10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
20456327cSAdam Nemet //
30456327cSAdam Nemet //                     The LLVM Compiler Infrastructure
40456327cSAdam Nemet //
50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source
60456327cSAdam Nemet // License. See LICENSE.TXT for details.
70456327cSAdam Nemet //
80456327cSAdam Nemet //===----------------------------------------------------------------------===//
90456327cSAdam Nemet //
100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally
110456327cSAdam Nemet // developed for the loop vectorizer.
120456327cSAdam Nemet //
130456327cSAdam Nemet //===----------------------------------------------------------------------===//
140456327cSAdam Nemet 
15a3fe70d2SEugene Zelenko #include "llvm/ADT/APInt.h"
16a3fe70d2SEugene Zelenko #include "llvm/ADT/DenseMap.h"
17a3fe70d2SEugene Zelenko #include "llvm/ADT/DepthFirstIterator.h"
18a3fe70d2SEugene Zelenko #include "llvm/ADT/EquivalenceClasses.h"
19a3fe70d2SEugene Zelenko #include "llvm/ADT/iterator_range.h"
20a3fe70d2SEugene Zelenko #include "llvm/ADT/PointerIntPair.h"
21a3fe70d2SEugene Zelenko #include "llvm/ADT/SetVector.h"
22a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallPtrSet.h"
23a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallSet.h"
24a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallVector.h"
25a3fe70d2SEugene Zelenko #include "llvm/ADT/STLExtras.h"
26a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasAnalysis.h"
27a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasSetTracker.h"
280456327cSAdam Nemet #include "llvm/Analysis/LoopAccessAnalysis.h"
290456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
308a021317SXinliang David Li #include "llvm/Analysis/LoopPassManager.h"
31a3fe70d2SEugene Zelenko #include "llvm/Analysis/MemoryLocation.h"
325b3a5cf6SAdam Nemet #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
33a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolution.h"
347206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h"
35a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h"
370456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h"
38f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h"
39a3fe70d2SEugene Zelenko #include "llvm/IR/BasicBlock.h"
40a3fe70d2SEugene Zelenko #include "llvm/IR/Constants.h"
41a3fe70d2SEugene Zelenko #include "llvm/IR/DataLayout.h"
42a3fe70d2SEugene Zelenko #include "llvm/IR/DebugLoc.h"
43a3fe70d2SEugene Zelenko #include "llvm/IR/DerivedTypes.h"
44a3fe70d2SEugene Zelenko #include "llvm/IR/DiagnosticInfo.h"
450456327cSAdam Nemet #include "llvm/IR/Dominators.h"
46a3fe70d2SEugene Zelenko #include "llvm/IR/Function.h"
47a3fe70d2SEugene Zelenko #include "llvm/IR/InstrTypes.h"
48a3fe70d2SEugene Zelenko #include "llvm/IR/Instruction.h"
49a3fe70d2SEugene Zelenko #include "llvm/IR/Instructions.h"
507206d7a5SAdam Nemet #include "llvm/IR/IRBuilder.h"
51a3fe70d2SEugene Zelenko #include "llvm/IR/Operator.h"
528a021317SXinliang David Li #include "llvm/IR/PassManager.h"
53a3fe70d2SEugene Zelenko #include "llvm/IR/Type.h"
54a3fe70d2SEugene Zelenko #include "llvm/IR/Value.h"
55a3fe70d2SEugene Zelenko #include "llvm/IR/ValueHandle.h"
56a3fe70d2SEugene Zelenko #include "llvm/Pass.h"
57a3fe70d2SEugene Zelenko #include "llvm/Support/Casting.h"
58a3fe70d2SEugene Zelenko #include "llvm/Support/CommandLine.h"
590456327cSAdam Nemet #include "llvm/Support/Debug.h"
60a3fe70d2SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
61799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h"
62a3fe70d2SEugene Zelenko #include <algorithm>
63a3fe70d2SEugene Zelenko #include <cassert>
64a3fe70d2SEugene Zelenko #include <cstdint>
65a3fe70d2SEugene Zelenko #include <cstdlib>
66a3fe70d2SEugene Zelenko #include <iterator>
67a3fe70d2SEugene Zelenko #include <utility>
68a3fe70d2SEugene Zelenko #include <vector>
69a3fe70d2SEugene Zelenko 
700456327cSAdam Nemet using namespace llvm;
710456327cSAdam Nemet 
72339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses"
730456327cSAdam Nemet 
74f219c647SAdam Nemet static cl::opt<unsigned, true>
75f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden,
76f219c647SAdam Nemet                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77f219c647SAdam Nemet                     cl::location(VectorizerParams::VectorizationFactor));
781d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor;
79f219c647SAdam Nemet 
80f219c647SAdam Nemet static cl::opt<unsigned, true>
81f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden,
82f219c647SAdam Nemet                         cl::desc("Sets the vectorization interleave count. "
83f219c647SAdam Nemet                                  "Zero is autoselect."),
84f219c647SAdam Nemet                         cl::location(
85f219c647SAdam Nemet                             VectorizerParams::VectorizationInterleave));
861d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave;
87f219c647SAdam Nemet 
881d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
891d862af7SAdam Nemet     "runtime-memory-check-threshold", cl::Hidden,
901d862af7SAdam Nemet     cl::desc("When performing memory disambiguation checks at runtime do not "
911d862af7SAdam Nemet              "generate more than this number of comparisons (default = 8)."),
921d862af7SAdam Nemet     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
931d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94f219c647SAdam Nemet 
951b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks
961b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold(
971b6b50a9SSilviu Baranga     "memory-check-merge-threshold", cl::Hidden,
981b6b50a9SSilviu Baranga     cl::desc("Maximum number of comparisons done when trying to merge "
991b6b50a9SSilviu Baranga              "runtime memory checks. (default = 100)"),
1001b6b50a9SSilviu Baranga     cl::init(100));
1011b6b50a9SSilviu Baranga 
102f219c647SAdam Nemet /// Maximum SIMD width.
103f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64;
104f219c647SAdam Nemet 
105a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold.
106a2df750fSAdam Nemet static cl::opt<unsigned>
107a2df750fSAdam Nemet     MaxDependences("max-dependences", cl::Hidden,
108a2df750fSAdam Nemet                    cl::desc("Maximum number of dependences collected by "
1099c926579SAdam Nemet                             "loop-access analysis (default = 100)"),
1109c926579SAdam Nemet                    cl::init(100));
1119c926579SAdam Nemet 
112a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory
113a9f09c62SAdam Nemet /// accesses in code like the following.
114a9f09c62SAdam Nemet ///   for (i = 0; i < N; ++i)
115a9f09c62SAdam Nemet ///     A[i * Stride1] += B[i * Stride2] ...
116a9f09c62SAdam Nemet ///
117a9f09c62SAdam Nemet /// Will be roughly translated to
118a9f09c62SAdam Nemet ///    if (Stride1 == 1 && Stride2 == 1) {
119a9f09c62SAdam Nemet ///      for (i = 0; i < N; i+=4)
120a9f09c62SAdam Nemet ///       A[i:i+3] += ...
