1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect dependences up to this threshold.
62 static cl::opt<unsigned>
63     MaxDependences("max-dependences", cl::Hidden,
64                    cl::desc("Maximum number of dependences collected by "
65                             "loop-access analysis (default = 100)"),
66                    cl::init(100));
67 
68 bool VectorizerParams::isInterleaveForced() {
69   return ::VectorizationInterleave.getNumOccurrences() > 0;
70 }
71 
72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                     const Function *TheFunction,
74                                     const Loop *TheLoop,
75                                     const char *PassName) {
76   DebugLoc DL = TheLoop->getStartLoc();
77   if (const Instruction *I = Message.getInstr())
78     DL = I->getDebugLoc();
79   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                  *TheFunction, DL, Message.str());
81 }
82 
83 Value *llvm::stripIntegerCast(Value *V) {
84   if (CastInst *CI = dyn_cast<CastInst>(V))
85     if (CI->getOperand(0)->getType()->isIntegerTy())
86       return CI->getOperand(0);
87   return V;
88 }
89 
90 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
91                                             const ValueToValueMap &PtrToStride,
92                                             Value *Ptr, Value *OrigPtr) {
93   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
94 
95   // If there is an entry in the map return the SCEV of the pointer with the
96   // symbolic stride replaced by one.
97   ValueToValueMap::const_iterator SI =
98       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
99   if (SI != PtrToStride.end()) {
100     Value *StrideVal = SI->second;
101 
102     // Strip casts.
103     StrideVal = stripIntegerCast(StrideVal);
104 
105     // Replace symbolic stride by one.
106     Value *One = ConstantInt::get(StrideVal->getType(), 1);
107     ValueToValueMap RewriteMap;
108     RewriteMap[StrideVal] = One;
109 
110     ScalarEvolution *SE = PSE.getSE();
111     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112     const auto *CT =
113         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114 
115     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
116     auto *Expr = PSE.getSCEV(Ptr);
117 
118     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
119                  << "\n");
120     return Expr;
121   }
122 
123   // Otherwise, just return the SCEV of the original pointer.
124   return OrigSCEV;
125 }
126 
127 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128                                     unsigned DepSetId, unsigned ASId,
129                                     const ValueToValueMap &Strides,
130                                     PredicatedScalarEvolution &PSE) {
131   // Get the stride replaced scev.
132   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
133   ScalarEvolution *SE = PSE.getSE();
134 
135   const SCEV *ScStart;
136   const SCEV *ScEnd;
137 
138   if (SE->isLoopInvariant(Sc, Lp))
139     ScStart = ScEnd = Sc;
140   else {
141     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
142     assert(AR && "Invalid addrec expression");
143     const SCEV *Ex = PSE.getBackedgeTakenCount();
144 
145     ScStart = AR->getStart();
146     ScEnd = AR->evaluateAtIteration(Ex, *SE);
147     const SCEV *Step = AR->getStepRecurrence(*SE);
148 
149     // For expressions with negative step, the upper bound is ScStart and the
150     // lower bound is ScEnd.
151     if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
152       if (CStep->getValue()->isNegative())
153         std::swap(ScStart, ScEnd);
154     } else {
155       // Fallback case: the step is not constant, but the we can still
156       // get the upper and lower bounds of the interval by using min/max
157       // expressions.
158       ScStart = SE->getUMinExpr(ScStart, ScEnd);
159       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
160     }
161   }
162 
163   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
164 }
165 
166 SmallVector<RuntimePointerChecking::PointerCheck, 4>
167 RuntimePointerChecking::generateChecks() const {
168   SmallVector<PointerCheck, 4> Checks;
169 
170   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
171     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
172       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
173       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
174 
175       if (needsChecking(CGI, CGJ))
176         Checks.push_back(std::make_pair(&CGI, &CGJ));
177     }
178   }
179   return Checks;
180 }
181 
182 void RuntimePointerChecking::generateChecks(
183     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
184   assert(Checks.empty() && "Checks is not empty");
185   groupChecks(DepCands, UseDependencies);
186   Checks = generateChecks();
187 }
188 
189 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
190                                            const CheckingPtrGroup &N) const {
191   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
192     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
193       if (needsChecking(M.Members[I], N.Members[J]))
194         return true;
195   return false;
196 }
197 
198 /// Compare \p I and \p J and return the minimum.
199 /// Return nullptr in case we couldn't find an answer.
200 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
201                                    ScalarEvolution *SE) {
202   const SCEV *Diff = SE->getMinusSCEV(J, I);
203   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
204 
205   if (!C)
206     return nullptr;
207   if (C->getValue()->isNegative())
208     return J;
209   return I;
210 }
211 
212 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
213   const SCEV *Start = RtCheck.Pointers[Index].Start;
214   const SCEV *End = RtCheck.Pointers[Index].End;
215 
216   // Compare the starts and ends with the known minimum and maximum
217   // of this set. We need to know how we compare against the min/max
218   // of the set in order to be able to emit memchecks.
219   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
220   if (!Min0)
221     return false;
222 
223   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
224   if (!Min1)
225     return false;
226 
227   // Update the low bound  expression if we've found a new min value.
228   if (Min0 == Start)
229     Low = Start;
230 
231   // Update the high bound expression if we've found a new max value.
232   if (Min1 != End)
233     High = End;
234 
235   Members.push_back(Index);
236   return true;
237 }
238 
239 void RuntimePointerChecking::groupChecks(
240     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
241   // We build the groups from dependency candidates equivalence classes
242   // because:
243   //    - We know that pointers in the same equivalence class share
244   //      the same underlying object and therefore there is a chance
245   //      that we can compare pointers
246   //    - We wouldn't be able to merge two pointers for which we need
247   //      to emit a memcheck. The classes in DepCands are already
248   //      conveniently built such that no two pointers in the same
249   //      class need checking against each other.
250 
251   // We use the following (greedy) algorithm to construct the groups
252   // For every pointer in the equivalence class:
253   //   For each existing group:
254   //   - if the difference between this pointer and the min/max bounds
255   //     of the group is a constant, then make the pointer part of the
256   //     group and update the min/max bounds of that group as required.
257 
258   CheckingGroups.clear();
259 
260   // If we need to check two pointers to the same underlying object
261   // with a non-constant difference, we shouldn't perform any pointer
262   // grouping with those pointers. This is because we can easily get
263   // into cases where the resulting check would return false, even when
264   // the accesses are safe.
265   //
266   // The following example shows this:
267   // for (i = 0; i < 1000; ++i)
268   //   a[5000 + i * m] = a[i] + a[i + 9000]
269   //
270   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
271   // (0, 10000) which is always false. However, if m is 1, there is no
272   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
273   // us to perform an accurate check in this case.
274   //
275   // The above case requires that we have an UnknownDependence between
276   // accesses to the same underlying object. This cannot happen unless
277   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
278   // is also false. In this case we will use the fallback path and create
279   // separate checking groups for all pointers.
280 
281   // If we don't have the dependency partitions, construct a new
282   // checking pointer group for each pointer. This is also required
283   // for correctness, because in this case we can have checking between
284   // pointers to the same underlying object.
285   if (!UseDependencies) {
286     for (unsigned I = 0; I < Pointers.size(); ++I)
287       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
288     return;
289   }
290 
291   unsigned TotalComparisons = 0;
292 
293   DenseMap<Value *, unsigned> PositionMap;
294   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
295     PositionMap[Pointers[Index].PointerValue] = Index;
296 
297   // We need to keep track of what pointers we've already seen so we
298   // don't process them twice.
