1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect dependences up to this threshold.
62 static cl::opt<unsigned>
63     MaxDependences("max-dependences", cl::Hidden,
64                    cl::desc("Maximum number of dependences collected by "
65                             "loop-access analysis (default = 100)"),
66                    cl::init(100));
67 
68 bool VectorizerParams::isInterleaveForced() {
69   return ::VectorizationInterleave.getNumOccurrences() > 0;
70 }
71 
72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                     const Function *TheFunction,
74                                     const Loop *TheLoop,
75                                     const char *PassName) {
76   DebugLoc DL = TheLoop->getStartLoc();
77   if (const Instruction *I = Message.getInstr())
78     DL = I->getDebugLoc();
79   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                  *TheFunction, DL, Message.str());
81 }
82 
83 Value *llvm::stripIntegerCast(Value *V) {
84   if (CastInst *CI = dyn_cast<CastInst>(V))
85     if (CI->getOperand(0)->getType()->isIntegerTy())
86       return CI->getOperand(0);
87   return V;
88 }
89 
90 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
91                                             const ValueToValueMap &PtrToStride,
92                                             Value *Ptr, Value *OrigPtr) {
93   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
94 
95   // If there is an entry in the map return the SCEV of the pointer with the
96   // symbolic stride replaced by one.
97   ValueToValueMap::const_iterator SI =
98       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
99   if (SI != PtrToStride.end()) {
100     Value *StrideVal = SI->second;
101 
102     // Strip casts.
103     StrideVal = stripIntegerCast(StrideVal);
104 
105     // Replace symbolic stride by one.
106     Value *One = ConstantInt::get(StrideVal->getType(), 1);
107     ValueToValueMap RewriteMap;
108     RewriteMap[StrideVal] = One;
109 
110     ScalarEvolution *SE = PSE.getSE();
111     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112     const auto *CT =
113         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114 
115     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
116     auto *Expr = PSE.getSCEV(Ptr);
117 
118     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
119                  << "\n");
120     return Expr;
121   }
122 
123   // Otherwise, just return the SCEV of the original pointer.
124   return OrigSCEV;
125 }
126 
127 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128                                     unsigned DepSetId, unsigned ASId,
129                                     const ValueToValueMap &Strides,
130                                     PredicatedScalarEvolution &PSE) {
131   // Get the stride replaced scev.
132   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
133   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
134   assert(AR && "Invalid addrec expression");
135   ScalarEvolution *SE = PSE.getSE();
136   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
137 
138   const SCEV *ScStart = AR->getStart();
139   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
140   const SCEV *Step = AR->getStepRecurrence(*SE);
141 
142   // For expressions with negative step, the upper bound is ScStart and the
143   // lower bound is ScEnd.
144   if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
145     if (CStep->getValue()->isNegative())
146       std::swap(ScStart, ScEnd);
147   } else {
148     // Fallback case: the step is not constant, but the we can still
149     // get the upper and lower bounds of the interval by using min/max
150     // expressions.
151     ScStart = SE->getUMinExpr(ScStart, ScEnd);
152     ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
153   }
154 
155   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
156 }
157 
158 SmallVector<RuntimePointerChecking::PointerCheck, 4>
159 RuntimePointerChecking::generateChecks() const {
160   SmallVector<PointerCheck, 4> Checks;
161 
162   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
163     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
164       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
165       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
166 
167       if (needsChecking(CGI, CGJ))
168         Checks.push_back(std::make_pair(&CGI, &CGJ));
169     }
170   }
171   return Checks;
172 }
173 
174 void RuntimePointerChecking::generateChecks(
175     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
176   assert(Checks.empty() && "Checks is not empty");
177   groupChecks(DepCands, UseDependencies);
178   Checks = generateChecks();
179 }
180 
181 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
182                                            const CheckingPtrGroup &N) const {
183   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
184     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
185       if (needsChecking(M.Members[I], N.Members[J]))
186         return true;
187   return false;
188 }
189 
190 /// Compare \p I and \p J and return the minimum.
191 /// Return nullptr in case we couldn't find an answer.
192 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
193                                    ScalarEvolution *SE) {
194   const SCEV *Diff = SE->getMinusSCEV(J, I);
195   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
196 
197   if (!C)
198     return nullptr;
199   if (C->getValue()->isNegative())
200     return J;
201   return I;
202 }
203 
204 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
205   const SCEV *Start = RtCheck.Pointers[Index].Start;
206   const SCEV *End = RtCheck.Pointers[Index].End;
207 
208   // Compare the starts and ends with the known minimum and maximum
209   // of this set. We need to know how we compare against the min/max
210   // of the set in order to be able to emit memchecks.
211   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
212   if (!Min0)
213     return false;
214 
215   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
216   if (!Min1)
217     return false;
218 
219   // Update the low bound  expression if we've found a new min value.
220   if (Min0 == Start)
221     Low = Start;
222 
223   // Update the high bound expression if we've found a new max value.
224   if (Min1 != End)
225     High = End;
226 
227   Members.push_back(Index);
228   return true;
229 }
230 
231 void RuntimePointerChecking::groupChecks(
232     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
233   // We build the groups from dependency candidates equivalence classes
234   // because:
235   //    - We know that pointers in the same equivalence class share
236   //      the same underlying object and therefore there is a chance
237   //      that we can compare pointers
238   //    - We wouldn't be able to merge two pointers for which we need
239   //      to emit a memcheck. The classes in DepCands are already
240   //      conveniently built such that no two pointers in the same
241   //      class need checking against each other.
242 
243   // We use the following (greedy) algorithm to construct the groups
244   // For every pointer in the equivalence class:
245   //   For each existing group:
246   //   - if the difference between this pointer and the min/max bounds
247   //     of the group is a constant, then make the pointer part of the
248   //     group and update the min/max bounds of that group as required.
249 
250   CheckingGroups.clear();
251 
252   // If we need to check two pointers to the same underlying object
253   // with a non-constant difference, we shouldn't perform any pointer
254   // grouping with those pointers. This is because we can easily get
255   // into cases where the resulting check would return false, even when
256   // the accesses are safe.
257   //
258   // The following example shows this:
259   // for (i = 0; i < 1000; ++i)
260   //   a[5000 + i * m] = a[i] + a[i + 9000]
261   //
262   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
263   // (0, 10000) which is always false. However, if m is 1, there is no
264   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
265   // us to perform an accurate check in this case.
266   //
267   // The above case requires that we have an UnknownDependence between
268   // accesses to the same underlying object. This cannot happen unless
269   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
270   // is also false. In this case we will use the fallback path and create
271   // separate checking groups for all pointers.
272 
273   // If we don't have the dependency partitions, construct a new
274   // checking pointer group for each pointer. This is also required
275   // for correctness, because in this case we can have checking between
276   // pointers to the same underlying object.
277   if (!UseDependencies) {
278     for (unsigned I = 0; I < Pointers.size(); ++I)
279       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
280     return;
281   }
282 
283   unsigned TotalComparisons = 0;
284 
285   DenseMap<Value *, unsigned> PositionMap;
286   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
287     PositionMap[Pointers[Index].PointerValue] = Index;
288 
289   // We need to keep track of what pointers we've already seen so we
290   // don't process them twice.
291   SmallSet<unsigned, 2> Seen;
292 
293   // Go through all equivalence classes, get the "pointer check groups"
294   // and add them to the overall solution. We use the order in which accesses
295   // appear in 'Pointers' to enforce determinism.