121a9f09c62SAdam Nemet ///    } else
122a9f09c62SAdam Nemet ///      ...
123a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning(
124a9f09c62SAdam Nemet     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125a9f09c62SAdam Nemet     cl::desc("Enable symbolic stride memory access versioning"));
126a9f09c62SAdam Nemet 
12737ec5f91SMatthew Simpson /// \brief Enable store-to-load forwarding conflict detection. This option can
12837ec5f91SMatthew Simpson /// be disabled for correctness testing.
12937ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection(
13037ec5f91SMatthew Simpson     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131a250dc9fSMatthew Simpson     cl::desc("Enable conflict detection in loop-access analysis"),
132a250dc9fSMatthew Simpson     cl::init(true));
133a250dc9fSMatthew Simpson 
134f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() {
135f219c647SAdam Nemet   return ::VectorizationInterleave.getNumOccurrences() > 0;
136f219c647SAdam Nemet }
137f219c647SAdam Nemet 
1382bd6e984SAdam Nemet void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
1395b3a5cf6SAdam Nemet                                     const Loop *TheLoop, const char *PassName,
1405b3a5cf6SAdam Nemet                                     OptimizationRemarkEmitter &ORE) {
1410456327cSAdam Nemet   DebugLoc DL = TheLoop->getStartLoc();
1425b3a5cf6SAdam Nemet   const Value *V = TheLoop->getHeader();
1435b3a5cf6SAdam Nemet   if (const Instruction *I = Message.getInstr()) {
144e3cef937SAdam Nemet     // If there is no debug location attached to the instruction, revert back to
145e3cef937SAdam Nemet     // using the loop's.
146e3cef937SAdam Nemet     if (I->getDebugLoc())
1470456327cSAdam Nemet       DL = I->getDebugLoc();
1485b3a5cf6SAdam Nemet     V = I->getParent();
1495b3a5cf6SAdam Nemet   }
1505b3a5cf6SAdam Nemet   ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
1510456327cSAdam Nemet }
1520456327cSAdam Nemet 
1530456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) {
1548b401013SDavid Majnemer   if (auto *CI = dyn_cast<CastInst>(V))
1550456327cSAdam Nemet     if (CI->getOperand(0)->getType()->isIntegerTy())
1560456327cSAdam Nemet       return CI->getOperand(0);
1570456327cSAdam Nemet   return V;
1580456327cSAdam Nemet }
1590456327cSAdam Nemet 
1609cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
1618bc61df9SAdam Nemet                                             const ValueToValueMap &PtrToStride,
1620456327cSAdam Nemet                                             Value *Ptr, Value *OrigPtr) {
1639cd9a7e3SSilviu Baranga   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
1640456327cSAdam Nemet 
1650456327cSAdam Nemet   // If there is an entry in the map return the SCEV of the pointer with the
1660456327cSAdam Nemet   // symbolic stride replaced by one.
1678bc61df9SAdam Nemet   ValueToValueMap::const_iterator SI =
1688bc61df9SAdam Nemet       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1690456327cSAdam Nemet   if (SI != PtrToStride.end()) {
1700456327cSAdam Nemet     Value *StrideVal = SI->second;
1710456327cSAdam Nemet 
1720456327cSAdam Nemet     // Strip casts.
1730456327cSAdam Nemet     StrideVal = stripIntegerCast(StrideVal);
1740456327cSAdam Nemet 
1750456327cSAdam Nemet     // Replace symbolic stride by one.
1760456327cSAdam Nemet     Value *One = ConstantInt::get(StrideVal->getType(), 1);
1770456327cSAdam Nemet     ValueToValueMap RewriteMap;
1780456327cSAdam Nemet     RewriteMap[StrideVal] = One;
1790456327cSAdam Nemet 
1809cd9a7e3SSilviu Baranga     ScalarEvolution *SE = PSE.getSE();
181e3c0534bSSilviu Baranga     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
182e3c0534bSSilviu Baranga     const auto *CT =
183e3c0534bSSilviu Baranga         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
184e3c0534bSSilviu Baranga 
1859cd9a7e3SSilviu Baranga     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
1869cd9a7e3SSilviu Baranga     auto *Expr = PSE.getSCEV(Ptr);
187e3c0534bSSilviu Baranga 
1889cd9a7e3SSilviu Baranga     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
1890456327cSAdam Nemet                  << "\n");
1909cd9a7e3SSilviu Baranga     return Expr;
1910456327cSAdam Nemet   }
1920456327cSAdam Nemet 
1930456327cSAdam Nemet   // Otherwise, just return the SCEV of the original pointer.
194e3c0534bSSilviu Baranga   return OrigSCEV;
1950456327cSAdam Nemet }
1960456327cSAdam Nemet 
1973622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access.
1983622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop
1993622fbfcSElena Demikhovsky /// iteration. Then B is calculated as:
2003622fbfcSElena Demikhovsky ///   B = A + Step*N .
2013622fbfcSElena Demikhovsky /// Step value may be positive or negative.
2023622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count:
2033622fbfcSElena Demikhovsky ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
2043622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way:
2053622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
2063622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes.
2073622fbfcSElena Demikhovsky ///
2083622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint:
2093622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
2107cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
2117cdebac0SAdam Nemet                                     unsigned DepSetId, unsigned ASId,
212e3c0534bSSilviu Baranga                                     const ValueToValueMap &Strides,
2139cd9a7e3SSilviu Baranga                                     PredicatedScalarEvolution &PSE) {
2140456327cSAdam Nemet   // Get the stride replaced scev.
2159cd9a7e3SSilviu Baranga   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
216279784ffSAdam Nemet   ScalarEvolution *SE = PSE.getSE();
217279784ffSAdam Nemet 
218279784ffSAdam Nemet   const SCEV *ScStart;
219279784ffSAdam Nemet   const SCEV *ScEnd;
220279784ffSAdam Nemet 
22159a65504SAdam Nemet   if (SE->isLoopInvariant(Sc, Lp))
222279784ffSAdam Nemet     ScStart = ScEnd = Sc;
223279784ffSAdam Nemet   else {
2240456327cSAdam Nemet     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
2250456327cSAdam Nemet     assert(AR && "Invalid addrec expression");
2266f444dfdSSilviu Baranga     const SCEV *Ex = PSE.getBackedgeTakenCount();
2270e5804a6SSilviu Baranga 
228279784ffSAdam Nemet     ScStart = AR->getStart();
229279784ffSAdam Nemet     ScEnd = AR->evaluateAtIteration(Ex, *SE);
2300e5804a6SSilviu Baranga     const SCEV *Step = AR->getStepRecurrence(*SE);
2310e5804a6SSilviu Baranga 
2320e5804a6SSilviu Baranga     // For expressions with negative step, the upper bound is ScStart and the
2330e5804a6SSilviu Baranga     // lower bound is ScEnd.