299   SmallSet<unsigned, 2> Seen;
300 
301   // Go through all equivalence classes, get the "pointer check groups"
302   // and add them to the overall solution. We use the order in which accesses
303   // appear in 'Pointers' to enforce determinism.
304   for (unsigned I = 0; I < Pointers.size(); ++I) {
305     // We've seen this pointer before, and therefore already processed
306     // its equivalence class.
307     if (Seen.count(I))
308       continue;
309 
310     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
311                                            Pointers[I].IsWritePtr);
312 
313     SmallVector<CheckingPtrGroup, 2> Groups;
314     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
315 
316     // Because DepCands is constructed by visiting accesses in the order in
317     // which they appear in alias sets (which is deterministic) and the
318     // iteration order within an equivalence class member is only dependent on
319     // the order in which unions and insertions are performed on the
320     // equivalence class, the iteration order is deterministic.
321     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
322          MI != ME; ++MI) {
323       unsigned Pointer = PositionMap[MI->getPointer()];
324       bool Merged = false;
325       // Mark this pointer as seen.
326       Seen.insert(Pointer);
327 
328       // Go through all the existing sets and see if we can find one
329       // which can include this pointer.
330       for (CheckingPtrGroup &Group : Groups) {
331         // Don't perform more than a certain amount of comparisons.
332         // This should limit the cost of grouping the pointers to something
333         // reasonable.  If we do end up hitting this threshold, the algorithm
334         // will create separate groups for all remaining pointers.
335         if (TotalComparisons > MemoryCheckMergeThreshold)
336           break;
337 
338         TotalComparisons++;
339 
340         if (Group.addPointer(Pointer)) {
341           Merged = true;
342           break;
343         }
344       }
345 
346       if (!Merged)
347         // We couldn't add this pointer to any existing set or the threshold
348         // for the number of comparisons has been reached. Create a new group
349         // to hold the current pointer.
350         Groups.push_back(CheckingPtrGroup(Pointer, *this));
351     }
352 
353     // We've computed the grouped checks for this partition.
354     // Save the results and continue with the next one.
355     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
356   }
357 }
358 
359 bool RuntimePointerChecking::arePointersInSamePartition(
360     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
361     unsigned PtrIdx2) {
362   return (PtrToPartition[PtrIdx1] != -1 &&
363           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
364 }
365 
366 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
367   const PointerInfo &PointerI = Pointers[I];
368   const PointerInfo &PointerJ = Pointers[J];
369 
370   // No need to check if two readonly pointers intersect.
371   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
372     return false;
373 
374   // Only need to check pointers between two different dependency sets.
375   if (PointerI.DependencySetId == PointerJ.DependencySetId)
376     return false;
377 
378   // Only need to check pointers in the same alias set.
379   if (PointerI.AliasSetId != PointerJ.AliasSetId)
380     return false;
381 
382   return true;
383 }
384 
385 void RuntimePointerChecking::printChecks(
386     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
387     unsigned Depth) const {
388   unsigned N = 0;
389   for (const auto &Check : Checks) {
390     const auto &First = Check.first->Members, &Second = Check.second->Members;
391 
392     OS.indent(Depth) << "Check " << N++ << ":\n";
393 
394     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
395     for (unsigned K = 0; K < First.size(); ++K)
396       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
397 
398     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
399     for (unsigned K = 0; K < Second.size(); ++K)
400       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
401   }
402 }
403 
404 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
405 
406   OS.indent(Depth) << "Run-time memory checks:\n";
407   printChecks(OS, Checks, Depth);
408 
409   OS.indent(Depth) << "Grouped accesses:\n";
410   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
411     const auto &CG = CheckingGroups[I];
412 
413     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
414     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
415                          << ")\n";
416     for (unsigned J = 0; J < CG.Members.size(); ++J) {
417       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
418                            << "\n";
419     }
420   }
421 }
422 
423 namespace {
424 /// \brief Analyses memory accesses in a loop.
425 ///
426 /// Checks whether run time pointer checks are needed and builds sets for data
427 /// dependence checking.
428 class AccessAnalysis {
429 public:
430   /// \brief Read or write access location.
431   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
432   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
433 
434   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
435                  MemoryDepChecker::DepCandidates &DA,
436                  PredicatedScalarEvolution &PSE)
437       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
438         PSE(PSE) {}
439 
440   /// \brief Register a load  and whether it is only read from.
441   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
442     Value *Ptr = const_cast<Value*>(Loc.Ptr);
443     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
444     Accesses.insert(MemAccessInfo(Ptr, false));
445     if (IsReadOnly)
446       ReadOnlyPtr.insert(Ptr);
447   }
448 
449   /// \brief Register a store.
450   void addStore(MemoryLocation &Loc) {
451     Value *Ptr = const_cast<Value*>(Loc.Ptr);
452     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
453     Accesses.insert(MemAccessInfo(Ptr, true));
454   }
455 
456   /// \brief Check whether we can check the pointers at runtime for
457   /// non-intersection.
458   ///
459   /// Returns true if we need no check or if we do and we can generate them
460   /// (i.e. the pointers have computable bounds).
461   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
462                        Loop *TheLoop, const ValueToValueMap &Strides,
463                        bool ShouldCheckStride = false);
464 
465   /// \brief Goes over all memory accesses, checks whether a RT check is needed
466   /// and builds sets of dependent accesses.
467   void buildDependenceSets() {
468     processMemAccesses();
469   }
470 
471   /// \brief Initial processing of memory accesses determined that we need to
472   /// perform dependency checking.
473   ///
474   /// Note that this can later be cleared if we retry memcheck analysis without
475   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
476   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
477 
478   /// We decided that no dependence analysis would be used.  Reset the state.
479   void resetDepChecks(MemoryDepChecker &DepChecker) {
480     CheckDeps.clear();
481     DepChecker.clearDependences();
482   }
483 
484   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
485 
486 private:
487   typedef SetVector<MemAccessInfo> PtrAccessSet;
488 
489   /// \brief Go over all memory access and check whether runtime pointer checks
490   /// are needed and build sets of dependency check candidates.
491   void processMemAccesses();
492 
493   /// Set of all accesses.
494   PtrAccessSet Accesses;
495 
496   const DataLayout &DL;
497 
498   /// Set of accesses that need a further dependence check.
499   MemAccessInfoSet CheckDeps;
500 
501   /// Set of pointers that are read only.
502   SmallPtrSet<Value*, 16> ReadOnlyPtr;
503 
504   /// An alias set tracker to partition the access set by underlying object and
505   //intrinsic property (such as TBAA metadata).
506   AliasSetTracker AST;
507 
508   LoopInfo *LI;
509 
510   /// Sets of potentially dependent accesses - members of one set share an
511   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
512   /// dependence check.
513   MemoryDepChecker::DepCandidates &DepCands;
514 
515   /// \brief Initial processing of memory accesses determined that we may need
516   /// to add memchecks.  Perform the analysis to determine the necessary checks.
517   ///
518   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
519   /// memcheck analysis without dependency checking
520   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
521   /// while this remains set if we have potentially dependent accesses.
522   bool IsRTCheckAnalysisNeeded;
523 
524   /// The SCEV predicate containing all the SCEV-related assumptions.
525   PredicatedScalarEvolution &PSE;
526 };
527 
528 } // end anonymous namespace
529 
530 /// \brief Check whether a pointer can participate in a runtime bounds check.
531 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
532                                 const ValueToValueMap &Strides, Value *Ptr,
533                                 Loop *L) {
534   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
535 
536   // The bounds for loop-invariant pointer is trivial.
