10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 20456327cSAdam Nemet // 30456327cSAdam Nemet // The LLVM Compiler Infrastructure 40456327cSAdam Nemet // 50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source 60456327cSAdam Nemet // License. See LICENSE.TXT for details. 70456327cSAdam Nemet // 80456327cSAdam Nemet //===----------------------------------------------------------------------===// 90456327cSAdam Nemet // 100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally 110456327cSAdam Nemet // developed for the loop vectorizer. 120456327cSAdam Nemet // 130456327cSAdam Nemet //===----------------------------------------------------------------------===// 140456327cSAdam Nemet 15a3fe70d2SEugene Zelenko #include "llvm/ADT/APInt.h" 16a3fe70d2SEugene Zelenko #include "llvm/ADT/DenseMap.h" 17a3fe70d2SEugene Zelenko #include "llvm/ADT/DepthFirstIterator.h" 18a3fe70d2SEugene Zelenko #include "llvm/ADT/EquivalenceClasses.h" 19a3fe70d2SEugene Zelenko #include "llvm/ADT/iterator_range.h" 20a3fe70d2SEugene Zelenko #include "llvm/ADT/PointerIntPair.h" 21a3fe70d2SEugene Zelenko #include "llvm/ADT/SetVector.h" 22a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallPtrSet.h" 23a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallSet.h" 24a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallVector.h" 25a3fe70d2SEugene Zelenko #include "llvm/ADT/STLExtras.h" 26a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasAnalysis.h" 27a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasSetTracker.h" 280456327cSAdam Nemet #include "llvm/Analysis/LoopAccessAnalysis.h" 290456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 308a021317SXinliang David Li #include "llvm/Analysis/LoopPassManager.h" 31a3fe70d2SEugene Zelenko #include "llvm/Analysis/MemoryLocation.h" 325b3a5cf6SAdam Nemet #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 33a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolution.h" 347206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h" 35a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h" 370456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h" 38f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h" 39a3fe70d2SEugene Zelenko #include "llvm/IR/BasicBlock.h" 40a3fe70d2SEugene Zelenko #include "llvm/IR/Constants.h" 41a3fe70d2SEugene Zelenko #include "llvm/IR/DataLayout.h" 42a3fe70d2SEugene Zelenko #include "llvm/IR/DebugLoc.h" 43a3fe70d2SEugene Zelenko #include "llvm/IR/DerivedTypes.h" 44a3fe70d2SEugene Zelenko #include "llvm/IR/DiagnosticInfo.h" 450456327cSAdam Nemet #include "llvm/IR/Dominators.h" 46a3fe70d2SEugene Zelenko #include "llvm/IR/Function.h" 47a3fe70d2SEugene Zelenko #include "llvm/IR/InstrTypes.h" 48a3fe70d2SEugene Zelenko #include "llvm/IR/Instruction.h" 49a3fe70d2SEugene Zelenko #include "llvm/IR/Instructions.h" 507206d7a5SAdam Nemet #include "llvm/IR/IRBuilder.h" 51a3fe70d2SEugene Zelenko #include "llvm/IR/Operator.h" 528a021317SXinliang David Li #include "llvm/IR/PassManager.h" 53a3fe70d2SEugene Zelenko #include "llvm/IR/Type.h" 54a3fe70d2SEugene Zelenko #include "llvm/IR/Value.h" 55a3fe70d2SEugene Zelenko #include "llvm/IR/ValueHandle.h" 56a3fe70d2SEugene Zelenko #include "llvm/Pass.h" 57a3fe70d2SEugene Zelenko #include "llvm/Support/Casting.h" 58a3fe70d2SEugene Zelenko #include "llvm/Support/CommandLine.h" 590456327cSAdam Nemet #include "llvm/Support/Debug.h" 60a3fe70d2SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 61799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h" 62a3fe70d2SEugene Zelenko #include <algorithm> 63a3fe70d2SEugene Zelenko #include <cassert> 64a3fe70d2SEugene Zelenko #include <cstdint> 65a3fe70d2SEugene Zelenko #include <cstdlib> 66a3fe70d2SEugene Zelenko #include <iterator> 67a3fe70d2SEugene Zelenko #include <utility> 68a3fe70d2SEugene Zelenko #include <vector> 69a3fe70d2SEugene Zelenko 700456327cSAdam Nemet using namespace llvm; 710456327cSAdam Nemet 72339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses" 730456327cSAdam Nemet 74f219c647SAdam Nemet static cl::opt<unsigned, true> 75f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden, 76f219c647SAdam Nemet cl::desc("Sets the SIMD width. Zero is autoselect."), 77f219c647SAdam Nemet cl::location(VectorizerParams::VectorizationFactor)); 781d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor; 79f219c647SAdam Nemet 80f219c647SAdam Nemet static cl::opt<unsigned, true> 81f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden, 82f219c647SAdam Nemet cl::desc("Sets the vectorization interleave count. " 83f219c647SAdam Nemet "Zero is autoselect."), 84f219c647SAdam Nemet cl::location( 85f219c647SAdam Nemet VectorizerParams::VectorizationInterleave)); 861d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave; 87f219c647SAdam Nemet 881d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 891d862af7SAdam Nemet "runtime-memory-check-threshold", cl::Hidden, 901d862af7SAdam Nemet cl::desc("When performing memory disambiguation checks at runtime do not " 911d862af7SAdam Nemet "generate more than this number of comparisons (default = 8)."), 921d862af7SAdam Nemet cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 931d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94f219c647SAdam Nemet 951b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks 961b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold( 971b6b50a9SSilviu Baranga "memory-check-merge-threshold", cl::Hidden, 981b6b50a9SSilviu Baranga cl::desc("Maximum number of comparisons done when trying to merge " 991b6b50a9SSilviu Baranga "runtime memory checks. (default = 100)"), 1001b6b50a9SSilviu Baranga cl::init(100)); 1011b6b50a9SSilviu Baranga 102f219c647SAdam Nemet /// Maximum SIMD width. 103f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64; 104f219c647SAdam Nemet 105a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold. 106a2df750fSAdam Nemet static cl::opt<unsigned> 107a2df750fSAdam Nemet MaxDependences("max-dependences", cl::Hidden, 108a2df750fSAdam Nemet cl::desc("Maximum number of dependences collected by " 1099c926579SAdam Nemet "loop-access analysis (default = 100)"), 1109c926579SAdam Nemet cl::init(100)); 1119c926579SAdam Nemet 112a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory 113a9f09c62SAdam Nemet /// accesses in code like the following. 114a9f09c62SAdam Nemet /// for (i = 0; i < N; ++i) 115a9f09c62SAdam Nemet /// A[i * Stride1] += B[i * Stride2] ... 116a9f09c62SAdam Nemet /// 117a9f09c62SAdam Nemet /// Will be roughly translated to 118a9f09c62SAdam Nemet /// if (Stride1 == 1 && Stride2 == 1) { 119a9f09c62SAdam Nemet /// for (i = 0; i < N; i+=4) 120a9f09c62SAdam Nemet /// A[i:i+3] += ... 121a9f09c62SAdam Nemet /// } else 122a9f09c62SAdam Nemet /// ... 123a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning( 124a9f09c62SAdam Nemet "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125a9f09c62SAdam Nemet cl::desc("Enable symbolic stride memory access versioning")); 126a9f09c62SAdam Nemet 12737ec5f91SMatthew Simpson /// \brief Enable store-to-load forwarding conflict detection. This option can 12837ec5f91SMatthew Simpson /// be disabled for correctness testing. 12937ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection( 13037ec5f91SMatthew Simpson "store-to-load-forwarding-conflict-detection", cl::Hidden, 131a250dc9fSMatthew Simpson cl::desc("Enable conflict detection in loop-access analysis"), 132a250dc9fSMatthew Simpson cl::init(true)); 133a250dc9fSMatthew Simpson 134f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() { 135f219c647SAdam Nemet return ::VectorizationInterleave.getNumOccurrences() > 0; 136f219c647SAdam Nemet } 137f219c647SAdam Nemet 1382bd6e984SAdam Nemet void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 1395b3a5cf6SAdam Nemet const Loop *TheLoop, const char *PassName, 1405b3a5cf6SAdam Nemet OptimizationRemarkEmitter &ORE) { 1410456327cSAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 1425b3a5cf6SAdam Nemet const Value *V = TheLoop->getHeader(); 1435b3a5cf6SAdam Nemet if (const Instruction *I = Message.getInstr()) { 144e3cef937SAdam Nemet // If there is no debug location attached to the instruction, revert back to 145e3cef937SAdam Nemet // using the loop's. 146e3cef937SAdam Nemet if (I->getDebugLoc()) 1470456327cSAdam Nemet DL = I->getDebugLoc(); 1485b3a5cf6SAdam Nemet V = I->getParent(); 1495b3a5cf6SAdam Nemet } 1505b3a5cf6SAdam Nemet ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str()); 1510456327cSAdam Nemet } 1520456327cSAdam Nemet 1530456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) { 1548b401013SDavid Majnemer if (auto *CI = dyn_cast<CastInst>(V)) 1550456327cSAdam Nemet if (CI->getOperand(0)->getType()->isIntegerTy()) 1560456327cSAdam Nemet return CI->getOperand(0); 1570456327cSAdam Nemet return V; 1580456327cSAdam Nemet } 1590456327cSAdam Nemet 1609cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 1618bc61df9SAdam Nemet const ValueToValueMap &PtrToStride, 1620456327cSAdam Nemet Value *Ptr, Value *OrigPtr) { 1639cd9a7e3SSilviu Baranga const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 1640456327cSAdam Nemet 1650456327cSAdam Nemet // If there is an entry in the map return the SCEV of the pointer with the 1660456327cSAdam Nemet // symbolic stride replaced by one. 1678bc61df9SAdam Nemet ValueToValueMap::const_iterator SI = 1688bc61df9SAdam Nemet PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1690456327cSAdam Nemet if (SI != PtrToStride.end()) { 1700456327cSAdam Nemet Value *StrideVal = SI->second; 1710456327cSAdam Nemet 1720456327cSAdam Nemet // Strip casts. 1730456327cSAdam Nemet StrideVal = stripIntegerCast(StrideVal); 1740456327cSAdam Nemet 1750456327cSAdam Nemet // Replace symbolic stride by one. 1760456327cSAdam Nemet Value *One = ConstantInt::get(StrideVal->getType(), 1); 1770456327cSAdam Nemet ValueToValueMap RewriteMap; 1780456327cSAdam Nemet RewriteMap[StrideVal] = One; 1790456327cSAdam Nemet 1809cd9a7e3SSilviu Baranga ScalarEvolution *SE = PSE.getSE(); 181e3c0534bSSilviu Baranga const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 182e3c0534bSSilviu Baranga const auto *CT = 183e3c0534bSSilviu Baranga static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 184e3c0534bSSilviu Baranga 1859cd9a7e3SSilviu Baranga PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 1869cd9a7e3SSilviu Baranga auto *Expr = PSE.getSCEV(Ptr); 187e3c0534bSSilviu Baranga 1889cd9a7e3SSilviu Baranga DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 1890456327cSAdam Nemet << "\n"); 1909cd9a7e3SSilviu Baranga return Expr; 1910456327cSAdam Nemet } 1920456327cSAdam Nemet 1930456327cSAdam Nemet // Otherwise, just return the SCEV of the original pointer. 194e3c0534bSSilviu Baranga return OrigSCEV; 1950456327cSAdam Nemet } 1960456327cSAdam Nemet 1973622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access. 1983622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop 1993622fbfcSElena Demikhovsky /// iteration. Then B is calculated as: 2003622fbfcSElena Demikhovsky /// B = A + Step*N . 2013622fbfcSElena Demikhovsky /// Step value may be positive or negative. 2023622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count: 2033622fbfcSElena Demikhovsky /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 2043622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way: 2053622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 2063622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes. 2073622fbfcSElena Demikhovsky /// 2083622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint: 2093622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 2107cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 2117cdebac0SAdam Nemet unsigned DepSetId, unsigned ASId, 212e3c0534bSSilviu Baranga const ValueToValueMap &Strides, 2139cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) { 2140456327cSAdam Nemet // Get the stride replaced scev. 2159cd9a7e3SSilviu Baranga const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 216279784ffSAdam Nemet ScalarEvolution *SE = PSE.getSE(); 217279784ffSAdam Nemet 218279784ffSAdam Nemet const SCEV *ScStart; 219279784ffSAdam Nemet const SCEV *ScEnd; 220279784ffSAdam Nemet 22159a65504SAdam Nemet if (SE->isLoopInvariant(Sc, Lp)) 222279784ffSAdam Nemet ScStart = ScEnd = Sc; 223279784ffSAdam Nemet else { 2240456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 2250456327cSAdam Nemet assert(AR && "Invalid addrec expression"); 2266f444dfdSSilviu Baranga const SCEV *Ex = PSE.getBackedgeTakenCount(); 2270e5804a6SSilviu Baranga 228279784ffSAdam Nemet ScStart = AR->getStart(); 229279784ffSAdam Nemet ScEnd = AR->evaluateAtIteration(Ex, *SE); 2300e5804a6SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*SE); 2310e5804a6SSilviu Baranga 2320e5804a6SSilviu Baranga // For expressions with negative step, the upper bound is ScStart and the 2330e5804a6SSilviu Baranga // lower bound is ScEnd. 2348b401013SDavid Majnemer if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 2350e5804a6SSilviu Baranga if (CStep->getValue()->isNegative()) 2360e5804a6SSilviu Baranga std::swap(ScStart, ScEnd); 2370e5804a6SSilviu Baranga } else { 2383622fbfcSElena Demikhovsky // Fallback case: the step is not constant, but we can still 2390e5804a6SSilviu Baranga // get the upper and lower bounds of the interval by using min/max 2400e5804a6SSilviu Baranga // expressions. 2410e5804a6SSilviu Baranga ScStart = SE->getUMinExpr(ScStart, ScEnd); 2420e5804a6SSilviu Baranga ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 2430e5804a6SSilviu Baranga } 2443622fbfcSElena Demikhovsky // Add the size of the pointed element to ScEnd. 