1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopPassManager.h" 18 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 19 #include "llvm/Analysis/ScalarEvolutionExpander.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PassManager.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "loop-accesses" 31 32 static cl::opt<unsigned, true> 33 VectorizationFactor("force-vector-width", cl::Hidden, 34 cl::desc("Sets the SIMD width. Zero is autoselect."), 35 cl::location(VectorizerParams::VectorizationFactor)); 36 unsigned VectorizerParams::VectorizationFactor; 37 38 static cl::opt<unsigned, true> 39 VectorizationInterleave("force-vector-interleave", cl::Hidden, 40 cl::desc("Sets the vectorization interleave count. " 41 "Zero is autoselect."), 42 cl::location( 43 VectorizerParams::VectorizationInterleave)); 44 unsigned VectorizerParams::VectorizationInterleave; 45 46 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 47 "runtime-memory-check-threshold", cl::Hidden, 48 cl::desc("When performing memory disambiguation checks at runtime do not " 49 "generate more than this number of comparisons (default = 8)."), 50 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 51 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 52 53 /// \brief The maximum iterations used to merge memory checks 54 static cl::opt<unsigned> MemoryCheckMergeThreshold( 55 "memory-check-merge-threshold", cl::Hidden, 56 cl::desc("Maximum number of comparisons done when trying to merge " 57 "runtime memory checks. (default = 100)"), 58 cl::init(100)); 59 60 /// Maximum SIMD width. 61 const unsigned VectorizerParams::MaxVectorWidth = 64; 62 63 /// \brief We collect dependences up to this threshold. 64 static cl::opt<unsigned> 65 MaxDependences("max-dependences", cl::Hidden, 66 cl::desc("Maximum number of dependences collected by " 67 "loop-access analysis (default = 100)"), 68 cl::init(100)); 69 70 /// This enables versioning on the strides of symbolically striding memory 71 /// accesses in code like the following. 72 /// for (i = 0; i < N; ++i) 73 /// A[i * Stride1] += B[i * Stride2] ... 74 /// 75 /// Will be roughly translated to 76 /// if (Stride1 == 1 && Stride2 == 1) { 77 /// for (i = 0; i < N; i+=4) 78 /// A[i:i+3] += ... 79 /// } else 80 /// ... 81 static cl::opt<bool> EnableMemAccessVersioning( 82 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 83 cl::desc("Enable symbolic stride memory access versioning")); 84 85 /// \brief Enable store-to-load forwarding conflict detection. This option can 86 /// be disabled for correctness testing. 87 static cl::opt<bool> EnableForwardingConflictDetection( 88 "store-to-load-forwarding-conflict-detection", cl::Hidden, 89 cl::desc("Enable conflict detection in loop-access analysis"), 90 cl::init(true)); 91 92 bool VectorizerParams::isInterleaveForced() { 93 return ::VectorizationInterleave.getNumOccurrences() > 0; 94 } 95 96 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 97 const Loop *TheLoop, const char *PassName, 98 OptimizationRemarkEmitter &ORE) { 99 DebugLoc DL = TheLoop->getStartLoc(); 100 const Value *V = TheLoop->getHeader(); 101 if (const Instruction *I = Message.getInstr()) { 102 DL = I->getDebugLoc(); 103 V = I->getParent(); 104 } 105 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str()); 106 } 107 108 Value *llvm::stripIntegerCast(Value *V) { 109 if (auto *CI = dyn_cast<CastInst>(V)) 110 if (CI->getOperand(0)->getType()->isIntegerTy()) 111 return CI->getOperand(0); 112 return V; 113 } 114 115 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 116 const ValueToValueMap &PtrToStride, 117 Value *Ptr, Value *OrigPtr) { 118 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 119 120 // If there is an entry in the map return the SCEV of the pointer with the 121 // symbolic stride replaced by one. 122 ValueToValueMap::const_iterator SI = 123 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 124 if (SI != PtrToStride.end()) { 125 Value *StrideVal = SI->second; 126 127 // Strip casts. 128 StrideVal = stripIntegerCast(StrideVal); 129 130 // Replace symbolic stride by one. 131 Value *One = ConstantInt::get(StrideVal->getType(), 1); 132 ValueToValueMap RewriteMap; 133 RewriteMap[StrideVal] = One; 134 135 ScalarEvolution *SE = PSE.getSE(); 136 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 137 const auto *CT = 138 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 139 140 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 141 auto *Expr = PSE.getSCEV(Ptr); 142 143 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 144 << "\n"); 145 return Expr; 146 } 147 148 // Otherwise, just return the SCEV of the original pointer. 149 return OrigSCEV; 150 } 151 152 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 153 unsigned DepSetId, unsigned ASId, 154 const ValueToValueMap &Strides, 155 PredicatedScalarEvolution &PSE) { 156 // Get the stride replaced scev. 157 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 158 ScalarEvolution *SE = PSE.getSE(); 159 160 const SCEV *ScStart; 161 const SCEV *ScEnd; 162 163 if (SE->isLoopInvariant(Sc, Lp)) 164 ScStart = ScEnd = Sc; 165 else { 166 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 167 assert(AR && "Invalid addrec expression"); 168 const SCEV *Ex = PSE.getBackedgeTakenCount(); 169 170 ScStart = AR->getStart(); 171 ScEnd = AR->evaluateAtIteration(Ex, *SE); 172 const SCEV *Step = AR->getStepRecurrence(*SE); 173 174 // For expressions with negative step, the upper bound is ScStart and the 175 // lower bound is ScEnd. 176 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 177 if (CStep->getValue()->isNegative()) 178 std::swap(ScStart, ScEnd); 179 } else { 180 // Fallback case: the step is not constant, but the we can still 181 // get the upper and lower bounds of the interval by using min/max 182 // expressions. 183 ScStart = SE->getUMinExpr(ScStart, ScEnd); 184 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 185 } 186 } 187 188 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 189 } 190 191 SmallVector<RuntimePointerChecking::PointerCheck, 4> 192 RuntimePointerChecking::generateChecks() const { 193 SmallVector<PointerCheck, 4> Checks; 194 195 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 196 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 197 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 198 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 199 200 if (needsChecking(CGI, CGJ)) 201 Checks.push_back(std::make_pair(&CGI, &CGJ)); 202 } 203 } 204 return Checks; 205 } 206 207 void RuntimePointerChecking::generateChecks( 208 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 209 assert(Checks.empty() && "Checks is not empty"); 210 groupChecks(DepCands, UseDependencies); 211 Checks = generateChecks(); 212 } 213 214 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 215 const CheckingPtrGroup &N) const { 216 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 217 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 218 if (needsChecking(M.Members[I], N.Members[J])) 219 return true; 220 return false; 221 } 222 223 /// Compare \p I and \p J and return the minimum. 224 /// Return nullptr in case we couldn't find an answer. 225 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 226 ScalarEvolution *SE) { 227 const SCEV *Diff = SE->getMinusSCEV(J, I); 228 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 229 230 if (!C) 231 return nullptr; 232 if (C->getValue()->isNegative()) 233 return J; 234 return I; 235 } 236 237 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 238 const SCEV *Start = RtCheck.Pointers[Index].Start; 239 const SCEV *End = RtCheck.Pointers[Index].End; 240 241 // Compare the starts and ends with the known minimum and maximum 242 // of this set. We need to know how we compare against the min/max 243 // of the set in order to be able to emit memchecks. 244 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 245 if (!Min0) 246 return false; 247 248 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 249 if (!Min1) 250 return false; 251 252 // Update the low bound expression if we've found a new min value. 253 if (Min0 == Start) 254 Low = Start; 255 256 // Update the high bound expression if we've found a new max value. 257 if (Min1 != End) 258 High = End; 259 260 Members.push_back(Index); 261 return true; 262 } 263 264 void RuntimePointerChecking::groupChecks( 265 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 266 // We build the groups from dependency candidates equivalence classes 267 // because: 268 // - We know that pointers in the same equivalence class share 269 // the same underlying object and therefore there is a chance 270 // that we can compare pointers 271 // - We wouldn't be able to merge two pointers for which we need 272 // to emit a memcheck. The classes in DepCands are already 273 // conveniently built such that no two pointers in the same 274 // class need checking against each other. 275 276 // We use the following (greedy) algorithm to construct the groups 277 // For every pointer in the equivalence class: 278 // For each existing group: 279 // - if the difference between this pointer and the min/max bounds 280 // of the group is a constant, then make the pointer part of the 281 // group and update the min/max bounds of that group as required. 