1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/EquivalenceClasses.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AliasSetTracker.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Operator.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstdlib> 66 #include <iterator> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-accesses" 73 74 static cl::opt<unsigned, true> 75 VectorizationFactor("force-vector-width", cl::Hidden, 76 cl::desc("Sets the SIMD width. Zero is autoselect."), 77 cl::location(VectorizerParams::VectorizationFactor)); 78 unsigned VectorizerParams::VectorizationFactor; 79 80 static cl::opt<unsigned, true> 81 VectorizationInterleave("force-vector-interleave", cl::Hidden, 82 cl::desc("Sets the vectorization interleave count. " 83 "Zero is autoselect."), 84 cl::location( 85 VectorizerParams::VectorizationInterleave)); 86 unsigned VectorizerParams::VectorizationInterleave; 87 88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 89 "runtime-memory-check-threshold", cl::Hidden, 90 cl::desc("When performing memory disambiguation checks at runtime do not " 91 "generate more than this number of comparisons (default = 8)."), 92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94 95 /// \brief The maximum iterations used to merge memory checks 96 static cl::opt<unsigned> MemoryCheckMergeThreshold( 97 "memory-check-merge-threshold", cl::Hidden, 98 cl::desc("Maximum number of comparisons done when trying to merge " 99 "runtime memory checks. (default = 100)"), 100 cl::init(100)); 101 102 /// Maximum SIMD width. 103 const unsigned VectorizerParams::MaxVectorWidth = 64; 104 105 /// \brief We collect dependences up to this threshold. 106 static cl::opt<unsigned> 107 MaxDependences("max-dependences", cl::Hidden, 108 cl::desc("Maximum number of dependences collected by " 109 "loop-access analysis (default = 100)"), 110 cl::init(100)); 111 112 /// This enables versioning on the strides of symbolically striding memory 113 /// accesses in code like the following. 114 /// for (i = 0; i < N; ++i) 115 /// A[i * Stride1] += B[i * Stride2] ... 116 /// 117 /// Will be roughly translated to 118 /// if (Stride1 == 1 && Stride2 == 1) { 119 /// for (i = 0; i < N; i+=4) 120 /// A[i:i+3] += ... 121 /// } else 122 /// ... 123 static cl::opt<bool> EnableMemAccessVersioning( 124 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125 cl::desc("Enable symbolic stride memory access versioning")); 126 127 /// \brief Enable store-to-load forwarding conflict detection. This option can 128 /// be disabled for correctness testing. 129 static cl::opt<bool> EnableForwardingConflictDetection( 130 "store-to-load-forwarding-conflict-detection", cl::Hidden, 131 cl::desc("Enable conflict detection in loop-access analysis"), 132 cl::init(true)); 133 134 bool VectorizerParams::isInterleaveForced() { 135 return ::VectorizationInterleave.getNumOccurrences() > 0; 136 } 137 138 Value *llvm::stripIntegerCast(Value *V) { 139 if (auto *CI = dyn_cast<CastInst>(V)) 140 if (CI->getOperand(0)->getType()->isIntegerTy()) 141 return CI->getOperand(0); 142 return V; 143 } 144 145 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 146 const ValueToValueMap &PtrToStride, 147 Value *Ptr, Value *OrigPtr) { 148 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 149 150 // If there is an entry in the map return the SCEV of the pointer with the 151 // symbolic stride replaced by one. 152 ValueToValueMap::const_iterator SI = 153 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 154 if (SI != PtrToStride.end()) { 155 Value *StrideVal = SI->second; 156 157 // Strip casts. 158 StrideVal = stripIntegerCast(StrideVal); 159 160 ScalarEvolution *SE = PSE.getSE(); 161 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 162 const auto *CT = 163 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 164 165 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 166 auto *Expr = PSE.getSCEV(Ptr); 167 168 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 169 << "\n"); 170 return Expr; 171 } 172 173 // Otherwise, just return the SCEV of the original pointer. 174 return OrigSCEV; 175 } 176 177 /// Calculate Start and End points of memory access. 178 /// Let's assume A is the first access and B is a memory access on N-th loop 179 /// iteration. Then B is calculated as: 180 /// B = A + Step*N . 181 /// Step value may be positive or negative. 182 /// N is a calculated back-edge taken count: 183 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 184 /// Start and End points are calculated in the following way: 185 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 186 /// where SizeOfElt is the size of single memory access in bytes. 187 /// 188 /// There is no conflict when the intervals are disjoint: 189 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 190 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 191 unsigned DepSetId, unsigned ASId, 192 const ValueToValueMap &Strides, 193 PredicatedScalarEvolution &PSE) { 194 // Get the stride replaced scev. 195 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 196 ScalarEvolution *SE = PSE.getSE(); 197 198 const SCEV *ScStart; 199 const SCEV *ScEnd; 200 201 if (SE->isLoopInvariant(Sc, Lp)) 202 ScStart = ScEnd = Sc; 203 else { 204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 205 assert(AR && "Invalid addrec expression"); 206 const SCEV *Ex = PSE.getBackedgeTakenCount(); 207 208 ScStart = AR->getStart(); 209 ScEnd = AR->evaluateAtIteration(Ex, *SE); 210 const SCEV *Step = AR->getStepRecurrence(*SE); 211 212 // For expressions with negative step, the upper bound is ScStart and the 213 // lower bound is ScEnd. 214 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 215 if (CStep->getValue()->isNegative()) 216 std::swap(ScStart, ScEnd); 217 } else { 218 // Fallback case: the step is not constant, but we can still 219 // get the upper and lower bounds of the interval by using min/max 220 // expressions. 221 ScStart = SE->getUMinExpr(ScStart, ScEnd); 222 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 223 } 224 // Add the size of the pointed element to ScEnd. 225 unsigned EltSize = 226 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 227 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 228 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 229 } 230 231 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 232 } 233 234 SmallVector<RuntimePointerChecking::PointerCheck, 4> 235 RuntimePointerChecking::generateChecks() const { 236 SmallVector<PointerCheck, 4> Checks; 237 238 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 239 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 240 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 241 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 242 243 if (needsChecking(CGI, CGJ)) 244 Checks.push_back(std::make_pair(&CGI, &CGJ)); 245 } 246 } 247 return Checks; 248 } 249 250 void RuntimePointerChecking::generateChecks( 251 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 252 assert(Checks.empty() && "Checks is not empty"); 253 groupChecks(DepCands, UseDependencies); 254 Checks = generateChecks(); 255 } 256 257 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 258 const CheckingPtrGroup &N) const { 259 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 260 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 261 if (needsChecking(M.Members[I], N.Members[J])) 262 return true; 263 return false; 264 } 265 266 /// Compare \p I and \p J and return the minimum. 267 /// Return nullptr in case we couldn't find an answer. 268 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 269 ScalarEvolution *SE) { 270 const SCEV *Diff = SE->getMinusSCEV(J, I); 271 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 272 273 if (!C) 274 return nullptr; 275 if (C->getValue()->isNegative()) 276 return J; 277 return I; 278 } 279 280 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 281 const SCEV *Start = RtCheck.Pointers[Index].Start; 282 const SCEV *End = RtCheck.Pointers[Index].End; 283 284 // Compare the starts and ends with the known minimum and maximum 285 // of this set. We need to know how we compare against the min/max 286 // of the set in order to be able to emit memchecks. 287 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 288 if (!Min0) 289 return false; 290 291 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 292 if (!Min1) 293 return false; 294 295 // Update the low bound expression if we've found a new min value. 296 if (Min0 == Start) 297 Low = Start; 298 299 // Update the high bound expression if we've found a new max value. 300 if (Min1 != End) 301 High = End; 302 303 Members.push_back(Index); 304 return true; 305 } 306 307 void RuntimePointerChecking::groupChecks( 308 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 309 // We build the groups from dependency candidates equivalence classes 310 // because: 311 // - We know that pointers in the same equivalence class share 312 // the same underlying object and therefore there is a chance 313 // that we can compare pointers 314 // - We wouldn't be able to merge two pointers for which we need 315 // to emit a memcheck. The classes in DepCands are already 316 // conveniently built such that no two pointers in the same 317 // class need checking against each other. 318 319 // We use the following (greedy) algorithm to construct the groups 320 // For every pointer in the equivalence class: 321 // For each existing group: 322 // - if the difference between this pointer and the min/max bounds 323 // of the group is a constant, then make the pointer part of the 324 // group and update the min/max bounds of that group as required. 325 326 CheckingGroups.clear(); 327 328 // If we need to check two pointers to the same underlying object 329 // with a non-constant difference, we shouldn't perform any pointer 330 // grouping with those pointers. This is because we can easily get 331 // into cases where the resulting check would return false, even when 332 // the accesses are safe. 333 // 334 // The following example shows this: 335 // for (i = 0; i < 1000; ++i) 336 // a[5000 + i * m] = a[i] + a[i + 9000] 337 // 338 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 339 // (0, 10000) which is always false. However, if m is 1, there is no 340 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 341 // us to perform an accurate check in this case. 342 // 343 // The above case requires that we have an UnknownDependence between 344 // accesses to the same underlying object. This cannot happen unless 345 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 346 // is also false. In this case we will use the fallback path and create 347 // separate checking groups for all pointers. 