2453622fbfcSElena Demikhovsky unsigned EltSize = 2463622fbfcSElena Demikhovsky Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 2473622fbfcSElena Demikhovsky const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 2483622fbfcSElena Demikhovsky ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 249279784ffSAdam Nemet } 2500e5804a6SSilviu Baranga 2510e5804a6SSilviu Baranga Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 2521b6b50a9SSilviu Baranga } 2531b6b50a9SSilviu Baranga 254bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4> 25538530887SAdam Nemet RuntimePointerChecking::generateChecks() const { 256bbe1f1deSAdam Nemet SmallVector<PointerCheck, 4> Checks; 257bbe1f1deSAdam Nemet 2587c52e052SAdam Nemet for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 2597c52e052SAdam Nemet for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 2607c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 2617c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 262bbe1f1deSAdam Nemet 26338530887SAdam Nemet if (needsChecking(CGI, CGJ)) 264bbe1f1deSAdam Nemet Checks.push_back(std::make_pair(&CGI, &CGJ)); 265bbe1f1deSAdam Nemet } 266bbe1f1deSAdam Nemet } 267bbe1f1deSAdam Nemet return Checks; 268bbe1f1deSAdam Nemet } 269bbe1f1deSAdam Nemet 27015840393SAdam Nemet void RuntimePointerChecking::generateChecks( 27115840393SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 27215840393SAdam Nemet assert(Checks.empty() && "Checks is not empty"); 27315840393SAdam Nemet groupChecks(DepCands, UseDependencies); 27415840393SAdam Nemet Checks = generateChecks(); 27515840393SAdam Nemet } 27615840393SAdam Nemet 277651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 278651a5a24SAdam Nemet const CheckingPtrGroup &N) const { 2791b6b50a9SSilviu Baranga for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 2801b6b50a9SSilviu Baranga for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 281651a5a24SAdam Nemet if (needsChecking(M.Members[I], N.Members[J])) 2821b6b50a9SSilviu Baranga return true; 2831b6b50a9SSilviu Baranga return false; 2841b6b50a9SSilviu Baranga } 2851b6b50a9SSilviu Baranga 2861b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum. 2871b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer. 2881b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 2891b6b50a9SSilviu Baranga ScalarEvolution *SE) { 2901b6b50a9SSilviu Baranga const SCEV *Diff = SE->getMinusSCEV(J, I); 2911b6b50a9SSilviu Baranga const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 2921b6b50a9SSilviu Baranga 2931b6b50a9SSilviu Baranga if (!C) 2941b6b50a9SSilviu Baranga return nullptr; 2951b6b50a9SSilviu Baranga if (C->getValue()->isNegative()) 2961b6b50a9SSilviu Baranga return J; 2971b6b50a9SSilviu Baranga return I; 2981b6b50a9SSilviu Baranga } 2991b6b50a9SSilviu Baranga 3007cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 3019f7dedc3SAdam Nemet const SCEV *Start = RtCheck.Pointers[Index].Start; 3029f7dedc3SAdam Nemet const SCEV *End = RtCheck.Pointers[Index].End; 3039f7dedc3SAdam Nemet 3041b6b50a9SSilviu Baranga // Compare the starts and ends with the known minimum and maximum 3051b6b50a9SSilviu Baranga // of this set. We need to know how we compare against the min/max 3061b6b50a9SSilviu Baranga // of the set in order to be able to emit memchecks. 3079f7dedc3SAdam Nemet const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 3081b6b50a9SSilviu Baranga if (!Min0) 3091b6b50a9SSilviu Baranga return false; 3101b6b50a9SSilviu Baranga 3119f7dedc3SAdam Nemet const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 3121b6b50a9SSilviu Baranga if (!Min1) 3131b6b50a9SSilviu Baranga return false; 3141b6b50a9SSilviu Baranga 3151b6b50a9SSilviu Baranga // Update the low bound expression if we've found a new min value. 3169f7dedc3SAdam Nemet if (Min0 == Start) 3179f7dedc3SAdam Nemet Low = Start; 3181b6b50a9SSilviu Baranga 3191b6b50a9SSilviu Baranga // Update the high bound expression if we've found a new max value. 3209f7dedc3SAdam Nemet if (Min1 != End) 3219f7dedc3SAdam Nemet High = End; 3221b6b50a9SSilviu Baranga 3231b6b50a9SSilviu Baranga Members.push_back(Index); 3241b6b50a9SSilviu Baranga return true; 3251b6b50a9SSilviu Baranga } 3261b6b50a9SSilviu Baranga 3277cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks( 3287cdebac0SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 3291b6b50a9SSilviu Baranga // We build the groups from dependency candidates equivalence classes 3301b6b50a9SSilviu Baranga // because: 3311b6b50a9SSilviu Baranga // - We know that pointers in the same equivalence class share 3321b6b50a9SSilviu Baranga // the same underlying object and therefore there is a chance 3331b6b50a9SSilviu Baranga // that we can compare pointers 3341b6b50a9SSilviu Baranga // - We wouldn't be able to merge two pointers for which we need 3351b6b50a9SSilviu Baranga // to emit a memcheck. The classes in DepCands are already 3361b6b50a9SSilviu Baranga // conveniently built such that no two pointers in the same 3371b6b50a9SSilviu Baranga // class need checking against each other. 3381b6b50a9SSilviu Baranga 3391b6b50a9SSilviu Baranga // We use the following (greedy) algorithm to construct the groups 3401b6b50a9SSilviu Baranga // For every pointer in the equivalence class: 3411b6b50a9SSilviu Baranga // For each existing group: 3421b6b50a9SSilviu Baranga // - if the difference between this pointer and the min/max bounds 3431b6b50a9SSilviu Baranga // of the group is a constant, then make the pointer part of the 3441b6b50a9SSilviu Baranga // group and update the min/max bounds of that group as required. 3451b6b50a9SSilviu Baranga 3461b6b50a9SSilviu Baranga CheckingGroups.clear(); 3471b6b50a9SSilviu Baranga 34848250600SSilviu Baranga // If we need to check two pointers to the same underlying object 34948250600SSilviu Baranga // with a non-constant difference, we shouldn't perform any pointer 35048250600SSilviu Baranga // grouping with those pointers. This is because we can easily get 35148250600SSilviu Baranga // into cases where the resulting check would return false, even when 35248250600SSilviu Baranga // the accesses are safe. 35348250600SSilviu Baranga // 35448250600SSilviu Baranga // The following example shows this: 35548250600SSilviu Baranga // for (i = 0; i < 1000; ++i) 35648250600SSilviu Baranga // a[5000 + i * m] = a[i] + a[i + 9000] 35748250600SSilviu Baranga // 35848250600SSilviu Baranga // Here grouping gives a check of (5000, 5000 + 1000 * m) against 35948250600SSilviu Baranga // (0, 10000) which is always false. However, if m is 1, there is no 36048250600SSilviu Baranga // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 36148250600SSilviu Baranga // us to perform an accurate check in this case. 36248250600SSilviu Baranga // 36348250600SSilviu Baranga // The above case requires that we have an UnknownDependence between 36448250600SSilviu Baranga // accesses to the same underlying object. This cannot happen unless 36548250600SSilviu Baranga // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 36648250600SSilviu Baranga // is also false. In this case we will use the fallback path and create 36748250600SSilviu Baranga // separate checking groups for all pointers. 36848250600SSilviu Baranga 3691b6b50a9SSilviu Baranga // If we don't have the dependency partitions, construct a new 37048250600SSilviu Baranga // checking pointer group for each pointer. This is also required 37148250600SSilviu Baranga // for correctness, because in this case we can have checking between 37248250600SSilviu Baranga // pointers to the same underlying object. 3731b6b50a9SSilviu Baranga if (!UseDependencies) { 3741b6b50a9SSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) 3751b6b50a9SSilviu Baranga CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 3761b6b50a9SSilviu Baranga return; 3771b6b50a9SSilviu Baranga } 3781b6b50a9SSilviu Baranga 3791b6b50a9SSilviu Baranga unsigned TotalComparisons = 0; 3801b6b50a9SSilviu Baranga 3811b6b50a9SSilviu Baranga DenseMap<Value *, unsigned> PositionMap; 3829f7dedc3SAdam Nemet for (unsigned Index = 0; Index < Pointers.size(); ++Index) 3839f7dedc3SAdam Nemet PositionMap[Pointers[Index].PointerValue] = Index; 3841b6b50a9SSilviu Baranga 385ce3877fcSSilviu Baranga // We need to keep track of what pointers we've already seen so we 386ce3877fcSSilviu Baranga // don't process them twice. 387ce3877fcSSilviu Baranga SmallSet<unsigned, 2> Seen; 388ce3877fcSSilviu Baranga 389e4b9f507SSanjay Patel // Go through all equivalence classes, get the "pointer check groups" 390ce3877fcSSilviu Baranga // and add them to the overall solution. We use the order in which accesses 391ce3877fcSSilviu Baranga // appear in 'Pointers' to enforce determinism. 392ce3877fcSSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) { 393ce3877fcSSilviu Baranga // We've seen this pointer before, and therefore already processed 394ce3877fcSSilviu Baranga // its equivalence class. 395ce3877fcSSilviu Baranga if (Seen.count(I)) 3961b6b50a9SSilviu Baranga continue; 3971b6b50a9SSilviu Baranga 3989f7dedc3SAdam Nemet MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 3999f7dedc3SAdam Nemet Pointers[I].IsWritePtr); 4001b6b50a9SSilviu Baranga 401ce3877fcSSilviu Baranga SmallVector<CheckingPtrGroup, 2> Groups; 402ce3877fcSSilviu Baranga auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 403ce3877fcSSilviu Baranga 404a647c30fSSilviu Baranga // Because DepCands is constructed by visiting accesses in the order in 405a647c30fSSilviu Baranga // which they appear in alias sets (which is deterministic) and the 406a647c30fSSilviu Baranga // iteration order within an equivalence class member is only dependent on 407a647c30fSSilviu Baranga // the order in which unions and insertions are performed on the 408a647c30fSSilviu Baranga // equivalence class, the iteration order is deterministic. 409ce3877fcSSilviu Baranga for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 4101b6b50a9SSilviu Baranga MI != ME; ++MI) { 4111b6b50a9SSilviu Baranga unsigned Pointer = PositionMap[MI->getPointer()]; 4121b6b50a9SSilviu Baranga bool Merged = false; 413ce3877fcSSilviu Baranga // Mark this pointer as seen. 414ce3877fcSSilviu Baranga Seen.insert(Pointer); 4151b6b50a9SSilviu Baranga 4161b6b50a9SSilviu Baranga // Go through all the existing sets and see if we can find one 4171b6b50a9SSilviu Baranga // which can include this pointer. 4181b6b50a9SSilviu Baranga for (CheckingPtrGroup &Group : Groups) { 4191b6b50a9SSilviu Baranga // Don't perform more than a certain amount of comparisons. 4201b6b50a9SSilviu Baranga // This should limit the cost of grouping the pointers to something 4211b6b50a9SSilviu Baranga // reasonable. If we do end up hitting this threshold, the algorithm 4221b6b50a9SSilviu Baranga // will create separate groups for all remaining pointers. 4231b6b50a9SSilviu Baranga if (TotalComparisons > MemoryCheckMergeThreshold) 4241b6b50a9SSilviu Baranga break; 4251b6b50a9SSilviu Baranga 4261b6b50a9SSilviu Baranga TotalComparisons++; 4271b6b50a9SSilviu Baranga 4281b6b50a9SSilviu Baranga if (Group.addPointer(Pointer)) { 4291b6b50a9SSilviu Baranga Merged = true; 4301b6b50a9SSilviu Baranga break; 4311b6b50a9SSilviu Baranga } 4321b6b50a9SSilviu Baranga } 4331b6b50a9SSilviu Baranga 4341b6b50a9SSilviu Baranga if (!Merged) 4351b6b50a9SSilviu Baranga // We couldn't add this pointer to any existing set or the threshold 4361b6b50a9SSilviu Baranga // for the number of comparisons has been reached. Create a new group 4371b6b50a9SSilviu Baranga // to hold the current pointer. 4381b6b50a9SSilviu Baranga Groups.push_back(CheckingPtrGroup(Pointer, *this)); 4391b6b50a9SSilviu Baranga } 4401b6b50a9SSilviu Baranga 4411b6b50a9SSilviu Baranga // We've computed the grouped checks for this partition. 4421b6b50a9SSilviu Baranga // Save the results and continue with the next one. 4431b6b50a9SSilviu Baranga std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 4441b6b50a9SSilviu Baranga } 4450456327cSAdam Nemet } 4460456327cSAdam Nemet 447041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition( 448041e6debSAdam Nemet const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 449041e6debSAdam Nemet unsigned PtrIdx2) { 450041e6debSAdam Nemet return (PtrToPartition[PtrIdx1] != -1 && 451041e6debSAdam Nemet PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 452041e6debSAdam Nemet } 453041e6debSAdam Nemet 454651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 4559f7dedc3SAdam Nemet const PointerInfo &PointerI = Pointers[I]; 4569f7dedc3SAdam Nemet const PointerInfo &PointerJ = Pointers[J]; 4579f7dedc3SAdam Nemet 458a8945b77SAdam Nemet // No need to check if two readonly pointers intersect. 4599f7dedc3SAdam Nemet if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 460a8945b77SAdam Nemet return false; 461a8945b77SAdam Nemet 462a8945b77SAdam Nemet // Only need to check pointers between two different dependency sets. 4639f7dedc3SAdam Nemet if (PointerI.DependencySetId == PointerJ.DependencySetId) 464a8945b77SAdam Nemet return false; 465a8945b77SAdam Nemet 466a8945b77SAdam Nemet // Only need to check pointers in the same alias set. 4679f7dedc3SAdam Nemet if (PointerI.AliasSetId != PointerJ.AliasSetId) 468a8945b77SAdam Nemet return false; 469a8945b77SAdam Nemet 470a8945b77SAdam Nemet return true; 471a8945b77SAdam Nemet } 472a8945b77SAdam Nemet 47354f0b83eSAdam Nemet void RuntimePointerChecking::printChecks( 47454f0b83eSAdam Nemet raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 47554f0b83eSAdam Nemet unsigned Depth) const { 47654f0b83eSAdam Nemet unsigned N = 0; 47754f0b83eSAdam Nemet for (const auto &Check : Checks) { 47854f0b83eSAdam Nemet const auto &First = Check.first->Members, &Second = Check.second->Members; 47954f0b83eSAdam Nemet 48054f0b83eSAdam Nemet OS.indent(Depth) << "Check " << N++ << ":\n"; 48154f0b83eSAdam Nemet 48254f0b83eSAdam Nemet OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 48354f0b83eSAdam Nemet for (unsigned K = 0; K < First.size(); ++K) 48454f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 48554f0b83eSAdam Nemet 48654f0b83eSAdam Nemet OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 48754f0b83eSAdam Nemet for (unsigned K = 0; K < Second.size(); ++K) 48854f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 48954f0b83eSAdam Nemet } 49054f0b83eSAdam Nemet } 49154f0b83eSAdam Nemet 4923a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 493e91cc6efSAdam Nemet 494e91cc6efSAdam Nemet OS.indent(Depth) << "Run-time memory checks:\n"; 49515840393SAdam Nemet printChecks(OS, Checks, Depth); 4961b6b50a9SSilviu Baranga 4971b6b50a9SSilviu Baranga OS.indent(Depth) << "Grouped accesses:\n"; 4981b6b50a9SSilviu Baranga for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 49954f0b83eSAdam Nemet const auto &CG = CheckingGroups[I]; 50054f0b83eSAdam Nemet 50154f0b83eSAdam Nemet OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 50254f0b83eSAdam Nemet OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 50354f0b83eSAdam Nemet << ")\n"; 50454f0b83eSAdam Nemet for (unsigned J = 0; J < CG.Members.size(); ++J) { 50554f0b83eSAdam Nemet OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 5061b6b50a9SSilviu Baranga << "\n"; 5071b6b50a9SSilviu Baranga } 508e91cc6efSAdam Nemet } 509e91cc6efSAdam Nemet } 510e91cc6efSAdam Nemet 5110456327cSAdam Nemet namespace { 512a3fe70d2SEugene Zelenko 5130456327cSAdam Nemet /// \brief Analyses memory accesses in a loop. 5140456327cSAdam Nemet /// 5150456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data 5160456327cSAdam Nemet /// dependence checking. 5170456327cSAdam Nemet class AccessAnalysis { 5180456327cSAdam Nemet public: 5190456327cSAdam Nemet /// \brief Read or write access location. 