10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 20456327cSAdam Nemet // 30456327cSAdam Nemet // The LLVM Compiler Infrastructure 40456327cSAdam Nemet // 50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source 60456327cSAdam Nemet // License. See LICENSE.TXT for details. 70456327cSAdam Nemet // 80456327cSAdam Nemet //===----------------------------------------------------------------------===// 90456327cSAdam Nemet // 100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally 110456327cSAdam Nemet // developed for the loop vectorizer. 120456327cSAdam Nemet // 130456327cSAdam Nemet //===----------------------------------------------------------------------===// 140456327cSAdam Nemet 150456327cSAdam Nemet #include "llvm/Analysis/LoopAccessAnalysis.h" 160456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 178a021317SXinliang David Li #include "llvm/Analysis/LoopPassManager.h" 185b3a5cf6SAdam Nemet #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 197206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h" 20799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h" 210456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h" 22f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h" 230456327cSAdam Nemet #include "llvm/IR/Dominators.h" 247206d7a5SAdam Nemet #include "llvm/IR/IRBuilder.h" 258a021317SXinliang David Li #include "llvm/IR/PassManager.h" 260456327cSAdam Nemet #include "llvm/Support/Debug.h" 27799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h" 280456327cSAdam Nemet using namespace llvm; 290456327cSAdam Nemet 30339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses" 310456327cSAdam Nemet 32f219c647SAdam Nemet static cl::opt<unsigned, true> 33f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden, 34f219c647SAdam Nemet cl::desc("Sets the SIMD width. Zero is autoselect."), 35f219c647SAdam Nemet cl::location(VectorizerParams::VectorizationFactor)); 361d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor; 37f219c647SAdam Nemet 38f219c647SAdam Nemet static cl::opt<unsigned, true> 39f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden, 40f219c647SAdam Nemet cl::desc("Sets the vectorization interleave count. " 41f219c647SAdam Nemet "Zero is autoselect."), 42f219c647SAdam Nemet cl::location( 43f219c647SAdam Nemet VectorizerParams::VectorizationInterleave)); 441d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave; 45f219c647SAdam Nemet 461d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 471d862af7SAdam Nemet "runtime-memory-check-threshold", cl::Hidden, 481d862af7SAdam Nemet cl::desc("When performing memory disambiguation checks at runtime do not " 491d862af7SAdam Nemet "generate more than this number of comparisons (default = 8)."), 501d862af7SAdam Nemet cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 511d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 52f219c647SAdam Nemet 531b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks 541b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold( 551b6b50a9SSilviu Baranga "memory-check-merge-threshold", cl::Hidden, 561b6b50a9SSilviu Baranga cl::desc("Maximum number of comparisons done when trying to merge " 571b6b50a9SSilviu Baranga "runtime memory checks. (default = 100)"), 581b6b50a9SSilviu Baranga cl::init(100)); 591b6b50a9SSilviu Baranga 60f219c647SAdam Nemet /// Maximum SIMD width. 61f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64; 62f219c647SAdam Nemet 63a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold. 64a2df750fSAdam Nemet static cl::opt<unsigned> 65a2df750fSAdam Nemet MaxDependences("max-dependences", cl::Hidden, 66a2df750fSAdam Nemet cl::desc("Maximum number of dependences collected by " 679c926579SAdam Nemet "loop-access analysis (default = 100)"), 689c926579SAdam Nemet cl::init(100)); 699c926579SAdam Nemet 70a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory 71a9f09c62SAdam Nemet /// accesses in code like the following. 72a9f09c62SAdam Nemet /// for (i = 0; i < N; ++i) 73a9f09c62SAdam Nemet /// A[i * Stride1] += B[i * Stride2] ... 74a9f09c62SAdam Nemet /// 75a9f09c62SAdam Nemet /// Will be roughly translated to 76a9f09c62SAdam Nemet /// if (Stride1 == 1 && Stride2 == 1) { 77a9f09c62SAdam Nemet /// for (i = 0; i < N; i+=4) 78a9f09c62SAdam Nemet /// A[i:i+3] += ... 79a9f09c62SAdam Nemet /// } else 80a9f09c62SAdam Nemet /// ... 81a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning( 82a9f09c62SAdam Nemet "enable-mem-access-versioning", cl::init(true), cl::Hidden, 83a9f09c62SAdam Nemet cl::desc("Enable symbolic stride memory access versioning")); 84a9f09c62SAdam Nemet 8537ec5f91SMatthew Simpson /// \brief Enable store-to-load forwarding conflict detection. This option can 8637ec5f91SMatthew Simpson /// be disabled for correctness testing. 8737ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection( 8837ec5f91SMatthew Simpson "store-to-load-forwarding-conflict-detection", cl::Hidden, 89a250dc9fSMatthew Simpson cl::desc("Enable conflict detection in loop-access analysis"), 90a250dc9fSMatthew Simpson cl::init(true)); 91a250dc9fSMatthew Simpson 92f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() { 93f219c647SAdam Nemet return ::VectorizationInterleave.getNumOccurrences() > 0; 94f219c647SAdam Nemet } 95f219c647SAdam Nemet 962bd6e984SAdam Nemet void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 975b3a5cf6SAdam Nemet const Loop *TheLoop, const char *PassName, 985b3a5cf6SAdam Nemet OptimizationRemarkEmitter &ORE) { 990456327cSAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 1005b3a5cf6SAdam Nemet const Value *V = TheLoop->getHeader(); 1015b3a5cf6SAdam Nemet if (const Instruction *I = Message.getInstr()) { 102e3cef937SAdam Nemet // If there is no debug location attached to the instruction, revert back to 103e3cef937SAdam Nemet // using the loop's. 104e3cef937SAdam Nemet if (I->getDebugLoc()) 1050456327cSAdam Nemet DL = I->getDebugLoc(); 1065b3a5cf6SAdam Nemet V = I->getParent(); 1075b3a5cf6SAdam Nemet } 1085b3a5cf6SAdam Nemet ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str()); 1090456327cSAdam Nemet } 1100456327cSAdam Nemet 1110456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) { 1128b401013SDavid Majnemer if (auto *CI = dyn_cast<CastInst>(V)) 1130456327cSAdam Nemet if (CI->getOperand(0)->getType()->isIntegerTy()) 1140456327cSAdam Nemet return CI->getOperand(0); 1150456327cSAdam Nemet return V; 1160456327cSAdam Nemet } 1170456327cSAdam Nemet 1189cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 1198bc61df9SAdam Nemet const ValueToValueMap &PtrToStride, 1200456327cSAdam Nemet Value *Ptr, Value *OrigPtr) { 1219cd9a7e3SSilviu Baranga const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 1220456327cSAdam Nemet 1230456327cSAdam Nemet // If there is an entry in the map return the SCEV of the pointer with the 1240456327cSAdam Nemet // symbolic stride replaced by one. 1258bc61df9SAdam Nemet ValueToValueMap::const_iterator SI = 1268bc61df9SAdam Nemet PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1270456327cSAdam Nemet if (SI != PtrToStride.end()) { 1280456327cSAdam Nemet Value *StrideVal = SI->second; 1290456327cSAdam Nemet 1300456327cSAdam Nemet // Strip casts. 1310456327cSAdam Nemet StrideVal = stripIntegerCast(StrideVal); 1320456327cSAdam Nemet 1330456327cSAdam Nemet // Replace symbolic stride by one. 1340456327cSAdam Nemet Value *One = ConstantInt::get(StrideVal->getType(), 1); 1350456327cSAdam Nemet ValueToValueMap RewriteMap; 1360456327cSAdam Nemet RewriteMap[StrideVal] = One; 1370456327cSAdam Nemet 1389cd9a7e3SSilviu Baranga ScalarEvolution *SE = PSE.getSE(); 139e3c0534bSSilviu Baranga const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 140e3c0534bSSilviu Baranga const auto *CT = 141e3c0534bSSilviu Baranga static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 142e3c0534bSSilviu Baranga 1439cd9a7e3SSilviu Baranga PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 1449cd9a7e3SSilviu Baranga auto *Expr = PSE.getSCEV(Ptr); 145e3c0534bSSilviu Baranga 1469cd9a7e3SSilviu Baranga DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 1470456327cSAdam Nemet << "\n"); 1489cd9a7e3SSilviu Baranga return Expr; 1490456327cSAdam Nemet } 1500456327cSAdam Nemet 1510456327cSAdam Nemet // Otherwise, just return the SCEV of the original pointer. 152e3c0534bSSilviu Baranga return OrigSCEV; 1530456327cSAdam Nemet } 1540456327cSAdam Nemet 1553622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access. 1563622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop 1573622fbfcSElena Demikhovsky /// iteration. Then B is calculated as: 1583622fbfcSElena Demikhovsky /// B = A + Step*N . 1593622fbfcSElena Demikhovsky /// Step value may be positive or negative. 1603622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count: 1613622fbfcSElena Demikhovsky /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 1623622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way: 1633622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 1643622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes. 1653622fbfcSElena Demikhovsky /// 1663622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint: 1673622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 1687cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 1697cdebac0SAdam Nemet unsigned DepSetId, unsigned ASId, 170e3c0534bSSilviu Baranga const ValueToValueMap &Strides, 1719cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) { 1720456327cSAdam Nemet // Get the stride replaced scev. 1739cd9a7e3SSilviu Baranga const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 174279784ffSAdam Nemet ScalarEvolution *SE = PSE.getSE(); 175279784ffSAdam Nemet 176279784ffSAdam Nemet const SCEV *ScStart; 177279784ffSAdam Nemet const SCEV *ScEnd; 178279784ffSAdam Nemet 17959a65504SAdam Nemet if (SE->isLoopInvariant(Sc, Lp)) 180279784ffSAdam Nemet ScStart = ScEnd = Sc; 181279784ffSAdam Nemet else { 1820456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1830456327cSAdam Nemet assert(AR && "Invalid addrec expression"); 1846f444dfdSSilviu Baranga const SCEV *Ex = PSE.getBackedgeTakenCount(); 1850e5804a6SSilviu Baranga 186279784ffSAdam Nemet ScStart = AR->getStart(); 187279784ffSAdam Nemet ScEnd = AR->evaluateAtIteration(Ex, *SE); 1880e5804a6SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*SE); 1890e5804a6SSilviu Baranga 1900e5804a6SSilviu Baranga // For expressions with negative step, the upper bound is ScStart and the 1910e5804a6SSilviu Baranga // lower bound is ScEnd. 1928b401013SDavid Majnemer if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 1930e5804a6SSilviu Baranga if (CStep->getValue()->isNegative()) 1940e5804a6SSilviu Baranga std::swap(ScStart, ScEnd); 1950e5804a6SSilviu Baranga } else { 1963622fbfcSElena Demikhovsky // Fallback case: the step is not constant, but we can still 1970e5804a6SSilviu Baranga // get the upper and lower bounds of the interval by using min/max 1980e5804a6SSilviu Baranga // expressions. 1990e5804a6SSilviu Baranga ScStart = SE->getUMinExpr(ScStart, ScEnd); 2000e5804a6SSilviu Baranga ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 2010e5804a6SSilviu Baranga } 2023622fbfcSElena Demikhovsky // Add the size of the pointed element to ScEnd. 2033622fbfcSElena Demikhovsky unsigned EltSize = 2043622fbfcSElena Demikhovsky Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 2053622fbfcSElena Demikhovsky const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 2063622fbfcSElena Demikhovsky ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 207279784ffSAdam Nemet } 2080e5804a6SSilviu Baranga 2090e5804a6SSilviu Baranga Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 2101b6b50a9SSilviu Baranga } 2111b6b50a9SSilviu Baranga 212bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4> 21338530887SAdam Nemet RuntimePointerChecking::generateChecks() const { 214bbe1f1deSAdam Nemet SmallVector<PointerCheck, 4> Checks; 215bbe1f1deSAdam Nemet 2167c52e052SAdam Nemet for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 2177c52e052SAdam Nemet for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 2187c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 2197c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 220bbe1f1deSAdam Nemet 22138530887SAdam Nemet if (needsChecking(CGI, CGJ)) 222bbe1f1deSAdam Nemet Checks.push_back(std::make_pair(&CGI, &CGJ)); 223bbe1f1deSAdam Nemet } 224bbe1f1deSAdam Nemet } 225bbe1f1deSAdam Nemet return Checks; 226bbe1f1deSAdam Nemet } 227bbe1f1deSAdam Nemet 22815840393SAdam Nemet void RuntimePointerChecking::generateChecks( 22915840393SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 23015840393SAdam Nemet assert(Checks.empty() && "Checks is not empty"); 23115840393SAdam Nemet groupChecks(DepCands, UseDependencies); 23215840393SAdam Nemet Checks = generateChecks(); 23315840393SAdam Nemet } 23415840393SAdam Nemet 235651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 236651a5a24SAdam Nemet const CheckingPtrGroup &N) const { 2371b6b50a9SSilviu Baranga for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 2381b6b50a9SSilviu Baranga for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 239651a5a24SAdam Nemet if (needsChecking(M.Members[I], N.Members[J])) 2401b6b50a9SSilviu Baranga return true; 2411b6b50a9SSilviu Baranga return false; 2421b6b50a9SSilviu Baranga } 2431b6b50a9SSilviu Baranga 2441b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum. 2451b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer. 2461b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 2471b6b50a9SSilviu Baranga ScalarEvolution *SE) { 2481b6b50a9SSilviu Baranga const SCEV *Diff = SE->getMinusSCEV(J, I); 2491b6b50a9SSilviu Baranga const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 2501b6b50a9SSilviu Baranga 2511b6b50a9SSilviu Baranga if (!C) 2521b6b50a9SSilviu Baranga return nullptr; 2531b6b50a9SSilviu Baranga if (C->getValue()->isNegative()) 2541b6b50a9SSilviu Baranga return J; 2551b6b50a9SSilviu Baranga return I; 2561b6b50a9SSilviu Baranga } 2571b6b50a9SSilviu Baranga 2587cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 2599f7dedc3SAdam Nemet const SCEV *Start = RtCheck.Pointers[Index].Start; 2609f7dedc3SAdam Nemet const SCEV *End = RtCheck.Pointers[Index].End; 2619f7dedc3SAdam Nemet 2621b6b50a9SSilviu Baranga // Compare the starts and ends with the known minimum and maximum 2631b6b50a9SSilviu Baranga // of this set. We need to know how we compare against the min/max 2641b6b50a9SSilviu Baranga // of the set in order to be able to emit memchecks. 