348 349 // If we don't have the dependency partitions, construct a new 350 // checking pointer group for each pointer. This is also required 351 // for correctness, because in this case we can have checking between 352 // pointers to the same underlying object. 353 if (!UseDependencies) { 354 for (unsigned I = 0; I < Pointers.size(); ++I) 355 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 356 return; 357 } 358 359 unsigned TotalComparisons = 0; 360 361 DenseMap<Value *, unsigned> PositionMap; 362 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 363 PositionMap[Pointers[Index].PointerValue] = Index; 364 365 // We need to keep track of what pointers we've already seen so we 366 // don't process them twice. 367 SmallSet<unsigned, 2> Seen; 368 369 // Go through all equivalence classes, get the "pointer check groups" 370 // and add them to the overall solution. We use the order in which accesses 371 // appear in 'Pointers' to enforce determinism. 372 for (unsigned I = 0; I < Pointers.size(); ++I) { 373 // We've seen this pointer before, and therefore already processed 374 // its equivalence class. 375 if (Seen.count(I)) 376 continue; 377 378 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 379 Pointers[I].IsWritePtr); 380 381 SmallVector<CheckingPtrGroup, 2> Groups; 382 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 383 384 // Because DepCands is constructed by visiting accesses in the order in 385 // which they appear in alias sets (which is deterministic) and the 386 // iteration order within an equivalence class member is only dependent on 387 // the order in which unions and insertions are performed on the 388 // equivalence class, the iteration order is deterministic. 389 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 390 MI != ME; ++MI) { 391 unsigned Pointer = PositionMap[MI->getPointer()]; 392 bool Merged = false; 393 // Mark this pointer as seen. 394 Seen.insert(Pointer); 395 396 // Go through all the existing sets and see if we can find one 397 // which can include this pointer. 398 for (CheckingPtrGroup &Group : Groups) { 399 // Don't perform more than a certain amount of comparisons. 400 // This should limit the cost of grouping the pointers to something 401 // reasonable. If we do end up hitting this threshold, the algorithm 402 // will create separate groups for all remaining pointers. 403 if (TotalComparisons > MemoryCheckMergeThreshold) 404 break; 405 406 TotalComparisons++; 407 408 if (Group.addPointer(Pointer)) { 409 Merged = true; 410 break; 411 } 412 } 413 414 if (!Merged) 415 // We couldn't add this pointer to any existing set or the threshold 416 // for the number of comparisons has been reached. Create a new group 417 // to hold the current pointer. 418 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 419 } 420 421 // We've computed the grouped checks for this partition. 422 // Save the results and continue with the next one. 423 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 424 } 425 } 426 427 bool RuntimePointerChecking::arePointersInSamePartition( 428 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 429 unsigned PtrIdx2) { 430 return (PtrToPartition[PtrIdx1] != -1 && 431 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 432 } 433 434 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 435 const PointerInfo &PointerI = Pointers[I]; 436 const PointerInfo &PointerJ = Pointers[J]; 437 438 // No need to check if two readonly pointers intersect. 439 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 440 return false; 441 442 // Only need to check pointers between two different dependency sets. 443 if (PointerI.DependencySetId == PointerJ.DependencySetId) 444 return false; 445 446 // Only need to check pointers in the same alias set. 447 if (PointerI.AliasSetId != PointerJ.AliasSetId) 448 return false; 449 450 return true; 451 } 452 453 void RuntimePointerChecking::printChecks( 454 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 455 unsigned Depth) const { 456 unsigned N = 0; 457 for (const auto &Check : Checks) { 458 const auto &First = Check.first->Members, &Second = Check.second->Members; 459 460 OS.indent(Depth) << "Check " << N++ << ":\n"; 461 462 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 463 for (unsigned K = 0; K < First.size(); ++K) 464 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 465 466 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 467 for (unsigned K = 0; K < Second.size(); ++K) 468 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 469 } 470 } 471 472 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 473 474 OS.indent(Depth) << "Run-time memory checks:\n"; 475 printChecks(OS, Checks, Depth); 476 477 OS.indent(Depth) << "Grouped accesses:\n"; 478 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 479 const auto &CG = CheckingGroups[I]; 480 481 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 482 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 483 << ")\n"; 484 for (unsigned J = 0; J < CG.Members.size(); ++J) { 485 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 486 << "\n"; 487 } 488 } 489 } 490 491 namespace { 492 493 /// \brief Analyses memory accesses in a loop. 494 /// 495 /// Checks whether run time pointer checks are needed and builds sets for data 496 /// dependence checking. 497 class AccessAnalysis { 498 public: 499 /// \brief Read or write access location. 500 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 501 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 502 503 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 504 MemoryDepChecker::DepCandidates &DA, 505 PredicatedScalarEvolution &PSE) 506 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 507 PSE(PSE) {} 508 509 /// \brief Register a load and whether it is only read from. 510 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 511 Value *Ptr = const_cast<Value*>(Loc.Ptr); 512 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 513 Accesses.insert(MemAccessInfo(Ptr, false)); 514 if (IsReadOnly) 515 ReadOnlyPtr.insert(Ptr); 516 } 517 518 /// \brief Register a store. 519 void addStore(MemoryLocation &Loc) { 520 Value *Ptr = const_cast<Value*>(Loc.Ptr); 521 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 522 Accesses.insert(MemAccessInfo(Ptr, true)); 523 } 524 525 /// \brief Check if we can emit a run-time no-alias check for \p Access. 526 /// 527 /// Returns true if we can emit a run-time no alias check for \p Access. 528 /// If we can check this access, this also adds it to a dependence set and 529 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 530 /// we will attempt to use additional run-time checks in order to get 531 /// the bounds of the pointer. 532 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 533 MemAccessInfo Access, 534 const ValueToValueMap &Strides, 535 DenseMap<Value *, unsigned> &DepSetId, 536 Loop *TheLoop, unsigned &RunningDepId, 537 unsigned ASId, bool ShouldCheckStride, 538 bool Assume); 539 540 /// \brief Check whether we can check the pointers at runtime for 541 /// non-intersection. 542 /// 543 /// Returns true if we need no check or if we do and we can generate them 544 /// (i.e. the pointers have computable bounds). 545 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 546 Loop *TheLoop, const ValueToValueMap &Strides, 547 bool ShouldCheckWrap = false); 548 549 /// \brief Goes over all memory accesses, checks whether a RT check is needed 550 /// and builds sets of dependent accesses. 551 void buildDependenceSets() { 552 processMemAccesses(); 553 } 554 555 /// \brief Initial processing of memory accesses determined that we need to 556 /// perform dependency checking. 557 /// 558 /// Note that this can later be cleared if we retry memcheck analysis without 559 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 560 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 561 562 /// We decided that no dependence analysis would be used. Reset the state. 563 void resetDepChecks(MemoryDepChecker &DepChecker) { 564 CheckDeps.clear(); 565 DepChecker.clearDependences(); 566 } 567 568 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 569 570 private: 571 typedef SetVector<MemAccessInfo> PtrAccessSet; 572 573 /// \brief Go over all memory access and check whether runtime pointer checks 574 /// are needed and build sets of dependency check candidates. 575 void processMemAccesses(); 576 577 /// Set of all accesses. 578 PtrAccessSet Accesses; 579 580 const DataLayout &DL; 581 582 /// List of accesses that need a further dependence check. 583 MemAccessInfoList CheckDeps; 584 585 /// Set of pointers that are read only. 586 SmallPtrSet<Value*, 16> ReadOnlyPtr; 587 588 /// An alias set tracker to partition the access set by underlying object and 589 //intrinsic property (such as TBAA metadata). 590 AliasSetTracker AST; 591 592 LoopInfo *LI; 593 594 /// Sets of potentially dependent accesses - members of one set share an 595 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 596 /// dependence check. 597 MemoryDepChecker::DepCandidates &DepCands; 598 599 /// \brief Initial processing of memory accesses determined that we may need 600 /// to add memchecks. Perform the analysis to determine the necessary checks. 601 /// 602 /// Note that, this is different from isDependencyCheckNeeded. When we retry 603 /// memcheck analysis without dependency checking 604 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 605 /// while this remains set if we have potentially dependent accesses. 606 bool IsRTCheckAnalysisNeeded; 607 608 /// The SCEV predicate containing all the SCEV-related assumptions. 609 PredicatedScalarEvolution &PSE; 610 }; 611 612 } // end anonymous namespace 613 614 /// \brief Check whether a pointer can participate in a runtime bounds check. 615 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 616 /// by adding run-time checks (overflow checks) if necessary. 617 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 618 const ValueToValueMap &Strides, Value *Ptr, 619 Loop *L, bool Assume) { 620 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 621 622 // The bounds for loop-invariant pointer is trivial. 