5200456327cSAdam Nemet typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 5210456327cSAdam Nemet typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 5220456327cSAdam Nemet 523e2b885c4SAdam Nemet AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 5249cd9a7e3SSilviu Baranga MemoryDepChecker::DepCandidates &DA, 5259cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) 526e3c0534bSSilviu Baranga : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 5279cd9a7e3SSilviu Baranga PSE(PSE) {} 5280456327cSAdam Nemet 5290456327cSAdam Nemet /// \brief Register a load and whether it is only read from. 530ac80dc75SChandler Carruth void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 5310456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 532ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 5330456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, false)); 5340456327cSAdam Nemet if (IsReadOnly) 5350456327cSAdam Nemet ReadOnlyPtr.insert(Ptr); 5360456327cSAdam Nemet } 5370456327cSAdam Nemet 5380456327cSAdam Nemet /// \brief Register a store. 539ac80dc75SChandler Carruth void addStore(MemoryLocation &Loc) { 5400456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 541ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 5420456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, true)); 5430456327cSAdam Nemet } 5440456327cSAdam Nemet 5450456327cSAdam Nemet /// \brief Check whether we can check the pointers at runtime for 546ee61474aSAdam Nemet /// non-intersection. 547ee61474aSAdam Nemet /// 548ee61474aSAdam Nemet /// Returns true if we need no check or if we do and we can generate them 549ee61474aSAdam Nemet /// (i.e. the pointers have computable bounds). 5507cdebac0SAdam Nemet bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 5517cdebac0SAdam Nemet Loop *TheLoop, const ValueToValueMap &Strides, 5529f02c586SAndrey Turetskiy bool ShouldCheckWrap = false); 5530456327cSAdam Nemet 5540456327cSAdam Nemet /// \brief Goes over all memory accesses, checks whether a RT check is needed 5550456327cSAdam Nemet /// and builds sets of dependent accesses. 5560456327cSAdam Nemet void buildDependenceSets() { 5570456327cSAdam Nemet processMemAccesses(); 5580456327cSAdam Nemet } 5590456327cSAdam Nemet 5605dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we need to 5615dc3b2cfSAdam Nemet /// perform dependency checking. 5625dc3b2cfSAdam Nemet /// 5635dc3b2cfSAdam Nemet /// Note that this can later be cleared if we retry memcheck analysis without 5645dc3b2cfSAdam Nemet /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 5650456327cSAdam Nemet bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 566df3dc5b9SAdam Nemet 567df3dc5b9SAdam Nemet /// We decided that no dependence analysis would be used. Reset the state. 568df3dc5b9SAdam Nemet void resetDepChecks(MemoryDepChecker &DepChecker) { 569df3dc5b9SAdam Nemet CheckDeps.clear(); 570a2df750fSAdam Nemet DepChecker.clearDependences(); 571df3dc5b9SAdam Nemet } 5720456327cSAdam Nemet 5730456327cSAdam Nemet MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 5740456327cSAdam Nemet 5750456327cSAdam Nemet private: 5760456327cSAdam Nemet typedef SetVector<MemAccessInfo> PtrAccessSet; 5770456327cSAdam Nemet 5780456327cSAdam Nemet /// \brief Go over all memory access and check whether runtime pointer checks 579b41d2d3fSAdam Nemet /// are needed and build sets of dependency check candidates. 5800456327cSAdam Nemet void processMemAccesses(); 5810456327cSAdam Nemet 5820456327cSAdam Nemet /// Set of all accesses. 5830456327cSAdam Nemet PtrAccessSet Accesses; 5840456327cSAdam Nemet 585a28d91d8SMehdi Amini const DataLayout &DL; 586a28d91d8SMehdi Amini 5870456327cSAdam Nemet /// Set of accesses that need a further dependence check. 5880456327cSAdam Nemet MemAccessInfoSet CheckDeps; 5890456327cSAdam Nemet 5900456327cSAdam Nemet /// Set of pointers that are read only. 5910456327cSAdam Nemet SmallPtrSet<Value*, 16> ReadOnlyPtr; 5920456327cSAdam Nemet 5930456327cSAdam Nemet /// An alias set tracker to partition the access set by underlying object and 5940456327cSAdam Nemet //intrinsic property (such as TBAA metadata). 5950456327cSAdam Nemet AliasSetTracker AST; 5960456327cSAdam Nemet 597e2b885c4SAdam Nemet LoopInfo *LI; 598e2b885c4SAdam Nemet 5990456327cSAdam Nemet /// Sets of potentially dependent accesses - members of one set share an 6000456327cSAdam Nemet /// underlying pointer. The set "CheckDeps" identfies which sets really need a 6010456327cSAdam Nemet /// dependence check. 602dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DepCands; 6030456327cSAdam Nemet 6045dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we may need 6055dc3b2cfSAdam Nemet /// to add memchecks. Perform the analysis to determine the necessary checks. 6065dc3b2cfSAdam Nemet /// 6075dc3b2cfSAdam Nemet /// Note that, this is different from isDependencyCheckNeeded. When we retry 6085dc3b2cfSAdam Nemet /// memcheck analysis without dependency checking 6095dc3b2cfSAdam Nemet /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 6105dc3b2cfSAdam Nemet /// while this remains set if we have potentially dependent accesses. 6115dc3b2cfSAdam Nemet bool IsRTCheckAnalysisNeeded; 612e3c0534bSSilviu Baranga 613e3c0534bSSilviu Baranga /// The SCEV predicate containing all the SCEV-related assumptions. 6149cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE; 6150456327cSAdam Nemet }; 6160456327cSAdam Nemet 6170456327cSAdam Nemet } // end anonymous namespace 6180456327cSAdam Nemet 6190456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check. 6209cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 621e3c0534bSSilviu Baranga const ValueToValueMap &Strides, Value *Ptr, 6229cd9a7e3SSilviu Baranga Loop *L) { 6239cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 624279784ffSAdam Nemet 625279784ffSAdam Nemet // The bounds for loop-invariant pointer is trivial. 626279784ffSAdam Nemet if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 627279784ffSAdam Nemet return true; 628279784ffSAdam Nemet 6290456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 6300456327cSAdam Nemet if (!AR) 6310456327cSAdam Nemet return false; 6320456327cSAdam Nemet 6330456327cSAdam Nemet return AR->isAffine(); 6340456327cSAdam Nemet } 6350456327cSAdam Nemet 6369f02c586SAndrey Turetskiy /// \brief Check whether a pointer address cannot wrap. 6379f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE, 6389f02c586SAndrey Turetskiy const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 6399f02c586SAndrey Turetskiy const SCEV *PtrScev = PSE.getSCEV(Ptr); 6409f02c586SAndrey Turetskiy if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 6419f02c586SAndrey Turetskiy return true; 6429f02c586SAndrey Turetskiy 6437afb46d3SDavid Majnemer int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 6449f02c586SAndrey Turetskiy return Stride == 1; 6459f02c586SAndrey Turetskiy } 6469f02c586SAndrey Turetskiy 6477cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 6487cdebac0SAdam Nemet ScalarEvolution *SE, Loop *TheLoop, 6497cdebac0SAdam Nemet const ValueToValueMap &StridesMap, 6509f02c586SAndrey Turetskiy bool ShouldCheckWrap) { 6510456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 6520456327cSAdam Nemet // to place a runtime bound check. 6530456327cSAdam Nemet bool CanDoRT = true; 6540456327cSAdam Nemet 655ee61474aSAdam Nemet bool NeedRTCheck = false; 6565dc3b2cfSAdam Nemet if (!IsRTCheckAnalysisNeeded) return true; 65798a13719SSilviu Baranga 6580456327cSAdam Nemet bool IsDepCheckNeeded = isDependencyCheckNeeded(); 6590456327cSAdam Nemet 6600456327cSAdam Nemet // We assign a consecutive id to access from different alias sets. 6610456327cSAdam Nemet // Accesses between different groups doesn't need to be checked. 6620456327cSAdam Nemet unsigned ASId = 1; 6630456327cSAdam Nemet for (auto &AS : AST) { 664424edc6cSAdam Nemet int NumReadPtrChecks = 0; 665424edc6cSAdam Nemet int NumWritePtrChecks = 0; 666424edc6cSAdam Nemet 6670456327cSAdam Nemet // We assign consecutive id to access from different dependence sets. 6680456327cSAdam Nemet // Accesses within the same set don't need a runtime check. 6690456327cSAdam Nemet unsigned RunningDepId = 1; 6700456327cSAdam Nemet DenseMap<Value *, unsigned> DepSetId; 6710456327cSAdam Nemet 6720456327cSAdam Nemet for (auto A : AS) { 6730456327cSAdam Nemet Value *Ptr = A.getValue(); 6740456327cSAdam Nemet bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 6750456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 6760456327cSAdam Nemet 677424edc6cSAdam Nemet if (IsWrite) 678424edc6cSAdam Nemet ++NumWritePtrChecks; 679424edc6cSAdam Nemet else 680424edc6cSAdam Nemet ++NumReadPtrChecks; 681424edc6cSAdam Nemet 6829cd9a7e3SSilviu Baranga if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 683a28d91d8SMehdi Amini // When we run after a failing dependency check we have to make sure 684a28d91d8SMehdi Amini // we don't have wrapping pointers. 6859f02c586SAndrey Turetskiy (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 6860456327cSAdam Nemet // The id of the dependence set. 6870456327cSAdam Nemet unsigned DepId; 6880456327cSAdam Nemet 6890456327cSAdam Nemet if (IsDepCheckNeeded) { 6900456327cSAdam Nemet Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 6910456327cSAdam Nemet unsigned &LeaderId = DepSetId[Leader]; 6920456327cSAdam Nemet if (!LeaderId) 6930456327cSAdam Nemet LeaderId = RunningDepId++; 6940456327cSAdam Nemet DepId = LeaderId; 6950456327cSAdam Nemet } else 6960456327cSAdam Nemet // Each access has its own dependence set. 6970456327cSAdam Nemet DepId = RunningDepId++; 6980456327cSAdam Nemet 6999cd9a7e3SSilviu Baranga RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 7000456327cSAdam Nemet 701339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 7020456327cSAdam Nemet } else { 703f10ca278SAdam Nemet DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 7040456327cSAdam Nemet CanDoRT = false; 7050456327cSAdam Nemet } 7060456327cSAdam Nemet } 7070456327cSAdam Nemet 708424edc6cSAdam Nemet // If we have at least two writes or one write and a read then we need to 709424edc6cSAdam Nemet // check them. But there is no need to checks if there is only one 710424edc6cSAdam Nemet // dependence set for this alias set. 711424edc6cSAdam Nemet // 712424edc6cSAdam Nemet // Note that this function computes CanDoRT and NeedRTCheck independently. 713424edc6cSAdam Nemet // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 714424edc6cSAdam Nemet // for which we couldn't find the bounds but we don't actually need to emit 715424edc6cSAdam Nemet // any checks so it does not matter. 716424edc6cSAdam Nemet if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 717424edc6cSAdam Nemet NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 718424edc6cSAdam Nemet NumWritePtrChecks >= 1)); 719424edc6cSAdam Nemet 7200456327cSAdam Nemet ++ASId; 7210456327cSAdam Nemet } 7220456327cSAdam Nemet 7230456327cSAdam Nemet // If the pointers that we would use for the bounds comparison have different 7240456327cSAdam Nemet // address spaces, assume the values aren't directly comparable, so we can't 7250456327cSAdam Nemet // use them for the runtime check. We also have to assume they could 7260456327cSAdam Nemet // overlap. In the future there should be metadata for whether address spaces 7270456327cSAdam Nemet // are disjoint. 7280456327cSAdam Nemet unsigned NumPointers = RtCheck.Pointers.size(); 7290456327cSAdam Nemet for (unsigned i = 0; i < NumPointers; ++i) { 7300456327cSAdam Nemet for (unsigned j = i + 1; j < NumPointers; ++j) { 7310456327cSAdam Nemet // Only need to check pointers between two different dependency sets. 7329f7dedc3SAdam Nemet if (RtCheck.Pointers[i].DependencySetId == 7339f7dedc3SAdam Nemet RtCheck.Pointers[j].DependencySetId) 7340456327cSAdam Nemet continue; 7350456327cSAdam Nemet // Only need to check pointers in the same alias set. 7369f7dedc3SAdam Nemet if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 7370456327cSAdam Nemet continue; 7380456327cSAdam Nemet 7399f7dedc3SAdam Nemet Value *PtrI = RtCheck.Pointers[i].PointerValue; 7409f7dedc3SAdam Nemet Value *PtrJ = RtCheck.Pointers[j].PointerValue; 7410456327cSAdam Nemet 7420456327cSAdam Nemet unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 7430456327cSAdam Nemet unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 7440456327cSAdam Nemet if (ASi != ASj) { 745339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 7460456327cSAdam Nemet " different address spaces\n"); 7470456327cSAdam Nemet return false; 7480456327cSAdam Nemet } 7490456327cSAdam Nemet } 7500456327cSAdam Nemet } 7510456327cSAdam Nemet 7521b6b50a9SSilviu Baranga if (NeedRTCheck && CanDoRT) 75315840393SAdam Nemet RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 7541b6b50a9SSilviu Baranga 755155e8741SAdam Nemet DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 756ee61474aSAdam Nemet << " pointer comparisons.\n"); 757ee61474aSAdam Nemet 758ee61474aSAdam Nemet RtCheck.Need = NeedRTCheck; 759ee61474aSAdam Nemet 760ee61474aSAdam Nemet bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 761ee61474aSAdam Nemet if (!CanDoRTIfNeeded) 762ee61474aSAdam Nemet RtCheck.reset(); 763ee61474aSAdam Nemet return CanDoRTIfNeeded; 7640456327cSAdam Nemet } 7650456327cSAdam Nemet 7660456327cSAdam Nemet void AccessAnalysis::processMemAccesses() { 7670456327cSAdam Nemet // We process the set twice: first we process read-write pointers, last we 7680456327cSAdam Nemet // process read-only pointers. This allows us to skip dependence tests for 7690456327cSAdam Nemet // read-only pointers. 7700456327cSAdam Nemet 771339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 7720456327cSAdam Nemet DEBUG(dbgs() << " AST: "; AST.dump()); 7739c926579SAdam Nemet DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 7740456327cSAdam Nemet DEBUG({ 7750456327cSAdam Nemet for (auto A : Accesses) 7760456327cSAdam Nemet dbgs() << "\t" << *A.getPointer() << " (" << 7770456327cSAdam Nemet (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 7780456327cSAdam Nemet "read-only" : "read")) << ")\n"; 7790456327cSAdam Nemet }); 7800456327cSAdam Nemet 7810456327cSAdam Nemet // The AliasSetTracker has nicely partitioned our pointers by metadata 7820456327cSAdam Nemet // compatibility and potential for underlying-object overlap. As a result, we 7830456327cSAdam Nemet // only need to check for potential pointer dependencies within each alias 7840456327cSAdam Nemet // set. 7850456327cSAdam Nemet for (auto &AS : AST) { 7860456327cSAdam Nemet // Note that both the alias-set tracker and the alias sets themselves used 7870456327cSAdam Nemet // linked lists internally and so the iteration order here is deterministic 7880456327cSAdam Nemet // (matching the original instruction order within each set). 7890456327cSAdam Nemet 7900456327cSAdam Nemet bool SetHasWrite = false; 7910456327cSAdam Nemet 7920456327cSAdam Nemet // Map of pointers to last access encountered. 7930456327cSAdam Nemet typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 7940456327cSAdam Nemet UnderlyingObjToAccessMap ObjToLastAccess; 7950456327cSAdam Nemet 7960456327cSAdam Nemet // Set of access to check after all writes have been processed. 7970456327cSAdam Nemet PtrAccessSet DeferredAccesses; 7980456327cSAdam Nemet 7990456327cSAdam Nemet // Iterate over each alias set twice, once to process read/write pointers, 8000456327cSAdam Nemet // and then to process read-only pointers. 