282 283 CheckingGroups.clear(); 284 285 // If we need to check two pointers to the same underlying object 286 // with a non-constant difference, we shouldn't perform any pointer 287 // grouping with those pointers. This is because we can easily get 288 // into cases where the resulting check would return false, even when 289 // the accesses are safe. 290 // 291 // The following example shows this: 292 // for (i = 0; i < 1000; ++i) 293 // a[5000 + i * m] = a[i] + a[i + 9000] 294 // 295 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 296 // (0, 10000) which is always false. However, if m is 1, there is no 297 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 298 // us to perform an accurate check in this case. 299 // 300 // The above case requires that we have an UnknownDependence between 301 // accesses to the same underlying object. This cannot happen unless 302 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 303 // is also false. In this case we will use the fallback path and create 304 // separate checking groups for all pointers. 305 306 // If we don't have the dependency partitions, construct a new 307 // checking pointer group for each pointer. This is also required 308 // for correctness, because in this case we can have checking between 309 // pointers to the same underlying object. 310 if (!UseDependencies) { 311 for (unsigned I = 0; I < Pointers.size(); ++I) 312 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 313 return; 314 } 315 316 unsigned TotalComparisons = 0; 317 318 DenseMap<Value *, unsigned> PositionMap; 319 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 320 PositionMap[Pointers[Index].PointerValue] = Index; 321 322 // We need to keep track of what pointers we've already seen so we 323 // don't process them twice. 324 SmallSet<unsigned, 2> Seen; 325 326 // Go through all equivalence classes, get the "pointer check groups" 327 // and add them to the overall solution. We use the order in which accesses 328 // appear in 'Pointers' to enforce determinism. 329 for (unsigned I = 0; I < Pointers.size(); ++I) { 330 // We've seen this pointer before, and therefore already processed 331 // its equivalence class. 332 if (Seen.count(I)) 333 continue; 334 335 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 336 Pointers[I].IsWritePtr); 337 338 SmallVector<CheckingPtrGroup, 2> Groups; 339 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 340 341 // Because DepCands is constructed by visiting accesses in the order in 342 // which they appear in alias sets (which is deterministic) and the 343 // iteration order within an equivalence class member is only dependent on 344 // the order in which unions and insertions are performed on the 345 // equivalence class, the iteration order is deterministic. 346 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 347 MI != ME; ++MI) { 348 unsigned Pointer = PositionMap[MI->getPointer()]; 349 bool Merged = false; 350 // Mark this pointer as seen. 351 Seen.insert(Pointer); 352 353 // Go through all the existing sets and see if we can find one 354 // which can include this pointer. 355 for (CheckingPtrGroup &Group : Groups) { 356 // Don't perform more than a certain amount of comparisons. 357 // This should limit the cost of grouping the pointers to something 358 // reasonable. If we do end up hitting this threshold, the algorithm 359 // will create separate groups for all remaining pointers. 360 if (TotalComparisons > MemoryCheckMergeThreshold) 361 break; 362 363 TotalComparisons++; 364 365 if (Group.addPointer(Pointer)) { 366 Merged = true; 367 break; 368 } 369 } 370 371 if (!Merged) 372 // We couldn't add this pointer to any existing set or the threshold 373 // for the number of comparisons has been reached. Create a new group 374 // to hold the current pointer. 375 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 376 } 377 378 // We've computed the grouped checks for this partition. 379 // Save the results and continue with the next one. 380 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 381 } 382 } 383 384 bool RuntimePointerChecking::arePointersInSamePartition( 385 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 386 unsigned PtrIdx2) { 387 return (PtrToPartition[PtrIdx1] != -1 && 388 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 389 } 390 391 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 392 const PointerInfo &PointerI = Pointers[I]; 393 const PointerInfo &PointerJ = Pointers[J]; 394 395 // No need to check if two readonly pointers intersect. 396 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 397 return false; 398 399 // Only need to check pointers between two different dependency sets. 400 if (PointerI.DependencySetId == PointerJ.DependencySetId) 401 return false; 402 403 // Only need to check pointers in the same alias set. 404 if (PointerI.AliasSetId != PointerJ.AliasSetId) 405 return false; 406 407 return true; 408 } 409 410 void RuntimePointerChecking::printChecks( 411 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 412 unsigned Depth) const { 413 unsigned N = 0; 414 for (const auto &Check : Checks) { 415 const auto &First = Check.first->Members, &Second = Check.second->Members; 416 417 OS.indent(Depth) << "Check " << N++ << ":\n"; 418 419 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 420 for (unsigned K = 0; K < First.size(); ++K) 421 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 422 423 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 424 for (unsigned K = 0; K < Second.size(); ++K) 425 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 426 } 427 } 428 429 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 430 431 OS.indent(Depth) << "Run-time memory checks:\n"; 432 printChecks(OS, Checks, Depth); 433 434 OS.indent(Depth) << "Grouped accesses:\n"; 435 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 436 const auto &CG = CheckingGroups[I]; 437 438 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 439 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 440 << ")\n"; 441 for (unsigned J = 0; J < CG.Members.size(); ++J) { 442 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 443 << "\n"; 444 } 445 } 446 } 447 448 namespace { 449 /// \brief Analyses memory accesses in a loop. 450 /// 451 /// Checks whether run time pointer checks are needed and builds sets for data 452 /// dependence checking. 453 class AccessAnalysis { 454 public: 455 /// \brief Read or write access location. 456 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 457 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 458 459 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 460 MemoryDepChecker::DepCandidates &DA, 461 PredicatedScalarEvolution &PSE) 462 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 463 PSE(PSE) {} 464 465 /// \brief Register a load and whether it is only read from. 466 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 467 Value *Ptr = const_cast<Value*>(Loc.Ptr); 468 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 469 Accesses.insert(MemAccessInfo(Ptr, false)); 470 if (IsReadOnly) 471 ReadOnlyPtr.insert(Ptr); 472 } 473 474 /// \brief Register a store. 475 void addStore(MemoryLocation &Loc) { 476 Value *Ptr = const_cast<Value*>(Loc.Ptr); 477 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 478 Accesses.insert(MemAccessInfo(Ptr, true)); 479 } 480 481 /// \brief Check whether we can check the pointers at runtime for 482 /// non-intersection. 483 /// 484 /// Returns true if we need no check or if we do and we can generate them 485 /// (i.e. the pointers have computable bounds). 486 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 487 Loop *TheLoop, const ValueToValueMap &Strides, 488 bool ShouldCheckWrap = false); 489 490 /// \brief Goes over all memory accesses, checks whether a RT check is needed 491 /// and builds sets of dependent accesses. 492 void buildDependenceSets() { 493 processMemAccesses(); 494 } 495 496 /// \brief Initial processing of memory accesses determined that we need to 497 /// perform dependency checking. 498 /// 499 /// Note that this can later be cleared if we retry memcheck analysis without 500 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 501 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 502 503 /// We decided that no dependence analysis would be used. Reset the state. 504 void resetDepChecks(MemoryDepChecker &DepChecker) { 505 CheckDeps.clear(); 506 DepChecker.clearDependences(); 507 } 508 509 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 510 511 private: 512 typedef SetVector<MemAccessInfo> PtrAccessSet; 513 514 /// \brief Go over all memory access and check whether runtime pointer checks 515 /// are needed and build sets of dependency check candidates. 516 void processMemAccesses(); 517 518 /// Set of all accesses. 519 PtrAccessSet Accesses; 520 521 const DataLayout &DL; 522 523 /// Set of accesses that need a further dependence check. 524 MemAccessInfoSet CheckDeps; 525 526 /// Set of pointers that are read only. 527 SmallPtrSet<Value*, 16> ReadOnlyPtr; 528 529 /// An alias set tracker to partition the access set by underlying object and 530 //intrinsic property (such as TBAA metadata). 