2659f7dedc3SAdam Nemet const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 2661b6b50a9SSilviu Baranga if (!Min0) 2671b6b50a9SSilviu Baranga return false; 2681b6b50a9SSilviu Baranga 2699f7dedc3SAdam Nemet const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 2701b6b50a9SSilviu Baranga if (!Min1) 2711b6b50a9SSilviu Baranga return false; 2721b6b50a9SSilviu Baranga 2731b6b50a9SSilviu Baranga // Update the low bound expression if we've found a new min value. 2749f7dedc3SAdam Nemet if (Min0 == Start) 2759f7dedc3SAdam Nemet Low = Start; 2761b6b50a9SSilviu Baranga 2771b6b50a9SSilviu Baranga // Update the high bound expression if we've found a new max value. 2789f7dedc3SAdam Nemet if (Min1 != End) 2799f7dedc3SAdam Nemet High = End; 2801b6b50a9SSilviu Baranga 2811b6b50a9SSilviu Baranga Members.push_back(Index); 2821b6b50a9SSilviu Baranga return true; 2831b6b50a9SSilviu Baranga } 2841b6b50a9SSilviu Baranga 2857cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks( 2867cdebac0SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 2871b6b50a9SSilviu Baranga // We build the groups from dependency candidates equivalence classes 2881b6b50a9SSilviu Baranga // because: 2891b6b50a9SSilviu Baranga // - We know that pointers in the same equivalence class share 2901b6b50a9SSilviu Baranga // the same underlying object and therefore there is a chance 2911b6b50a9SSilviu Baranga // that we can compare pointers 2921b6b50a9SSilviu Baranga // - We wouldn't be able to merge two pointers for which we need 2931b6b50a9SSilviu Baranga // to emit a memcheck. The classes in DepCands are already 2941b6b50a9SSilviu Baranga // conveniently built such that no two pointers in the same 2951b6b50a9SSilviu Baranga // class need checking against each other. 2961b6b50a9SSilviu Baranga 2971b6b50a9SSilviu Baranga // We use the following (greedy) algorithm to construct the groups 2981b6b50a9SSilviu Baranga // For every pointer in the equivalence class: 2991b6b50a9SSilviu Baranga // For each existing group: 3001b6b50a9SSilviu Baranga // - if the difference between this pointer and the min/max bounds 3011b6b50a9SSilviu Baranga // of the group is a constant, then make the pointer part of the 3021b6b50a9SSilviu Baranga // group and update the min/max bounds of that group as required. 3031b6b50a9SSilviu Baranga 3041b6b50a9SSilviu Baranga CheckingGroups.clear(); 3051b6b50a9SSilviu Baranga 30648250600SSilviu Baranga // If we need to check two pointers to the same underlying object 30748250600SSilviu Baranga // with a non-constant difference, we shouldn't perform any pointer 30848250600SSilviu Baranga // grouping with those pointers. This is because we can easily get 30948250600SSilviu Baranga // into cases where the resulting check would return false, even when 31048250600SSilviu Baranga // the accesses are safe. 31148250600SSilviu Baranga // 31248250600SSilviu Baranga // The following example shows this: 31348250600SSilviu Baranga // for (i = 0; i < 1000; ++i) 31448250600SSilviu Baranga // a[5000 + i * m] = a[i] + a[i + 9000] 31548250600SSilviu Baranga // 31648250600SSilviu Baranga // Here grouping gives a check of (5000, 5000 + 1000 * m) against 31748250600SSilviu Baranga // (0, 10000) which is always false. However, if m is 1, there is no 31848250600SSilviu Baranga // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 31948250600SSilviu Baranga // us to perform an accurate check in this case. 32048250600SSilviu Baranga // 32148250600SSilviu Baranga // The above case requires that we have an UnknownDependence between 32248250600SSilviu Baranga // accesses to the same underlying object. This cannot happen unless 32348250600SSilviu Baranga // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 32448250600SSilviu Baranga // is also false. In this case we will use the fallback path and create 32548250600SSilviu Baranga // separate checking groups for all pointers. 32648250600SSilviu Baranga 3271b6b50a9SSilviu Baranga // If we don't have the dependency partitions, construct a new 32848250600SSilviu Baranga // checking pointer group for each pointer. This is also required 32948250600SSilviu Baranga // for correctness, because in this case we can have checking between 33048250600SSilviu Baranga // pointers to the same underlying object. 3311b6b50a9SSilviu Baranga if (!UseDependencies) { 3321b6b50a9SSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) 3331b6b50a9SSilviu Baranga CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 3341b6b50a9SSilviu Baranga return; 3351b6b50a9SSilviu Baranga } 3361b6b50a9SSilviu Baranga 3371b6b50a9SSilviu Baranga unsigned TotalComparisons = 0; 3381b6b50a9SSilviu Baranga 3391b6b50a9SSilviu Baranga DenseMap<Value *, unsigned> PositionMap; 3409f7dedc3SAdam Nemet for (unsigned Index = 0; Index < Pointers.size(); ++Index) 3419f7dedc3SAdam Nemet PositionMap[Pointers[Index].PointerValue] = Index; 3421b6b50a9SSilviu Baranga 343ce3877fcSSilviu Baranga // We need to keep track of what pointers we've already seen so we 344ce3877fcSSilviu Baranga // don't process them twice. 345ce3877fcSSilviu Baranga SmallSet<unsigned, 2> Seen; 346ce3877fcSSilviu Baranga 347e4b9f507SSanjay Patel // Go through all equivalence classes, get the "pointer check groups" 348ce3877fcSSilviu Baranga // and add them to the overall solution. We use the order in which accesses 349ce3877fcSSilviu Baranga // appear in 'Pointers' to enforce determinism. 350ce3877fcSSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) { 351ce3877fcSSilviu Baranga // We've seen this pointer before, and therefore already processed 352ce3877fcSSilviu Baranga // its equivalence class. 353ce3877fcSSilviu Baranga if (Seen.count(I)) 3541b6b50a9SSilviu Baranga continue; 3551b6b50a9SSilviu Baranga 3569f7dedc3SAdam Nemet MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 3579f7dedc3SAdam Nemet Pointers[I].IsWritePtr); 3581b6b50a9SSilviu Baranga 359ce3877fcSSilviu Baranga SmallVector<CheckingPtrGroup, 2> Groups; 360ce3877fcSSilviu Baranga auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 361ce3877fcSSilviu Baranga 362a647c30fSSilviu Baranga // Because DepCands is constructed by visiting accesses in the order in 363a647c30fSSilviu Baranga // which they appear in alias sets (which is deterministic) and the 364a647c30fSSilviu Baranga // iteration order within an equivalence class member is only dependent on 365a647c30fSSilviu Baranga // the order in which unions and insertions are performed on the 366a647c30fSSilviu Baranga // equivalence class, the iteration order is deterministic. 367ce3877fcSSilviu Baranga for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 3681b6b50a9SSilviu Baranga MI != ME; ++MI) { 3691b6b50a9SSilviu Baranga unsigned Pointer = PositionMap[MI->getPointer()]; 3701b6b50a9SSilviu Baranga bool Merged = false; 371ce3877fcSSilviu Baranga // Mark this pointer as seen. 372ce3877fcSSilviu Baranga Seen.insert(Pointer); 3731b6b50a9SSilviu Baranga 3741b6b50a9SSilviu Baranga // Go through all the existing sets and see if we can find one 3751b6b50a9SSilviu Baranga // which can include this pointer. 3761b6b50a9SSilviu Baranga for (CheckingPtrGroup &Group : Groups) { 3771b6b50a9SSilviu Baranga // Don't perform more than a certain amount of comparisons. 3781b6b50a9SSilviu Baranga // This should limit the cost of grouping the pointers to something 3791b6b50a9SSilviu Baranga // reasonable. If we do end up hitting this threshold, the algorithm 3801b6b50a9SSilviu Baranga // will create separate groups for all remaining pointers. 3811b6b50a9SSilviu Baranga if (TotalComparisons > MemoryCheckMergeThreshold) 3821b6b50a9SSilviu Baranga break; 3831b6b50a9SSilviu Baranga 3841b6b50a9SSilviu Baranga TotalComparisons++; 3851b6b50a9SSilviu Baranga 3861b6b50a9SSilviu Baranga if (Group.addPointer(Pointer)) { 3871b6b50a9SSilviu Baranga Merged = true; 3881b6b50a9SSilviu Baranga break; 3891b6b50a9SSilviu Baranga } 3901b6b50a9SSilviu Baranga } 3911b6b50a9SSilviu Baranga 3921b6b50a9SSilviu Baranga if (!Merged) 3931b6b50a9SSilviu Baranga // We couldn't add this pointer to any existing set or the threshold 3941b6b50a9SSilviu Baranga // for the number of comparisons has been reached. Create a new group 3951b6b50a9SSilviu Baranga // to hold the current pointer. 3961b6b50a9SSilviu Baranga Groups.push_back(CheckingPtrGroup(Pointer, *this)); 3971b6b50a9SSilviu Baranga } 3981b6b50a9SSilviu Baranga 3991b6b50a9SSilviu Baranga // We've computed the grouped checks for this partition. 4001b6b50a9SSilviu Baranga // Save the results and continue with the next one. 4011b6b50a9SSilviu Baranga std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 4021b6b50a9SSilviu Baranga } 4030456327cSAdam Nemet } 4040456327cSAdam Nemet 405041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition( 406041e6debSAdam Nemet const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 407041e6debSAdam Nemet unsigned PtrIdx2) { 408041e6debSAdam Nemet return (PtrToPartition[PtrIdx1] != -1 && 409041e6debSAdam Nemet PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 410041e6debSAdam Nemet } 411041e6debSAdam Nemet 412651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 4139f7dedc3SAdam Nemet const PointerInfo &PointerI = Pointers[I]; 4149f7dedc3SAdam Nemet const PointerInfo &PointerJ = Pointers[J]; 4159f7dedc3SAdam Nemet 416a8945b77SAdam Nemet // No need to check if two readonly pointers intersect. 4179f7dedc3SAdam Nemet if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 418a8945b77SAdam Nemet return false; 419a8945b77SAdam Nemet 420a8945b77SAdam Nemet // Only need to check pointers between two different dependency sets. 4219f7dedc3SAdam Nemet if (PointerI.DependencySetId == PointerJ.DependencySetId) 422a8945b77SAdam Nemet return false; 423a8945b77SAdam Nemet 424a8945b77SAdam Nemet // Only need to check pointers in the same alias set. 4259f7dedc3SAdam Nemet if (PointerI.AliasSetId != PointerJ.AliasSetId) 426a8945b77SAdam Nemet return false; 427a8945b77SAdam Nemet 428a8945b77SAdam Nemet return true; 429a8945b77SAdam Nemet } 430a8945b77SAdam Nemet 43154f0b83eSAdam Nemet void RuntimePointerChecking::printChecks( 43254f0b83eSAdam Nemet raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 43354f0b83eSAdam Nemet unsigned Depth) const { 43454f0b83eSAdam Nemet unsigned N = 0; 43554f0b83eSAdam Nemet for (const auto &Check : Checks) { 43654f0b83eSAdam Nemet const auto &First = Check.first->Members, &Second = Check.second->Members; 43754f0b83eSAdam Nemet 43854f0b83eSAdam Nemet OS.indent(Depth) << "Check " << N++ << ":\n"; 43954f0b83eSAdam Nemet 44054f0b83eSAdam Nemet OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 44154f0b83eSAdam Nemet for (unsigned K = 0; K < First.size(); ++K) 44254f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 44354f0b83eSAdam Nemet 44454f0b83eSAdam Nemet OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 44554f0b83eSAdam Nemet for (unsigned K = 0; K < Second.size(); ++K) 44654f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 44754f0b83eSAdam Nemet } 44854f0b83eSAdam Nemet } 44954f0b83eSAdam Nemet 4503a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 451e91cc6efSAdam Nemet 452e91cc6efSAdam Nemet OS.indent(Depth) << "Run-time memory checks:\n"; 45315840393SAdam Nemet printChecks(OS, Checks, Depth); 4541b6b50a9SSilviu Baranga 4551b6b50a9SSilviu Baranga OS.indent(Depth) << "Grouped accesses:\n"; 4561b6b50a9SSilviu Baranga for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 45754f0b83eSAdam Nemet const auto &CG = CheckingGroups[I]; 45854f0b83eSAdam Nemet 45954f0b83eSAdam Nemet OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 46054f0b83eSAdam Nemet OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 46154f0b83eSAdam Nemet << ")\n"; 46254f0b83eSAdam Nemet for (unsigned J = 0; J < CG.Members.size(); ++J) { 46354f0b83eSAdam Nemet OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 4641b6b50a9SSilviu Baranga << "\n"; 4651b6b50a9SSilviu Baranga } 466e91cc6efSAdam Nemet } 467e91cc6efSAdam Nemet } 468e91cc6efSAdam Nemet 4690456327cSAdam Nemet namespace { 4700456327cSAdam Nemet /// \brief Analyses memory accesses in a loop. 4710456327cSAdam Nemet /// 4720456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data 4730456327cSAdam Nemet /// dependence checking. 4740456327cSAdam Nemet class AccessAnalysis { 4750456327cSAdam Nemet public: 4760456327cSAdam Nemet /// \brief Read or write access location. 4770456327cSAdam Nemet typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4780456327cSAdam Nemet typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4790456327cSAdam Nemet 480e2b885c4SAdam Nemet AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 4819cd9a7e3SSilviu Baranga MemoryDepChecker::DepCandidates &DA, 4829cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) 483e3c0534bSSilviu Baranga : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 4849cd9a7e3SSilviu Baranga PSE(PSE) {} 4850456327cSAdam Nemet 4860456327cSAdam Nemet /// \brief Register a load and whether it is only read from. 487ac80dc75SChandler Carruth void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 4880456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 489ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4900456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, false)); 4910456327cSAdam Nemet if (IsReadOnly) 4920456327cSAdam Nemet ReadOnlyPtr.insert(Ptr); 4930456327cSAdam Nemet } 4940456327cSAdam Nemet 4950456327cSAdam Nemet /// \brief Register a store. 496ac80dc75SChandler Carruth void addStore(MemoryLocation &Loc) { 4970456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 498ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4990456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, true)); 5000456327cSAdam Nemet } 5010456327cSAdam Nemet 5020456327cSAdam Nemet /// \brief Check whether we can check the pointers at runtime for 503ee61474aSAdam Nemet /// non-intersection. 504ee61474aSAdam Nemet /// 505ee61474aSAdam Nemet /// Returns true if we need no check or if we do and we can generate them 506ee61474aSAdam Nemet /// (i.e. the pointers have computable bounds). 5077cdebac0SAdam Nemet bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 5087cdebac0SAdam Nemet Loop *TheLoop, const ValueToValueMap &Strides, 5099f02c586SAndrey Turetskiy bool ShouldCheckWrap = false); 5100456327cSAdam Nemet 5110456327cSAdam Nemet /// \brief Goes over all memory accesses, checks whether a RT check is needed 5120456327cSAdam Nemet /// and builds sets of dependent accesses. 