare \p I and \p J and return the minimum. 199 /// Return nullptr in case we couldn't find an answer. 200 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 201 ScalarEvolution *SE) { 202 const SCEV *Diff = SE->getMinusSCEV(J, I); 203 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 204 205 if (!C) 206 return nullptr; 207 if (C->getValue()->isNegative()) 208 return J; 209 return I; 210 } 211 212 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 213 const SCEV *Start = RtCheck.Pointers[Index].Start; 214 const SCEV *End = RtCheck.Pointers[Index].End; 215 216 // Compare the starts and ends with the known minimum and maximum 217 // of this set. We need to know how we compare against the min/max 218 // of the set in order to be able to emit memchecks. 219 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 220 if (!Min0) 221 return false; 222 223 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 224 if (!Min1) 225 return false; 226 227 // Update the low bound expression if we've found a new min value. 228 if (Min0 == Start) 229 Low = Start; 230 231 // Update the high bound expression if we've found a new max value. 232 if (Min1 != End) 233 High = End; 234 235 Members.push_back(Index); 236 return true; 237 } 238 239 void RuntimePointerChecking::groupChecks( 240 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 241 // We build the groups from dependency candidates equivalence classes 242 // because: 243 // - We know that pointers in the same equivalence class share 244 // the same underlying object and therefore there is a chance 245 // that we can compare pointers 246 // - We wouldn't be able to merge two pointers for which we need 247 // to emit a memcheck. The classes in DepCands are already 248 // conveniently built such that no two pointers in the same 249 // class need checking against each other. 250 251 // We use the following (greedy) algorithm to construct the groups 252 // For every pointer in the equivalence class: 253 // For each existing group: 254 // - if the difference between this pointer and the min/max bounds 255 // of the group is a constant, then make the pointer part of the 256 // group and update the min/max bounds of that group as required. 257 258 CheckingGroups.clear(); 259 260 // If we need to check two pointers to the same underlying object 261 // with a non-constant difference, we shouldn't perform any pointer 262 // grouping with those pointers. This is because we can easily get 263 // into cases where the resulting check would return false, even when 264 // the accesses are safe. 265 // 266 // The following example shows this: 267 // for (i = 0; i < 1000; ++i) 268 // a[5000 + i * m] = a[i] + a[i + 9000] 269 // 270 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 271 // (0, 10000) which is always false. However, if m is 1, there is no 272 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 273 // us to perform an accurate check in this case. 274 // 275 // The above case requires that we have an UnknownDependence between 276 // accesses to the same underlying object. This cannot happen unless 277 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 278 // is also false. In this case we will use the fallback path and create 279 // separate checking groups for all pointers. 280 281 // If we don't have the dependency partitions, construct a new 282 // checking pointer group for each pointer. This is also required 283 // for correctness, because in this case we can have checking between 284 // pointers to the same underlying object. 285 if (!UseDependencies) { 286 for (unsigned I = 0; I < Pointers.size(); ++I) 287 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 288 return; 289 } 290 291 unsigned TotalComparisons = 0; 292 293 DenseMap<Value *, unsigned> PositionMap; 294 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 295 PositionMap[Pointers[Index].PointerValue] = Index; 296 297 // We need to keep track of what pointers we've already seen so we 298 // don't process them twice. 299 SmallSet<unsigned, 2> Seen; 300 301 // Go through all equivalence classes, get the "pointer check groups" 302 // and add them to the overall solution. We use the order in which accesses 303 // appear in 'Pointers' to enforce determinism. 304 for (unsigned I = 0; I < Pointers.size(); ++I) { 305 // We've seen this pointer before, and therefore already processed 306 // its equivalence class. 307 if (Seen.count(I)) 308 continue; 309 310 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 311 Pointers[I].IsWritePtr); 312 313 SmallVector<CheckingPtrGroup, 2> Groups; 314 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 315 316 // Because DepCands is constructed by visiting accesses in the order in 317 // which they appear in alias sets (which is deterministic) and the 318 // iteration order within an equivalence class member is only dependent on 319 // the order in which unions and insertions are performed on the 320 // equivalence class, the iteration order is deterministic. 321 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 322 MI != ME; ++MI) { 323 unsigned Pointer = PositionMap[MI->getPointer()]; 324 bool Merged = false; 325 // Mark this pointer as seen. 326 Seen.insert(Pointer); 327 328 // Go through all the existing sets and see if we can find one 329 // which can include this pointer. 330 for (CheckingPtrGroup &Group : Groups) { 331 // Don't perform more than a certain amount of comparisons. 332 // This should limit the cost of grouping the pointers to something 333 // reasonable. If we do end up hitting this threshold, the algorithm 334 // will create separate groups for all remaining pointers. 335 if (TotalComparisons > MemoryCheckMergeThreshold) 336 break; 337 338 TotalComparisons++; 339 340 if (Group.addPointer(Pointer)) { 341 Merged = true; 342 break; 343 } 344 } 345 346 if (!Merged) 347 // We couldn't add this pointer to any existing set or the threshold 348 // for the number of comparisons has been reached. Create a new group 349 // to hold the current pointer. 350 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 351 } 352 353 // We've computed the grouped checks for this partition. 354 // Save the results and continue with the next one. 355 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 356 } 357 } 358 359 bool RuntimePointerChecking::arePointersInSamePartition( 360 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 361 unsigned PtrIdx2) { 362 return (PtrToPartition[PtrIdx1] != -1 && 363 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 364 } 365 366 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 367 const PointerInfo &PointerI = Pointers[I]; 368 const PointerInfo &PointerJ = Pointers[J]; 369 370 // No need to check if two readonly pointers intersect. 371 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 372 return false; 373 374 // Only need to check pointers between two different dependency sets. 375 if (PointerI.DependencySetId == PointerJ.DependencySetId) 376 return false; 377 378 // Only need to check pointers in the same alias set. 379 if (PointerI.AliasSetId != PointerJ.AliasSetId) 380 return false; 381 382 return true; 383 } 384 385 void RuntimePointerChecking::printChecks( 386 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 387 unsigned Depth) const { 388 unsigned N = 0; 389 for (const auto &Check : Checks) { 390 const auto &First = Check.first->Members, &Second = Check.second->Members; 391 392 OS.indent(Depth) << "Check " << N++ << ":\n"; 393 394 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 395 for (unsigned K = 0; K < First.size(); ++K) 396 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 397 398 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 399 for (unsigned K = 0; K < Second.size(); ++K) 400 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 401 } 402 } 403 404 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 405 406 OS.indent(Depth) << "Run-time memory checks:\n"; 407 printChecks(OS, Checks, Depth); 408 409 OS.indent(Depth) << "Grouped accesses:\n"; 410 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 411 const auto &CG = CheckingGroups[I]; 412 413 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 414 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 415 << ")\n"; 416 for (unsigned J = 0; J < CG.Members.size(); ++J) { 417 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 418 << "\n"; 419 } 420 } 421 } 422 423 namespace { 424 /// \brief Analyses memory accesses in a loop. 425 /// 426 /// Checks whether run time pointer checks are needed and builds sets for data 427 /// dependence checking. 