531 AliasSetTracker AST; 532 533 LoopInfo *LI; 534 535 /// Sets of potentially dependent accesses - members of one set share an 536 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 537 /// dependence check. 538 MemoryDepChecker::DepCandidates &DepCands; 539 540 /// \brief Initial processing of memory accesses determined that we may need 541 /// to add memchecks. Perform the analysis to determine the necessary checks. 542 /// 543 /// Note that, this is different from isDependencyCheckNeeded. When we retry 544 /// memcheck analysis without dependency checking 545 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 546 /// while this remains set if we have potentially dependent accesses. 547 bool IsRTCheckAnalysisNeeded; 548 549 /// The SCEV predicate containing all the SCEV-related assumptions. 550 PredicatedScalarEvolution &PSE; 551 }; 552 553 } // end anonymous namespace 554 555 /// \brief Check whether a pointer can participate in a runtime bounds check. 556 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 557 const ValueToValueMap &Strides, Value *Ptr, 558 Loop *L) { 559 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 560 561 // The bounds for loop-invariant pointer is trivial. 562 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 563 return true; 564 565 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 566 if (!AR) 567 return false; 568 569 return AR->isAffine(); 570 } 571 572 /// \brief Check whether a pointer address cannot wrap. 573 static bool isNoWrap(PredicatedScalarEvolution &PSE, 574 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 575 const SCEV *PtrScev = PSE.getSCEV(Ptr); 576 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 577 return true; 578 579 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 580 return Stride == 1; 581 } 582 583 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 584 ScalarEvolution *SE, Loop *TheLoop, 585 const ValueToValueMap &StridesMap, 586 bool ShouldCheckWrap) { 587 // Find pointers with computable bounds. We are going to use this information 588 // to place a runtime bound check. 589 bool CanDoRT = true; 590 591 bool NeedRTCheck = false; 592 if (!IsRTCheckAnalysisNeeded) return true; 593 594 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 595 596 // We assign a consecutive id to access from different alias sets. 597 // Accesses between different groups doesn't need to be checked. 598 unsigned ASId = 1; 599 for (auto &AS : AST) { 600 int NumReadPtrChecks = 0; 601 int NumWritePtrChecks = 0; 602 603 // We assign consecutive id to access from different dependence sets. 604 // Accesses within the same set don't need a runtime check. 605 unsigned RunningDepId = 1; 606 DenseMap<Value *, unsigned> DepSetId; 607 608 for (auto A : AS) { 609 Value *Ptr = A.getValue(); 610 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 611 MemAccessInfo Access(Ptr, IsWrite); 612 613 if (IsWrite) 614 ++NumWritePtrChecks; 615 else 616 ++NumReadPtrChecks; 617 618 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 619 // When we run after a failing dependency check we have to make sure 620 // we don't have wrapping pointers. 621 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 622 // The id of the dependence set. 623 unsigned DepId; 624 625 if (IsDepCheckNeeded) { 626 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 627 unsigned &LeaderId = DepSetId[Leader]; 628 if (!LeaderId) 629 LeaderId = RunningDepId++; 630 DepId = LeaderId; 631 } else 632 // Each access has its own dependence set. 633 DepId = RunningDepId++; 634 635 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 636 637 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 638 } else { 639 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 640 CanDoRT = false; 641 } 642 } 643 644 // If we have at least two writes or one write and a read then we need to 645 // check them. But there is no need to checks if there is only one 646 // dependence set for this alias set. 647 // 648 // Note that this function computes CanDoRT and NeedRTCheck independently. 649 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 650 // for which we couldn't find the bounds but we don't actually need to emit 651 // any checks so it does not matter. 652 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 653 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 654 NumWritePtrChecks >= 1)); 655 656 ++ASId; 657 } 658 659 // If the pointers that we would use for the bounds comparison have different 660 // address spaces, assume the values aren't directly comparable, so we can't 661 // use them for the runtime check. We also have to assume they could 662 // overlap. In the future there should be metadata for whether address spaces 663 // are disjoint. 664 unsigned NumPointers = RtCheck.Pointers.size(); 665 for (unsigned i = 0; i < NumPointers; ++i) { 666 for (unsigned j = i + 1; j < NumPointers; ++j) { 667 // Only need to check pointers between two different dependency sets. 668 if (RtCheck.Pointers[i].DependencySetId == 669 RtCheck.Pointers[j].DependencySetId) 670 continue; 671 // Only need to check pointers in the same alias set. 672 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 673 continue; 674 675 Value *PtrI = RtCheck.Pointers[i].PointerValue; 676 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 677 678 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 679 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 680 if (ASi != ASj) { 681 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 682 " different address spaces\n"); 683 return false; 684 } 685 } 686 } 687 688 if (NeedRTCheck && CanDoRT) 689 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 690 691 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 692 << " pointer comparisons.\n"); 693 694 RtCheck.Need = NeedRTCheck; 695 696 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 697 if (!CanDoRTIfNeeded) 698 RtCheck.reset(); 699 return CanDoRTIfNeeded; 700 } 701 702 void AccessAnalysis::processMemAccesses() { 703 // We process the set twice: first we process read-write pointers, last we 704 // process read-only pointers. This allows us to skip dependence tests for 705 // read-only pointers. 706 707 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 708 DEBUG(dbgs() << " AST: "; AST.dump()); 709 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 710 DEBUG({ 711 for (auto A : Accesses) 712 dbgs() << "\t" << *A.getPointer() << " (" << 713 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 714 "read-only" : "read")) << ")\n"; 715 }); 716 717 // The AliasSetTracker has nicely partitioned our pointers by metadata 718 // compatibility and potential for underlying-object overlap. As a result, we 719 // only need to check for potential pointer dependencies within each alias 720 // set. 721 for (auto &AS : AST) { 722 // Note that both the alias-set tracker and the alias sets themselves used 723 // linked lists internally and so the iteration order here is deterministic 724 // (matching the original instruction order within each set). 725 726 bool SetHasWrite = false; 727 728 // Map of pointers to last access encountered. 729 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 730 UnderlyingObjToAccessMap ObjToLastAccess; 731 732 // Set of access to check after all writes have been processed. 733 PtrAccessSet DeferredAccesses; 734 735 // Iterate over each alias set twice, once to process read/write pointers, 736 // and then to process read-only pointers. 737 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 738 bool UseDeferred = SetIteration > 0; 739 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 740 741 for (auto AV : AS) { 742 Value *Ptr = AV.getValue(); 743 744 // For a single memory access in AliasSetTracker, Accesses may contain 745 // both read and write, and they both need to be handled for CheckDeps. 746 for (auto AC : S) { 747 if (AC.getPointer() != Ptr) 748 continue; 749 750 bool IsWrite = AC.getInt(); 751 752 // If we're using the deferred access set, then it contains only 753 // reads. 754 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 755 if (UseDeferred && !IsReadOnlyPtr) 756 continue; 757 // Otherwise, the pointer must be in the PtrAccessSet, either as a 758 // read or a write. 759 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 760 S.count(MemAccessInfo(Ptr, false))) && 761 "Alias-set pointer not in the access set?"); 762 763 MemAccessInfo Access(Ptr, IsWrite); 764 DepCands.insert(Access); 765 766 // Memorize read-only pointers for later processing and skip them in 767 // the first round (they need to be checked after we have seen all 768 // write pointers). Note: we also mark pointer that are not 769 // consecutive as "read-only" pointers (so that we check 770 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 771 if (!UseDeferred && IsReadOnlyPtr) { 772 DeferredAccesses.insert(Access); 773 continue; 774 } 775 776 // If this is a write - check other reads and writes for conflicts. If 777 // this is a read only check other writes for conflicts (but only if 778 // there is no other write to the ptr - this is an optimization to 779 // catch "a[i] = a[i] + " without having to do a dependence check). 