8010456327cSAdam Nemet for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 8020456327cSAdam Nemet bool UseDeferred = SetIteration > 0; 8030456327cSAdam Nemet PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 8040456327cSAdam Nemet 8050456327cSAdam Nemet for (auto AV : AS) { 8060456327cSAdam Nemet Value *Ptr = AV.getValue(); 8070456327cSAdam Nemet 8080456327cSAdam Nemet // For a single memory access in AliasSetTracker, Accesses may contain 8090456327cSAdam Nemet // both read and write, and they both need to be handled for CheckDeps. 8100456327cSAdam Nemet for (auto AC : S) { 8110456327cSAdam Nemet if (AC.getPointer() != Ptr) 8120456327cSAdam Nemet continue; 8130456327cSAdam Nemet 8140456327cSAdam Nemet bool IsWrite = AC.getInt(); 8150456327cSAdam Nemet 8160456327cSAdam Nemet // If we're using the deferred access set, then it contains only 8170456327cSAdam Nemet // reads. 8180456327cSAdam Nemet bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 8190456327cSAdam Nemet if (UseDeferred && !IsReadOnlyPtr) 8200456327cSAdam Nemet continue; 8210456327cSAdam Nemet // Otherwise, the pointer must be in the PtrAccessSet, either as a 8220456327cSAdam Nemet // read or a write. 8230456327cSAdam Nemet assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 8240456327cSAdam Nemet S.count(MemAccessInfo(Ptr, false))) && 8250456327cSAdam Nemet "Alias-set pointer not in the access set?"); 8260456327cSAdam Nemet 8270456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 8280456327cSAdam Nemet DepCands.insert(Access); 8290456327cSAdam Nemet 8300456327cSAdam Nemet // Memorize read-only pointers for later processing and skip them in 8310456327cSAdam Nemet // the first round (they need to be checked after we have seen all 8320456327cSAdam Nemet // write pointers). Note: we also mark pointer that are not 8330456327cSAdam Nemet // consecutive as "read-only" pointers (so that we check 8340456327cSAdam Nemet // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 8350456327cSAdam Nemet if (!UseDeferred && IsReadOnlyPtr) { 8360456327cSAdam Nemet DeferredAccesses.insert(Access); 8370456327cSAdam Nemet continue; 8380456327cSAdam Nemet } 8390456327cSAdam Nemet 8400456327cSAdam Nemet // If this is a write - check other reads and writes for conflicts. If 8410456327cSAdam Nemet // this is a read only check other writes for conflicts (but only if 8420456327cSAdam Nemet // there is no other write to the ptr - this is an optimization to 8430456327cSAdam Nemet // catch "a[i] = a[i] + " without having to do a dependence check). 8440456327cSAdam Nemet if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 8450456327cSAdam Nemet CheckDeps.insert(Access); 8465dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded = true; 8470456327cSAdam Nemet } 8480456327cSAdam Nemet 8490456327cSAdam Nemet if (IsWrite) 8500456327cSAdam Nemet SetHasWrite = true; 8510456327cSAdam Nemet 8520456327cSAdam Nemet // Create sets of pointers connected by a shared alias set and 8530456327cSAdam Nemet // underlying object. 8540456327cSAdam Nemet typedef SmallVector<Value *, 16> ValueVector; 8550456327cSAdam Nemet ValueVector TempObjects; 856e2b885c4SAdam Nemet 857e2b885c4SAdam Nemet GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 858e2b885c4SAdam Nemet DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 8590456327cSAdam Nemet for (Value *UnderlyingObj : TempObjects) { 860afd13519SMehdi Amini // nullptr never alias, don't join sets for pointer that have "null" 861afd13519SMehdi Amini // in their UnderlyingObjects list. 862afd13519SMehdi Amini if (isa<ConstantPointerNull>(UnderlyingObj)) 863afd13519SMehdi Amini continue; 864afd13519SMehdi Amini 8650456327cSAdam Nemet UnderlyingObjToAccessMap::iterator Prev = 8660456327cSAdam Nemet ObjToLastAccess.find(UnderlyingObj); 8670456327cSAdam Nemet if (Prev != ObjToLastAccess.end()) 8680456327cSAdam Nemet DepCands.unionSets(Access, Prev->second); 8690456327cSAdam Nemet 8700456327cSAdam Nemet ObjToLastAccess[UnderlyingObj] = Access; 871e2b885c4SAdam Nemet DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 8720456327cSAdam Nemet } 8730456327cSAdam Nemet } 8740456327cSAdam Nemet } 8750456327cSAdam Nemet } 8760456327cSAdam Nemet } 8770456327cSAdam Nemet } 8780456327cSAdam Nemet 8790456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) { 8800456327cSAdam Nemet if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 8810456327cSAdam Nemet return GEP->isInBounds(); 8820456327cSAdam Nemet return false; 8830456327cSAdam Nemet } 8840456327cSAdam Nemet 885c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 886c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing. 887c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 888ea63a7f5SSilviu Baranga PredicatedScalarEvolution &PSE, const Loop *L) { 889c4866d29SAdam Nemet // FIXME: This should probably only return true for NUW. 890c4866d29SAdam Nemet if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 891c4866d29SAdam Nemet return true; 892c4866d29SAdam Nemet 893c4866d29SAdam Nemet // Scalar evolution does not propagate the non-wrapping flags to values that 894c4866d29SAdam Nemet // are derived from a non-wrapping induction variable because non-wrapping 895c4866d29SAdam Nemet // could be flow-sensitive. 896c4866d29SAdam Nemet // 897c4866d29SAdam Nemet // Look through the potentially overflowing instruction to try to prove 898c4866d29SAdam Nemet // non-wrapping for the *specific* value of Ptr. 899c4866d29SAdam Nemet 900c4866d29SAdam Nemet // The arithmetic implied by an inbounds GEP can't overflow. 901c4866d29SAdam Nemet auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 902c4866d29SAdam Nemet if (!GEP || !GEP->isInBounds()) 903c4866d29SAdam Nemet return false; 904c4866d29SAdam Nemet 905c4866d29SAdam Nemet // Make sure there is only one non-const index and analyze that. 906c4866d29SAdam Nemet Value *NonConstIndex = nullptr; 9078b401013SDavid Majnemer for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 9088b401013SDavid Majnemer if (!isa<ConstantInt>(Index)) { 909c4866d29SAdam Nemet if (NonConstIndex) 910c4866d29SAdam Nemet return false; 9118b401013SDavid Majnemer NonConstIndex = Index; 912c4866d29SAdam Nemet } 913c4866d29SAdam Nemet if (!NonConstIndex) 914c4866d29SAdam Nemet // The recurrence is on the pointer, ignore for now. 915c4866d29SAdam Nemet return false; 916c4866d29SAdam Nemet 917c4866d29SAdam Nemet // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 918c4866d29SAdam Nemet // AddRec using a NSW operation. 919c4866d29SAdam Nemet if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 920c4866d29SAdam Nemet if (OBO->hasNoSignedWrap() && 921c4866d29SAdam Nemet // Assume constant for other the operand so that the AddRec can be 922c4866d29SAdam Nemet // easily found. 923c4866d29SAdam Nemet isa<ConstantInt>(OBO->getOperand(1))) { 924ea63a7f5SSilviu Baranga auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 925c4866d29SAdam Nemet 926c4866d29SAdam Nemet if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 927c4866d29SAdam Nemet return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 928c4866d29SAdam Nemet } 929c4866d29SAdam Nemet 930c4866d29SAdam Nemet return false; 931c4866d29SAdam Nemet } 932c4866d29SAdam Nemet 9330456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride. 9347afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 935ea63a7f5SSilviu Baranga const Loop *Lp, const ValueToValueMap &StridesMap, 9365f8cc0c3SElena Demikhovsky bool Assume, bool ShouldCheckWrap) { 937e3dcce97SCraig Topper Type *Ty = Ptr->getType(); 9380456327cSAdam Nemet assert(Ty->isPointerTy() && "Unexpected non-ptr"); 9390456327cSAdam Nemet 9400456327cSAdam Nemet // Make sure that the pointer does not point to aggregate types. 941e3dcce97SCraig Topper auto *PtrTy = cast<PointerType>(Ty); 9420456327cSAdam Nemet if (PtrTy->getElementType()->isAggregateType()) { 943ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 944ea63a7f5SSilviu Baranga << "\n"); 9450456327cSAdam Nemet return 0; 9460456327cSAdam Nemet } 9470456327cSAdam Nemet 9489cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 9490456327cSAdam Nemet 9500456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 951ea63a7f5SSilviu Baranga if (Assume && !AR) 952d68ed854SSilviu Baranga AR = PSE.getAsAddRec(Ptr); 953ea63a7f5SSilviu Baranga 9540456327cSAdam Nemet if (!AR) { 955ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 956ea63a7f5SSilviu Baranga << " SCEV: " << *PtrScev << "\n"); 9570456327cSAdam Nemet return 0; 9580456327cSAdam Nemet } 9590456327cSAdam Nemet 9600456327cSAdam Nemet // The accesss function must stride over the innermost loop. 9610456327cSAdam Nemet if (Lp != AR->getLoop()) { 962339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 963ea63a7f5SSilviu Baranga *Ptr << " SCEV: " << *AR << "\n"); 964a02ce98bSKyle Butt return 0; 9650456327cSAdam Nemet } 9660456327cSAdam Nemet 9670456327cSAdam Nemet // The address calculation must not wrap. Otherwise, a dependence could be 9680456327cSAdam Nemet // inverted. 9690456327cSAdam Nemet // An inbounds getelementptr that is a AddRec with a unit stride 9700456327cSAdam Nemet // cannot wrap per definition. The unit stride requirement is checked later. 9710456327cSAdam Nemet // An getelementptr without an inbounds attribute and unit stride would have 9720456327cSAdam Nemet // to access the pointer value "0" which is undefined behavior in address 9730456327cSAdam Nemet // space 0, therefore we can also vectorize this case. 9740456327cSAdam Nemet bool IsInBoundsGEP = isInBoundsGep(Ptr); 9755f8cc0c3SElena Demikhovsky bool IsNoWrapAddRec = !ShouldCheckWrap || 976ea63a7f5SSilviu Baranga PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 977ea63a7f5SSilviu Baranga isNoWrapAddRec(Ptr, AR, PSE, Lp); 9780456327cSAdam Nemet bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 9790456327cSAdam Nemet if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 980ea63a7f5SSilviu Baranga if (Assume) { 981ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 982ea63a7f5SSilviu Baranga IsNoWrapAddRec = true; 983ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 984ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 985ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 986ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 987ea63a7f5SSilviu Baranga } else { 988339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 989ea63a7f5SSilviu Baranga << *Ptr << " SCEV: " << *AR << "\n"); 9900456327cSAdam Nemet return 0; 9910456327cSAdam Nemet } 992ea63a7f5SSilviu Baranga } 9930456327cSAdam Nemet 9940456327cSAdam Nemet // Check the step is constant. 9959cd9a7e3SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 9960456327cSAdam Nemet 997943befedSAdam Nemet // Calculate the pointer stride and check if it is constant. 9980456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 9990456327cSAdam Nemet if (!C) { 1000339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 1001ea63a7f5SSilviu Baranga " SCEV: " << *AR << "\n"); 10020456327cSAdam Nemet return 0; 10030456327cSAdam Nemet } 10040456327cSAdam Nemet 1005a28d91d8SMehdi Amini auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1006a28d91d8SMehdi Amini int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 10070de2feceSSanjoy Das const APInt &APStepVal = C->getAPInt(); 10080456327cSAdam Nemet 10090456327cSAdam Nemet // Huge step value - give up. 10100456327cSAdam Nemet if (APStepVal.getBitWidth() > 64) 10110456327cSAdam Nemet return 0; 10120456327cSAdam Nemet 10130456327cSAdam Nemet int64_t StepVal = APStepVal.getSExtValue(); 10140456327cSAdam Nemet 10150456327cSAdam Nemet // Strided access. 10160456327cSAdam Nemet int64_t Stride = StepVal / Size; 10170456327cSAdam Nemet int64_t Rem = StepVal % Size; 10180456327cSAdam Nemet if (Rem) 10190456327cSAdam Nemet return 0; 10200456327cSAdam Nemet 10210456327cSAdam Nemet // If the SCEV could wrap but we have an inbounds gep with a unit stride we 10220456327cSAdam Nemet // know we can't "wrap around the address space". In case of address space 10230456327cSAdam Nemet // zero we know that this won't happen without triggering undefined behavior. 10240456327cSAdam Nemet if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 1025ea63a7f5SSilviu Baranga Stride != 1 && Stride != -1) { 1026ea63a7f5SSilviu Baranga if (Assume) { 1027ea63a7f5SSilviu Baranga // We can avoid this case by adding a run-time check. 1028ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1029ea63a7f5SSilviu Baranga << "inbouds or in address space 0 may wrap:\n" 1030ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 1031ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 1032ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 1033ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1034ea63a7f5SSilviu Baranga } else 10350456327cSAdam Nemet return 0; 1036ea63a7f5SSilviu Baranga } 10370456327cSAdam Nemet 10380456327cSAdam Nemet return Stride; 10390456327cSAdam Nemet } 10400456327cSAdam Nemet 1041f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction. 1042f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction. 1043f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) { 10448b401013SDavid Majnemer if (auto *LI = dyn_cast<LoadInst>(I)) 1045f1c00a22SHaicheng Wu return LI->getPointerOperand(); 10468b401013SDavid Majnemer if (auto *SI = dyn_cast<StoreInst>(I)) 1047f1c00a22SHaicheng Wu return SI->getPointerOperand(); 1048f1c00a22SHaicheng Wu return nullptr; 1049f1c00a22SHaicheng Wu } 1050f1c00a22SHaicheng Wu 1051f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction. 1052f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction. 1053f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) { 1054f1c00a22SHaicheng Wu if (LoadInst *L = dyn_cast<LoadInst>(I)) 1055f1c00a22SHaicheng Wu return L->getPointerAddressSpace(); 1056f1c00a22SHaicheng Wu if (StoreInst *S = dyn_cast<StoreInst>(I)) 1057f1c00a22SHaicheng Wu return S->getPointerAddressSpace(); 1058f1c00a22SHaicheng Wu return -1; 1059f1c00a22SHaicheng Wu } 1060f1c00a22SHaicheng Wu 1061f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive. 1062f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1063f1c00a22SHaicheng Wu ScalarEvolution &SE, bool CheckType) { 1064f1c00a22SHaicheng Wu Value *PtrA = getPointerOperand(A); 1065f1c00a22SHaicheng Wu Value *PtrB = getPointerOperand(B); 1066f1c00a22SHaicheng Wu unsigned ASA = getAddressSpaceOperand(A); 1067f1c00a22SHaicheng Wu unsigned ASB = getAddressSpaceOperand(B); 1068f1c00a22SHaicheng Wu 1069f1c00a22SHaicheng Wu // Check that the address spaces match and that the pointers are valid. 1070f1c00a22SHaicheng Wu if (!PtrA || !PtrB || (ASA != ASB)) 1071f1c00a22SHaicheng Wu return false; 1072f1c00a22SHaicheng Wu 1073f1c00a22SHaicheng Wu // Make sure that A and B are different pointers. 