623 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 624 return true; 625 626 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 627 628 if (!AR && Assume) 629 AR = PSE.getAsAddRec(Ptr); 630 631 if (!AR) 632 return false; 633 634 return AR->isAffine(); 635 } 636 637 /// \brief Check whether a pointer address cannot wrap. 638 static bool isNoWrap(PredicatedScalarEvolution &PSE, 639 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 640 const SCEV *PtrScev = PSE.getSCEV(Ptr); 641 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 642 return true; 643 644 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 645 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 646 return true; 647 648 return false; 649 } 650 651 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 652 MemAccessInfo Access, 653 const ValueToValueMap &StridesMap, 654 DenseMap<Value *, unsigned> &DepSetId, 655 Loop *TheLoop, unsigned &RunningDepId, 656 unsigned ASId, bool ShouldCheckWrap, 657 bool Assume) { 658 Value *Ptr = Access.getPointer(); 659 660 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 661 return false; 662 663 // When we run after a failing dependency check we have to make sure 664 // we don't have wrapping pointers. 665 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 666 auto *Expr = PSE.getSCEV(Ptr); 667 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 668 return false; 669 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 670 } 671 672 // The id of the dependence set. 673 unsigned DepId; 674 675 if (isDependencyCheckNeeded()) { 676 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 677 unsigned &LeaderId = DepSetId[Leader]; 678 if (!LeaderId) 679 LeaderId = RunningDepId++; 680 DepId = LeaderId; 681 } else 682 // Each access has its own dependence set. 683 DepId = RunningDepId++; 684 685 bool IsWrite = Access.getInt(); 686 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 687 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 688 689 return true; 690 } 691 692 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 693 ScalarEvolution *SE, Loop *TheLoop, 694 const ValueToValueMap &StridesMap, 695 bool ShouldCheckWrap) { 696 // Find pointers with computable bounds. We are going to use this information 697 // to place a runtime bound check. 698 bool CanDoRT = true; 699 700 bool NeedRTCheck = false; 701 if (!IsRTCheckAnalysisNeeded) return true; 702 703 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 704 705 // We assign a consecutive id to access from different alias sets. 706 // Accesses between different groups doesn't need to be checked. 707 unsigned ASId = 1; 708 for (auto &AS : AST) { 709 int NumReadPtrChecks = 0; 710 int NumWritePtrChecks = 0; 711 bool CanDoAliasSetRT = true; 712 713 // We assign consecutive id to access from different dependence sets. 714 // Accesses within the same set don't need a runtime check. 715 unsigned RunningDepId = 1; 716 DenseMap<Value *, unsigned> DepSetId; 717 718 SmallVector<MemAccessInfo, 4> Retries; 719 720 for (auto A : AS) { 721 Value *Ptr = A.getValue(); 722 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 723 MemAccessInfo Access(Ptr, IsWrite); 724 725 if (IsWrite) 726 ++NumWritePtrChecks; 727 else 728 ++NumReadPtrChecks; 729 730 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 731 RunningDepId, ASId, ShouldCheckWrap, false)) { 732 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 733 Retries.push_back(Access); 734 CanDoAliasSetRT = false; 735 } 736 } 737 738 // If we have at least two writes or one write and a read then we need to 739 // check them. But there is no need to checks if there is only one 740 // dependence set for this alias set. 741 // 742 // Note that this function computes CanDoRT and NeedRTCheck independently. 743 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 744 // for which we couldn't find the bounds but we don't actually need to emit 745 // any checks so it does not matter. 746 bool NeedsAliasSetRTCheck = false; 747 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 748 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 749 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 750 751 // We need to perform run-time alias checks, but some pointers had bounds 752 // that couldn't be checked. 753 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 754 // Reset the CanDoSetRt flag and retry all accesses that have failed. 755 // We know that we need these checks, so we can now be more aggressive 756 // and add further checks if required (overflow checks). 757 CanDoAliasSetRT = true; 758 for (auto Access : Retries) 759 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 760 TheLoop, RunningDepId, ASId, 761 ShouldCheckWrap, /*Assume=*/true)) { 762 CanDoAliasSetRT = false; 763 break; 764 } 765 } 766 767 CanDoRT &= CanDoAliasSetRT; 768 NeedRTCheck |= NeedsAliasSetRTCheck; 769 ++ASId; 770 } 771 772 // If the pointers that we would use for the bounds comparison have different 773 // address spaces, assume the values aren't directly comparable, so we can't 774 // use them for the runtime check. We also have to assume they could 775 // overlap. In the future there should be metadata for whether address spaces 776 // are disjoint. 777 unsigned NumPointers = RtCheck.Pointers.size(); 778 for (unsigned i = 0; i < NumPointers; ++i) { 779 for (unsigned j = i + 1; j < NumPointers; ++j) { 780 // Only need to check pointers between two different dependency sets. 781 if (RtCheck.Pointers[i].DependencySetId == 782 RtCheck.Pointers[j].DependencySetId) 783 continue; 784 // Only need to check pointers in the same alias set. 785 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 786 continue; 787 788 Value *PtrI = RtCheck.Pointers[i].PointerValue; 789 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 790 791 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 792 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 793 if (ASi != ASj) { 794 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 795 " different address spaces\n"); 796 return false; 797 } 798 } 799 } 800 801 if (NeedRTCheck && CanDoRT) 802 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 803 804 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 805 << " pointer comparisons.\n"); 806 807 RtCheck.Need = NeedRTCheck; 808 809 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 810 if (!CanDoRTIfNeeded) 811 RtCheck.reset(); 812 return CanDoRTIfNeeded; 813 } 814 815 void AccessAnalysis::processMemAccesses() { 816 // We process the set twice: first we process read-write pointers, last we 817 // process read-only pointers. This allows us to skip dependence tests for 818 // read-only pointers. 819 820 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 821 DEBUG(dbgs() << " AST: "; AST.dump()); 822 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 823 DEBUG({ 824 for (auto A : Accesses) 825 dbgs() << "\t" << *A.getPointer() << " (" << 826 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 827 "read-only" : "read")) << ")\n"; 828 }); 829 830 // The AliasSetTracker has nicely partitioned our pointers by metadata 831 // compatibility and potential for underlying-object overlap. As a result, we 832 // only need to check for potential pointer dependencies within each alias 833 // set. 834 for (auto &AS : AST) { 835 // Note that both the alias-set tracker and the alias sets themselves used 836 // linked lists internally and so the iteration order here is deterministic 837 // (matching the original instruction order within each set). 838 839 bool SetHasWrite = false; 840 841 // Map of pointers to last access encountered. 842 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 843 UnderlyingObjToAccessMap ObjToLastAccess; 844 845 // Set of access to check after all writes have been processed. 846 PtrAccessSet DeferredAccesses; 847 848 // Iterate over each alias set twice, once to process read/write pointers, 849 // and then to process read-only pointers. 850 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 851 bool UseDeferred = SetIteration > 0; 852 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 853 854 for (auto AV : AS) { 855 Value *Ptr = AV.getValue(); 856 857 // For a single memory access in AliasSetTracker, Accesses may contain 858 // both read and write, and they both need to be handled for CheckDeps. 859 for (auto AC : S) { 860 if (AC.getPointer() != Ptr) 861 continue; 862 863 bool IsWrite = AC.getInt(); 864 865 // If we're using the deferred access set, then it contains only 866 // reads. 867 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 868 if (UseDeferred && !IsReadOnlyPtr) 869 continue; 870 // Otherwise, the pointer must be in the PtrAccessSet, either as a 871 // read or a write. 872 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 873 S.count(MemAccessInfo(Ptr, false))) && 874 "Alias-set pointer not in the access set?"); 875 876 MemAccessInfo Access(Ptr, IsWrite); 877 DepCands.insert(Access); 878 879 // Memorize read-only pointers for later processing and skip them in 880 // the first round (they need to be checked after we have seen all 881 // write pointers). Note: we also mark pointer that are not 882 // consecutive as "read-only" pointers (so that we check 883 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 884 if (!UseDeferred && IsReadOnlyPtr) { 885 DeferredAccesses.insert(Access); 886 continue; 887 } 888 889 // If this is a write - check other reads and writes for conflicts. If 890 // this is a read only check other writes for conflicts (but only if 891 // there is no other write to the ptr - this is an optimization to 892 // catch "a[i] = a[i] + " without having to do a dependence check). 893 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 894 CheckDeps.push_back(Access); 895 IsRTCheckAnalysisNeeded = true; 896 } 897 898 if (IsWrite) 899 SetHasWrite = true; 900 901 // Create sets of pointers connected by a shared alias set and 902 // underlying object. 903 typedef SmallVector<Value *, 16> ValueVector; 904 ValueVector TempObjects; 905 906 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 907 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 908 for (Value *UnderlyingObj : TempObjects) { 909 // nullptr never alias, don't join sets for pointer that have "null" 910 // in their UnderlyingObjects list. 911 if (isa<ConstantPointerNull>(UnderlyingObj)) 912 continue; 913 914 UnderlyingObjToAccessMap::iterator Prev = 915 ObjToLastAccess.find(UnderlyingObj); 916 if (Prev != ObjToLastAccess.end()) 917 DepCands.unionSets(Access, Prev->second); 918 919 ObjToLastAccess[UnderlyingObj] = Access; 920 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 921 } 922 } 923 } 924 } 925 } 926 } 927 928 static bool isInBoundsGep(Value *Ptr) { 929 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 930 return GEP->isInBounds(); 931 return false; 932 } 933 934 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 935 /// i.e. monotonically increasing/decreasing. 