780 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 781 CheckDeps.insert(Access); 782 IsRTCheckAnalysisNeeded = true; 783 } 784 785 if (IsWrite) 786 SetHasWrite = true; 787 788 // Create sets of pointers connected by a shared alias set and 789 // underlying object. 790 typedef SmallVector<Value *, 16> ValueVector; 791 ValueVector TempObjects; 792 793 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 794 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 795 for (Value *UnderlyingObj : TempObjects) { 796 // nullptr never alias, don't join sets for pointer that have "null" 797 // in their UnderlyingObjects list. 798 if (isa<ConstantPointerNull>(UnderlyingObj)) 799 continue; 800 801 UnderlyingObjToAccessMap::iterator Prev = 802 ObjToLastAccess.find(UnderlyingObj); 803 if (Prev != ObjToLastAccess.end()) 804 DepCands.unionSets(Access, Prev->second); 805 806 ObjToLastAccess[UnderlyingObj] = Access; 807 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 808 } 809 } 810 } 811 } 812 } 813 } 814 815 static bool isInBoundsGep(Value *Ptr) { 816 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 817 return GEP->isInBounds(); 818 return false; 819 } 820 821 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 822 /// i.e. monotonically increasing/decreasing. 823 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 824 PredicatedScalarEvolution &PSE, const Loop *L) { 825 // FIXME: This should probably only return true for NUW. 826 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 827 return true; 828 829 // Scalar evolution does not propagate the non-wrapping flags to values that 830 // are derived from a non-wrapping induction variable because non-wrapping 831 // could be flow-sensitive. 832 // 833 // Look through the potentially overflowing instruction to try to prove 834 // non-wrapping for the *specific* value of Ptr. 835 836 // The arithmetic implied by an inbounds GEP can't overflow. 837 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 838 if (!GEP || !GEP->isInBounds()) 839 return false; 840 841 // Make sure there is only one non-const index and analyze that. 842 Value *NonConstIndex = nullptr; 843 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 844 if (!isa<ConstantInt>(Index)) { 845 if (NonConstIndex) 846 return false; 847 NonConstIndex = Index; 848 } 849 if (!NonConstIndex) 850 // The recurrence is on the pointer, ignore for now. 851 return false; 852 853 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 854 // AddRec using a NSW operation. 855 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 856 if (OBO->hasNoSignedWrap() && 857 // Assume constant for other the operand so that the AddRec can be 858 // easily found. 859 isa<ConstantInt>(OBO->getOperand(1))) { 860 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 861 862 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 863 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 864 } 865 866 return false; 867 } 868 869 /// \brief Check whether the access through \p Ptr has a constant stride. 870 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 871 const Loop *Lp, const ValueToValueMap &StridesMap, 872 bool Assume) { 873 Type *Ty = Ptr->getType(); 874 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 875 876 // Make sure that the pointer does not point to aggregate types. 877 auto *PtrTy = cast<PointerType>(Ty); 878 if (PtrTy->getElementType()->isAggregateType()) { 879 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 880 << "\n"); 881 return 0; 882 } 883 884 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 885 886 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 887 if (Assume && !AR) 888 AR = PSE.getAsAddRec(Ptr); 889 890 if (!AR) { 891 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 892 << " SCEV: " << *PtrScev << "\n"); 893 return 0; 894 } 895 896 // The accesss function must stride over the innermost loop. 897 if (Lp != AR->getLoop()) { 898 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 899 *Ptr << " SCEV: " << *AR << "\n"); 900 return 0; 901 } 902 903 // The address calculation must not wrap. Otherwise, a dependence could be 904 // inverted. 905 // An inbounds getelementptr that is a AddRec with a unit stride 906 // cannot wrap per definition. The unit stride requirement is checked later. 907 // An getelementptr without an inbounds attribute and unit stride would have 908 // to access the pointer value "0" which is undefined behavior in address 909 // space 0, therefore we can also vectorize this case. 910 bool IsInBoundsGEP = isInBoundsGep(Ptr); 911 bool IsNoWrapAddRec = 912 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 913 isNoWrapAddRec(Ptr, AR, PSE, Lp); 914 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 915 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 916 if (Assume) { 917 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 918 IsNoWrapAddRec = true; 919 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 920 << "LAA: Pointer: " << *Ptr << "\n" 921 << "LAA: SCEV: " << *AR << "\n" 922 << "LAA: Added an overflow assumption\n"); 923 } else { 924 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 925 << *Ptr << " SCEV: " << *AR << "\n"); 926 return 0; 927 } 928 } 929 930 // Check the step is constant. 931 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 932 933 // Calculate the pointer stride and check if it is constant. 934 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 935 if (!C) { 936 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 937 " SCEV: " << *AR << "\n"); 938 return 0; 939 } 940 941 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 942 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 943 const APInt &APStepVal = C->getAPInt(); 944 945 // Huge step value - give up. 946 if (APStepVal.getBitWidth() > 64) 947 return 0; 948 949 int64_t StepVal = APStepVal.getSExtValue(); 950 951 // Strided access. 952 int64_t Stride = StepVal / Size; 953 int64_t Rem = StepVal % Size; 954 if (Rem) 955 return 0; 956 957 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 958 // know we can't "wrap around the address space". In case of address space 959 // zero we know that this won't happen without triggering undefined behavior. 960 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 961 Stride != 1 && Stride != -1) { 962 if (Assume) { 963 // We can avoid this case by adding a run-time check. 964 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 965 << "inbouds or in address space 0 may wrap:\n" 966 << "LAA: Pointer: " << *Ptr << "\n" 967 << "LAA: SCEV: " << *AR << "\n" 968 << "LAA: Added an overflow assumption\n"); 969 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 970 } else 971 return 0; 972 } 973 974 return Stride; 975 } 976 977 /// Take the pointer operand from the Load/Store instruction. 978 /// Returns NULL if this is not a valid Load/Store instruction. 979 static Value *getPointerOperand(Value *I) { 980 if (auto *LI = dyn_cast<LoadInst>(I)) 981 return LI->getPointerOperand(); 982 if (auto *SI = dyn_cast<StoreInst>(I)) 983 return SI->getPointerOperand(); 984 return nullptr; 985 } 986 987 /// Take the address space operand from the Load/Store instruction. 988 /// Returns -1 if this is not a valid Load/Store instruction. 989 static unsigned getAddressSpaceOperand(Value *I) { 990 if (LoadInst *L = dyn_cast<LoadInst>(I)) 991 return L->getPointerAddressSpace(); 992 if (StoreInst *S = dyn_cast<StoreInst>(I)) 993 return S->getPointerAddressSpace(); 994 return -1; 995 } 996 997 /// Returns true if the memory operations \p A and \p B are consecutive. 998 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 999 ScalarEvolution &SE, bool CheckType) { 1000 Value *PtrA = getPointerOperand(A); 1001 Value *PtrB = getPointerOperand(B); 1002 unsigned ASA = getAddressSpaceOperand(A); 1003 unsigned ASB = getAddressSpaceOperand(B); 1004 1005 // Check that the address spaces match and that the pointers are valid. 1006 if (!PtrA || !PtrB || (ASA != ASB)) 1007 return false; 1008 1009 // Make sure that A and B are different pointers. 1010 if (PtrA == PtrB) 1011 return false; 1012 1013 // Make sure that A and B have the same type if required. 1014 if(CheckType && PtrA->getType() != PtrB->getType()) 1015 return false; 1016 1017 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1018 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1019 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1020 1021 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1022 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1023 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1024 1025 // OffsetDelta = OffsetB - OffsetA; 1026 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1027 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1028 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1029 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1030 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1031 // Check if they are based on the same pointer. That makes the offsets 1032 // sufficient. 1033 if (PtrA == PtrB) 1034 return OffsetDelta == Size; 1035 1036 // Compute the necessary base pointer delta to have the necessary final delta 1037 // equal to the size. 1038 // BaseDelta = Size - OffsetDelta; 1039 const SCEV *SizeSCEV = SE.getConstant(Size); 1040 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1041 1042 // Otherwise compute the distance with SCEV between the base pointers. 