2348b401013SDavid Majnemer     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
2350e5804a6SSilviu Baranga       if (CStep->getValue()->isNegative())
2360e5804a6SSilviu Baranga         std::swap(ScStart, ScEnd);
2370e5804a6SSilviu Baranga     } else {
2383622fbfcSElena Demikhovsky       // Fallback case: the step is not constant, but we can still
2390e5804a6SSilviu Baranga       // get the upper and lower bounds of the interval by using min/max
2400e5804a6SSilviu Baranga       // expressions.
2410e5804a6SSilviu Baranga       ScStart = SE->getUMinExpr(ScStart, ScEnd);
2420e5804a6SSilviu Baranga       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
2430e5804a6SSilviu Baranga     }
2443622fbfcSElena Demikhovsky     // Add the size of the pointed element to ScEnd.
2453622fbfcSElena Demikhovsky     unsigned EltSize =
2463622fbfcSElena Demikhovsky       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
2473622fbfcSElena Demikhovsky     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
2483622fbfcSElena Demikhovsky     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
249279784ffSAdam Nemet   }
2500e5804a6SSilviu Baranga 
2510e5804a6SSilviu Baranga   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
2521b6b50a9SSilviu Baranga }
2531b6b50a9SSilviu Baranga 
254bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4>
25538530887SAdam Nemet RuntimePointerChecking::generateChecks() const {
256bbe1f1deSAdam Nemet   SmallVector<PointerCheck, 4> Checks;
257bbe1f1deSAdam Nemet 
2587c52e052SAdam Nemet   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
2597c52e052SAdam Nemet     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
2607c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
2617c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
262bbe1f1deSAdam Nemet 
26338530887SAdam Nemet       if (needsChecking(CGI, CGJ))
264bbe1f1deSAdam Nemet         Checks.push_back(std::make_pair(&CGI, &CGJ));
265bbe1f1deSAdam Nemet     }
266bbe1f1deSAdam Nemet   }
267bbe1f1deSAdam Nemet   return Checks;
268bbe1f1deSAdam Nemet }
269bbe1f1deSAdam Nemet 
27015840393SAdam Nemet void RuntimePointerChecking::generateChecks(
27115840393SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
27215840393SAdam Nemet   assert(Checks.empty() && "Checks is not empty");
27315840393SAdam Nemet   groupChecks(DepCands, UseDependencies);
27415840393SAdam Nemet   Checks = generateChecks();
27515840393SAdam Nemet }
27615840393SAdam Nemet 
277651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
278651a5a24SAdam Nemet                                            const CheckingPtrGroup &N) const {
2791b6b50a9SSilviu Baranga   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
2801b6b50a9SSilviu Baranga     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
281651a5a24SAdam Nemet       if (needsChecking(M.Members[I], N.Members[J]))
2821b6b50a9SSilviu Baranga         return true;
2831b6b50a9SSilviu Baranga   return false;
2841b6b50a9SSilviu Baranga }
2851b6b50a9SSilviu Baranga 
2861b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum.
2871b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer.
2881b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
2891b6b50a9SSilviu Baranga                                    ScalarEvolution *SE) {
2901b6b50a9SSilviu Baranga   const SCEV *Diff = SE->getMinusSCEV(J, I);
2911b6b50a9SSilviu Baranga   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
2921b6b50a9SSilviu Baranga 
2931b6b50a9SSilviu Baranga   if (!C)
2941b6b50a9SSilviu Baranga     return nullptr;
2951b6b50a9SSilviu Baranga   if (C->getValue()->isNegative())
2961b6b50a9SSilviu Baranga     return J;
2971b6b50a9SSilviu Baranga   return I;
2981b6b50a9SSilviu Baranga }
2991b6b50a9SSilviu Baranga 
3007cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
3019f7dedc3SAdam Nemet   const SCEV *Start = RtCheck.Pointers[Index].Start;
3029f7dedc3SAdam Nemet   const SCEV *End = RtCheck.Pointers[Index].End;
3039f7dedc3SAdam Nemet 
3041b6b50a9SSilviu Baranga   // Compare the starts and ends with the known minimum and maximum
3051b6b50a9SSilviu Baranga   // of this set. We need to know how we compare against the min/max
3061b6b50a9SSilviu Baranga   // of the set in order to be able to emit memchecks.
3079f7dedc3SAdam Nemet   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
3081b6b50a9SSilviu Baranga   if (!Min0)
3091b6b50a9SSilviu Baranga     return false;
3101b6b50a9SSilviu Baranga 
3119f7dedc3SAdam Nemet   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
3121b6b50a9SSilviu Baranga   if (!Min1)
3131b6b50a9SSilviu Baranga     return false;
3141b6b50a9SSilviu Baranga 
3151b6b50a9SSilviu Baranga   // Update the low bound  expression if we've found a new min value.
3169f7dedc3SAdam Nemet   if (Min0 == Start)
3179f7dedc3SAdam Nemet     Low = Start;
3181b6b50a9SSilviu Baranga 
3191b6b50a9SSilviu Baranga   // Update the high bound expression if we've found a new max value.
3209f7dedc3SAdam Nemet   if (Min1 != End)
3219f7dedc3SAdam Nemet     High = End;
3221b6b50a9SSilviu Baranga 
3231b6b50a9SSilviu Baranga   Members.push_back(Index);
3241b6b50a9SSilviu Baranga   return true;
3251b6b50a9SSilviu Baranga }
3261b6b50a9SSilviu Baranga 
3277cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks(
3287cdebac0SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
3291b6b50a9SSilviu Baranga   // We build the groups from dependency candidates equivalence classes
3301b6b50a9SSilviu Baranga   // because:
3311b6b50a9SSilviu Baranga   //    - We know that pointers in the same equivalence class share
3321b6b50a9SSilviu Baranga   //      the same underlying object and therefore there is a chance
3331b6b50a9SSilviu Baranga   //      that we can compare pointers
3341b6b50a9SSilviu Baranga   //    - We wouldn't be able to merge two pointers for which we need
3351b6b50a9SSilviu Baranga   //      to emit a memcheck. The classes in DepCands are already
3361b6b50a9SSilviu Baranga   //      conveniently built such that no two pointers in the same
3371b6b50a9SSilviu Baranga   //      class need checking against each other.
3381b6b50a9SSilviu Baranga 
3391b6b50a9SSilviu Baranga   // We use the following (greedy) algorithm to construct the groups
3401b6b50a9SSilviu Baranga   // For every pointer in the equivalence class:
3411b6b50a9SSilviu Baranga   //   For each existing group:
3421b6b50a9SSilviu Baranga   //   - if the difference between this pointer and the min/max bounds
3431b6b50a9SSilviu Baranga   //     of the group is a constant, then make the pointer part of the
3441b6b50a9SSilviu Baranga   //     group and update the min/max bounds of that group as required.