428 class AccessAnalysis { 429 public: 430 /// \brief Read or write access location. 431 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 432 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 433 434 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 435 MemoryDepChecker::DepCandidates &DA, 436 PredicatedScalarEvolution &PSE) 437 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 438 PSE(PSE) {} 439 440 /// \brief Register a load and whether it is only read from. 441 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 442 Value *Ptr = const_cast<Value*>(Loc.Ptr); 443 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 444 Accesses.insert(MemAccessInfo(Ptr, false)); 445 if (IsReadOnly) 446 ReadOnlyPtr.insert(Ptr); 447 } 448 449 /// \brief Register a store. 450 void addStore(MemoryLocation &Loc) { 451 Value *Ptr = const_cast<Value*>(Loc.Ptr); 452 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 453 Accesses.insert(MemAccessInfo(Ptr, true)); 454 } 455 456 /// \brief Check whether we can check the pointers at runtime for 457 /// non-intersection. 458 /// 459 /// Returns true if we need no check or if we do and we can generate them 460 /// (i.e. the pointers have computable bounds). 461 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 462 Loop *TheLoop, const ValueToValueMap &Strides, 463 bool ShouldCheckStride = false); 464 465 /// \brief Goes over all memory accesses, checks whether a RT check is needed 466 /// and builds sets of dependent accesses. 467 void buildDependenceSets() { 468 processMemAccesses(); 469 } 470 471 /// \brief Initial processing of memory accesses determined that we need to 472 /// perform dependency checking. 473 /// 474 /// Note that this can later be cleared if we retry memcheck analysis without 475 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 476 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 477 478 /// We decided that no dependence analysis would be used. Reset the state. 479 void resetDepChecks(MemoryDepChecker &DepChecker) { 480 CheckDeps.clear(); 481 DepChecker.clearDependences(); 482 } 483 484 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 485 486 private: 487 typedef SetVector<MemAccessInfo> PtrAccessSet; 488 489 /// \brief Go over all memory access and check whether runtime pointer checks 490 /// are needed and build sets of dependency check candidates. 491 void processMemAccesses(); 492 493 /// Set of all accesses. 494 PtrAccessSet Accesses; 495 496 const DataLayout &DL; 497 498 /// Set of accesses that need a further dependence check. 499 MemAccessInfoSet CheckDeps; 500 501 /// Set of pointers that are read only. 502 SmallPtrSet<Value*, 16> ReadOnlyPtr; 503 504 /// An alias set tracker to partition the access set by underlying object and 505 //intrinsic property (such as TBAA metadata). 506 AliasSetTracker AST; 507 508 LoopInfo *LI; 509 510 /// Sets of potentially dependent accesses - members of one set share an 511 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 512 /// dependence check. 513 MemoryDepChecker::DepCandidates &DepCands; 514 515 /// \brief Initial processing of memory accesses determined that we may need 516 /// to add memchecks. Perform the analysis to determine the necessary checks. 517 /// 518 /// Note that, this is different from isDependencyCheckNeeded. When we retry 519 /// memcheck analysis without dependency checking 520 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 521 /// while this remains set if we have potentially dependent accesses. 522 bool IsRTCheckAnalysisNeeded; 523 524 /// The SCEV predicate containing all the SCEV-related assumptions. 525 PredicatedScalarEvolution &PSE; 526 }; 527 528 } // end anonymous namespace 529 530 /// \brief Check whether a pointer can participate in a runtime bounds check. 531 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 532 const ValueToValueMap &Strides, Value *Ptr, 533 Loop *L) { 534 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 535 536 // The bounds for loop-invariant pointer is trivial. 537 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 538 return true; 539 540 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 541 if (!AR) 542 return false; 543 544 return AR->isAffine(); 545 } 546 547 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 548 ScalarEvolution *SE, Loop *TheLoop, 549 const ValueToValueMap &StridesMap, 550 bool ShouldCheckStride) { 551 // Find pointers with computable bounds. We are going to use this information 552 // to place a runtime bound check. 553 bool CanDoRT = true; 554 555 bool NeedRTCheck = false; 556 if (!IsRTCheckAnalysisNeeded) return true; 557 558 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 559 560 // We assign a consecutive id to access from different alias sets. 561 // Accesses between different groups doesn't need to be checked. 562 unsigned ASId = 1; 563 for (auto &AS : AST) { 564 int NumReadPtrChecks = 0; 565 int NumWritePtrChecks = 0; 566 567 // We assign consecutive id to access from different dependence sets. 568 // Accesses within the same set don't need a runtime check. 569 unsigned RunningDepId = 1; 570 DenseMap<Value *, unsigned> DepSetId; 571 572 for (auto A : AS) { 573 Value *Ptr = A.getValue(); 574 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 575 MemAccessInfo Access(Ptr, IsWrite); 576 577 if (IsWrite) 578 ++NumWritePtrChecks; 579 else 580 ++NumReadPtrChecks; 581 582 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 583 // When we run after a failing dependency check we have to make sure 584 // we don't have wrapping pointers. 585 (!ShouldCheckStride || 586 isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) { 587 // The id of the dependence set. 588 unsigned DepId; 589 590 if (IsDepCheckNeeded) { 591 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 592 unsigned &LeaderId = DepSetId[Leader]; 593 if (!LeaderId) 594 LeaderId = RunningDepId++; 595 DepId = LeaderId; 596 } else 597 // Each access has its own dependence set. 598 DepId = RunningDepId++; 599 600 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 601 602 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 603 } else { 604 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 605 CanDoRT = false; 606 } 607 } 608 609 // If we have at least two writes or one write and a read then we need to 610 // check them. But there is no need to checks if there is only one 611 // dependence set for this alias set. 612 // 613 // Note that this function computes CanDoRT and NeedRTCheck independently. 614 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 615 // for which we couldn't find the bounds but we don't actually need to emit 616 // any checks so it does not matter. 617 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 618 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 619 NumWritePtrChecks >= 1)); 620 621 ++ASId; 622 } 623 624 // If the pointers that we would use for the bounds comparison have different 625 // address spaces, assume the values aren't directly comparable, so we can't 626 // use them for the runtime check. We also have to assume they could 627 // overlap. In the future there should be metadata for whether address spaces 628 // are disjoint. 