5130456327cSAdam Nemet void buildDependenceSets() { 5140456327cSAdam Nemet processMemAccesses(); 5150456327cSAdam Nemet } 5160456327cSAdam Nemet 5175dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we need to 5185dc3b2cfSAdam Nemet /// perform dependency checking. 5195dc3b2cfSAdam Nemet /// 5205dc3b2cfSAdam Nemet /// Note that this can later be cleared if we retry memcheck analysis without 5215dc3b2cfSAdam Nemet /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 5220456327cSAdam Nemet bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 523df3dc5b9SAdam Nemet 524df3dc5b9SAdam Nemet /// We decided that no dependence analysis would be used. Reset the state. 525df3dc5b9SAdam Nemet void resetDepChecks(MemoryDepChecker &DepChecker) { 526df3dc5b9SAdam Nemet CheckDeps.clear(); 527a2df750fSAdam Nemet DepChecker.clearDependences(); 528df3dc5b9SAdam Nemet } 5290456327cSAdam Nemet 5300456327cSAdam Nemet MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 5310456327cSAdam Nemet 5320456327cSAdam Nemet private: 5330456327cSAdam Nemet typedef SetVector<MemAccessInfo> PtrAccessSet; 5340456327cSAdam Nemet 5350456327cSAdam Nemet /// \brief Go over all memory access and check whether runtime pointer checks 536b41d2d3fSAdam Nemet /// are needed and build sets of dependency check candidates. 5370456327cSAdam Nemet void processMemAccesses(); 5380456327cSAdam Nemet 5390456327cSAdam Nemet /// Set of all accesses. 5400456327cSAdam Nemet PtrAccessSet Accesses; 5410456327cSAdam Nemet 542a28d91d8SMehdi Amini const DataLayout &DL; 543a28d91d8SMehdi Amini 5440456327cSAdam Nemet /// Set of accesses that need a further dependence check. 5450456327cSAdam Nemet MemAccessInfoSet CheckDeps; 5460456327cSAdam Nemet 5470456327cSAdam Nemet /// Set of pointers that are read only. 5480456327cSAdam Nemet SmallPtrSet<Value*, 16> ReadOnlyPtr; 5490456327cSAdam Nemet 5500456327cSAdam Nemet /// An alias set tracker to partition the access set by underlying object and 5510456327cSAdam Nemet //intrinsic property (such as TBAA metadata). 5520456327cSAdam Nemet AliasSetTracker AST; 5530456327cSAdam Nemet 554e2b885c4SAdam Nemet LoopInfo *LI; 555e2b885c4SAdam Nemet 5560456327cSAdam Nemet /// Sets of potentially dependent accesses - members of one set share an 5570456327cSAdam Nemet /// underlying pointer. The set "CheckDeps" identfies which sets really need a 5580456327cSAdam Nemet /// dependence check. 559dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DepCands; 5600456327cSAdam Nemet 5615dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we may need 5625dc3b2cfSAdam Nemet /// to add memchecks. Perform the analysis to determine the necessary checks. 5635dc3b2cfSAdam Nemet /// 5645dc3b2cfSAdam Nemet /// Note that, this is different from isDependencyCheckNeeded. When we retry 5655dc3b2cfSAdam Nemet /// memcheck analysis without dependency checking 5665dc3b2cfSAdam Nemet /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 5675dc3b2cfSAdam Nemet /// while this remains set if we have potentially dependent accesses. 5685dc3b2cfSAdam Nemet bool IsRTCheckAnalysisNeeded; 569e3c0534bSSilviu Baranga 570e3c0534bSSilviu Baranga /// The SCEV predicate containing all the SCEV-related assumptions. 5719cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE; 5720456327cSAdam Nemet }; 5730456327cSAdam Nemet 5740456327cSAdam Nemet } // end anonymous namespace 5750456327cSAdam Nemet 5760456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check. 5779cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 578e3c0534bSSilviu Baranga const ValueToValueMap &Strides, Value *Ptr, 5799cd9a7e3SSilviu Baranga Loop *L) { 5809cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 581279784ffSAdam Nemet 582279784ffSAdam Nemet // The bounds for loop-invariant pointer is trivial. 583279784ffSAdam Nemet if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 584279784ffSAdam Nemet return true; 585279784ffSAdam Nemet 5860456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 5870456327cSAdam Nemet if (!AR) 5880456327cSAdam Nemet return false; 5890456327cSAdam Nemet 5900456327cSAdam Nemet return AR->isAffine(); 5910456327cSAdam Nemet } 5920456327cSAdam Nemet 5939f02c586SAndrey Turetskiy /// \brief Check whether a pointer address cannot wrap. 5949f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE, 5959f02c586SAndrey Turetskiy const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 5969f02c586SAndrey Turetskiy const SCEV *PtrScev = PSE.getSCEV(Ptr); 5979f02c586SAndrey Turetskiy if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 5989f02c586SAndrey Turetskiy return true; 5999f02c586SAndrey Turetskiy 6007afb46d3SDavid Majnemer int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 6019f02c586SAndrey Turetskiy return Stride == 1; 6029f02c586SAndrey Turetskiy } 6039f02c586SAndrey Turetskiy 6047cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 6057cdebac0SAdam Nemet ScalarEvolution *SE, Loop *TheLoop, 6067cdebac0SAdam Nemet const ValueToValueMap &StridesMap, 6079f02c586SAndrey Turetskiy bool ShouldCheckWrap) { 6080456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 6090456327cSAdam Nemet // to place a runtime bound check. 6100456327cSAdam Nemet bool CanDoRT = true; 6110456327cSAdam Nemet 612ee61474aSAdam Nemet bool NeedRTCheck = false; 6135dc3b2cfSAdam Nemet if (!IsRTCheckAnalysisNeeded) return true; 61498a13719SSilviu Baranga 6150456327cSAdam Nemet bool IsDepCheckNeeded = isDependencyCheckNeeded(); 6160456327cSAdam Nemet 6170456327cSAdam Nemet // We assign a consecutive id to access from different alias sets. 6180456327cSAdam Nemet // Accesses between different groups doesn't need to be checked. 6190456327cSAdam Nemet unsigned ASId = 1; 6200456327cSAdam Nemet for (auto &AS : AST) { 621424edc6cSAdam Nemet int NumReadPtrChecks = 0; 622424edc6cSAdam Nemet int NumWritePtrChecks = 0; 623424edc6cSAdam Nemet 6240456327cSAdam Nemet // We assign consecutive id to access from different dependence sets. 6250456327cSAdam Nemet // Accesses within the same set don't need a runtime check. 6260456327cSAdam Nemet unsigned RunningDepId = 1; 6270456327cSAdam Nemet DenseMap<Value *, unsigned> DepSetId; 6280456327cSAdam Nemet 6290456327cSAdam Nemet for (auto A : AS) { 6300456327cSAdam Nemet Value *Ptr = A.getValue(); 6310456327cSAdam Nemet bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 6320456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 6330456327cSAdam Nemet 634424edc6cSAdam Nemet if (IsWrite) 635424edc6cSAdam Nemet ++NumWritePtrChecks; 636424edc6cSAdam Nemet else 637424edc6cSAdam Nemet ++NumReadPtrChecks; 638424edc6cSAdam Nemet 6399cd9a7e3SSilviu Baranga if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 640a28d91d8SMehdi Amini // When we run after a failing dependency check we have to make sure 641a28d91d8SMehdi Amini // we don't have wrapping pointers. 6429f02c586SAndrey Turetskiy (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 6430456327cSAdam Nemet // The id of the dependence set. 6440456327cSAdam Nemet unsigned DepId; 6450456327cSAdam Nemet 6460456327cSAdam Nemet if (IsDepCheckNeeded) { 6470456327cSAdam Nemet Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 6480456327cSAdam Nemet unsigned &LeaderId = DepSetId[Leader]; 6490456327cSAdam Nemet if (!LeaderId) 6500456327cSAdam Nemet LeaderId = RunningDepId++; 6510456327cSAdam Nemet DepId = LeaderId; 6520456327cSAdam Nemet } else 6530456327cSAdam Nemet // Each access has its own dependence set. 6540456327cSAdam Nemet DepId = RunningDepId++; 6550456327cSAdam Nemet 6569cd9a7e3SSilviu Baranga RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 6570456327cSAdam Nemet 658339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 6590456327cSAdam Nemet } else { 660f10ca278SAdam Nemet DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 6610456327cSAdam Nemet CanDoRT = false; 6620456327cSAdam Nemet } 6630456327cSAdam Nemet } 6640456327cSAdam Nemet 665424edc6cSAdam Nemet // If we have at least two writes or one write and a read then we need to 666424edc6cSAdam Nemet // check them. But there is no need to checks if there is only one 667424edc6cSAdam Nemet // dependence set for this alias set. 668424edc6cSAdam Nemet // 669424edc6cSAdam Nemet // Note that this function computes CanDoRT and NeedRTCheck independently. 670424edc6cSAdam Nemet // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 671424edc6cSAdam Nemet // for which we couldn't find the bounds but we don't actually need to emit 672424edc6cSAdam Nemet // any checks so it does not matter. 673424edc6cSAdam Nemet if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 674424edc6cSAdam Nemet NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 675424edc6cSAdam Nemet NumWritePtrChecks >= 1)); 676424edc6cSAdam Nemet 6770456327cSAdam Nemet ++ASId; 6780456327cSAdam Nemet } 6790456327cSAdam Nemet 6800456327cSAdam Nemet // If the pointers that we would use for the bounds comparison have different 6810456327cSAdam Nemet // address spaces, assume the values aren't directly comparable, so we can't 6820456327cSAdam Nemet // use them for the runtime check. We also have to assume they could 6830456327cSAdam Nemet // overlap. In the future there should be metadata for whether address spaces 6840456327cSAdam Nemet // are disjoint. 6850456327cSAdam Nemet unsigned NumPointers = RtCheck.Pointers.size(); 6860456327cSAdam Nemet for (unsigned i = 0; i < NumPointers; ++i) { 6870456327cSAdam Nemet for (unsigned j = i + 1; j < NumPointers; ++j) { 6880456327cSAdam Nemet // Only need to check pointers between two different dependency sets. 6899f7dedc3SAdam Nemet if (RtCheck.Pointers[i].DependencySetId == 6909f7dedc3SAdam Nemet RtCheck.Pointers[j].DependencySetId) 6910456327cSAdam Nemet continue; 6920456327cSAdam Nemet // Only need to check pointers in the same alias set. 6939f7dedc3SAdam Nemet if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 6940456327cSAdam Nemet continue; 6950456327cSAdam Nemet 6969f7dedc3SAdam Nemet Value *PtrI = RtCheck.Pointers[i].PointerValue; 6979f7dedc3SAdam Nemet Value *PtrJ = RtCheck.Pointers[j].PointerValue; 6980456327cSAdam Nemet 6990456327cSAdam Nemet unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 7000456327cSAdam Nemet unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 7010456327cSAdam Nemet if (ASi != ASj) { 702339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 7030456327cSAdam Nemet " different address spaces\n"); 7040456327cSAdam Nemet return false; 7050456327cSAdam Nemet } 7060456327cSAdam Nemet } 7070456327cSAdam Nemet } 7080456327cSAdam Nemet 7091b6b50a9SSilviu Baranga if (NeedRTCheck && CanDoRT) 71015840393SAdam Nemet RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 7111b6b50a9SSilviu Baranga 712155e8741SAdam Nemet DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 713ee61474aSAdam Nemet << " pointer comparisons.\n"); 714ee61474aSAdam Nemet 715ee61474aSAdam Nemet RtCheck.Need = NeedRTCheck; 716ee61474aSAdam Nemet 717ee61474aSAdam Nemet bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 718ee61474aSAdam Nemet if (!CanDoRTIfNeeded) 719ee61474aSAdam Nemet RtCheck.reset(); 720ee61474aSAdam Nemet return CanDoRTIfNeeded; 7210456327cSAdam Nemet } 7220456327cSAdam Nemet 7230456327cSAdam Nemet void AccessAnalysis::processMemAccesses() { 7240456327cSAdam Nemet // We process the set twice: first we process read-write pointers, last we 7250456327cSAdam Nemet // process read-only pointers. This allows us to skip dependence tests for 7260456327cSAdam Nemet // read-only pointers. 7270456327cSAdam Nemet 728339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 7290456327cSAdam Nemet DEBUG(dbgs() << " AST: "; AST.dump()); 7309c926579SAdam Nemet DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 7310456327cSAdam Nemet DEBUG({ 7320456327cSAdam Nemet for (auto A : Accesses) 7330456327cSAdam Nemet dbgs() << "\t" << *A.getPointer() << " (" << 7340456327cSAdam Nemet (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 7350456327cSAdam Nemet "read-only" : "read")) << ")\n"; 7360456327cSAdam Nemet }); 7370456327cSAdam Nemet 7380456327cSAdam Nemet // The AliasSetTracker has nicely partitioned our pointers by metadata 7390456327cSAdam Nemet // compatibility and potential for underlying-object overlap. As a result, we 7400456327cSAdam Nemet // only need to check for potential pointer dependencies within each alias 7410456327cSAdam Nemet // set. 7420456327cSAdam Nemet for (auto &AS : AST) { 7430456327cSAdam Nemet // Note that both the alias-set tracker and the alias sets themselves used 7440456327cSAdam Nemet // linked lists internally and so the iteration order here is deterministic 7450456327cSAdam Nemet // (matching the original instruction order within each set). 7460456327cSAdam Nemet 7470456327cSAdam Nemet bool SetHasWrite = false; 7480456327cSAdam Nemet 7490456327cSAdam Nemet // Map of pointers to last access encountered. 7500456327cSAdam Nemet typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 7510456327cSAdam Nemet UnderlyingObjToAccessMap ObjToLastAccess; 7520456327cSAdam Nemet 7530456327cSAdam Nemet // Set of access to check after all writes have been processed. 7540456327cSAdam Nemet PtrAccessSet DeferredAccesses; 7550456327cSAdam Nemet 7560456327cSAdam Nemet // Iterate over each alias set twice, once to process read/write pointers, 7570456327cSAdam Nemet // and then to process read-only pointers. 7580456327cSAdam Nemet for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 7590456327cSAdam Nemet bool UseDeferred = SetIteration > 0; 7600456327cSAdam Nemet PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 7610456327cSAdam Nemet 7620456327cSAdam Nemet for (auto AV : AS) { 7630456327cSAdam Nemet Value *Ptr = AV.getValue(); 7640456327cSAdam Nemet 7650456327cSAdam Nemet // For a single memory access in AliasSetTracker, Accesses may contain 7660456327cSAdam Nemet // both read and write, and they both need to be handled for CheckDeps. 7670456327cSAdam Nemet for (auto AC : S) { 7680456327cSAdam Nemet if (AC.getPointer() != Ptr) 7690456327cSAdam Nemet continue; 7700456327cSAdam Nemet 7710456327cSAdam Nemet bool IsWrite = AC.getInt(); 7720456327cSAdam Nemet 7730456327cSAdam Nemet // If we're using the deferred access set, then it contains only 7740456327cSAdam Nemet // reads. 7750456327cSAdam Nemet bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 7760456327cSAdam Nemet if (UseDeferred && !IsReadOnlyPtr) 7770456327cSAdam Nemet continue; 7780456327cSAdam Nemet // Otherwise, the pointer must be in the PtrAccessSet, either as a 7790456327cSAdam Nemet // read or a write. 