296   for (unsigned I = 0; I < Pointers.size(); ++I) {
297     // We've seen this pointer before, and therefore already processed
298     // its equivalence class.
299     if (Seen.count(I))
300       continue;
301 
302     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
303                                            Pointers[I].IsWritePtr);
304 
305     SmallVector<CheckingPtrGroup, 2> Groups;
306     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
307 
308     // Because DepCands is constructed by visiting accesses in the order in
309     // which they appear in alias sets (which is deterministic) and the
310     // iteration order within an equivalence class member is only dependent on
311     // the order in which unions and insertions are performed on the
312     // equivalence class, the iteration order is deterministic.
313     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
314          MI != ME; ++MI) {
315       unsigned Pointer = PositionMap[MI->getPointer()];
316       bool Merged = false;
317       // Mark this pointer as seen.
318       Seen.insert(Pointer);
319 
320       // Go through all the existing sets and see if we can find one
321       // which can include this pointer.
322       for (CheckingPtrGroup &Group : Groups) {
323         // Don't perform more than a certain amount of comparisons.
324         // This should limit the cost of grouping the pointers to something
325         // reasonable.  If we do end up hitting this threshold, the algorithm
326         // will create separate groups for all remaining pointers.
327         if (TotalComparisons > MemoryCheckMergeThreshold)
328           break;
329 
330         TotalComparisons++;
331 
332         if (Group.addPointer(Pointer)) {
333           Merged = true;
334           break;
335         }
336       }
337 
338       if (!Merged)
339         // We couldn't add this pointer to any existing set or the threshold
340         // for the number of comparisons has been reached. Create a new group
341         // to hold the current pointer.
342         Groups.push_back(CheckingPtrGroup(Pointer, *this));
343     }
344 
345     // We've computed the grouped checks for this partition.
346     // Save the results and continue with the next one.
347     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
348   }
349 }
350 
351 bool RuntimePointerChecking::arePointersInSamePartition(
352     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
353     unsigned PtrIdx2) {
354   return (PtrToPartition[PtrIdx1] != -1 &&
355           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
356 }
357 
358 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
359   const PointerInfo &PointerI = Pointers[I];
360   const PointerInfo &PointerJ = Pointers[J];
361 
362   // No need to check if two readonly pointers intersect.
363   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
364     return false;
365 
366   // Only need to check pointers between two different dependency sets.
367   if (PointerI.DependencySetId == PointerJ.DependencySetId)
368     return false;
369 
370   // Only need to check pointers in the same alias set.
371   if (PointerI.AliasSetId != PointerJ.AliasSetId)
372     return false;
373 
374   return true;
375 }
376 
377 void RuntimePointerChecking::printChecks(
378     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
379     unsigned Depth) const {
380   unsigned N = 0;
381   for (const auto &Check : Checks) {
382     const auto &First = Check.first->Members, &Second = Check.second->Members;
383 
384     OS.indent(Depth) << "Check " << N++ << ":\n";
385 
386     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
387     for (unsigned K = 0; K < First.size(); ++K)
388       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
389 
390     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
391     for (unsigned K = 0; K < Second.size(); ++K)
392       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
393   }
394 }
395 
396 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
397 
398   OS.indent(Depth) << "Run-time memory checks:\n";
399   printChecks(OS, Checks, Depth);
400 
401   OS.indent(Depth) << "Grouped accesses:\n";
402   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
403     const auto &CG = CheckingGroups[I];
404 
405     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
406     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
407                          << ")\n";
408     for (unsigned J = 0; J < CG.Members.size(); ++J) {
409       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
410                            << "\n";
411     }
412   }
413 }
414 
415 namespace {
416 /// \brief Analyses memory accesses in a loop.
417 ///
418 /// Checks whether run time pointer checks are needed and builds sets for data
419 /// dependence checking.
420 class AccessAnalysis {
421 public:
422   /// \brief Read or write access location.
423   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
424   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
425 
426   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
427                  MemoryDepChecker::DepCandidates &DA,
428                  PredicatedScalarEvolution &PSE)
429       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
430         PSE(PSE) {}
431 
432   /// \brief Register a load  and whether it is only read from.
433   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
434     Value *Ptr = const_cast<Value*>(Loc.Ptr);
435     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
436     Accesses.insert(MemAccessInfo(Ptr, false));
437     if (IsReadOnly)
438       ReadOnlyPtr.insert(Ptr);
439   }
440 
441   /// \brief Register a store.
442   void addStore(MemoryLocation &Loc) {
443     Value *Ptr = const_cast<Value*>(Loc.Ptr);
444     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
445     Accesses.insert(MemAccessInfo(Ptr, true));
446   }
447 
448   /// \brief Check whether we can check the pointers at runtime for
449   /// non-intersection.
450   ///
451   /// Returns true if we need no check or if we do and we can generate them
452   /// (i.e. the pointers have computable bounds).
453   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
454                        Loop *TheLoop, const ValueToValueMap &Strides,
455                        bool ShouldCheckStride = false);
456 
457   /// \brief Goes over all memory accesses, checks whether a RT check is needed
458   /// and builds sets of dependent accesses.
459   void buildDependenceSets() {
460     processMemAccesses();
461   }
462 
463   /// \brief Initial processing of memory accesses determined that we need to
464   /// perform dependency checking.
465   ///
466   /// Note that this can later be cleared if we retry memcheck analysis without
467   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
468   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
469 
470   /// We decided that no dependence analysis would be used.  Reset the state.
471   void resetDepChecks(MemoryDepChecker &DepChecker) {
472     CheckDeps.clear();
473     DepChecker.clearDependences();
474   }
475 
476   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
477 
478 private:
479   typedef SetVector<MemAccessInfo> PtrAccessSet;
480 
481   /// \brief Go over all memory access and check whether runtime pointer checks
482   /// are needed and build sets of dependency check candidates.
483   void processMemAccesses();
484 
485   /// Set of all accesses.
486   PtrAccessSet Accesses;
487 
488   const DataLayout &DL;
489 
490   /// Set of accesses that need a further dependence check.
491   MemAccessInfoSet CheckDeps;
492 
493   /// Set of pointers that are read only.
494   SmallPtrSet<Value*, 16> ReadOnlyPtr;
495 
496   /// An alias set tracker to partition the access set by underlying object and
497   //intrinsic property (such as TBAA metadata).
498   AliasSetTracker AST;
499 
500   LoopInfo *LI;
501 
502   /// Sets of potentially dependent accesses - members of one set share an
503   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
504   /// dependence check.
505   MemoryDepChecker::DepCandidates &DepCands;
506 
507   /// \brief Initial processing of memory accesses determined that we may need
508   /// to add memchecks.  Perform the analysis to determine the necessary checks.
509   ///
510   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
511   /// memcheck analysis without dependency checking
512   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
513   /// while this remains set if we have potentially dependent accesses.
514   bool IsRTCheckAnalysisNeeded;
515 
516   /// The SCEV predicate containing all the SCEV-related assumptions.
517   PredicatedScalarEvolution &PSE;
518 };
519 
520 } // end anonymous namespace
521 
522 /// \brief Check whether a pointer can participate in a runtime bounds check.
