10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 20456327cSAdam Nemet // 30456327cSAdam Nemet // The LLVM Compiler Infrastructure 40456327cSAdam Nemet // 50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source 60456327cSAdam Nemet // License. See LICENSE.TXT for details. 70456327cSAdam Nemet // 80456327cSAdam Nemet //===----------------------------------------------------------------------===// 90456327cSAdam Nemet // 100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally 110456327cSAdam Nemet // developed for the loop vectorizer. 120456327cSAdam Nemet // 130456327cSAdam Nemet //===----------------------------------------------------------------------===// 140456327cSAdam Nemet 150456327cSAdam Nemet #include "llvm/Analysis/LoopAccessAnalysis.h" 160456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 177206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h" 18799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h" 190456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h" 200456327cSAdam Nemet #include "llvm/IR/DiagnosticInfo.h" 210456327cSAdam Nemet #include "llvm/IR/Dominators.h" 227206d7a5SAdam Nemet #include "llvm/IR/IRBuilder.h" 230456327cSAdam Nemet #include "llvm/Support/Debug.h" 24799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h" 25b447ac64SDavid Blaikie #include "llvm/Analysis/VectorUtils.h" 260456327cSAdam Nemet using namespace llvm; 270456327cSAdam Nemet 28339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses" 290456327cSAdam Nemet 30f219c647SAdam Nemet static cl::opt<unsigned, true> 31f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden, 32f219c647SAdam Nemet cl::desc("Sets the SIMD width. Zero is autoselect."), 33f219c647SAdam Nemet cl::location(VectorizerParams::VectorizationFactor)); 341d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor; 35f219c647SAdam Nemet 36f219c647SAdam Nemet static cl::opt<unsigned, true> 37f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden, 38f219c647SAdam Nemet cl::desc("Sets the vectorization interleave count. " 39f219c647SAdam Nemet "Zero is autoselect."), 40f219c647SAdam Nemet cl::location( 41f219c647SAdam Nemet VectorizerParams::VectorizationInterleave)); 421d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave; 43f219c647SAdam Nemet 441d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 451d862af7SAdam Nemet "runtime-memory-check-threshold", cl::Hidden, 461d862af7SAdam Nemet cl::desc("When performing memory disambiguation checks at runtime do not " 471d862af7SAdam Nemet "generate more than this number of comparisons (default = 8)."), 481d862af7SAdam Nemet cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 491d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50f219c647SAdam Nemet 511b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks 521b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold( 531b6b50a9SSilviu Baranga "memory-check-merge-threshold", cl::Hidden, 541b6b50a9SSilviu Baranga cl::desc("Maximum number of comparisons done when trying to merge " 551b6b50a9SSilviu Baranga "runtime memory checks. (default = 100)"), 561b6b50a9SSilviu Baranga cl::init(100)); 571b6b50a9SSilviu Baranga 58f219c647SAdam Nemet /// Maximum SIMD width. 59f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64; 60f219c647SAdam Nemet 61a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold. 62a2df750fSAdam Nemet static cl::opt<unsigned> 63a2df750fSAdam Nemet MaxDependences("max-dependences", cl::Hidden, 64a2df750fSAdam Nemet cl::desc("Maximum number of dependences collected by " 659c926579SAdam Nemet "loop-access analysis (default = 100)"), 669c926579SAdam Nemet cl::init(100)); 679c926579SAdam Nemet 68f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() { 69f219c647SAdam Nemet return ::VectorizationInterleave.getNumOccurrences() > 0; 70f219c647SAdam Nemet } 71f219c647SAdam Nemet 722bd6e984SAdam Nemet void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 730456327cSAdam Nemet const Function *TheFunction, 74339f42b3SAdam Nemet const Loop *TheLoop, 75339f42b3SAdam Nemet const char *PassName) { 760456327cSAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 773e87634fSAdam Nemet if (const Instruction *I = Message.getInstr()) 780456327cSAdam Nemet DL = I->getDebugLoc(); 79339f42b3SAdam Nemet emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 800456327cSAdam Nemet *TheFunction, DL, Message.str()); 810456327cSAdam Nemet } 820456327cSAdam Nemet 830456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) { 840456327cSAdam Nemet if (CastInst *CI = dyn_cast<CastInst>(V)) 850456327cSAdam Nemet if (CI->getOperand(0)->getType()->isIntegerTy()) 860456327cSAdam Nemet return CI->getOperand(0); 870456327cSAdam Nemet return V; 880456327cSAdam Nemet } 890456327cSAdam Nemet 909cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 918bc61df9SAdam Nemet const ValueToValueMap &PtrToStride, 920456327cSAdam Nemet Value *Ptr, Value *OrigPtr) { 939cd9a7e3SSilviu Baranga const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 940456327cSAdam Nemet 950456327cSAdam Nemet // If there is an entry in the map return the SCEV of the pointer with the 960456327cSAdam Nemet // symbolic stride replaced by one. 978bc61df9SAdam Nemet ValueToValueMap::const_iterator SI = 988bc61df9SAdam Nemet PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 990456327cSAdam Nemet if (SI != PtrToStride.end()) { 1000456327cSAdam Nemet Value *StrideVal = SI->second; 1010456327cSAdam Nemet 1020456327cSAdam Nemet // Strip casts. 1030456327cSAdam Nemet StrideVal = stripIntegerCast(StrideVal); 1040456327cSAdam Nemet 1050456327cSAdam Nemet // Replace symbolic stride by one. 1060456327cSAdam Nemet Value *One = ConstantInt::get(StrideVal->getType(), 1); 1070456327cSAdam Nemet ValueToValueMap RewriteMap; 1080456327cSAdam Nemet RewriteMap[StrideVal] = One; 1090456327cSAdam Nemet 1109cd9a7e3SSilviu Baranga ScalarEvolution *SE = PSE.getSE(); 111e3c0534bSSilviu Baranga const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 112e3c0534bSSilviu Baranga const auto *CT = 113e3c0534bSSilviu Baranga static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 114e3c0534bSSilviu Baranga 1159cd9a7e3SSilviu Baranga PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 1169cd9a7e3SSilviu Baranga auto *Expr = PSE.getSCEV(Ptr); 117e3c0534bSSilviu Baranga 1189cd9a7e3SSilviu Baranga DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 1190456327cSAdam Nemet << "\n"); 1209cd9a7e3SSilviu Baranga return Expr; 1210456327cSAdam Nemet } 1220456327cSAdam Nemet 1230456327cSAdam Nemet // Otherwise, just return the SCEV of the original pointer. 124e3c0534bSSilviu Baranga return OrigSCEV; 1250456327cSAdam Nemet } 1260456327cSAdam Nemet 1277cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 1287cdebac0SAdam Nemet unsigned DepSetId, unsigned ASId, 129e3c0534bSSilviu Baranga const ValueToValueMap &Strides, 1309cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) { 1310456327cSAdam Nemet // Get the stride replaced scev. 1329cd9a7e3SSilviu Baranga const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1330456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1340456327cSAdam Nemet assert(AR && "Invalid addrec expression"); 1359cd9a7e3SSilviu Baranga ScalarEvolution *SE = PSE.getSE(); 1360456327cSAdam Nemet const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1370e5804a6SSilviu Baranga 1380e5804a6SSilviu Baranga const SCEV *ScStart = AR->getStart(); 1390456327cSAdam Nemet const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1400e5804a6SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*SE); 1410e5804a6SSilviu Baranga 1420e5804a6SSilviu Baranga // For expressions with negative step, the upper bound is ScStart and the 1430e5804a6SSilviu Baranga // lower bound is ScEnd. 1440e5804a6SSilviu Baranga if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 1450e5804a6SSilviu Baranga if (CStep->getValue()->isNegative()) 1460e5804a6SSilviu Baranga std::swap(ScStart, ScEnd); 1470e5804a6SSilviu Baranga } else { 1480e5804a6SSilviu Baranga // Fallback case: the step is not constant, but the we can still 1490e5804a6SSilviu Baranga // get the upper and lower bounds of the interval by using min/max 1500e5804a6SSilviu Baranga // expressions. 1510e5804a6SSilviu Baranga ScStart = SE->getUMinExpr(ScStart, ScEnd); 1520e5804a6SSilviu Baranga ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 1530e5804a6SSilviu Baranga } 1540e5804a6SSilviu Baranga 1550e5804a6SSilviu Baranga Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 1561b6b50a9SSilviu Baranga } 1571b6b50a9SSilviu Baranga 158bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4> 15938530887SAdam Nemet RuntimePointerChecking::generateChecks() const { 160bbe1f1deSAdam Nemet SmallVector<PointerCheck, 4> Checks; 161bbe1f1deSAdam Nemet 1627c52e052SAdam Nemet for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 1637c52e052SAdam Nemet for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 1647c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 1657c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 166bbe1f1deSAdam Nemet 16738530887SAdam Nemet if (needsChecking(CGI, CGJ)) 168bbe1f1deSAdam Nemet Checks.push_back(std::make_pair(&CGI, &CGJ)); 169bbe1f1deSAdam Nemet } 170bbe1f1deSAdam Nemet } 171bbe1f1deSAdam Nemet return Checks; 172bbe1f1deSAdam Nemet } 173bbe1f1deSAdam Nemet 17415840393SAdam Nemet void RuntimePointerChecking::generateChecks( 17515840393SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 17615840393SAdam Nemet assert(Checks.empty() && "Checks is not empty"); 17715840393SAdam Nemet groupChecks(DepCands, UseDependencies); 17815840393SAdam Nemet Checks = generateChecks(); 17915840393SAdam Nemet } 18015840393SAdam Nemet 181651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 182651a5a24SAdam Nemet const CheckingPtrGroup &N) const { 1831b6b50a9SSilviu Baranga for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 1841b6b50a9SSilviu Baranga for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 185651a5a24SAdam Nemet if (needsChecking(M.Members[I], N.Members[J])) 1861b6b50a9SSilviu Baranga return true; 1871b6b50a9SSilviu Baranga return false; 1881b6b50a9SSilviu Baranga } 1891b6b50a9SSilviu Baranga 1901b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum. 1911b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer. 1921b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 1931b6b50a9SSilviu Baranga ScalarEvolution *SE) { 1941b6b50a9SSilviu Baranga const SCEV *Diff = SE->getMinusSCEV(J, I); 1951b6b50a9SSilviu Baranga const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 1961b6b50a9SSilviu Baranga 1971b6b50a9SSilviu Baranga if (!C) 1981b6b50a9SSilviu Baranga return nullptr; 1991b6b50a9SSilviu Baranga if (C->getValue()->isNegative()) 2001b6b50a9SSilviu Baranga return J; 2011b6b50a9SSilviu Baranga return I; 2021b6b50a9SSilviu Baranga } 2031b6b50a9SSilviu Baranga 2047cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 2059f7dedc3SAdam Nemet const SCEV *Start = RtCheck.Pointers[Index].Start; 2069f7dedc3SAdam Nemet const SCEV *End = RtCheck.Pointers[Index].End; 2079f7dedc3SAdam Nemet 2081b6b50a9SSilviu Baranga // Compare the starts and ends with the known minimum and maximum 2091b6b50a9SSilviu Baranga // of this set. We need to know how we compare against the min/max 2101b6b50a9SSilviu Baranga // of the set in order to be able to emit memchecks. 2119f7dedc3SAdam Nemet const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 2121b6b50a9SSilviu Baranga if (!Min0) 2131b6b50a9SSilviu Baranga return false; 2141b6b50a9SSilviu Baranga 2159f7dedc3SAdam Nemet const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 2161b6b50a9SSilviu Baranga if (!Min1) 2171b6b50a9SSilviu Baranga return false; 2181b6b50a9SSilviu Baranga 2191b6b50a9SSilviu Baranga // Update the low bound expression if we've found a new min value. 2209f7dedc3SAdam Nemet if (Min0 == Start) 2219f7dedc3SAdam Nemet Low = Start; 2221b6b50a9SSilviu Baranga 2231b6b50a9SSilviu Baranga // Update the high bound expression if we've found a new max value. 2249f7dedc3SAdam Nemet if (Min1 != End) 2259f7dedc3SAdam Nemet High = End; 2261b6b50a9SSilviu Baranga 2271b6b50a9SSilviu Baranga Members.push_back(Index); 2281b6b50a9SSilviu Baranga return true; 2291b6b50a9SSilviu Baranga } 2301b6b50a9SSilviu Baranga 2317cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks( 2327cdebac0SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 2331b6b50a9SSilviu Baranga // We build the groups from dependency candidates equivalence classes 2341b6b50a9SSilviu Baranga // because: 2351b6b50a9SSilviu Baranga // - We know that pointers in the same equivalence class share 2361b6b50a9SSilviu Baranga // the same underlying object and therefore there is a chance 2371b6b50a9SSilviu Baranga // that we can compare pointers 2381b6b50a9SSilviu Baranga // - We wouldn't be able to merge two pointers for which we need 2391b6b50a9SSilviu Baranga // to emit a memcheck. The classes in DepCands are already 2401b6b50a9SSilviu Baranga // conveniently built such that no two pointers in the same 2411b6b50a9SSilviu Baranga // class need checking against each other. 