1043 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1044 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1045 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1046 return X == PtrSCEVB; 1047 } 1048 1049 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1050 switch (Type) { 1051 case NoDep: 1052 case Forward: 1053 case BackwardVectorizable: 1054 return true; 1055 1056 case Unknown: 1057 case ForwardButPreventsForwarding: 1058 case Backward: 1059 case BackwardVectorizableButPreventsForwarding: 1060 return false; 1061 } 1062 llvm_unreachable("unexpected DepType!"); 1063 } 1064 1065 bool MemoryDepChecker::Dependence::isBackward() const { 1066 switch (Type) { 1067 case NoDep: 1068 case Forward: 1069 case ForwardButPreventsForwarding: 1070 case Unknown: 1071 return false; 1072 1073 case BackwardVectorizable: 1074 case Backward: 1075 case BackwardVectorizableButPreventsForwarding: 1076 return true; 1077 } 1078 llvm_unreachable("unexpected DepType!"); 1079 } 1080 1081 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1082 return isBackward() || Type == Unknown; 1083 } 1084 1085 bool MemoryDepChecker::Dependence::isForward() const { 1086 switch (Type) { 1087 case Forward: 1088 case ForwardButPreventsForwarding: 1089 return true; 1090 1091 case NoDep: 1092 case Unknown: 1093 case BackwardVectorizable: 1094 case Backward: 1095 case BackwardVectorizableButPreventsForwarding: 1096 return false; 1097 } 1098 llvm_unreachable("unexpected DepType!"); 1099 } 1100 1101 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1102 uint64_t TypeByteSize) { 1103 // If loads occur at a distance that is not a multiple of a feasible vector 1104 // factor store-load forwarding does not take place. 1105 // Positive dependences might cause troubles because vectorizing them might 1106 // prevent store-load forwarding making vectorized code run a lot slower. 1107 // a[i] = a[i-3] ^ a[i-8]; 1108 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1109 // hence on your typical architecture store-load forwarding does not take 1110 // place. Vectorizing in such cases does not make sense. 1111 // Store-load forwarding distance. 1112 1113 // After this many iterations store-to-load forwarding conflicts should not 1114 // cause any slowdowns. 1115 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1116 // Maximum vector factor. 1117 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1118 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1119 1120 // Compute the smallest VF at which the store and load would be misaligned. 1121 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1122 VF *= 2) { 1123 // If the number of vector iteration between the store and the load are 1124 // small we could incur conflicts. 1125 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1126 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1127 break; 1128 } 1129 } 1130 1131 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1132 DEBUG(dbgs() << "LAA: Distance " << Distance 1133 << " that could cause a store-load forwarding conflict\n"); 1134 return true; 1135 } 1136 1137 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1138 MaxVFWithoutSLForwardIssues != 1139 VectorizerParams::MaxVectorWidth * TypeByteSize) 1140 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1141 return false; 1142 } 1143 1144 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1145 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1146 /// bytes. 1147 /// 1148 /// \returns true if they are independent. 1149 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1150 uint64_t TypeByteSize) { 1151 assert(Stride > 1 && "The stride must be greater than 1"); 1152 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1153 assert(Distance > 0 && "The distance must be non-zero"); 1154 1155 // Skip if the distance is not multiple of type byte size. 1156 if (Distance % TypeByteSize) 1157 return false; 1158 1159 uint64_t ScaledDist = Distance / TypeByteSize; 1160 1161 // No dependence if the scaled distance is not multiple of the stride. 1162 // E.g. 1163 // for (i = 0; i < 1024 ; i += 4) 1164 // A[i+2] = A[i] + 1; 1165 // 1166 // Two accesses in memory (scaled distance is 2, stride is 4): 1167 // | A[0] | | | | A[4] | | | | 1168 // | | | A[2] | | | | A[6] | | 1169 // 1170 // E.g. 1171 // for (i = 0; i < 1024 ; i += 3) 1172 // A[i+4] = A[i] + 1; 1173 // 1174 // Two accesses in memory (scaled distance is 4, stride is 3): 1175 // | A[0] | | | A[3] | | | A[6] | | | 1176 // | | | | | A[4] | | | A[7] | | 1177 return ScaledDist % Stride; 1178 } 1179 1180 MemoryDepChecker::Dependence::DepType 1181 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1182 const MemAccessInfo &B, unsigned BIdx, 1183 const ValueToValueMap &Strides) { 1184 assert (AIdx < BIdx && "Must pass arguments in program order"); 1185 1186 Value *APtr = A.getPointer(); 1187 Value *BPtr = B.getPointer(); 1188 bool AIsWrite = A.getInt(); 1189 bool BIsWrite = B.getInt(); 1190 1191 // Two reads are independent. 1192 if (!AIsWrite && !BIsWrite) 1193 return Dependence::NoDep; 1194 1195 // We cannot check pointers in different address spaces. 1196 if (APtr->getType()->getPointerAddressSpace() != 1197 BPtr->getType()->getPointerAddressSpace()) 1198 return Dependence::Unknown; 1199 1200 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1201 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1202 1203 const SCEV *Src = PSE.getSCEV(APtr); 1204 const SCEV *Sink = PSE.getSCEV(BPtr); 1205 1206 // If the induction step is negative we have to invert source and sink of the 1207 // dependence. 1208 if (StrideAPtr < 0) { 1209 std::swap(APtr, BPtr); 1210 std::swap(Src, Sink); 1211 std::swap(AIsWrite, BIsWrite); 1212 std::swap(AIdx, BIdx); 1213 std::swap(StrideAPtr, StrideBPtr); 1214 } 1215 1216 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1217 1218 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1219 << "(Induction step: " << StrideAPtr << ")\n"); 1220 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1221 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1222 1223 // Need accesses with constant stride. We don't want to vectorize 1224 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1225 // the address space. 1226 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1227 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1228 return Dependence::Unknown; 1229 } 1230 1231 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1232 if (!C) { 1233 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1234 ShouldRetryWithRuntimeCheck = true; 1235 return Dependence::Unknown; 1236 } 1237 1238 Type *ATy = APtr->getType()->getPointerElementType(); 1239 Type *BTy = BPtr->getType()->getPointerElementType(); 1240 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1241 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1242 1243 const APInt &Val = C->getAPInt(); 1244 int64_t Distance = Val.getSExtValue(); 1245 uint64_t Stride = std::abs(StrideAPtr); 1246 1247 // Attempt to prove strided accesses independent. 1248 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1249 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1250 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1251 return Dependence::NoDep; 1252 } 1253 1254 // Negative distances are not plausible dependencies. 1255 if (Val.isNegative()) { 1256 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1257 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1258 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1259 ATy != BTy)) { 1260 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1261 return Dependence::ForwardButPreventsForwarding; 1262 } 1263 1264 DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1265 return Dependence::Forward; 1266 } 1267 1268 // Write to the same location with the same size. 1269 // Could be improved to assert type sizes are the same (i32 == float, etc). 1270 if (Val == 0) { 1271 if (ATy == BTy) 1272 return Dependence::Forward; 1273 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1274 return Dependence::Unknown; 1275 } 1276 1277 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1278 1279 if (ATy != BTy) { 1280 DEBUG(dbgs() << 1281 "LAA: ReadWrite-Write positive dependency with different types\n"); 1282 return Dependence::Unknown; 1283 } 1284 1285 // Bail out early if passed-in parameters make vectorization not feasible. 1286 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1287 VectorizerParams::VectorizationFactor : 1); 1288 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1289 VectorizerParams::VectorizationInterleave : 1); 1290 // The minimum number of iterations for a vectorized/unrolled version. 1291 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1292 1293 // It's not vectorizable if the distance is smaller than the minimum distance 1294 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1295 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1296 // TypeByteSize (No need to plus the last gap distance). 