537   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
538     return true;
539 
540   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
541   if (!AR)
542     return false;
543 
544   return AR->isAffine();
545 }
546 
547 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
548                                      ScalarEvolution *SE, Loop *TheLoop,
549                                      const ValueToValueMap &StridesMap,
550                                      bool ShouldCheckStride) {
551   // Find pointers with computable bounds. We are going to use this information
552   // to place a runtime bound check.
553   bool CanDoRT = true;
554 
555   bool NeedRTCheck = false;
556   if (!IsRTCheckAnalysisNeeded) return true;
557 
558   bool IsDepCheckNeeded = isDependencyCheckNeeded();
559 
560   // We assign a consecutive id to access from different alias sets.
561   // Accesses between different groups doesn't need to be checked.
562   unsigned ASId = 1;
563   for (auto &AS : AST) {
564     int NumReadPtrChecks = 0;
565     int NumWritePtrChecks = 0;
566 
567     // We assign consecutive id to access from different dependence sets.
568     // Accesses within the same set don't need a runtime check.
569     unsigned RunningDepId = 1;
570     DenseMap<Value *, unsigned> DepSetId;
571 
572     for (auto A : AS) {
573       Value *Ptr = A.getValue();
574       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
575       MemAccessInfo Access(Ptr, IsWrite);
576 
577       if (IsWrite)
578         ++NumWritePtrChecks;
579       else
580         ++NumReadPtrChecks;
581 
582       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
583           // When we run after a failing dependency check we have to make sure
584           // we don't have wrapping pointers.
585           (!ShouldCheckStride ||
586            isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) {
587         // The id of the dependence set.
588         unsigned DepId;
589 
590         if (IsDepCheckNeeded) {
591           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
592           unsigned &LeaderId = DepSetId[Leader];
593           if (!LeaderId)
594             LeaderId = RunningDepId++;
595           DepId = LeaderId;
596         } else
597           // Each access has its own dependence set.
598           DepId = RunningDepId++;
599 
600         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
601 
602         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
603       } else {
604         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
605         CanDoRT = false;
606       }
607     }
608 
609     // If we have at least two writes or one write and a read then we need to
610     // check them.  But there is no need to checks if there is only one
611     // dependence set for this alias set.
612     //
613     // Note that this function computes CanDoRT and NeedRTCheck independently.
614     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
615     // for which we couldn't find the bounds but we don't actually need to emit
616     // any checks so it does not matter.
617     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
618       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
619                                                  NumWritePtrChecks >= 1));
620 
621     ++ASId;
622   }
623 
624   // If the pointers that we would use for the bounds comparison have different
625   // address spaces, assume the values aren't directly comparable, so we can't
626   // use them for the runtime check. We also have to assume they could
627   // overlap. In the future there should be metadata for whether address spaces
628   // are disjoint.
629   unsigned NumPointers = RtCheck.Pointers.size();
630   for (unsigned i = 0; i < NumPointers; ++i) {
631     for (unsigned j = i + 1; j < NumPointers; ++j) {
632       // Only need to check pointers between two different dependency sets.
633       if (RtCheck.Pointers[i].DependencySetId ==
634           RtCheck.Pointers[j].DependencySetId)
635        continue;
636       // Only need to check pointers in the same alias set.
637       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
638         continue;
639 
640       Value *PtrI = RtCheck.Pointers[i].PointerValue;
641       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
642 
643       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
644       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
645       if (ASi != ASj) {
646         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
647                        " different address spaces\n");
648         return false;
649       }
650     }
651   }
652 
653   if (NeedRTCheck && CanDoRT)
654     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
655 
656   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
657                << " pointer comparisons.\n");
658 
659   RtCheck.Need = NeedRTCheck;
660 
661   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
662   if (!CanDoRTIfNeeded)
663     RtCheck.reset();
664   return CanDoRTIfNeeded;
665 }
666 
667 void AccessAnalysis::processMemAccesses() {
668   // We process the set twice: first we process read-write pointers, last we
669   // process read-only pointers. This allows us to skip dependence tests for
670   // read-only pointers.
671 
672   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
673   DEBUG(dbgs() << "  AST: "; AST.dump());
674   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
675   DEBUG({
676     for (auto A : Accesses)
677       dbgs() << "\t" << *A.getPointer() << " (" <<
678                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
679                                          "read-only" : "read")) << ")\n";
680   });
681 
682   // The AliasSetTracker has nicely partitioned our pointers by metadata
683   // compatibility and potential for underlying-object overlap. As a result, we
684   // only need to check for potential pointer dependencies within each alias
685   // set.
686   for (auto &AS : AST) {
687     // Note that both the alias-set tracker and the alias sets themselves used
688     // linked lists internally and so the iteration order here is deterministic
689     // (matching the original instruction order within each set).
690 
691     bool SetHasWrite = false;
692 
693     // Map of pointers to last access encountered.
694     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
695     UnderlyingObjToAccessMap ObjToLastAccess;
696 
697     // Set of access to check after all writes have been processed.
698     PtrAccessSet DeferredAccesses;
699 
700     // Iterate over each alias set twice, once to process read/write pointers,
701     // and then to process read-only pointers.
702     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
703       bool UseDeferred = SetIteration > 0;
704       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
705 
706       for (auto AV : AS) {
707         Value *Ptr = AV.getValue();
708 
709         // For a single memory access in AliasSetTracker, Accesses may contain
710         // both read and write, and they both need to be handled for CheckDeps.
711         for (auto AC : S) {
712           if (AC.getPointer() != Ptr)
713             continue;
714 
715           bool IsWrite = AC.getInt();
716 
717           // If we're using the deferred access set, then it contains only
718           // reads.
719           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
720           if (UseDeferred && !IsReadOnlyPtr)
721             continue;
722           // Otherwise, the pointer must be in the PtrAccessSet, either as a
723           // read or a write.
724           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
725                   S.count(MemAccessInfo(Ptr, false))) &&
726                  "Alias-set pointer not in the access set?");
727 
728           MemAccessInfo Access(Ptr, IsWrite);
729           DepCands.insert(Access);
730 
731           // Memorize read-only pointers for later processing and skip them in
732           // the first round (they need to be checked after we have seen all
733           // write pointers). Note: we also mark pointer that are not
734           // consecutive as "read-only" pointers (so that we check
735           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
736           if (!UseDeferred && IsReadOnlyPtr) {
737             DeferredAccesses.insert(Access);
738             continue;
739           }
740 
741           // If this is a write - check other reads and writes for conflicts. If
742           // this is a read only check other writes for conflicts (but only if
743           // there is no other write to the ptr - this is an optimization to
744           // catch "a[i] = a[i] + " without having to do a dependence check).
745           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
746             CheckDeps.insert(Access);
747             IsRTCheckAnalysisNeeded = true;
748           }
749 
750           if (IsWrite)
751             SetHasWrite = true;
752 
753           // Create sets of pointers connected by a shared alias set and
754           // underlying object.
755           typedef SmallVector<Value *, 16> ValueVector;
756           ValueVector TempObjects;
757 
758           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
759           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
760           for (Value *UnderlyingObj : TempObjects) {
761             // nullptr never alias, don't join sets for pointer that have "null"
762             // in their UnderlyingObjects list.
763             if (isa<ConstantPointerNull>(UnderlyingObj))
764               continue;
765 
766             UnderlyingObjToAccessMap::iterator Prev =
767                 ObjToLastAccess.find(UnderlyingObj);
768             if (Prev != ObjToLastAccess.end())
769               DepCands.unionSets(Access, Prev->second);
770 
771             ObjToLastAccess[UnderlyingObj] = Access;
772             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
773           }
774         }
775       }
776     }
777   }
778 }
779 
780 static bool isInBoundsGep(Value *Ptr) {
781   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
782     return GEP->isInBounds();
783   return false;
784 }
785 
786 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
787 /// i.e. monotonically increasing/decreasing.