2421b6b50a9SSilviu Baranga 2431b6b50a9SSilviu Baranga // We use the following (greedy) algorithm to construct the groups 2441b6b50a9SSilviu Baranga // For every pointer in the equivalence class: 2451b6b50a9SSilviu Baranga // For each existing group: 2461b6b50a9SSilviu Baranga // - if the difference between this pointer and the min/max bounds 2471b6b50a9SSilviu Baranga // of the group is a constant, then make the pointer part of the 2481b6b50a9SSilviu Baranga // group and update the min/max bounds of that group as required. 2491b6b50a9SSilviu Baranga 2501b6b50a9SSilviu Baranga CheckingGroups.clear(); 2511b6b50a9SSilviu Baranga 25248250600SSilviu Baranga // If we need to check two pointers to the same underlying object 25348250600SSilviu Baranga // with a non-constant difference, we shouldn't perform any pointer 25448250600SSilviu Baranga // grouping with those pointers. This is because we can easily get 25548250600SSilviu Baranga // into cases where the resulting check would return false, even when 25648250600SSilviu Baranga // the accesses are safe. 25748250600SSilviu Baranga // 25848250600SSilviu Baranga // The following example shows this: 25948250600SSilviu Baranga // for (i = 0; i < 1000; ++i) 26048250600SSilviu Baranga // a[5000 + i * m] = a[i] + a[i + 9000] 26148250600SSilviu Baranga // 26248250600SSilviu Baranga // Here grouping gives a check of (5000, 5000 + 1000 * m) against 26348250600SSilviu Baranga // (0, 10000) which is always false. However, if m is 1, there is no 26448250600SSilviu Baranga // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 26548250600SSilviu Baranga // us to perform an accurate check in this case. 26648250600SSilviu Baranga // 26748250600SSilviu Baranga // The above case requires that we have an UnknownDependence between 26848250600SSilviu Baranga // accesses to the same underlying object. This cannot happen unless 26948250600SSilviu Baranga // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 27048250600SSilviu Baranga // is also false. In this case we will use the fallback path and create 27148250600SSilviu Baranga // separate checking groups for all pointers. 27248250600SSilviu Baranga 2731b6b50a9SSilviu Baranga // If we don't have the dependency partitions, construct a new 27448250600SSilviu Baranga // checking pointer group for each pointer. This is also required 27548250600SSilviu Baranga // for correctness, because in this case we can have checking between 27648250600SSilviu Baranga // pointers to the same underlying object. 2771b6b50a9SSilviu Baranga if (!UseDependencies) { 2781b6b50a9SSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) 2791b6b50a9SSilviu Baranga CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 2801b6b50a9SSilviu Baranga return; 2811b6b50a9SSilviu Baranga } 2821b6b50a9SSilviu Baranga 2831b6b50a9SSilviu Baranga unsigned TotalComparisons = 0; 2841b6b50a9SSilviu Baranga 2851b6b50a9SSilviu Baranga DenseMap<Value *, unsigned> PositionMap; 2869f7dedc3SAdam Nemet for (unsigned Index = 0; Index < Pointers.size(); ++Index) 2879f7dedc3SAdam Nemet PositionMap[Pointers[Index].PointerValue] = Index; 2881b6b50a9SSilviu Baranga 289ce3877fcSSilviu Baranga // We need to keep track of what pointers we've already seen so we 290ce3877fcSSilviu Baranga // don't process them twice. 291ce3877fcSSilviu Baranga SmallSet<unsigned, 2> Seen; 292ce3877fcSSilviu Baranga 293e4b9f507SSanjay Patel // Go through all equivalence classes, get the "pointer check groups" 294ce3877fcSSilviu Baranga // and add them to the overall solution. We use the order in which accesses 295ce3877fcSSilviu Baranga // appear in 'Pointers' to enforce determinism. 296ce3877fcSSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) { 297ce3877fcSSilviu Baranga // We've seen this pointer before, and therefore already processed 298ce3877fcSSilviu Baranga // its equivalence class. 299ce3877fcSSilviu Baranga if (Seen.count(I)) 3001b6b50a9SSilviu Baranga continue; 3011b6b50a9SSilviu Baranga 3029f7dedc3SAdam Nemet MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 3039f7dedc3SAdam Nemet Pointers[I].IsWritePtr); 3041b6b50a9SSilviu Baranga 305ce3877fcSSilviu Baranga SmallVector<CheckingPtrGroup, 2> Groups; 306ce3877fcSSilviu Baranga auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 307ce3877fcSSilviu Baranga 308a647c30fSSilviu Baranga // Because DepCands is constructed by visiting accesses in the order in 309a647c30fSSilviu Baranga // which they appear in alias sets (which is deterministic) and the 310a647c30fSSilviu Baranga // iteration order within an equivalence class member is only dependent on 311a647c30fSSilviu Baranga // the order in which unions and insertions are performed on the 312a647c30fSSilviu Baranga // equivalence class, the iteration order is deterministic. 313ce3877fcSSilviu Baranga for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 3141b6b50a9SSilviu Baranga MI != ME; ++MI) { 3151b6b50a9SSilviu Baranga unsigned Pointer = PositionMap[MI->getPointer()]; 3161b6b50a9SSilviu Baranga bool Merged = false; 317ce3877fcSSilviu Baranga // Mark this pointer as seen. 318ce3877fcSSilviu Baranga Seen.insert(Pointer); 3191b6b50a9SSilviu Baranga 3201b6b50a9SSilviu Baranga // Go through all the existing sets and see if we can find one 3211b6b50a9SSilviu Baranga // which can include this pointer. 3221b6b50a9SSilviu Baranga for (CheckingPtrGroup &Group : Groups) { 3231b6b50a9SSilviu Baranga // Don't perform more than a certain amount of comparisons. 3241b6b50a9SSilviu Baranga // This should limit the cost of grouping the pointers to something 3251b6b50a9SSilviu Baranga // reasonable. If we do end up hitting this threshold, the algorithm 3261b6b50a9SSilviu Baranga // will create separate groups for all remaining pointers. 3271b6b50a9SSilviu Baranga if (TotalComparisons > MemoryCheckMergeThreshold) 3281b6b50a9SSilviu Baranga break; 3291b6b50a9SSilviu Baranga 3301b6b50a9SSilviu Baranga TotalComparisons++; 3311b6b50a9SSilviu Baranga 3321b6b50a9SSilviu Baranga if (Group.addPointer(Pointer)) { 3331b6b50a9SSilviu Baranga Merged = true; 3341b6b50a9SSilviu Baranga break; 3351b6b50a9SSilviu Baranga } 3361b6b50a9SSilviu Baranga } 3371b6b50a9SSilviu Baranga 3381b6b50a9SSilviu Baranga if (!Merged) 3391b6b50a9SSilviu Baranga // We couldn't add this pointer to any existing set or the threshold 3401b6b50a9SSilviu Baranga // for the number of comparisons has been reached. Create a new group 3411b6b50a9SSilviu Baranga // to hold the current pointer. 3421b6b50a9SSilviu Baranga Groups.push_back(CheckingPtrGroup(Pointer, *this)); 3431b6b50a9SSilviu Baranga } 3441b6b50a9SSilviu Baranga 3451b6b50a9SSilviu Baranga // We've computed the grouped checks for this partition. 3461b6b50a9SSilviu Baranga // Save the results and continue with the next one. 3471b6b50a9SSilviu Baranga std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 3481b6b50a9SSilviu Baranga } 3490456327cSAdam Nemet } 3500456327cSAdam Nemet 351041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition( 352041e6debSAdam Nemet const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 353041e6debSAdam Nemet unsigned PtrIdx2) { 354041e6debSAdam Nemet return (PtrToPartition[PtrIdx1] != -1 && 355041e6debSAdam Nemet PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 356041e6debSAdam Nemet } 357041e6debSAdam Nemet 358651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 3599f7dedc3SAdam Nemet const PointerInfo &PointerI = Pointers[I]; 3609f7dedc3SAdam Nemet const PointerInfo &PointerJ = Pointers[J]; 3619f7dedc3SAdam Nemet 362a8945b77SAdam Nemet // No need to check if two readonly pointers intersect. 3639f7dedc3SAdam Nemet if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 364a8945b77SAdam Nemet return false; 365a8945b77SAdam Nemet 366a8945b77SAdam Nemet // Only need to check pointers between two different dependency sets. 3679f7dedc3SAdam Nemet if (PointerI.DependencySetId == PointerJ.DependencySetId) 368a8945b77SAdam Nemet return false; 369a8945b77SAdam Nemet 370a8945b77SAdam Nemet // Only need to check pointers in the same alias set. 3719f7dedc3SAdam Nemet if (PointerI.AliasSetId != PointerJ.AliasSetId) 372a8945b77SAdam Nemet return false; 373a8945b77SAdam Nemet 374a8945b77SAdam Nemet return true; 375a8945b77SAdam Nemet } 376a8945b77SAdam Nemet 37754f0b83eSAdam Nemet void RuntimePointerChecking::printChecks( 37854f0b83eSAdam Nemet raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 37954f0b83eSAdam Nemet unsigned Depth) const { 38054f0b83eSAdam Nemet unsigned N = 0; 38154f0b83eSAdam Nemet for (const auto &Check : Checks) { 38254f0b83eSAdam Nemet const auto &First = Check.first->Members, &Second = Check.second->Members; 38354f0b83eSAdam Nemet 38454f0b83eSAdam Nemet OS.indent(Depth) << "Check " << N++ << ":\n"; 38554f0b83eSAdam Nemet 38654f0b83eSAdam Nemet OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 38754f0b83eSAdam Nemet for (unsigned K = 0; K < First.size(); ++K) 38854f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 38954f0b83eSAdam Nemet 39054f0b83eSAdam Nemet OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 39154f0b83eSAdam Nemet for (unsigned K = 0; K < Second.size(); ++K) 39254f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 39354f0b83eSAdam Nemet } 39454f0b83eSAdam Nemet } 39554f0b83eSAdam Nemet 3963a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 397e91cc6efSAdam Nemet 398e91cc6efSAdam Nemet OS.indent(Depth) << "Run-time memory checks:\n"; 39915840393SAdam Nemet printChecks(OS, Checks, Depth); 4001b6b50a9SSilviu Baranga 4011b6b50a9SSilviu Baranga OS.indent(Depth) << "Grouped accesses:\n"; 4021b6b50a9SSilviu Baranga for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 40354f0b83eSAdam Nemet const auto &CG = CheckingGroups[I]; 40454f0b83eSAdam Nemet 40554f0b83eSAdam Nemet OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 40654f0b83eSAdam Nemet OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 40754f0b83eSAdam Nemet << ")\n"; 40854f0b83eSAdam Nemet for (unsigned J = 0; J < CG.Members.size(); ++J) { 40954f0b83eSAdam Nemet OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 4101b6b50a9SSilviu Baranga << "\n"; 4111b6b50a9SSilviu Baranga } 412e91cc6efSAdam Nemet } 413e91cc6efSAdam Nemet } 414e91cc6efSAdam Nemet 4150456327cSAdam Nemet namespace { 4160456327cSAdam Nemet /// \brief Analyses memory accesses in a loop. 4170456327cSAdam Nemet /// 4180456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data 4190456327cSAdam Nemet /// dependence checking. 4200456327cSAdam Nemet class AccessAnalysis { 4210456327cSAdam Nemet public: 4220456327cSAdam Nemet /// \brief Read or write access location. 4230456327cSAdam Nemet typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4240456327cSAdam Nemet typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4250456327cSAdam Nemet 426e2b885c4SAdam Nemet AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 4279cd9a7e3SSilviu Baranga MemoryDepChecker::DepCandidates &DA, 4289cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) 429e3c0534bSSilviu Baranga : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 4309cd9a7e3SSilviu Baranga PSE(PSE) {} 4310456327cSAdam Nemet 4320456327cSAdam Nemet /// \brief Register a load and whether it is only read from. 433ac80dc75SChandler Carruth void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 4340456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 435ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4360456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, false)); 4370456327cSAdam Nemet if (IsReadOnly) 4380456327cSAdam Nemet ReadOnlyPtr.insert(Ptr); 4390456327cSAdam Nemet } 4400456327cSAdam Nemet 4410456327cSAdam Nemet /// \brief Register a store. 442ac80dc75SChandler Carruth void addStore(MemoryLocation &Loc) { 4430456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 444ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4450456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, true)); 4460456327cSAdam Nemet } 4470456327cSAdam Nemet 4480456327cSAdam Nemet /// \brief Check whether we can check the pointers at runtime for 449ee61474aSAdam Nemet /// non-intersection. 450ee61474aSAdam Nemet /// 451ee61474aSAdam Nemet /// Returns true if we need no check or if we do and we can generate them 452ee61474aSAdam Nemet /// (i.e. the pointers have computable bounds). 4537cdebac0SAdam Nemet bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 4547cdebac0SAdam Nemet Loop *TheLoop, const ValueToValueMap &Strides, 4550456327cSAdam Nemet bool ShouldCheckStride = false); 4560456327cSAdam Nemet 4570456327cSAdam Nemet /// \brief Goes over all memory accesses, checks whether a RT check is needed 4580456327cSAdam Nemet /// and builds sets of dependent accesses. 4590456327cSAdam Nemet void buildDependenceSets() { 4600456327cSAdam Nemet processMemAccesses(); 4610456327cSAdam Nemet } 4620456327cSAdam Nemet 4635dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we need to 4645dc3b2cfSAdam Nemet /// perform dependency checking. 4655dc3b2cfSAdam Nemet /// 4665dc3b2cfSAdam Nemet /// Note that this can later be cleared if we retry memcheck analysis without 4675dc3b2cfSAdam Nemet /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 4680456327cSAdam Nemet bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 469df3dc5b9SAdam Nemet 470df3dc5b9SAdam Nemet /// We decided that no dependence analysis would be used. Reset the state. 