7800456327cSAdam Nemet assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 7810456327cSAdam Nemet S.count(MemAccessInfo(Ptr, false))) && 7820456327cSAdam Nemet "Alias-set pointer not in the access set?"); 7830456327cSAdam Nemet 7840456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 7850456327cSAdam Nemet DepCands.insert(Access); 7860456327cSAdam Nemet 7870456327cSAdam Nemet // Memorize read-only pointers for later processing and skip them in 7880456327cSAdam Nemet // the first round (they need to be checked after we have seen all 7890456327cSAdam Nemet // write pointers). Note: we also mark pointer that are not 7900456327cSAdam Nemet // consecutive as "read-only" pointers (so that we check 7910456327cSAdam Nemet // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 7920456327cSAdam Nemet if (!UseDeferred && IsReadOnlyPtr) { 7930456327cSAdam Nemet DeferredAccesses.insert(Access); 7940456327cSAdam Nemet continue; 7950456327cSAdam Nemet } 7960456327cSAdam Nemet 7970456327cSAdam Nemet // If this is a write - check other reads and writes for conflicts. If 7980456327cSAdam Nemet // this is a read only check other writes for conflicts (but only if 7990456327cSAdam Nemet // there is no other write to the ptr - this is an optimization to 8000456327cSAdam Nemet // catch "a[i] = a[i] + " without having to do a dependence check). 8010456327cSAdam Nemet if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 8020456327cSAdam Nemet CheckDeps.insert(Access); 8035dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded = true; 8040456327cSAdam Nemet } 8050456327cSAdam Nemet 8060456327cSAdam Nemet if (IsWrite) 8070456327cSAdam Nemet SetHasWrite = true; 8080456327cSAdam Nemet 8090456327cSAdam Nemet // Create sets of pointers connected by a shared alias set and 8100456327cSAdam Nemet // underlying object. 8110456327cSAdam Nemet typedef SmallVector<Value *, 16> ValueVector; 8120456327cSAdam Nemet ValueVector TempObjects; 813e2b885c4SAdam Nemet 814e2b885c4SAdam Nemet GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 815e2b885c4SAdam Nemet DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 8160456327cSAdam Nemet for (Value *UnderlyingObj : TempObjects) { 817afd13519SMehdi Amini // nullptr never alias, don't join sets for pointer that have "null" 818afd13519SMehdi Amini // in their UnderlyingObjects list. 819afd13519SMehdi Amini if (isa<ConstantPointerNull>(UnderlyingObj)) 820afd13519SMehdi Amini continue; 821afd13519SMehdi Amini 8220456327cSAdam Nemet UnderlyingObjToAccessMap::iterator Prev = 8230456327cSAdam Nemet ObjToLastAccess.find(UnderlyingObj); 8240456327cSAdam Nemet if (Prev != ObjToLastAccess.end()) 8250456327cSAdam Nemet DepCands.unionSets(Access, Prev->second); 8260456327cSAdam Nemet 8270456327cSAdam Nemet ObjToLastAccess[UnderlyingObj] = Access; 828e2b885c4SAdam Nemet DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 8290456327cSAdam Nemet } 8300456327cSAdam Nemet } 8310456327cSAdam Nemet } 8320456327cSAdam Nemet } 8330456327cSAdam Nemet } 8340456327cSAdam Nemet } 8350456327cSAdam Nemet 8360456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) { 8370456327cSAdam Nemet if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 8380456327cSAdam Nemet return GEP->isInBounds(); 8390456327cSAdam Nemet return false; 8400456327cSAdam Nemet } 8410456327cSAdam Nemet 842c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 843c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing. 844c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 845ea63a7f5SSilviu Baranga PredicatedScalarEvolution &PSE, const Loop *L) { 846c4866d29SAdam Nemet // FIXME: This should probably only return true for NUW. 847c4866d29SAdam Nemet if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 848c4866d29SAdam Nemet return true; 849c4866d29SAdam Nemet 850c4866d29SAdam Nemet // Scalar evolution does not propagate the non-wrapping flags to values that 851c4866d29SAdam Nemet // are derived from a non-wrapping induction variable because non-wrapping 852c4866d29SAdam Nemet // could be flow-sensitive. 853c4866d29SAdam Nemet // 854c4866d29SAdam Nemet // Look through the potentially overflowing instruction to try to prove 855c4866d29SAdam Nemet // non-wrapping for the *specific* value of Ptr. 856c4866d29SAdam Nemet 857c4866d29SAdam Nemet // The arithmetic implied by an inbounds GEP can't overflow. 858c4866d29SAdam Nemet auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 859c4866d29SAdam Nemet if (!GEP || !GEP->isInBounds()) 860c4866d29SAdam Nemet return false; 861c4866d29SAdam Nemet 862c4866d29SAdam Nemet // Make sure there is only one non-const index and analyze that. 863c4866d29SAdam Nemet Value *NonConstIndex = nullptr; 8648b401013SDavid Majnemer for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 8658b401013SDavid Majnemer if (!isa<ConstantInt>(Index)) { 866c4866d29SAdam Nemet if (NonConstIndex) 867c4866d29SAdam Nemet return false; 8688b401013SDavid Majnemer NonConstIndex = Index; 869c4866d29SAdam Nemet } 870c4866d29SAdam Nemet if (!NonConstIndex) 871c4866d29SAdam Nemet // The recurrence is on the pointer, ignore for now. 872c4866d29SAdam Nemet return false; 873c4866d29SAdam Nemet 874c4866d29SAdam Nemet // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 875c4866d29SAdam Nemet // AddRec using a NSW operation. 876c4866d29SAdam Nemet if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 877c4866d29SAdam Nemet if (OBO->hasNoSignedWrap() && 878c4866d29SAdam Nemet // Assume constant for other the operand so that the AddRec can be 879c4866d29SAdam Nemet // easily found. 880c4866d29SAdam Nemet isa<ConstantInt>(OBO->getOperand(1))) { 881ea63a7f5SSilviu Baranga auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 882c4866d29SAdam Nemet 883c4866d29SAdam Nemet if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 884c4866d29SAdam Nemet return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 885c4866d29SAdam Nemet } 886c4866d29SAdam Nemet 887c4866d29SAdam Nemet return false; 888c4866d29SAdam Nemet } 889c4866d29SAdam Nemet 8900456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride. 8917afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 892ea63a7f5SSilviu Baranga const Loop *Lp, const ValueToValueMap &StridesMap, 8935f8cc0c3SElena Demikhovsky bool Assume, bool ShouldCheckWrap) { 894e3dcce97SCraig Topper Type *Ty = Ptr->getType(); 8950456327cSAdam Nemet assert(Ty->isPointerTy() && "Unexpected non-ptr"); 8960456327cSAdam Nemet 8970456327cSAdam Nemet // Make sure that the pointer does not point to aggregate types. 898e3dcce97SCraig Topper auto *PtrTy = cast<PointerType>(Ty); 8990456327cSAdam Nemet if (PtrTy->getElementType()->isAggregateType()) { 900ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 901ea63a7f5SSilviu Baranga << "\n"); 9020456327cSAdam Nemet return 0; 9030456327cSAdam Nemet } 9040456327cSAdam Nemet 9059cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 9060456327cSAdam Nemet 9070456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 908ea63a7f5SSilviu Baranga if (Assume && !AR) 909d68ed854SSilviu Baranga AR = PSE.getAsAddRec(Ptr); 910ea63a7f5SSilviu Baranga 9110456327cSAdam Nemet if (!AR) { 912ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 913ea63a7f5SSilviu Baranga << " SCEV: " << *PtrScev << "\n"); 9140456327cSAdam Nemet return 0; 9150456327cSAdam Nemet } 9160456327cSAdam Nemet 9170456327cSAdam Nemet // The accesss function must stride over the innermost loop. 9180456327cSAdam Nemet if (Lp != AR->getLoop()) { 919339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 920ea63a7f5SSilviu Baranga *Ptr << " SCEV: " << *AR << "\n"); 921a02ce98bSKyle Butt return 0; 9220456327cSAdam Nemet } 9230456327cSAdam Nemet 9240456327cSAdam Nemet // The address calculation must not wrap. Otherwise, a dependence could be 9250456327cSAdam Nemet // inverted. 9260456327cSAdam Nemet // An inbounds getelementptr that is a AddRec with a unit stride 9270456327cSAdam Nemet // cannot wrap per definition. The unit stride requirement is checked later. 9280456327cSAdam Nemet // An getelementptr without an inbounds attribute and unit stride would have 9290456327cSAdam Nemet // to access the pointer value "0" which is undefined behavior in address 9300456327cSAdam Nemet // space 0, therefore we can also vectorize this case. 9310456327cSAdam Nemet bool IsInBoundsGEP = isInBoundsGep(Ptr); 9325f8cc0c3SElena Demikhovsky bool IsNoWrapAddRec = !ShouldCheckWrap || 933ea63a7f5SSilviu Baranga PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 934ea63a7f5SSilviu Baranga isNoWrapAddRec(Ptr, AR, PSE, Lp); 9350456327cSAdam Nemet bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 9360456327cSAdam Nemet if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 937ea63a7f5SSilviu Baranga if (Assume) { 938ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 939ea63a7f5SSilviu Baranga IsNoWrapAddRec = true; 940ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 941ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 942ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 943ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 944ea63a7f5SSilviu Baranga } else { 945339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 946ea63a7f5SSilviu Baranga << *Ptr << " SCEV: " << *AR << "\n"); 9470456327cSAdam Nemet return 0; 9480456327cSAdam Nemet } 949ea63a7f5SSilviu Baranga } 9500456327cSAdam Nemet 9510456327cSAdam Nemet // Check the step is constant. 9529cd9a7e3SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 9530456327cSAdam Nemet 954943befedSAdam Nemet // Calculate the pointer stride and check if it is constant. 9550456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 9560456327cSAdam Nemet if (!C) { 957339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 958ea63a7f5SSilviu Baranga " SCEV: " << *AR << "\n"); 9590456327cSAdam Nemet return 0; 9600456327cSAdam Nemet } 9610456327cSAdam Nemet 962a28d91d8SMehdi Amini auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 963a28d91d8SMehdi Amini int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 9640de2feceSSanjoy Das const APInt &APStepVal = C->getAPInt(); 9650456327cSAdam Nemet 9660456327cSAdam Nemet // Huge step value - give up. 9670456327cSAdam Nemet if (APStepVal.getBitWidth() > 64) 9680456327cSAdam Nemet return 0; 9690456327cSAdam Nemet 9700456327cSAdam Nemet int64_t StepVal = APStepVal.getSExtValue(); 9710456327cSAdam Nemet 9720456327cSAdam Nemet // Strided access. 9730456327cSAdam Nemet int64_t Stride = StepVal / Size; 9740456327cSAdam Nemet int64_t Rem = StepVal % Size; 9750456327cSAdam Nemet if (Rem) 9760456327cSAdam Nemet return 0; 9770456327cSAdam Nemet 9780456327cSAdam Nemet // If the SCEV could wrap but we have an inbounds gep with a unit stride we 9790456327cSAdam Nemet // know we can't "wrap around the address space". In case of address space 9800456327cSAdam Nemet // zero we know that this won't happen without triggering undefined behavior. 9810456327cSAdam Nemet if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 982ea63a7f5SSilviu Baranga Stride != 1 && Stride != -1) { 983ea63a7f5SSilviu Baranga if (Assume) { 984ea63a7f5SSilviu Baranga // We can avoid this case by adding a run-time check. 985ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 986ea63a7f5SSilviu Baranga << "inbouds or in address space 0 may wrap:\n" 987ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 988ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 989ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 990ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 991ea63a7f5SSilviu Baranga } else 9920456327cSAdam Nemet return 0; 993ea63a7f5SSilviu Baranga } 9940456327cSAdam Nemet 9950456327cSAdam Nemet return Stride; 9960456327cSAdam Nemet } 9970456327cSAdam Nemet 998f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction. 999f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction. 1000f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) { 10018b401013SDavid Majnemer if (auto *LI = dyn_cast<LoadInst>(I)) 1002f1c00a22SHaicheng Wu return LI->getPointerOperand(); 10038b401013SDavid Majnemer if (auto *SI = dyn_cast<StoreInst>(I)) 1004f1c00a22SHaicheng Wu return SI->getPointerOperand(); 1005f1c00a22SHaicheng Wu return nullptr; 1006f1c00a22SHaicheng Wu } 1007f1c00a22SHaicheng Wu 1008f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction. 1009f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction. 1010f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) { 1011f1c00a22SHaicheng Wu if (LoadInst *L = dyn_cast<LoadInst>(I)) 1012f1c00a22SHaicheng Wu return L->getPointerAddressSpace(); 1013f1c00a22SHaicheng Wu if (StoreInst *S = dyn_cast<StoreInst>(I)) 1014f1c00a22SHaicheng Wu return S->getPointerAddressSpace(); 1015f1c00a22SHaicheng Wu return -1; 1016f1c00a22SHaicheng Wu } 1017f1c00a22SHaicheng Wu 1018f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive. 1019f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1020f1c00a22SHaicheng Wu ScalarEvolution &SE, bool CheckType) { 1021f1c00a22SHaicheng Wu Value *PtrA = getPointerOperand(A); 1022f1c00a22SHaicheng Wu Value *PtrB = getPointerOperand(B); 1023f1c00a22SHaicheng Wu unsigned ASA = getAddressSpaceOperand(A); 1024f1c00a22SHaicheng Wu unsigned ASB = getAddressSpaceOperand(B); 1025f1c00a22SHaicheng Wu 1026f1c00a22SHaicheng Wu // Check that the address spaces match and that the pointers are valid. 1027f1c00a22SHaicheng Wu if (!PtrA || !PtrB || (ASA != ASB)) 1028f1c00a22SHaicheng Wu return false; 1029f1c00a22SHaicheng Wu 1030f1c00a22SHaicheng Wu // Make sure that A and B are different pointers. 1031f1c00a22SHaicheng Wu if (PtrA == PtrB) 1032f1c00a22SHaicheng Wu return false; 1033f1c00a22SHaicheng Wu 1034f1c00a22SHaicheng Wu // Make sure that A and B have the same type if required. 1035f1c00a22SHaicheng Wu if (CheckType && PtrA->getType() != PtrB->getType()) 1036f1c00a22SHaicheng Wu return false; 1037f1c00a22SHaicheng Wu 1038f1c00a22SHaicheng Wu unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1039f1c00a22SHaicheng Wu Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1040f1c00a22SHaicheng Wu APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1041f1c00a22SHaicheng Wu 1042f1c00a22SHaicheng Wu APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1043f1c00a22SHaicheng Wu PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1044f1c00a22SHaicheng Wu PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1045f1c00a22SHaicheng Wu 1046f1c00a22SHaicheng Wu // OffsetDelta = OffsetB - OffsetA; 1047f1c00a22SHaicheng Wu const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1048f1c00a22SHaicheng Wu const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1049f1c00a22SHaicheng Wu const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1050f1c00a22SHaicheng Wu const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1051f1c00a22SHaicheng Wu const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1052f1c00a22SHaicheng Wu // Check if they are based on the same pointer. That makes the offsets 1053f1c00a22SHaicheng Wu // sufficient. 