1297 // 1298 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1299 // foo(int *A) { 1300 // int *B = (int *)((char *)A + 14); 1301 // for (i = 0 ; i < 1024 ; i += 2) 1302 // B[i] = A[i] + 1; 1303 // } 1304 // 1305 // Two accesses in memory (stride is 2): 1306 // | A[0] | | A[2] | | A[4] | | A[6] | | 1307 // | B[0] | | B[2] | | B[4] | 1308 // 1309 // Distance needs for vectorizing iterations except the last iteration: 1310 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1311 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1312 // 1313 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1314 // 12, which is less than distance. 1315 // 1316 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1317 // the minimum distance needed is 28, which is greater than distance. It is 1318 // not safe to do vectorization. 1319 uint64_t MinDistanceNeeded = 1320 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1321 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1322 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1323 << '\n'); 1324 return Dependence::Backward; 1325 } 1326 1327 // Unsafe if the minimum distance needed is greater than max safe distance. 1328 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1329 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1330 << MinDistanceNeeded << " size in bytes"); 1331 return Dependence::Backward; 1332 } 1333 1334 // Positive distance bigger than max vectorization factor. 1335 // FIXME: Should use max factor instead of max distance in bytes, which could 1336 // not handle different types. 1337 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1338 // void foo (int *A, char *B) { 1339 // for (unsigned i = 0; i < 1024; i++) { 1340 // A[i+2] = A[i] + 1; 1341 // B[i+2] = B[i] + 1; 1342 // } 1343 // } 1344 // 1345 // This case is currently unsafe according to the max safe distance. If we 1346 // analyze the two accesses on array B, the max safe dependence distance 1347 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1348 // is 8, which is less than 2 and forbidden vectorization, But actually 1349 // both A and B could be vectorized by 2 iterations. 1350 MaxSafeDepDistBytes = 1351 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1352 1353 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1354 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1355 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1356 return Dependence::BackwardVectorizableButPreventsForwarding; 1357 1358 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1359 << " with max VF = " 1360 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1361 1362 return Dependence::BackwardVectorizable; 1363 } 1364 1365 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1366 MemAccessInfoSet &CheckDeps, 1367 const ValueToValueMap &Strides) { 1368 1369 MaxSafeDepDistBytes = -1; 1370 while (!CheckDeps.empty()) { 1371 MemAccessInfo CurAccess = *CheckDeps.begin(); 1372 1373 // Get the relevant memory access set. 1374 EquivalenceClasses<MemAccessInfo>::iterator I = 1375 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1376 1377 // Check accesses within this set. 1378 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1379 AccessSets.member_begin(I); 1380 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1381 AccessSets.member_end(); 1382 1383 // Check every access pair. 1384 while (AI != AE) { 1385 CheckDeps.erase(*AI); 1386 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1387 while (OI != AE) { 1388 // Check every accessing instruction pair in program order. 1389 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1390 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1391 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1392 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1393 auto A = std::make_pair(&*AI, *I1); 1394 auto B = std::make_pair(&*OI, *I2); 1395 1396 assert(*I1 != *I2); 1397 if (*I1 > *I2) 1398 std::swap(A, B); 1399 1400 Dependence::DepType Type = 1401 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1402 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1403 1404 // Gather dependences unless we accumulated MaxDependences 1405 // dependences. In that case return as soon as we find the first 1406 // unsafe dependence. This puts a limit on this quadratic 1407 // algorithm. 1408 if (RecordDependences) { 1409 if (Type != Dependence::NoDep) 1410 Dependences.push_back(Dependence(A.second, B.second, Type)); 1411 1412 if (Dependences.size() >= MaxDependences) { 1413 RecordDependences = false; 1414 Dependences.clear(); 1415 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1416 } 1417 } 1418 if (!RecordDependences && !SafeForVectorization) 1419 return false; 1420 } 1421 ++OI; 1422 } 1423 AI++; 1424 } 1425 } 1426 1427 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1428 return SafeForVectorization; 1429 } 1430 1431 SmallVector<Instruction *, 4> 1432 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1433 MemAccessInfo Access(Ptr, isWrite); 1434 auto &IndexVector = Accesses.find(Access)->second; 1435 1436 SmallVector<Instruction *, 4> Insts; 1437 std::transform(IndexVector.begin(), IndexVector.end(), 1438 std::back_inserter(Insts), 1439 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1440 return Insts; 1441 } 1442 1443 const char *MemoryDepChecker::Dependence::DepName[] = { 1444 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1445 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1446 1447 void MemoryDepChecker::Dependence::print( 1448 raw_ostream &OS, unsigned Depth, 1449 const SmallVectorImpl<Instruction *> &Instrs) const { 1450 OS.indent(Depth) << DepName[Type] << ":\n"; 1451 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1452 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1453 } 1454 1455 bool LoopAccessInfo::canAnalyzeLoop() { 1456 // We need to have a loop header. 1457 DEBUG(dbgs() << "LAA: Found a loop in " 1458 << TheLoop->getHeader()->getParent()->getName() << ": " 1459 << TheLoop->getHeader()->getName() << '\n'); 1460 1461 // We can only analyze innermost loops. 1462 if (!TheLoop->empty()) { 1463 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1464 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1465 return false; 1466 } 1467 1468 // We must have a single backedge. 1469 if (TheLoop->getNumBackEdges() != 1) { 1470 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1471 emitAnalysis( 1472 LoopAccessReport() << 1473 "loop control flow is not understood by analyzer"); 1474 return false; 1475 } 1476 1477 // We must have a single exiting block. 1478 if (!TheLoop->getExitingBlock()) { 1479 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1480 emitAnalysis( 1481 LoopAccessReport() << 1482 "loop control flow is not understood by analyzer"); 1483 return false; 1484 } 1485 1486 // We only handle bottom-tested loops, i.e. loop in which the condition is 1487 // checked at the end of each iteration. With that we can assume that all 1488 // instructions in the loop are executed the same number of times. 1489 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1490 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1491 emitAnalysis( 1492 LoopAccessReport() << 1493 "loop control flow is not understood by analyzer"); 1494 return false; 1495 } 1496 1497 // ScalarEvolution needs to be able to find the exit count. 1498 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1499 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1500 emitAnalysis(LoopAccessReport() 1501 << "could not determine number of loop iterations"); 1502 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1503 return false; 1504 } 1505 1506 return true; 1507 } 1508 1509 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1510 const TargetLibraryInfo *TLI, 1511 DominatorTree *DT) { 1512 typedef SmallPtrSet<Value*, 16> ValueSet; 1513 1514 // Holds the Load and Store instructions. 1515 SmallVector<LoadInst *, 16> Loads; 1516 SmallVector<StoreInst *, 16> Stores; 1517 1518 // Holds all the different accesses in the loop. 1519 unsigned NumReads = 0; 1520 unsigned NumReadWrites = 0; 1521 1522 PtrRtChecking->Pointers.clear(); 1523 PtrRtChecking->Need = false; 1524 1525 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1526 1527 // For each block. 1528 for (BasicBlock *BB : TheLoop->blocks()) { 1529 // Scan the BB and collect legal loads and stores. 1530 for (Instruction &I : *BB) { 1531 // If this is a load, save it. If this instruction can read from memory 1532 // but is not a load, then we quit. Notice that we don't handle function 1533 // calls that read or write. 1534 if (I.mayReadFromMemory()) { 1535 // Many math library functions read the rounding mode. We will only 1536 // vectorize a loop if it contains known function calls that don't set 1537 // the flag. Therefore, it is safe to ignore this read from memory. 1538 auto *Call = dyn_cast<CallInst>(&I); 1539 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1540 continue; 1541 1542 // If the function has an explicit vectorized counterpart, we can safely 1543 // assume that it can be vectorized. 