523 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
524                                 const ValueToValueMap &Strides, Value *Ptr,
525                                 Loop *L) {
526   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
527   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
528   if (!AR)
529     return false;
530 
531   return AR->isAffine();
532 }
533 
534 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
535                                      ScalarEvolution *SE, Loop *TheLoop,
536                                      const ValueToValueMap &StridesMap,
537                                      bool ShouldCheckStride) {
538   // Find pointers with computable bounds. We are going to use this information
539   // to place a runtime bound check.
540   bool CanDoRT = true;
541 
542   bool NeedRTCheck = false;
543   if (!IsRTCheckAnalysisNeeded) return true;
544 
545   bool IsDepCheckNeeded = isDependencyCheckNeeded();
546 
547   // We assign a consecutive id to access from different alias sets.
548   // Accesses between different groups doesn't need to be checked.
549   unsigned ASId = 1;
550   for (auto &AS : AST) {
551     int NumReadPtrChecks = 0;
552     int NumWritePtrChecks = 0;
553 
554     // We assign consecutive id to access from different dependence sets.
555     // Accesses within the same set don't need a runtime check.
556     unsigned RunningDepId = 1;
557     DenseMap<Value *, unsigned> DepSetId;
558 
559     for (auto A : AS) {
560       Value *Ptr = A.getValue();
561       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
562       MemAccessInfo Access(Ptr, IsWrite);
563 
564       if (IsWrite)
565         ++NumWritePtrChecks;
566       else
567         ++NumReadPtrChecks;
568 
569       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
570           // When we run after a failing dependency check we have to make sure
571           // we don't have wrapping pointers.
572           (!ShouldCheckStride ||
573            isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) {
574         // The id of the dependence set.
575         unsigned DepId;
576 
577         if (IsDepCheckNeeded) {
578           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
579           unsigned &LeaderId = DepSetId[Leader];
580           if (!LeaderId)
581             LeaderId = RunningDepId++;
582           DepId = LeaderId;
583         } else
584           // Each access has its own dependence set.
585           DepId = RunningDepId++;
586 
587         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
588 
589         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
590       } else {
591         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
592         CanDoRT = false;
593       }
594     }
595 
596     // If we have at least two writes or one write and a read then we need to
597     // check them.  But there is no need to checks if there is only one
598     // dependence set for this alias set.
599     //
600     // Note that this function computes CanDoRT and NeedRTCheck independently.
601     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
602     // for which we couldn't find the bounds but we don't actually need to emit
603     // any checks so it does not matter.
604     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
605       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
606                                                  NumWritePtrChecks >= 1));
607 
608     ++ASId;
609   }
610 
611   // If the pointers that we would use for the bounds comparison have different
612   // address spaces, assume the values aren't directly comparable, so we can't
613   // use them for the runtime check. We also have to assume they could
614   // overlap. In the future there should be metadata for whether address spaces
615   // are disjoint.
616   unsigned NumPointers = RtCheck.Pointers.size();
617   for (unsigned i = 0; i < NumPointers; ++i) {
618     for (unsigned j = i + 1; j < NumPointers; ++j) {
619       // Only need to check pointers between two different dependency sets.
620       if (RtCheck.Pointers[i].DependencySetId ==
621           RtCheck.Pointers[j].DependencySetId)
622        continue;
623       // Only need to check pointers in the same alias set.
624       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
625         continue;
626 
627       Value *PtrI = RtCheck.Pointers[i].PointerValue;
628       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
629 
630       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
631       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
632       if (ASi != ASj) {
633         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
634                        " different address spaces\n");
635         return false;
636       }
637     }
638   }
639 
640   if (NeedRTCheck && CanDoRT)
641     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
642 
643   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
644                << " pointer comparisons.\n");
645 
646   RtCheck.Need = NeedRTCheck;
647 
648   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
649   if (!CanDoRTIfNeeded)
650     RtCheck.reset();
651   return CanDoRTIfNeeded;
652 }
653 
654 void AccessAnalysis::processMemAccesses() {
655   // We process the set twice: first we process read-write pointers, last we
656   // process read-only pointers. This allows us to skip dependence tests for
657   // read-only pointers.
658 
659   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
660   DEBUG(dbgs() << "  AST: "; AST.dump());
661   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
662   DEBUG({
663     for (auto A : Accesses)
664       dbgs() << "\t" << *A.getPointer() << " (" <<
665                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
666                                          "read-only" : "read")) << ")\n";
667   });
668 
669   // The AliasSetTracker has nicely partitioned our pointers by metadata
670   // compatibility and potential for underlying-object overlap. As a result, we
671   // only need to check for potential pointer dependencies within each alias
672   // set.
673   for (auto &AS : AST) {
674     // Note that both the alias-set tracker and the alias sets themselves used
675     // linked lists internally and so the iteration order here is deterministic
676     // (matching the original instruction order within each set).
677 
678     bool SetHasWrite = false;
679 
680     // Map of pointers to last access encountered.
681     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
682     UnderlyingObjToAccessMap ObjToLastAccess;
683 
684     // Set of access to check after all writes have been processed.
685     PtrAccessSet DeferredAccesses;
686 
687     // Iterate over each alias set twice, once to process read/write pointers,
688     // and then to process read-only pointers.
689     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
690       bool UseDeferred = SetIteration > 0;
691       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
692 
693       for (auto AV : AS) {
694         Value *Ptr = AV.getValue();
695 
696         // For a single memory access in AliasSetTracker, Accesses may contain
697         // both read and write, and they both need to be handled for CheckDeps.
698         for (auto AC : S) {
699           if (AC.getPointer() != Ptr)
700             continue;
701 
702           bool IsWrite = AC.getInt();
703 
704           // If we're using the deferred access set, then it contains only
705           // reads.
706           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
707           if (UseDeferred && !IsReadOnlyPtr)
708             continue;
709           // Otherwise, the pointer must be in the PtrAccessSet, either as a
710           // read or a write.
711           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
712                   S.count(MemAccessInfo(Ptr, false))) &&
713                  "Alias-set pointer not in the access set?");
714 
715           MemAccessInfo Access(Ptr, IsWrite);
716           DepCands.insert(Access);
717 
718           // Memorize read-only pointers for later processing and skip them in
719           // the first round (they need to be checked after we have seen all
720           // write pointers). Note: we also mark pointer that are not
721           // consecutive as "read-only" pointers (so that we check
722           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
723           if (!UseDeferred && IsReadOnlyPtr) {
724             DeferredAccesses.insert(Access);
725             continue;
726           }
727 
728           // If this is a write - check other reads and writes for conflicts. If
729           // this is a read only check other writes for conflicts (but only if
730           // there is no other write to the ptr - this is an optimization to
731           // catch "a[i] = a[i] + " without having to do a dependence check).
732           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
733             CheckDeps.insert(Access);
734             IsRTCheckAnalysisNeeded = true;
735           }
736 
737           if (IsWrite)
738             SetHasWrite = true;
739 
740           // Create sets of pointers connected by a shared alias set and
741           // underlying object.
742           typedef SmallVector<Value *, 16> ValueVector;
743           ValueVector TempObjects;
744 
745           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
746           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
747           for (Value *UnderlyingObj : TempObjects) {
748             // nullptr never alias, don't join sets for pointer that have "null"
749             // in their UnderlyingObjects list.