936 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 937 PredicatedScalarEvolution &PSE, const Loop *L) { 938 // FIXME: This should probably only return true for NUW. 939 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 940 return true; 941 942 // Scalar evolution does not propagate the non-wrapping flags to values that 943 // are derived from a non-wrapping induction variable because non-wrapping 944 // could be flow-sensitive. 945 // 946 // Look through the potentially overflowing instruction to try to prove 947 // non-wrapping for the *specific* value of Ptr. 948 949 // The arithmetic implied by an inbounds GEP can't overflow. 950 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 951 if (!GEP || !GEP->isInBounds()) 952 return false; 953 954 // Make sure there is only one non-const index and analyze that. 955 Value *NonConstIndex = nullptr; 956 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 957 if (!isa<ConstantInt>(Index)) { 958 if (NonConstIndex) 959 return false; 960 NonConstIndex = Index; 961 } 962 if (!NonConstIndex) 963 // The recurrence is on the pointer, ignore for now. 964 return false; 965 966 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 967 // AddRec using a NSW operation. 968 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 969 if (OBO->hasNoSignedWrap() && 970 // Assume constant for other the operand so that the AddRec can be 971 // easily found. 972 isa<ConstantInt>(OBO->getOperand(1))) { 973 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 974 975 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 976 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 977 } 978 979 return false; 980 } 981 982 /// \brief Check whether the access through \p Ptr has a constant stride. 983 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 984 const Loop *Lp, const ValueToValueMap &StridesMap, 985 bool Assume, bool ShouldCheckWrap) { 986 Type *Ty = Ptr->getType(); 987 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 988 989 // Make sure that the pointer does not point to aggregate types. 990 auto *PtrTy = cast<PointerType>(Ty); 991 if (PtrTy->getElementType()->isAggregateType()) { 992 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 993 << "\n"); 994 return 0; 995 } 996 997 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 998 999 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1000 if (Assume && !AR) 1001 AR = PSE.getAsAddRec(Ptr); 1002 1003 if (!AR) { 1004 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1005 << " SCEV: " << *PtrScev << "\n"); 1006 return 0; 1007 } 1008 1009 // The accesss function must stride over the innermost loop. 1010 if (Lp != AR->getLoop()) { 1011 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 1012 *Ptr << " SCEV: " << *AR << "\n"); 1013 return 0; 1014 } 1015 1016 // The address calculation must not wrap. Otherwise, a dependence could be 1017 // inverted. 1018 // An inbounds getelementptr that is a AddRec with a unit stride 1019 // cannot wrap per definition. The unit stride requirement is checked later. 1020 // An getelementptr without an inbounds attribute and unit stride would have 1021 // to access the pointer value "0" which is undefined behavior in address 1022 // space 0, therefore we can also vectorize this case. 1023 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1024 bool IsNoWrapAddRec = !ShouldCheckWrap || 1025 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1026 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1027 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 1028 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 1029 if (Assume) { 1030 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1031 IsNoWrapAddRec = true; 1032 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1033 << "LAA: Pointer: " << *Ptr << "\n" 1034 << "LAA: SCEV: " << *AR << "\n" 1035 << "LAA: Added an overflow assumption\n"); 1036 } else { 1037 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1038 << *Ptr << " SCEV: " << *AR << "\n"); 1039 return 0; 1040 } 1041 } 1042 1043 // Check the step is constant. 1044 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1045 1046 // Calculate the pointer stride and check if it is constant. 1047 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1048 if (!C) { 1049 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 1050 " SCEV: " << *AR << "\n"); 1051 return 0; 1052 } 1053 1054 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1055 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1056 const APInt &APStepVal = C->getAPInt(); 1057 1058 // Huge step value - give up. 1059 if (APStepVal.getBitWidth() > 64) 1060 return 0; 1061 1062 int64_t StepVal = APStepVal.getSExtValue(); 1063 1064 // Strided access. 1065 int64_t Stride = StepVal / Size; 1066 int64_t Rem = StepVal % Size; 1067 if (Rem) 1068 return 0; 1069 1070 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1071 // know we can't "wrap around the address space". In case of address space 1072 // zero we know that this won't happen without triggering undefined behavior. 1073 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 1074 Stride != 1 && Stride != -1) { 1075 if (Assume) { 1076 // We can avoid this case by adding a run-time check. 1077 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1078 << "inbouds or in address space 0 may wrap:\n" 1079 << "LAA: Pointer: " << *Ptr << "\n" 1080 << "LAA: SCEV: " << *AR << "\n" 1081 << "LAA: Added an overflow assumption\n"); 1082 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1083 } else 1084 return 0; 1085 } 1086 1087 return Stride; 1088 } 1089 1090 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1091 ScalarEvolution &SE, 1092 SmallVectorImpl<unsigned> &SortedIndices) { 1093 assert(llvm::all_of( 1094 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1095 "Expected list of pointer operands."); 1096 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1097 OffValPairs.reserve(VL.size()); 1098 1099 // Walk over the pointers, and map each of them to an offset relative to 1100 // first pointer in the array. 1101 Value *Ptr0 = VL[0]; 1102 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1103 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1104 1105 llvm::SmallSet<int64_t, 4> Offsets; 1106 for (auto *Ptr : VL) { 1107 // TODO: Outline this code as a special, more time consuming, version of 1108 // computeConstantDifference() function. 1109 if (Ptr->getType()->getPointerAddressSpace() != 1110 Ptr0->getType()->getPointerAddressSpace()) 1111 return false; 1112 // If a pointer refers to a different underlying object, bail - the 1113 // pointers are by definition incomparable. 1114 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1115 if (CurrObj != Obj0) 1116 return false; 1117 1118 const SCEV *Scev = SE.getSCEV(Ptr); 1119 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1120 // The pointers may not have a constant offset from each other, or SCEV 1121 // may just not be smart enough to figure out they do. Regardless, 1122 // there's nothing we can do. 1123 if (!Diff) 1124 return false; 1125 1126 // Check if the pointer with the same offset is found. 1127 int64_t Offset = Diff->getAPInt().getSExtValue(); 1128 if (!Offsets.insert(Offset).second) 1129 return false; 1130 OffValPairs.emplace_back(Offset, Ptr); 1131 } 1132 SortedIndices.clear(); 1133 SortedIndices.resize(VL.size()); 1134 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1135 1136 // Sort the memory accesses and keep the order of their uses in UseOrder. 1137 std::stable_sort(SortedIndices.begin(), SortedIndices.end(), 1138 [&OffValPairs](unsigned Left, unsigned Right) { 1139 return OffValPairs[Left].first < OffValPairs[Right].first; 1140 }); 1141 1142 // Check if the order is consecutive already. 1143 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1144 return I == SortedIndices[I]; 1145 })) 1146 SortedIndices.clear(); 1147 1148 return true; 1149 } 1150 1151 /// Take the address space operand from the Load/Store instruction. 1152 /// Returns -1 if this is not a valid Load/Store instruction. 1153 static unsigned getAddressSpaceOperand(Value *I) { 1154 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1155 return L->getPointerAddressSpace(); 1156 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1157 return S->getPointerAddressSpace(); 1158 return -1; 1159 } 1160 1161 /// Returns true if the memory operations \p A and \p B are consecutive. 1162 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1163 ScalarEvolution &SE, bool CheckType) { 1164 Value *PtrA = getLoadStorePointerOperand(A); 1165 Value *PtrB = getLoadStorePointerOperand(B); 1166 unsigned ASA = getAddressSpaceOperand(A); 1167 unsigned ASB = getAddressSpaceOperand(B); 1168 1169 // Check that the address spaces match and that the pointers are valid. 1170 if (!PtrA || !PtrB || (ASA != ASB)) 1171 return false; 1172 1173 // Make sure that A and B are different pointers. 1174 if (PtrA == PtrB) 1175 return false; 1176 1177 // Make sure that A and B have the same type if required. 1178 if (CheckType && PtrA->getType() != PtrB->getType()) 1179 return false; 1180 1181 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1182 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1183 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1184 1185 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1186 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1187 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1188 1189 // OffsetDelta = OffsetB - OffsetA; 1190 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1191 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1192 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1193 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1194 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1195 // Check if they are based on the same pointer. That makes the offsets 1196 // sufficient. 1197 if (PtrA == PtrB) 1198 return OffsetDelta == Size; 1199 1200 // Compute the necessary base pointer delta to have the necessary final delta 1201 // equal to the size. 1202 // BaseDelta = Size - OffsetDelta; 1203 const SCEV *SizeSCEV = SE.getConstant(Size); 1204 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1205 1206 // Otherwise compute the distance with SCEV between the base pointers. 