629 unsigned NumPointers = RtCheck.Pointers.size(); 630 for (unsigned i = 0; i < NumPointers; ++i) { 631 for (unsigned j = i + 1; j < NumPointers; ++j) { 632 // Only need to check pointers between two different dependency sets. 633 if (RtCheck.Pointers[i].DependencySetId == 634 RtCheck.Pointers[j].DependencySetId) 635 continue; 636 // Only need to check pointers in the same alias set. 637 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 638 continue; 639 640 Value *PtrI = RtCheck.Pointers[i].PointerValue; 641 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 642 643 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 644 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 645 if (ASi != ASj) { 646 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 647 " different address spaces\n"); 648 return false; 649 } 650 } 651 } 652 653 if (NeedRTCheck && CanDoRT) 654 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 655 656 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 657 << " pointer comparisons.\n"); 658 659 RtCheck.Need = NeedRTCheck; 660 661 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 662 if (!CanDoRTIfNeeded) 663 RtCheck.reset(); 664 return CanDoRTIfNeeded; 665 } 666 667 void AccessAnalysis::processMemAccesses() { 668 // We process the set twice: first we process read-write pointers, last we 669 // process read-only pointers. This allows us to skip dependence tests for 670 // read-only pointers. 671 672 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 673 DEBUG(dbgs() << " AST: "; AST.dump()); 674 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 675 DEBUG({ 676 for (auto A : Accesses) 677 dbgs() << "\t" << *A.getPointer() << " (" << 678 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 679 "read-only" : "read")) << ")\n"; 680 }); 681 682 // The AliasSetTracker has nicely partitioned our pointers by metadata 683 // compatibility and potential for underlying-object overlap. As a result, we 684 // only need to check for potential pointer dependencies within each alias 685 // set. 686 for (auto &AS : AST) { 687 // Note that both the alias-set tracker and the alias sets themselves used 688 // linked lists internally and so the iteration order here is deterministic 689 // (matching the original instruction order within each set). 690 691 bool SetHasWrite = false; 692 693 // Map of pointers to last access encountered. 694 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 695 UnderlyingObjToAccessMap ObjToLastAccess; 696 697 // Set of access to check after all writes have been processed. 698 PtrAccessSet DeferredAccesses; 699 700 // Iterate over each alias set twice, once to process read/write pointers, 701 // and then to process read-only pointers. 702 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 703 bool UseDeferred = SetIteration > 0; 704 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 705 706 for (auto AV : AS) { 707 Value *Ptr = AV.getValue(); 708 709 // For a single memory access in AliasSetTracker, Accesses may contain 710 // both read and write, and they both need to be handled for CheckDeps. 711 for (auto AC : S) { 712 if (AC.getPointer() != Ptr) 713 continue; 714 715 bool IsWrite = AC.getInt(); 716 717 // If we're using the deferred access set, then it contains only 718 // reads. 719 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 720 if (UseDeferred && !IsReadOnlyPtr) 721 continue; 722 // Otherwise, the pointer must be in the PtrAccessSet, either as a 723 // read or a write. 724 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 725 S.count(MemAccessInfo(Ptr, false))) && 726 "Alias-set pointer not in the access set?"); 727 728 MemAccessInfo Access(Ptr, IsWrite); 729 DepCands.insert(Access); 730 731 // Memorize read-only pointers for later processing and skip them in 732 // the first round (they need to be checked after we have seen all 733 // write pointers). Note: we also mark pointer that are not 734 // consecutive as "read-only" pointers (so that we check 735 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 736 if (!UseDeferred && IsReadOnlyPtr) { 737 DeferredAccesses.insert(Access); 738 continue; 739 } 740 741 // If this is a write - check other reads and writes for conflicts. If 742 // this is a read only check other writes for conflicts (but only if 743 // there is no other write to the ptr - this is an optimization to 744 // catch "a[i] = a[i] + " without having to do a dependence check). 745 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 746 CheckDeps.insert(Access); 747 IsRTCheckAnalysisNeeded = true; 748 } 749 750 if (IsWrite) 751 SetHasWrite = true; 752 753 // Create sets of pointers connected by a shared alias set and 754 // underlying object. 755 typedef SmallVector<Value *, 16> ValueVector; 756 ValueVector TempObjects; 757 758 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 759 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 760 for (Value *UnderlyingObj : TempObjects) { 761 // nullptr never alias, don't join sets for pointer that have "null" 762 // in their UnderlyingObjects list. 763 if (isa<ConstantPointerNull>(UnderlyingObj)) 764 continue; 765 766 UnderlyingObjToAccessMap::iterator Prev = 767 ObjToLastAccess.find(UnderlyingObj); 768 if (Prev != ObjToLastAccess.end()) 769 DepCands.unionSets(Access, Prev->second); 770 771 ObjToLastAccess[UnderlyingObj] = Access; 772 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 773 } 774 } 775 } 776 } 777 } 778 } 779 780 static bool isInBoundsGep(Value *Ptr) { 781 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 782 return GEP->isInBounds(); 783 return false; 784 } 785 786 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 787 /// i.e. monotonically increasing/decreasing. 788 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 789 PredicatedScalarEvolution &PSE, const Loop *L) { 790 // FIXME: This should probably only return true for NUW. 791 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 792 return true; 793 794 // Scalar evolution does not propagate the non-wrapping flags to values that 795 // are derived from a non-wrapping induction variable because non-wrapping 796 // could be flow-sensitive. 797 // 798 // Look through the potentially overflowing instruction to try to prove 799 // non-wrapping for the *specific* value of Ptr. 800 801 // The arithmetic implied by an inbounds GEP can't overflow. 802 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 803 if (!GEP || !GEP->isInBounds()) 804 return false; 805 806 // Make sure there is only one non-const index and analyze that. 807 Value *NonConstIndex = nullptr; 808 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 809 if (!isa<ConstantInt>(*Index)) { 810 if (NonConstIndex) 811 return false; 812 NonConstIndex = *Index; 813 } 814 if (!NonConstIndex) 815 // The recurrence is on the pointer, ignore for now. 816 return false; 817 818 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 819 // AddRec using a NSW operation. 820 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 821 if (OBO->hasNoSignedWrap() && 822 // Assume constant for other the operand so that the AddRec can be 823 // easily found. 824 isa<ConstantInt>(OBO->getOperand(1))) { 825 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 826 827 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 828 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 829 } 830 831 return false; 832 } 833 834 /// \brief Check whether the access through \p Ptr has a constant stride. 835 int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr, 836 const Loop *Lp, const ValueToValueMap &StridesMap, 837 bool Assume) { 838 Type *Ty = Ptr->getType(); 839 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 840 841 // Make sure that the pointer does not point to aggregate types. 842 auto *PtrTy = cast<PointerType>(Ty); 843 if (PtrTy->getElementType()->isAggregateType()) { 844 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 845 << "\n"); 846 return 0; 847 } 848 849 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 850 851 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 852 if (Assume && !AR) 853 AR = PSE.getAsAddRec(Ptr); 854 855 if (!AR) { 856 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 857 << " SCEV: " << *PtrScev << "\n"); 858 return 0; 859 } 860 861 // The accesss function must stride over the innermost loop. 862 if (Lp != AR->getLoop()) { 863 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 864 *Ptr << " SCEV: " << *AR << "\n"); 865 return 0; 866 } 867 868 // The address calculation must not wrap. Otherwise, a dependence could be 869 // inverted. 