1054f1c00a22SHaicheng Wu if (PtrA == PtrB) 1055f1c00a22SHaicheng Wu return OffsetDelta == Size; 1056f1c00a22SHaicheng Wu 1057f1c00a22SHaicheng Wu // Compute the necessary base pointer delta to have the necessary final delta 1058f1c00a22SHaicheng Wu // equal to the size. 1059f1c00a22SHaicheng Wu // BaseDelta = Size - OffsetDelta; 1060f1c00a22SHaicheng Wu const SCEV *SizeSCEV = SE.getConstant(Size); 1061f1c00a22SHaicheng Wu const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1062f1c00a22SHaicheng Wu 1063f1c00a22SHaicheng Wu // Otherwise compute the distance with SCEV between the base pointers. 1064f1c00a22SHaicheng Wu const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1065f1c00a22SHaicheng Wu const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1066f1c00a22SHaicheng Wu const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1067f1c00a22SHaicheng Wu return X == PtrSCEVB; 1068f1c00a22SHaicheng Wu } 1069f1c00a22SHaicheng Wu 10709c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 10719c926579SAdam Nemet switch (Type) { 10729c926579SAdam Nemet case NoDep: 10739c926579SAdam Nemet case Forward: 10749c926579SAdam Nemet case BackwardVectorizable: 10759c926579SAdam Nemet return true; 10769c926579SAdam Nemet 10779c926579SAdam Nemet case Unknown: 10789c926579SAdam Nemet case ForwardButPreventsForwarding: 10799c926579SAdam Nemet case Backward: 10809c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 10819c926579SAdam Nemet return false; 10829c926579SAdam Nemet } 1083d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 10849c926579SAdam Nemet } 10859c926579SAdam Nemet 1086397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const { 10879c926579SAdam Nemet switch (Type) { 10889c926579SAdam Nemet case NoDep: 10899c926579SAdam Nemet case Forward: 10909c926579SAdam Nemet case ForwardButPreventsForwarding: 1091397f5829SAdam Nemet case Unknown: 10929c926579SAdam Nemet return false; 10939c926579SAdam Nemet 10949c926579SAdam Nemet case BackwardVectorizable: 10959c926579SAdam Nemet case Backward: 10969c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 10979c926579SAdam Nemet return true; 10989c926579SAdam Nemet } 1099d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 11009c926579SAdam Nemet } 11019c926579SAdam Nemet 1102397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1103397f5829SAdam Nemet return isBackward() || Type == Unknown; 1104397f5829SAdam Nemet } 1105397f5829SAdam Nemet 1106397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const { 1107397f5829SAdam Nemet switch (Type) { 1108397f5829SAdam Nemet case Forward: 1109397f5829SAdam Nemet case ForwardButPreventsForwarding: 1110397f5829SAdam Nemet return true; 1111397f5829SAdam Nemet 1112397f5829SAdam Nemet case NoDep: 1113397f5829SAdam Nemet case Unknown: 1114397f5829SAdam Nemet case BackwardVectorizable: 1115397f5829SAdam Nemet case Backward: 1116397f5829SAdam Nemet case BackwardVectorizableButPreventsForwarding: 1117397f5829SAdam Nemet return false; 1118397f5829SAdam Nemet } 1119397f5829SAdam Nemet llvm_unreachable("unexpected DepType!"); 1120397f5829SAdam Nemet } 1121397f5829SAdam Nemet 11227afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 11237afb46d3SDavid Majnemer uint64_t TypeByteSize) { 11240456327cSAdam Nemet // If loads occur at a distance that is not a multiple of a feasible vector 11250456327cSAdam Nemet // factor store-load forwarding does not take place. 11260456327cSAdam Nemet // Positive dependences might cause troubles because vectorizing them might 11270456327cSAdam Nemet // prevent store-load forwarding making vectorized code run a lot slower. 11280456327cSAdam Nemet // a[i] = a[i-3] ^ a[i-8]; 11290456327cSAdam Nemet // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 11300456327cSAdam Nemet // hence on your typical architecture store-load forwarding does not take 11310456327cSAdam Nemet // place. Vectorizing in such cases does not make sense. 11320456327cSAdam Nemet // Store-load forwarding distance. 1133884d313bSAdam Nemet 1134884d313bSAdam Nemet // After this many iterations store-to-load forwarding conflicts should not 1135884d313bSAdam Nemet // cause any slowdowns. 11367afb46d3SDavid Majnemer const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 11370456327cSAdam Nemet // Maximum vector factor. 11387afb46d3SDavid Majnemer uint64_t MaxVFWithoutSLForwardIssues = std::min( 11392c34ab51SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 11400456327cSAdam Nemet 1141884d313bSAdam Nemet // Compute the smallest VF at which the store and load would be misaligned. 11427afb46d3SDavid Majnemer for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 11439b5852aeSAdam Nemet VF *= 2) { 1144884d313bSAdam Nemet // If the number of vector iteration between the store and the load are 1145884d313bSAdam Nemet // small we could incur conflicts. 1146884d313bSAdam Nemet if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 11479b5852aeSAdam Nemet MaxVFWithoutSLForwardIssues = (VF >>= 1); 11480456327cSAdam Nemet break; 11490456327cSAdam Nemet } 11500456327cSAdam Nemet } 11510456327cSAdam Nemet 11520456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 11539b5852aeSAdam Nemet DEBUG(dbgs() << "LAA: Distance " << Distance 11549b5852aeSAdam Nemet << " that could cause a store-load forwarding conflict\n"); 11550456327cSAdam Nemet return true; 11560456327cSAdam Nemet } 11570456327cSAdam Nemet 11580456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1159f219c647SAdam Nemet MaxVFWithoutSLForwardIssues != 1160f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize) 11610456327cSAdam Nemet MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 11620456327cSAdam Nemet return false; 11630456327cSAdam Nemet } 11640456327cSAdam Nemet 1165751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride. 1166751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in 1167751004a6SHao Liu /// bytes. 1168751004a6SHao Liu /// 1169751004a6SHao Liu /// \returns true if they are independent. 11707afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 11717afb46d3SDavid Majnemer uint64_t TypeByteSize) { 1172751004a6SHao Liu assert(Stride > 1 && "The stride must be greater than 1"); 1173751004a6SHao Liu assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1174751004a6SHao Liu assert(Distance > 0 && "The distance must be non-zero"); 1175751004a6SHao Liu 1176751004a6SHao Liu // Skip if the distance is not multiple of type byte size. 1177751004a6SHao Liu if (Distance % TypeByteSize) 1178751004a6SHao Liu return false; 1179751004a6SHao Liu 11807afb46d3SDavid Majnemer uint64_t ScaledDist = Distance / TypeByteSize; 1181751004a6SHao Liu 1182751004a6SHao Liu // No dependence if the scaled distance is not multiple of the stride. 1183751004a6SHao Liu // E.g. 1184751004a6SHao Liu // for (i = 0; i < 1024 ; i += 4) 1185751004a6SHao Liu // A[i+2] = A[i] + 1; 1186751004a6SHao Liu // 1187751004a6SHao Liu // Two accesses in memory (scaled distance is 2, stride is 4): 1188751004a6SHao Liu // | A[0] | | | | A[4] | | | | 1189751004a6SHao Liu // | | | A[2] | | | | A[6] | | 1190751004a6SHao Liu // 1191751004a6SHao Liu // E.g. 1192751004a6SHao Liu // for (i = 0; i < 1024 ; i += 3) 1193751004a6SHao Liu // A[i+4] = A[i] + 1; 1194751004a6SHao Liu // 1195751004a6SHao Liu // Two accesses in memory (scaled distance is 4, stride is 3): 1196751004a6SHao Liu // | A[0] | | | A[3] | | | A[6] | | | 1197751004a6SHao Liu // | | | | | A[4] | | | A[7] | | 1198751004a6SHao Liu return ScaledDist % Stride; 1199751004a6SHao Liu } 1200751004a6SHao Liu 12019c926579SAdam Nemet MemoryDepChecker::Dependence::DepType 12029c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 12030456327cSAdam Nemet const MemAccessInfo &B, unsigned BIdx, 12048bc61df9SAdam Nemet const ValueToValueMap &Strides) { 12050456327cSAdam Nemet assert (AIdx < BIdx && "Must pass arguments in program order"); 12060456327cSAdam Nemet 12070456327cSAdam Nemet Value *APtr = A.getPointer(); 12080456327cSAdam Nemet Value *BPtr = B.getPointer(); 12090456327cSAdam Nemet bool AIsWrite = A.getInt(); 12100456327cSAdam Nemet bool BIsWrite = B.getInt(); 12110456327cSAdam Nemet 12120456327cSAdam Nemet // Two reads are independent. 12130456327cSAdam Nemet if (!AIsWrite && !BIsWrite) 12149c926579SAdam Nemet return Dependence::NoDep; 12150456327cSAdam Nemet 12160456327cSAdam Nemet // We cannot check pointers in different address spaces. 12170456327cSAdam Nemet if (APtr->getType()->getPointerAddressSpace() != 12180456327cSAdam Nemet BPtr->getType()->getPointerAddressSpace()) 12199c926579SAdam Nemet return Dependence::Unknown; 12200456327cSAdam Nemet 12217afb46d3SDavid Majnemer int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 12227afb46d3SDavid Majnemer int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 12230456327cSAdam Nemet 1224adf4b739SSilviu Baranga const SCEV *Src = PSE.getSCEV(APtr); 1225adf4b739SSilviu Baranga const SCEV *Sink = PSE.getSCEV(BPtr); 12260456327cSAdam Nemet 12270456327cSAdam Nemet // If the induction step is negative we have to invert source and sink of the 12280456327cSAdam Nemet // dependence. 12290456327cSAdam Nemet if (StrideAPtr < 0) { 12300456327cSAdam Nemet std::swap(APtr, BPtr); 12310456327cSAdam Nemet std::swap(Src, Sink); 12320456327cSAdam Nemet std::swap(AIsWrite, BIsWrite); 12330456327cSAdam Nemet std::swap(AIdx, BIdx); 12340456327cSAdam Nemet std::swap(StrideAPtr, StrideBPtr); 12350456327cSAdam Nemet } 12360456327cSAdam Nemet 12379cd9a7e3SSilviu Baranga const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 12380456327cSAdam Nemet 1239339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 12400456327cSAdam Nemet << "(Induction step: " << StrideAPtr << ")\n"); 1241339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 12420456327cSAdam Nemet << *InstMap[BIdx] << ": " << *Dist << "\n"); 12430456327cSAdam Nemet 1244943befedSAdam Nemet // Need accesses with constant stride. We don't want to vectorize 12450456327cSAdam Nemet // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 12460456327cSAdam Nemet // the address space. 12470456327cSAdam Nemet if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1248943befedSAdam Nemet DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 12499c926579SAdam Nemet return Dependence::Unknown; 12500456327cSAdam Nemet } 12510456327cSAdam Nemet 12520456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 12530456327cSAdam Nemet if (!C) { 1254339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 12550456327cSAdam Nemet ShouldRetryWithRuntimeCheck = true; 12569c926579SAdam Nemet return Dependence::Unknown; 12570456327cSAdam Nemet } 12580456327cSAdam Nemet 12590456327cSAdam Nemet Type *ATy = APtr->getType()->getPointerElementType(); 12600456327cSAdam Nemet Type *BTy = BPtr->getType()->getPointerElementType(); 1261a28d91d8SMehdi Amini auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 12627afb46d3SDavid Majnemer uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 12630456327cSAdam Nemet 12640de2feceSSanjoy Das const APInt &Val = C->getAPInt(); 12656feebe98SMatthew Simpson int64_t Distance = Val.getSExtValue(); 12667afb46d3SDavid Majnemer uint64_t Stride = std::abs(StrideAPtr); 12676feebe98SMatthew Simpson 12686feebe98SMatthew Simpson // Attempt to prove strided accesses independent. 12696feebe98SMatthew Simpson if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 12706feebe98SMatthew Simpson areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 12716feebe98SMatthew Simpson DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 12726feebe98SMatthew Simpson return Dependence::NoDep; 12736feebe98SMatthew Simpson } 12746feebe98SMatthew Simpson 12756feebe98SMatthew Simpson // Negative distances are not plausible dependencies. 12760456327cSAdam Nemet if (Val.isNegative()) { 12770456327cSAdam Nemet bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 127837ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 12790456327cSAdam Nemet (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1280b8486e5aSAdam Nemet ATy != BTy)) { 1281b8486e5aSAdam Nemet DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 12829c926579SAdam Nemet return Dependence::ForwardButPreventsForwarding; 1283b8486e5aSAdam Nemet } 12840456327cSAdam Nemet 1285724ab223SAdam Nemet DEBUG(dbgs() << "LAA: Dependence is negative\n"); 12869c926579SAdam Nemet return Dependence::Forward; 12870456327cSAdam Nemet } 12880456327cSAdam Nemet 12890456327cSAdam Nemet // Write to the same location with the same size. 12900456327cSAdam Nemet // Could be improved to assert type sizes are the same (i32 == float, etc). 12910456327cSAdam Nemet if (Val == 0) { 12920456327cSAdam Nemet if (ATy == BTy) 1293d7037c56SAdam Nemet return Dependence::Forward; 1294339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 12959c926579SAdam Nemet return Dependence::Unknown; 12960456327cSAdam Nemet } 12970456327cSAdam Nemet 12980456327cSAdam Nemet assert(Val.isStrictlyPositive() && "Expect a positive value"); 12990456327cSAdam Nemet 13000456327cSAdam Nemet if (ATy != BTy) { 130104d4163eSAdam Nemet DEBUG(dbgs() << 1302339f42b3SAdam Nemet "LAA: ReadWrite-Write positive dependency with different types\n"); 13039c926579SAdam Nemet return Dependence::Unknown; 13040456327cSAdam Nemet } 13050456327cSAdam Nemet 13060456327cSAdam Nemet // Bail out early if passed-in parameters make vectorization not feasible. 1307f219c647SAdam Nemet unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1308f219c647SAdam Nemet VectorizerParams::VectorizationFactor : 1); 1309f219c647SAdam Nemet unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1310f219c647SAdam Nemet VectorizerParams::VectorizationInterleave : 1); 1311751004a6SHao Liu // The minimum number of iterations for a vectorized/unrolled version. 1312751004a6SHao Liu unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 13130456327cSAdam Nemet 1314751004a6SHao Liu // It's not vectorizable if the distance is smaller than the minimum distance 1315751004a6SHao Liu // needed for a vectroized/unrolled version. Vectorizing one iteration in 1316751004a6SHao Liu // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1317751004a6SHao Liu // TypeByteSize (No need to plus the last gap distance). 