1544 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1545 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1546 continue; 1547 1548 auto *Ld = dyn_cast<LoadInst>(&I); 1549 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1550 emitAnalysis(LoopAccessReport(Ld) 1551 << "read with atomic ordering or volatile read"); 1552 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1553 CanVecMem = false; 1554 return; 1555 } 1556 NumLoads++; 1557 Loads.push_back(Ld); 1558 DepChecker->addAccess(Ld); 1559 if (EnableMemAccessVersioning) 1560 collectStridedAccess(Ld); 1561 continue; 1562 } 1563 1564 // Save 'store' instructions. Abort if other instructions write to memory. 1565 if (I.mayWriteToMemory()) { 1566 auto *St = dyn_cast<StoreInst>(&I); 1567 if (!St) { 1568 emitAnalysis(LoopAccessReport(St) 1569 << "instruction cannot be vectorized"); 1570 CanVecMem = false; 1571 return; 1572 } 1573 if (!St->isSimple() && !IsAnnotatedParallel) { 1574 emitAnalysis(LoopAccessReport(St) 1575 << "write with atomic ordering or volatile write"); 1576 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1577 CanVecMem = false; 1578 return; 1579 } 1580 NumStores++; 1581 Stores.push_back(St); 1582 DepChecker->addAccess(St); 1583 if (EnableMemAccessVersioning) 1584 collectStridedAccess(St); 1585 } 1586 } // Next instr. 1587 } // Next block. 1588 1589 // Now we have two lists that hold the loads and the stores. 1590 // Next, we find the pointers that they use. 1591 1592 // Check if we see any stores. If there are no stores, then we don't 1593 // care if the pointers are *restrict*. 1594 if (!Stores.size()) { 1595 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1596 CanVecMem = true; 1597 return; 1598 } 1599 1600 MemoryDepChecker::DepCandidates DependentAccesses; 1601 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1602 AA, LI, DependentAccesses, *PSE); 1603 1604 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1605 // multiple times on the same object. If the ptr is accessed twice, once 1606 // for read and once for write, it will only appear once (on the write 1607 // list). This is okay, since we are going to check for conflicts between 1608 // writes and between reads and writes, but not between reads and reads. 1609 ValueSet Seen; 1610 1611 for (StoreInst *ST : Stores) { 1612 Value *Ptr = ST->getPointerOperand(); 1613 // Check for store to loop invariant address. 1614 StoreToLoopInvariantAddress |= isUniform(Ptr); 1615 // If we did *not* see this pointer before, insert it to the read-write 1616 // list. At this phase it is only a 'write' list. 1617 if (Seen.insert(Ptr).second) { 1618 ++NumReadWrites; 1619 1620 MemoryLocation Loc = MemoryLocation::get(ST); 1621 // The TBAA metadata could have a control dependency on the predication 1622 // condition, so we cannot rely on it when determining whether or not we 1623 // need runtime pointer checks. 1624 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1625 Loc.AATags.TBAA = nullptr; 1626 1627 Accesses.addStore(Loc); 1628 } 1629 } 1630 1631 if (IsAnnotatedParallel) { 1632 DEBUG(dbgs() 1633 << "LAA: A loop annotated parallel, ignore memory dependency " 1634 << "checks.\n"); 1635 CanVecMem = true; 1636 return; 1637 } 1638 1639 for (LoadInst *LD : Loads) { 1640 Value *Ptr = LD->getPointerOperand(); 1641 // If we did *not* see this pointer before, insert it to the 1642 // read list. If we *did* see it before, then it is already in 1643 // the read-write list. This allows us to vectorize expressions 1644 // such as A[i] += x; Because the address of A[i] is a read-write 1645 // pointer. This only works if the index of A[i] is consecutive. 1646 // If the address of i is unknown (for example A[B[i]]) then we may 1647 // read a few words, modify, and write a few words, and some of the 1648 // words may be written to the same address. 1649 bool IsReadOnlyPtr = false; 1650 if (Seen.insert(Ptr).second || 1651 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1652 ++NumReads; 1653 IsReadOnlyPtr = true; 1654 } 1655 1656 MemoryLocation Loc = MemoryLocation::get(LD); 1657 // The TBAA metadata could have a control dependency on the predication 1658 // condition, so we cannot rely on it when determining whether or not we 1659 // need runtime pointer checks. 1660 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1661 Loc.AATags.TBAA = nullptr; 1662 1663 Accesses.addLoad(Loc, IsReadOnlyPtr); 1664 } 1665 1666 // If we write (or read-write) to a single destination and there are no 1667 // other reads in this loop then is it safe to vectorize. 1668 if (NumReadWrites == 1 && NumReads == 0) { 1669 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1670 CanVecMem = true; 1671 return; 1672 } 1673 1674 // Build dependence sets and check whether we need a runtime pointer bounds 1675 // check. 1676 Accesses.buildDependenceSets(); 1677 1678 // Find pointers with computable bounds. We are going to use this information 1679 // to place a runtime bound check. 1680 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1681 TheLoop, SymbolicStrides); 1682 if (!CanDoRTIfNeeded) { 1683 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1684 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1685 << "the array bounds.\n"); 1686 CanVecMem = false; 1687 return; 1688 } 1689 1690 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1691 1692 CanVecMem = true; 1693 if (Accesses.isDependencyCheckNeeded()) { 1694 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1695 CanVecMem = DepChecker->areDepsSafe( 1696 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1697 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 1698 1699 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1700 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1701 1702 // Clear the dependency checks. We assume they are not needed. 1703 Accesses.resetDepChecks(*DepChecker); 1704 1705 PtrRtChecking->reset(); 1706 PtrRtChecking->Need = true; 1707 1708 auto *SE = PSE->getSE(); 1709 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1710 SymbolicStrides, true); 1711 1712 // Check that we found the bounds for the pointer. 1713 if (!CanDoRTIfNeeded) { 1714 emitAnalysis(LoopAccessReport() 1715 << "cannot check memory dependencies at runtime"); 1716 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1717 CanVecMem = false; 1718 return; 1719 } 1720 1721 CanVecMem = true; 1722 } 1723 } 1724 1725 if (CanVecMem) 1726 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1727 << (PtrRtChecking->Need ? "" : " don't") 1728 << " need runtime memory checks.\n"); 1729 else { 1730 emitAnalysis( 1731 LoopAccessReport() 1732 << "unsafe dependent memory operations in loop. Use " 1733 "#pragma loop distribute(enable) to allow loop distribution " 1734 "to attempt to isolate the offending operations into a separate " 1735 "loop"); 1736 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1737 } 1738 } 1739 1740 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1741 DominatorTree *DT) { 1742 assert(TheLoop->contains(BB) && "Unknown block used"); 1743 1744 // Blocks that do not dominate the latch need predication. 1745 BasicBlock* Latch = TheLoop->getLoopLatch(); 1746 return !DT->dominates(BB, Latch); 1747 } 1748 1749 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1750 assert(!Report && "Multiple reports generated"); 1751 Report = Message; 1752 } 1753 1754 bool LoopAccessInfo::isUniform(Value *V) const { 1755 return (PSE->getSE()->isLoopInvariant(PSE->getSE()->getSCEV(V), TheLoop)); 1756 } 1757 1758 // FIXME: this function is currently a duplicate of the one in 1759 // LoopVectorize.cpp. 1760 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1761 Instruction *Loc) { 1762 if (FirstInst) 1763 return FirstInst; 1764 if (Instruction *I = dyn_cast<Instruction>(V)) 1765 return I->getParent() == Loc->getParent() ? I : nullptr; 1766 return nullptr; 1767 } 1768 1769 namespace { 1770 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1771 /// need to use value-handles because SCEV expansion can invalidate previously 1772 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1773 /// a previous one. 1774 struct PointerBounds { 1775 TrackingVH<Value> Start; 1776 TrackingVH<Value> End; 1777 }; 1778 } // end anonymous namespace 1779 1780 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1781 /// in \p TheLoop. \return the values for the bounds. 1782 static PointerBounds 1783 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1784 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1785 const RuntimePointerChecking &PtrRtChecking) { 1786 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1787 const SCEV *Sc = SE->getSCEV(Ptr); 1788 1789 if (SE->isLoopInvariant(Sc, TheLoop)) { 1790 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1791 << "\n"); 1792 return {Ptr, Ptr}; 1793 } else { 1794 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1795 LLVMContext &Ctx = Loc->getContext(); 1796 1797 // Use this type for pointer arithmetic. 1798 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1799 Value *Start = nullptr, *End = nullptr; 1800 1801 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1802 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1803 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1804 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1805 return {Start, End}; 1806 } 1807 } 1808 1809 /// \brief Turns a collection of checks into a collection of expanded upper and 1810 /// lower bounds for both pointers in the check. 