870 // An inbounds getelementptr that is a AddRec with a unit stride 871 // cannot wrap per definition. The unit stride requirement is checked later. 872 // An getelementptr without an inbounds attribute and unit stride would have 873 // to access the pointer value "0" which is undefined behavior in address 874 // space 0, therefore we can also vectorize this case. 875 bool IsInBoundsGEP = isInBoundsGep(Ptr); 876 bool IsNoWrapAddRec = 877 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 878 isNoWrapAddRec(Ptr, AR, PSE, Lp); 879 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 880 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 881 if (Assume) { 882 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 883 IsNoWrapAddRec = true; 884 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 885 << "LAA: Pointer: " << *Ptr << "\n" 886 << "LAA: SCEV: " << *AR << "\n" 887 << "LAA: Added an overflow assumption\n"); 888 } else { 889 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 890 << *Ptr << " SCEV: " << *AR << "\n"); 891 return 0; 892 } 893 } 894 895 // Check the step is constant. 896 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 897 898 // Calculate the pointer stride and check if it is constant. 899 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 900 if (!C) { 901 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 902 " SCEV: " << *AR << "\n"); 903 return 0; 904 } 905 906 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 907 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 908 const APInt &APStepVal = C->getAPInt(); 909 910 // Huge step value - give up. 911 if (APStepVal.getBitWidth() > 64) 912 return 0; 913 914 int64_t StepVal = APStepVal.getSExtValue(); 915 916 // Strided access. 917 int64_t Stride = StepVal / Size; 918 int64_t Rem = StepVal % Size; 919 if (Rem) 920 return 0; 921 922 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 923 // know we can't "wrap around the address space". In case of address space 924 // zero we know that this won't happen without triggering undefined behavior. 925 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 926 Stride != 1 && Stride != -1) { 927 if (Assume) { 928 // We can avoid this case by adding a run-time check. 929 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 930 << "inbouds or in address space 0 may wrap:\n" 931 << "LAA: Pointer: " << *Ptr << "\n" 932 << "LAA: SCEV: " << *AR << "\n" 933 << "LAA: Added an overflow assumption\n"); 934 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 935 } else 936 return 0; 937 } 938 939 return Stride; 940 } 941 942 /// Take the pointer operand from the Load/Store instruction. 943 /// Returns NULL if this is not a valid Load/Store instruction. 944 static Value *getPointerOperand(Value *I) { 945 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 946 return LI->getPointerOperand(); 947 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 948 return SI->getPointerOperand(); 949 return nullptr; 950 } 951 952 /// Take the address space operand from the Load/Store instruction. 953 /// Returns -1 if this is not a valid Load/Store instruction. 954 static unsigned getAddressSpaceOperand(Value *I) { 955 if (LoadInst *L = dyn_cast<LoadInst>(I)) 956 return L->getPointerAddressSpace(); 957 if (StoreInst *S = dyn_cast<StoreInst>(I)) 958 return S->getPointerAddressSpace(); 959 return -1; 960 } 961 962 /// Returns true if the memory operations \p A and \p B are consecutive. 963 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 964 ScalarEvolution &SE, bool CheckType) { 965 Value *PtrA = getPointerOperand(A); 966 Value *PtrB = getPointerOperand(B); 967 unsigned ASA = getAddressSpaceOperand(A); 968 unsigned ASB = getAddressSpaceOperand(B); 969 970 // Check that the address spaces match and that the pointers are valid. 971 if (!PtrA || !PtrB || (ASA != ASB)) 972 return false; 973 974 // Make sure that A and B are different pointers. 975 if (PtrA == PtrB) 976 return false; 977 978 // Make sure that A and B have the same type if required. 979 if(CheckType && PtrA->getType() != PtrB->getType()) 980 return false; 981 982 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 983 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 984 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 985 986 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 987 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 988 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 989 990 // OffsetDelta = OffsetB - OffsetA; 991 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 992 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 993 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 994 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 995 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 996 // Check if they are based on the same pointer. That makes the offsets 997 // sufficient. 998 if (PtrA == PtrB) 999 return OffsetDelta == Size; 1000 1001 // Compute the necessary base pointer delta to have the necessary final delta 1002 // equal to the size. 1003 // BaseDelta = Size - OffsetDelta; 1004 const SCEV *SizeSCEV = SE.getConstant(Size); 1005 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1006 1007 // Otherwise compute the distance with SCEV between the base pointers. 1008 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1009 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1010 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1011 return X == PtrSCEVB; 1012 } 1013 1014 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1015 switch (Type) { 1016 case NoDep: 1017 case Forward: 1018 case BackwardVectorizable: 1019 return true; 1020 1021 case Unknown: 1022 case ForwardButPreventsForwarding: 1023 case Backward: 1024 case BackwardVectorizableButPreventsForwarding: 1025 return false; 1026 } 1027 llvm_unreachable("unexpected DepType!"); 1028 } 1029 1030 bool MemoryDepChecker::Dependence::isBackward() const { 1031 switch (Type) { 1032 case NoDep: 1033 case Forward: 1034 case ForwardButPreventsForwarding: 1035 case Unknown: 1036 return false; 1037 1038 case BackwardVectorizable: 1039 case Backward: 1040 case BackwardVectorizableButPreventsForwarding: 1041 return true; 1042 } 1043 llvm_unreachable("unexpected DepType!"); 1044 } 1045 1046 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1047 return isBackward() || Type == Unknown; 1048 } 1049 1050 bool MemoryDepChecker::Dependence::isForward() const { 1051 switch (Type) { 1052 case Forward: 1053 case ForwardButPreventsForwarding: 1054 return true; 1055 1056 case NoDep: 1057 case Unknown: 1058 case BackwardVectorizable: 1059 case Backward: 1060 case BackwardVectorizableButPreventsForwarding: 1061 return false; 1062 } 1063 llvm_unreachable("unexpected DepType!"); 1064 } 1065 1066 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 1067 unsigned TypeByteSize) { 1068 // If loads occur at a distance that is not a multiple of a feasible vector 1069 // factor store-load forwarding does not take place. 1070 // Positive dependences might cause troubles because vectorizing them might 1071 // prevent store-load forwarding making vectorized code run a lot slower. 1072 // a[i] = a[i-3] ^ a[i-8]; 1073 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1074 // hence on your typical architecture store-load forwarding does not take 1075 // place. Vectorizing in such cases does not make sense. 1076 // Store-load forwarding distance. 1077 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 1078 // Maximum vector factor. 