1207 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1208 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1209 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1210 return X == PtrSCEVB; 1211 } 1212 1213 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1214 switch (Type) { 1215 case NoDep: 1216 case Forward: 1217 case BackwardVectorizable: 1218 return true; 1219 1220 case Unknown: 1221 case ForwardButPreventsForwarding: 1222 case Backward: 1223 case BackwardVectorizableButPreventsForwarding: 1224 return false; 1225 } 1226 llvm_unreachable("unexpected DepType!"); 1227 } 1228 1229 bool MemoryDepChecker::Dependence::isBackward() const { 1230 switch (Type) { 1231 case NoDep: 1232 case Forward: 1233 case ForwardButPreventsForwarding: 1234 case Unknown: 1235 return false; 1236 1237 case BackwardVectorizable: 1238 case Backward: 1239 case BackwardVectorizableButPreventsForwarding: 1240 return true; 1241 } 1242 llvm_unreachable("unexpected DepType!"); 1243 } 1244 1245 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1246 return isBackward() || Type == Unknown; 1247 } 1248 1249 bool MemoryDepChecker::Dependence::isForward() const { 1250 switch (Type) { 1251 case Forward: 1252 case ForwardButPreventsForwarding: 1253 return true; 1254 1255 case NoDep: 1256 case Unknown: 1257 case BackwardVectorizable: 1258 case Backward: 1259 case BackwardVectorizableButPreventsForwarding: 1260 return false; 1261 } 1262 llvm_unreachable("unexpected DepType!"); 1263 } 1264 1265 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1266 uint64_t TypeByteSize) { 1267 // If loads occur at a distance that is not a multiple of a feasible vector 1268 // factor store-load forwarding does not take place. 1269 // Positive dependences might cause troubles because vectorizing them might 1270 // prevent store-load forwarding making vectorized code run a lot slower. 1271 // a[i] = a[i-3] ^ a[i-8]; 1272 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1273 // hence on your typical architecture store-load forwarding does not take 1274 // place. Vectorizing in such cases does not make sense. 1275 // Store-load forwarding distance. 1276 1277 // After this many iterations store-to-load forwarding conflicts should not 1278 // cause any slowdowns. 1279 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1280 // Maximum vector factor. 1281 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1282 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1283 1284 // Compute the smallest VF at which the store and load would be misaligned. 1285 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1286 VF *= 2) { 1287 // If the number of vector iteration between the store and the load are 1288 // small we could incur conflicts. 1289 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1290 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1291 break; 1292 } 1293 } 1294 1295 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1296 DEBUG(dbgs() << "LAA: Distance " << Distance 1297 << " that could cause a store-load forwarding conflict\n"); 1298 return true; 1299 } 1300 1301 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1302 MaxVFWithoutSLForwardIssues != 1303 VectorizerParams::MaxVectorWidth * TypeByteSize) 1304 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1305 return false; 1306 } 1307 1308 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1309 /// memory accesses, that have the same stride whose absolute value is given 1310 /// in \p Stride, and that have the same type size \p TypeByteSize, 1311 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1312 /// possible to prove statically that the dependence distance is larger 1313 /// than the range that the accesses will travel through the execution of 1314 /// the loop. If so, return true; false otherwise. This is useful for 1315 /// example in loops such as the following (PR31098): 1316 /// for (i = 0; i < D; ++i) { 1317 /// = out[i]; 1318 /// out[i+D] = 1319 /// } 1320 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1321 const SCEV &BackedgeTakenCount, 1322 const SCEV &Dist, uint64_t Stride, 1323 uint64_t TypeByteSize) { 1324 1325 // If we can prove that 1326 // (**) |Dist| > BackedgeTakenCount * Step 1327 // where Step is the absolute stride of the memory accesses in bytes, 1328 // then there is no dependence. 1329 // 1330 // Ratioanle: 1331 // We basically want to check if the absolute distance (|Dist/Step|) 1332 // is >= the loop iteration count (or > BackedgeTakenCount). 1333 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1334 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1335 // that the dependence distance is >= VF; This is checked elsewhere. 1336 // But in some cases we can prune unknown dependence distances early, and 1337 // even before selecting the VF, and without a runtime test, by comparing 1338 // the distance against the loop iteration count. Since the vectorized code 1339 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1340 // also guarantees that distance >= VF. 1341 // 1342 const uint64_t ByteStride = Stride * TypeByteSize; 1343 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1344 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1345 1346 const SCEV *CastedDist = &Dist; 1347 const SCEV *CastedProduct = Product; 1348 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1349 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1350 1351 // The dependence distance can be positive/negative, so we sign extend Dist; 1352 // The multiplication of the absolute stride in bytes and the 1353 // backdgeTakenCount is non-negative, so we zero extend Product. 1354 if (DistTypeSize > ProductTypeSize) 1355 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1356 else 1357 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1358 1359 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1360 // (If so, then we have proven (**) because |Dist| >= Dist) 1361 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1362 if (SE.isKnownPositive(Minus)) 1363 return true; 1364 1365 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1366 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1367 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1368 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1369 if (SE.isKnownPositive(Minus)) 1370 return true; 1371 1372 return false; 1373 } 1374 1375 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1376 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1377 /// bytes. 1378 /// 1379 /// \returns true if they are independent. 1380 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1381 uint64_t TypeByteSize) { 1382 assert(Stride > 1 && "The stride must be greater than 1"); 1383 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1384 assert(Distance > 0 && "The distance must be non-zero"); 1385 1386 // Skip if the distance is not multiple of type byte size. 1387 if (Distance % TypeByteSize) 1388 return false; 1389 1390 uint64_t ScaledDist = Distance / TypeByteSize; 1391 1392 // No dependence if the scaled distance is not multiple of the stride. 1393 // E.g. 1394 // for (i = 0; i < 1024 ; i += 4) 1395 // A[i+2] = A[i] + 1; 1396 // 1397 // Two accesses in memory (scaled distance is 2, stride is 4): 1398 // | A[0] | | | | A[4] | | | | 1399 // | | | A[2] | | | | A[6] | | 1400 // 1401 // E.g. 1402 // for (i = 0; i < 1024 ; i += 3) 1403 // A[i+4] = A[i] + 1; 1404 // 1405 // Two accesses in memory (scaled distance is 4, stride is 3): 1406 // | A[0] | | | A[3] | | | A[6] | | | 1407 // | | | | | A[4] | | | A[7] | | 1408 return ScaledDist % Stride; 1409 } 1410 1411 MemoryDepChecker::Dependence::DepType 1412 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1413 const MemAccessInfo &B, unsigned BIdx, 1414 const ValueToValueMap &Strides) { 1415 assert (AIdx < BIdx && "Must pass arguments in program order"); 1416 1417 Value *APtr = A.getPointer(); 1418 Value *BPtr = B.getPointer(); 1419 bool AIsWrite = A.getInt(); 1420 bool BIsWrite = B.getInt(); 1421 1422 // Two reads are independent. 1423 if (!AIsWrite && !BIsWrite) 1424 return Dependence::NoDep; 1425 1426 // We cannot check pointers in different address spaces. 1427 if (APtr->getType()->getPointerAddressSpace() != 1428 BPtr->getType()->getPointerAddressSpace()) 1429 return Dependence::Unknown; 1430 1431 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1432 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1433 1434 const SCEV *Src = PSE.getSCEV(APtr); 1435 const SCEV *Sink = PSE.getSCEV(BPtr); 1436 1437 // If the induction step is negative we have to invert source and sink of the 1438 // dependence. 1439 if (StrideAPtr < 0) { 1440 std::swap(APtr, BPtr); 1441 std::swap(Src, Sink); 1442 std::swap(AIsWrite, BIsWrite); 1443 std::swap(AIdx, BIdx); 1444 std::swap(StrideAPtr, StrideBPtr); 1445 } 1446 1447 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1448 1449 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1450 << "(Induction step: " << StrideAPtr << ")\n"); 1451 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1452 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1453 1454 // Need accesses with constant stride. We don't want to vectorize 1455 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1456 // the address space. 1457 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1458 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1459 return Dependence::Unknown; 1460 } 1461 1462 Type *ATy = APtr->getType()->getPointerElementType(); 1463 Type *BTy = BPtr->getType()->getPointerElementType(); 1464 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1465 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1466 uint64_t Stride = std::abs(StrideAPtr); 1467 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1468 if (!C) { 1469 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1470 isSafeDependenceDistance(DL, *(PSE.getSE()), 1471 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1472 TypeByteSize)) 1473 return Dependence::NoDep; 1474 1475 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1476 ShouldRetryWithRuntimeCheck = true; 1477 return Dependence::Unknown; 1478 } 1479 1480 const APInt &Val = C->getAPInt(); 1481 int64_t Distance = Val.getSExtValue(); 1482 1483 // Attempt to prove strided accesses independent. 1484 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1485 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1486 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1487 return Dependence::NoDep; 1488 } 1489 1490 // Negative distances are not plausible dependencies. 1491 if (Val.isNegative()) { 1492 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1493 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1494 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1495 ATy != BTy)) { 1496 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1497 return Dependence::ForwardButPreventsForwarding; 1498 } 1499 1500 DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1501 return Dependence::Forward; 1502 } 1503 1504 // Write to the same location with the same size. 1505 // Could be improved to assert type sizes are the same (i32 == float, etc). 