1318751004a6SHao Liu // 1319751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1320751004a6SHao Liu // foo(int *A) { 1321751004a6SHao Liu // int *B = (int *)((char *)A + 14); 1322751004a6SHao Liu // for (i = 0 ; i < 1024 ; i += 2) 1323751004a6SHao Liu // B[i] = A[i] + 1; 1324751004a6SHao Liu // } 1325751004a6SHao Liu // 1326751004a6SHao Liu // Two accesses in memory (stride is 2): 1327751004a6SHao Liu // | A[0] | | A[2] | | A[4] | | A[6] | | 1328751004a6SHao Liu // | B[0] | | B[2] | | B[4] | 1329751004a6SHao Liu // 1330751004a6SHao Liu // Distance needs for vectorizing iterations except the last iteration: 1331751004a6SHao Liu // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1332751004a6SHao Liu // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1333751004a6SHao Liu // 1334751004a6SHao Liu // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1335751004a6SHao Liu // 12, which is less than distance. 1336751004a6SHao Liu // 1337751004a6SHao Liu // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1338751004a6SHao Liu // the minimum distance needed is 28, which is greater than distance. It is 1339751004a6SHao Liu // not safe to do vectorization. 13407afb46d3SDavid Majnemer uint64_t MinDistanceNeeded = 1341751004a6SHao Liu TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 13427afb46d3SDavid Majnemer if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1343751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1344751004a6SHao Liu << '\n'); 1345751004a6SHao Liu return Dependence::Backward; 1346751004a6SHao Liu } 1347751004a6SHao Liu 1348751004a6SHao Liu // Unsafe if the minimum distance needed is greater than max safe distance. 1349751004a6SHao Liu if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1350751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because it needs at least " 1351751004a6SHao Liu << MinDistanceNeeded << " size in bytes"); 13529c926579SAdam Nemet return Dependence::Backward; 13530456327cSAdam Nemet } 13540456327cSAdam Nemet 13559cc0c399SAdam Nemet // Positive distance bigger than max vectorization factor. 1356751004a6SHao Liu // FIXME: Should use max factor instead of max distance in bytes, which could 1357751004a6SHao Liu // not handle different types. 1358751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1359751004a6SHao Liu // void foo (int *A, char *B) { 1360751004a6SHao Liu // for (unsigned i = 0; i < 1024; i++) { 1361751004a6SHao Liu // A[i+2] = A[i] + 1; 1362751004a6SHao Liu // B[i+2] = B[i] + 1; 1363751004a6SHao Liu // } 1364751004a6SHao Liu // } 1365751004a6SHao Liu // 1366751004a6SHao Liu // This case is currently unsafe according to the max safe distance. If we 1367751004a6SHao Liu // analyze the two accesses on array B, the max safe dependence distance 1368751004a6SHao Liu // is 2. Then we analyze the accesses on array A, the minimum distance needed 1369751004a6SHao Liu // is 8, which is less than 2 and forbidden vectorization, But actually 1370751004a6SHao Liu // both A and B could be vectorized by 2 iterations. 1371751004a6SHao Liu MaxSafeDepDistBytes = 13727afb46d3SDavid Majnemer std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 13730456327cSAdam Nemet 13740456327cSAdam Nemet bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 137537ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 13760456327cSAdam Nemet couldPreventStoreLoadForward(Distance, TypeByteSize)) 13779c926579SAdam Nemet return Dependence::BackwardVectorizableButPreventsForwarding; 13780456327cSAdam Nemet 1379751004a6SHao Liu DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1380751004a6SHao Liu << " with max VF = " 1381751004a6SHao Liu << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 13820456327cSAdam Nemet 13839c926579SAdam Nemet return Dependence::BackwardVectorizable; 13840456327cSAdam Nemet } 13850456327cSAdam Nemet 1386dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 13870456327cSAdam Nemet MemAccessInfoSet &CheckDeps, 13888bc61df9SAdam Nemet const ValueToValueMap &Strides) { 13890456327cSAdam Nemet 13907afb46d3SDavid Majnemer MaxSafeDepDistBytes = -1; 13910456327cSAdam Nemet while (!CheckDeps.empty()) { 13920456327cSAdam Nemet MemAccessInfo CurAccess = *CheckDeps.begin(); 13930456327cSAdam Nemet 13940456327cSAdam Nemet // Get the relevant memory access set. 13950456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::iterator I = 13960456327cSAdam Nemet AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 13970456327cSAdam Nemet 13980456327cSAdam Nemet // Check accesses within this set. 13997a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AI = 14007a083814SRichard Trieu AccessSets.member_begin(I); 14017a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AE = 14027a083814SRichard Trieu AccessSets.member_end(); 14030456327cSAdam Nemet 14040456327cSAdam Nemet // Check every access pair. 14050456327cSAdam Nemet while (AI != AE) { 14060456327cSAdam Nemet CheckDeps.erase(*AI); 14070456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 14080456327cSAdam Nemet while (OI != AE) { 14090456327cSAdam Nemet // Check every accessing instruction pair in program order. 14100456327cSAdam Nemet for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 14110456327cSAdam Nemet I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 14120456327cSAdam Nemet for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 14130456327cSAdam Nemet I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 14149c926579SAdam Nemet auto A = std::make_pair(&*AI, *I1); 14159c926579SAdam Nemet auto B = std::make_pair(&*OI, *I2); 14169c926579SAdam Nemet 14179c926579SAdam Nemet assert(*I1 != *I2); 14189c926579SAdam Nemet if (*I1 > *I2) 14199c926579SAdam Nemet std::swap(A, B); 14209c926579SAdam Nemet 14219c926579SAdam Nemet Dependence::DepType Type = 14229c926579SAdam Nemet isDependent(*A.first, A.second, *B.first, B.second, Strides); 14239c926579SAdam Nemet SafeForVectorization &= Dependence::isSafeForVectorization(Type); 14249c926579SAdam Nemet 1425a2df750fSAdam Nemet // Gather dependences unless we accumulated MaxDependences 14269c926579SAdam Nemet // dependences. In that case return as soon as we find the first 14279c926579SAdam Nemet // unsafe dependence. This puts a limit on this quadratic 14289c926579SAdam Nemet // algorithm. 1429a2df750fSAdam Nemet if (RecordDependences) { 1430a2df750fSAdam Nemet if (Type != Dependence::NoDep) 1431a2df750fSAdam Nemet Dependences.push_back(Dependence(A.second, B.second, Type)); 14329c926579SAdam Nemet 1433a2df750fSAdam Nemet if (Dependences.size() >= MaxDependences) { 1434a2df750fSAdam Nemet RecordDependences = false; 1435a2df750fSAdam Nemet Dependences.clear(); 14369c926579SAdam Nemet DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 14379c926579SAdam Nemet } 14389c926579SAdam Nemet } 1439a2df750fSAdam Nemet if (!RecordDependences && !SafeForVectorization) 14400456327cSAdam Nemet return false; 14410456327cSAdam Nemet } 14420456327cSAdam Nemet ++OI; 14430456327cSAdam Nemet } 14440456327cSAdam Nemet AI++; 14450456327cSAdam Nemet } 14460456327cSAdam Nemet } 14479c926579SAdam Nemet 1448a2df750fSAdam Nemet DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 14499c926579SAdam Nemet return SafeForVectorization; 14500456327cSAdam Nemet } 14510456327cSAdam Nemet 1452ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> 1453ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1454ec1e2bb6SAdam Nemet MemAccessInfo Access(Ptr, isWrite); 1455ec1e2bb6SAdam Nemet auto &IndexVector = Accesses.find(Access)->second; 1456ec1e2bb6SAdam Nemet 1457ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> Insts; 14582d006e76SDavid Majnemer transform(IndexVector, 1459ec1e2bb6SAdam Nemet std::back_inserter(Insts), 1460ec1e2bb6SAdam Nemet [&](unsigned Idx) { return this->InstMap[Idx]; }); 1461ec1e2bb6SAdam Nemet return Insts; 1462ec1e2bb6SAdam Nemet } 1463ec1e2bb6SAdam Nemet 146458913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = { 146558913d65SAdam Nemet "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 146658913d65SAdam Nemet "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 146758913d65SAdam Nemet 146858913d65SAdam Nemet void MemoryDepChecker::Dependence::print( 146958913d65SAdam Nemet raw_ostream &OS, unsigned Depth, 147058913d65SAdam Nemet const SmallVectorImpl<Instruction *> &Instrs) const { 147158913d65SAdam Nemet OS.indent(Depth) << DepName[Type] << ":\n"; 147258913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 147358913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 147458913d65SAdam Nemet } 147558913d65SAdam Nemet 1476929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() { 14778dcb3b6aSAdam Nemet // We need to have a loop header. 1478d8968f09SAdam Nemet DEBUG(dbgs() << "LAA: Found a loop in " 1479d8968f09SAdam Nemet << TheLoop->getHeader()->getParent()->getName() << ": " 1480d8968f09SAdam Nemet << TheLoop->getHeader()->getName() << '\n'); 14818dcb3b6aSAdam Nemet 1482929c38e8SAdam Nemet // We can only analyze innermost loops. 1483929c38e8SAdam Nemet if (!TheLoop->empty()) { 14848dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1485877ccee8SAdam Nemet recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1486929c38e8SAdam Nemet return false; 1487929c38e8SAdam Nemet } 1488929c38e8SAdam Nemet 1489929c38e8SAdam Nemet // We must have a single backedge. 1490929c38e8SAdam Nemet if (TheLoop->getNumBackEdges() != 1) { 14918dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1492877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1493877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1494929c38e8SAdam Nemet return false; 1495929c38e8SAdam Nemet } 1496929c38e8SAdam Nemet 1497929c38e8SAdam Nemet // We must have a single exiting block. 1498929c38e8SAdam Nemet if (!TheLoop->getExitingBlock()) { 14998dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1500877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1501877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1502929c38e8SAdam Nemet return false; 1503929c38e8SAdam Nemet } 1504929c38e8SAdam Nemet 1505929c38e8SAdam Nemet // We only handle bottom-tested loops, i.e. loop in which the condition is 1506929c38e8SAdam Nemet // checked at the end of each iteration. With that we can assume that all 1507929c38e8SAdam Nemet // instructions in the loop are executed the same number of times. 1508929c38e8SAdam Nemet if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 15098dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1510877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1511877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1512929c38e8SAdam Nemet return false; 1513929c38e8SAdam Nemet } 1514929c38e8SAdam Nemet 1515929c38e8SAdam Nemet // ScalarEvolution needs to be able to find the exit count. 151694734eefSXinliang David Li const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 151794734eefSXinliang David Li if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1518877ccee8SAdam Nemet recordAnalysis("CantComputeNumberOfIterations") 1519877ccee8SAdam Nemet << "could not determine number of loop iterations"; 1520929c38e8SAdam Nemet DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1521929c38e8SAdam Nemet return false; 1522929c38e8SAdam Nemet } 1523929c38e8SAdam Nemet 1524929c38e8SAdam Nemet return true; 1525929c38e8SAdam Nemet } 1526929c38e8SAdam Nemet 1527b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 15287da74abfSAdam Nemet const TargetLibraryInfo *TLI, 15297da74abfSAdam Nemet DominatorTree *DT) { 15300456327cSAdam Nemet typedef SmallPtrSet<Value*, 16> ValueSet; 15310456327cSAdam Nemet 1532e3e3b994SMatthew Simpson // Holds the Load and Store instructions. 1533e3e3b994SMatthew Simpson SmallVector<LoadInst *, 16> Loads; 1534e3e3b994SMatthew Simpson SmallVector<StoreInst *, 16> Stores; 15350456327cSAdam Nemet 15360456327cSAdam Nemet // Holds all the different accesses in the loop. 15370456327cSAdam Nemet unsigned NumReads = 0; 15380456327cSAdam Nemet unsigned NumReadWrites = 0; 15390456327cSAdam Nemet 1540ce030acbSXinliang David Li PtrRtChecking->Pointers.clear(); 1541ce030acbSXinliang David Li PtrRtChecking->Need = false; 15420456327cSAdam Nemet 15430456327cSAdam Nemet const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 15440456327cSAdam Nemet 15450456327cSAdam Nemet // For each block. 15468b401013SDavid Majnemer for (BasicBlock *BB : TheLoop->blocks()) { 15470456327cSAdam Nemet // Scan the BB and collect legal loads and stores. 15488b401013SDavid Majnemer for (Instruction &I : *BB) { 15490456327cSAdam Nemet // If this is a load, save it. If this instruction can read from memory 15500456327cSAdam Nemet // but is not a load, then we quit. Notice that we don't handle function 15510456327cSAdam Nemet // calls that read or write. 15528b401013SDavid Majnemer if (I.mayReadFromMemory()) { 15530456327cSAdam Nemet // Many math library functions read the rounding mode. We will only 15540456327cSAdam Nemet // vectorize a loop if it contains known function calls that don't set 15550456327cSAdam Nemet // the flag. Therefore, it is safe to ignore this read from memory. 15568b401013SDavid Majnemer auto *Call = dyn_cast<CallInst>(&I); 1557b4b27230SDavid Majnemer if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 15580456327cSAdam Nemet continue; 15590456327cSAdam Nemet 15609b3cf604SMichael Zolotukhin // If the function has an explicit vectorized counterpart, we can safely 15619b3cf604SMichael Zolotukhin // assume that it can be vectorized. 15629b3cf604SMichael Zolotukhin if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 15639b3cf604SMichael Zolotukhin TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 15649b3cf604SMichael Zolotukhin continue; 15659b3cf604SMichael Zolotukhin 15668b401013SDavid Majnemer auto *Ld = dyn_cast<LoadInst>(&I); 15670456327cSAdam Nemet if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1568877ccee8SAdam Nemet recordAnalysis("NonSimpleLoad", Ld) 1569877ccee8SAdam Nemet << "read with atomic ordering or volatile read"; 1570339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1571436018c3SAdam Nemet CanVecMem = false; 1572436018c3SAdam Nemet return; 15730456327cSAdam Nemet } 15740456327cSAdam Nemet NumLoads++; 15750456327cSAdam Nemet Loads.push_back(Ld); 1576ce030acbSXinliang David Li DepChecker->addAccess(Ld); 1577a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1578c953bb99SAdam Nemet collectStridedAccess(Ld); 15790456327cSAdam Nemet continue; 15800456327cSAdam Nemet } 15810456327cSAdam Nemet 15820456327cSAdam Nemet // Save 'store' instructions. Abort if other instructions write to memory. 