1074f1c00a22SHaicheng Wu if (PtrA == PtrB) 1075f1c00a22SHaicheng Wu return false; 1076f1c00a22SHaicheng Wu 1077f1c00a22SHaicheng Wu // Make sure that A and B have the same type if required. 1078f1c00a22SHaicheng Wu if (CheckType && PtrA->getType() != PtrB->getType()) 1079f1c00a22SHaicheng Wu return false; 1080f1c00a22SHaicheng Wu 1081f1c00a22SHaicheng Wu unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1082f1c00a22SHaicheng Wu Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1083f1c00a22SHaicheng Wu APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1084f1c00a22SHaicheng Wu 1085f1c00a22SHaicheng Wu APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1086f1c00a22SHaicheng Wu PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1087f1c00a22SHaicheng Wu PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1088f1c00a22SHaicheng Wu 1089f1c00a22SHaicheng Wu // OffsetDelta = OffsetB - OffsetA; 1090f1c00a22SHaicheng Wu const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1091f1c00a22SHaicheng Wu const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1092f1c00a22SHaicheng Wu const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1093f1c00a22SHaicheng Wu const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1094f1c00a22SHaicheng Wu const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1095f1c00a22SHaicheng Wu // Check if they are based on the same pointer. That makes the offsets 1096f1c00a22SHaicheng Wu // sufficient. 1097f1c00a22SHaicheng Wu if (PtrA == PtrB) 1098f1c00a22SHaicheng Wu return OffsetDelta == Size; 1099f1c00a22SHaicheng Wu 1100f1c00a22SHaicheng Wu // Compute the necessary base pointer delta to have the necessary final delta 1101f1c00a22SHaicheng Wu // equal to the size. 1102f1c00a22SHaicheng Wu // BaseDelta = Size - OffsetDelta; 1103f1c00a22SHaicheng Wu const SCEV *SizeSCEV = SE.getConstant(Size); 1104f1c00a22SHaicheng Wu const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1105f1c00a22SHaicheng Wu 1106f1c00a22SHaicheng Wu // Otherwise compute the distance with SCEV between the base pointers. 1107f1c00a22SHaicheng Wu const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1108f1c00a22SHaicheng Wu const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1109f1c00a22SHaicheng Wu const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1110f1c00a22SHaicheng Wu return X == PtrSCEVB; 1111f1c00a22SHaicheng Wu } 1112f1c00a22SHaicheng Wu 11139c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 11149c926579SAdam Nemet switch (Type) { 11159c926579SAdam Nemet case NoDep: 11169c926579SAdam Nemet case Forward: 11179c926579SAdam Nemet case BackwardVectorizable: 11189c926579SAdam Nemet return true; 11199c926579SAdam Nemet 11209c926579SAdam Nemet case Unknown: 11219c926579SAdam Nemet case ForwardButPreventsForwarding: 11229c926579SAdam Nemet case Backward: 11239c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 11249c926579SAdam Nemet return false; 11259c926579SAdam Nemet } 1126d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 11279c926579SAdam Nemet } 11289c926579SAdam Nemet 1129397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const { 11309c926579SAdam Nemet switch (Type) { 11319c926579SAdam Nemet case NoDep: 11329c926579SAdam Nemet case Forward: 11339c926579SAdam Nemet case ForwardButPreventsForwarding: 1134397f5829SAdam Nemet case Unknown: 11359c926579SAdam Nemet return false; 11369c926579SAdam Nemet 11379c926579SAdam Nemet case BackwardVectorizable: 11389c926579SAdam Nemet case Backward: 11399c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 11409c926579SAdam Nemet return true; 11419c926579SAdam Nemet } 1142d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 11439c926579SAdam Nemet } 11449c926579SAdam Nemet 1145397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1146397f5829SAdam Nemet return isBackward() || Type == Unknown; 1147397f5829SAdam Nemet } 1148397f5829SAdam Nemet 1149397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const { 1150397f5829SAdam Nemet switch (Type) { 1151397f5829SAdam Nemet case Forward: 1152397f5829SAdam Nemet case ForwardButPreventsForwarding: 1153397f5829SAdam Nemet return true; 1154397f5829SAdam Nemet 1155397f5829SAdam Nemet case NoDep: 1156397f5829SAdam Nemet case Unknown: 1157397f5829SAdam Nemet case BackwardVectorizable: 1158397f5829SAdam Nemet case Backward: 1159397f5829SAdam Nemet case BackwardVectorizableButPreventsForwarding: 1160397f5829SAdam Nemet return false; 1161397f5829SAdam Nemet } 1162397f5829SAdam Nemet llvm_unreachable("unexpected DepType!"); 1163397f5829SAdam Nemet } 1164397f5829SAdam Nemet 11657afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 11667afb46d3SDavid Majnemer uint64_t TypeByteSize) { 11670456327cSAdam Nemet // If loads occur at a distance that is not a multiple of a feasible vector 11680456327cSAdam Nemet // factor store-load forwarding does not take place. 11690456327cSAdam Nemet // Positive dependences might cause troubles because vectorizing them might 11700456327cSAdam Nemet // prevent store-load forwarding making vectorized code run a lot slower. 11710456327cSAdam Nemet // a[i] = a[i-3] ^ a[i-8]; 11720456327cSAdam Nemet // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 11730456327cSAdam Nemet // hence on your typical architecture store-load forwarding does not take 11740456327cSAdam Nemet // place. Vectorizing in such cases does not make sense. 11750456327cSAdam Nemet // Store-load forwarding distance. 1176884d313bSAdam Nemet 1177884d313bSAdam Nemet // After this many iterations store-to-load forwarding conflicts should not 1178884d313bSAdam Nemet // cause any slowdowns. 11797afb46d3SDavid Majnemer const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 11800456327cSAdam Nemet // Maximum vector factor. 11817afb46d3SDavid Majnemer uint64_t MaxVFWithoutSLForwardIssues = std::min( 11822c34ab51SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 11830456327cSAdam Nemet 1184884d313bSAdam Nemet // Compute the smallest VF at which the store and load would be misaligned. 11857afb46d3SDavid Majnemer for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 11869b5852aeSAdam Nemet VF *= 2) { 1187884d313bSAdam Nemet // If the number of vector iteration between the store and the load are 1188884d313bSAdam Nemet // small we could incur conflicts. 1189884d313bSAdam Nemet if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 11909b5852aeSAdam Nemet MaxVFWithoutSLForwardIssues = (VF >>= 1); 11910456327cSAdam Nemet break; 11920456327cSAdam Nemet } 11930456327cSAdam Nemet } 11940456327cSAdam Nemet 11950456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 11969b5852aeSAdam Nemet DEBUG(dbgs() << "LAA: Distance " << Distance 11979b5852aeSAdam Nemet << " that could cause a store-load forwarding conflict\n"); 11980456327cSAdam Nemet return true; 11990456327cSAdam Nemet } 12000456327cSAdam Nemet 12010456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1202f219c647SAdam Nemet MaxVFWithoutSLForwardIssues != 1203f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize) 12040456327cSAdam Nemet MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 12050456327cSAdam Nemet return false; 12060456327cSAdam Nemet } 12070456327cSAdam Nemet 1208751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride. 1209751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in 1210751004a6SHao Liu /// bytes. 1211751004a6SHao Liu /// 1212751004a6SHao Liu /// \returns true if they are independent. 12137afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 12147afb46d3SDavid Majnemer uint64_t TypeByteSize) { 1215751004a6SHao Liu assert(Stride > 1 && "The stride must be greater than 1"); 1216751004a6SHao Liu assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1217751004a6SHao Liu assert(Distance > 0 && "The distance must be non-zero"); 1218751004a6SHao Liu 1219751004a6SHao Liu // Skip if the distance is not multiple of type byte size. 1220751004a6SHao Liu if (Distance % TypeByteSize) 1221751004a6SHao Liu return false; 1222751004a6SHao Liu 12237afb46d3SDavid Majnemer uint64_t ScaledDist = Distance / TypeByteSize; 1224751004a6SHao Liu 1225751004a6SHao Liu // No dependence if the scaled distance is not multiple of the stride. 1226751004a6SHao Liu // E.g. 1227751004a6SHao Liu // for (i = 0; i < 1024 ; i += 4) 1228751004a6SHao Liu // A[i+2] = A[i] + 1; 1229751004a6SHao Liu // 1230751004a6SHao Liu // Two accesses in memory (scaled distance is 2, stride is 4): 1231751004a6SHao Liu // | A[0] | | | | A[4] | | | | 1232751004a6SHao Liu // | | | A[2] | | | | A[6] | | 1233751004a6SHao Liu // 1234751004a6SHao Liu // E.g. 1235751004a6SHao Liu // for (i = 0; i < 1024 ; i += 3) 1236751004a6SHao Liu // A[i+4] = A[i] + 1; 1237751004a6SHao Liu // 1238751004a6SHao Liu // Two accesses in memory (scaled distance is 4, stride is 3): 1239751004a6SHao Liu // | A[0] | | | A[3] | | | A[6] | | | 1240751004a6SHao Liu // | | | | | A[4] | | | A[7] | | 1241751004a6SHao Liu return ScaledDist % Stride; 1242751004a6SHao Liu } 1243751004a6SHao Liu 12449c926579SAdam Nemet MemoryDepChecker::Dependence::DepType 12459c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 12460456327cSAdam Nemet const MemAccessInfo &B, unsigned BIdx, 12478bc61df9SAdam Nemet const ValueToValueMap &Strides) { 12480456327cSAdam Nemet assert (AIdx < BIdx && "Must pass arguments in program order"); 12490456327cSAdam Nemet 12500456327cSAdam Nemet Value *APtr = A.getPointer(); 12510456327cSAdam Nemet Value *BPtr = B.getPointer(); 12520456327cSAdam Nemet bool AIsWrite = A.getInt(); 12530456327cSAdam Nemet bool BIsWrite = B.getInt(); 12540456327cSAdam Nemet 12550456327cSAdam Nemet // Two reads are independent. 12560456327cSAdam Nemet if (!AIsWrite && !BIsWrite) 12579c926579SAdam Nemet return Dependence::NoDep; 12580456327cSAdam Nemet 12590456327cSAdam Nemet // We cannot check pointers in different address spaces. 12600456327cSAdam Nemet if (APtr->getType()->getPointerAddressSpace() != 12610456327cSAdam Nemet BPtr->getType()->getPointerAddressSpace()) 12629c926579SAdam Nemet return Dependence::Unknown; 12630456327cSAdam Nemet 12647afb46d3SDavid Majnemer int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 12657afb46d3SDavid Majnemer int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 12660456327cSAdam Nemet 1267adf4b739SSilviu Baranga const SCEV *Src = PSE.getSCEV(APtr); 1268adf4b739SSilviu Baranga const SCEV *Sink = PSE.getSCEV(BPtr); 12690456327cSAdam Nemet 12700456327cSAdam Nemet // If the induction step is negative we have to invert source and sink of the 12710456327cSAdam Nemet // dependence. 12720456327cSAdam Nemet if (StrideAPtr < 0) { 12730456327cSAdam Nemet std::swap(APtr, BPtr); 12740456327cSAdam Nemet std::swap(Src, Sink); 12750456327cSAdam Nemet std::swap(AIsWrite, BIsWrite); 12760456327cSAdam Nemet std::swap(AIdx, BIdx); 12770456327cSAdam Nemet std::swap(StrideAPtr, StrideBPtr); 12780456327cSAdam Nemet } 12790456327cSAdam Nemet 12809cd9a7e3SSilviu Baranga const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 12810456327cSAdam Nemet 1282339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 12830456327cSAdam Nemet << "(Induction step: " << StrideAPtr << ")\n"); 1284339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 12850456327cSAdam Nemet << *InstMap[BIdx] << ": " << *Dist << "\n"); 12860456327cSAdam Nemet 1287943befedSAdam Nemet // Need accesses with constant stride. We don't want to vectorize 12880456327cSAdam Nemet // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 12890456327cSAdam Nemet // the address space. 12900456327cSAdam Nemet if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1291943befedSAdam Nemet DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 12929c926579SAdam Nemet return Dependence::Unknown; 12930456327cSAdam Nemet } 12940456327cSAdam Nemet 12950456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 12960456327cSAdam Nemet if (!C) { 1297339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 12980456327cSAdam Nemet ShouldRetryWithRuntimeCheck = true; 12999c926579SAdam Nemet return Dependence::Unknown; 13000456327cSAdam Nemet } 13010456327cSAdam Nemet 13020456327cSAdam Nemet Type *ATy = APtr->getType()->getPointerElementType(); 13030456327cSAdam Nemet Type *BTy = BPtr->getType()->getPointerElementType(); 1304a28d91d8SMehdi Amini auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 13057afb46d3SDavid Majnemer uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 13060456327cSAdam Nemet 13070de2feceSSanjoy Das const APInt &Val = C->getAPInt(); 13086feebe98SMatthew Simpson int64_t Distance = Val.getSExtValue(); 13097afb46d3SDavid Majnemer uint64_t Stride = std::abs(StrideAPtr); 13106feebe98SMatthew Simpson 13116feebe98SMatthew Simpson // Attempt to prove strided accesses independent. 13126feebe98SMatthew Simpson if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 13136feebe98SMatthew Simpson areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 13146feebe98SMatthew Simpson DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 13156feebe98SMatthew Simpson return Dependence::NoDep; 13166feebe98SMatthew Simpson } 13176feebe98SMatthew Simpson 13186feebe98SMatthew Simpson // Negative distances are not plausible dependencies. 13190456327cSAdam Nemet if (Val.isNegative()) { 13200456327cSAdam Nemet bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 132137ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 13220456327cSAdam Nemet (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1323b8486e5aSAdam Nemet ATy != BTy)) { 1324b8486e5aSAdam Nemet DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 13259c926579SAdam Nemet return Dependence::ForwardButPreventsForwarding; 1326b8486e5aSAdam Nemet } 13270456327cSAdam Nemet 1328724ab223SAdam Nemet DEBUG(dbgs() << "LAA: Dependence is negative\n"); 13299c926579SAdam Nemet return Dependence::Forward; 13300456327cSAdam Nemet } 13310456327cSAdam Nemet 13320456327cSAdam Nemet // Write to the same location with the same size. 13330456327cSAdam Nemet // Could be improved to assert type sizes are the same (i32 == float, etc). 13340456327cSAdam Nemet if (Val == 0) { 13350456327cSAdam Nemet if (ATy == BTy) 1336d7037c56SAdam Nemet return Dependence::Forward; 1337339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 13389c926579SAdam Nemet return Dependence::Unknown; 13390456327cSAdam Nemet } 13400456327cSAdam Nemet 13410456327cSAdam Nemet assert(Val.isStrictlyPositive() && "Expect a positive value"); 13420456327cSAdam Nemet 13430456327cSAdam Nemet if (ATy != BTy) { 134404d4163eSAdam Nemet DEBUG(dbgs() << 1345339f42b3SAdam Nemet "LAA: ReadWrite-Write positive dependency with different types\n"); 13469c926579SAdam Nemet return Dependence::Unknown; 13470456327cSAdam Nemet } 13480456327cSAdam Nemet 13490456327cSAdam Nemet // Bail out early if passed-in parameters make vectorization not feasible. 