750             if (isa<ConstantPointerNull>(UnderlyingObj))
751               continue;
752 
753             UnderlyingObjToAccessMap::iterator Prev =
754                 ObjToLastAccess.find(UnderlyingObj);
755             if (Prev != ObjToLastAccess.end())
756               DepCands.unionSets(Access, Prev->second);
757 
758             ObjToLastAccess[UnderlyingObj] = Access;
759             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
760           }
761         }
762       }
763     }
764   }
765 }
766 
767 static bool isInBoundsGep(Value *Ptr) {
768   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
769     return GEP->isInBounds();
770   return false;
771 }
772 
773 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
774 /// i.e. monotonically increasing/decreasing.
775 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
776                            ScalarEvolution *SE, const Loop *L) {
777   // FIXME: This should probably only return true for NUW.
778   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
779     return true;
780 
781   // Scalar evolution does not propagate the non-wrapping flags to values that
782   // are derived from a non-wrapping induction variable because non-wrapping
783   // could be flow-sensitive.
784   //
785   // Look through the potentially overflowing instruction to try to prove
786   // non-wrapping for the *specific* value of Ptr.
787 
788   // The arithmetic implied by an inbounds GEP can't overflow.
789   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
790   if (!GEP || !GEP->isInBounds())
791     return false;
792 
793   // Make sure there is only one non-const index and analyze that.
794   Value *NonConstIndex = nullptr;
795   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
796     if (!isa<ConstantInt>(*Index)) {
797       if (NonConstIndex)
798         return false;
799       NonConstIndex = *Index;
800     }
801   if (!NonConstIndex)
802     // The recurrence is on the pointer, ignore for now.
803     return false;
804 
805   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
806   // AddRec using a NSW operation.
807   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
808     if (OBO->hasNoSignedWrap() &&
809         // Assume constant for other the operand so that the AddRec can be
810         // easily found.
811         isa<ConstantInt>(OBO->getOperand(1))) {
812       auto *OpScev = SE->getSCEV(OBO->getOperand(0));
813 
814       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
815         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
816     }
817 
818   return false;
819 }
820 
821 /// \brief Check whether the access through \p Ptr has a constant stride.
822 int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr,
823                        const Loop *Lp, const ValueToValueMap &StridesMap) {
824   Type *Ty = Ptr->getType();
825   assert(Ty->isPointerTy() && "Unexpected non-ptr");
826 
827   // Make sure that the pointer does not point to aggregate types.
828   auto *PtrTy = cast<PointerType>(Ty);
829   if (PtrTy->getElementType()->isAggregateType()) {
830     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
831           << *Ptr << "\n");
832     return 0;
833   }
834 
835   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
836 
837   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
838   if (!AR) {
839     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
840           << *Ptr << " SCEV: " << *PtrScev << "\n");
841     return 0;
842   }
843 
844   // The accesss function must stride over the innermost loop.
845   if (Lp != AR->getLoop()) {
846     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
847           *Ptr << " SCEV: " << *PtrScev << "\n");
848     return 0;
849   }
850 
851   // The address calculation must not wrap. Otherwise, a dependence could be
852   // inverted.
853   // An inbounds getelementptr that is a AddRec with a unit stride
854   // cannot wrap per definition. The unit stride requirement is checked later.
855   // An getelementptr without an inbounds attribute and unit stride would have
856   // to access the pointer value "0" which is undefined behavior in address
857   // space 0, therefore we can also vectorize this case.
858   bool IsInBoundsGEP = isInBoundsGep(Ptr);
859   bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, PSE.getSE(), Lp);
860   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
861   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
862     DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
863                  << *Ptr << " SCEV: " << *PtrScev << "\n");
864     return 0;
865   }
866 
867   // Check the step is constant.
868   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
869 
870   // Calculate the pointer stride and check if it is constant.
871   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
872   if (!C) {
873     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
874           " SCEV: " << *PtrScev << "\n");
875     return 0;
876   }
877 
878   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
879   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
880   const APInt &APStepVal = C->getAPInt();
881 
882   // Huge step value - give up.
883   if (APStepVal.getBitWidth() > 64)
884     return 0;
885 
886   int64_t StepVal = APStepVal.getSExtValue();
887 
888   // Strided access.
889   int64_t Stride = StepVal / Size;
890   int64_t Rem = StepVal % Size;
891   if (Rem)
892     return 0;
893 
894   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
895   // know we can't "wrap around the address space". In case of address space
896   // zero we know that this won't happen without triggering undefined behavior.
897   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
898       Stride != 1 && Stride != -1)
899     return 0;
900 
901   return Stride;
902 }
903 
904 /// Take the pointer operand from the Load/Store instruction.
905 /// Returns NULL if this is not a valid Load/Store instruction.
906 static Value *getPointerOperand(Value *I) {
907   if (LoadInst *LI = dyn_cast<LoadInst>(I))
908     return LI->getPointerOperand();
909   if (StoreInst *SI = dyn_cast<StoreInst>(I))
910     return SI->getPointerOperand();
911   return nullptr;
912 }
913 
914 /// Take the address space operand from the Load/Store instruction.
915 /// Returns -1 if this is not a valid Load/Store instruction.
916 static unsigned getAddressSpaceOperand(Value *I) {
917   if (LoadInst *L = dyn_cast<LoadInst>(I))
918     return L->getPointerAddressSpace();
919   if (StoreInst *S = dyn_cast<StoreInst>(I))
920     return S->getPointerAddressSpace();
921   return -1;
922 }
923 
924 /// Returns true if the memory operations \p A and \p B are consecutive.
925 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
926                                ScalarEvolution &SE, bool CheckType) {
927   Value *PtrA = getPointerOperand(A);
928   Value *PtrB = getPointerOperand(B);
929   unsigned ASA = getAddressSpaceOperand(A);
930   unsigned ASB = getAddressSpaceOperand(B);
931 
932   // Check that the address spaces match and that the pointers are valid.
933   if (!PtrA || !PtrB || (ASA != ASB))
934     return false;
935 
936   // Make sure that A and B are different pointers.
937   if (PtrA == PtrB)
938     return false;
939 
940   // Make sure that A and B have the same type if required.
941   if(CheckType && PtrA->getType() != PtrB->getType())
942       return false;
943 
944   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
945   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
946   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
947 
948   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
949   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
950   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
951 
952   //  OffsetDelta = OffsetB - OffsetA;
953   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
954   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
955   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
956   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
957   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
958   // Check if they are based on the same pointer. That makes the offsets
959   // sufficient.
960   if (PtrA == PtrB)
961     return OffsetDelta == Size;
962 
963   // Compute the necessary base pointer delta to have the necessary final delta
964   // equal to the size.
965   // BaseDelta = Size - OffsetDelta;
966   const SCEV *SizeSCEV = SE.getConstant(Size);
967   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
968 
969   // Otherwise compute the distance with SCEV between the base pointers.