1811 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1812 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1813 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1814 const RuntimePointerChecking &PtrRtChecking) { 1815 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1816 1817 // Here we're relying on the SCEV Expander's cache to only emit code for the 1818 // same bounds once. 1819 std::transform( 1820 PointerChecks.begin(), PointerChecks.end(), 1821 std::back_inserter(ChecksWithBounds), 1822 [&](const RuntimePointerChecking::PointerCheck &Check) { 1823 PointerBounds 1824 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1825 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1826 return std::make_pair(First, Second); 1827 }); 1828 1829 return ChecksWithBounds; 1830 } 1831 1832 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 1833 Instruction *Loc, 1834 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1835 const { 1836 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1837 auto *SE = PSE->getSE(); 1838 SCEVExpander Exp(*SE, DL, "induction"); 1839 auto ExpandedChecks = 1840 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 1841 1842 LLVMContext &Ctx = Loc->getContext(); 1843 Instruction *FirstInst = nullptr; 1844 IRBuilder<> ChkBuilder(Loc); 1845 // Our instructions might fold to a constant. 1846 Value *MemoryRuntimeCheck = nullptr; 1847 1848 for (const auto &Check : ExpandedChecks) { 1849 const PointerBounds &A = Check.first, &B = Check.second; 1850 // Check if two pointers (A and B) conflict where conflict is computed as: 1851 // start(A) <= end(B) && start(B) <= end(A) 1852 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1853 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1854 1855 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1856 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1857 "Trying to bounds check pointers with different address spaces"); 1858 1859 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1860 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1861 1862 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1863 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1864 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1865 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1866 1867 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1868 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1869 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1870 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1871 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1872 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1873 if (MemoryRuntimeCheck) { 1874 IsConflict = 1875 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1876 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1877 } 1878 MemoryRuntimeCheck = IsConflict; 1879 } 1880 1881 if (!MemoryRuntimeCheck) 1882 return std::make_pair(nullptr, nullptr); 1883 1884 // We have to do this trickery because the IRBuilder might fold the check to a 1885 // constant expression in which case there is no Instruction anchored in a 1886 // the block. 1887 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1888 ConstantInt::getTrue(Ctx)); 1889 ChkBuilder.Insert(Check, "memcheck.conflict"); 1890 FirstInst = getFirstInst(FirstInst, Check, Loc); 1891 return std::make_pair(FirstInst, Check); 1892 } 1893 1894 std::pair<Instruction *, Instruction *> 1895 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1896 if (!PtrRtChecking->Need) 1897 return std::make_pair(nullptr, nullptr); 1898 1899 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 1900 } 1901 1902 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 1903 Value *Ptr = nullptr; 1904 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 1905 Ptr = LI->getPointerOperand(); 1906 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 1907 Ptr = SI->getPointerOperand(); 1908 else 1909 return; 1910 1911 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 1912 if (!Stride) 1913 return; 1914 1915 DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 1916 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 1917 SymbolicStrides[Ptr] = Stride; 1918 StrideSet.insert(Stride); 1919 } 1920 1921 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1922 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1923 DominatorTree *DT, LoopInfo *LI) 1924 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 1925 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 1926 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 1927 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 1928 StoreToLoopInvariantAddress(false) { 1929 if (canAnalyzeLoop()) 1930 analyzeLoop(AA, LI, TLI, DT); 1931 } 1932 1933 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1934 if (CanVecMem) { 1935 OS.indent(Depth) << "Memory dependences are safe"; 1936 if (MaxSafeDepDistBytes != -1ULL) 1937 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 1938 << " bytes"; 1939 if (PtrRtChecking->Need) 1940 OS << " with run-time checks"; 1941 OS << "\n"; 1942 } 1943 1944 if (Report) 1945 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1946 1947 if (auto *Dependences = DepChecker->getDependences()) { 1948 OS.indent(Depth) << "Dependences:\n"; 1949 for (auto &Dep : *Dependences) { 1950 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 1951 OS << "\n"; 1952 } 1953 } else 1954 OS.indent(Depth) << "Too many dependences, not recorded\n"; 1955 1956 // List the pair of accesses need run-time checks to prove independence. 1957 PtrRtChecking->print(OS, Depth); 1958 OS << "\n"; 1959 1960 OS.indent(Depth) << "Store to invariant address was " 1961 << (StoreToLoopInvariantAddress ? "" : "not ") 1962 << "found in loop.\n"; 1963 1964 OS.indent(Depth) << "SCEV assumptions:\n"; 1965 PSE->getUnionPredicate().print(OS, Depth); 1966 1967 OS << "\n"; 1968 1969 OS.indent(Depth) << "Expressions re-written:\n"; 1970 PSE->print(OS, Depth); 1971 } 1972 1973 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 1974 auto &LAI = LoopAccessInfoMap[L]; 1975 1976 if (!LAI) 1977 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 1978 1979 return *LAI.get(); 1980 } 1981 1982 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 1983 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 1984 1985 for (Loop *TopLevelLoop : *LI) 1986 for (Loop *L : depth_first(TopLevelLoop)) { 1987 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1988 auto &LAI = LAA.getInfo(L); 1989 LAI.print(OS, 4); 1990 } 1991 } 1992 1993 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 1994 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1995 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1996 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1997 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1998 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1999 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2000 2001 return false; 2002 } 2003 2004 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2005 AU.addRequired<ScalarEvolutionWrapperPass>(); 2006 AU.addRequired<AAResultsWrapperPass>(); 2007 AU.addRequired<DominatorTreeWrapperPass>(); 2008 AU.addRequired<LoopInfoWrapperPass>(); 2009 2010 AU.setPreservesAll(); 2011 } 2012 2013 char LoopAccessLegacyAnalysis::ID = 0; 2014 static const char laa_name[] = "Loop Access Analysis"; 2015 #define LAA_NAME "loop-accesses" 2016 2017 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2018 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2019 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2020 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2021 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2022 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2023 2024 char LoopAccessAnalysis::PassID; 2025 2026 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, AnalysisManager<Loop> &AM) { 2027 const AnalysisManager<Function> &FAM = 2028 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 2029 Function &F = *L.getHeader()->getParent(); 2030 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F); 2031 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F); 2032 auto *AA = FAM.getCachedResult<AAManager>(F); 2033 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2034 auto *LI = FAM.getCachedResult<LoopAnalysis>(F); 2035 if (!SE) 2036 report_fatal_error( 2037 "ScalarEvolution must have been cached at a higher level"); 2038 if (!AA) 2039 report_fatal_error("AliasAnalysis must have been cached at a higher level"); 2040 if (!DT) 2041 report_fatal_error("DominatorTree must have been cached at a higher level"); 2042 if (!LI) 2043 report_fatal_error("LoopInfo must have been cached at a higher level"); 2044 return LoopAccessInfo(&L, SE, TLI, AA, DT, LI); 2045 } 2046 2047 PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L, 2048 AnalysisManager<Loop> &AM) { 2049 Function &F = *L.getHeader()->getParent(); 2050 auto &LAI = AM.getResult<LoopAccessAnalysis>(L); 2051 OS << "Loop access info in function '" << F.getName() << "':\n"; 2052 OS.indent(2) << L.getHeader()->getName() << ":\n"; 2053 LAI.print(OS, 4); 2054 return PreservedAnalyses::all(); 2055 } 2056 2057 namespace llvm { 2058 Pass *createLAAPass() { 2059 return new LoopAccessLegacyAnalysis(); 2060 } 2061 } 2062