1350f219c647SAdam Nemet unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1351f219c647SAdam Nemet VectorizerParams::VectorizationFactor : 1); 1352f219c647SAdam Nemet unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1353f219c647SAdam Nemet VectorizerParams::VectorizationInterleave : 1); 1354751004a6SHao Liu // The minimum number of iterations for a vectorized/unrolled version. 1355751004a6SHao Liu unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 13560456327cSAdam Nemet 1357751004a6SHao Liu // It's not vectorizable if the distance is smaller than the minimum distance 1358751004a6SHao Liu // needed for a vectroized/unrolled version. Vectorizing one iteration in 1359751004a6SHao Liu // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1360751004a6SHao Liu // TypeByteSize (No need to plus the last gap distance). 1361751004a6SHao Liu // 1362751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1363751004a6SHao Liu // foo(int *A) { 1364751004a6SHao Liu // int *B = (int *)((char *)A + 14); 1365751004a6SHao Liu // for (i = 0 ; i < 1024 ; i += 2) 1366751004a6SHao Liu // B[i] = A[i] + 1; 1367751004a6SHao Liu // } 1368751004a6SHao Liu // 1369751004a6SHao Liu // Two accesses in memory (stride is 2): 1370751004a6SHao Liu // | A[0] | | A[2] | | A[4] | | A[6] | | 1371751004a6SHao Liu // | B[0] | | B[2] | | B[4] | 1372751004a6SHao Liu // 1373751004a6SHao Liu // Distance needs for vectorizing iterations except the last iteration: 1374751004a6SHao Liu // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1375751004a6SHao Liu // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1376751004a6SHao Liu // 1377751004a6SHao Liu // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1378751004a6SHao Liu // 12, which is less than distance. 1379751004a6SHao Liu // 1380751004a6SHao Liu // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1381751004a6SHao Liu // the minimum distance needed is 28, which is greater than distance. It is 1382751004a6SHao Liu // not safe to do vectorization. 13837afb46d3SDavid Majnemer uint64_t MinDistanceNeeded = 1384751004a6SHao Liu TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 13857afb46d3SDavid Majnemer if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1386751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1387751004a6SHao Liu << '\n'); 1388751004a6SHao Liu return Dependence::Backward; 1389751004a6SHao Liu } 1390751004a6SHao Liu 1391751004a6SHao Liu // Unsafe if the minimum distance needed is greater than max safe distance. 1392751004a6SHao Liu if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1393751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because it needs at least " 1394751004a6SHao Liu << MinDistanceNeeded << " size in bytes"); 13959c926579SAdam Nemet return Dependence::Backward; 13960456327cSAdam Nemet } 13970456327cSAdam Nemet 13989cc0c399SAdam Nemet // Positive distance bigger than max vectorization factor. 1399751004a6SHao Liu // FIXME: Should use max factor instead of max distance in bytes, which could 1400751004a6SHao Liu // not handle different types. 1401751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1402751004a6SHao Liu // void foo (int *A, char *B) { 1403751004a6SHao Liu // for (unsigned i = 0; i < 1024; i++) { 1404751004a6SHao Liu // A[i+2] = A[i] + 1; 1405751004a6SHao Liu // B[i+2] = B[i] + 1; 1406751004a6SHao Liu // } 1407751004a6SHao Liu // } 1408751004a6SHao Liu // 1409751004a6SHao Liu // This case is currently unsafe according to the max safe distance. If we 1410751004a6SHao Liu // analyze the two accesses on array B, the max safe dependence distance 1411751004a6SHao Liu // is 2. Then we analyze the accesses on array A, the minimum distance needed 1412751004a6SHao Liu // is 8, which is less than 2 and forbidden vectorization, But actually 1413751004a6SHao Liu // both A and B could be vectorized by 2 iterations. 1414751004a6SHao Liu MaxSafeDepDistBytes = 14157afb46d3SDavid Majnemer std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 14160456327cSAdam Nemet 14170456327cSAdam Nemet bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 141837ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 14190456327cSAdam Nemet couldPreventStoreLoadForward(Distance, TypeByteSize)) 14209c926579SAdam Nemet return Dependence::BackwardVectorizableButPreventsForwarding; 14210456327cSAdam Nemet 1422751004a6SHao Liu DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1423751004a6SHao Liu << " with max VF = " 1424751004a6SHao Liu << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 14250456327cSAdam Nemet 14269c926579SAdam Nemet return Dependence::BackwardVectorizable; 14270456327cSAdam Nemet } 14280456327cSAdam Nemet 1429dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 14300456327cSAdam Nemet MemAccessInfoSet &CheckDeps, 14318bc61df9SAdam Nemet const ValueToValueMap &Strides) { 14320456327cSAdam Nemet 14337afb46d3SDavid Majnemer MaxSafeDepDistBytes = -1; 14340456327cSAdam Nemet while (!CheckDeps.empty()) { 14350456327cSAdam Nemet MemAccessInfo CurAccess = *CheckDeps.begin(); 14360456327cSAdam Nemet 14370456327cSAdam Nemet // Get the relevant memory access set. 14380456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::iterator I = 14390456327cSAdam Nemet AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 14400456327cSAdam Nemet 14410456327cSAdam Nemet // Check accesses within this set. 14427a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AI = 14437a083814SRichard Trieu AccessSets.member_begin(I); 14447a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AE = 14457a083814SRichard Trieu AccessSets.member_end(); 14460456327cSAdam Nemet 14470456327cSAdam Nemet // Check every access pair. 14480456327cSAdam Nemet while (AI != AE) { 14490456327cSAdam Nemet CheckDeps.erase(*AI); 14500456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 14510456327cSAdam Nemet while (OI != AE) { 14520456327cSAdam Nemet // Check every accessing instruction pair in program order. 14530456327cSAdam Nemet for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 14540456327cSAdam Nemet I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 14550456327cSAdam Nemet for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 14560456327cSAdam Nemet I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 14579c926579SAdam Nemet auto A = std::make_pair(&*AI, *I1); 14589c926579SAdam Nemet auto B = std::make_pair(&*OI, *I2); 14599c926579SAdam Nemet 14609c926579SAdam Nemet assert(*I1 != *I2); 14619c926579SAdam Nemet if (*I1 > *I2) 14629c926579SAdam Nemet std::swap(A, B); 14639c926579SAdam Nemet 14649c926579SAdam Nemet Dependence::DepType Type = 14659c926579SAdam Nemet isDependent(*A.first, A.second, *B.first, B.second, Strides); 14669c926579SAdam Nemet SafeForVectorization &= Dependence::isSafeForVectorization(Type); 14679c926579SAdam Nemet 1468a2df750fSAdam Nemet // Gather dependences unless we accumulated MaxDependences 14699c926579SAdam Nemet // dependences. In that case return as soon as we find the first 14709c926579SAdam Nemet // unsafe dependence. This puts a limit on this quadratic 14719c926579SAdam Nemet // algorithm. 1472a2df750fSAdam Nemet if (RecordDependences) { 1473a2df750fSAdam Nemet if (Type != Dependence::NoDep) 1474a2df750fSAdam Nemet Dependences.push_back(Dependence(A.second, B.second, Type)); 14759c926579SAdam Nemet 1476a2df750fSAdam Nemet if (Dependences.size() >= MaxDependences) { 1477a2df750fSAdam Nemet RecordDependences = false; 1478a2df750fSAdam Nemet Dependences.clear(); 14799c926579SAdam Nemet DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 14809c926579SAdam Nemet } 14819c926579SAdam Nemet } 1482a2df750fSAdam Nemet if (!RecordDependences && !SafeForVectorization) 14830456327cSAdam Nemet return false; 14840456327cSAdam Nemet } 14850456327cSAdam Nemet ++OI; 14860456327cSAdam Nemet } 14870456327cSAdam Nemet AI++; 14880456327cSAdam Nemet } 14890456327cSAdam Nemet } 14909c926579SAdam Nemet 1491a2df750fSAdam Nemet DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 14929c926579SAdam Nemet return SafeForVectorization; 14930456327cSAdam Nemet } 14940456327cSAdam Nemet 1495ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> 1496ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1497ec1e2bb6SAdam Nemet MemAccessInfo Access(Ptr, isWrite); 1498ec1e2bb6SAdam Nemet auto &IndexVector = Accesses.find(Access)->second; 1499ec1e2bb6SAdam Nemet 1500ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> Insts; 15012d006e76SDavid Majnemer transform(IndexVector, 1502ec1e2bb6SAdam Nemet std::back_inserter(Insts), 1503ec1e2bb6SAdam Nemet [&](unsigned Idx) { return this->InstMap[Idx]; }); 1504ec1e2bb6SAdam Nemet return Insts; 1505ec1e2bb6SAdam Nemet } 1506ec1e2bb6SAdam Nemet 150758913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = { 150858913d65SAdam Nemet "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 150958913d65SAdam Nemet "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 151058913d65SAdam Nemet 151158913d65SAdam Nemet void MemoryDepChecker::Dependence::print( 151258913d65SAdam Nemet raw_ostream &OS, unsigned Depth, 151358913d65SAdam Nemet const SmallVectorImpl<Instruction *> &Instrs) const { 151458913d65SAdam Nemet OS.indent(Depth) << DepName[Type] << ":\n"; 151558913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 151658913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 151758913d65SAdam Nemet } 151858913d65SAdam Nemet 1519929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() { 15208dcb3b6aSAdam Nemet // We need to have a loop header. 1521d8968f09SAdam Nemet DEBUG(dbgs() << "LAA: Found a loop in " 1522d8968f09SAdam Nemet << TheLoop->getHeader()->getParent()->getName() << ": " 1523d8968f09SAdam Nemet << TheLoop->getHeader()->getName() << '\n'); 15248dcb3b6aSAdam Nemet 1525929c38e8SAdam Nemet // We can only analyze innermost loops. 1526929c38e8SAdam Nemet if (!TheLoop->empty()) { 15278dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1528877ccee8SAdam Nemet recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1529929c38e8SAdam Nemet return false; 1530929c38e8SAdam Nemet } 1531929c38e8SAdam Nemet 1532929c38e8SAdam Nemet // We must have a single backedge. 1533929c38e8SAdam Nemet if (TheLoop->getNumBackEdges() != 1) { 15348dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1535877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1536877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1537929c38e8SAdam Nemet return false; 1538929c38e8SAdam Nemet } 1539929c38e8SAdam Nemet 1540929c38e8SAdam Nemet // We must have a single exiting block. 1541929c38e8SAdam Nemet if (!TheLoop->getExitingBlock()) { 15428dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1543877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1544877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1545929c38e8SAdam Nemet return false; 1546929c38e8SAdam Nemet } 1547929c38e8SAdam Nemet 1548929c38e8SAdam Nemet // We only handle bottom-tested loops, i.e. loop in which the condition is 1549929c38e8SAdam Nemet // checked at the end of each iteration. With that we can assume that all 1550929c38e8SAdam Nemet // instructions in the loop are executed the same number of times. 1551929c38e8SAdam Nemet if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 15528dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1553877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1554877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1555929c38e8SAdam Nemet return false; 1556929c38e8SAdam Nemet } 1557929c38e8SAdam Nemet 1558929c38e8SAdam Nemet // ScalarEvolution needs to be able to find the exit count. 155994734eefSXinliang David Li const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 156094734eefSXinliang David Li if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1561877ccee8SAdam Nemet recordAnalysis("CantComputeNumberOfIterations") 1562877ccee8SAdam Nemet << "could not determine number of loop iterations"; 1563929c38e8SAdam Nemet DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1564929c38e8SAdam Nemet return false; 1565929c38e8SAdam Nemet } 1566929c38e8SAdam Nemet 1567929c38e8SAdam Nemet return true; 1568929c38e8SAdam Nemet } 1569929c38e8SAdam Nemet 1570b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 15717da74abfSAdam Nemet const TargetLibraryInfo *TLI, 15727da74abfSAdam Nemet DominatorTree *DT) { 15730456327cSAdam Nemet typedef SmallPtrSet<Value*, 16> ValueSet; 15740456327cSAdam Nemet 1575e3e3b994SMatthew Simpson // Holds the Load and Store instructions. 1576e3e3b994SMatthew Simpson SmallVector<LoadInst *, 16> Loads; 1577e3e3b994SMatthew Simpson SmallVector<StoreInst *, 16> Stores; 15780456327cSAdam Nemet 15790456327cSAdam Nemet // Holds all the different accesses in the loop. 15800456327cSAdam Nemet unsigned NumReads = 0; 15810456327cSAdam Nemet unsigned NumReadWrites = 0; 15820456327cSAdam Nemet 1583ce030acbSXinliang David Li PtrRtChecking->Pointers.clear(); 1584ce030acbSXinliang David Li PtrRtChecking->Need = false; 15850456327cSAdam Nemet 15860456327cSAdam Nemet const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 15870456327cSAdam Nemet 15880456327cSAdam Nemet // For each block. 15898b401013SDavid Majnemer for (BasicBlock *BB : TheLoop->blocks()) { 15900456327cSAdam Nemet // Scan the BB and collect legal loads and stores. 15918b401013SDavid Majnemer for (Instruction &I : *BB) { 15920456327cSAdam Nemet // If this is a load, save it. If this instruction can read from memory 15930456327cSAdam Nemet // but is not a load, then we quit. Notice that we don't handle function 15940456327cSAdam Nemet // calls that read or write. 15958b401013SDavid Majnemer if (I.mayReadFromMemory()) { 15960456327cSAdam Nemet // Many math library functions read the rounding mode. We will only 15970456327cSAdam Nemet // vectorize a loop if it contains known function calls that don't set 15980456327cSAdam Nemet // the flag. Therefore, it is safe to ignore this read from memory. 15998b401013SDavid Majnemer auto *Call = dyn_cast<CallInst>(&I); 1600b4b27230SDavid Majnemer if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 16010456327cSAdam Nemet continue; 16020456327cSAdam Nemet 16039b3cf604SMichael Zolotukhin // If the function has an explicit vectorized counterpart, we can safely 16049b3cf604SMichael Zolotukhin // assume that it can be vectorized. 16059b3cf604SMichael Zolotukhin if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 16069b3cf604SMichael Zolotukhin TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 16079b3cf604SMichael Zolotukhin continue; 16089b3cf604SMichael Zolotukhin 16098b401013SDavid Majnemer auto *Ld = dyn_cast<LoadInst>(&I); 16100456327cSAdam Nemet if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1611877ccee8SAdam Nemet recordAnalysis("NonSimpleLoad", Ld) 1612877ccee8SAdam Nemet << "read with atomic ordering or volatile read"; 1613339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1614436018c3SAdam Nemet CanVecMem = false; 1615436018c3SAdam Nemet return; 16160456327cSAdam Nemet } 16170456327cSAdam Nemet NumLoads++; 16180456327cSAdam Nemet Loads.push_back(Ld); 1619ce030acbSXinliang David Li DepChecker->addAccess(Ld); 1620a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1621c953bb99SAdam Nemet collectStridedAccess(Ld); 16220456327cSAdam Nemet continue; 16230456327cSAdam Nemet } 16240456327cSAdam Nemet 16250456327cSAdam Nemet // Save 'store' instructions. Abort if other instructions write to memory. 