970   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
971   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
972   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
973   return X == PtrSCEVB;
974 }
975 
976 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
977   switch (Type) {
978   case NoDep:
979   case Forward:
980   case BackwardVectorizable:
981     return true;
982 
983   case Unknown:
984   case ForwardButPreventsForwarding:
985   case Backward:
986   case BackwardVectorizableButPreventsForwarding:
987     return false;
988   }
989   llvm_unreachable("unexpected DepType!");
990 }
991 
992 bool MemoryDepChecker::Dependence::isBackward() const {
993   switch (Type) {
994   case NoDep:
995   case Forward:
996   case ForwardButPreventsForwarding:
997   case Unknown:
998     return false;
999 
1000   case BackwardVectorizable:
1001   case Backward:
1002   case BackwardVectorizableButPreventsForwarding:
1003     return true;
1004   }
1005   llvm_unreachable("unexpected DepType!");
1006 }
1007 
1008 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1009   return isBackward() || Type == Unknown;
1010 }
1011 
1012 bool MemoryDepChecker::Dependence::isForward() const {
1013   switch (Type) {
1014   case Forward:
1015   case ForwardButPreventsForwarding:
1016     return true;
1017 
1018   case NoDep:
1019   case Unknown:
1020   case BackwardVectorizable:
1021   case Backward:
1022   case BackwardVectorizableButPreventsForwarding:
1023     return false;
1024   }
1025   llvm_unreachable("unexpected DepType!");
1026 }
1027 
1028 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1029                                                     unsigned TypeByteSize) {
1030   // If loads occur at a distance that is not a multiple of a feasible vector
1031   // factor store-load forwarding does not take place.
1032   // Positive dependences might cause troubles because vectorizing them might
1033   // prevent store-load forwarding making vectorized code run a lot slower.
1034   //   a[i] = a[i-3] ^ a[i-8];
1035   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1036   //   hence on your typical architecture store-load forwarding does not take
1037   //   place. Vectorizing in such cases does not make sense.
1038   // Store-load forwarding distance.
1039   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
1040   // Maximum vector factor.
1041   unsigned MaxVFWithoutSLForwardIssues =
1042     VectorizerParams::MaxVectorWidth * TypeByteSize;
1043   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
1044     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
1045 
1046   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
1047        vf *= 2) {
1048     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
1049       MaxVFWithoutSLForwardIssues = (vf >>=1);
1050       break;
1051     }
1052   }
1053 
1054   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
1055     DEBUG(dbgs() << "LAA: Distance " << Distance <<
1056           " that could cause a store-load forwarding conflict\n");
1057     return true;
1058   }
1059 
1060   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1061       MaxVFWithoutSLForwardIssues !=
1062       VectorizerParams::MaxVectorWidth * TypeByteSize)
1063     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1064   return false;
1065 }
1066 
1067 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1068 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1069 /// bytes.
1070 ///
1071 /// \returns true if they are independent.
1072 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1073                                           unsigned TypeByteSize) {
1074   assert(Stride > 1 && "The stride must be greater than 1");
1075   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1076   assert(Distance > 0 && "The distance must be non-zero");
1077 
1078   // Skip if the distance is not multiple of type byte size.
1079   if (Distance % TypeByteSize)
1080     return false;
1081 
1082   unsigned ScaledDist = Distance / TypeByteSize;
1083 
1084   // No dependence if the scaled distance is not multiple of the stride.
1085   // E.g.
1086   //      for (i = 0; i < 1024 ; i += 4)
1087   //        A[i+2] = A[i] + 1;
1088   //
1089   // Two accesses in memory (scaled distance is 2, stride is 4):
1090   //     | A[0] |      |      |      | A[4] |      |      |      |
1091   //     |      |      | A[2] |      |      |      | A[6] |      |
1092   //
1093   // E.g.
1094   //      for (i = 0; i < 1024 ; i += 3)
1095   //        A[i+4] = A[i] + 1;
1096   //
1097   // Two accesses in memory (scaled distance is 4, stride is 3):
1098   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1099   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1100   return ScaledDist % Stride;
1101 }
1102 
1103 MemoryDepChecker::Dependence::DepType
1104 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1105                               const MemAccessInfo &B, unsigned BIdx,
1106                               const ValueToValueMap &Strides) {
1107   assert (AIdx < BIdx && "Must pass arguments in program order");
1108 
1109   Value *APtr = A.getPointer();
1110   Value *BPtr = B.getPointer();
1111   bool AIsWrite = A.getInt();
1112   bool BIsWrite = B.getInt();
1113 
1114   // Two reads are independent.
1115   if (!AIsWrite && !BIsWrite)
1116     return Dependence::NoDep;
1117 
1118   // We cannot check pointers in different address spaces.
1119   if (APtr->getType()->getPointerAddressSpace() !=
1120       BPtr->getType()->getPointerAddressSpace())
1121     return Dependence::Unknown;
1122 
1123   const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr);
1124   const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr);
1125 
1126   int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides);
1127   int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides);
1128 
1129   const SCEV *Src = AScev;
1130   const SCEV *Sink = BScev;
1131 
1132   // If the induction step is negative we have to invert source and sink of the
1133   // dependence.
1134   if (StrideAPtr < 0) {
1135     //Src = BScev;
1136     //Sink = AScev;
1137     std::swap(APtr, BPtr);
1138     std::swap(Src, Sink);
1139     std::swap(AIsWrite, BIsWrite);
1140     std::swap(AIdx, BIdx);
1141     std::swap(StrideAPtr, StrideBPtr);
1142   }
1143 
1144   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1145 
1146   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1147                << "(Induction step: " << StrideAPtr << ")\n");
1148   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1149                << *InstMap[BIdx] << ": " << *Dist << "\n");
1150 
1151   // Need accesses with constant stride. We don't want to vectorize
1152   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1153   // the address space.
1154   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1155     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1156     return Dependence::Unknown;
1157   }
1158 
1159   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1160   if (!C) {
1161     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1162     ShouldRetryWithRuntimeCheck = true;
1163     return Dependence::Unknown;
1164   }
1165 
1166   Type *ATy = APtr->getType()->getPointerElementType();
1167   Type *BTy = BPtr->getType()->getPointerElementType();
1168   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1169   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1170 
1171   // Negative distances are not plausible dependencies.
1172   const APInt &Val = C->getAPInt();
1173   if (Val.isNegative()) {
1174     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1175     if (IsTrueDataDependence &&
1176         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1177          ATy != BTy))
1178       return Dependence::ForwardButPreventsForwarding;
1179 
1180     DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1181     return Dependence::Forward;
1182   }
1183 
1184   // Write to the same location with the same size.
1185   // Could be improved to assert type sizes are the same (i32 == float, etc).
1186   if (Val == 0) {
1187     if (ATy == BTy)
1188       return Dependence::Forward;
1189     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1190     return Dependence::Unknown;
1191   }
1192 
1193   assert(Val.isStrictlyPositive() && "Expect a positive value");
1194 
1195   if (ATy != BTy) {
1196     DEBUG(dbgs() <<
1197           "LAA: ReadWrite-Write positive dependency with different types\n");
1198     return Dependence::Unknown;
1199   }
1200 
1201   unsigned Distance = (unsigned) Val.getZExtValue();
1202 
1203   unsigned Stride = std::abs(StrideAPtr);
1204   if (Stride > 1 &&
1205       areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1206     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1207     return Dependence::NoDep;
1208   }
1209 
1210   // Bail out early if passed-in parameters make vectorization not feasible.
1211   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1212                            VectorizerParams::VectorizationFactor : 1);
1213   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1214                            VectorizerParams::VectorizationInterleave : 1);
1215   // The minimum number of iterations for a vectorized/unrolled version.
1216   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1217 
1218   // It's not vectorizable if the distance is smaller than the minimum distance
1219   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1220   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1221   // TypeByteSize (No need to plus the last gap distance).