788 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
789                            PredicatedScalarEvolution &PSE, const Loop *L) {
790   // FIXME: This should probably only return true for NUW.
791   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
792     return true;
793 
794   // Scalar evolution does not propagate the non-wrapping flags to values that
795   // are derived from a non-wrapping induction variable because non-wrapping
796   // could be flow-sensitive.
797   //
798   // Look through the potentially overflowing instruction to try to prove
799   // non-wrapping for the *specific* value of Ptr.
800 
801   // The arithmetic implied by an inbounds GEP can't overflow.
802   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
803   if (!GEP || !GEP->isInBounds())
804     return false;
805 
806   // Make sure there is only one non-const index and analyze that.
807   Value *NonConstIndex = nullptr;
808   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
809     if (!isa<ConstantInt>(*Index)) {
810       if (NonConstIndex)
811         return false;
812       NonConstIndex = *Index;
813     }
814   if (!NonConstIndex)
815     // The recurrence is on the pointer, ignore for now.
816     return false;
817 
818   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
819   // AddRec using a NSW operation.
820   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
821     if (OBO->hasNoSignedWrap() &&
822         // Assume constant for other the operand so that the AddRec can be
823         // easily found.
824         isa<ConstantInt>(OBO->getOperand(1))) {
825       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
826 
827       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
828         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
829     }
830 
831   return false;
832 }
833 
834 /// \brief Check whether the access through \p Ptr has a constant stride.
835 int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr,
836                        const Loop *Lp, const ValueToValueMap &StridesMap,
837                        bool Assume) {
838   Type *Ty = Ptr->getType();
839   assert(Ty->isPointerTy() && "Unexpected non-ptr");
840 
841   // Make sure that the pointer does not point to aggregate types.
842   auto *PtrTy = cast<PointerType>(Ty);
843   if (PtrTy->getElementType()->isAggregateType()) {
844     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
845                  << "\n");
846     return 0;
847   }
848 
849   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
850 
851   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
852   if (Assume && !AR)
853     AR = PSE.getAsAddRec(Ptr);
854 
855   if (!AR) {
856     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
857                  << " SCEV: " << *PtrScev << "\n");
858     return 0;
859   }
860 
861   // The accesss function must stride over the innermost loop.
862   if (Lp != AR->getLoop()) {
863     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
864           *Ptr << " SCEV: " << *AR << "\n");
865     return 0;
866   }
867 
868   // The address calculation must not wrap. Otherwise, a dependence could be
869   // inverted.
870   // An inbounds getelementptr that is a AddRec with a unit stride
871   // cannot wrap per definition. The unit stride requirement is checked later.
872   // An getelementptr without an inbounds attribute and unit stride would have
873   // to access the pointer value "0" which is undefined behavior in address
874   // space 0, therefore we can also vectorize this case.
875   bool IsInBoundsGEP = isInBoundsGep(Ptr);
876   bool IsNoWrapAddRec =
877       PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
878       isNoWrapAddRec(Ptr, AR, PSE, Lp);
879   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
880   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
881     if (Assume) {
882       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
883       IsNoWrapAddRec = true;
884       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
885                    << "LAA:   Pointer: " << *Ptr << "\n"
886                    << "LAA:   SCEV: " << *AR << "\n"
887                    << "LAA:   Added an overflow assumption\n");
888     } else {
889       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
890                    << *Ptr << " SCEV: " << *AR << "\n");
891       return 0;
892     }
893   }
894 
895   // Check the step is constant.
896   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
897 
898   // Calculate the pointer stride and check if it is constant.
899   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
900   if (!C) {
901     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
902           " SCEV: " << *AR << "\n");
903     return 0;
904   }
905 
906   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
907   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
908   const APInt &APStepVal = C->getAPInt();
909 
910   // Huge step value - give up.
911   if (APStepVal.getBitWidth() > 64)
912     return 0;
913 
914   int64_t StepVal = APStepVal.getSExtValue();
915 
916   // Strided access.
917   int64_t Stride = StepVal / Size;
918   int64_t Rem = StepVal % Size;
919   if (Rem)
920     return 0;
921 
922   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
923   // know we can't "wrap around the address space". In case of address space
924   // zero we know that this won't happen without triggering undefined behavior.
925   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
926       Stride != 1 && Stride != -1) {
927     if (Assume) {
928       // We can avoid this case by adding a run-time check.
929       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
930                    << "inbouds or in address space 0 may wrap:\n"
931                    << "LAA:   Pointer: " << *Ptr << "\n"
932                    << "LAA:   SCEV: " << *AR << "\n"
933                    << "LAA:   Added an overflow assumption\n");
934       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
935     } else
936       return 0;
937   }
938 
939   return Stride;
940 }
941 
942 /// Take the pointer operand from the Load/Store instruction.
943 /// Returns NULL if this is not a valid Load/Store instruction.
944 static Value *getPointerOperand(Value *I) {
945   if (LoadInst *LI = dyn_cast<LoadInst>(I))
946     return LI->getPointerOperand();
947   if (StoreInst *SI = dyn_cast<StoreInst>(I))
948     return SI->getPointerOperand();
949   return nullptr;
950 }
951 
952 /// Take the address space operand from the Load/Store instruction.
953 /// Returns -1 if this is not a valid Load/Store instruction.
954 static unsigned getAddressSpaceOperand(Value *I) {
955   if (LoadInst *L = dyn_cast<LoadInst>(I))
956     return L->getPointerAddressSpace();
957   if (StoreInst *S = dyn_cast<StoreInst>(I))
958     return S->getPointerAddressSpace();
959   return -1;
960 }
961 
962 /// Returns true if the memory operations \p A and \p B are consecutive.
963 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
964                                ScalarEvolution &SE, bool CheckType) {
965   Value *PtrA = getPointerOperand(A);
966   Value *PtrB = getPointerOperand(B);
967   unsigned ASA = getAddressSpaceOperand(A);
968   unsigned ASB = getAddressSpaceOperand(B);
969 
970   // Check that the address spaces match and that the pointers are valid.
971   if (!PtrA || !PtrB || (ASA != ASB))
972     return false;
973 
974   // Make sure that A and B are different pointers.
975   if (PtrA == PtrB)
976     return false;
977 
978   // Make sure that A and B have the same type if required.
979   if(CheckType && PtrA->getType() != PtrB->getType())
980       return false;
981 
982   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
983   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
984   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
985 
986   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
987   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
988   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
989 
990   //  OffsetDelta = OffsetB - OffsetA;
991   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
992   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
993   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
994   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
995   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
996   // Check if they are based on the same pointer. That makes the offsets
997   // sufficient.
998   if (PtrA == PtrB)
999     return OffsetDelta == Size;
1000 
1001   // Compute the necessary base pointer delta to have the necessary final delta
1002   // equal to the size.
1003   // BaseDelta = Size - OffsetDelta;
1004   const SCEV *SizeSCEV = SE.getConstant(Size);
1005   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1006 
1007   // Otherwise compute the distance with SCEV between the base pointers.