16268b401013SDavid Majnemer if (I.mayWriteToMemory()) { 16278b401013SDavid Majnemer auto *St = dyn_cast<StoreInst>(&I); 16280456327cSAdam Nemet if (!St) { 1629877ccee8SAdam Nemet recordAnalysis("CantVectorizeInstruction", St) 1630877ccee8SAdam Nemet << "instruction cannot be vectorized"; 1631436018c3SAdam Nemet CanVecMem = false; 1632436018c3SAdam Nemet return; 16330456327cSAdam Nemet } 16340456327cSAdam Nemet if (!St->isSimple() && !IsAnnotatedParallel) { 1635877ccee8SAdam Nemet recordAnalysis("NonSimpleStore", St) 1636877ccee8SAdam Nemet << "write with atomic ordering or volatile write"; 1637339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1638436018c3SAdam Nemet CanVecMem = false; 1639436018c3SAdam Nemet return; 16400456327cSAdam Nemet } 16410456327cSAdam Nemet NumStores++; 16420456327cSAdam Nemet Stores.push_back(St); 1643ce030acbSXinliang David Li DepChecker->addAccess(St); 1644a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1645c953bb99SAdam Nemet collectStridedAccess(St); 16460456327cSAdam Nemet } 16470456327cSAdam Nemet } // Next instr. 16480456327cSAdam Nemet } // Next block. 16490456327cSAdam Nemet 16500456327cSAdam Nemet // Now we have two lists that hold the loads and the stores. 16510456327cSAdam Nemet // Next, we find the pointers that they use. 16520456327cSAdam Nemet 16530456327cSAdam Nemet // Check if we see any stores. If there are no stores, then we don't 16540456327cSAdam Nemet // care if the pointers are *restrict*. 16550456327cSAdam Nemet if (!Stores.size()) { 1656339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1657436018c3SAdam Nemet CanVecMem = true; 1658436018c3SAdam Nemet return; 16590456327cSAdam Nemet } 16600456327cSAdam Nemet 1661dee666bcSAdam Nemet MemoryDepChecker::DepCandidates DependentAccesses; 1662a28d91d8SMehdi Amini AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 166394734eefSXinliang David Li AA, LI, DependentAccesses, *PSE); 16640456327cSAdam Nemet 16650456327cSAdam Nemet // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 16660456327cSAdam Nemet // multiple times on the same object. If the ptr is accessed twice, once 16670456327cSAdam Nemet // for read and once for write, it will only appear once (on the write 16680456327cSAdam Nemet // list). This is okay, since we are going to check for conflicts between 16690456327cSAdam Nemet // writes and between reads and writes, but not between reads and reads. 16700456327cSAdam Nemet ValueSet Seen; 16710456327cSAdam Nemet 1672e3e3b994SMatthew Simpson for (StoreInst *ST : Stores) { 16730456327cSAdam Nemet Value *Ptr = ST->getPointerOperand(); 1674ce48250fSAdam Nemet // Check for store to loop invariant address. 1675ce48250fSAdam Nemet StoreToLoopInvariantAddress |= isUniform(Ptr); 16760456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the read-write 16770456327cSAdam Nemet // list. At this phase it is only a 'write' list. 16780456327cSAdam Nemet if (Seen.insert(Ptr).second) { 16790456327cSAdam Nemet ++NumReadWrites; 16800456327cSAdam Nemet 1681ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(ST); 16820456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 16830456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 16840456327cSAdam Nemet // need runtime pointer checks. 168501abb2c3SAdam Nemet if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 16860456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 16870456327cSAdam Nemet 16880456327cSAdam Nemet Accesses.addStore(Loc); 16890456327cSAdam Nemet } 16900456327cSAdam Nemet } 16910456327cSAdam Nemet 16920456327cSAdam Nemet if (IsAnnotatedParallel) { 169304d4163eSAdam Nemet DEBUG(dbgs() 1694339f42b3SAdam Nemet << "LAA: A loop annotated parallel, ignore memory dependency " 16950456327cSAdam Nemet << "checks.\n"); 1696436018c3SAdam Nemet CanVecMem = true; 1697436018c3SAdam Nemet return; 16980456327cSAdam Nemet } 16990456327cSAdam Nemet 1700e3e3b994SMatthew Simpson for (LoadInst *LD : Loads) { 17010456327cSAdam Nemet Value *Ptr = LD->getPointerOperand(); 17020456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the 17030456327cSAdam Nemet // read list. If we *did* see it before, then it is already in 17040456327cSAdam Nemet // the read-write list. This allows us to vectorize expressions 17050456327cSAdam Nemet // such as A[i] += x; Because the address of A[i] is a read-write 17060456327cSAdam Nemet // pointer. This only works if the index of A[i] is consecutive. 17070456327cSAdam Nemet // If the address of i is unknown (for example A[B[i]]) then we may 17080456327cSAdam Nemet // read a few words, modify, and write a few words, and some of the 17090456327cSAdam Nemet // words may be written to the same address. 17100456327cSAdam Nemet bool IsReadOnlyPtr = false; 1711139ffba3SAdam Nemet if (Seen.insert(Ptr).second || 171294734eefSXinliang David Li !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 17130456327cSAdam Nemet ++NumReads; 17140456327cSAdam Nemet IsReadOnlyPtr = true; 17150456327cSAdam Nemet } 17160456327cSAdam Nemet 1717ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(LD); 17180456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 17190456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 17200456327cSAdam Nemet // need runtime pointer checks. 172101abb2c3SAdam Nemet if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 17220456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 17230456327cSAdam Nemet 17240456327cSAdam Nemet Accesses.addLoad(Loc, IsReadOnlyPtr); 17250456327cSAdam Nemet } 17260456327cSAdam Nemet 17270456327cSAdam Nemet // If we write (or read-write) to a single destination and there are no 17280456327cSAdam Nemet // other reads in this loop then is it safe to vectorize. 17290456327cSAdam Nemet if (NumReadWrites == 1 && NumReads == 0) { 1730339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1731436018c3SAdam Nemet CanVecMem = true; 1732436018c3SAdam Nemet return; 17330456327cSAdam Nemet } 17340456327cSAdam Nemet 17350456327cSAdam Nemet // Build dependence sets and check whether we need a runtime pointer bounds 17360456327cSAdam Nemet // check. 17370456327cSAdam Nemet Accesses.buildDependenceSets(); 17380456327cSAdam Nemet 17390456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 17400456327cSAdam Nemet // to place a runtime bound check. 174194734eefSXinliang David Li bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1742139ffba3SAdam Nemet TheLoop, SymbolicStrides); 1743ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1744877ccee8SAdam Nemet recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1745ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1746ee61474aSAdam Nemet << "the array bounds.\n"); 1747436018c3SAdam Nemet CanVecMem = false; 1748436018c3SAdam Nemet return; 17490456327cSAdam Nemet } 17500456327cSAdam Nemet 1751ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 17520456327cSAdam Nemet 1753436018c3SAdam Nemet CanVecMem = true; 17540456327cSAdam Nemet if (Accesses.isDependencyCheckNeeded()) { 1755339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1756ce030acbSXinliang David Li CanVecMem = DepChecker->areDepsSafe( 1757139ffba3SAdam Nemet DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1758ce030acbSXinliang David Li MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 17590456327cSAdam Nemet 1760ce030acbSXinliang David Li if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1761339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 17620456327cSAdam Nemet 17630456327cSAdam Nemet // Clear the dependency checks. We assume they are not needed. 1764ce030acbSXinliang David Li Accesses.resetDepChecks(*DepChecker); 17650456327cSAdam Nemet 1766ce030acbSXinliang David Li PtrRtChecking->reset(); 1767ce030acbSXinliang David Li PtrRtChecking->Need = true; 17680456327cSAdam Nemet 176994734eefSXinliang David Li auto *SE = PSE->getSE(); 1770ce030acbSXinliang David Li CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1771139ffba3SAdam Nemet SymbolicStrides, true); 177298a13719SSilviu Baranga 1773949e91a6SAdam Nemet // Check that we found the bounds for the pointer. 1774ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1775877ccee8SAdam Nemet recordAnalysis("CantCheckMemDepsAtRunTime") 1776877ccee8SAdam Nemet << "cannot check memory dependencies at runtime"; 1777b6dc76ffSAdam Nemet DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1778b6dc76ffSAdam Nemet CanVecMem = false; 1779b6dc76ffSAdam Nemet return; 1780b6dc76ffSAdam Nemet } 1781b6dc76ffSAdam Nemet 17820456327cSAdam Nemet CanVecMem = true; 17830456327cSAdam Nemet } 17840456327cSAdam Nemet } 17850456327cSAdam Nemet 17864bb90a71SAdam Nemet if (CanVecMem) 17874bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1788ce030acbSXinliang David Li << (PtrRtChecking->Need ? "" : " don't") 17890f67c6c1SAdam Nemet << " need runtime memory checks.\n"); 17904bb90a71SAdam Nemet else { 1791877ccee8SAdam Nemet recordAnalysis("UnsafeMemDep") 17920a77dfadSAdam Nemet << "unsafe dependent memory operations in loop. Use " 17930a77dfadSAdam Nemet "#pragma loop distribute(enable) to allow loop distribution " 17940a77dfadSAdam Nemet "to attempt to isolate the offending operations into a separate " 1795877ccee8SAdam Nemet "loop"; 17964bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 17974bb90a71SAdam Nemet } 17980456327cSAdam Nemet } 17990456327cSAdam Nemet 180001abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 180101abb2c3SAdam Nemet DominatorTree *DT) { 18020456327cSAdam Nemet assert(TheLoop->contains(BB) && "Unknown block used"); 18030456327cSAdam Nemet 18040456327cSAdam Nemet // Blocks that do not dominate the latch need predication. 18050456327cSAdam Nemet BasicBlock* Latch = TheLoop->getLoopLatch(); 18060456327cSAdam Nemet return !DT->dominates(BB, Latch); 18070456327cSAdam Nemet } 18080456327cSAdam Nemet 1809877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 1810877ccee8SAdam Nemet Instruction *I) { 1811c922853bSAdam Nemet assert(!Report && "Multiple reports generated"); 1812877ccee8SAdam Nemet 1813877ccee8SAdam Nemet Value *CodeRegion = TheLoop->getHeader(); 1814877ccee8SAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 1815877ccee8SAdam Nemet 1816877ccee8SAdam Nemet if (I) { 1817877ccee8SAdam Nemet CodeRegion = I->getParent(); 1818877ccee8SAdam Nemet // If there is no debug location attached to the instruction, revert back to 1819877ccee8SAdam Nemet // using the loop's. 1820877ccee8SAdam Nemet if (I->getDebugLoc()) 1821877ccee8SAdam Nemet DL = I->getDebugLoc(); 1822877ccee8SAdam Nemet } 1823877ccee8SAdam Nemet 1824877ccee8SAdam Nemet Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 1825877ccee8SAdam Nemet CodeRegion); 1826877ccee8SAdam Nemet return *Report; 18270456327cSAdam Nemet } 18280456327cSAdam Nemet 182957ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const { 18303ceac2bbSMichael Kuperstein auto *SE = PSE->getSE(); 18313ceac2bbSMichael Kuperstein // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 18323ceac2bbSMichael Kuperstein // never considered uniform. 18333ceac2bbSMichael Kuperstein // TODO: Is this really what we want? Even without FP SCEV, we may want some 18343ceac2bbSMichael Kuperstein // trivially loop-invariant FP values to be considered uniform. 18353ceac2bbSMichael Kuperstein if (!SE->isSCEVable(V->getType())) 18363ceac2bbSMichael Kuperstein return false; 18373ceac2bbSMichael Kuperstein return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 18380456327cSAdam Nemet } 18397206d7a5SAdam Nemet 18407206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in 18417206d7a5SAdam Nemet // LoopVectorize.cpp. 18427206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 18437206d7a5SAdam Nemet Instruction *Loc) { 18447206d7a5SAdam Nemet if (FirstInst) 18457206d7a5SAdam Nemet return FirstInst; 18467206d7a5SAdam Nemet if (Instruction *I = dyn_cast<Instruction>(V)) 18477206d7a5SAdam Nemet return I->getParent() == Loc->getParent() ? I : nullptr; 18487206d7a5SAdam Nemet return nullptr; 18497206d7a5SAdam Nemet } 18507206d7a5SAdam Nemet 1851039b1042SBenjamin Kramer namespace { 1852a3fe70d2SEugene Zelenko 18534e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 18544e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously 18554e533ef7SAdam Nemet /// expanded values. Thus expansion of a pointer can invalidate the bounds for 18564e533ef7SAdam Nemet /// a previous one. 18571da7df37SAdam Nemet struct PointerBounds { 18584e533ef7SAdam Nemet TrackingVH<Value> Start; 18594e533ef7SAdam Nemet TrackingVH<Value> End; 18601da7df37SAdam Nemet }; 1861a3fe70d2SEugene Zelenko 1862039b1042SBenjamin Kramer } // end anonymous namespace 18637206d7a5SAdam Nemet 18641da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG 18651da7df37SAdam Nemet /// in \p TheLoop. \return the values for the bounds. 18661da7df37SAdam Nemet static PointerBounds 18671da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 18681da7df37SAdam Nemet Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 18691da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 18701da7df37SAdam Nemet Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 18717206d7a5SAdam Nemet const SCEV *Sc = SE->getSCEV(Ptr); 18727206d7a5SAdam Nemet 18737206d7a5SAdam Nemet unsigned AS = Ptr->getType()->getPointerAddressSpace(); 18741da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 18757206d7a5SAdam Nemet 18767206d7a5SAdam Nemet // Use this type for pointer arithmetic. 18777206d7a5SAdam Nemet Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 18787206d7a5SAdam Nemet 1879*92f377bdSKeno Fischer if (SE->isLoopInvariant(Sc, TheLoop)) { 1880*92f377bdSKeno Fischer DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1881*92f377bdSKeno Fischer << "\n"); 1882*92f377bdSKeno Fischer // Ptr could be in the loop body. If so, expand a new one at the correct 1883*92f377bdSKeno Fischer // location. 1884*92f377bdSKeno Fischer Instruction *Inst = dyn_cast<Instruction>(Ptr); 1885*92f377bdSKeno Fischer Value *NewPtr = (Inst && TheLoop->contains(Inst)) 1886*92f377bdSKeno Fischer ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 1887*92f377bdSKeno Fischer : Ptr; 1888*92f377bdSKeno Fischer return {NewPtr, NewPtr}; 1889*92f377bdSKeno Fischer } else { 1890*92f377bdSKeno Fischer Value *Start = nullptr, *End = nullptr; 18911b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 18921da7df37SAdam Nemet Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 18931da7df37SAdam Nemet End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 18941da7df37SAdam Nemet DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 18951da7df37SAdam Nemet return {Start, End}; 18967206d7a5SAdam Nemet } 18977206d7a5SAdam Nemet } 18987206d7a5SAdam Nemet 18991da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and 19001da7df37SAdam Nemet /// lower bounds for both pointers in the check. 