15838b401013SDavid Majnemer if (I.mayWriteToMemory()) { 15848b401013SDavid Majnemer auto *St = dyn_cast<StoreInst>(&I); 15850456327cSAdam Nemet if (!St) { 1586877ccee8SAdam Nemet recordAnalysis("CantVectorizeInstruction", St) 1587877ccee8SAdam Nemet << "instruction cannot be vectorized"; 1588436018c3SAdam Nemet CanVecMem = false; 1589436018c3SAdam Nemet return; 15900456327cSAdam Nemet } 15910456327cSAdam Nemet if (!St->isSimple() && !IsAnnotatedParallel) { 1592877ccee8SAdam Nemet recordAnalysis("NonSimpleStore", St) 1593877ccee8SAdam Nemet << "write with atomic ordering or volatile write"; 1594339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1595436018c3SAdam Nemet CanVecMem = false; 1596436018c3SAdam Nemet return; 15970456327cSAdam Nemet } 15980456327cSAdam Nemet NumStores++; 15990456327cSAdam Nemet Stores.push_back(St); 1600ce030acbSXinliang David Li DepChecker->addAccess(St); 1601a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1602c953bb99SAdam Nemet collectStridedAccess(St); 16030456327cSAdam Nemet } 16040456327cSAdam Nemet } // Next instr. 16050456327cSAdam Nemet } // Next block. 16060456327cSAdam Nemet 16070456327cSAdam Nemet // Now we have two lists that hold the loads and the stores. 16080456327cSAdam Nemet // Next, we find the pointers that they use. 16090456327cSAdam Nemet 16100456327cSAdam Nemet // Check if we see any stores. If there are no stores, then we don't 16110456327cSAdam Nemet // care if the pointers are *restrict*. 16120456327cSAdam Nemet if (!Stores.size()) { 1613339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1614436018c3SAdam Nemet CanVecMem = true; 1615436018c3SAdam Nemet return; 16160456327cSAdam Nemet } 16170456327cSAdam Nemet 1618dee666bcSAdam Nemet MemoryDepChecker::DepCandidates DependentAccesses; 1619a28d91d8SMehdi Amini AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 162094734eefSXinliang David Li AA, LI, DependentAccesses, *PSE); 16210456327cSAdam Nemet 16220456327cSAdam Nemet // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 16230456327cSAdam Nemet // multiple times on the same object. If the ptr is accessed twice, once 16240456327cSAdam Nemet // for read and once for write, it will only appear once (on the write 16250456327cSAdam Nemet // list). This is okay, since we are going to check for conflicts between 16260456327cSAdam Nemet // writes and between reads and writes, but not between reads and reads. 16270456327cSAdam Nemet ValueSet Seen; 16280456327cSAdam Nemet 1629e3e3b994SMatthew Simpson for (StoreInst *ST : Stores) { 16300456327cSAdam Nemet Value *Ptr = ST->getPointerOperand(); 1631ce48250fSAdam Nemet // Check for store to loop invariant address. 1632ce48250fSAdam Nemet StoreToLoopInvariantAddress |= isUniform(Ptr); 16330456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the read-write 16340456327cSAdam Nemet // list. At this phase it is only a 'write' list. 16350456327cSAdam Nemet if (Seen.insert(Ptr).second) { 16360456327cSAdam Nemet ++NumReadWrites; 16370456327cSAdam Nemet 1638ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(ST); 16390456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 16400456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 16410456327cSAdam Nemet // need runtime pointer checks. 164201abb2c3SAdam Nemet if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 16430456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 16440456327cSAdam Nemet 16450456327cSAdam Nemet Accesses.addStore(Loc); 16460456327cSAdam Nemet } 16470456327cSAdam Nemet } 16480456327cSAdam Nemet 16490456327cSAdam Nemet if (IsAnnotatedParallel) { 165004d4163eSAdam Nemet DEBUG(dbgs() 1651339f42b3SAdam Nemet << "LAA: A loop annotated parallel, ignore memory dependency " 16520456327cSAdam Nemet << "checks.\n"); 1653436018c3SAdam Nemet CanVecMem = true; 1654436018c3SAdam Nemet return; 16550456327cSAdam Nemet } 16560456327cSAdam Nemet 1657e3e3b994SMatthew Simpson for (LoadInst *LD : Loads) { 16580456327cSAdam Nemet Value *Ptr = LD->getPointerOperand(); 16590456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the 16600456327cSAdam Nemet // read list. If we *did* see it before, then it is already in 16610456327cSAdam Nemet // the read-write list. This allows us to vectorize expressions 16620456327cSAdam Nemet // such as A[i] += x; Because the address of A[i] is a read-write 16630456327cSAdam Nemet // pointer. This only works if the index of A[i] is consecutive. 16640456327cSAdam Nemet // If the address of i is unknown (for example A[B[i]]) then we may 16650456327cSAdam Nemet // read a few words, modify, and write a few words, and some of the 16660456327cSAdam Nemet // words may be written to the same address. 16670456327cSAdam Nemet bool IsReadOnlyPtr = false; 1668139ffba3SAdam Nemet if (Seen.insert(Ptr).second || 166994734eefSXinliang David Li !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 16700456327cSAdam Nemet ++NumReads; 16710456327cSAdam Nemet IsReadOnlyPtr = true; 16720456327cSAdam Nemet } 16730456327cSAdam Nemet 1674ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(LD); 16750456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 16760456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 16770456327cSAdam Nemet // need runtime pointer checks. 167801abb2c3SAdam Nemet if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 16790456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 16800456327cSAdam Nemet 16810456327cSAdam Nemet Accesses.addLoad(Loc, IsReadOnlyPtr); 16820456327cSAdam Nemet } 16830456327cSAdam Nemet 16840456327cSAdam Nemet // If we write (or read-write) to a single destination and there are no 16850456327cSAdam Nemet // other reads in this loop then is it safe to vectorize. 16860456327cSAdam Nemet if (NumReadWrites == 1 && NumReads == 0) { 1687339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1688436018c3SAdam Nemet CanVecMem = true; 1689436018c3SAdam Nemet return; 16900456327cSAdam Nemet } 16910456327cSAdam Nemet 16920456327cSAdam Nemet // Build dependence sets and check whether we need a runtime pointer bounds 16930456327cSAdam Nemet // check. 16940456327cSAdam Nemet Accesses.buildDependenceSets(); 16950456327cSAdam Nemet 16960456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 16970456327cSAdam Nemet // to place a runtime bound check. 169894734eefSXinliang David Li bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1699139ffba3SAdam Nemet TheLoop, SymbolicStrides); 1700ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1701877ccee8SAdam Nemet recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1702ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1703ee61474aSAdam Nemet << "the array bounds.\n"); 1704436018c3SAdam Nemet CanVecMem = false; 1705436018c3SAdam Nemet return; 17060456327cSAdam Nemet } 17070456327cSAdam Nemet 1708ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 17090456327cSAdam Nemet 1710436018c3SAdam Nemet CanVecMem = true; 17110456327cSAdam Nemet if (Accesses.isDependencyCheckNeeded()) { 1712339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1713ce030acbSXinliang David Li CanVecMem = DepChecker->areDepsSafe( 1714139ffba3SAdam Nemet DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1715ce030acbSXinliang David Li MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 17160456327cSAdam Nemet 1717ce030acbSXinliang David Li if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1718339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 17190456327cSAdam Nemet 17200456327cSAdam Nemet // Clear the dependency checks. We assume they are not needed. 1721ce030acbSXinliang David Li Accesses.resetDepChecks(*DepChecker); 17220456327cSAdam Nemet 1723ce030acbSXinliang David Li PtrRtChecking->reset(); 1724ce030acbSXinliang David Li PtrRtChecking->Need = true; 17250456327cSAdam Nemet 172694734eefSXinliang David Li auto *SE = PSE->getSE(); 1727ce030acbSXinliang David Li CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1728139ffba3SAdam Nemet SymbolicStrides, true); 172998a13719SSilviu Baranga 1730949e91a6SAdam Nemet // Check that we found the bounds for the pointer. 1731ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1732877ccee8SAdam Nemet recordAnalysis("CantCheckMemDepsAtRunTime") 1733877ccee8SAdam Nemet << "cannot check memory dependencies at runtime"; 1734b6dc76ffSAdam Nemet DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1735b6dc76ffSAdam Nemet CanVecMem = false; 1736b6dc76ffSAdam Nemet return; 1737b6dc76ffSAdam Nemet } 1738b6dc76ffSAdam Nemet 17390456327cSAdam Nemet CanVecMem = true; 17400456327cSAdam Nemet } 17410456327cSAdam Nemet } 17420456327cSAdam Nemet 17434bb90a71SAdam Nemet if (CanVecMem) 17444bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1745ce030acbSXinliang David Li << (PtrRtChecking->Need ? "" : " don't") 17460f67c6c1SAdam Nemet << " need runtime memory checks.\n"); 17474bb90a71SAdam Nemet else { 1748877ccee8SAdam Nemet recordAnalysis("UnsafeMemDep") 17490a77dfadSAdam Nemet << "unsafe dependent memory operations in loop. Use " 17500a77dfadSAdam Nemet "#pragma loop distribute(enable) to allow loop distribution " 17510a77dfadSAdam Nemet "to attempt to isolate the offending operations into a separate " 1752877ccee8SAdam Nemet "loop"; 17534bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 17544bb90a71SAdam Nemet } 17550456327cSAdam Nemet } 17560456327cSAdam Nemet 175701abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 175801abb2c3SAdam Nemet DominatorTree *DT) { 17590456327cSAdam Nemet assert(TheLoop->contains(BB) && "Unknown block used"); 17600456327cSAdam Nemet 17610456327cSAdam Nemet // Blocks that do not dominate the latch need predication. 17620456327cSAdam Nemet BasicBlock* Latch = TheLoop->getLoopLatch(); 17630456327cSAdam Nemet return !DT->dominates(BB, Latch); 17640456327cSAdam Nemet } 17650456327cSAdam Nemet 1766877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 1767877ccee8SAdam Nemet Instruction *I) { 1768c922853bSAdam Nemet assert(!Report && "Multiple reports generated"); 1769877ccee8SAdam Nemet 1770877ccee8SAdam Nemet Value *CodeRegion = TheLoop->getHeader(); 1771877ccee8SAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 1772877ccee8SAdam Nemet 1773877ccee8SAdam Nemet if (I) { 1774877ccee8SAdam Nemet CodeRegion = I->getParent(); 1775877ccee8SAdam Nemet // If there is no debug location attached to the instruction, revert back to 1776877ccee8SAdam Nemet // using the loop's. 1777877ccee8SAdam Nemet if (I->getDebugLoc()) 1778877ccee8SAdam Nemet DL = I->getDebugLoc(); 1779877ccee8SAdam Nemet } 1780877ccee8SAdam Nemet 1781877ccee8SAdam Nemet Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 1782877ccee8SAdam Nemet CodeRegion); 1783877ccee8SAdam Nemet return *Report; 17840456327cSAdam Nemet } 17850456327cSAdam Nemet 178657ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const { 17873ceac2bbSMichael Kuperstein auto *SE = PSE->getSE(); 17883ceac2bbSMichael Kuperstein // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 17893ceac2bbSMichael Kuperstein // never considered uniform. 17903ceac2bbSMichael Kuperstein // TODO: Is this really what we want? Even without FP SCEV, we may want some 17913ceac2bbSMichael Kuperstein // trivially loop-invariant FP values to be considered uniform. 17923ceac2bbSMichael Kuperstein if (!SE->isSCEVable(V->getType())) 17933ceac2bbSMichael Kuperstein return false; 17943ceac2bbSMichael Kuperstein return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 17950456327cSAdam Nemet } 17967206d7a5SAdam Nemet 17977206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in 17987206d7a5SAdam Nemet // LoopVectorize.cpp. 17997206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 18007206d7a5SAdam Nemet Instruction *Loc) { 18017206d7a5SAdam Nemet if (FirstInst) 18027206d7a5SAdam Nemet return FirstInst; 18037206d7a5SAdam Nemet if (Instruction *I = dyn_cast<Instruction>(V)) 18047206d7a5SAdam Nemet return I->getParent() == Loc->getParent() ? I : nullptr; 18057206d7a5SAdam Nemet return nullptr; 18067206d7a5SAdam Nemet } 18077206d7a5SAdam Nemet 1808039b1042SBenjamin Kramer namespace { 18094e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 18104e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously 18114e533ef7SAdam Nemet /// expanded values. Thus expansion of a pointer can invalidate the bounds for 18124e533ef7SAdam Nemet /// a previous one. 18131da7df37SAdam Nemet struct PointerBounds { 18144e533ef7SAdam Nemet TrackingVH<Value> Start; 18154e533ef7SAdam Nemet TrackingVH<Value> End; 18161da7df37SAdam Nemet }; 1817039b1042SBenjamin Kramer } // end anonymous namespace 18187206d7a5SAdam Nemet 18191da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG 18201da7df37SAdam Nemet /// in \p TheLoop. \return the values for the bounds. 18211da7df37SAdam Nemet static PointerBounds 18221da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 18231da7df37SAdam Nemet Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 18241da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 18251da7df37SAdam Nemet Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 18267206d7a5SAdam Nemet const SCEV *Sc = SE->getSCEV(Ptr); 18277206d7a5SAdam Nemet 18287206d7a5SAdam Nemet if (SE->isLoopInvariant(Sc, TheLoop)) { 18291b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 18301b6b50a9SSilviu Baranga << "\n"); 18311da7df37SAdam Nemet return {Ptr, Ptr}; 18327206d7a5SAdam Nemet } else { 18337206d7a5SAdam Nemet unsigned AS = Ptr->getType()->getPointerAddressSpace(); 18341da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 18357206d7a5SAdam Nemet 18367206d7a5SAdam Nemet // Use this type for pointer arithmetic. 18377206d7a5SAdam Nemet Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 18381b6b50a9SSilviu Baranga Value *Start = nullptr, *End = nullptr; 18397206d7a5SAdam Nemet 18401b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 18411da7df37SAdam Nemet Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 18421da7df37SAdam Nemet End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 18431da7df37SAdam Nemet DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 18441da7df37SAdam Nemet return {Start, End}; 18457206d7a5SAdam Nemet } 18467206d7a5SAdam Nemet } 18477206d7a5SAdam Nemet 18481da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and 18491da7df37SAdam Nemet /// lower bounds for both pointers in the check. 