1506 if (Val == 0) { 1507 if (ATy == BTy) 1508 return Dependence::Forward; 1509 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1510 return Dependence::Unknown; 1511 } 1512 1513 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1514 1515 if (ATy != BTy) { 1516 DEBUG(dbgs() << 1517 "LAA: ReadWrite-Write positive dependency with different types\n"); 1518 return Dependence::Unknown; 1519 } 1520 1521 // Bail out early if passed-in parameters make vectorization not feasible. 1522 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1523 VectorizerParams::VectorizationFactor : 1); 1524 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1525 VectorizerParams::VectorizationInterleave : 1); 1526 // The minimum number of iterations for a vectorized/unrolled version. 1527 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1528 1529 // It's not vectorizable if the distance is smaller than the minimum distance 1530 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1531 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1532 // TypeByteSize (No need to plus the last gap distance). 1533 // 1534 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1535 // foo(int *A) { 1536 // int *B = (int *)((char *)A + 14); 1537 // for (i = 0 ; i < 1024 ; i += 2) 1538 // B[i] = A[i] + 1; 1539 // } 1540 // 1541 // Two accesses in memory (stride is 2): 1542 // | A[0] | | A[2] | | A[4] | | A[6] | | 1543 // | B[0] | | B[2] | | B[4] | 1544 // 1545 // Distance needs for vectorizing iterations except the last iteration: 1546 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1547 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1548 // 1549 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1550 // 12, which is less than distance. 1551 // 1552 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1553 // the minimum distance needed is 28, which is greater than distance. It is 1554 // not safe to do vectorization. 1555 uint64_t MinDistanceNeeded = 1556 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1557 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1558 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1559 << '\n'); 1560 return Dependence::Backward; 1561 } 1562 1563 // Unsafe if the minimum distance needed is greater than max safe distance. 1564 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1565 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1566 << MinDistanceNeeded << " size in bytes"); 1567 return Dependence::Backward; 1568 } 1569 1570 // Positive distance bigger than max vectorization factor. 1571 // FIXME: Should use max factor instead of max distance in bytes, which could 1572 // not handle different types. 1573 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1574 // void foo (int *A, char *B) { 1575 // for (unsigned i = 0; i < 1024; i++) { 1576 // A[i+2] = A[i] + 1; 1577 // B[i+2] = B[i] + 1; 1578 // } 1579 // } 1580 // 1581 // This case is currently unsafe according to the max safe distance. If we 1582 // analyze the two accesses on array B, the max safe dependence distance 1583 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1584 // is 8, which is less than 2 and forbidden vectorization, But actually 1585 // both A and B could be vectorized by 2 iterations. 1586 MaxSafeDepDistBytes = 1587 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1588 1589 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1590 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1591 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1592 return Dependence::BackwardVectorizableButPreventsForwarding; 1593 1594 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1595 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1596 << " with max VF = " << MaxVF << '\n'); 1597 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1598 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1599 return Dependence::BackwardVectorizable; 1600 } 1601 1602 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1603 MemAccessInfoList &CheckDeps, 1604 const ValueToValueMap &Strides) { 1605 1606 MaxSafeDepDistBytes = -1; 1607 SmallPtrSet<MemAccessInfo, 8> Visited; 1608 for (MemAccessInfo CurAccess : CheckDeps) { 1609 if (Visited.count(CurAccess)) 1610 continue; 1611 1612 // Get the relevant memory access set. 1613 EquivalenceClasses<MemAccessInfo>::iterator I = 1614 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1615 1616 // Check accesses within this set. 1617 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1618 AccessSets.member_begin(I); 1619 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1620 AccessSets.member_end(); 1621 1622 // Check every access pair. 1623 while (AI != AE) { 1624 Visited.insert(*AI); 1625 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1626 while (OI != AE) { 1627 // Check every accessing instruction pair in program order. 1628 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1629 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1630 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1631 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1632 auto A = std::make_pair(&*AI, *I1); 1633 auto B = std::make_pair(&*OI, *I2); 1634 1635 assert(*I1 != *I2); 1636 if (*I1 > *I2) 1637 std::swap(A, B); 1638 1639 Dependence::DepType Type = 1640 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1641 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1642 1643 // Gather dependences unless we accumulated MaxDependences 1644 // dependences. In that case return as soon as we find the first 1645 // unsafe dependence. This puts a limit on this quadratic 1646 // algorithm. 1647 if (RecordDependences) { 1648 if (Type != Dependence::NoDep) 1649 Dependences.push_back(Dependence(A.second, B.second, Type)); 1650 1651 if (Dependences.size() >= MaxDependences) { 1652 RecordDependences = false; 1653 Dependences.clear(); 1654 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1655 } 1656 } 1657 if (!RecordDependences && !SafeForVectorization) 1658 return false; 1659 } 1660 ++OI; 1661 } 1662 AI++; 1663 } 1664 } 1665 1666 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1667 return SafeForVectorization; 1668 } 1669 1670 SmallVector<Instruction *, 4> 1671 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1672 MemAccessInfo Access(Ptr, isWrite); 1673 auto &IndexVector = Accesses.find(Access)->second; 1674 1675 SmallVector<Instruction *, 4> Insts; 1676 transform(IndexVector, 1677 std::back_inserter(Insts), 1678 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1679 return Insts; 1680 } 1681 1682 const char *MemoryDepChecker::Dependence::DepName[] = { 1683 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1684 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1685 1686 void MemoryDepChecker::Dependence::print( 1687 raw_ostream &OS, unsigned Depth, 1688 const SmallVectorImpl<Instruction *> &Instrs) const { 1689 OS.indent(Depth) << DepName[Type] << ":\n"; 1690 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1691 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1692 } 1693 1694 bool LoopAccessInfo::canAnalyzeLoop() { 1695 // We need to have a loop header. 1696 DEBUG(dbgs() << "LAA: Found a loop in " 1697 << TheLoop->getHeader()->getParent()->getName() << ": " 1698 << TheLoop->getHeader()->getName() << '\n'); 1699 1700 // We can only analyze innermost loops. 1701 if (!TheLoop->empty()) { 1702 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1703 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1704 return false; 1705 } 1706 1707 // We must have a single backedge. 1708 if (TheLoop->getNumBackEdges() != 1) { 1709 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1710 recordAnalysis("CFGNotUnderstood") 1711 << "loop control flow is not understood by analyzer"; 1712 return false; 1713 } 1714 1715 // We must have a single exiting block. 1716 if (!TheLoop->getExitingBlock()) { 1717 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1718 recordAnalysis("CFGNotUnderstood") 1719 << "loop control flow is not understood by analyzer"; 1720 return false; 1721 } 1722 1723 // We only handle bottom-tested loops, i.e. loop in which the condition is 1724 // checked at the end of each iteration. With that we can assume that all 1725 // instructions in the loop are executed the same number of times. 1726 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1727 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1728 recordAnalysis("CFGNotUnderstood") 1729 << "loop control flow is not understood by analyzer"; 1730 return false; 1731 } 1732 1733 // ScalarEvolution needs to be able to find the exit count. 1734 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1735 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1736 recordAnalysis("CantComputeNumberOfIterations") 1737 << "could not determine number of loop iterations"; 1738 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1739 return false; 1740 } 1741 1742 return true; 1743 } 1744 1745 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1746 const TargetLibraryInfo *TLI, 1747 DominatorTree *DT) { 1748 typedef SmallPtrSet<Value*, 16> ValueSet; 1749 1750 // Holds the Load and Store instructions. 1751 SmallVector<LoadInst *, 16> Loads; 1752 SmallVector<StoreInst *, 16> Stores; 1753 1754 // Holds all the different accesses in the loop. 1755 unsigned NumReads = 0; 1756 unsigned NumReadWrites = 0; 1757 1758 PtrRtChecking->Pointers.clear(); 1759 PtrRtChecking->Need = false; 1760 1761 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1762 1763 // For each block. 1764 for (BasicBlock *BB : TheLoop->blocks()) { 1765 // Scan the BB and collect legal loads and stores. 1766 for (Instruction &I : *BB) { 1767 // If this is a load, save it. If this instruction can read from memory 1768 // but is not a load, then we quit. Notice that we don't handle function 1769 // calls that read or write. 1770 if (I.mayReadFromMemory()) { 1771 // Many math library functions read the rounding mode. We will only 1772 // vectorize a loop if it contains known function calls that don't set 1773 // the flag. Therefore, it is safe to ignore this read from memory. 1774 auto *Call = dyn_cast<CallInst>(&I); 1775 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1776 continue; 1777 1778 // If the function has an explicit vectorized counterpart, we can safely 1779 // assume that it can be vectorized. 