471df3dc5b9SAdam Nemet void resetDepChecks(MemoryDepChecker &DepChecker) { 472df3dc5b9SAdam Nemet CheckDeps.clear(); 473a2df750fSAdam Nemet DepChecker.clearDependences(); 474df3dc5b9SAdam Nemet } 4750456327cSAdam Nemet 4760456327cSAdam Nemet MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4770456327cSAdam Nemet 4780456327cSAdam Nemet private: 4790456327cSAdam Nemet typedef SetVector<MemAccessInfo> PtrAccessSet; 4800456327cSAdam Nemet 4810456327cSAdam Nemet /// \brief Go over all memory access and check whether runtime pointer checks 482b41d2d3fSAdam Nemet /// are needed and build sets of dependency check candidates. 4830456327cSAdam Nemet void processMemAccesses(); 4840456327cSAdam Nemet 4850456327cSAdam Nemet /// Set of all accesses. 4860456327cSAdam Nemet PtrAccessSet Accesses; 4870456327cSAdam Nemet 488a28d91d8SMehdi Amini const DataLayout &DL; 489a28d91d8SMehdi Amini 4900456327cSAdam Nemet /// Set of accesses that need a further dependence check. 4910456327cSAdam Nemet MemAccessInfoSet CheckDeps; 4920456327cSAdam Nemet 4930456327cSAdam Nemet /// Set of pointers that are read only. 4940456327cSAdam Nemet SmallPtrSet<Value*, 16> ReadOnlyPtr; 4950456327cSAdam Nemet 4960456327cSAdam Nemet /// An alias set tracker to partition the access set by underlying object and 4970456327cSAdam Nemet //intrinsic property (such as TBAA metadata). 4980456327cSAdam Nemet AliasSetTracker AST; 4990456327cSAdam Nemet 500e2b885c4SAdam Nemet LoopInfo *LI; 501e2b885c4SAdam Nemet 5020456327cSAdam Nemet /// Sets of potentially dependent accesses - members of one set share an 5030456327cSAdam Nemet /// underlying pointer. The set "CheckDeps" identfies which sets really need a 5040456327cSAdam Nemet /// dependence check. 505dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DepCands; 5060456327cSAdam Nemet 5075dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we may need 5085dc3b2cfSAdam Nemet /// to add memchecks. Perform the analysis to determine the necessary checks. 5095dc3b2cfSAdam Nemet /// 5105dc3b2cfSAdam Nemet /// Note that, this is different from isDependencyCheckNeeded. When we retry 5115dc3b2cfSAdam Nemet /// memcheck analysis without dependency checking 5125dc3b2cfSAdam Nemet /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 5135dc3b2cfSAdam Nemet /// while this remains set if we have potentially dependent accesses. 5145dc3b2cfSAdam Nemet bool IsRTCheckAnalysisNeeded; 515e3c0534bSSilviu Baranga 516e3c0534bSSilviu Baranga /// The SCEV predicate containing all the SCEV-related assumptions. 5179cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE; 5180456327cSAdam Nemet }; 5190456327cSAdam Nemet 5200456327cSAdam Nemet } // end anonymous namespace 5210456327cSAdam Nemet 5220456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check. 5239cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 524e3c0534bSSilviu Baranga const ValueToValueMap &Strides, Value *Ptr, 5259cd9a7e3SSilviu Baranga Loop *L) { 5269cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5270456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 5280456327cSAdam Nemet if (!AR) 5290456327cSAdam Nemet return false; 5300456327cSAdam Nemet 5310456327cSAdam Nemet return AR->isAffine(); 5320456327cSAdam Nemet } 5330456327cSAdam Nemet 5347cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 5357cdebac0SAdam Nemet ScalarEvolution *SE, Loop *TheLoop, 5367cdebac0SAdam Nemet const ValueToValueMap &StridesMap, 5377cdebac0SAdam Nemet bool ShouldCheckStride) { 5380456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 5390456327cSAdam Nemet // to place a runtime bound check. 5400456327cSAdam Nemet bool CanDoRT = true; 5410456327cSAdam Nemet 542ee61474aSAdam Nemet bool NeedRTCheck = false; 5435dc3b2cfSAdam Nemet if (!IsRTCheckAnalysisNeeded) return true; 54498a13719SSilviu Baranga 5450456327cSAdam Nemet bool IsDepCheckNeeded = isDependencyCheckNeeded(); 5460456327cSAdam Nemet 5470456327cSAdam Nemet // We assign a consecutive id to access from different alias sets. 5480456327cSAdam Nemet // Accesses between different groups doesn't need to be checked. 5490456327cSAdam Nemet unsigned ASId = 1; 5500456327cSAdam Nemet for (auto &AS : AST) { 551424edc6cSAdam Nemet int NumReadPtrChecks = 0; 552424edc6cSAdam Nemet int NumWritePtrChecks = 0; 553424edc6cSAdam Nemet 5540456327cSAdam Nemet // We assign consecutive id to access from different dependence sets. 5550456327cSAdam Nemet // Accesses within the same set don't need a runtime check. 5560456327cSAdam Nemet unsigned RunningDepId = 1; 5570456327cSAdam Nemet DenseMap<Value *, unsigned> DepSetId; 5580456327cSAdam Nemet 5590456327cSAdam Nemet for (auto A : AS) { 5600456327cSAdam Nemet Value *Ptr = A.getValue(); 5610456327cSAdam Nemet bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 5620456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 5630456327cSAdam Nemet 564424edc6cSAdam Nemet if (IsWrite) 565424edc6cSAdam Nemet ++NumWritePtrChecks; 566424edc6cSAdam Nemet else 567424edc6cSAdam Nemet ++NumReadPtrChecks; 568424edc6cSAdam Nemet 5699cd9a7e3SSilviu Baranga if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 570a28d91d8SMehdi Amini // When we run after a failing dependency check we have to make sure 571a28d91d8SMehdi Amini // we don't have wrapping pointers. 5720456327cSAdam Nemet (!ShouldCheckStride || 5739cd9a7e3SSilviu Baranga isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) { 5740456327cSAdam Nemet // The id of the dependence set. 5750456327cSAdam Nemet unsigned DepId; 5760456327cSAdam Nemet 5770456327cSAdam Nemet if (IsDepCheckNeeded) { 5780456327cSAdam Nemet Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 5790456327cSAdam Nemet unsigned &LeaderId = DepSetId[Leader]; 5800456327cSAdam Nemet if (!LeaderId) 5810456327cSAdam Nemet LeaderId = RunningDepId++; 5820456327cSAdam Nemet DepId = LeaderId; 5830456327cSAdam Nemet } else 5840456327cSAdam Nemet // Each access has its own dependence set. 5850456327cSAdam Nemet DepId = RunningDepId++; 5860456327cSAdam Nemet 5879cd9a7e3SSilviu Baranga RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 5880456327cSAdam Nemet 589339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 5900456327cSAdam Nemet } else { 591f10ca278SAdam Nemet DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 5920456327cSAdam Nemet CanDoRT = false; 5930456327cSAdam Nemet } 5940456327cSAdam Nemet } 5950456327cSAdam Nemet 596424edc6cSAdam Nemet // If we have at least two writes or one write and a read then we need to 597424edc6cSAdam Nemet // check them. But there is no need to checks if there is only one 598424edc6cSAdam Nemet // dependence set for this alias set. 599424edc6cSAdam Nemet // 600424edc6cSAdam Nemet // Note that this function computes CanDoRT and NeedRTCheck independently. 601424edc6cSAdam Nemet // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 602424edc6cSAdam Nemet // for which we couldn't find the bounds but we don't actually need to emit 603424edc6cSAdam Nemet // any checks so it does not matter. 604424edc6cSAdam Nemet if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 605424edc6cSAdam Nemet NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 606424edc6cSAdam Nemet NumWritePtrChecks >= 1)); 607424edc6cSAdam Nemet 6080456327cSAdam Nemet ++ASId; 6090456327cSAdam Nemet } 6100456327cSAdam Nemet 6110456327cSAdam Nemet // If the pointers that we would use for the bounds comparison have different 6120456327cSAdam Nemet // address spaces, assume the values aren't directly comparable, so we can't 6130456327cSAdam Nemet // use them for the runtime check. We also have to assume they could 6140456327cSAdam Nemet // overlap. In the future there should be metadata for whether address spaces 6150456327cSAdam Nemet // are disjoint. 6160456327cSAdam Nemet unsigned NumPointers = RtCheck.Pointers.size(); 6170456327cSAdam Nemet for (unsigned i = 0; i < NumPointers; ++i) { 6180456327cSAdam Nemet for (unsigned j = i + 1; j < NumPointers; ++j) { 6190456327cSAdam Nemet // Only need to check pointers between two different dependency sets. 6209f7dedc3SAdam Nemet if (RtCheck.Pointers[i].DependencySetId == 6219f7dedc3SAdam Nemet RtCheck.Pointers[j].DependencySetId) 6220456327cSAdam Nemet continue; 6230456327cSAdam Nemet // Only need to check pointers in the same alias set. 6249f7dedc3SAdam Nemet if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 6250456327cSAdam Nemet continue; 6260456327cSAdam Nemet 6279f7dedc3SAdam Nemet Value *PtrI = RtCheck.Pointers[i].PointerValue; 6289f7dedc3SAdam Nemet Value *PtrJ = RtCheck.Pointers[j].PointerValue; 6290456327cSAdam Nemet 6300456327cSAdam Nemet unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 6310456327cSAdam Nemet unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 6320456327cSAdam Nemet if (ASi != ASj) { 633339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 6340456327cSAdam Nemet " different address spaces\n"); 6350456327cSAdam Nemet return false; 6360456327cSAdam Nemet } 6370456327cSAdam Nemet } 6380456327cSAdam Nemet } 6390456327cSAdam Nemet 6401b6b50a9SSilviu Baranga if (NeedRTCheck && CanDoRT) 64115840393SAdam Nemet RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 6421b6b50a9SSilviu Baranga 643155e8741SAdam Nemet DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 644ee61474aSAdam Nemet << " pointer comparisons.\n"); 645ee61474aSAdam Nemet 646ee61474aSAdam Nemet RtCheck.Need = NeedRTCheck; 647ee61474aSAdam Nemet 648ee61474aSAdam Nemet bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 649ee61474aSAdam Nemet if (!CanDoRTIfNeeded) 650ee61474aSAdam Nemet RtCheck.reset(); 651ee61474aSAdam Nemet return CanDoRTIfNeeded; 6520456327cSAdam Nemet } 6530456327cSAdam Nemet 6540456327cSAdam Nemet void AccessAnalysis::processMemAccesses() { 6550456327cSAdam Nemet // We process the set twice: first we process read-write pointers, last we 6560456327cSAdam Nemet // process read-only pointers. This allows us to skip dependence tests for 6570456327cSAdam Nemet // read-only pointers. 6580456327cSAdam Nemet 659339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 6600456327cSAdam Nemet DEBUG(dbgs() << " AST: "; AST.dump()); 6619c926579SAdam Nemet DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 6620456327cSAdam Nemet DEBUG({ 6630456327cSAdam Nemet for (auto A : Accesses) 6640456327cSAdam Nemet dbgs() << "\t" << *A.getPointer() << " (" << 6650456327cSAdam Nemet (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 6660456327cSAdam Nemet "read-only" : "read")) << ")\n"; 6670456327cSAdam Nemet }); 6680456327cSAdam Nemet 6690456327cSAdam Nemet // The AliasSetTracker has nicely partitioned our pointers by metadata 6700456327cSAdam Nemet // compatibility and potential for underlying-object overlap. As a result, we 6710456327cSAdam Nemet // only need to check for potential pointer dependencies within each alias 6720456327cSAdam Nemet // set. 6730456327cSAdam Nemet for (auto &AS : AST) { 6740456327cSAdam Nemet // Note that both the alias-set tracker and the alias sets themselves used 6750456327cSAdam Nemet // linked lists internally and so the iteration order here is deterministic 6760456327cSAdam Nemet // (matching the original instruction order within each set). 6770456327cSAdam Nemet 6780456327cSAdam Nemet bool SetHasWrite = false; 6790456327cSAdam Nemet 6800456327cSAdam Nemet // Map of pointers to last access encountered. 6810456327cSAdam Nemet typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 6820456327cSAdam Nemet UnderlyingObjToAccessMap ObjToLastAccess; 6830456327cSAdam Nemet 6840456327cSAdam Nemet // Set of access to check after all writes have been processed. 6850456327cSAdam Nemet PtrAccessSet DeferredAccesses; 6860456327cSAdam Nemet 6870456327cSAdam Nemet // Iterate over each alias set twice, once to process read/write pointers, 6880456327cSAdam Nemet // and then to process read-only pointers. 6890456327cSAdam Nemet for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 6900456327cSAdam Nemet bool UseDeferred = SetIteration > 0; 6910456327cSAdam Nemet PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 6920456327cSAdam Nemet 6930456327cSAdam Nemet for (auto AV : AS) { 6940456327cSAdam Nemet Value *Ptr = AV.getValue(); 6950456327cSAdam Nemet 6960456327cSAdam Nemet // For a single memory access in AliasSetTracker, Accesses may contain 6970456327cSAdam Nemet // both read and write, and they both need to be handled for CheckDeps. 6980456327cSAdam Nemet for (auto AC : S) { 6990456327cSAdam Nemet if (AC.getPointer() != Ptr) 7000456327cSAdam Nemet continue; 7010456327cSAdam Nemet 7020456327cSAdam Nemet bool IsWrite = AC.getInt(); 7030456327cSAdam Nemet 7040456327cSAdam Nemet // If we're using the deferred access set, then it contains only 7050456327cSAdam Nemet // reads. 7060456327cSAdam Nemet bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 7070456327cSAdam Nemet if (UseDeferred && !IsReadOnlyPtr) 7080456327cSAdam Nemet continue; 7090456327cSAdam Nemet // Otherwise, the pointer must be in the PtrAccessSet, either as a 7100456327cSAdam Nemet // read or a write. 