1008   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1009   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1010   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1011   return X == PtrSCEVB;
1012 }
1013 
1014 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1015   switch (Type) {
1016   case NoDep:
1017   case Forward:
1018   case BackwardVectorizable:
1019     return true;
1020 
1021   case Unknown:
1022   case ForwardButPreventsForwarding:
1023   case Backward:
1024   case BackwardVectorizableButPreventsForwarding:
1025     return false;
1026   }
1027   llvm_unreachable("unexpected DepType!");
1028 }
1029 
1030 bool MemoryDepChecker::Dependence::isBackward() const {
1031   switch (Type) {
1032   case NoDep:
1033   case Forward:
1034   case ForwardButPreventsForwarding:
1035   case Unknown:
1036     return false;
1037 
1038   case BackwardVectorizable:
1039   case Backward:
1040   case BackwardVectorizableButPreventsForwarding:
1041     return true;
1042   }
1043   llvm_unreachable("unexpected DepType!");
1044 }
1045 
1046 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1047   return isBackward() || Type == Unknown;
1048 }
1049 
1050 bool MemoryDepChecker::Dependence::isForward() const {
1051   switch (Type) {
1052   case Forward:
1053   case ForwardButPreventsForwarding:
1054     return true;
1055 
1056   case NoDep:
1057   case Unknown:
1058   case BackwardVectorizable:
1059   case Backward:
1060   case BackwardVectorizableButPreventsForwarding:
1061     return false;
1062   }
1063   llvm_unreachable("unexpected DepType!");
1064 }
1065 
1066 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1067                                                     unsigned TypeByteSize) {
1068   // If loads occur at a distance that is not a multiple of a feasible vector
1069   // factor store-load forwarding does not take place.
1070   // Positive dependences might cause troubles because vectorizing them might
1071   // prevent store-load forwarding making vectorized code run a lot slower.
1072   //   a[i] = a[i-3] ^ a[i-8];
1073   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1074   //   hence on your typical architecture store-load forwarding does not take
1075   //   place. Vectorizing in such cases does not make sense.
1076   // Store-load forwarding distance.
1077   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
1078   // Maximum vector factor.
1079   unsigned MaxVFWithoutSLForwardIssues =
1080     VectorizerParams::MaxVectorWidth * TypeByteSize;
1081   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
1082     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
1083 
1084   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
1085        vf *= 2) {
1086     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
1087       MaxVFWithoutSLForwardIssues = (vf >>=1);
1088       break;
1089     }
1090   }
1091 
1092   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
1093     DEBUG(dbgs() << "LAA: Distance " << Distance <<
1094           " that could cause a store-load forwarding conflict\n");
1095     return true;
1096   }
1097 
1098   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1099       MaxVFWithoutSLForwardIssues !=
1100       VectorizerParams::MaxVectorWidth * TypeByteSize)
1101     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1102   return false;
1103 }
1104 
1105 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1106 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1107 /// bytes.
1108 ///
1109 /// \returns true if they are independent.
1110 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1111                                           unsigned TypeByteSize) {
1112   assert(Stride > 1 && "The stride must be greater than 1");
1113   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1114   assert(Distance > 0 && "The distance must be non-zero");
1115 
1116   // Skip if the distance is not multiple of type byte size.
1117   if (Distance % TypeByteSize)
1118     return false;
1119 
1120   unsigned ScaledDist = Distance / TypeByteSize;
1121 
1122   // No dependence if the scaled distance is not multiple of the stride.
1123   // E.g.
1124   //      for (i = 0; i < 1024 ; i += 4)
1125   //        A[i+2] = A[i] + 1;
1126   //
1127   // Two accesses in memory (scaled distance is 2, stride is 4):
1128   //     | A[0] |      |      |      | A[4] |      |      |      |
1129   //     |      |      | A[2] |      |      |      | A[6] |      |
1130   //
1131   // E.g.
1132   //      for (i = 0; i < 1024 ; i += 3)
1133   //        A[i+4] = A[i] + 1;
1134   //
1135   // Two accesses in memory (scaled distance is 4, stride is 3):
1136   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1137   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1138   return ScaledDist % Stride;
1139 }
1140 
1141 MemoryDepChecker::Dependence::DepType
1142 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1143                               const MemAccessInfo &B, unsigned BIdx,
1144                               const ValueToValueMap &Strides) {
1145   assert (AIdx < BIdx && "Must pass arguments in program order");
1146 
1147   Value *APtr = A.getPointer();
1148   Value *BPtr = B.getPointer();
1149   bool AIsWrite = A.getInt();
1150   bool BIsWrite = B.getInt();
1151 
1152   // Two reads are independent.
1153   if (!AIsWrite && !BIsWrite)
1154     return Dependence::NoDep;
1155 
1156   // We cannot check pointers in different address spaces.
1157   if (APtr->getType()->getPointerAddressSpace() !=
1158       BPtr->getType()->getPointerAddressSpace())
1159     return Dependence::Unknown;
1160 
1161   const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr);
1162   const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr);
1163 
1164   int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides, true);
1165   int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides, true);
1166 
1167   const SCEV *Src = AScev;
1168   const SCEV *Sink = BScev;
1169 
1170   // If the induction step is negative we have to invert source and sink of the
1171   // dependence.
1172   if (StrideAPtr < 0) {
1173     //Src = BScev;
1174     //Sink = AScev;
1175     std::swap(APtr, BPtr);
1176     std::swap(Src, Sink);
1177     std::swap(AIsWrite, BIsWrite);
1178     std::swap(AIdx, BIdx);
1179     std::swap(StrideAPtr, StrideBPtr);
1180   }
1181 
1182   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1183 
1184   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1185                << "(Induction step: " << StrideAPtr << ")\n");
1186   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1187                << *InstMap[BIdx] << ": " << *Dist << "\n");
1188 
1189   // Need accesses with constant stride. We don't want to vectorize
1190   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1191   // the address space.
1192   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1193     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1194     return Dependence::Unknown;
1195   }
1196 
1197   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1198   if (!C) {
1199     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1200     ShouldRetryWithRuntimeCheck = true;
1201     return Dependence::Unknown;
1202   }
1203 
1204   Type *ATy = APtr->getType()->getPointerElementType();
1205   Type *BTy = BPtr->getType()->getPointerElementType();
1206   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1207   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1208 
1209   // Negative distances are not plausible dependencies.
1210   const APInt &Val = C->getAPInt();
1211   if (Val.isNegative()) {
1212     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1213     if (IsTrueDataDependence &&
1214         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1215          ATy != BTy)) {
1216       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1217       return Dependence::ForwardButPreventsForwarding;
1218     }
1219 
1220     DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1221     return Dependence::Forward;
1222   }
1223 
1224   // Write to the same location with the same size.
1225   // Could be improved to assert type sizes are the same (i32 == float, etc).
1226   if (Val == 0) {
1227     if (ATy == BTy)
1228       return Dependence::Forward;
1229     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1230     return Dependence::Unknown;
1231   }
1232 
1233   assert(Val.isStrictlyPositive() && "Expect a positive value");
1234 
1235   if (ATy != BTy) {
1236     DEBUG(dbgs() <<
1237           "LAA: ReadWrite-Write positive dependency with different types\n");
1238     return Dependence::Unknown;
1239   }
1240 
1241   unsigned Distance = (unsigned) Val.getZExtValue();
1242 
1243   unsigned Stride = std::abs(StrideAPtr);
1244   if (Stride > 1 &&
1245       areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1246     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1247     return Dependence::NoDep;
1248   }
1249 
1250   // Bail out early if passed-in parameters make vectorization not feasible.
1251   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1252                            VectorizerParams::VectorizationFactor : 1);
1253   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1254                            VectorizerParams::VectorizationInterleave : 1);
1255   // The minimum number of iterations for a vectorized/unrolled version.