1222   //
1223   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1224   //      foo(int *A) {
1225   //        int *B = (int *)((char *)A + 14);
1226   //        for (i = 0 ; i < 1024 ; i += 2)
1227   //          B[i] = A[i] + 1;
1228   //      }
1229   //
1230   // Two accesses in memory (stride is 2):
1231   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1232   //                              | B[0] |      | B[2] |      | B[4] |
1233   //
1234   // Distance needs for vectorizing iterations except the last iteration:
1235   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1236   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1237   //
1238   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1239   // 12, which is less than distance.
1240   //
1241   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1242   // the minimum distance needed is 28, which is greater than distance. It is
1243   // not safe to do vectorization.
1244   unsigned MinDistanceNeeded =
1245       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1246   if (MinDistanceNeeded > Distance) {
1247     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1248                  << '\n');
1249     return Dependence::Backward;
1250   }
1251 
1252   // Unsafe if the minimum distance needed is greater than max safe distance.
1253   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1254     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1255                  << MinDistanceNeeded << " size in bytes");
1256     return Dependence::Backward;
1257   }
1258 
1259   // Positive distance bigger than max vectorization factor.
1260   // FIXME: Should use max factor instead of max distance in bytes, which could
1261   // not handle different types.
1262   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1263   //      void foo (int *A, char *B) {
1264   //        for (unsigned i = 0; i < 1024; i++) {
1265   //          A[i+2] = A[i] + 1;
1266   //          B[i+2] = B[i] + 1;
1267   //        }
1268   //      }
1269   //
1270   // This case is currently unsafe according to the max safe distance. If we
1271   // analyze the two accesses on array B, the max safe dependence distance
1272   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1273   // is 8, which is less than 2 and forbidden vectorization, But actually
1274   // both A and B could be vectorized by 2 iterations.
1275   MaxSafeDepDistBytes =
1276       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1277 
1278   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1279   if (IsTrueDataDependence &&
1280       couldPreventStoreLoadForward(Distance, TypeByteSize))
1281     return Dependence::BackwardVectorizableButPreventsForwarding;
1282 
1283   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1284                << " with max VF = "
1285                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1286 
1287   return Dependence::BackwardVectorizable;
1288 }
1289 
1290 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1291                                    MemAccessInfoSet &CheckDeps,
1292                                    const ValueToValueMap &Strides) {
1293 
1294   MaxSafeDepDistBytes = -1U;
1295   while (!CheckDeps.empty()) {
1296     MemAccessInfo CurAccess = *CheckDeps.begin();
1297 
1298     // Get the relevant memory access set.
1299     EquivalenceClasses<MemAccessInfo>::iterator I =
1300       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1301 
1302     // Check accesses within this set.
1303     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1304     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1305 
1306     // Check every access pair.
1307     while (AI != AE) {
1308       CheckDeps.erase(*AI);
1309       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1310       while (OI != AE) {
1311         // Check every accessing instruction pair in program order.
1312         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1313              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1314           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1315                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1316             auto A = std::make_pair(&*AI, *I1);
1317             auto B = std::make_pair(&*OI, *I2);
1318 
1319             assert(*I1 != *I2);
1320             if (*I1 > *I2)
1321               std::swap(A, B);
1322 
1323             Dependence::DepType Type =
1324                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1325             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1326 
1327             // Gather dependences unless we accumulated MaxDependences
1328             // dependences.  In that case return as soon as we find the first
1329             // unsafe dependence.  This puts a limit on this quadratic
1330             // algorithm.
1331             if (RecordDependences) {
1332               if (Type != Dependence::NoDep)
1333                 Dependences.push_back(Dependence(A.second, B.second, Type));
1334 
1335               if (Dependences.size() >= MaxDependences) {
1336                 RecordDependences = false;
1337                 Dependences.clear();
1338                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1339               }
1340             }
1341             if (!RecordDependences && !SafeForVectorization)
1342               return false;
1343           }
1344         ++OI;
1345       }
1346       AI++;
1347     }
1348   }
1349 
1350   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1351   return SafeForVectorization;
1352 }
1353 
1354 SmallVector<Instruction *, 4>
1355 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1356   MemAccessInfo Access(Ptr, isWrite);
1357   auto &IndexVector = Accesses.find(Access)->second;
1358 
1359   SmallVector<Instruction *, 4> Insts;
1360   std::transform(IndexVector.begin(), IndexVector.end(),
1361                  std::back_inserter(Insts),
1362                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1363   return Insts;
1364 }
1365 
1366 const char *MemoryDepChecker::Dependence::DepName[] = {
1367     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1368     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1369 
1370 void MemoryDepChecker::Dependence::print(
1371     raw_ostream &OS, unsigned Depth,
1372     const SmallVectorImpl<Instruction *> &Instrs) const {
1373   OS.indent(Depth) << DepName[Type] << ":\n";
1374   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1375   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1376 }
1377 
1378 bool LoopAccessInfo::canAnalyzeLoop() {
1379   // We need to have a loop header.
1380   DEBUG(dbgs() << "LAA: Found a loop in "
1381                << TheLoop->getHeader()->getParent()->getName() << ": "
1382                << TheLoop->getHeader()->getName() << '\n');
1383 
1384   // We can only analyze innermost loops.
1385   if (!TheLoop->empty()) {
1386     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1387     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1388     return false;
1389   }
1390 
1391   // We must have a single backedge.
1392   if (TheLoop->getNumBackEdges() != 1) {
1393     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1394     emitAnalysis(
1395         LoopAccessReport() <<
1396         "loop control flow is not understood by analyzer");
1397     return false;
1398   }
1399 
1400   // We must have a single exiting block.
1401   if (!TheLoop->getExitingBlock()) {
1402     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1403     emitAnalysis(
1404         LoopAccessReport() <<
1405         "loop control flow is not understood by analyzer");
1406     return false;
1407   }
1408 
1409   // We only handle bottom-tested loops, i.e. loop in which the condition is
1410   // checked at the end of each iteration. With that we can assume that all
1411   // instructions in the loop are executed the same number of times.
1412   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1413     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1414     emitAnalysis(
1415         LoopAccessReport() <<
1416         "loop control flow is not understood by analyzer");
1417     return false;
1418   }
1419 
1420   // ScalarEvolution needs to be able to find the exit count.
1421   const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop);
1422   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1423     emitAnalysis(LoopAccessReport()
1424                  << "could not determine number of loop iterations");
1425     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1426     return false;
1427   }
1428 
1429   return true;
1430 }
1431 
1432 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1433 
1434   typedef SmallVector<Value*, 16> ValueVector;
1435   typedef SmallPtrSet<Value*, 16> ValueSet;
1436 
1437   // Holds the Load and Store *instructions*.
1438   ValueVector Loads;
1439   ValueVector Stores;
1440 
1441   // Holds all the different accesses in the loop.
1442   unsigned NumReads = 0;
1443   unsigned NumReadWrites = 0;
1444 
1445   PtrRtChecking.Pointers.clear();
1446   PtrRtChecking.Need = false;
1447 
1448   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1449 
1450   // For each block.
1451   for (Loop::block_iterator bb = TheLoop->block_begin(),
1452        be = TheLoop->block_end(); bb != be; ++bb) {
1453 
1454     // Scan the BB and collect legal loads and stores.
1455     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1456          ++it) {
1457 
1458       // If this is a load, save it. If this instruction can read from memory
1459       // but is not a load, then we quit. Notice that we don't handle function
1460       // calls that read or write.