7110456327cSAdam Nemet assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 7120456327cSAdam Nemet S.count(MemAccessInfo(Ptr, false))) && 7130456327cSAdam Nemet "Alias-set pointer not in the access set?"); 7140456327cSAdam Nemet 7150456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 7160456327cSAdam Nemet DepCands.insert(Access); 7170456327cSAdam Nemet 7180456327cSAdam Nemet // Memorize read-only pointers for later processing and skip them in 7190456327cSAdam Nemet // the first round (they need to be checked after we have seen all 7200456327cSAdam Nemet // write pointers). Note: we also mark pointer that are not 7210456327cSAdam Nemet // consecutive as "read-only" pointers (so that we check 7220456327cSAdam Nemet // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 7230456327cSAdam Nemet if (!UseDeferred && IsReadOnlyPtr) { 7240456327cSAdam Nemet DeferredAccesses.insert(Access); 7250456327cSAdam Nemet continue; 7260456327cSAdam Nemet } 7270456327cSAdam Nemet 7280456327cSAdam Nemet // If this is a write - check other reads and writes for conflicts. If 7290456327cSAdam Nemet // this is a read only check other writes for conflicts (but only if 7300456327cSAdam Nemet // there is no other write to the ptr - this is an optimization to 7310456327cSAdam Nemet // catch "a[i] = a[i] + " without having to do a dependence check). 7320456327cSAdam Nemet if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 7330456327cSAdam Nemet CheckDeps.insert(Access); 7345dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded = true; 7350456327cSAdam Nemet } 7360456327cSAdam Nemet 7370456327cSAdam Nemet if (IsWrite) 7380456327cSAdam Nemet SetHasWrite = true; 7390456327cSAdam Nemet 7400456327cSAdam Nemet // Create sets of pointers connected by a shared alias set and 7410456327cSAdam Nemet // underlying object. 7420456327cSAdam Nemet typedef SmallVector<Value *, 16> ValueVector; 7430456327cSAdam Nemet ValueVector TempObjects; 744e2b885c4SAdam Nemet 745e2b885c4SAdam Nemet GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 746e2b885c4SAdam Nemet DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 7470456327cSAdam Nemet for (Value *UnderlyingObj : TempObjects) { 748afd13519SMehdi Amini // nullptr never alias, don't join sets for pointer that have "null" 749afd13519SMehdi Amini // in their UnderlyingObjects list. 750afd13519SMehdi Amini if (isa<ConstantPointerNull>(UnderlyingObj)) 751afd13519SMehdi Amini continue; 752afd13519SMehdi Amini 7530456327cSAdam Nemet UnderlyingObjToAccessMap::iterator Prev = 7540456327cSAdam Nemet ObjToLastAccess.find(UnderlyingObj); 7550456327cSAdam Nemet if (Prev != ObjToLastAccess.end()) 7560456327cSAdam Nemet DepCands.unionSets(Access, Prev->second); 7570456327cSAdam Nemet 7580456327cSAdam Nemet ObjToLastAccess[UnderlyingObj] = Access; 759e2b885c4SAdam Nemet DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 7600456327cSAdam Nemet } 7610456327cSAdam Nemet } 7620456327cSAdam Nemet } 7630456327cSAdam Nemet } 7640456327cSAdam Nemet } 7650456327cSAdam Nemet } 7660456327cSAdam Nemet 7670456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) { 7680456327cSAdam Nemet if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 7690456327cSAdam Nemet return GEP->isInBounds(); 7700456327cSAdam Nemet return false; 7710456327cSAdam Nemet } 7720456327cSAdam Nemet 773c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 774c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing. 775c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 776c4866d29SAdam Nemet ScalarEvolution *SE, const Loop *L) { 777c4866d29SAdam Nemet // FIXME: This should probably only return true for NUW. 778c4866d29SAdam Nemet if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 779c4866d29SAdam Nemet return true; 780c4866d29SAdam Nemet 781c4866d29SAdam Nemet // Scalar evolution does not propagate the non-wrapping flags to values that 782c4866d29SAdam Nemet // are derived from a non-wrapping induction variable because non-wrapping 783c4866d29SAdam Nemet // could be flow-sensitive. 784c4866d29SAdam Nemet // 785c4866d29SAdam Nemet // Look through the potentially overflowing instruction to try to prove 786c4866d29SAdam Nemet // non-wrapping for the *specific* value of Ptr. 787c4866d29SAdam Nemet 788c4866d29SAdam Nemet // The arithmetic implied by an inbounds GEP can't overflow. 789c4866d29SAdam Nemet auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 790c4866d29SAdam Nemet if (!GEP || !GEP->isInBounds()) 791c4866d29SAdam Nemet return false; 792c4866d29SAdam Nemet 793c4866d29SAdam Nemet // Make sure there is only one non-const index and analyze that. 794c4866d29SAdam Nemet Value *NonConstIndex = nullptr; 795c4866d29SAdam Nemet for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 796c4866d29SAdam Nemet if (!isa<ConstantInt>(*Index)) { 797c4866d29SAdam Nemet if (NonConstIndex) 798c4866d29SAdam Nemet return false; 799c4866d29SAdam Nemet NonConstIndex = *Index; 800c4866d29SAdam Nemet } 801c4866d29SAdam Nemet if (!NonConstIndex) 802c4866d29SAdam Nemet // The recurrence is on the pointer, ignore for now. 803c4866d29SAdam Nemet return false; 804c4866d29SAdam Nemet 805c4866d29SAdam Nemet // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 806c4866d29SAdam Nemet // AddRec using a NSW operation. 807c4866d29SAdam Nemet if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 808c4866d29SAdam Nemet if (OBO->hasNoSignedWrap() && 809c4866d29SAdam Nemet // Assume constant for other the operand so that the AddRec can be 810c4866d29SAdam Nemet // easily found. 811c4866d29SAdam Nemet isa<ConstantInt>(OBO->getOperand(1))) { 812c4866d29SAdam Nemet auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 813c4866d29SAdam Nemet 814c4866d29SAdam Nemet if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 815c4866d29SAdam Nemet return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 816c4866d29SAdam Nemet } 817c4866d29SAdam Nemet 818c4866d29SAdam Nemet return false; 819c4866d29SAdam Nemet } 820c4866d29SAdam Nemet 8210456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride. 8229cd9a7e3SSilviu Baranga int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr, 8239cd9a7e3SSilviu Baranga const Loop *Lp, const ValueToValueMap &StridesMap) { 824e3dcce97SCraig Topper Type *Ty = Ptr->getType(); 8250456327cSAdam Nemet assert(Ty->isPointerTy() && "Unexpected non-ptr"); 8260456327cSAdam Nemet 8270456327cSAdam Nemet // Make sure that the pointer does not point to aggregate types. 828e3dcce97SCraig Topper auto *PtrTy = cast<PointerType>(Ty); 8290456327cSAdam Nemet if (PtrTy->getElementType()->isAggregateType()) { 830339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 831339f42b3SAdam Nemet << *Ptr << "\n"); 8320456327cSAdam Nemet return 0; 8330456327cSAdam Nemet } 8340456327cSAdam Nemet 8359cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 8360456327cSAdam Nemet 8370456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 8380456327cSAdam Nemet if (!AR) { 839339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 84004d4163eSAdam Nemet << *Ptr << " SCEV: " << *PtrScev << "\n"); 8410456327cSAdam Nemet return 0; 8420456327cSAdam Nemet } 8430456327cSAdam Nemet 8440456327cSAdam Nemet // The accesss function must stride over the innermost loop. 8450456327cSAdam Nemet if (Lp != AR->getLoop()) { 846339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 84704d4163eSAdam Nemet *Ptr << " SCEV: " << *PtrScev << "\n"); 848a02ce98bSKyle Butt return 0; 8490456327cSAdam Nemet } 8500456327cSAdam Nemet 8510456327cSAdam Nemet // The address calculation must not wrap. Otherwise, a dependence could be 8520456327cSAdam Nemet // inverted. 8530456327cSAdam Nemet // An inbounds getelementptr that is a AddRec with a unit stride 8540456327cSAdam Nemet // cannot wrap per definition. The unit stride requirement is checked later. 8550456327cSAdam Nemet // An getelementptr without an inbounds attribute and unit stride would have 8560456327cSAdam Nemet // to access the pointer value "0" which is undefined behavior in address 8570456327cSAdam Nemet // space 0, therefore we can also vectorize this case. 8580456327cSAdam Nemet bool IsInBoundsGEP = isInBoundsGep(Ptr); 8599cd9a7e3SSilviu Baranga bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, PSE.getSE(), Lp); 8600456327cSAdam Nemet bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 8610456327cSAdam Nemet if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 862339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 8630456327cSAdam Nemet << *Ptr << " SCEV: " << *PtrScev << "\n"); 8640456327cSAdam Nemet return 0; 8650456327cSAdam Nemet } 8660456327cSAdam Nemet 8670456327cSAdam Nemet // Check the step is constant. 8689cd9a7e3SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 8690456327cSAdam Nemet 870943befedSAdam Nemet // Calculate the pointer stride and check if it is constant. 8710456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 8720456327cSAdam Nemet if (!C) { 873339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 87404d4163eSAdam Nemet " SCEV: " << *PtrScev << "\n"); 8750456327cSAdam Nemet return 0; 8760456327cSAdam Nemet } 8770456327cSAdam Nemet 878a28d91d8SMehdi Amini auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 879a28d91d8SMehdi Amini int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 8800de2feceSSanjoy Das const APInt &APStepVal = C->getAPInt(); 8810456327cSAdam Nemet 8820456327cSAdam Nemet // Huge step value - give up. 8830456327cSAdam Nemet if (APStepVal.getBitWidth() > 64) 8840456327cSAdam Nemet return 0; 8850456327cSAdam Nemet 8860456327cSAdam Nemet int64_t StepVal = APStepVal.getSExtValue(); 8870456327cSAdam Nemet 8880456327cSAdam Nemet // Strided access. 8890456327cSAdam Nemet int64_t Stride = StepVal / Size; 8900456327cSAdam Nemet int64_t Rem = StepVal % Size; 8910456327cSAdam Nemet if (Rem) 8920456327cSAdam Nemet return 0; 8930456327cSAdam Nemet 8940456327cSAdam Nemet // If the SCEV could wrap but we have an inbounds gep with a unit stride we 8950456327cSAdam Nemet // know we can't "wrap around the address space". In case of address space 8960456327cSAdam Nemet // zero we know that this won't happen without triggering undefined behavior. 8970456327cSAdam Nemet if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 8980456327cSAdam Nemet Stride != 1 && Stride != -1) 8990456327cSAdam Nemet return 0; 9000456327cSAdam Nemet 9010456327cSAdam Nemet return Stride; 9020456327cSAdam Nemet } 9030456327cSAdam Nemet 904*f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction. 905*f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction. 906*f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) { 907*f1c00a22SHaicheng Wu if (LoadInst *LI = dyn_cast<LoadInst>(I)) 908*f1c00a22SHaicheng Wu return LI->getPointerOperand(); 909*f1c00a22SHaicheng Wu if (StoreInst *SI = dyn_cast<StoreInst>(I)) 910*f1c00a22SHaicheng Wu return SI->getPointerOperand(); 911*f1c00a22SHaicheng Wu return nullptr; 912*f1c00a22SHaicheng Wu } 913*f1c00a22SHaicheng Wu 914*f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction. 915*f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction. 916*f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) { 917*f1c00a22SHaicheng Wu if (LoadInst *L = dyn_cast<LoadInst>(I)) 918*f1c00a22SHaicheng Wu return L->getPointerAddressSpace(); 919*f1c00a22SHaicheng Wu if (StoreInst *S = dyn_cast<StoreInst>(I)) 920*f1c00a22SHaicheng Wu return S->getPointerAddressSpace(); 921*f1c00a22SHaicheng Wu return -1; 922*f1c00a22SHaicheng Wu } 923*f1c00a22SHaicheng Wu 924*f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive. 925*f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 926*f1c00a22SHaicheng Wu ScalarEvolution &SE, bool CheckType) { 927*f1c00a22SHaicheng Wu Value *PtrA = getPointerOperand(A); 928*f1c00a22SHaicheng Wu Value *PtrB = getPointerOperand(B); 929*f1c00a22SHaicheng Wu unsigned ASA = getAddressSpaceOperand(A); 930*f1c00a22SHaicheng Wu unsigned ASB = getAddressSpaceOperand(B); 931*f1c00a22SHaicheng Wu 932*f1c00a22SHaicheng Wu // Check that the address spaces match and that the pointers are valid. 933*f1c00a22SHaicheng Wu if (!PtrA || !PtrB || (ASA != ASB)) 934*f1c00a22SHaicheng Wu return false; 935*f1c00a22SHaicheng Wu 936*f1c00a22SHaicheng Wu // Make sure that A and B are different pointers. 937*f1c00a22SHaicheng Wu if (PtrA == PtrB) 938*f1c00a22SHaicheng Wu return false; 939*f1c00a22SHaicheng Wu 940*f1c00a22SHaicheng Wu // Make sure that A and B have the same type if required. 941*f1c00a22SHaicheng Wu if(CheckType && PtrA->getType() != PtrB->getType()) 942*f1c00a22SHaicheng Wu return false; 943*f1c00a22SHaicheng Wu 944*f1c00a22SHaicheng Wu unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 945*f1c00a22SHaicheng Wu Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 946*f1c00a22SHaicheng Wu APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 947*f1c00a22SHaicheng Wu 948*f1c00a22SHaicheng Wu APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 949*f1c00a22SHaicheng Wu PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 950*f1c00a22SHaicheng Wu PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 951*f1c00a22SHaicheng Wu 952*f1c00a22SHaicheng Wu // OffsetDelta = OffsetB - OffsetA; 953*f1c00a22SHaicheng Wu const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 954*f1c00a22SHaicheng Wu const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 955*f1c00a22SHaicheng Wu const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 956*f1c00a22SHaicheng Wu const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 957*f1c00a22SHaicheng Wu const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 958*f1c00a22SHaicheng Wu // Check if they are based on the same pointer. That makes the offsets 959*f1c00a22SHaicheng Wu // sufficient. 