3451b6b50a9SSilviu Baranga 
3461b6b50a9SSilviu Baranga   CheckingGroups.clear();
3471b6b50a9SSilviu Baranga 
34848250600SSilviu Baranga   // If we need to check two pointers to the same underlying object
34948250600SSilviu Baranga   // with a non-constant difference, we shouldn't perform any pointer
35048250600SSilviu Baranga   // grouping with those pointers. This is because we can easily get
35148250600SSilviu Baranga   // into cases where the resulting check would return false, even when
35248250600SSilviu Baranga   // the accesses are safe.
35348250600SSilviu Baranga   //
35448250600SSilviu Baranga   // The following example shows this:
35548250600SSilviu Baranga   // for (i = 0; i < 1000; ++i)
35648250600SSilviu Baranga   //   a[5000 + i * m] = a[i] + a[i + 9000]
35748250600SSilviu Baranga   //
35848250600SSilviu Baranga   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
35948250600SSilviu Baranga   // (0, 10000) which is always false. However, if m is 1, there is no
36048250600SSilviu Baranga   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
36148250600SSilviu Baranga   // us to perform an accurate check in this case.
36248250600SSilviu Baranga   //
36348250600SSilviu Baranga   // The above case requires that we have an UnknownDependence between
36448250600SSilviu Baranga   // accesses to the same underlying object. This cannot happen unless
36548250600SSilviu Baranga   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
36648250600SSilviu Baranga   // is also false. In this case we will use the fallback path and create
36748250600SSilviu Baranga   // separate checking groups for all pointers.
36848250600SSilviu Baranga 
3691b6b50a9SSilviu Baranga   // If we don't have the dependency partitions, construct a new
37048250600SSilviu Baranga   // checking pointer group for each pointer. This is also required
37148250600SSilviu Baranga   // for correctness, because in this case we can have checking between
37248250600SSilviu Baranga   // pointers to the same underlying object.
3731b6b50a9SSilviu Baranga   if (!UseDependencies) {
3741b6b50a9SSilviu Baranga     for (unsigned I = 0; I < Pointers.size(); ++I)
3751b6b50a9SSilviu Baranga       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
3761b6b50a9SSilviu Baranga     return;
3771b6b50a9SSilviu Baranga   }
3781b6b50a9SSilviu Baranga 
3791b6b50a9SSilviu Baranga   unsigned TotalComparisons = 0;
3801b6b50a9SSilviu Baranga 
3811b6b50a9SSilviu Baranga   DenseMap<Value *, unsigned> PositionMap;
3829f7dedc3SAdam Nemet   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
3839f7dedc3SAdam Nemet     PositionMap[Pointers[Index].PointerValue] = Index;
3841b6b50a9SSilviu Baranga 
385ce3877fcSSilviu Baranga   // We need to keep track of what pointers we've already seen so we
386ce3877fcSSilviu Baranga   // don't process them twice.
387ce3877fcSSilviu Baranga   SmallSet<unsigned, 2> Seen;
388ce3877fcSSilviu Baranga 
389e4b9f507SSanjay Patel   // Go through all equivalence classes, get the "pointer check groups"
390ce3877fcSSilviu Baranga   // and add them to the overall solution. We use the order in which accesses
391ce3877fcSSilviu Baranga   // appear in 'Pointers' to enforce determinism.
392ce3877fcSSilviu Baranga   for (unsigned I = 0; I < Pointers.size(); ++I) {
393ce3877fcSSilviu Baranga     // We've seen this pointer before, and therefore already processed
394ce3877fcSSilviu Baranga     // its equivalence class.
395ce3877fcSSilviu Baranga     if (Seen.count(I))
3961b6b50a9SSilviu Baranga       continue;
3971b6b50a9SSilviu Baranga 
3989f7dedc3SAdam Nemet     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
3999f7dedc3SAdam Nemet                                            Pointers[I].IsWritePtr);
4001b6b50a9SSilviu Baranga 
401ce3877fcSSilviu Baranga     SmallVector<CheckingPtrGroup, 2> Groups;
402ce3877fcSSilviu Baranga     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
403ce3877fcSSilviu Baranga 
404a647c30fSSilviu Baranga     // Because DepCands is constructed by visiting accesses in the order in
405a647c30fSSilviu Baranga     // which they appear in alias sets (which is deterministic) and the
406a647c30fSSilviu Baranga     // iteration order within an equivalence class member is only dependent on
407a647c30fSSilviu Baranga     // the order in which unions and insertions are performed on the
408a647c30fSSilviu Baranga     // equivalence class, the iteration order is deterministic.
409ce3877fcSSilviu Baranga     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
4101b6b50a9SSilviu Baranga          MI != ME; ++MI) {
4111b6b50a9SSilviu Baranga       unsigned Pointer = PositionMap[MI->getPointer()];
4121b6b50a9SSilviu Baranga       bool Merged = false;
413ce3877fcSSilviu Baranga       // Mark this pointer as seen.
414ce3877fcSSilviu Baranga       Seen.insert(Pointer);
4151b6b50a9SSilviu Baranga 
4161b6b50a9SSilviu Baranga       // Go through all the existing sets and see if we can find one
4171b6b50a9SSilviu Baranga       // which can include this pointer.
4181b6b50a9SSilviu Baranga       for (CheckingPtrGroup &Group : Groups) {
4191b6b50a9SSilviu Baranga         // Don't perform more than a certain amount of comparisons.
4201b6b50a9SSilviu Baranga         // This should limit the cost of grouping the pointers to something
4211b6b50a9SSilviu Baranga         // reasonable.  If we do end up hitting this threshold, the algorithm
4221b6b50a9SSilviu Baranga         // will create separate groups for all remaining pointers.
4231b6b50a9SSilviu Baranga         if (TotalComparisons > MemoryCheckMergeThreshold)
4241b6b50a9SSilviu Baranga           break;
4251b6b50a9SSilviu Baranga 
4261b6b50a9SSilviu Baranga         TotalComparisons++;
4271b6b50a9SSilviu Baranga 
4281b6b50a9SSilviu Baranga         if (Group.addPointer(Pointer)) {
4291b6b50a9SSilviu Baranga           Merged = true;
4301b6b50a9SSilviu Baranga           break;
4311b6b50a9SSilviu Baranga         }
4321b6b50a9SSilviu Baranga       }
4331b6b50a9SSilviu Baranga 
4341b6b50a9SSilviu Baranga       if (!Merged)
4351b6b50a9SSilviu Baranga         // We couldn't add this pointer to any existing set or the threshold
4361b6b50a9SSilviu Baranga         // for the number of comparisons has been reached. Create a new group
4371b6b50a9SSilviu Baranga         // to hold the current pointer.
4381b6b50a9SSilviu Baranga         Groups.push_back(CheckingPtrGroup(Pointer, *this));
4391b6b50a9SSilviu Baranga     }
4401b6b50a9SSilviu Baranga 
4411b6b50a9SSilviu Baranga     // We've computed the grouped checks for this partition.