1079 unsigned MaxVFWithoutSLForwardIssues = 1080 VectorizerParams::MaxVectorWidth * TypeByteSize; 1081 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 1082 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 1083 1084 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 1085 vf *= 2) { 1086 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 1087 MaxVFWithoutSLForwardIssues = (vf >>=1); 1088 break; 1089 } 1090 } 1091 1092 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 1093 DEBUG(dbgs() << "LAA: Distance " << Distance << 1094 " that could cause a store-load forwarding conflict\n"); 1095 return true; 1096 } 1097 1098 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1099 MaxVFWithoutSLForwardIssues != 1100 VectorizerParams::MaxVectorWidth * TypeByteSize) 1101 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1102 return false; 1103 } 1104 1105 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1106 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1107 /// bytes. 1108 /// 1109 /// \returns true if they are independent. 1110 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 1111 unsigned TypeByteSize) { 1112 assert(Stride > 1 && "The stride must be greater than 1"); 1113 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1114 assert(Distance > 0 && "The distance must be non-zero"); 1115 1116 // Skip if the distance is not multiple of type byte size. 1117 if (Distance % TypeByteSize) 1118 return false; 1119 1120 unsigned ScaledDist = Distance / TypeByteSize; 1121 1122 // No dependence if the scaled distance is not multiple of the stride. 1123 // E.g. 1124 // for (i = 0; i < 1024 ; i += 4) 1125 // A[i+2] = A[i] + 1; 1126 // 1127 // Two accesses in memory (scaled distance is 2, stride is 4): 1128 // | A[0] | | | | A[4] | | | | 1129 // | | | A[2] | | | | A[6] | | 1130 // 1131 // E.g. 1132 // for (i = 0; i < 1024 ; i += 3) 1133 // A[i+4] = A[i] + 1; 1134 // 1135 // Two accesses in memory (scaled distance is 4, stride is 3): 1136 // | A[0] | | | A[3] | | | A[6] | | | 1137 // | | | | | A[4] | | | A[7] | | 1138 return ScaledDist % Stride; 1139 } 1140 1141 MemoryDepChecker::Dependence::DepType 1142 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1143 const MemAccessInfo &B, unsigned BIdx, 1144 const ValueToValueMap &Strides) { 1145 assert (AIdx < BIdx && "Must pass arguments in program order"); 1146 1147 Value *APtr = A.getPointer(); 1148 Value *BPtr = B.getPointer(); 1149 bool AIsWrite = A.getInt(); 1150 bool BIsWrite = B.getInt(); 1151 1152 // Two reads are independent. 1153 if (!AIsWrite && !BIsWrite) 1154 return Dependence::NoDep; 1155 1156 // We cannot check pointers in different address spaces. 1157 if (APtr->getType()->getPointerAddressSpace() != 1158 BPtr->getType()->getPointerAddressSpace()) 1159 return Dependence::Unknown; 1160 1161 const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr); 1162 const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr); 1163 1164 int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides, true); 1165 int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides, true); 1166 1167 const SCEV *Src = AScev; 1168 const SCEV *Sink = BScev; 1169 1170 // If the induction step is negative we have to invert source and sink of the 1171 // dependence. 1172 if (StrideAPtr < 0) { 1173 //Src = BScev; 1174 //Sink = AScev; 1175 std::swap(APtr, BPtr); 1176 std::swap(Src, Sink); 1177 std::swap(AIsWrite, BIsWrite); 1178 std::swap(AIdx, BIdx); 1179 std::swap(StrideAPtr, StrideBPtr); 1180 } 1181 1182 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1183 1184 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1185 << "(Induction step: " << StrideAPtr << ")\n"); 1186 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1187 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1188 1189 // Need accesses with constant stride. We don't want to vectorize 1190 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1191 // the address space. 1192 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1193 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1194 return Dependence::Unknown; 1195 } 1196 1197 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1198 if (!C) { 1199 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1200 ShouldRetryWithRuntimeCheck = true; 1201 return Dependence::Unknown; 1202 } 1203 1204 Type *ATy = APtr->getType()->getPointerElementType(); 1205 Type *BTy = BPtr->getType()->getPointerElementType(); 1206 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1207 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 1208 1209 // Negative distances are not plausible dependencies. 1210 const APInt &Val = C->getAPInt(); 1211 if (Val.isNegative()) { 1212 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1213 if (IsTrueDataDependence && 1214 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1215 ATy != BTy)) { 1216 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1217 return Dependence::ForwardButPreventsForwarding; 1218 } 1219 1220 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 1221 return Dependence::Forward; 1222 } 1223 1224 // Write to the same location with the same size. 1225 // Could be improved to assert type sizes are the same (i32 == float, etc). 1226 if (Val == 0) { 1227 if (ATy == BTy) 1228 return Dependence::Forward; 1229 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1230 return Dependence::Unknown; 1231 } 1232 1233 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1234 1235 if (ATy != BTy) { 1236 DEBUG(dbgs() << 1237 "LAA: ReadWrite-Write positive dependency with different types\n"); 1238 return Dependence::Unknown; 1239 } 1240 1241 unsigned Distance = (unsigned) Val.getZExtValue(); 1242 1243 unsigned Stride = std::abs(StrideAPtr); 1244 if (Stride > 1 && 1245 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 1246 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1247 return Dependence::NoDep; 1248 } 1249 1250 // Bail out early if passed-in parameters make vectorization not feasible. 1251 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1252 VectorizerParams::VectorizationFactor : 1); 1253 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1254 VectorizerParams::VectorizationInterleave : 1); 1255 // The minimum number of iterations for a vectorized/unrolled version. 1256 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1257 1258 // It's not vectorizable if the distance is smaller than the minimum distance 1259 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1260 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1261 // TypeByteSize (No need to plus the last gap distance). 1262 // 1263 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1264 // foo(int *A) { 1265 // int *B = (int *)((char *)A + 14); 1266 // for (i = 0 ; i < 1024 ; i += 2) 1267 // B[i] = A[i] + 1; 1268 // } 1269 // 1270 // Two accesses in memory (stride is 2): 1271 // | A[0] | | A[2] | | A[4] | | A[6] | | 1272 // | B[0] | | B[2] | | B[4] | 1273 // 1274 // Distance needs for vectorizing iterations except the last iteration: 1275 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1276 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1277 // 1278 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1279 // 12, which is less than distance. 1280 // 1281 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1282 // the minimum distance needed is 28, which is greater than distance. It is 1283 // not safe to do vectorization. 1284 unsigned MinDistanceNeeded = 1285 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1286 if (MinDistanceNeeded > Distance) { 1287 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1288 << '\n'); 1289 return Dependence::Backward; 1290 } 1291 1292 // Unsafe if the minimum distance needed is greater than max safe distance. 1293 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1294 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1295 << MinDistanceNeeded << " size in bytes"); 1296 return Dependence::Backward; 1297 } 1298 1299 // Positive distance bigger than max vectorization factor. 1300 // FIXME: Should use max factor instead of max distance in bytes, which could 1301 // not handle different types. 