960*f1c00a22SHaicheng Wu if (PtrA == PtrB) 961*f1c00a22SHaicheng Wu return OffsetDelta == Size; 962*f1c00a22SHaicheng Wu 963*f1c00a22SHaicheng Wu // Compute the necessary base pointer delta to have the necessary final delta 964*f1c00a22SHaicheng Wu // equal to the size. 965*f1c00a22SHaicheng Wu // BaseDelta = Size - OffsetDelta; 966*f1c00a22SHaicheng Wu const SCEV *SizeSCEV = SE.getConstant(Size); 967*f1c00a22SHaicheng Wu const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 968*f1c00a22SHaicheng Wu 969*f1c00a22SHaicheng Wu // Otherwise compute the distance with SCEV between the base pointers. 970*f1c00a22SHaicheng Wu const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 971*f1c00a22SHaicheng Wu const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 972*f1c00a22SHaicheng Wu const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 973*f1c00a22SHaicheng Wu return X == PtrSCEVB; 974*f1c00a22SHaicheng Wu } 975*f1c00a22SHaicheng Wu 9769c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 9779c926579SAdam Nemet switch (Type) { 9789c926579SAdam Nemet case NoDep: 9799c926579SAdam Nemet case Forward: 9809c926579SAdam Nemet case BackwardVectorizable: 9819c926579SAdam Nemet return true; 9829c926579SAdam Nemet 9839c926579SAdam Nemet case Unknown: 9849c926579SAdam Nemet case ForwardButPreventsForwarding: 9859c926579SAdam Nemet case Backward: 9869c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 9879c926579SAdam Nemet return false; 9889c926579SAdam Nemet } 989d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 9909c926579SAdam Nemet } 9919c926579SAdam Nemet 992397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const { 9939c926579SAdam Nemet switch (Type) { 9949c926579SAdam Nemet case NoDep: 9959c926579SAdam Nemet case Forward: 9969c926579SAdam Nemet case ForwardButPreventsForwarding: 997397f5829SAdam Nemet case Unknown: 9989c926579SAdam Nemet return false; 9999c926579SAdam Nemet 10009c926579SAdam Nemet case BackwardVectorizable: 10019c926579SAdam Nemet case Backward: 10029c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 10039c926579SAdam Nemet return true; 10049c926579SAdam Nemet } 1005d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 10069c926579SAdam Nemet } 10079c926579SAdam Nemet 1008397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1009397f5829SAdam Nemet return isBackward() || Type == Unknown; 1010397f5829SAdam Nemet } 1011397f5829SAdam Nemet 1012397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const { 1013397f5829SAdam Nemet switch (Type) { 1014397f5829SAdam Nemet case Forward: 1015397f5829SAdam Nemet case ForwardButPreventsForwarding: 1016397f5829SAdam Nemet return true; 1017397f5829SAdam Nemet 1018397f5829SAdam Nemet case NoDep: 1019397f5829SAdam Nemet case Unknown: 1020397f5829SAdam Nemet case BackwardVectorizable: 1021397f5829SAdam Nemet case Backward: 1022397f5829SAdam Nemet case BackwardVectorizableButPreventsForwarding: 1023397f5829SAdam Nemet return false; 1024397f5829SAdam Nemet } 1025397f5829SAdam Nemet llvm_unreachable("unexpected DepType!"); 1026397f5829SAdam Nemet } 1027397f5829SAdam Nemet 10280456327cSAdam Nemet bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 10290456327cSAdam Nemet unsigned TypeByteSize) { 10300456327cSAdam Nemet // If loads occur at a distance that is not a multiple of a feasible vector 10310456327cSAdam Nemet // factor store-load forwarding does not take place. 10320456327cSAdam Nemet // Positive dependences might cause troubles because vectorizing them might 10330456327cSAdam Nemet // prevent store-load forwarding making vectorized code run a lot slower. 10340456327cSAdam Nemet // a[i] = a[i-3] ^ a[i-8]; 10350456327cSAdam Nemet // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 10360456327cSAdam Nemet // hence on your typical architecture store-load forwarding does not take 10370456327cSAdam Nemet // place. Vectorizing in such cases does not make sense. 10380456327cSAdam Nemet // Store-load forwarding distance. 10390456327cSAdam Nemet const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 10400456327cSAdam Nemet // Maximum vector factor. 1041f219c647SAdam Nemet unsigned MaxVFWithoutSLForwardIssues = 1042f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize; 10430456327cSAdam Nemet if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 10440456327cSAdam Nemet MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 10450456327cSAdam Nemet 10460456327cSAdam Nemet for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 10470456327cSAdam Nemet vf *= 2) { 10480456327cSAdam Nemet if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 10490456327cSAdam Nemet MaxVFWithoutSLForwardIssues = (vf >>=1); 10500456327cSAdam Nemet break; 10510456327cSAdam Nemet } 10520456327cSAdam Nemet } 10530456327cSAdam Nemet 10540456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 1055339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance " << Distance << 105604d4163eSAdam Nemet " that could cause a store-load forwarding conflict\n"); 10570456327cSAdam Nemet return true; 10580456327cSAdam Nemet } 10590456327cSAdam Nemet 10600456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1061f219c647SAdam Nemet MaxVFWithoutSLForwardIssues != 1062f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize) 10630456327cSAdam Nemet MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 10640456327cSAdam Nemet return false; 10650456327cSAdam Nemet } 10660456327cSAdam Nemet 1067751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride. 1068751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in 1069751004a6SHao Liu /// bytes. 1070751004a6SHao Liu /// 1071751004a6SHao Liu /// \returns true if they are independent. 1072751004a6SHao Liu static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 1073751004a6SHao Liu unsigned TypeByteSize) { 1074751004a6SHao Liu assert(Stride > 1 && "The stride must be greater than 1"); 1075751004a6SHao Liu assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1076751004a6SHao Liu assert(Distance > 0 && "The distance must be non-zero"); 1077751004a6SHao Liu 1078751004a6SHao Liu // Skip if the distance is not multiple of type byte size. 1079751004a6SHao Liu if (Distance % TypeByteSize) 1080751004a6SHao Liu return false; 1081751004a6SHao Liu 1082751004a6SHao Liu unsigned ScaledDist = Distance / TypeByteSize; 1083751004a6SHao Liu 1084751004a6SHao Liu // No dependence if the scaled distance is not multiple of the stride. 1085751004a6SHao Liu // E.g. 1086751004a6SHao Liu // for (i = 0; i < 1024 ; i += 4) 1087751004a6SHao Liu // A[i+2] = A[i] + 1; 1088751004a6SHao Liu // 1089751004a6SHao Liu // Two accesses in memory (scaled distance is 2, stride is 4): 1090751004a6SHao Liu // | A[0] | | | | A[4] | | | | 1091751004a6SHao Liu // | | | A[2] | | | | A[6] | | 1092751004a6SHao Liu // 1093751004a6SHao Liu // E.g. 1094751004a6SHao Liu // for (i = 0; i < 1024 ; i += 3) 1095751004a6SHao Liu // A[i+4] = A[i] + 1; 1096751004a6SHao Liu // 1097751004a6SHao Liu // Two accesses in memory (scaled distance is 4, stride is 3): 1098751004a6SHao Liu // | A[0] | | | A[3] | | | A[6] | | | 1099751004a6SHao Liu // | | | | | A[4] | | | A[7] | | 1100751004a6SHao Liu return ScaledDist % Stride; 1101751004a6SHao Liu } 1102751004a6SHao Liu 11039c926579SAdam Nemet MemoryDepChecker::Dependence::DepType 11049c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 11050456327cSAdam Nemet const MemAccessInfo &B, unsigned BIdx, 11068bc61df9SAdam Nemet const ValueToValueMap &Strides) { 11070456327cSAdam Nemet assert (AIdx < BIdx && "Must pass arguments in program order"); 11080456327cSAdam Nemet 11090456327cSAdam Nemet Value *APtr = A.getPointer(); 11100456327cSAdam Nemet Value *BPtr = B.getPointer(); 11110456327cSAdam Nemet bool AIsWrite = A.getInt(); 11120456327cSAdam Nemet bool BIsWrite = B.getInt(); 11130456327cSAdam Nemet 11140456327cSAdam Nemet // Two reads are independent. 11150456327cSAdam Nemet if (!AIsWrite && !BIsWrite) 11169c926579SAdam Nemet return Dependence::NoDep; 11170456327cSAdam Nemet 11180456327cSAdam Nemet // We cannot check pointers in different address spaces. 11190456327cSAdam Nemet if (APtr->getType()->getPointerAddressSpace() != 11200456327cSAdam Nemet BPtr->getType()->getPointerAddressSpace()) 11219c926579SAdam Nemet return Dependence::Unknown; 11220456327cSAdam Nemet 11239cd9a7e3SSilviu Baranga const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr); 11249cd9a7e3SSilviu Baranga const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr); 11250456327cSAdam Nemet 11269cd9a7e3SSilviu Baranga int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides); 11279cd9a7e3SSilviu Baranga int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides); 11280456327cSAdam Nemet 11290456327cSAdam Nemet const SCEV *Src = AScev; 11300456327cSAdam Nemet const SCEV *Sink = BScev; 11310456327cSAdam Nemet 11320456327cSAdam Nemet // If the induction step is negative we have to invert source and sink of the 11330456327cSAdam Nemet // dependence. 11340456327cSAdam Nemet if (StrideAPtr < 0) { 11350456327cSAdam Nemet //Src = BScev; 11360456327cSAdam Nemet //Sink = AScev; 11370456327cSAdam Nemet std::swap(APtr, BPtr); 11380456327cSAdam Nemet std::swap(Src, Sink); 11390456327cSAdam Nemet std::swap(AIsWrite, BIsWrite); 11400456327cSAdam Nemet std::swap(AIdx, BIdx); 11410456327cSAdam Nemet std::swap(StrideAPtr, StrideBPtr); 11420456327cSAdam Nemet } 11430456327cSAdam Nemet 11449cd9a7e3SSilviu Baranga const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 11450456327cSAdam Nemet 1146339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 11470456327cSAdam Nemet << "(Induction step: " << StrideAPtr << ")\n"); 1148339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 11490456327cSAdam Nemet << *InstMap[BIdx] << ": " << *Dist << "\n"); 11500456327cSAdam Nemet 1151943befedSAdam Nemet // Need accesses with constant stride. We don't want to vectorize 11520456327cSAdam Nemet // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 11530456327cSAdam Nemet // the address space. 11540456327cSAdam Nemet if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1155943befedSAdam Nemet DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 11569c926579SAdam Nemet return Dependence::Unknown; 11570456327cSAdam Nemet } 11580456327cSAdam Nemet 11590456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 11600456327cSAdam Nemet if (!C) { 1161339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 11620456327cSAdam Nemet ShouldRetryWithRuntimeCheck = true; 11639c926579SAdam Nemet return Dependence::Unknown; 11640456327cSAdam Nemet } 11650456327cSAdam Nemet 11660456327cSAdam Nemet Type *ATy = APtr->getType()->getPointerElementType(); 11670456327cSAdam Nemet Type *BTy = BPtr->getType()->getPointerElementType(); 1168a28d91d8SMehdi Amini auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1169a28d91d8SMehdi Amini unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 11700456327cSAdam Nemet 11710456327cSAdam Nemet // Negative distances are not plausible dependencies. 11720de2feceSSanjoy Das const APInt &Val = C->getAPInt(); 11730456327cSAdam Nemet if (Val.isNegative()) { 11740456327cSAdam Nemet bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 11750456327cSAdam Nemet if (IsTrueDataDependence && 11760456327cSAdam Nemet (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 11770456327cSAdam Nemet ATy != BTy)) 11789c926579SAdam Nemet return Dependence::ForwardButPreventsForwarding; 11790456327cSAdam Nemet 1180339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 11819c926579SAdam Nemet return Dependence::Forward; 11820456327cSAdam Nemet } 11830456327cSAdam Nemet 11840456327cSAdam Nemet // Write to the same location with the same size. 11850456327cSAdam Nemet // Could be improved to assert type sizes are the same (i32 == float, etc). 11860456327cSAdam Nemet if (Val == 0) { 11870456327cSAdam Nemet if (ATy == BTy) 1188d7037c56SAdam Nemet return Dependence::Forward; 1189339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 11909c926579SAdam Nemet return Dependence::Unknown; 11910456327cSAdam Nemet } 11920456327cSAdam Nemet 11930456327cSAdam Nemet assert(Val.isStrictlyPositive() && "Expect a positive value"); 11940456327cSAdam Nemet 11950456327cSAdam Nemet if (ATy != BTy) { 119604d4163eSAdam Nemet DEBUG(dbgs() << 1197339f42b3SAdam Nemet "LAA: ReadWrite-Write positive dependency with different types\n"); 11989c926579SAdam Nemet return Dependence::Unknown; 11990456327cSAdam Nemet } 12000456327cSAdam Nemet 12010456327cSAdam Nemet unsigned Distance = (unsigned) Val.getZExtValue(); 12020456327cSAdam Nemet 1203751004a6SHao Liu unsigned Stride = std::abs(StrideAPtr); 1204751004a6SHao Liu if (Stride > 1 && 12050131a569SAdam Nemet areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 12060131a569SAdam Nemet DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1207751004a6SHao Liu return Dependence::NoDep; 12080131a569SAdam Nemet } 1209751004a6SHao Liu 12100456327cSAdam Nemet // Bail out early if passed-in parameters make vectorization not feasible. 