4421b6b50a9SSilviu Baranga     // Save the results and continue with the next one.
4431b6b50a9SSilviu Baranga     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
4441b6b50a9SSilviu Baranga   }
4450456327cSAdam Nemet }
4460456327cSAdam Nemet 
447041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition(
448041e6debSAdam Nemet     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
449041e6debSAdam Nemet     unsigned PtrIdx2) {
450041e6debSAdam Nemet   return (PtrToPartition[PtrIdx1] != -1 &&
451041e6debSAdam Nemet           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
452041e6debSAdam Nemet }
453041e6debSAdam Nemet 
454651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
4559f7dedc3SAdam Nemet   const PointerInfo &PointerI = Pointers[I];
4569f7dedc3SAdam Nemet   const PointerInfo &PointerJ = Pointers[J];
4579f7dedc3SAdam Nemet 
458a8945b77SAdam Nemet   // No need to check if two readonly pointers intersect.
4599f7dedc3SAdam Nemet   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
460a8945b77SAdam Nemet     return false;
461a8945b77SAdam Nemet 
462a8945b77SAdam Nemet   // Only need to check pointers between two different dependency sets.
4639f7dedc3SAdam Nemet   if (PointerI.DependencySetId == PointerJ.DependencySetId)
464a8945b77SAdam Nemet     return false;
465a8945b77SAdam Nemet 
466a8945b77SAdam Nemet   // Only need to check pointers in the same alias set.
4679f7dedc3SAdam Nemet   if (PointerI.AliasSetId != PointerJ.AliasSetId)
468a8945b77SAdam Nemet     return false;
469a8945b77SAdam Nemet 
470a8945b77SAdam Nemet   return true;
471a8945b77SAdam Nemet }
472a8945b77SAdam Nemet 
47354f0b83eSAdam Nemet void RuntimePointerChecking::printChecks(
47454f0b83eSAdam Nemet     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
47554f0b83eSAdam Nemet     unsigned Depth) const {
47654f0b83eSAdam Nemet   unsigned N = 0;
47754f0b83eSAdam Nemet   for (const auto &Check : Checks) {
47854f0b83eSAdam Nemet     const auto &First = Check.first->Members, &Second = Check.second->Members;
47954f0b83eSAdam Nemet 
48054f0b83eSAdam Nemet     OS.indent(Depth) << "Check " << N++ << ":\n";
48154f0b83eSAdam Nemet 
48254f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
48354f0b83eSAdam Nemet     for (unsigned K = 0; K < First.size(); ++K)
48454f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
48554f0b83eSAdam Nemet 
48654f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
48754f0b83eSAdam Nemet     for (unsigned K = 0; K < Second.size(); ++K)
48854f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
48954f0b83eSAdam Nemet   }
49054f0b83eSAdam Nemet }
49154f0b83eSAdam Nemet 
4923a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
493e91cc6efSAdam Nemet 
494e91cc6efSAdam Nemet   OS.indent(Depth) << "Run-time memory checks:\n";
49515840393SAdam Nemet   printChecks(OS, Checks, Depth);
4961b6b50a9SSilviu Baranga 
4971b6b50a9SSilviu Baranga   OS.indent(Depth) << "Grouped accesses:\n";
4981b6b50a9SSilviu Baranga   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
49954f0b83eSAdam Nemet     const auto &CG = CheckingGroups[I];
50054f0b83eSAdam Nemet 
50154f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
50254f0b83eSAdam Nemet     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
50354f0b83eSAdam Nemet                          << ")\n";
50454f0b83eSAdam Nemet     for (unsigned J = 0; J < CG.Members.size(); ++J) {
50554f0b83eSAdam Nemet       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
5061b6b50a9SSilviu Baranga                            << "\n";
5071b6b50a9SSilviu Baranga     }
508e91cc6efSAdam Nemet   }
509e91cc6efSAdam Nemet }
510e91cc6efSAdam Nemet 
5110456327cSAdam Nemet namespace {
512a3fe70d2SEugene Zelenko 
5130456327cSAdam Nemet /// \brief Analyses memory accesses in a loop.
5140456327cSAdam Nemet ///
5150456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data
5160456327cSAdam Nemet /// dependence checking.
5170456327cSAdam Nemet class AccessAnalysis {
5180456327cSAdam Nemet public:
5190456327cSAdam Nemet   /// \brief Read or write access location.
5200456327cSAdam Nemet   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
5210456327cSAdam Nemet   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
5220456327cSAdam Nemet 
523e2b885c4SAdam Nemet   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
5249cd9a7e3SSilviu Baranga                  MemoryDepChecker::DepCandidates &DA,
5259cd9a7e3SSilviu Baranga                  PredicatedScalarEvolution &PSE)
526e3c0534bSSilviu Baranga       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
5279cd9a7e3SSilviu Baranga         PSE(PSE) {}
5280456327cSAdam Nemet 
5290456327cSAdam Nemet   /// \brief Register a load  and whether it is only read from.
530ac80dc75SChandler Carruth   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
5310456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
532ecbd1682SChandler Carruth     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
5330456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, false));
5340456327cSAdam Nemet     if (IsReadOnly)
5350456327cSAdam Nemet       ReadOnlyPtr.insert(Ptr);
5360456327cSAdam Nemet   }
5370456327cSAdam Nemet 
5380456327cSAdam Nemet   /// \brief Register a store.
539ac80dc75SChandler Carruth   void addStore(MemoryLocation &Loc) {
5400456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
541ecbd1682SChandler Carruth     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
5420456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, true));
5430456327cSAdam Nemet   }
5440456327cSAdam Nemet 
5450456327cSAdam Nemet   /// \brief Check whether we can check the pointers at runtime for
546ee61474aSAdam Nemet   /// non-intersection.
547ee61474aSAdam Nemet   ///
548ee61474aSAdam Nemet   /// Returns true if we need no check or if we do and we can generate them
549ee61474aSAdam Nemet   /// (i.e. the pointers have computable bounds).
5507cdebac0SAdam Nemet   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
5517cdebac0SAdam Nemet                        Loop *TheLoop, const ValueToValueMap &Strides,
5529f02c586SAndrey Turetskiy                        bool ShouldCheckWrap = false);
5530456327cSAdam Nemet 
5540456327cSAdam Nemet   /// \brief Goes over all memory accesses, checks whether a RT check is needed
5550456327cSAdam Nemet   /// and builds sets of dependent accesses.
5560456327cSAdam Nemet   void buildDependenceSets() {
5570456327cSAdam Nemet     processMemAccesses();
5580456327cSAdam Nemet   }
5590456327cSAdam Nemet 
5605dc3b2cfSAdam Nemet   /// \brief Initial processing of memory accesses determined that we need to
5615dc3b2cfSAdam Nemet   /// perform dependency checking.