1302 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1303 // void foo (int *A, char *B) { 1304 // for (unsigned i = 0; i < 1024; i++) { 1305 // A[i+2] = A[i] + 1; 1306 // B[i+2] = B[i] + 1; 1307 // } 1308 // } 1309 // 1310 // This case is currently unsafe according to the max safe distance. If we 1311 // analyze the two accesses on array B, the max safe dependence distance 1312 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1313 // is 8, which is less than 2 and forbidden vectorization, But actually 1314 // both A and B could be vectorized by 2 iterations. 1315 MaxSafeDepDistBytes = 1316 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 1317 1318 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1319 if (IsTrueDataDependence && 1320 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1321 return Dependence::BackwardVectorizableButPreventsForwarding; 1322 1323 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1324 << " with max VF = " 1325 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1326 1327 return Dependence::BackwardVectorizable; 1328 } 1329 1330 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1331 MemAccessInfoSet &CheckDeps, 1332 const ValueToValueMap &Strides) { 1333 1334 MaxSafeDepDistBytes = -1U; 1335 while (!CheckDeps.empty()) { 1336 MemAccessInfo CurAccess = *CheckDeps.begin(); 1337 1338 // Get the relevant memory access set. 1339 EquivalenceClasses<MemAccessInfo>::iterator I = 1340 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1341 1342 // Check accesses within this set. 1343 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1344 AccessSets.member_begin(I); 1345 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1346 AccessSets.member_end(); 1347 1348 // Check every access pair. 1349 while (AI != AE) { 1350 CheckDeps.erase(*AI); 1351 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1352 while (OI != AE) { 1353 // Check every accessing instruction pair in program order. 1354 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1355 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1356 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1357 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1358 auto A = std::make_pair(&*AI, *I1); 1359 auto B = std::make_pair(&*OI, *I2); 1360 1361 assert(*I1 != *I2); 1362 if (*I1 > *I2) 1363 std::swap(A, B); 1364 1365 Dependence::DepType Type = 1366 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1367 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1368 1369 // Gather dependences unless we accumulated MaxDependences 1370 // dependences. In that case return as soon as we find the first 1371 // unsafe dependence. This puts a limit on this quadratic 1372 // algorithm. 1373 if (RecordDependences) { 1374 if (Type != Dependence::NoDep) 1375 Dependences.push_back(Dependence(A.second, B.second, Type)); 1376 1377 if (Dependences.size() >= MaxDependences) { 1378 RecordDependences = false; 1379 Dependences.clear(); 1380 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1381 } 1382 } 1383 if (!RecordDependences && !SafeForVectorization) 1384 return false; 1385 } 1386 ++OI; 1387 } 1388 AI++; 1389 } 1390 } 1391 1392 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1393 return SafeForVectorization; 1394 } 1395 1396 SmallVector<Instruction *, 4> 1397 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1398 MemAccessInfo Access(Ptr, isWrite); 1399 auto &IndexVector = Accesses.find(Access)->second; 1400 1401 SmallVector<Instruction *, 4> Insts; 1402 std::transform(IndexVector.begin(), IndexVector.end(), 1403 std::back_inserter(Insts), 1404 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1405 return Insts; 1406 } 1407 1408 const char *MemoryDepChecker::Dependence::DepName[] = { 1409 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1410 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1411 1412 void MemoryDepChecker::Dependence::print( 1413 raw_ostream &OS, unsigned Depth, 1414 const SmallVectorImpl<Instruction *> &Instrs) const { 1415 OS.indent(Depth) << DepName[Type] << ":\n"; 1416 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1417 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1418 } 1419 1420 bool LoopAccessInfo::canAnalyzeLoop() { 1421 // We need to have a loop header. 1422 DEBUG(dbgs() << "LAA: Found a loop in " 1423 << TheLoop->getHeader()->getParent()->getName() << ": " 1424 << TheLoop->getHeader()->getName() << '\n'); 1425 1426 // We can only analyze innermost loops. 1427 if (!TheLoop->empty()) { 1428 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1429 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1430 return false; 1431 } 1432 1433 // We must have a single backedge. 1434 if (TheLoop->getNumBackEdges() != 1) { 1435 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1436 emitAnalysis( 1437 LoopAccessReport() << 1438 "loop control flow is not understood by analyzer"); 1439 return false; 1440 } 1441 1442 // We must have a single exiting block. 1443 if (!TheLoop->getExitingBlock()) { 1444 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1445 emitAnalysis( 1446 LoopAccessReport() << 1447 "loop control flow is not understood by analyzer"); 1448 return false; 1449 } 1450 1451 // We only handle bottom-tested loops, i.e. loop in which the condition is 1452 // checked at the end of each iteration. With that we can assume that all 1453 // instructions in the loop are executed the same number of times. 1454 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1455 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1456 emitAnalysis( 1457 LoopAccessReport() << 1458 "loop control flow is not understood by analyzer"); 1459 return false; 1460 } 1461 1462 // ScalarEvolution needs to be able to find the exit count. 1463 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 1464 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 1465 emitAnalysis(LoopAccessReport() 1466 << "could not determine number of loop iterations"); 1467 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1468 return false; 1469 } 1470 1471 return true; 1472 } 1473 1474 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1475 1476 typedef SmallVector<Value*, 16> ValueVector; 1477 typedef SmallPtrSet<Value*, 16> ValueSet; 1478 1479 // Holds the Load and Store *instructions*. 1480 ValueVector Loads; 1481 ValueVector Stores; 1482 1483 // Holds all the different accesses in the loop. 1484 unsigned NumReads = 0; 1485 unsigned NumReadWrites = 0; 1486 1487 PtrRtChecking.Pointers.clear(); 1488 PtrRtChecking.Need = false; 1489 1490 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1491 1492 // For each block. 1493 for (Loop::block_iterator bb = TheLoop->block_begin(), 1494 be = TheLoop->block_end(); bb != be; ++bb) { 1495 1496 // Scan the BB and collect legal loads and stores. 1497 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1498 ++it) { 1499 1500 // If this is a load, save it. If this instruction can read from memory 1501 // but is not a load, then we quit. Notice that we don't handle function 1502 // calls that read or write. 1503 if (it->mayReadFromMemory()) { 1504 // Many math library functions read the rounding mode. We will only 1505 // vectorize a loop if it contains known function calls that don't set 1506 // the flag. Therefore, it is safe to ignore this read from memory. 1507 CallInst *Call = dyn_cast<CallInst>(it); 1508 if (Call && getIntrinsicIDForCall(Call, TLI)) 1509 continue; 1510 1511 // If the function has an explicit vectorized counterpart, we can safely 1512 // assume that it can be vectorized. 1513 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1514 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1515 continue; 1516 1517 LoadInst *Ld = dyn_cast<LoadInst>(it); 1518 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1519 emitAnalysis(LoopAccessReport(Ld) 1520 << "read with atomic ordering or volatile read"); 1521 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1522 CanVecMem = false; 1523 return; 1524 } 1525 NumLoads++; 1526 Loads.push_back(Ld); 1527 DepChecker.addAccess(Ld); 1528 continue; 1529 } 1530 1531 // Save 'store' instructions. Abort if other instructions write to memory. 