1211f219c647SAdam Nemet unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1212f219c647SAdam Nemet VectorizerParams::VectorizationFactor : 1); 1213f219c647SAdam Nemet unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1214f219c647SAdam Nemet VectorizerParams::VectorizationInterleave : 1); 1215751004a6SHao Liu // The minimum number of iterations for a vectorized/unrolled version. 1216751004a6SHao Liu unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 12170456327cSAdam Nemet 1218751004a6SHao Liu // It's not vectorizable if the distance is smaller than the minimum distance 1219751004a6SHao Liu // needed for a vectroized/unrolled version. Vectorizing one iteration in 1220751004a6SHao Liu // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1221751004a6SHao Liu // TypeByteSize (No need to plus the last gap distance). 1222751004a6SHao Liu // 1223751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1224751004a6SHao Liu // foo(int *A) { 1225751004a6SHao Liu // int *B = (int *)((char *)A + 14); 1226751004a6SHao Liu // for (i = 0 ; i < 1024 ; i += 2) 1227751004a6SHao Liu // B[i] = A[i] + 1; 1228751004a6SHao Liu // } 1229751004a6SHao Liu // 1230751004a6SHao Liu // Two accesses in memory (stride is 2): 1231751004a6SHao Liu // | A[0] | | A[2] | | A[4] | | A[6] | | 1232751004a6SHao Liu // | B[0] | | B[2] | | B[4] | 1233751004a6SHao Liu // 1234751004a6SHao Liu // Distance needs for vectorizing iterations except the last iteration: 1235751004a6SHao Liu // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1236751004a6SHao Liu // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1237751004a6SHao Liu // 1238751004a6SHao Liu // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1239751004a6SHao Liu // 12, which is less than distance. 1240751004a6SHao Liu // 1241751004a6SHao Liu // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1242751004a6SHao Liu // the minimum distance needed is 28, which is greater than distance. It is 1243751004a6SHao Liu // not safe to do vectorization. 1244751004a6SHao Liu unsigned MinDistanceNeeded = 1245751004a6SHao Liu TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1246751004a6SHao Liu if (MinDistanceNeeded > Distance) { 1247751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1248751004a6SHao Liu << '\n'); 1249751004a6SHao Liu return Dependence::Backward; 1250751004a6SHao Liu } 1251751004a6SHao Liu 1252751004a6SHao Liu // Unsafe if the minimum distance needed is greater than max safe distance. 1253751004a6SHao Liu if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1254751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because it needs at least " 1255751004a6SHao Liu << MinDistanceNeeded << " size in bytes"); 12569c926579SAdam Nemet return Dependence::Backward; 12570456327cSAdam Nemet } 12580456327cSAdam Nemet 12599cc0c399SAdam Nemet // Positive distance bigger than max vectorization factor. 1260751004a6SHao Liu // FIXME: Should use max factor instead of max distance in bytes, which could 1261751004a6SHao Liu // not handle different types. 1262751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1263751004a6SHao Liu // void foo (int *A, char *B) { 1264751004a6SHao Liu // for (unsigned i = 0; i < 1024; i++) { 1265751004a6SHao Liu // A[i+2] = A[i] + 1; 1266751004a6SHao Liu // B[i+2] = B[i] + 1; 1267751004a6SHao Liu // } 1268751004a6SHao Liu // } 1269751004a6SHao Liu // 1270751004a6SHao Liu // This case is currently unsafe according to the max safe distance. If we 1271751004a6SHao Liu // analyze the two accesses on array B, the max safe dependence distance 1272751004a6SHao Liu // is 2. Then we analyze the accesses on array A, the minimum distance needed 1273751004a6SHao Liu // is 8, which is less than 2 and forbidden vectorization, But actually 1274751004a6SHao Liu // both A and B could be vectorized by 2 iterations. 1275751004a6SHao Liu MaxSafeDepDistBytes = 1276751004a6SHao Liu Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 12770456327cSAdam Nemet 12780456327cSAdam Nemet bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 12790456327cSAdam Nemet if (IsTrueDataDependence && 12800456327cSAdam Nemet couldPreventStoreLoadForward(Distance, TypeByteSize)) 12819c926579SAdam Nemet return Dependence::BackwardVectorizableButPreventsForwarding; 12820456327cSAdam Nemet 1283751004a6SHao Liu DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1284751004a6SHao Liu << " with max VF = " 1285751004a6SHao Liu << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 12860456327cSAdam Nemet 12879c926579SAdam Nemet return Dependence::BackwardVectorizable; 12880456327cSAdam Nemet } 12890456327cSAdam Nemet 1290dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 12910456327cSAdam Nemet MemAccessInfoSet &CheckDeps, 12928bc61df9SAdam Nemet const ValueToValueMap &Strides) { 12930456327cSAdam Nemet 12940456327cSAdam Nemet MaxSafeDepDistBytes = -1U; 12950456327cSAdam Nemet while (!CheckDeps.empty()) { 12960456327cSAdam Nemet MemAccessInfo CurAccess = *CheckDeps.begin(); 12970456327cSAdam Nemet 12980456327cSAdam Nemet // Get the relevant memory access set. 12990456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::iterator I = 13000456327cSAdam Nemet AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 13010456327cSAdam Nemet 13020456327cSAdam Nemet // Check accesses within this set. 13030456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 13040456327cSAdam Nemet AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 13050456327cSAdam Nemet 13060456327cSAdam Nemet // Check every access pair. 13070456327cSAdam Nemet while (AI != AE) { 13080456327cSAdam Nemet CheckDeps.erase(*AI); 13090456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 13100456327cSAdam Nemet while (OI != AE) { 13110456327cSAdam Nemet // Check every accessing instruction pair in program order. 13120456327cSAdam Nemet for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 13130456327cSAdam Nemet I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 13140456327cSAdam Nemet for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 13150456327cSAdam Nemet I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 13169c926579SAdam Nemet auto A = std::make_pair(&*AI, *I1); 13179c926579SAdam Nemet auto B = std::make_pair(&*OI, *I2); 13189c926579SAdam Nemet 13199c926579SAdam Nemet assert(*I1 != *I2); 13209c926579SAdam Nemet if (*I1 > *I2) 13219c926579SAdam Nemet std::swap(A, B); 13229c926579SAdam Nemet 13239c926579SAdam Nemet Dependence::DepType Type = 13249c926579SAdam Nemet isDependent(*A.first, A.second, *B.first, B.second, Strides); 13259c926579SAdam Nemet SafeForVectorization &= Dependence::isSafeForVectorization(Type); 13269c926579SAdam Nemet 1327a2df750fSAdam Nemet // Gather dependences unless we accumulated MaxDependences 13289c926579SAdam Nemet // dependences. In that case return as soon as we find the first 13299c926579SAdam Nemet // unsafe dependence. This puts a limit on this quadratic 13309c926579SAdam Nemet // algorithm. 1331a2df750fSAdam Nemet if (RecordDependences) { 1332a2df750fSAdam Nemet if (Type != Dependence::NoDep) 1333a2df750fSAdam Nemet Dependences.push_back(Dependence(A.second, B.second, Type)); 13349c926579SAdam Nemet 1335a2df750fSAdam Nemet if (Dependences.size() >= MaxDependences) { 1336a2df750fSAdam Nemet RecordDependences = false; 1337a2df750fSAdam Nemet Dependences.clear(); 13389c926579SAdam Nemet DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 13399c926579SAdam Nemet } 13409c926579SAdam Nemet } 1341a2df750fSAdam Nemet if (!RecordDependences && !SafeForVectorization) 13420456327cSAdam Nemet return false; 13430456327cSAdam Nemet } 13440456327cSAdam Nemet ++OI; 13450456327cSAdam Nemet } 13460456327cSAdam Nemet AI++; 13470456327cSAdam Nemet } 13480456327cSAdam Nemet } 13499c926579SAdam Nemet 1350a2df750fSAdam Nemet DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 13519c926579SAdam Nemet return SafeForVectorization; 13520456327cSAdam Nemet } 13530456327cSAdam Nemet 1354ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> 1355ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1356ec1e2bb6SAdam Nemet MemAccessInfo Access(Ptr, isWrite); 1357ec1e2bb6SAdam Nemet auto &IndexVector = Accesses.find(Access)->second; 1358ec1e2bb6SAdam Nemet 1359ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> Insts; 1360ec1e2bb6SAdam Nemet std::transform(IndexVector.begin(), IndexVector.end(), 1361ec1e2bb6SAdam Nemet std::back_inserter(Insts), 1362ec1e2bb6SAdam Nemet [&](unsigned Idx) { return this->InstMap[Idx]; }); 1363ec1e2bb6SAdam Nemet return Insts; 1364ec1e2bb6SAdam Nemet } 1365ec1e2bb6SAdam Nemet 136658913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = { 136758913d65SAdam Nemet "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 136858913d65SAdam Nemet "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 136958913d65SAdam Nemet 137058913d65SAdam Nemet void MemoryDepChecker::Dependence::print( 137158913d65SAdam Nemet raw_ostream &OS, unsigned Depth, 137258913d65SAdam Nemet const SmallVectorImpl<Instruction *> &Instrs) const { 137358913d65SAdam Nemet OS.indent(Depth) << DepName[Type] << ":\n"; 137458913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 137558913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 137658913d65SAdam Nemet } 137758913d65SAdam Nemet 1378929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() { 13798dcb3b6aSAdam Nemet // We need to have a loop header. 1380d8968f09SAdam Nemet DEBUG(dbgs() << "LAA: Found a loop in " 1381d8968f09SAdam Nemet << TheLoop->getHeader()->getParent()->getName() << ": " 1382d8968f09SAdam Nemet << TheLoop->getHeader()->getName() << '\n'); 13838dcb3b6aSAdam Nemet 1384929c38e8SAdam Nemet // We can only analyze innermost loops. 1385929c38e8SAdam Nemet if (!TheLoop->empty()) { 13868dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 13872bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1388929c38e8SAdam Nemet return false; 1389929c38e8SAdam Nemet } 1390929c38e8SAdam Nemet 1391929c38e8SAdam Nemet // We must have a single backedge. 1392929c38e8SAdam Nemet if (TheLoop->getNumBackEdges() != 1) { 13938dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1394929c38e8SAdam Nemet emitAnalysis( 13952bd6e984SAdam Nemet LoopAccessReport() << 1396929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1397929c38e8SAdam Nemet return false; 1398929c38e8SAdam Nemet } 1399929c38e8SAdam Nemet 1400929c38e8SAdam Nemet // We must have a single exiting block. 1401929c38e8SAdam Nemet if (!TheLoop->getExitingBlock()) { 14028dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1403929c38e8SAdam Nemet emitAnalysis( 14042bd6e984SAdam Nemet LoopAccessReport() << 1405929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1406929c38e8SAdam Nemet return false; 1407929c38e8SAdam Nemet } 1408929c38e8SAdam Nemet 1409929c38e8SAdam Nemet // We only handle bottom-tested loops, i.e. loop in which the condition is 1410929c38e8SAdam Nemet // checked at the end of each iteration. With that we can assume that all 1411929c38e8SAdam Nemet // instructions in the loop are executed the same number of times. 1412929c38e8SAdam Nemet if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 14138dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1414929c38e8SAdam Nemet emitAnalysis( 14152bd6e984SAdam Nemet LoopAccessReport() << 1416929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1417929c38e8SAdam Nemet return false; 1418929c38e8SAdam Nemet } 1419929c38e8SAdam Nemet 1420929c38e8SAdam Nemet // ScalarEvolution needs to be able to find the exit count. 14219cd9a7e3SSilviu Baranga const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop); 14229cd9a7e3SSilviu Baranga if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 14239cd9a7e3SSilviu Baranga emitAnalysis(LoopAccessReport() 14249cd9a7e3SSilviu Baranga << "could not determine number of loop iterations"); 1425929c38e8SAdam Nemet DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1426929c38e8SAdam Nemet return false; 1427929c38e8SAdam Nemet } 1428929c38e8SAdam Nemet 1429929c38e8SAdam Nemet return true; 1430929c38e8SAdam Nemet } 1431929c38e8SAdam Nemet 14328bc61df9SAdam Nemet void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 14330456327cSAdam Nemet 14340456327cSAdam Nemet typedef SmallVector<Value*, 16> ValueVector; 14350456327cSAdam Nemet typedef SmallPtrSet<Value*, 16> ValueSet; 14360456327cSAdam Nemet 14370456327cSAdam Nemet // Holds the Load and Store *instructions*. 14380456327cSAdam Nemet ValueVector Loads; 14390456327cSAdam Nemet ValueVector Stores; 14400456327cSAdam Nemet 14410456327cSAdam Nemet // Holds all the different accesses in the loop. 14420456327cSAdam Nemet unsigned NumReads = 0; 14430456327cSAdam Nemet unsigned NumReadWrites = 0; 14440456327cSAdam Nemet 14457cdebac0SAdam Nemet PtrRtChecking.Pointers.clear(); 14467cdebac0SAdam Nemet PtrRtChecking.Need = false; 14470456327cSAdam Nemet 14480456327cSAdam Nemet const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 14490456327cSAdam Nemet 14500456327cSAdam Nemet // For each block. 