1780 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1781 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1782 continue; 1783 1784 auto *Ld = dyn_cast<LoadInst>(&I); 1785 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1786 recordAnalysis("NonSimpleLoad", Ld) 1787 << "read with atomic ordering or volatile read"; 1788 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1789 CanVecMem = false; 1790 return; 1791 } 1792 NumLoads++; 1793 Loads.push_back(Ld); 1794 DepChecker->addAccess(Ld); 1795 if (EnableMemAccessVersioning) 1796 collectStridedAccess(Ld); 1797 continue; 1798 } 1799 1800 // Save 'store' instructions. Abort if other instructions write to memory. 1801 if (I.mayWriteToMemory()) { 1802 auto *St = dyn_cast<StoreInst>(&I); 1803 if (!St) { 1804 recordAnalysis("CantVectorizeInstruction", St) 1805 << "instruction cannot be vectorized"; 1806 CanVecMem = false; 1807 return; 1808 } 1809 if (!St->isSimple() && !IsAnnotatedParallel) { 1810 recordAnalysis("NonSimpleStore", St) 1811 << "write with atomic ordering or volatile write"; 1812 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1813 CanVecMem = false; 1814 return; 1815 } 1816 NumStores++; 1817 Stores.push_back(St); 1818 DepChecker->addAccess(St); 1819 if (EnableMemAccessVersioning) 1820 collectStridedAccess(St); 1821 } 1822 } // Next instr. 1823 } // Next block. 1824 1825 // Now we have two lists that hold the loads and the stores. 1826 // Next, we find the pointers that they use. 1827 1828 // Check if we see any stores. If there are no stores, then we don't 1829 // care if the pointers are *restrict*. 1830 if (!Stores.size()) { 1831 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1832 CanVecMem = true; 1833 return; 1834 } 1835 1836 MemoryDepChecker::DepCandidates DependentAccesses; 1837 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1838 AA, LI, DependentAccesses, *PSE); 1839 1840 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1841 // multiple times on the same object. If the ptr is accessed twice, once 1842 // for read and once for write, it will only appear once (on the write 1843 // list). This is okay, since we are going to check for conflicts between 1844 // writes and between reads and writes, but not between reads and reads. 1845 ValueSet Seen; 1846 1847 for (StoreInst *ST : Stores) { 1848 Value *Ptr = ST->getPointerOperand(); 1849 // Check for store to loop invariant address. 1850 StoreToLoopInvariantAddress |= isUniform(Ptr); 1851 // If we did *not* see this pointer before, insert it to the read-write 1852 // list. At this phase it is only a 'write' list. 1853 if (Seen.insert(Ptr).second) { 1854 ++NumReadWrites; 1855 1856 MemoryLocation Loc = MemoryLocation::get(ST); 1857 // The TBAA metadata could have a control dependency on the predication 1858 // condition, so we cannot rely on it when determining whether or not we 1859 // need runtime pointer checks. 1860 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1861 Loc.AATags.TBAA = nullptr; 1862 1863 Accesses.addStore(Loc); 1864 } 1865 } 1866 1867 if (IsAnnotatedParallel) { 1868 DEBUG(dbgs() 1869 << "LAA: A loop annotated parallel, ignore memory dependency " 1870 << "checks.\n"); 1871 CanVecMem = true; 1872 return; 1873 } 1874 1875 for (LoadInst *LD : Loads) { 1876 Value *Ptr = LD->getPointerOperand(); 1877 // If we did *not* see this pointer before, insert it to the 1878 // read list. If we *did* see it before, then it is already in 1879 // the read-write list. This allows us to vectorize expressions 1880 // such as A[i] += x; Because the address of A[i] is a read-write 1881 // pointer. This only works if the index of A[i] is consecutive. 1882 // If the address of i is unknown (for example A[B[i]]) then we may 1883 // read a few words, modify, and write a few words, and some of the 1884 // words may be written to the same address. 1885 bool IsReadOnlyPtr = false; 1886 if (Seen.insert(Ptr).second || 1887 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1888 ++NumReads; 1889 IsReadOnlyPtr = true; 1890 } 1891 1892 MemoryLocation Loc = MemoryLocation::get(LD); 1893 // The TBAA metadata could have a control dependency on the predication 1894 // condition, so we cannot rely on it when determining whether or not we 1895 // need runtime pointer checks. 1896 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1897 Loc.AATags.TBAA = nullptr; 1898 1899 Accesses.addLoad(Loc, IsReadOnlyPtr); 1900 } 1901 1902 // If we write (or read-write) to a single destination and there are no 1903 // other reads in this loop then is it safe to vectorize. 1904 if (NumReadWrites == 1 && NumReads == 0) { 1905 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1906 CanVecMem = true; 1907 return; 1908 } 1909 1910 // Build dependence sets and check whether we need a runtime pointer bounds 1911 // check. 1912 Accesses.buildDependenceSets(); 1913 1914 // Find pointers with computable bounds. We are going to use this information 1915 // to place a runtime bound check. 1916 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1917 TheLoop, SymbolicStrides); 1918 if (!CanDoRTIfNeeded) { 1919 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1920 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1921 << "the array bounds.\n"); 1922 CanVecMem = false; 1923 return; 1924 } 1925 1926 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1927 1928 CanVecMem = true; 1929 if (Accesses.isDependencyCheckNeeded()) { 1930 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1931 CanVecMem = DepChecker->areDepsSafe( 1932 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1933 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 1934 1935 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1936 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1937 1938 // Clear the dependency checks. We assume they are not needed. 1939 Accesses.resetDepChecks(*DepChecker); 1940 1941 PtrRtChecking->reset(); 1942 PtrRtChecking->Need = true; 1943 1944 auto *SE = PSE->getSE(); 1945 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1946 SymbolicStrides, true); 1947 1948 // Check that we found the bounds for the pointer. 1949 if (!CanDoRTIfNeeded) { 1950 recordAnalysis("CantCheckMemDepsAtRunTime") 1951 << "cannot check memory dependencies at runtime"; 1952 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1953 CanVecMem = false; 1954 return; 1955 } 1956 1957 CanVecMem = true; 1958 } 1959 } 1960 1961 if (CanVecMem) 1962 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1963 << (PtrRtChecking->Need ? "" : " don't") 1964 << " need runtime memory checks.\n"); 1965 else { 1966 recordAnalysis("UnsafeMemDep") 1967 << "unsafe dependent memory operations in loop. Use " 1968 "#pragma loop distribute(enable) to allow loop distribution " 1969 "to attempt to isolate the offending operations into a separate " 1970 "loop"; 1971 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1972 } 1973 } 1974 1975 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1976 DominatorTree *DT) { 1977 assert(TheLoop->contains(BB) && "Unknown block used"); 1978 1979 // Blocks that do not dominate the latch need predication. 1980 BasicBlock* Latch = TheLoop->getLoopLatch(); 1981 return !DT->dominates(BB, Latch); 1982 } 1983 1984 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 1985 Instruction *I) { 1986 assert(!Report && "Multiple reports generated"); 1987 1988 Value *CodeRegion = TheLoop->getHeader(); 1989 DebugLoc DL = TheLoop->getStartLoc(); 1990 1991 if (I) { 1992 CodeRegion = I->getParent(); 1993 // If there is no debug location attached to the instruction, revert back to 1994 // using the loop's. 1995 if (I->getDebugLoc()) 1996 DL = I->getDebugLoc(); 1997 } 1998 1999 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2000 CodeRegion); 2001 return *Report; 2002 } 2003 2004 bool LoopAccessInfo::isUniform(Value *V) const { 2005 auto *SE = PSE->getSE(); 2006 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2007 // never considered uniform. 2008 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2009 // trivially loop-invariant FP values to be considered uniform. 2010 if (!SE->isSCEVable(V->getType())) 2011 return false; 2012 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2013 } 2014 2015 // FIXME: this function is currently a duplicate of the one in 2016 // LoopVectorize.cpp. 2017 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2018 Instruction *Loc) { 2019 if (FirstInst) 2020 return FirstInst; 2021 if (Instruction *I = dyn_cast<Instruction>(V)) 2022 return I->getParent() == Loc->getParent() ? I : nullptr; 2023 return nullptr; 2024 } 2025 2026 namespace { 2027 2028 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 2029 /// need to use value-handles because SCEV expansion can invalidate previously 2030 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 2031 /// a previous one. 2032 struct PointerBounds { 2033 TrackingVH<Value> Start; 2034 TrackingVH<Value> End; 2035 }; 2036 2037 } // end anonymous namespace 2038 2039 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 2040 /// in \p TheLoop. \return the values for the bounds. 2041 static PointerBounds 2042 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 2043 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 2044 const RuntimePointerChecking &PtrRtChecking) { 2045 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 2046 const SCEV *Sc = SE->getSCEV(Ptr); 2047 2048 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2049 LLVMContext &Ctx = Loc->getContext(); 2050 2051 // Use this type for pointer arithmetic. 2052 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2053 2054 if (SE->isLoopInvariant(Sc, TheLoop)) { 2055 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 2056 << "\n"); 2057 // Ptr could be in the loop body. If so, expand a new one at the correct 2058 // location. 2059 Instruction *Inst = dyn_cast<Instruction>(Ptr); 2060 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 2061 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 2062 : Ptr; 2063 // We must return a half-open range, which means incrementing Sc. 2064 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 2065 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 2066 return {NewPtr, NewPtrPlusOne}; 2067 } else { 2068 Value *Start = nullptr, *End = nullptr; 2069 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 2070 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 2071 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2072 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 2073 return {Start, End}; 2074 } 2075 } 2076 2077 /// \brief Turns a collection of checks into a collection of expanded upper and 2078 /// lower bounds for both pointers in the check. 