1532 if (it->mayWriteToMemory()) { 1533 StoreInst *St = dyn_cast<StoreInst>(it); 1534 if (!St) { 1535 emitAnalysis(LoopAccessReport(&*it) << 1536 "instruction cannot be vectorized"); 1537 CanVecMem = false; 1538 return; 1539 } 1540 if (!St->isSimple() && !IsAnnotatedParallel) { 1541 emitAnalysis(LoopAccessReport(St) 1542 << "write with atomic ordering or volatile write"); 1543 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1544 CanVecMem = false; 1545 return; 1546 } 1547 NumStores++; 1548 Stores.push_back(St); 1549 DepChecker.addAccess(St); 1550 } 1551 } // Next instr. 1552 } // Next block. 1553 1554 // Now we have two lists that hold the loads and the stores. 1555 // Next, we find the pointers that they use. 1556 1557 // Check if we see any stores. If there are no stores, then we don't 1558 // care if the pointers are *restrict*. 1559 if (!Stores.size()) { 1560 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1561 CanVecMem = true; 1562 return; 1563 } 1564 1565 MemoryDepChecker::DepCandidates DependentAccesses; 1566 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1567 AA, LI, DependentAccesses, PSE); 1568 1569 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1570 // multiple times on the same object. If the ptr is accessed twice, once 1571 // for read and once for write, it will only appear once (on the write 1572 // list). This is okay, since we are going to check for conflicts between 1573 // writes and between reads and writes, but not between reads and reads. 1574 ValueSet Seen; 1575 1576 ValueVector::iterator I, IE; 1577 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1578 StoreInst *ST = cast<StoreInst>(*I); 1579 Value* Ptr = ST->getPointerOperand(); 1580 // Check for store to loop invariant address. 1581 StoreToLoopInvariantAddress |= isUniform(Ptr); 1582 // If we did *not* see this pointer before, insert it to the read-write 1583 // list. At this phase it is only a 'write' list. 1584 if (Seen.insert(Ptr).second) { 1585 ++NumReadWrites; 1586 1587 MemoryLocation Loc = MemoryLocation::get(ST); 1588 // The TBAA metadata could have a control dependency on the predication 1589 // condition, so we cannot rely on it when determining whether or not we 1590 // need runtime pointer checks. 1591 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1592 Loc.AATags.TBAA = nullptr; 1593 1594 Accesses.addStore(Loc); 1595 } 1596 } 1597 1598 if (IsAnnotatedParallel) { 1599 DEBUG(dbgs() 1600 << "LAA: A loop annotated parallel, ignore memory dependency " 1601 << "checks.\n"); 1602 CanVecMem = true; 1603 return; 1604 } 1605 1606 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1607 LoadInst *LD = cast<LoadInst>(*I); 1608 Value* Ptr = LD->getPointerOperand(); 1609 // If we did *not* see this pointer before, insert it to the 1610 // read list. If we *did* see it before, then it is already in 1611 // the read-write list. This allows us to vectorize expressions 1612 // such as A[i] += x; Because the address of A[i] is a read-write 1613 // pointer. This only works if the index of A[i] is consecutive. 1614 // If the address of i is unknown (for example A[B[i]]) then we may 1615 // read a few words, modify, and write a few words, and some of the 1616 // words may be written to the same address. 1617 bool IsReadOnlyPtr = false; 1618 if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) { 1619 ++NumReads; 1620 IsReadOnlyPtr = true; 1621 } 1622 1623 MemoryLocation Loc = MemoryLocation::get(LD); 1624 // The TBAA metadata could have a control dependency on the predication 1625 // condition, so we cannot rely on it when determining whether or not we 1626 // need runtime pointer checks. 1627 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1628 Loc.AATags.TBAA = nullptr; 1629 1630 Accesses.addLoad(Loc, IsReadOnlyPtr); 1631 } 1632 1633 // If we write (or read-write) to a single destination and there are no 1634 // other reads in this loop then is it safe to vectorize. 1635 if (NumReadWrites == 1 && NumReads == 0) { 1636 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1637 CanVecMem = true; 1638 return; 1639 } 1640 1641 // Build dependence sets and check whether we need a runtime pointer bounds 1642 // check. 1643 Accesses.buildDependenceSets(); 1644 1645 // Find pointers with computable bounds. We are going to use this information 1646 // to place a runtime bound check. 1647 bool CanDoRTIfNeeded = 1648 Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides); 1649 if (!CanDoRTIfNeeded) { 1650 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1651 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1652 << "the array bounds.\n"); 1653 CanVecMem = false; 1654 return; 1655 } 1656 1657 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1658 1659 CanVecMem = true; 1660 if (Accesses.isDependencyCheckNeeded()) { 1661 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1662 CanVecMem = DepChecker.areDepsSafe( 1663 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1664 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1665 1666 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1667 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1668 1669 // Clear the dependency checks. We assume they are not needed. 1670 Accesses.resetDepChecks(DepChecker); 1671 1672 PtrRtChecking.reset(); 1673 PtrRtChecking.Need = true; 1674 1675 auto *SE = PSE.getSE(); 1676 CanDoRTIfNeeded = 1677 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 1678 1679 // Check that we found the bounds for the pointer. 1680 if (!CanDoRTIfNeeded) { 1681 emitAnalysis(LoopAccessReport() 1682 << "cannot check memory dependencies at runtime"); 1683 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1684 CanVecMem = false; 1685 return; 1686 } 1687 1688 CanVecMem = true; 1689 } 1690 } 1691 1692 if (CanVecMem) 1693 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1694 << (PtrRtChecking.Need ? "" : " don't") 1695 << " need runtime memory checks.\n"); 1696 else { 1697 emitAnalysis(LoopAccessReport() << 1698 "unsafe dependent memory operations in loop"); 1699 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1700 } 1701 } 1702 1703 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1704 DominatorTree *DT) { 1705 assert(TheLoop->contains(BB) && "Unknown block used"); 1706 1707 // Blocks that do not dominate the latch need predication. 1708 BasicBlock* Latch = TheLoop->getLoopLatch(); 1709 return !DT->dominates(BB, Latch); 1710 } 1711 1712 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1713 assert(!Report && "Multiple reports generated"); 1714 Report = Message; 1715 } 1716 1717 bool LoopAccessInfo::isUniform(Value *V) const { 1718 return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop)); 1719 } 1720 1721 // FIXME: this function is currently a duplicate of the one in 1722 // LoopVectorize.cpp. 1723 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1724 Instruction *Loc) { 1725 if (FirstInst) 1726 return FirstInst; 1727 if (Instruction *I = dyn_cast<Instruction>(V)) 1728 return I->getParent() == Loc->getParent() ? I : nullptr; 1729 return nullptr; 1730 } 1731 1732 namespace { 1733 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1734 /// need to use value-handles because SCEV expansion can invalidate previously 1735 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1736 /// a previous one. 1737 struct PointerBounds { 1738 TrackingVH<Value> Start; 1739 TrackingVH<Value> End; 1740 }; 1741 } // end anonymous namespace 1742 1743 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1744 /// in \p TheLoop. \return the values for the bounds. 1745 static PointerBounds 1746 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1747 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1748 const RuntimePointerChecking &PtrRtChecking) { 1749 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1750 const SCEV *Sc = SE->getSCEV(Ptr); 1751 1752 if (SE->isLoopInvariant(Sc, TheLoop)) { 1753 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1754 << "\n"); 1755 return {Ptr, Ptr}; 1756 } else { 1757 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1758 LLVMContext &Ctx = Loc->getContext(); 1759 1760 // Use this type for pointer arithmetic. 