14510456327cSAdam Nemet for (Loop::block_iterator bb = TheLoop->block_begin(), 14520456327cSAdam Nemet be = TheLoop->block_end(); bb != be; ++bb) { 14530456327cSAdam Nemet 14540456327cSAdam Nemet // Scan the BB and collect legal loads and stores. 14550456327cSAdam Nemet for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 14560456327cSAdam Nemet ++it) { 14570456327cSAdam Nemet 14580456327cSAdam Nemet // If this is a load, save it. If this instruction can read from memory 14590456327cSAdam Nemet // but is not a load, then we quit. Notice that we don't handle function 14600456327cSAdam Nemet // calls that read or write. 14610456327cSAdam Nemet if (it->mayReadFromMemory()) { 14620456327cSAdam Nemet // Many math library functions read the rounding mode. We will only 14630456327cSAdam Nemet // vectorize a loop if it contains known function calls that don't set 14640456327cSAdam Nemet // the flag. Therefore, it is safe to ignore this read from memory. 14650456327cSAdam Nemet CallInst *Call = dyn_cast<CallInst>(it); 14660456327cSAdam Nemet if (Call && getIntrinsicIDForCall(Call, TLI)) 14670456327cSAdam Nemet continue; 14680456327cSAdam Nemet 14699b3cf604SMichael Zolotukhin // If the function has an explicit vectorized counterpart, we can safely 14709b3cf604SMichael Zolotukhin // assume that it can be vectorized. 14719b3cf604SMichael Zolotukhin if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 14729b3cf604SMichael Zolotukhin TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 14739b3cf604SMichael Zolotukhin continue; 14749b3cf604SMichael Zolotukhin 14750456327cSAdam Nemet LoadInst *Ld = dyn_cast<LoadInst>(it); 14760456327cSAdam Nemet if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 14772bd6e984SAdam Nemet emitAnalysis(LoopAccessReport(Ld) 14780456327cSAdam Nemet << "read with atomic ordering or volatile read"); 1479339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1480436018c3SAdam Nemet CanVecMem = false; 1481436018c3SAdam Nemet return; 14820456327cSAdam Nemet } 14830456327cSAdam Nemet NumLoads++; 14840456327cSAdam Nemet Loads.push_back(Ld); 14850456327cSAdam Nemet DepChecker.addAccess(Ld); 14860456327cSAdam Nemet continue; 14870456327cSAdam Nemet } 14880456327cSAdam Nemet 14890456327cSAdam Nemet // Save 'store' instructions. Abort if other instructions write to memory. 14900456327cSAdam Nemet if (it->mayWriteToMemory()) { 14910456327cSAdam Nemet StoreInst *St = dyn_cast<StoreInst>(it); 14920456327cSAdam Nemet if (!St) { 14935a82c916SDuncan P. N. Exon Smith emitAnalysis(LoopAccessReport(&*it) << 149404d4163eSAdam Nemet "instruction cannot be vectorized"); 1495436018c3SAdam Nemet CanVecMem = false; 1496436018c3SAdam Nemet return; 14970456327cSAdam Nemet } 14980456327cSAdam Nemet if (!St->isSimple() && !IsAnnotatedParallel) { 14992bd6e984SAdam Nemet emitAnalysis(LoopAccessReport(St) 15000456327cSAdam Nemet << "write with atomic ordering or volatile write"); 1501339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1502436018c3SAdam Nemet CanVecMem = false; 1503436018c3SAdam Nemet return; 15040456327cSAdam Nemet } 15050456327cSAdam Nemet NumStores++; 15060456327cSAdam Nemet Stores.push_back(St); 15070456327cSAdam Nemet DepChecker.addAccess(St); 15080456327cSAdam Nemet } 15090456327cSAdam Nemet } // Next instr. 15100456327cSAdam Nemet } // Next block. 15110456327cSAdam Nemet 15120456327cSAdam Nemet // Now we have two lists that hold the loads and the stores. 15130456327cSAdam Nemet // Next, we find the pointers that they use. 15140456327cSAdam Nemet 15150456327cSAdam Nemet // Check if we see any stores. If there are no stores, then we don't 15160456327cSAdam Nemet // care if the pointers are *restrict*. 15170456327cSAdam Nemet if (!Stores.size()) { 1518339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1519436018c3SAdam Nemet CanVecMem = true; 1520436018c3SAdam Nemet return; 15210456327cSAdam Nemet } 15220456327cSAdam Nemet 1523dee666bcSAdam Nemet MemoryDepChecker::DepCandidates DependentAccesses; 1524a28d91d8SMehdi Amini AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 15259cd9a7e3SSilviu Baranga AA, LI, DependentAccesses, PSE); 15260456327cSAdam Nemet 15270456327cSAdam Nemet // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 15280456327cSAdam Nemet // multiple times on the same object. If the ptr is accessed twice, once 15290456327cSAdam Nemet // for read and once for write, it will only appear once (on the write 15300456327cSAdam Nemet // list). This is okay, since we are going to check for conflicts between 15310456327cSAdam Nemet // writes and between reads and writes, but not between reads and reads. 15320456327cSAdam Nemet ValueSet Seen; 15330456327cSAdam Nemet 15340456327cSAdam Nemet ValueVector::iterator I, IE; 15350456327cSAdam Nemet for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 15360456327cSAdam Nemet StoreInst *ST = cast<StoreInst>(*I); 15370456327cSAdam Nemet Value* Ptr = ST->getPointerOperand(); 1538ce48250fSAdam Nemet // Check for store to loop invariant address. 1539ce48250fSAdam Nemet StoreToLoopInvariantAddress |= isUniform(Ptr); 15400456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the read-write 15410456327cSAdam Nemet // list. At this phase it is only a 'write' list. 15420456327cSAdam Nemet if (Seen.insert(Ptr).second) { 15430456327cSAdam Nemet ++NumReadWrites; 15440456327cSAdam Nemet 1545ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(ST); 15460456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 15470456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 15480456327cSAdam Nemet // need runtime pointer checks. 154901abb2c3SAdam Nemet if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 15500456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 15510456327cSAdam Nemet 15520456327cSAdam Nemet Accesses.addStore(Loc); 15530456327cSAdam Nemet } 15540456327cSAdam Nemet } 15550456327cSAdam Nemet 15560456327cSAdam Nemet if (IsAnnotatedParallel) { 155704d4163eSAdam Nemet DEBUG(dbgs() 1558339f42b3SAdam Nemet << "LAA: A loop annotated parallel, ignore memory dependency " 15590456327cSAdam Nemet << "checks.\n"); 1560436018c3SAdam Nemet CanVecMem = true; 1561436018c3SAdam Nemet return; 15620456327cSAdam Nemet } 15630456327cSAdam Nemet 15640456327cSAdam Nemet for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 15650456327cSAdam Nemet LoadInst *LD = cast<LoadInst>(*I); 15660456327cSAdam Nemet Value* Ptr = LD->getPointerOperand(); 15670456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the 15680456327cSAdam Nemet // read list. If we *did* see it before, then it is already in 15690456327cSAdam Nemet // the read-write list. This allows us to vectorize expressions 15700456327cSAdam Nemet // such as A[i] += x; Because the address of A[i] is a read-write 15710456327cSAdam Nemet // pointer. This only works if the index of A[i] is consecutive. 15720456327cSAdam Nemet // If the address of i is unknown (for example A[B[i]]) then we may 15730456327cSAdam Nemet // read a few words, modify, and write a few words, and some of the 15740456327cSAdam Nemet // words may be written to the same address. 15750456327cSAdam Nemet bool IsReadOnlyPtr = false; 15769cd9a7e3SSilviu Baranga if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) { 15770456327cSAdam Nemet ++NumReads; 15780456327cSAdam Nemet IsReadOnlyPtr = true; 15790456327cSAdam Nemet } 15800456327cSAdam Nemet 1581ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(LD); 15820456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 15830456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 15840456327cSAdam Nemet // need runtime pointer checks. 158501abb2c3SAdam Nemet if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 15860456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 15870456327cSAdam Nemet 15880456327cSAdam Nemet Accesses.addLoad(Loc, IsReadOnlyPtr); 15890456327cSAdam Nemet } 15900456327cSAdam Nemet 15910456327cSAdam Nemet // If we write (or read-write) to a single destination and there are no 15920456327cSAdam Nemet // other reads in this loop then is it safe to vectorize. 15930456327cSAdam Nemet if (NumReadWrites == 1 && NumReads == 0) { 1594339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1595436018c3SAdam Nemet CanVecMem = true; 1596436018c3SAdam Nemet return; 15970456327cSAdam Nemet } 15980456327cSAdam Nemet 15990456327cSAdam Nemet // Build dependence sets and check whether we need a runtime pointer bounds 16000456327cSAdam Nemet // check. 16010456327cSAdam Nemet Accesses.buildDependenceSets(); 16020456327cSAdam Nemet 16030456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 16040456327cSAdam Nemet // to place a runtime bound check. 1605ee61474aSAdam Nemet bool CanDoRTIfNeeded = 16069cd9a7e3SSilviu Baranga Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides); 1607ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 16082bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1609ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1610ee61474aSAdam Nemet << "the array bounds.\n"); 1611436018c3SAdam Nemet CanVecMem = false; 1612436018c3SAdam Nemet return; 16130456327cSAdam Nemet } 16140456327cSAdam Nemet 1615ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 16160456327cSAdam Nemet 1617436018c3SAdam Nemet CanVecMem = true; 16180456327cSAdam Nemet if (Accesses.isDependencyCheckNeeded()) { 1619339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 16200456327cSAdam Nemet CanVecMem = DepChecker.areDepsSafe( 16210456327cSAdam Nemet DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 16220456327cSAdam Nemet MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 16230456327cSAdam Nemet 16240456327cSAdam Nemet if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1625339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 16260456327cSAdam Nemet 16270456327cSAdam Nemet // Clear the dependency checks. We assume they are not needed. 1628df3dc5b9SAdam Nemet Accesses.resetDepChecks(DepChecker); 16290456327cSAdam Nemet 16307cdebac0SAdam Nemet PtrRtChecking.reset(); 16317cdebac0SAdam Nemet PtrRtChecking.Need = true; 16320456327cSAdam Nemet 16339cd9a7e3SSilviu Baranga auto *SE = PSE.getSE(); 1634ee61474aSAdam Nemet CanDoRTIfNeeded = 16357cdebac0SAdam Nemet Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 163698a13719SSilviu Baranga 1637949e91a6SAdam Nemet // Check that we found the bounds for the pointer. 1638ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 16392bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() 16400456327cSAdam Nemet << "cannot check memory dependencies at runtime"); 1641b6dc76ffSAdam Nemet DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1642b6dc76ffSAdam Nemet CanVecMem = false; 1643b6dc76ffSAdam Nemet return; 1644b6dc76ffSAdam Nemet } 1645b6dc76ffSAdam Nemet 16460456327cSAdam Nemet CanVecMem = true; 16470456327cSAdam Nemet } 16480456327cSAdam Nemet } 16490456327cSAdam Nemet 16504bb90a71SAdam Nemet if (CanVecMem) 16514bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 16527cdebac0SAdam Nemet << (PtrRtChecking.Need ? "" : " don't") 16530f67c6c1SAdam Nemet << " need runtime memory checks.\n"); 16544bb90a71SAdam Nemet else { 16552bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << 165604d4163eSAdam Nemet "unsafe dependent memory operations in loop"); 16574bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 16584bb90a71SAdam Nemet } 16590456327cSAdam Nemet } 16600456327cSAdam Nemet 166101abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 166201abb2c3SAdam Nemet DominatorTree *DT) { 16630456327cSAdam Nemet assert(TheLoop->contains(BB) && "Unknown block used"); 16640456327cSAdam Nemet 16650456327cSAdam Nemet // Blocks that do not dominate the latch need predication. 16660456327cSAdam Nemet BasicBlock* Latch = TheLoop->getLoopLatch(); 16670456327cSAdam Nemet return !DT->dominates(BB, Latch); 16680456327cSAdam Nemet } 16690456327cSAdam Nemet 16702bd6e984SAdam Nemet void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1671c922853bSAdam Nemet assert(!Report && "Multiple reports generated"); 1672c922853bSAdam Nemet Report = Message; 16730456327cSAdam Nemet } 16740456327cSAdam Nemet 167557ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const { 16769cd9a7e3SSilviu Baranga return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop)); 16770456327cSAdam Nemet } 16787206d7a5SAdam Nemet 16797206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in 16807206d7a5SAdam Nemet // LoopVectorize.cpp. 16817206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 16827206d7a5SAdam Nemet Instruction *Loc) { 16837206d7a5SAdam Nemet if (FirstInst) 16847206d7a5SAdam Nemet return FirstInst; 16857206d7a5SAdam Nemet if (Instruction *I = dyn_cast<Instruction>(V)) 16867206d7a5SAdam Nemet return I->getParent() == Loc->getParent() ? I : nullptr; 16877206d7a5SAdam Nemet return nullptr; 16887206d7a5SAdam Nemet } 16897206d7a5SAdam Nemet 1690039b1042SBenjamin Kramer namespace { 16914e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 16924e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously 16934e533ef7SAdam Nemet /// expanded values. Thus expansion of a pointer can invalidate the bounds for 16944e533ef7SAdam Nemet /// a previous one. 16951da7df37SAdam Nemet struct PointerBounds { 16964e533ef7SAdam Nemet TrackingVH<Value> Start; 16974e533ef7SAdam Nemet TrackingVH<Value> End; 16981da7df37SAdam Nemet }; 1699039b1042SBenjamin Kramer } // end anonymous namespace 17007206d7a5SAdam Nemet 17011da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG 17021da7df37SAdam Nemet /// in \p TheLoop. \return the values for the bounds. 