5625dc3b2cfSAdam Nemet   ///
5635dc3b2cfSAdam Nemet   /// Note that this can later be cleared if we retry memcheck analysis without
5645dc3b2cfSAdam Nemet   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
5650456327cSAdam Nemet   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
566df3dc5b9SAdam Nemet 
567df3dc5b9SAdam Nemet   /// We decided that no dependence analysis would be used.  Reset the state.
568df3dc5b9SAdam Nemet   void resetDepChecks(MemoryDepChecker &DepChecker) {
569df3dc5b9SAdam Nemet     CheckDeps.clear();
570a2df750fSAdam Nemet     DepChecker.clearDependences();
571df3dc5b9SAdam Nemet   }
5720456327cSAdam Nemet 
5730456327cSAdam Nemet   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
5740456327cSAdam Nemet 
5750456327cSAdam Nemet private:
5760456327cSAdam Nemet   typedef SetVector<MemAccessInfo> PtrAccessSet;
5770456327cSAdam Nemet 
5780456327cSAdam Nemet   /// \brief Go over all memory access and check whether runtime pointer checks
579b41d2d3fSAdam Nemet   /// are needed and build sets of dependency check candidates.
5800456327cSAdam Nemet   void processMemAccesses();
5810456327cSAdam Nemet 
5820456327cSAdam Nemet   /// Set of all accesses.
5830456327cSAdam Nemet   PtrAccessSet Accesses;
5840456327cSAdam Nemet 
585a28d91d8SMehdi Amini   const DataLayout &DL;
586a28d91d8SMehdi Amini 
5870456327cSAdam Nemet   /// Set of accesses that need a further dependence check.
5880456327cSAdam Nemet   MemAccessInfoSet CheckDeps;
5890456327cSAdam Nemet 
5900456327cSAdam Nemet   /// Set of pointers that are read only.
5910456327cSAdam Nemet   SmallPtrSet<Value*, 16> ReadOnlyPtr;
5920456327cSAdam Nemet 
5930456327cSAdam Nemet   /// An alias set tracker to partition the access set by underlying object and
5940456327cSAdam Nemet   //intrinsic property (such as TBAA metadata).
5950456327cSAdam Nemet   AliasSetTracker AST;
5960456327cSAdam Nemet 
597e2b885c4SAdam Nemet   LoopInfo *LI;
598e2b885c4SAdam Nemet 
5990456327cSAdam Nemet   /// Sets of potentially dependent accesses - members of one set share an
6000456327cSAdam Nemet   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
6010456327cSAdam Nemet   /// dependence check.
602dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates &DepCands;
6030456327cSAdam Nemet 
6045dc3b2cfSAdam Nemet   /// \brief Initial processing of memory accesses determined that we may need
6055dc3b2cfSAdam Nemet   /// to add memchecks.  Perform the analysis to determine the necessary checks.
6065dc3b2cfSAdam Nemet   ///
6075dc3b2cfSAdam Nemet   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
6085dc3b2cfSAdam Nemet   /// memcheck analysis without dependency checking
6095dc3b2cfSAdam Nemet   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
6105dc3b2cfSAdam Nemet   /// while this remains set if we have potentially dependent accesses.
6115dc3b2cfSAdam Nemet   bool IsRTCheckAnalysisNeeded;
612e3c0534bSSilviu Baranga 
613e3c0534bSSilviu Baranga   /// The SCEV predicate containing all the SCEV-related assumptions.
6149cd9a7e3SSilviu Baranga   PredicatedScalarEvolution &PSE;
6150456327cSAdam Nemet };
6160456327cSAdam Nemet 
6170456327cSAdam Nemet } // end anonymous namespace
6180456327cSAdam Nemet 
6190456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check.
6209cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
621e3c0534bSSilviu Baranga                                 const ValueToValueMap &Strides, Value *Ptr,
6229cd9a7e3SSilviu Baranga                                 Loop *L) {
6239cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
624279784ffSAdam Nemet 
625279784ffSAdam Nemet   // The bounds for loop-invariant pointer is trivial.
626279784ffSAdam Nemet   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627279784ffSAdam Nemet     return true;
628279784ffSAdam Nemet 
6290456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
6300456327cSAdam Nemet   if (!AR)
6310456327cSAdam Nemet     return false;
6320456327cSAdam Nemet 
6330456327cSAdam Nemet   return AR->isAffine();
6340456327cSAdam Nemet }
6350456327cSAdam Nemet 
6369f02c586SAndrey Turetskiy /// \brief Check whether a pointer address cannot wrap.
6379f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE,
6389f02c586SAndrey Turetskiy                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
6399f02c586SAndrey Turetskiy   const SCEV *PtrScev = PSE.getSCEV(Ptr);
6409f02c586SAndrey Turetskiy   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
6419f02c586SAndrey Turetskiy     return true;
6429f02c586SAndrey Turetskiy 
6437afb46d3SDavid Majnemer   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
6449f02c586SAndrey Turetskiy   return Stride == 1;
6459f02c586SAndrey Turetskiy }
6469f02c586SAndrey Turetskiy 
6477cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
6487cdebac0SAdam Nemet                                      ScalarEvolution *SE, Loop *TheLoop,
6497cdebac0SAdam Nemet                                      const ValueToValueMap &StridesMap,
6509f02c586SAndrey Turetskiy                                      bool ShouldCheckWrap) {
6510456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
6520456327cSAdam Nemet   // to place a runtime bound check.
6530456327cSAdam Nemet   bool CanDoRT = true;
6540456327cSAdam Nemet 
655ee61474aSAdam Nemet   bool NeedRTCheck = false;
6565dc3b2cfSAdam Nemet   if (!IsRTCheckAnalysisNeeded) return true;
65798a13719SSilviu Baranga 
6580456327cSAdam Nemet   bool IsDepCheckNeeded = isDependencyCheckNeeded();
6590456327cSAdam Nemet 
6600456327cSAdam Nemet   // We assign a consecutive id to access from different alias sets.
6610456327cSAdam Nemet   // Accesses between different groups doesn't need to be checked.
6620456327cSAdam Nemet   unsigned ASId = 1;
6630456327cSAdam Nemet   for (auto &AS : AST) {
664424edc6cSAdam Nemet     int NumReadPtrChecks = 0;
665424edc6cSAdam Nemet     int NumWritePtrChecks = 0;
666424edc6cSAdam Nemet 
6670456327cSAdam Nemet     // We assign consecutive id to access from different dependence sets.
6680456327cSAdam Nemet     // Accesses within the same set don't need a runtime check.
6690456327cSAdam Nemet     unsigned RunningDepId = 1;
6700456327cSAdam Nemet     DenseMap<Value *, unsigned> DepSetId;
6710456327cSAdam Nemet 
6720456327cSAdam Nemet     for (auto A : AS) {
6730456327cSAdam Nemet       Value *Ptr = A.getValue();
6740456327cSAdam Nemet       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
6750456327cSAdam Nemet       MemAccessInfo Access(Ptr, IsWrite);
6760456327cSAdam Nemet 
677424edc6cSAdam Nemet       if (IsWrite)
678424edc6cSAdam Nemet         ++NumWritePtrChecks;
679424edc6cSAdam Nemet       else
680424edc6cSAdam Nemet         ++NumReadPtrChecks;
681424edc6cSAdam Nemet 
6829cd9a7e3SSilviu Baranga       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
683a28d91d8SMehdi Amini           // When we run after a failing dependency check we have to make sure
684a28d91d8SMehdi Amini           // we don't have wrapping pointers.