1461       if (it->mayReadFromMemory()) {
1462         // Many math library functions read the rounding mode. We will only
1463         // vectorize a loop if it contains known function calls that don't set
1464         // the flag. Therefore, it is safe to ignore this read from memory.
1465         CallInst *Call = dyn_cast<CallInst>(it);
1466         if (Call && getIntrinsicIDForCall(Call, TLI))
1467           continue;
1468 
1469         // If the function has an explicit vectorized counterpart, we can safely
1470         // assume that it can be vectorized.
1471         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1472             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1473           continue;
1474 
1475         LoadInst *Ld = dyn_cast<LoadInst>(it);
1476         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1477           emitAnalysis(LoopAccessReport(Ld)
1478                        << "read with atomic ordering or volatile read");
1479           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1480           CanVecMem = false;
1481           return;
1482         }
1483         NumLoads++;
1484         Loads.push_back(Ld);
1485         DepChecker.addAccess(Ld);
1486         continue;
1487       }
1488 
1489       // Save 'store' instructions. Abort if other instructions write to memory.
1490       if (it->mayWriteToMemory()) {
1491         StoreInst *St = dyn_cast<StoreInst>(it);
1492         if (!St) {
1493           emitAnalysis(LoopAccessReport(&*it) <<
1494                        "instruction cannot be vectorized");
1495           CanVecMem = false;
1496           return;
1497         }
1498         if (!St->isSimple() && !IsAnnotatedParallel) {
1499           emitAnalysis(LoopAccessReport(St)
1500                        << "write with atomic ordering or volatile write");
1501           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1502           CanVecMem = false;
1503           return;
1504         }
1505         NumStores++;
1506         Stores.push_back(St);
1507         DepChecker.addAccess(St);
1508       }
1509     } // Next instr.
1510   } // Next block.
1511 
1512   // Now we have two lists that hold the loads and the stores.
1513   // Next, we find the pointers that they use.
1514 
1515   // Check if we see any stores. If there are no stores, then we don't
1516   // care if the pointers are *restrict*.
1517   if (!Stores.size()) {
1518     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1519     CanVecMem = true;
1520     return;
1521   }
1522 
1523   MemoryDepChecker::DepCandidates DependentAccesses;
1524   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1525                           AA, LI, DependentAccesses, PSE);
1526 
1527   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1528   // multiple times on the same object. If the ptr is accessed twice, once
1529   // for read and once for write, it will only appear once (on the write
1530   // list). This is okay, since we are going to check for conflicts between
1531   // writes and between reads and writes, but not between reads and reads.
1532   ValueSet Seen;
1533 
1534   ValueVector::iterator I, IE;
1535   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1536     StoreInst *ST = cast<StoreInst>(*I);
1537     Value* Ptr = ST->getPointerOperand();
1538     // Check for store to loop invariant address.
1539     StoreToLoopInvariantAddress |= isUniform(Ptr);
1540     // If we did *not* see this pointer before, insert it to  the read-write
1541     // list. At this phase it is only a 'write' list.
1542     if (Seen.insert(Ptr).second) {
1543       ++NumReadWrites;
1544 
1545       MemoryLocation Loc = MemoryLocation::get(ST);
1546       // The TBAA metadata could have a control dependency on the predication
1547       // condition, so we cannot rely on it when determining whether or not we
1548       // need runtime pointer checks.
1549       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1550         Loc.AATags.TBAA = nullptr;
1551 
1552       Accesses.addStore(Loc);
1553     }
1554   }
1555 
1556   if (IsAnnotatedParallel) {
1557     DEBUG(dbgs()
1558           << "LAA: A loop annotated parallel, ignore memory dependency "
1559           << "checks.\n");
1560     CanVecMem = true;
1561     return;
1562   }
1563 
1564   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1565     LoadInst *LD = cast<LoadInst>(*I);
1566     Value* Ptr = LD->getPointerOperand();
1567     // If we did *not* see this pointer before, insert it to the
1568     // read list. If we *did* see it before, then it is already in
1569     // the read-write list. This allows us to vectorize expressions
1570     // such as A[i] += x;  Because the address of A[i] is a read-write
1571     // pointer. This only works if the index of A[i] is consecutive.
1572     // If the address of i is unknown (for example A[B[i]]) then we may
1573     // read a few words, modify, and write a few words, and some of the
1574     // words may be written to the same address.
1575     bool IsReadOnlyPtr = false;
1576     if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) {
1577       ++NumReads;
1578       IsReadOnlyPtr = true;
1579     }
1580 
1581     MemoryLocation Loc = MemoryLocation::get(LD);
1582     // The TBAA metadata could have a control dependency on the predication
1583     // condition, so we cannot rely on it when determining whether or not we
1584     // need runtime pointer checks.
1585     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1586       Loc.AATags.TBAA = nullptr;
1587 
1588     Accesses.addLoad(Loc, IsReadOnlyPtr);
1589   }
1590 
1591   // If we write (or read-write) to a single destination and there are no
1592   // other reads in this loop then is it safe to vectorize.
1593   if (NumReadWrites == 1 && NumReads == 0) {
1594     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1595     CanVecMem = true;
1596     return;
1597   }
1598 
1599   // Build dependence sets and check whether we need a runtime pointer bounds
1600   // check.
1601   Accesses.buildDependenceSets();
1602 
1603   // Find pointers with computable bounds. We are going to use this information
1604   // to place a runtime bound check.
1605   bool CanDoRTIfNeeded =
1606       Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1607   if (!CanDoRTIfNeeded) {
1608     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1609     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1610                  << "the array bounds.\n");
1611     CanVecMem = false;
1612     return;
1613   }
1614 
1615   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1616 
1617   CanVecMem = true;
1618   if (Accesses.isDependencyCheckNeeded()) {
1619     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1620     CanVecMem = DepChecker.areDepsSafe(
1621         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1622     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1623 
1624     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1625       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1626 
1627       // Clear the dependency checks. We assume they are not needed.
1628       Accesses.resetDepChecks(DepChecker);
1629 
1630       PtrRtChecking.reset();
1631       PtrRtChecking.Need = true;
1632 
1633       auto *SE = PSE.getSE();
1634       CanDoRTIfNeeded =
1635           Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1636 
1637       // Check that we found the bounds for the pointer.
1638       if (!CanDoRTIfNeeded) {
1639         emitAnalysis(LoopAccessReport()
1640                      << "cannot check memory dependencies at runtime");
1641         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1642         CanVecMem = false;
1643         return;
1644       }
1645 
1646       CanVecMem = true;
1647     }
1648   }
1649 
1650   if (CanVecMem)
1651     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1652                  << (PtrRtChecking.Need ? "" : " don't")
1653                  << " need runtime memory checks.\n");
1654   else {
1655     emitAnalysis(LoopAccessReport() <<
1656                  "unsafe dependent memory operations in loop");
1657     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1658   }
1659 }
1660 
1661 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1662                                            DominatorTree *DT)  {
1663   assert(TheLoop->contains(BB) && "Unknown block used");
1664 
1665   // Blocks that do not dominate the latch need predication.
1666   BasicBlock* Latch = TheLoop->getLoopLatch();
1667   return !DT->dominates(BB, Latch);
1668 }
1669 
1670 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1671   assert(!Report && "Multiple reports generated");
1672   Report = Message;
1673 }
1674 
1675 bool LoopAccessInfo::isUniform(Value *V) const {
1676   return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1677 }
1678 
1679 // FIXME: this function is currently a duplicate of the one in
1680 // LoopVectorize.cpp.