2079 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 2080 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 2081 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 2082 const RuntimePointerChecking &PtrRtChecking) { 2083 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 2084 2085 // Here we're relying on the SCEV Expander's cache to only emit code for the 2086 // same bounds once. 2087 transform( 2088 PointerChecks, std::back_inserter(ChecksWithBounds), 2089 [&](const RuntimePointerChecking::PointerCheck &Check) { 2090 PointerBounds 2091 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 2092 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 2093 return std::make_pair(First, Second); 2094 }); 2095 2096 return ChecksWithBounds; 2097 } 2098 2099 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 2100 Instruction *Loc, 2101 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 2102 const { 2103 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2104 auto *SE = PSE->getSE(); 2105 SCEVExpander Exp(*SE, DL, "induction"); 2106 auto ExpandedChecks = 2107 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 2108 2109 LLVMContext &Ctx = Loc->getContext(); 2110 Instruction *FirstInst = nullptr; 2111 IRBuilder<> ChkBuilder(Loc); 2112 // Our instructions might fold to a constant. 2113 Value *MemoryRuntimeCheck = nullptr; 2114 2115 for (const auto &Check : ExpandedChecks) { 2116 const PointerBounds &A = Check.first, &B = Check.second; 2117 // Check if two pointers (A and B) conflict where conflict is computed as: 2118 // start(A) <= end(B) && start(B) <= end(A) 2119 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 2120 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 2121 2122 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 2123 (AS1 == A.End->getType()->getPointerAddressSpace()) && 2124 "Trying to bounds check pointers with different address spaces"); 2125 2126 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2127 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2128 2129 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 2130 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 2131 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 2132 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 2133 2134 // [A|B].Start points to the first accessed byte under base [A|B]. 2135 // [A|B].End points to the last accessed byte, plus one. 2136 // There is no conflict when the intervals are disjoint: 2137 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 2138 // 2139 // bound0 = (B.Start < A.End) 2140 // bound1 = (A.Start < B.End) 2141 // IsConflict = bound0 & bound1 2142 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 2143 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2144 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 2145 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2146 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2147 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2148 if (MemoryRuntimeCheck) { 2149 IsConflict = 2150 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2151 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2152 } 2153 MemoryRuntimeCheck = IsConflict; 2154 } 2155 2156 if (!MemoryRuntimeCheck) 2157 return std::make_pair(nullptr, nullptr); 2158 2159 // We have to do this trickery because the IRBuilder might fold the check to a 2160 // constant expression in which case there is no Instruction anchored in a 2161 // the block. 2162 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2163 ConstantInt::getTrue(Ctx)); 2164 ChkBuilder.Insert(Check, "memcheck.conflict"); 2165 FirstInst = getFirstInst(FirstInst, Check, Loc); 2166 return std::make_pair(FirstInst, Check); 2167 } 2168 2169 std::pair<Instruction *, Instruction *> 2170 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2171 if (!PtrRtChecking->Need) 2172 return std::make_pair(nullptr, nullptr); 2173 2174 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 2175 } 2176 2177 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2178 Value *Ptr = nullptr; 2179 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2180 Ptr = LI->getPointerOperand(); 2181 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2182 Ptr = SI->getPointerOperand(); 2183 else 2184 return; 2185 2186 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2187 if (!Stride) 2188 return; 2189 2190 DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2191 "versioning:"); 2192 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2193 2194 // Avoid adding the "Stride == 1" predicate when we know that 2195 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2196 // or zero iteration loop, as Trip-Count <= Stride == 1. 2197 // 2198 // TODO: We are currently not making a very informed decision on when it is 2199 // beneficial to apply stride versioning. It might make more sense that the 2200 // users of this analysis (such as the vectorizer) will trigger it, based on 2201 // their specific cost considerations; For example, in cases where stride 2202 // versioning does not help resolving memory accesses/dependences, the 2203 // vectorizer should evaluate the cost of the runtime test, and the benefit 2204 // of various possible stride specializations, considering the alternatives 2205 // of using gather/scatters (if available). 2206 2207 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2208 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2209 2210 // Match the types so we can compare the stride and the BETakenCount. 2211 // The Stride can be positive/negative, so we sign extend Stride; 2212 // The backdgeTakenCount is non-negative, so we zero extend BETakenCount. 2213 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2214 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2215 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2216 const SCEV *CastedStride = StrideExpr; 2217 const SCEV *CastedBECount = BETakenCount; 2218 ScalarEvolution *SE = PSE->getSE(); 2219 if (BETypeSize >= StrideTypeSize) 2220 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2221 else 2222 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2223 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2224 // Since TripCount == BackEdgeTakenCount + 1, checking: 2225 // "Stride >= TripCount" is equivalent to checking: 2226 // Stride - BETakenCount > 0 2227 if (SE->isKnownPositive(StrideMinusBETaken)) { 2228 DEBUG(dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2229 "Stride==1 predicate will imply that the loop executes " 2230 "at most once.\n"); 2231 return; 2232 } 2233 DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2234 2235 SymbolicStrides[Ptr] = Stride; 2236 StrideSet.insert(Stride); 2237 } 2238 2239 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2240 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2241 DominatorTree *DT, LoopInfo *LI) 2242 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2243 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 2244 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2245 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2246 StoreToLoopInvariantAddress(false) { 2247 if (canAnalyzeLoop()) 2248 analyzeLoop(AA, LI, TLI, DT); 2249 } 2250 2251 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2252 if (CanVecMem) { 2253 OS.indent(Depth) << "Memory dependences are safe"; 2254 if (MaxSafeDepDistBytes != -1ULL) 2255 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2256 << " bytes"; 2257 if (PtrRtChecking->Need) 2258 OS << " with run-time checks"; 2259 OS << "\n"; 2260 } 2261 2262 if (Report) 2263 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2264 2265 if (auto *Dependences = DepChecker->getDependences()) { 2266 OS.indent(Depth) << "Dependences:\n"; 2267 for (auto &Dep : *Dependences) { 2268 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2269 OS << "\n"; 2270 } 2271 } else 2272 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2273 2274 // List the pair of accesses need run-time checks to prove independence. 2275 PtrRtChecking->print(OS, Depth); 2276 OS << "\n"; 2277 2278 OS.indent(Depth) << "Store to invariant address was " 2279 << (StoreToLoopInvariantAddress ? "" : "not ") 2280 << "found in loop.\n"; 2281 2282 OS.indent(Depth) << "SCEV assumptions:\n"; 2283 PSE->getUnionPredicate().print(OS, Depth); 2284 2285 OS << "\n"; 2286 2287 OS.indent(Depth) << "Expressions re-written:\n"; 2288 PSE->print(OS, Depth); 2289 } 2290 2291 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2292 auto &LAI = LoopAccessInfoMap[L]; 2293 2294 if (!LAI) 2295 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2296 2297 return *LAI.get(); 2298 } 2299 2300 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2301 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2302 2303 for (Loop *TopLevelLoop : *LI) 2304 for (Loop *L : depth_first(TopLevelLoop)) { 2305 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2306 auto &LAI = LAA.getInfo(L); 2307 LAI.print(OS, 4); 2308 } 2309 } 2310 2311 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2312 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2313 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2314 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2315 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2316 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2317 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2318 2319 return false; 2320 } 2321 2322 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2323 AU.addRequired<ScalarEvolutionWrapperPass>(); 2324 AU.addRequired<AAResultsWrapperPass>(); 2325 AU.addRequired<DominatorTreeWrapperPass>(); 2326 AU.addRequired<LoopInfoWrapperPass>(); 2327 2328 AU.setPreservesAll(); 2329 } 2330 2331 char LoopAccessLegacyAnalysis::ID = 0; 2332 static const char laa_name[] = "Loop Access Analysis"; 2333 #define LAA_NAME "loop-accesses" 2334 2335 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2336 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2337 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2338 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2339 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2340 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2341 2342 AnalysisKey LoopAccessAnalysis::Key; 2343 2344 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2345 LoopStandardAnalysisResults &AR) { 2346 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2347 } 2348 2349 namespace llvm { 2350 2351 Pass *createLAAPass() { 2352 return new LoopAccessLegacyAnalysis(); 2353 } 2354 2355 } // end namespace llvm 2356