18501da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 18511da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 18521da7df37SAdam Nemet Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 18531da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 18541da7df37SAdam Nemet SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 18551da7df37SAdam Nemet 18561da7df37SAdam Nemet // Here we're relying on the SCEV Expander's cache to only emit code for the 18571da7df37SAdam Nemet // same bounds once. 18582d006e76SDavid Majnemer transform( 18592d006e76SDavid Majnemer PointerChecks, std::back_inserter(ChecksWithBounds), 18601da7df37SAdam Nemet [&](const RuntimePointerChecking::PointerCheck &Check) { 186194abbbd6SNAKAMURA Takumi PointerBounds 186294abbbd6SNAKAMURA Takumi First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 186394abbbd6SNAKAMURA Takumi Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 186494abbbd6SNAKAMURA Takumi return std::make_pair(First, Second); 18651da7df37SAdam Nemet }); 18661da7df37SAdam Nemet 18671da7df37SAdam Nemet return ChecksWithBounds; 18681da7df37SAdam Nemet } 18691da7df37SAdam Nemet 18705b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 18711da7df37SAdam Nemet Instruction *Loc, 18721da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 18731da7df37SAdam Nemet const { 18741824e411SAdam Nemet const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 187594734eefSXinliang David Li auto *SE = PSE->getSE(); 18761824e411SAdam Nemet SCEVExpander Exp(*SE, DL, "induction"); 18771da7df37SAdam Nemet auto ExpandedChecks = 1878ce030acbSXinliang David Li expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 18791da7df37SAdam Nemet 18801da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 18811da7df37SAdam Nemet Instruction *FirstInst = nullptr; 18827206d7a5SAdam Nemet IRBuilder<> ChkBuilder(Loc); 18837206d7a5SAdam Nemet // Our instructions might fold to a constant. 18847206d7a5SAdam Nemet Value *MemoryRuntimeCheck = nullptr; 18851b6b50a9SSilviu Baranga 18861da7df37SAdam Nemet for (const auto &Check : ExpandedChecks) { 18871da7df37SAdam Nemet const PointerBounds &A = Check.first, &B = Check.second; 1888cdb791cdSAdam Nemet // Check if two pointers (A and B) conflict where conflict is computed as: 1889cdb791cdSAdam Nemet // start(A) <= end(B) && start(B) <= end(A) 18901da7df37SAdam Nemet unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 18911da7df37SAdam Nemet unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 18927206d7a5SAdam Nemet 18931da7df37SAdam Nemet assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 18941da7df37SAdam Nemet (AS1 == A.End->getType()->getPointerAddressSpace()) && 18957206d7a5SAdam Nemet "Trying to bounds check pointers with different address spaces"); 18967206d7a5SAdam Nemet 18977206d7a5SAdam Nemet Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 18987206d7a5SAdam Nemet Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 18997206d7a5SAdam Nemet 19001da7df37SAdam Nemet Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 19011da7df37SAdam Nemet Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 19021da7df37SAdam Nemet Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 19031da7df37SAdam Nemet Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 19047206d7a5SAdam Nemet 19053622fbfcSElena Demikhovsky // [A|B].Start points to the first accessed byte under base [A|B]. 19063622fbfcSElena Demikhovsky // [A|B].End points to the last accessed byte, plus one. 19073622fbfcSElena Demikhovsky // There is no conflict when the intervals are disjoint: 19083622fbfcSElena Demikhovsky // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 19093622fbfcSElena Demikhovsky // 19103622fbfcSElena Demikhovsky // bound0 = (B.Start < A.End) 19113622fbfcSElena Demikhovsky // bound1 = (A.Start < B.End) 19123622fbfcSElena Demikhovsky // IsConflict = bound0 & bound1 19133622fbfcSElena Demikhovsky Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 19147206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 19153622fbfcSElena Demikhovsky Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 19167206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 19177206d7a5SAdam Nemet Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 19187206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 19197206d7a5SAdam Nemet if (MemoryRuntimeCheck) { 19201da7df37SAdam Nemet IsConflict = 19211da7df37SAdam Nemet ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 19227206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 19237206d7a5SAdam Nemet } 19247206d7a5SAdam Nemet MemoryRuntimeCheck = IsConflict; 19257206d7a5SAdam Nemet } 19267206d7a5SAdam Nemet 192790fec840SAdam Nemet if (!MemoryRuntimeCheck) 192890fec840SAdam Nemet return std::make_pair(nullptr, nullptr); 192990fec840SAdam Nemet 19307206d7a5SAdam Nemet // We have to do this trickery because the IRBuilder might fold the check to a 19317206d7a5SAdam Nemet // constant expression in which case there is no Instruction anchored in a 19327206d7a5SAdam Nemet // the block. 19337206d7a5SAdam Nemet Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 19347206d7a5SAdam Nemet ConstantInt::getTrue(Ctx)); 19357206d7a5SAdam Nemet ChkBuilder.Insert(Check, "memcheck.conflict"); 19367206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Check, Loc); 19377206d7a5SAdam Nemet return std::make_pair(FirstInst, Check); 19387206d7a5SAdam Nemet } 19393bfd93d7SAdam Nemet 19405b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> 19415b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1942ce030acbSXinliang David Li if (!PtrRtChecking->Need) 19431da7df37SAdam Nemet return std::make_pair(nullptr, nullptr); 19441da7df37SAdam Nemet 1945ce030acbSXinliang David Li return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 19461da7df37SAdam Nemet } 19471da7df37SAdam Nemet 1948c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 1949c953bb99SAdam Nemet Value *Ptr = nullptr; 1950c953bb99SAdam Nemet if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 1951c953bb99SAdam Nemet Ptr = LI->getPointerOperand(); 1952c953bb99SAdam Nemet else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 1953c953bb99SAdam Nemet Ptr = SI->getPointerOperand(); 1954c953bb99SAdam Nemet else 1955c953bb99SAdam Nemet return; 1956c953bb99SAdam Nemet 195794734eefSXinliang David Li Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 1958c953bb99SAdam Nemet if (!Stride) 1959c953bb99SAdam Nemet return; 1960c953bb99SAdam Nemet 1961c953bb99SAdam Nemet DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 1962c953bb99SAdam Nemet DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 1963c953bb99SAdam Nemet SymbolicStrides[Ptr] = Stride; 1964c953bb99SAdam Nemet StrideSet.insert(Stride); 1965c953bb99SAdam Nemet } 1966c953bb99SAdam Nemet 19673bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 19683bfd93d7SAdam Nemet const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1969a9f09c62SAdam Nemet DominatorTree *DT, LoopInfo *LI) 197094734eefSXinliang David Li : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 1971ce030acbSXinliang David Li PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 197294734eefSXinliang David Li DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 19737da74abfSAdam Nemet NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 19747da74abfSAdam Nemet StoreToLoopInvariantAddress(false) { 1975929c38e8SAdam Nemet if (canAnalyzeLoop()) 19767da74abfSAdam Nemet analyzeLoop(AA, LI, TLI, DT); 19773bfd93d7SAdam Nemet } 19783bfd93d7SAdam Nemet 1979e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1980e91cc6efSAdam Nemet if (CanVecMem) { 19814ad38b63SAdam Nemet OS.indent(Depth) << "Memory dependences are safe"; 19827afb46d3SDavid Majnemer if (MaxSafeDepDistBytes != -1ULL) 1983c62e554eSAdam Nemet OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 1984c62e554eSAdam Nemet << " bytes"; 1985ce030acbSXinliang David Li if (PtrRtChecking->Need) 19864ad38b63SAdam Nemet OS << " with run-time checks"; 19874ad38b63SAdam Nemet OS << "\n"; 1988e91cc6efSAdam Nemet } 1989e91cc6efSAdam Nemet 1990e91cc6efSAdam Nemet if (Report) 1991877ccee8SAdam Nemet OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 1992e91cc6efSAdam Nemet 1993ce030acbSXinliang David Li if (auto *Dependences = DepChecker->getDependences()) { 1994a2df750fSAdam Nemet OS.indent(Depth) << "Dependences:\n"; 1995a2df750fSAdam Nemet for (auto &Dep : *Dependences) { 1996ce030acbSXinliang David Li Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 199758913d65SAdam Nemet OS << "\n"; 199858913d65SAdam Nemet } 199958913d65SAdam Nemet } else 2000a2df750fSAdam Nemet OS.indent(Depth) << "Too many dependences, not recorded\n"; 2001e91cc6efSAdam Nemet 2002e91cc6efSAdam Nemet // List the pair of accesses need run-time checks to prove independence. 2003ce030acbSXinliang David Li PtrRtChecking->print(OS, Depth); 2004e91cc6efSAdam Nemet OS << "\n"; 2005c3384320SAdam Nemet 2006c3384320SAdam Nemet OS.indent(Depth) << "Store to invariant address was " 2007c3384320SAdam Nemet << (StoreToLoopInvariantAddress ? "" : "not ") 2008c3384320SAdam Nemet << "found in loop.\n"; 2009e3c0534bSSilviu Baranga 2010e3c0534bSSilviu Baranga OS.indent(Depth) << "SCEV assumptions:\n"; 201194734eefSXinliang David Li PSE->getUnionPredicate().print(OS, Depth); 2012b77365b5SSilviu Baranga 2013b77365b5SSilviu Baranga OS << "\n"; 2014b77365b5SSilviu Baranga 2015b77365b5SSilviu Baranga OS.indent(Depth) << "Expressions re-written:\n"; 201694734eefSXinliang David Li PSE->print(OS, Depth); 2017e91cc6efSAdam Nemet } 2018e91cc6efSAdam Nemet 20197853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 20203bfd93d7SAdam Nemet auto &LAI = LoopAccessInfoMap[L]; 20213bfd93d7SAdam Nemet 20221824e411SAdam Nemet if (!LAI) 20231824e411SAdam Nemet LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 20241824e411SAdam Nemet 20253bfd93d7SAdam Nemet return *LAI.get(); 20263bfd93d7SAdam Nemet } 20273bfd93d7SAdam Nemet 20287853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 20297853c1ddSXinliang David Li LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2030ecde1c7fSXinliang David Li 2031e91cc6efSAdam Nemet for (Loop *TopLevelLoop : *LI) 2032e91cc6efSAdam Nemet for (Loop *L : depth_first(TopLevelLoop)) { 2033e91cc6efSAdam Nemet OS.indent(2) << L->getHeader()->getName() << ":\n"; 2034bdbc5227SAdam Nemet auto &LAI = LAA.getInfo(L); 2035e91cc6efSAdam Nemet LAI.print(OS, 4); 2036e91cc6efSAdam Nemet } 2037e91cc6efSAdam Nemet } 2038e91cc6efSAdam Nemet 20397853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2040ecde1c7fSXinliang David Li SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 20413bfd93d7SAdam Nemet auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2042ecde1c7fSXinliang David Li TLI = TLIP ? &TLIP->getTLI() : nullptr; 2043ecde1c7fSXinliang David Li AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2044ecde1c7fSXinliang David Li DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2045ecde1c7fSXinliang David Li LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 20463bfd93d7SAdam Nemet 20473bfd93d7SAdam Nemet return false; 20483bfd93d7SAdam Nemet } 20493bfd93d7SAdam Nemet 20507853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 20512f1fd165SChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 20527b560d40SChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 20533bfd93d7SAdam Nemet AU.addRequired<DominatorTreeWrapperPass>(); 2054e91cc6efSAdam Nemet AU.addRequired<LoopInfoWrapperPass>(); 20553bfd93d7SAdam Nemet 20563bfd93d7SAdam Nemet AU.setPreservesAll(); 20573bfd93d7SAdam Nemet } 20583bfd93d7SAdam Nemet 20597853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0; 20603bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis"; 20613bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses" 20623bfd93d7SAdam Nemet 20637853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 20647b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 20652f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 20663bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2067e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 20687853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 20693bfd93d7SAdam Nemet 2070*dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key; 20718a021317SXinliang David Li 20720746f3bfSSean Silva LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM) { 207336e0d01eSSean Silva const FunctionAnalysisManager &FAM = 2074284b0324SSean Silva AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 20758a021317SXinliang David Li Function &F = *L.getHeader()->getParent(); 2076284b0324SSean Silva auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F); 20778a021317SXinliang David Li auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F); 2078284b0324SSean Silva auto *AA = FAM.getCachedResult<AAManager>(F); 2079284b0324SSean Silva auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2080284b0324SSean Silva auto *LI = FAM.getCachedResult<LoopAnalysis>(F); 2081284b0324SSean Silva if (!SE) 2082284b0324SSean Silva report_fatal_error( 2083284b0324SSean Silva "ScalarEvolution must have been cached at a higher level"); 2084284b0324SSean Silva if (!AA) 2085284b0324SSean Silva report_fatal_error("AliasAnalysis must have been cached at a higher level"); 2086284b0324SSean Silva if (!DT) 2087284b0324SSean Silva report_fatal_error("DominatorTree must have been cached at a higher level"); 2088284b0324SSean Silva if (!LI) 2089284b0324SSean Silva report_fatal_error("LoopInfo must have been cached at a higher level"); 20901824e411SAdam Nemet return LoopAccessInfo(&L, SE, TLI, AA, DT, LI); 20918a021317SXinliang David Li } 20928a021317SXinliang David Li 20938a021317SXinliang David Li PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L, 20940746f3bfSSean Silva LoopAnalysisManager &AM) { 20958a021317SXinliang David Li Function &F = *L.getHeader()->getParent(); 209607e08fa3SXinliang David Li auto &LAI = AM.getResult<LoopAccessAnalysis>(L); 20978a021317SXinliang David Li OS << "Loop access info in function '" << F.getName() << "':\n"; 20988a021317SXinliang David Li OS.indent(2) << L.getHeader()->getName() << ":\n"; 20998a021317SXinliang David Li LAI.print(OS, 4); 21008a021317SXinliang David Li return PreservedAnalyses::all(); 21018a021317SXinliang David Li } 21028a021317SXinliang David Li 21033bfd93d7SAdam Nemet namespace llvm { 21043bfd93d7SAdam Nemet Pass *createLAAPass() { 21057853c1ddSXinliang David Li return new LoopAccessLegacyAnalysis(); 21063bfd93d7SAdam Nemet } 21073bfd93d7SAdam Nemet } 2108