1761 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1762 Value *Start = nullptr, *End = nullptr; 1763 1764 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1765 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1766 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1767 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1768 return {Start, End}; 1769 } 1770 } 1771 1772 /// \brief Turns a collection of checks into a collection of expanded upper and 1773 /// lower bounds for both pointers in the check. 1774 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1775 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1776 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1777 const RuntimePointerChecking &PtrRtChecking) { 1778 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1779 1780 // Here we're relying on the SCEV Expander's cache to only emit code for the 1781 // same bounds once. 1782 std::transform( 1783 PointerChecks.begin(), PointerChecks.end(), 1784 std::back_inserter(ChecksWithBounds), 1785 [&](const RuntimePointerChecking::PointerCheck &Check) { 1786 PointerBounds 1787 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1788 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1789 return std::make_pair(First, Second); 1790 }); 1791 1792 return ChecksWithBounds; 1793 } 1794 1795 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 1796 Instruction *Loc, 1797 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1798 const { 1799 auto *SE = PSE.getSE(); 1800 SCEVExpander Exp(*SE, DL, "induction"); 1801 auto ExpandedChecks = 1802 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); 1803 1804 LLVMContext &Ctx = Loc->getContext(); 1805 Instruction *FirstInst = nullptr; 1806 IRBuilder<> ChkBuilder(Loc); 1807 // Our instructions might fold to a constant. 1808 Value *MemoryRuntimeCheck = nullptr; 1809 1810 for (const auto &Check : ExpandedChecks) { 1811 const PointerBounds &A = Check.first, &B = Check.second; 1812 // Check if two pointers (A and B) conflict where conflict is computed as: 1813 // start(A) <= end(B) && start(B) <= end(A) 1814 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1815 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1816 1817 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1818 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1819 "Trying to bounds check pointers with different address spaces"); 1820 1821 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1822 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1823 1824 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1825 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1826 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1827 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1828 1829 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1830 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1831 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1832 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1833 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1834 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1835 if (MemoryRuntimeCheck) { 1836 IsConflict = 1837 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1838 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1839 } 1840 MemoryRuntimeCheck = IsConflict; 1841 } 1842 1843 if (!MemoryRuntimeCheck) 1844 return std::make_pair(nullptr, nullptr); 1845 1846 // We have to do this trickery because the IRBuilder might fold the check to a 1847 // constant expression in which case there is no Instruction anchored in a 1848 // the block. 1849 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1850 ConstantInt::getTrue(Ctx)); 1851 ChkBuilder.Insert(Check, "memcheck.conflict"); 1852 FirstInst = getFirstInst(FirstInst, Check, Loc); 1853 return std::make_pair(FirstInst, Check); 1854 } 1855 1856 std::pair<Instruction *, Instruction *> 1857 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1858 if (!PtrRtChecking.Need) 1859 return std::make_pair(nullptr, nullptr); 1860 1861 return addRuntimeChecks(Loc, PtrRtChecking.getChecks()); 1862 } 1863 1864 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1865 const DataLayout &DL, 1866 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1867 DominatorTree *DT, LoopInfo *LI, 1868 const ValueToValueMap &Strides) 1869 : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL), 1870 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1871 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1872 StoreToLoopInvariantAddress(false) { 1873 if (canAnalyzeLoop()) 1874 analyzeLoop(Strides); 1875 } 1876 1877 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1878 if (CanVecMem) { 1879 if (PtrRtChecking.Need) 1880 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1881 else 1882 OS.indent(Depth) << "Memory dependences are safe\n"; 1883 } 1884 1885 if (Report) 1886 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1887 1888 if (auto *Dependences = DepChecker.getDependences()) { 1889 OS.indent(Depth) << "Dependences:\n"; 1890 for (auto &Dep : *Dependences) { 1891 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1892 OS << "\n"; 1893 } 1894 } else 1895 OS.indent(Depth) << "Too many dependences, not recorded\n"; 1896 1897 // List the pair of accesses need run-time checks to prove independence. 1898 PtrRtChecking.print(OS, Depth); 1899 OS << "\n"; 1900 1901 OS.indent(Depth) << "Store to invariant address was " 1902 << (StoreToLoopInvariantAddress ? "" : "not ") 1903 << "found in loop.\n"; 1904 1905 OS.indent(Depth) << "SCEV assumptions:\n"; 1906 PSE.getUnionPredicate().print(OS, Depth); 1907 1908 OS << "\n"; 1909 1910 OS.indent(Depth) << "Expressions re-written:\n"; 1911 PSE.print(OS, Depth); 1912 } 1913 1914 const LoopAccessInfo & 1915 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1916 auto &LAI = LoopAccessInfoMap[L]; 1917 1918 #ifndef NDEBUG 1919 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1920 "Symbolic strides changed for loop"); 1921 #endif 1922 1923 if (!LAI) { 1924 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1925 LAI = 1926 llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides); 1927 #ifndef NDEBUG 1928 LAI->NumSymbolicStrides = Strides.size(); 1929 #endif 1930 } 1931 return *LAI.get(); 1932 } 1933 1934 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1935 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1936 1937 ValueToValueMap NoSymbolicStrides; 1938 1939 for (Loop *TopLevelLoop : *LI) 1940 for (Loop *L : depth_first(TopLevelLoop)) { 1941 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1942 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1943 LAI.print(OS, 4); 1944 } 1945 } 1946 1947 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1948 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1949 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1950 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1951 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1952 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1953 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1954 1955 return false; 1956 } 1957 1958 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1959 AU.addRequired<ScalarEvolutionWrapperPass>(); 1960 AU.addRequired<AAResultsWrapperPass>(); 1961 AU.addRequired<DominatorTreeWrapperPass>(); 1962 AU.addRequired<LoopInfoWrapperPass>(); 1963 1964 AU.setPreservesAll(); 1965 } 1966 1967 char LoopAccessAnalysis::ID = 0; 1968 static const char laa_name[] = "Loop Access Analysis"; 1969 #define LAA_NAME "loop-accesses" 1970 1971 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1972 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1973 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1974 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1975 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1976 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1977 1978 namespace llvm { 1979 Pass *createLAAPass() { 1980 return new LoopAccessAnalysis(); 1981 } 1982 } 1983