6859f02c586SAndrey Turetskiy           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
6860456327cSAdam Nemet         // The id of the dependence set.
6870456327cSAdam Nemet         unsigned DepId;
6880456327cSAdam Nemet 
6890456327cSAdam Nemet         if (IsDepCheckNeeded) {
6900456327cSAdam Nemet           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
6910456327cSAdam Nemet           unsigned &LeaderId = DepSetId[Leader];
6920456327cSAdam Nemet           if (!LeaderId)
6930456327cSAdam Nemet             LeaderId = RunningDepId++;
6940456327cSAdam Nemet           DepId = LeaderId;
6950456327cSAdam Nemet         } else
6960456327cSAdam Nemet           // Each access has its own dependence set.
6970456327cSAdam Nemet           DepId = RunningDepId++;
6980456327cSAdam Nemet 
6999cd9a7e3SSilviu Baranga         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
7000456327cSAdam Nemet 
701339f42b3SAdam Nemet         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
7020456327cSAdam Nemet       } else {
703f10ca278SAdam Nemet         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
7040456327cSAdam Nemet         CanDoRT = false;
7050456327cSAdam Nemet       }
7060456327cSAdam Nemet     }
7070456327cSAdam Nemet 
708424edc6cSAdam Nemet     // If we have at least two writes or one write and a read then we need to
709424edc6cSAdam Nemet     // check them.  But there is no need to checks if there is only one
710424edc6cSAdam Nemet     // dependence set for this alias set.
711424edc6cSAdam Nemet     //
712424edc6cSAdam Nemet     // Note that this function computes CanDoRT and NeedRTCheck independently.
713424edc6cSAdam Nemet     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
714424edc6cSAdam Nemet     // for which we couldn't find the bounds but we don't actually need to emit
715424edc6cSAdam Nemet     // any checks so it does not matter.
716424edc6cSAdam Nemet     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
717424edc6cSAdam Nemet       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
718424edc6cSAdam Nemet                                                  NumWritePtrChecks >= 1));
719424edc6cSAdam Nemet 
7200456327cSAdam Nemet     ++ASId;
7210456327cSAdam Nemet   }
7220456327cSAdam Nemet 
7230456327cSAdam Nemet   // If the pointers that we would use for the bounds comparison have different
7240456327cSAdam Nemet   // address spaces, assume the values aren't directly comparable, so we can't
7250456327cSAdam Nemet   // use them for the runtime check. We also have to assume they could
7260456327cSAdam Nemet   // overlap. In the future there should be metadata for whether address spaces
7270456327cSAdam Nemet   // are disjoint.
7280456327cSAdam Nemet   unsigned NumPointers = RtCheck.Pointers.size();
7290456327cSAdam Nemet   for (unsigned i = 0; i < NumPointers; ++i) {
7300456327cSAdam Nemet     for (unsigned j = i + 1; j < NumPointers; ++j) {
7310456327cSAdam Nemet       // Only need to check pointers between two different dependency sets.
7329f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].DependencySetId ==
7339f7dedc3SAdam Nemet           RtCheck.Pointers[j].DependencySetId)
7340456327cSAdam Nemet        continue;
7350456327cSAdam Nemet       // Only need to check pointers in the same alias set.
7369f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
7370456327cSAdam Nemet         continue;
7380456327cSAdam Nemet 
7399f7dedc3SAdam Nemet       Value *PtrI = RtCheck.Pointers[i].PointerValue;
7409f7dedc3SAdam Nemet       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
7410456327cSAdam Nemet 
7420456327cSAdam Nemet       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
7430456327cSAdam Nemet       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
7440456327cSAdam Nemet       if (ASi != ASj) {
745339f42b3SAdam Nemet         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
7460456327cSAdam Nemet                        " different address spaces\n");
7470456327cSAdam Nemet         return false;
7480456327cSAdam Nemet       }
7490456327cSAdam Nemet     }
7500456327cSAdam Nemet   }
7510456327cSAdam Nemet 
7521b6b50a9SSilviu Baranga   if (NeedRTCheck && CanDoRT)
75315840393SAdam Nemet     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
7541b6b50a9SSilviu Baranga 
755155e8741SAdam Nemet   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
756ee61474aSAdam Nemet                << " pointer comparisons.\n");
757ee61474aSAdam Nemet 
758ee61474aSAdam Nemet   RtCheck.Need = NeedRTCheck;
759ee61474aSAdam Nemet 
760ee61474aSAdam Nemet   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
761ee61474aSAdam Nemet   if (!CanDoRTIfNeeded)
762ee61474aSAdam Nemet     RtCheck.reset();
763ee61474aSAdam Nemet   return CanDoRTIfNeeded;
7640456327cSAdam Nemet }
7650456327cSAdam Nemet 
7660456327cSAdam Nemet void AccessAnalysis::processMemAccesses() {
7670456327cSAdam Nemet   // We process the set twice: first we process read-write pointers, last we
7680456327cSAdam Nemet   // process read-only pointers. This allows us to skip dependence tests for
7690456327cSAdam Nemet   // read-only pointers.
7700456327cSAdam Nemet 
771339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
7720456327cSAdam Nemet   DEBUG(dbgs() << "  AST: "; AST.dump());
7739c926579SAdam Nemet   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
7740456327cSAdam Nemet   DEBUG({
7750456327cSAdam Nemet     for (auto A : Accesses)
7760456327cSAdam Nemet       dbgs() << "\t" << *A.getPointer() << " (" <<
7770456327cSAdam Nemet                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
7780456327cSAdam Nemet                                          "read-only" : "read")) << ")\n";
7790456327cSAdam Nemet   });
7800456327cSAdam Nemet 
7810456327cSAdam Nemet   // The AliasSetTracker has nicely partitioned our pointers by metadata
7820456327cSAdam Nemet   // compatibility and potential for underlying-object overlap. As a result, we
7830456327cSAdam Nemet   // only need to check for potential pointer dependencies within each alias
7840456327cSAdam Nemet   // set.
7850456327cSAdam Nemet   for (auto &AS : AST) {
7860456327cSAdam Nemet     // Note that both the alias-set tracker and the alias sets themselves used
7870456327cSAdam Nemet     // linked lists internally and so the iteration order here is deterministic
7880456327cSAdam Nemet     // (matching the original instruction order within each set).
7890456327cSAdam Nemet 
7900456327cSAdam Nemet     bool SetHasWrite = false;
7910456327cSAdam Nemet 
7920456327cSAdam Nemet     // Map of pointers to last access encountered.