1681 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1682                                  Instruction *Loc) {
1683   if (FirstInst)
1684     return FirstInst;
1685   if (Instruction *I = dyn_cast<Instruction>(V))
1686     return I->getParent() == Loc->getParent() ? I : nullptr;
1687   return nullptr;
1688 }
1689 
1690 namespace {
1691 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1692 /// need to use value-handles because SCEV expansion can invalidate previously
1693 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1694 /// a previous one.
1695 struct PointerBounds {
1696   TrackingVH<Value> Start;
1697   TrackingVH<Value> End;
1698 };
1699 } // end anonymous namespace
1700 
1701 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1702 /// in \p TheLoop.  \return the values for the bounds.
1703 static PointerBounds
1704 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1705              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1706              const RuntimePointerChecking &PtrRtChecking) {
1707   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1708   const SCEV *Sc = SE->getSCEV(Ptr);
1709 
1710   if (SE->isLoopInvariant(Sc, TheLoop)) {
1711     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1712                  << "\n");
1713     return {Ptr, Ptr};
1714   } else {
1715     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1716     LLVMContext &Ctx = Loc->getContext();
1717 
1718     // Use this type for pointer arithmetic.
1719     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1720     Value *Start = nullptr, *End = nullptr;
1721 
1722     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1723     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1724     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1725     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1726     return {Start, End};
1727   }
1728 }
1729 
1730 /// \brief Turns a collection of checks into a collection of expanded upper and
1731 /// lower bounds for both pointers in the check.
1732 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1733     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1734     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1735     const RuntimePointerChecking &PtrRtChecking) {
1736   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1737 
1738   // Here we're relying on the SCEV Expander's cache to only emit code for the
1739   // same bounds once.
1740   std::transform(
1741       PointerChecks.begin(), PointerChecks.end(),
1742       std::back_inserter(ChecksWithBounds),
1743       [&](const RuntimePointerChecking::PointerCheck &Check) {
1744         PointerBounds
1745           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1746           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1747         return std::make_pair(First, Second);
1748       });
1749 
1750   return ChecksWithBounds;
1751 }
1752 
1753 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1754     Instruction *Loc,
1755     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1756     const {
1757   auto *SE = PSE.getSE();
1758   SCEVExpander Exp(*SE, DL, "induction");
1759   auto ExpandedChecks =
1760       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1761 
1762   LLVMContext &Ctx = Loc->getContext();
1763   Instruction *FirstInst = nullptr;
1764   IRBuilder<> ChkBuilder(Loc);
1765   // Our instructions might fold to a constant.
1766   Value *MemoryRuntimeCheck = nullptr;
1767 
1768   for (const auto &Check : ExpandedChecks) {
1769     const PointerBounds &A = Check.first, &B = Check.second;
1770     // Check if two pointers (A and B) conflict where conflict is computed as:
1771     // start(A) <= end(B) && start(B) <= end(A)
1772     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1773     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1774 
1775     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1776            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1777            "Trying to bounds check pointers with different address spaces");
1778 
1779     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1780     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1781 
1782     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1783     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1784     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1785     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1786 
1787     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1788     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1789     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1790     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1791     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1792     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1793     if (MemoryRuntimeCheck) {
1794       IsConflict =
1795           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1796       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1797     }
1798     MemoryRuntimeCheck = IsConflict;
1799   }
1800 
1801   if (!MemoryRuntimeCheck)
1802     return std::make_pair(nullptr, nullptr);
1803 
1804   // We have to do this trickery because the IRBuilder might fold the check to a
1805   // constant expression in which case there is no Instruction anchored in a
1806   // the block.
1807   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1808                                                  ConstantInt::getTrue(Ctx));
1809   ChkBuilder.Insert(Check, "memcheck.conflict");
1810   FirstInst = getFirstInst(FirstInst, Check, Loc);
1811   return std::make_pair(FirstInst, Check);
1812 }
1813 
1814 std::pair<Instruction *, Instruction *>
1815 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1816   if (!PtrRtChecking.Need)
1817     return std::make_pair(nullptr, nullptr);
1818 
1819   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1820 }
1821 
1822 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1823                                const DataLayout &DL,
1824                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1825                                DominatorTree *DT, LoopInfo *LI,
1826                                const ValueToValueMap &Strides)
1827     : PSE(*SE), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1828       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1829       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1830       StoreToLoopInvariantAddress(false) {
1831   if (canAnalyzeLoop())
1832     analyzeLoop(Strides);
1833 }
1834 
1835 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1836   if (CanVecMem) {
1837     if (PtrRtChecking.Need)
1838       OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1839     else
1840       OS.indent(Depth) << "Memory dependences are safe\n";
1841   }
1842 
1843   if (Report)
1844     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1845 
1846   if (auto *Dependences = DepChecker.getDependences()) {
1847     OS.indent(Depth) << "Dependences:\n";
1848     for (auto &Dep : *Dependences) {
1849       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1850       OS << "\n";
1851     }
1852   } else
1853     OS.indent(Depth) << "Too many dependences, not recorded\n";
1854 
1855   // List the pair of accesses need run-time checks to prove independence.
1856   PtrRtChecking.print(OS, Depth);
1857   OS << "\n";
1858 
1859   OS.indent(Depth) << "Store to invariant address was "
1860                    << (StoreToLoopInvariantAddress ? "" : "not ")
1861                    << "found in loop.\n";
1862 
1863   OS.indent(Depth) << "SCEV assumptions:\n";
1864   PSE.getUnionPredicate().print(OS, Depth);
1865 }
1866 
1867 const LoopAccessInfo &
1868 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1869   auto &LAI = LoopAccessInfoMap[L];
1870 
1871 #ifndef NDEBUG
1872   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1873          "Symbolic strides changed for loop");
1874 #endif
1875 
1876   if (!LAI) {
1877     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1878     LAI =
1879         llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1880 #ifndef NDEBUG
1881     LAI->NumSymbolicStrides = Strides.size();
1882 #endif
1883   }
1884   return *LAI.get();
1885 }
1886 
1887 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1888   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1889 
1890   ValueToValueMap NoSymbolicStrides;
1891 
1892   for (Loop *TopLevelLoop : *LI)
1893     for (Loop *L : depth_first(TopLevelLoop)) {
1894       OS.indent(2) << L->getHeader()->getName() << ":\n";
1895       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1896       LAI.print(OS, 4);
1897     }
1898 }
1899 
1900 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1901   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1902   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1903   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1904   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1905   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1906   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1907 
1908   return false;
1909 }
1910 
1911 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1912     AU.addRequired<ScalarEvolutionWrapperPass>();
1913     AU.addRequired<AAResultsWrapperPass>();
1914     AU.addRequired<DominatorTreeWrapperPass>();
1915     AU.addRequired<LoopInfoWrapperPass>();
1916 
1917     AU.setPreservesAll();
1918 }
1919 
1920 char LoopAccessAnalysis::ID = 0;
1921 static const char laa_name[] = "Loop Access Analysis";
1922 #define LAA_NAME "loop-accesses"
1923 
1924 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1925 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1926 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1927 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1928 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1929 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1930 
1931 namespace llvm {
1932   Pass *createLAAPass() {
1933     return new LoopAccessAnalysis();
1934   }
1935 }
1936