1256   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1257 
1258   // It's not vectorizable if the distance is smaller than the minimum distance
1259   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1260   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1261   // TypeByteSize (No need to plus the last gap distance).
1262   //
1263   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1264   //      foo(int *A) {
1265   //        int *B = (int *)((char *)A + 14);
1266   //        for (i = 0 ; i < 1024 ; i += 2)
1267   //          B[i] = A[i] + 1;
1268   //      }
1269   //
1270   // Two accesses in memory (stride is 2):
1271   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1272   //                              | B[0] |      | B[2] |      | B[4] |
1273   //
1274   // Distance needs for vectorizing iterations except the last iteration:
1275   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1276   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1277   //
1278   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1279   // 12, which is less than distance.
1280   //
1281   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1282   // the minimum distance needed is 28, which is greater than distance. It is
1283   // not safe to do vectorization.
1284   unsigned MinDistanceNeeded =
1285       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1286   if (MinDistanceNeeded > Distance) {
1287     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1288                  << '\n');
1289     return Dependence::Backward;
1290   }
1291 
1292   // Unsafe if the minimum distance needed is greater than max safe distance.
1293   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1294     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1295                  << MinDistanceNeeded << " size in bytes");
1296     return Dependence::Backward;
1297   }
1298 
1299   // Positive distance bigger than max vectorization factor.
1300   // FIXME: Should use max factor instead of max distance in bytes, which could
1301   // not handle different types.
1302   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1303   //      void foo (int *A, char *B) {
1304   //        for (unsigned i = 0; i < 1024; i++) {
1305   //          A[i+2] = A[i] + 1;
1306   //          B[i+2] = B[i] + 1;
1307   //        }
1308   //      }
1309   //
1310   // This case is currently unsafe according to the max safe distance. If we
1311   // analyze the two accesses on array B, the max safe dependence distance
1312   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1313   // is 8, which is less than 2 and forbidden vectorization, But actually
1314   // both A and B could be vectorized by 2 iterations.
1315   MaxSafeDepDistBytes =
1316       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1317 
1318   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1319   if (IsTrueDataDependence &&
1320       couldPreventStoreLoadForward(Distance, TypeByteSize))
1321     return Dependence::BackwardVectorizableButPreventsForwarding;
1322 
1323   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1324                << " with max VF = "
1325                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1326 
1327   return Dependence::BackwardVectorizable;
1328 }
1329 
1330 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1331                                    MemAccessInfoSet &CheckDeps,
1332                                    const ValueToValueMap &Strides) {
1333 
1334   MaxSafeDepDistBytes = -1U;
1335   while (!CheckDeps.empty()) {
1336     MemAccessInfo CurAccess = *CheckDeps.begin();
1337 
1338     // Get the relevant memory access set.
1339     EquivalenceClasses<MemAccessInfo>::iterator I =
1340       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1341 
1342     // Check accesses within this set.
1343     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1344         AccessSets.member_begin(I);
1345     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1346         AccessSets.member_end();
1347 
1348     // Check every access pair.
1349     while (AI != AE) {
1350       CheckDeps.erase(*AI);
1351       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1352       while (OI != AE) {
1353         // Check every accessing instruction pair in program order.
1354         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1355              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1356           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1357                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1358             auto A = std::make_pair(&*AI, *I1);
1359             auto B = std::make_pair(&*OI, *I2);
1360 
1361             assert(*I1 != *I2);
1362             if (*I1 > *I2)
1363               std::swap(A, B);
1364 
1365             Dependence::DepType Type =
1366                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1367             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1368 
1369             // Gather dependences unless we accumulated MaxDependences
1370             // dependences.  In that case return as soon as we find the first
1371             // unsafe dependence.  This puts a limit on this quadratic
1372             // algorithm.
1373             if (RecordDependences) {
1374               if (Type != Dependence::NoDep)
1375                 Dependences.push_back(Dependence(A.second, B.second, Type));
1376 
1377               if (Dependences.size() >= MaxDependences) {
1378                 RecordDependences = false;
1379                 Dependences.clear();
1380                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1381               }
1382             }
1383             if (!RecordDependences && !SafeForVectorization)
1384               return false;
1385           }
1386         ++OI;
1387       }
1388       AI++;
1389     }
1390   }
1391 
1392   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1393   return SafeForVectorization;
1394 }
1395 
1396 SmallVector<Instruction *, 4>
1397 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1398   MemAccessInfo Access(Ptr, isWrite);
1399   auto &IndexVector = Accesses.find(Access)->second;
1400 
1401   SmallVector<Instruction *, 4> Insts;
1402   std::transform(IndexVector.begin(), IndexVector.end(),
1403                  std::back_inserter(Insts),
1404                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1405   return Insts;
1406 }
1407 
1408 const char *MemoryDepChecker::Dependence::DepName[] = {
1409     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1410     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1411 
1412 void MemoryDepChecker::Dependence::print(
1413     raw_ostream &OS, unsigned Depth,
1414     const SmallVectorImpl<Instruction *> &Instrs) const {
1415   OS.indent(Depth) << DepName[Type] << ":\n";
1416   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1417   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1418 }
1419 
1420 bool LoopAccessInfo::canAnalyzeLoop() {
1421   // We need to have a loop header.
1422   DEBUG(dbgs() << "LAA: Found a loop in "
1423                << TheLoop->getHeader()->getParent()->getName() << ": "
1424                << TheLoop->getHeader()->getName() << '\n');
1425 
1426   // We can only analyze innermost loops.
1427   if (!TheLoop->empty()) {
1428     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1429     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1430     return false;
1431   }
1432 
1433   // We must have a single backedge.
1434   if (TheLoop->getNumBackEdges() != 1) {
1435     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1436     emitAnalysis(
1437         LoopAccessReport() <<
1438         "loop control flow is not understood by analyzer");
1439     return false;
1440   }
1441 
1442   // We must have a single exiting block.
1443   if (!TheLoop->getExitingBlock()) {
1444     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1445     emitAnalysis(
1446         LoopAccessReport() <<
1447         "loop control flow is not understood by analyzer");
1448     return false;
1449   }
1450 
1451   // We only handle bottom-tested loops, i.e. loop in which the condition is
1452   // checked at the end of each iteration. With that we can assume that all
1453   // instructions in the loop are executed the same number of times.
1454   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1455     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1456     emitAnalysis(
1457         LoopAccessReport() <<
1458         "loop control flow is not understood by analyzer");
1459     return false;
1460   }
1461 
1462   // ScalarEvolution needs to be able to find the exit count.
1463   const SCEV *ExitCount = PSE.getBackedgeTakenCount();
1464   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1465     emitAnalysis(LoopAccessReport()
1466                  << "could not determine number of loop iterations");
1467     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1468     return false;
1469   }
1470 
1471   return true;
1472 }
1473 
1474 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1475 
1476   typedef SmallVector<Value*, 16> ValueVector;
1477   typedef SmallPtrSet<Value*, 16> ValueSet;
1478 
1479   // Holds the Load and Store *instructions*.
1480   ValueVector Loads;
1481   ValueVector Stores;
1482 
1483   // Holds all the different accesses in the loop.
1484   unsigned NumReads = 0;
1485   unsigned NumReadWrites = 0;
1486 
1487   PtrRtChecking.Pointers.clear();
1488   PtrRtChecking.Need = false;
1489 
1490   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1491 
1492   // For each block.
1493   for (Loop::block_iterator bb = TheLoop->block_begin(),
1494        be = TheLoop->block_end(); bb != be; ++bb) {
1495 
1496     // Scan the BB and collect legal loads and stores.