17031da7df37SAdam Nemet static PointerBounds 17041da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 17051da7df37SAdam Nemet Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 17061da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 17071da7df37SAdam Nemet Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 17087206d7a5SAdam Nemet const SCEV *Sc = SE->getSCEV(Ptr); 17097206d7a5SAdam Nemet 17107206d7a5SAdam Nemet if (SE->isLoopInvariant(Sc, TheLoop)) { 17111b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 17121b6b50a9SSilviu Baranga << "\n"); 17131da7df37SAdam Nemet return {Ptr, Ptr}; 17147206d7a5SAdam Nemet } else { 17157206d7a5SAdam Nemet unsigned AS = Ptr->getType()->getPointerAddressSpace(); 17161da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 17177206d7a5SAdam Nemet 17187206d7a5SAdam Nemet // Use this type for pointer arithmetic. 17197206d7a5SAdam Nemet Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 17201b6b50a9SSilviu Baranga Value *Start = nullptr, *End = nullptr; 17217206d7a5SAdam Nemet 17221b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 17231da7df37SAdam Nemet Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 17241da7df37SAdam Nemet End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 17251da7df37SAdam Nemet DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 17261da7df37SAdam Nemet return {Start, End}; 17277206d7a5SAdam Nemet } 17287206d7a5SAdam Nemet } 17297206d7a5SAdam Nemet 17301da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and 17311da7df37SAdam Nemet /// lower bounds for both pointers in the check. 17321da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 17331da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 17341da7df37SAdam Nemet Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 17351da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 17361da7df37SAdam Nemet SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 17371da7df37SAdam Nemet 17381da7df37SAdam Nemet // Here we're relying on the SCEV Expander's cache to only emit code for the 17391da7df37SAdam Nemet // same bounds once. 17401da7df37SAdam Nemet std::transform( 17411da7df37SAdam Nemet PointerChecks.begin(), PointerChecks.end(), 17421da7df37SAdam Nemet std::back_inserter(ChecksWithBounds), 17431da7df37SAdam Nemet [&](const RuntimePointerChecking::PointerCheck &Check) { 174494abbbd6SNAKAMURA Takumi PointerBounds 174594abbbd6SNAKAMURA Takumi First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 174694abbbd6SNAKAMURA Takumi Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 174794abbbd6SNAKAMURA Takumi return std::make_pair(First, Second); 17481da7df37SAdam Nemet }); 17491da7df37SAdam Nemet 17501da7df37SAdam Nemet return ChecksWithBounds; 17511da7df37SAdam Nemet } 17521da7df37SAdam Nemet 17535b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 17541da7df37SAdam Nemet Instruction *Loc, 17551da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 17561da7df37SAdam Nemet const { 17579cd9a7e3SSilviu Baranga auto *SE = PSE.getSE(); 17581da7df37SAdam Nemet SCEVExpander Exp(*SE, DL, "induction"); 17591da7df37SAdam Nemet auto ExpandedChecks = 17601da7df37SAdam Nemet expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); 17611da7df37SAdam Nemet 17621da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 17631da7df37SAdam Nemet Instruction *FirstInst = nullptr; 17647206d7a5SAdam Nemet IRBuilder<> ChkBuilder(Loc); 17657206d7a5SAdam Nemet // Our instructions might fold to a constant. 17667206d7a5SAdam Nemet Value *MemoryRuntimeCheck = nullptr; 17671b6b50a9SSilviu Baranga 17681da7df37SAdam Nemet for (const auto &Check : ExpandedChecks) { 17691da7df37SAdam Nemet const PointerBounds &A = Check.first, &B = Check.second; 1770cdb791cdSAdam Nemet // Check if two pointers (A and B) conflict where conflict is computed as: 1771cdb791cdSAdam Nemet // start(A) <= end(B) && start(B) <= end(A) 17721da7df37SAdam Nemet unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 17731da7df37SAdam Nemet unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 17747206d7a5SAdam Nemet 17751da7df37SAdam Nemet assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 17761da7df37SAdam Nemet (AS1 == A.End->getType()->getPointerAddressSpace()) && 17777206d7a5SAdam Nemet "Trying to bounds check pointers with different address spaces"); 17787206d7a5SAdam Nemet 17797206d7a5SAdam Nemet Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 17807206d7a5SAdam Nemet Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 17817206d7a5SAdam Nemet 17821da7df37SAdam Nemet Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 17831da7df37SAdam Nemet Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 17841da7df37SAdam Nemet Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 17851da7df37SAdam Nemet Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 17867206d7a5SAdam Nemet 17877206d7a5SAdam Nemet Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 17887206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 17897206d7a5SAdam Nemet Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 17907206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 17917206d7a5SAdam Nemet Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 17927206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 17937206d7a5SAdam Nemet if (MemoryRuntimeCheck) { 17941da7df37SAdam Nemet IsConflict = 17951da7df37SAdam Nemet ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 17967206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 17977206d7a5SAdam Nemet } 17987206d7a5SAdam Nemet MemoryRuntimeCheck = IsConflict; 17997206d7a5SAdam Nemet } 18007206d7a5SAdam Nemet 180190fec840SAdam Nemet if (!MemoryRuntimeCheck) 180290fec840SAdam Nemet return std::make_pair(nullptr, nullptr); 180390fec840SAdam Nemet 18047206d7a5SAdam Nemet // We have to do this trickery because the IRBuilder might fold the check to a 18057206d7a5SAdam Nemet // constant expression in which case there is no Instruction anchored in a 18067206d7a5SAdam Nemet // the block. 18077206d7a5SAdam Nemet Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 18087206d7a5SAdam Nemet ConstantInt::getTrue(Ctx)); 18097206d7a5SAdam Nemet ChkBuilder.Insert(Check, "memcheck.conflict"); 18107206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Check, Loc); 18117206d7a5SAdam Nemet return std::make_pair(FirstInst, Check); 18127206d7a5SAdam Nemet } 18133bfd93d7SAdam Nemet 18145b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> 18155b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 18161da7df37SAdam Nemet if (!PtrRtChecking.Need) 18171da7df37SAdam Nemet return std::make_pair(nullptr, nullptr); 18181da7df37SAdam Nemet 18195b0a4795SAdam Nemet return addRuntimeChecks(Loc, PtrRtChecking.getChecks()); 18201da7df37SAdam Nemet } 18211da7df37SAdam Nemet 18223bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1823a28d91d8SMehdi Amini const DataLayout &DL, 18243bfd93d7SAdam Nemet const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1825e2b885c4SAdam Nemet DominatorTree *DT, LoopInfo *LI, 18268bc61df9SAdam Nemet const ValueToValueMap &Strides) 18279cd9a7e3SSilviu Baranga : PSE(*SE), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL), 18287cdebac0SAdam Nemet TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1829ce48250fSAdam Nemet MaxSafeDepDistBytes(-1U), CanVecMem(false), 1830ce48250fSAdam Nemet StoreToLoopInvariantAddress(false) { 1831929c38e8SAdam Nemet if (canAnalyzeLoop()) 18323bfd93d7SAdam Nemet analyzeLoop(Strides); 18333bfd93d7SAdam Nemet } 18343bfd93d7SAdam Nemet 1835e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1836e91cc6efSAdam Nemet if (CanVecMem) { 18377cdebac0SAdam Nemet if (PtrRtChecking.Need) 1838e91cc6efSAdam Nemet OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 183926da8e98SAdam Nemet else 184026da8e98SAdam Nemet OS.indent(Depth) << "Memory dependences are safe\n"; 1841e91cc6efSAdam Nemet } 1842e91cc6efSAdam Nemet 1843e91cc6efSAdam Nemet if (Report) 1844e91cc6efSAdam Nemet OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1845e91cc6efSAdam Nemet 1846a2df750fSAdam Nemet if (auto *Dependences = DepChecker.getDependences()) { 1847a2df750fSAdam Nemet OS.indent(Depth) << "Dependences:\n"; 1848a2df750fSAdam Nemet for (auto &Dep : *Dependences) { 184958913d65SAdam Nemet Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 185058913d65SAdam Nemet OS << "\n"; 185158913d65SAdam Nemet } 185258913d65SAdam Nemet } else 1853a2df750fSAdam Nemet OS.indent(Depth) << "Too many dependences, not recorded\n"; 1854e91cc6efSAdam Nemet 1855e91cc6efSAdam Nemet // List the pair of accesses need run-time checks to prove independence. 18567cdebac0SAdam Nemet PtrRtChecking.print(OS, Depth); 1857e91cc6efSAdam Nemet OS << "\n"; 1858c3384320SAdam Nemet 1859c3384320SAdam Nemet OS.indent(Depth) << "Store to invariant address was " 1860c3384320SAdam Nemet << (StoreToLoopInvariantAddress ? "" : "not ") 1861c3384320SAdam Nemet << "found in loop.\n"; 1862e3c0534bSSilviu Baranga 1863e3c0534bSSilviu Baranga OS.indent(Depth) << "SCEV assumptions:\n"; 18649cd9a7e3SSilviu Baranga PSE.getUnionPredicate().print(OS, Depth); 1865e91cc6efSAdam Nemet } 1866e91cc6efSAdam Nemet 18678bc61df9SAdam Nemet const LoopAccessInfo & 18688bc61df9SAdam Nemet LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 18693bfd93d7SAdam Nemet auto &LAI = LoopAccessInfoMap[L]; 18703bfd93d7SAdam Nemet 18713bfd93d7SAdam Nemet #ifndef NDEBUG 18723bfd93d7SAdam Nemet assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 18733bfd93d7SAdam Nemet "Symbolic strides changed for loop"); 18743bfd93d7SAdam Nemet #endif 18753bfd93d7SAdam Nemet 18763bfd93d7SAdam Nemet if (!LAI) { 1877a28d91d8SMehdi Amini const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1878e3c0534bSSilviu Baranga LAI = 1879e3c0534bSSilviu Baranga llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides); 18803bfd93d7SAdam Nemet #ifndef NDEBUG 18813bfd93d7SAdam Nemet LAI->NumSymbolicStrides = Strides.size(); 18823bfd93d7SAdam Nemet #endif 18833bfd93d7SAdam Nemet } 18843bfd93d7SAdam Nemet return *LAI.get(); 18853bfd93d7SAdam Nemet } 18863bfd93d7SAdam Nemet 1887e91cc6efSAdam Nemet void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1888e91cc6efSAdam Nemet LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1889e91cc6efSAdam Nemet 1890e91cc6efSAdam Nemet ValueToValueMap NoSymbolicStrides; 1891e91cc6efSAdam Nemet 1892e91cc6efSAdam Nemet for (Loop *TopLevelLoop : *LI) 1893e91cc6efSAdam Nemet for (Loop *L : depth_first(TopLevelLoop)) { 1894e91cc6efSAdam Nemet OS.indent(2) << L->getHeader()->getName() << ":\n"; 1895e91cc6efSAdam Nemet auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1896e91cc6efSAdam Nemet LAI.print(OS, 4); 1897e91cc6efSAdam Nemet } 1898e91cc6efSAdam Nemet } 1899e91cc6efSAdam Nemet 19003bfd93d7SAdam Nemet bool LoopAccessAnalysis::runOnFunction(Function &F) { 19012f1fd165SChandler Carruth SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 19023bfd93d7SAdam Nemet auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 19033bfd93d7SAdam Nemet TLI = TLIP ? &TLIP->getTLI() : nullptr; 19047b560d40SChandler Carruth AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 19053bfd93d7SAdam Nemet DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1906e2b885c4SAdam Nemet LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 19073bfd93d7SAdam Nemet 19083bfd93d7SAdam Nemet return false; 19093bfd93d7SAdam Nemet } 19103bfd93d7SAdam Nemet 19113bfd93d7SAdam Nemet void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 19122f1fd165SChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 19137b560d40SChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 19143bfd93d7SAdam Nemet AU.addRequired<DominatorTreeWrapperPass>(); 1915e91cc6efSAdam Nemet AU.addRequired<LoopInfoWrapperPass>(); 19163bfd93d7SAdam Nemet 19173bfd93d7SAdam Nemet AU.setPreservesAll(); 19183bfd93d7SAdam Nemet } 19193bfd93d7SAdam Nemet 19203bfd93d7SAdam Nemet char LoopAccessAnalysis::ID = 0; 19213bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis"; 19223bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses" 19233bfd93d7SAdam Nemet 19243bfd93d7SAdam Nemet INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 19257b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 19262f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 19273bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1928e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 19293bfd93d7SAdam Nemet INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 19303bfd93d7SAdam Nemet 19313bfd93d7SAdam Nemet namespace llvm { 19323bfd93d7SAdam Nemet Pass *createLAAPass() { 19333bfd93d7SAdam Nemet return new LoopAccessAnalysis(); 19343bfd93d7SAdam Nemet } 19353bfd93d7SAdam Nemet } 1936