19011da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 19021da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 19031da7df37SAdam Nemet Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 19041da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 19051da7df37SAdam Nemet SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 19061da7df37SAdam Nemet 19071da7df37SAdam Nemet // Here we're relying on the SCEV Expander's cache to only emit code for the 19081da7df37SAdam Nemet // same bounds once. 19092d006e76SDavid Majnemer transform( 19102d006e76SDavid Majnemer PointerChecks, std::back_inserter(ChecksWithBounds), 19111da7df37SAdam Nemet [&](const RuntimePointerChecking::PointerCheck &Check) { 191294abbbd6SNAKAMURA Takumi PointerBounds 191394abbbd6SNAKAMURA Takumi First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 191494abbbd6SNAKAMURA Takumi Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 191594abbbd6SNAKAMURA Takumi return std::make_pair(First, Second); 19161da7df37SAdam Nemet }); 19171da7df37SAdam Nemet 19181da7df37SAdam Nemet return ChecksWithBounds; 19191da7df37SAdam Nemet } 19201da7df37SAdam Nemet 19215b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 19221da7df37SAdam Nemet Instruction *Loc, 19231da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 19241da7df37SAdam Nemet const { 19251824e411SAdam Nemet const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 192694734eefSXinliang David Li auto *SE = PSE->getSE(); 19271824e411SAdam Nemet SCEVExpander Exp(*SE, DL, "induction"); 19281da7df37SAdam Nemet auto ExpandedChecks = 1929ce030acbSXinliang David Li expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 19301da7df37SAdam Nemet 19311da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 19321da7df37SAdam Nemet Instruction *FirstInst = nullptr; 19337206d7a5SAdam Nemet IRBuilder<> ChkBuilder(Loc); 19347206d7a5SAdam Nemet // Our instructions might fold to a constant. 19357206d7a5SAdam Nemet Value *MemoryRuntimeCheck = nullptr; 19361b6b50a9SSilviu Baranga 19371da7df37SAdam Nemet for (const auto &Check : ExpandedChecks) { 19381da7df37SAdam Nemet const PointerBounds &A = Check.first, &B = Check.second; 1939cdb791cdSAdam Nemet // Check if two pointers (A and B) conflict where conflict is computed as: 1940cdb791cdSAdam Nemet // start(A) <= end(B) && start(B) <= end(A) 19411da7df37SAdam Nemet unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 19421da7df37SAdam Nemet unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 19437206d7a5SAdam Nemet 19441da7df37SAdam Nemet assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 19451da7df37SAdam Nemet (AS1 == A.End->getType()->getPointerAddressSpace()) && 19467206d7a5SAdam Nemet "Trying to bounds check pointers with different address spaces"); 19477206d7a5SAdam Nemet 19487206d7a5SAdam Nemet Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 19497206d7a5SAdam Nemet Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 19507206d7a5SAdam Nemet 19511da7df37SAdam Nemet Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 19521da7df37SAdam Nemet Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 19531da7df37SAdam Nemet Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 19541da7df37SAdam Nemet Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 19557206d7a5SAdam Nemet 19563622fbfcSElena Demikhovsky // [A|B].Start points to the first accessed byte under base [A|B]. 19573622fbfcSElena Demikhovsky // [A|B].End points to the last accessed byte, plus one. 19583622fbfcSElena Demikhovsky // There is no conflict when the intervals are disjoint: 19593622fbfcSElena Demikhovsky // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 19603622fbfcSElena Demikhovsky // 19613622fbfcSElena Demikhovsky // bound0 = (B.Start < A.End) 19623622fbfcSElena Demikhovsky // bound1 = (A.Start < B.End) 19633622fbfcSElena Demikhovsky // IsConflict = bound0 & bound1 19643622fbfcSElena Demikhovsky Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 19657206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 19663622fbfcSElena Demikhovsky Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 19677206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 19687206d7a5SAdam Nemet Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 19697206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 19707206d7a5SAdam Nemet if (MemoryRuntimeCheck) { 19711da7df37SAdam Nemet IsConflict = 19721da7df37SAdam Nemet ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 19737206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 19747206d7a5SAdam Nemet } 19757206d7a5SAdam Nemet MemoryRuntimeCheck = IsConflict; 19767206d7a5SAdam Nemet } 19777206d7a5SAdam Nemet 197890fec840SAdam Nemet if (!MemoryRuntimeCheck) 197990fec840SAdam Nemet return std::make_pair(nullptr, nullptr); 198090fec840SAdam Nemet 19817206d7a5SAdam Nemet // We have to do this trickery because the IRBuilder might fold the check to a 19827206d7a5SAdam Nemet // constant expression in which case there is no Instruction anchored in a 19837206d7a5SAdam Nemet // the block. 19847206d7a5SAdam Nemet Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 19857206d7a5SAdam Nemet ConstantInt::getTrue(Ctx)); 19867206d7a5SAdam Nemet ChkBuilder.Insert(Check, "memcheck.conflict"); 19877206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Check, Loc); 19887206d7a5SAdam Nemet return std::make_pair(FirstInst, Check); 19897206d7a5SAdam Nemet } 19903bfd93d7SAdam Nemet 19915b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> 19925b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1993ce030acbSXinliang David Li if (!PtrRtChecking->Need) 19941da7df37SAdam Nemet return std::make_pair(nullptr, nullptr); 19951da7df37SAdam Nemet 1996ce030acbSXinliang David Li return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 19971da7df37SAdam Nemet } 19981da7df37SAdam Nemet 1999c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2000c953bb99SAdam Nemet Value *Ptr = nullptr; 2001c953bb99SAdam Nemet if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2002c953bb99SAdam Nemet Ptr = LI->getPointerOperand(); 2003c953bb99SAdam Nemet else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2004c953bb99SAdam Nemet Ptr = SI->getPointerOperand(); 2005c953bb99SAdam Nemet else 2006c953bb99SAdam Nemet return; 2007c953bb99SAdam Nemet 200894734eefSXinliang David Li Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2009c953bb99SAdam Nemet if (!Stride) 2010c953bb99SAdam Nemet return; 2011c953bb99SAdam Nemet 2012c953bb99SAdam Nemet DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 2013c953bb99SAdam Nemet DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2014c953bb99SAdam Nemet SymbolicStrides[Ptr] = Stride; 2015c953bb99SAdam Nemet StrideSet.insert(Stride); 2016c953bb99SAdam Nemet } 2017c953bb99SAdam Nemet 20183bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 20193bfd93d7SAdam Nemet const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2020a9f09c62SAdam Nemet DominatorTree *DT, LoopInfo *LI) 202194734eefSXinliang David Li : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2022ce030acbSXinliang David Li PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 202394734eefSXinliang David Li DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 20247da74abfSAdam Nemet NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 20257da74abfSAdam Nemet StoreToLoopInvariantAddress(false) { 2026929c38e8SAdam Nemet if (canAnalyzeLoop()) 20277da74abfSAdam Nemet analyzeLoop(AA, LI, TLI, DT); 20283bfd93d7SAdam Nemet } 20293bfd93d7SAdam Nemet 2030e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2031e91cc6efSAdam Nemet if (CanVecMem) { 20324ad38b63SAdam Nemet OS.indent(Depth) << "Memory dependences are safe"; 20337afb46d3SDavid Majnemer if (MaxSafeDepDistBytes != -1ULL) 2034c62e554eSAdam Nemet OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2035c62e554eSAdam Nemet << " bytes"; 2036ce030acbSXinliang David Li if (PtrRtChecking->Need) 20374ad38b63SAdam Nemet OS << " with run-time checks"; 20384ad38b63SAdam Nemet OS << "\n"; 2039e91cc6efSAdam Nemet } 2040e91cc6efSAdam Nemet 2041e91cc6efSAdam Nemet if (Report) 2042877ccee8SAdam Nemet OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2043e91cc6efSAdam Nemet 2044ce030acbSXinliang David Li if (auto *Dependences = DepChecker->getDependences()) { 2045a2df750fSAdam Nemet OS.indent(Depth) << "Dependences:\n"; 2046a2df750fSAdam Nemet for (auto &Dep : *Dependences) { 2047ce030acbSXinliang David Li Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 204858913d65SAdam Nemet OS << "\n"; 204958913d65SAdam Nemet } 205058913d65SAdam Nemet } else 2051a2df750fSAdam Nemet OS.indent(Depth) << "Too many dependences, not recorded\n"; 2052e91cc6efSAdam Nemet 2053e91cc6efSAdam Nemet // List the pair of accesses need run-time checks to prove independence. 2054ce030acbSXinliang David Li PtrRtChecking->print(OS, Depth); 2055e91cc6efSAdam Nemet OS << "\n"; 2056c3384320SAdam Nemet 2057c3384320SAdam Nemet OS.indent(Depth) << "Store to invariant address was " 2058c3384320SAdam Nemet << (StoreToLoopInvariantAddress ? "" : "not ") 2059c3384320SAdam Nemet << "found in loop.\n"; 2060e3c0534bSSilviu Baranga 2061e3c0534bSSilviu Baranga OS.indent(Depth) << "SCEV assumptions:\n"; 206294734eefSXinliang David Li PSE->getUnionPredicate().print(OS, Depth); 2063b77365b5SSilviu Baranga 2064b77365b5SSilviu Baranga OS << "\n"; 2065b77365b5SSilviu Baranga 2066b77365b5SSilviu Baranga OS.indent(Depth) << "Expressions re-written:\n"; 206794734eefSXinliang David Li PSE->print(OS, Depth); 2068e91cc6efSAdam Nemet } 2069e91cc6efSAdam Nemet 20707853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 20713bfd93d7SAdam Nemet auto &LAI = LoopAccessInfoMap[L]; 20723bfd93d7SAdam Nemet 20731824e411SAdam Nemet if (!LAI) 20741824e411SAdam Nemet LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 20751824e411SAdam Nemet 20763bfd93d7SAdam Nemet return *LAI.get(); 20773bfd93d7SAdam Nemet } 20783bfd93d7SAdam Nemet 20797853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 20807853c1ddSXinliang David Li LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2081ecde1c7fSXinliang David Li 2082e91cc6efSAdam Nemet for (Loop *TopLevelLoop : *LI) 2083e91cc6efSAdam Nemet for (Loop *L : depth_first(TopLevelLoop)) { 2084e91cc6efSAdam Nemet OS.indent(2) << L->getHeader()->getName() << ":\n"; 2085bdbc5227SAdam Nemet auto &LAI = LAA.getInfo(L); 2086e91cc6efSAdam Nemet LAI.print(OS, 4); 2087e91cc6efSAdam Nemet } 2088e91cc6efSAdam Nemet } 2089e91cc6efSAdam Nemet 20907853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2091ecde1c7fSXinliang David Li SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 20923bfd93d7SAdam Nemet auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2093ecde1c7fSXinliang David Li TLI = TLIP ? &TLIP->getTLI() : nullptr; 2094ecde1c7fSXinliang David Li AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2095ecde1c7fSXinliang David Li DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2096ecde1c7fSXinliang David Li LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 20973bfd93d7SAdam Nemet 20983bfd93d7SAdam Nemet return false; 20993bfd93d7SAdam Nemet } 21003bfd93d7SAdam Nemet 21017853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 21022f1fd165SChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 21037b560d40SChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 21043bfd93d7SAdam Nemet AU.addRequired<DominatorTreeWrapperPass>(); 2105e91cc6efSAdam Nemet AU.addRequired<LoopInfoWrapperPass>(); 21063bfd93d7SAdam Nemet 21073bfd93d7SAdam Nemet AU.setPreservesAll(); 21083bfd93d7SAdam Nemet } 21093bfd93d7SAdam Nemet 21107853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0; 21113bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis"; 21123bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses" 21133bfd93d7SAdam Nemet 21147853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 21157b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 21162f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 21173bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2118e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 21197853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 21203bfd93d7SAdam Nemet 2121dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key; 21228a021317SXinliang David Li 21230746f3bfSSean Silva LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM) { 212436e0d01eSSean Silva const FunctionAnalysisManager &FAM = 2125284b0324SSean Silva AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 21268a021317SXinliang David Li Function &F = *L.getHeader()->getParent(); 2127284b0324SSean Silva auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F); 21288a021317SXinliang David Li auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F); 2129284b0324SSean Silva auto *AA = FAM.getCachedResult<AAManager>(F); 2130284b0324SSean Silva auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2131284b0324SSean Silva auto *LI = FAM.getCachedResult<LoopAnalysis>(F); 2132284b0324SSean Silva if (!SE) 2133284b0324SSean Silva report_fatal_error( 2134284b0324SSean Silva "ScalarEvolution must have been cached at a higher level"); 2135284b0324SSean Silva if (!AA) 2136284b0324SSean Silva report_fatal_error("AliasAnalysis must have been cached at a higher level"); 2137284b0324SSean Silva if (!DT) 2138284b0324SSean Silva report_fatal_error("DominatorTree must have been cached at a higher level"); 2139284b0324SSean Silva if (!LI) 2140284b0324SSean Silva report_fatal_error("LoopInfo must have been cached at a higher level"); 21411824e411SAdam Nemet return LoopAccessInfo(&L, SE, TLI, AA, DT, LI); 21428a021317SXinliang David Li } 21438a021317SXinliang David Li 21448a021317SXinliang David Li PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L, 21450746f3bfSSean Silva LoopAnalysisManager &AM) { 21468a021317SXinliang David Li Function &F = *L.getHeader()->getParent(); 214707e08fa3SXinliang David Li auto &LAI = AM.getResult<LoopAccessAnalysis>(L); 21488a021317SXinliang David Li OS << "Loop access info in function '" << F.getName() << "':\n"; 21498a021317SXinliang David Li OS.indent(2) << L.getHeader()->getName() << ":\n"; 21508a021317SXinliang David Li LAI.print(OS, 4); 21518a021317SXinliang David Li return PreservedAnalyses::all(); 21528a021317SXinliang David Li } 21538a021317SXinliang David Li 21543bfd93d7SAdam Nemet namespace llvm { 2155a3fe70d2SEugene Zelenko 21563bfd93d7SAdam Nemet Pass *createLAAPass() { 21577853c1ddSXinliang David Li return new LoopAccessLegacyAnalysis(); 21583bfd93d7SAdam Nemet } 2159a3fe70d2SEugene Zelenko 2160a3fe70d2SEugene Zelenko } // end namespace llvm 2161