1497     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1498          ++it) {
1499 
1500       // If this is a load, save it. If this instruction can read from memory
1501       // but is not a load, then we quit. Notice that we don't handle function
1502       // calls that read or write.
1503       if (it->mayReadFromMemory()) {
1504         // Many math library functions read the rounding mode. We will only
1505         // vectorize a loop if it contains known function calls that don't set
1506         // the flag. Therefore, it is safe to ignore this read from memory.
1507         CallInst *Call = dyn_cast<CallInst>(it);
1508         if (Call && getIntrinsicIDForCall(Call, TLI))
1509           continue;
1510 
1511         // If the function has an explicit vectorized counterpart, we can safely
1512         // assume that it can be vectorized.
1513         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1514             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1515           continue;
1516 
1517         LoadInst *Ld = dyn_cast<LoadInst>(it);
1518         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1519           emitAnalysis(LoopAccessReport(Ld)
1520                        << "read with atomic ordering or volatile read");
1521           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1522           CanVecMem = false;
1523           return;
1524         }
1525         NumLoads++;
1526         Loads.push_back(Ld);
1527         DepChecker.addAccess(Ld);
1528         continue;
1529       }
1530 
1531       // Save 'store' instructions. Abort if other instructions write to memory.
1532       if (it->mayWriteToMemory()) {
1533         StoreInst *St = dyn_cast<StoreInst>(it);
1534         if (!St) {
1535           emitAnalysis(LoopAccessReport(&*it) <<
1536                        "instruction cannot be vectorized");
1537           CanVecMem = false;
1538           return;
1539         }
1540         if (!St->isSimple() && !IsAnnotatedParallel) {
1541           emitAnalysis(LoopAccessReport(St)
1542                        << "write with atomic ordering or volatile write");
1543           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1544           CanVecMem = false;
1545           return;
1546         }
1547         NumStores++;
1548         Stores.push_back(St);
1549         DepChecker.addAccess(St);
1550       }
1551     } // Next instr.
1552   } // Next block.
1553 
1554   // Now we have two lists that hold the loads and the stores.
1555   // Next, we find the pointers that they use.
1556 
1557   // Check if we see any stores. If there are no stores, then we don't
1558   // care if the pointers are *restrict*.
1559   if (!Stores.size()) {
1560     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1561     CanVecMem = true;
1562     return;
1563   }
1564 
1565   MemoryDepChecker::DepCandidates DependentAccesses;
1566   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1567                           AA, LI, DependentAccesses, PSE);
1568 
1569   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1570   // multiple times on the same object. If the ptr is accessed twice, once
1571   // for read and once for write, it will only appear once (on the write
1572   // list). This is okay, since we are going to check for conflicts between
1573   // writes and between reads and writes, but not between reads and reads.
1574   ValueSet Seen;
1575 
1576   ValueVector::iterator I, IE;
1577   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1578     StoreInst *ST = cast<StoreInst>(*I);
1579     Value* Ptr = ST->getPointerOperand();
1580     // Check for store to loop invariant address.
1581     StoreToLoopInvariantAddress |= isUniform(Ptr);
1582     // If we did *not* see this pointer before, insert it to  the read-write
1583     // list. At this phase it is only a 'write' list.
1584     if (Seen.insert(Ptr).second) {
1585       ++NumReadWrites;
1586 
1587       MemoryLocation Loc = MemoryLocation::get(ST);
1588       // The TBAA metadata could have a control dependency on the predication
1589       // condition, so we cannot rely on it when determining whether or not we
1590       // need runtime pointer checks.
1591       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1592         Loc.AATags.TBAA = nullptr;
1593 
1594       Accesses.addStore(Loc);
1595     }
1596   }
1597 
1598   if (IsAnnotatedParallel) {
1599     DEBUG(dbgs()
1600           << "LAA: A loop annotated parallel, ignore memory dependency "
1601           << "checks.\n");
1602     CanVecMem = true;
1603     return;
1604   }
1605 
1606   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1607     LoadInst *LD = cast<LoadInst>(*I);
1608     Value* Ptr = LD->getPointerOperand();
1609     // If we did *not* see this pointer before, insert it to the
1610     // read list. If we *did* see it before, then it is already in
1611     // the read-write list. This allows us to vectorize expressions
1612     // such as A[i] += x;  Because the address of A[i] is a read-write
1613     // pointer. This only works if the index of A[i] is consecutive.
1614     // If the address of i is unknown (for example A[B[i]]) then we may
1615     // read a few words, modify, and write a few words, and some of the
1616     // words may be written to the same address.
1617     bool IsReadOnlyPtr = false;
1618     if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) {
1619       ++NumReads;
1620       IsReadOnlyPtr = true;
1621     }
1622 
1623     MemoryLocation Loc = MemoryLocation::get(LD);
1624     // The TBAA metadata could have a control dependency on the predication
1625     // condition, so we cannot rely on it when determining whether or not we
1626     // need runtime pointer checks.
1627     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1628       Loc.AATags.TBAA = nullptr;
1629 
1630     Accesses.addLoad(Loc, IsReadOnlyPtr);
1631   }
1632 
1633   // If we write (or read-write) to a single destination and there are no
1634   // other reads in this loop then is it safe to vectorize.
1635   if (NumReadWrites == 1 && NumReads == 0) {
1636     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1637     CanVecMem = true;
1638     return;
1639   }
1640 
1641   // Build dependence sets and check whether we need a runtime pointer bounds
1642   // check.
1643   Accesses.buildDependenceSets();
1644 
1645   // Find pointers with computable bounds. We are going to use this information
1646   // to place a runtime bound check.
1647   bool CanDoRTIfNeeded =
1648       Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1649   if (!CanDoRTIfNeeded) {
1650     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1651     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1652                  << "the array bounds.\n");
1653     CanVecMem = false;
1654     return;
1655   }
1656 
1657   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1658 
1659   CanVecMem = true;
1660   if (Accesses.isDependencyCheckNeeded()) {
1661     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1662     CanVecMem = DepChecker.areDepsSafe(
1663         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1664     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1665 
1666     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1667       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1668 
1669       // Clear the dependency checks. We assume they are not needed.
1670       Accesses.resetDepChecks(DepChecker);
1671 
1672       PtrRtChecking.reset();
1673       PtrRtChecking.Need = true;
1674 
1675       auto *SE = PSE.getSE();
1676       CanDoRTIfNeeded =
1677           Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1678 
1679       // Check that we found the bounds for the pointer.
1680       if (!CanDoRTIfNeeded) {
1681         emitAnalysis(LoopAccessReport()
1682                      << "cannot check memory dependencies at runtime");
1683         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1684         CanVecMem = false;
1685         return;
1686       }
1687 
1688       CanVecMem = true;
1689     }
1690   }
1691 
1692   if (CanVecMem)
1693     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1694                  << (PtrRtChecking.Need ? "" : " don't")
1695                  << " need runtime memory checks.\n");
1696   else {
1697     emitAnalysis(LoopAccessReport() <<
1698                  "unsafe dependent memory operations in loop");
1699     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1700   }
1701 }
1702 
1703 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1704                                            DominatorTree *DT)  {
1705   assert(TheLoop->contains(BB) && "Unknown block used");
1706 
1707   // Blocks that do not dominate the latch need predication.
1708   BasicBlock* Latch = TheLoop->getLoopLatch();
1709   return !DT->dominates(BB, Latch);
1710 }
1711 
1712 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1713   assert(!Report && "Multiple reports generated");
1714   Report = Message;
1715 }
1716 
1717 bool LoopAccessInfo::isUniform(Value *V) const {
1718   return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1719 }
1720 
1721 // FIXME: this function is currently a duplicate of the one in
1722 // LoopVectorize.cpp.
1723 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1724                                  Instruction *Loc) {
1725   if (FirstInst)
1726     return FirstInst;
1727   if (Instruction *I = dyn_cast<Instruction>(V))
1728     return I->getParent() == Loc->getParent() ? I : nullptr;
1729   return nullptr;
1730 }
1731 
1732 namespace {
1733 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1734 /// need to use value-handles because SCEV expansion can invalidate previously
1735 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1736 /// a previous one.
1737 struct PointerBounds {
1738   TrackingVH<Value> Start;
1739   TrackingVH<Value> End;
1740 };
1741 } // end anonymous namespace
1742 
1743 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1744 /// in \p TheLoop.  \return the values for the bounds.
1745 static PointerBounds
1746 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1747              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1748              const RuntimePointerChecking &PtrRtChecking) {
1749   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1750   const SCEV *Sc = SE->getSCEV(Ptr);
1751 
1752   if (SE->isLoopInvariant(Sc, TheLoop)) {
1753     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1754                  << "\n");
1755     return {Ptr, Ptr};
1756   } else {
1757     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1758     LLVMContext &Ctx = Loc->getContext();
1759 
1760     // Use this type for pointer arithmetic.
1761     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1762     Value *Start = nullptr, *End = nullptr;
1763 
1764     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1765     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1766     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1767     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1768     return {Start, End};
1769   }
1770 }
1771 
1772 /// \brief Turns a collection of checks into a collection of expanded upper and
1773 /// lower bounds for both pointers in the check.
1774 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1775     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1776     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1777     const RuntimePointerChecking &PtrRtChecking) {
1778   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1779 
1780   // Here we're relying on the SCEV Expander's cache to only emit code for the
1781   // same bounds once.
1782   std::transform(
1783       PointerChecks.begin(), PointerChecks.end(),
1784       std::back_inserter(ChecksWithBounds),
1785       [&](const RuntimePointerChecking::PointerCheck &Check) {
1786         PointerBounds
1787           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1788           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1789         return std::make_pair(First, Second);
1790       });
1791 
1792   return ChecksWithBounds;
1793 }
1794 
1795 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1796     Instruction *Loc,
1797     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1798     const {
1799   auto *SE = PSE.getSE();
1800   SCEVExpander Exp(*SE, DL, "induction");
1801   auto ExpandedChecks =
1802       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1803 
1804   LLVMContext &Ctx = Loc->getContext();
1805   Instruction *FirstInst = nullptr;
1806   IRBuilder<> ChkBuilder(Loc);
1807   // Our instructions might fold to a constant.
1808   Value *MemoryRuntimeCheck = nullptr;
1809 
1810   for (const auto &Check : ExpandedChecks) {
1811     const PointerBounds &A = Check.first, &B = Check.second;
1812     // Check if two pointers (A and B) conflict where conflict is computed as:
1813     // start(A) <= end(B) && start(B) <= end(A)
1814     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1815     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1816 
1817     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1818            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1819            "Trying to bounds check pointers with different address spaces");
1820 
1821     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1822     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1823 
1824     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1825     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1826     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1827     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1828 
1829     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1830     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1831     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1832     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1833     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1834     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1835     if (MemoryRuntimeCheck) {
1836       IsConflict =
1837           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1838       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1839     }
1840     MemoryRuntimeCheck = IsConflict;
1841   }
1842 
1843   if (!MemoryRuntimeCheck)
1844     return std::make_pair(nullptr, nullptr);
1845 
1846   // We have to do this trickery because the IRBuilder might fold the check to a
1847   // constant expression in which case there is no Instruction anchored in a
1848   // the block.
1849   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1850                                                  ConstantInt::getTrue(Ctx));
1851   ChkBuilder.Insert(Check, "memcheck.conflict");
1852   FirstInst = getFirstInst(FirstInst, Check, Loc);
1853   return std::make_pair(FirstInst, Check);
1854 }
1855 
1856 std::pair<Instruction *, Instruction *>
1857 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1858   if (!PtrRtChecking.Need)
1859     return std::make_pair(nullptr, nullptr);
1860 
1861   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1862 }
1863 
1864 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1865                                const DataLayout &DL,
1866                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1867                                DominatorTree *DT, LoopInfo *LI,
1868                                const ValueToValueMap &Strides)
1869     : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1870       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1871       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1872       StoreToLoopInvariantAddress(false) {
1873   if (canAnalyzeLoop())
1874     analyzeLoop(Strides);
1875 }
1876 
1877 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1878   if (CanVecMem) {
1879     if (PtrRtChecking.Need)
1880       OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1881     else
1882       OS.indent(Depth) << "Memory dependences are safe\n";
1883   }
1884 
1885   if (Report)
1886     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1887 
1888   if (auto *Dependences = DepChecker.getDependences()) {
1889     OS.indent(Depth) << "Dependences:\n";
1890     for (auto &Dep : *Dependences) {
1891       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1892       OS << "\n";
1893     }
1894   } else
1895     OS.indent(Depth) << "Too many dependences, not recorded\n";
1896 
1897   // List the pair of accesses need run-time checks to prove independence.
1898   PtrRtChecking.print(OS, Depth);
1899   OS << "\n";
1900 
1901   OS.indent(Depth) << "Store to invariant address was "
1902                    << (StoreToLoopInvariantAddress ? "" : "not ")
1903                    << "found in loop.\n";
1904 
1905   OS.indent(Depth) << "SCEV assumptions:\n";
1906   PSE.getUnionPredicate().print(OS, Depth);
1907 
1908   OS << "\n";
1909 
1910   OS.indent(Depth) << "Expressions re-written:\n";
1911   PSE.print(OS, Depth);
1912 }
1913 
1914 const LoopAccessInfo &
1915 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1916   auto &LAI = LoopAccessInfoMap[L];
1917 
1918 #ifndef NDEBUG
1919   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1920          "Symbolic strides changed for loop");
1921 #endif
1922 
1923   if (!LAI) {
1924     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1925     LAI =
1926         llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1927 #ifndef NDEBUG
1928     LAI->NumSymbolicStrides = Strides.size();
1929 #endif
1930   }
1931   return *LAI.get();
1932 }
1933 
1934 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1935   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1936 
1937   ValueToValueMap NoSymbolicStrides;
1938 
1939   for (Loop *TopLevelLoop : *LI)
1940     for (Loop *L : depth_first(TopLevelLoop)) {
1941       OS.indent(2) << L->getHeader()->getName() << ":\n";
1942       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1943       LAI.print(OS, 4);
1944     }
1945 }
1946 
1947 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1948   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1949   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1950   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1951   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1952   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1953   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1954 
1955   return false;
1956 }
1957 
1958 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1959     AU.addRequired<ScalarEvolutionWrapperPass>();
1960     AU.addRequired<AAResultsWrapperPass>();
1961     AU.addRequired<DominatorTreeWrapperPass>();
1962     AU.addRequired<LoopInfoWrapperPass>();
1963 
1964     AU.setPreservesAll();
1965 }
1966 
1967 char LoopAccessAnalysis::ID = 0;
1968 static const char laa_name[] = "Loop Access Analysis";
1969 #define LAA_NAME "loop-accesses"
1970 
1971 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1972 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1973 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1974 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1975 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1976 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1977 
1978 namespace llvm {
1979   Pass *createLAAPass() {
1980     return new LoopAccessAnalysis();
1981   }
1982 }
1983