7930456327cSAdam Nemet     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
7940456327cSAdam Nemet     UnderlyingObjToAccessMap ObjToLastAccess;
7950456327cSAdam Nemet 
7960456327cSAdam Nemet     // Set of access to check after all writes have been processed.
7970456327cSAdam Nemet     PtrAccessSet DeferredAccesses;
7980456327cSAdam Nemet 
7990456327cSAdam Nemet     // Iterate over each alias set twice, once to process read/write pointers,
8000456327cSAdam Nemet     // and then to process read-only pointers.
8010456327cSAdam Nemet     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
8020456327cSAdam Nemet       bool UseDeferred = SetIteration > 0;
8030456327cSAdam Nemet       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
8040456327cSAdam Nemet 
8050456327cSAdam Nemet       for (auto AV : AS) {
8060456327cSAdam Nemet         Value *Ptr = AV.getValue();
8070456327cSAdam Nemet 
8080456327cSAdam Nemet         // For a single memory access in AliasSetTracker, Accesses may contain
8090456327cSAdam Nemet         // both read and write, and they both need to be handled for CheckDeps.
8100456327cSAdam Nemet         for (auto AC : S) {
8110456327cSAdam Nemet           if (AC.getPointer() != Ptr)
8120456327cSAdam Nemet             continue;
8130456327cSAdam Nemet 
8140456327cSAdam Nemet           bool IsWrite = AC.getInt();
8150456327cSAdam Nemet 
8160456327cSAdam Nemet           // If we're using the deferred access set, then it contains only
8170456327cSAdam Nemet           // reads.
8180456327cSAdam Nemet           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
8190456327cSAdam Nemet           if (UseDeferred && !IsReadOnlyPtr)
8200456327cSAdam Nemet             continue;
8210456327cSAdam Nemet           // Otherwise, the pointer must be in the PtrAccessSet, either as a
8220456327cSAdam Nemet           // read or a write.
8230456327cSAdam Nemet           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
8240456327cSAdam Nemet                   S.count(MemAccessInfo(Ptr, false))) &&
8250456327cSAdam Nemet                  "Alias-set pointer not in the access set?");
8260456327cSAdam Nemet 
8270456327cSAdam Nemet           MemAccessInfo Access(Ptr, IsWrite);
8280456327cSAdam Nemet           DepCands.insert(Access);
8290456327cSAdam Nemet 
8300456327cSAdam Nemet           // Memorize read-only pointers for later processing and skip them in
8310456327cSAdam Nemet           // the first round (they need to be checked after we have seen all
8320456327cSAdam Nemet           // write pointers). Note: we also mark pointer that are not
8330456327cSAdam Nemet           // consecutive as "read-only" pointers (so that we check
8340456327cSAdam Nemet           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
8350456327cSAdam Nemet           if (!UseDeferred && IsReadOnlyPtr) {
8360456327cSAdam Nemet             DeferredAccesses.insert(Access);
8370456327cSAdam Nemet             continue;
8380456327cSAdam Nemet           }
8390456327cSAdam Nemet 
8400456327cSAdam Nemet           // If this is a write - check other reads and writes for conflicts. If
8410456327cSAdam Nemet           // this is a read only check other writes for conflicts (but only if
8420456327cSAdam Nemet           // there is no other write to the ptr - this is an optimization to
8430456327cSAdam Nemet           // catch "a[i] = a[i] + " without having to do a dependence check).
8440456327cSAdam Nemet           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
8450456327cSAdam Nemet             CheckDeps.insert(Access);
8465dc3b2cfSAdam Nemet             IsRTCheckAnalysisNeeded = true;
8470456327cSAdam Nemet           }
8480456327cSAdam Nemet 
8490456327cSAdam Nemet           if (IsWrite)
8500456327cSAdam Nemet             SetHasWrite = true;
8510456327cSAdam Nemet 
8520456327cSAdam Nemet           // Create sets of pointers connected by a shared alias set and
8530456327cSAdam Nemet           // underlying object.
8540456327cSAdam Nemet           typedef SmallVector<Value *, 16> ValueVector;
8550456327cSAdam Nemet           ValueVector TempObjects;
856e2b885c4SAdam Nemet 
857e2b885c4SAdam Nemet           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
858e2b885c4SAdam Nemet           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
8590456327cSAdam Nemet           for (Value *UnderlyingObj : TempObjects) {
860afd13519SMehdi Amini             // nullptr never alias, don't join sets for pointer that have "null"
861afd13519SMehdi Amini             // in their UnderlyingObjects list.
862afd13519SMehdi Amini             if (isa<ConstantPointerNull>(UnderlyingObj))
863afd13519SMehdi Amini               continue;
864afd13519SMehdi Amini 
8650456327cSAdam Nemet             UnderlyingObjToAccessMap::iterator Prev =
8660456327cSAdam Nemet                 ObjToLastAccess.find(UnderlyingObj);
8670456327cSAdam Nemet             if (Prev != ObjToLastAccess.end())
8680456327cSAdam Nemet               DepCands.unionSets(Access, Prev->second);
8690456327cSAdam Nemet 
8700456327cSAdam Nemet             ObjToLastAccess[UnderlyingObj] = Access;
871e2b885c4SAdam Nemet             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
8720456327cSAdam Nemet           }
8730456327cSAdam Nemet         }
8740456327cSAdam Nemet       }
8750456327cSAdam Nemet     }
8760456327cSAdam Nemet   }
8770456327cSAdam Nemet }
8780456327cSAdam Nemet 
8790456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) {
8800456327cSAdam Nemet   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
8810456327cSAdam Nemet     return GEP->isInBounds();
8820456327cSAdam Nemet   return false;
8830456327cSAdam Nemet }
8840456327cSAdam Nemet 
885c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
886c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing.
887c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
888ea63a7f5SSilviu Baranga                            PredicatedScalarEvolution &PSE, const Loop *L) {
889c4866d29SAdam Nemet   // FIXME: This should probably only return true for NUW.
890c4866d29SAdam Nemet   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
891c4866d29SAdam Nemet     return true;
892c4866d29SAdam Nemet 
893c4866d29SAdam Nemet   // Scalar evolution does not propagate the non-wrapping flags to values that
894c4866d29SAdam Nemet   // are derived from a non-wrapping induction variable because non-wrapping
895c4866d29SAdam Nemet   // could be flow-sensitive.
896c4866d29SAdam Nemet   //
897c4866d29SAdam Nemet   // Look through the potentially overflowing instruction to try to prove
898c4866d29SAdam Nemet   // non-wrapping for the *specific* value of Ptr.
899c4866d29SAdam Nemet 
900c4866d29SAdam Nemet   // The arithmetic implied by an inbounds GEP can't overflow.
901c4866d29SAdam Nemet   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
902c4866d29SAdam Nemet   if (!GEP || !GEP->isInBounds())
903c4866d29SAdam Nemet     return false;
904c4866d29SAdam Nemet 
905c4866d29SAdam Nemet   // Make sure there is only one non-const index and analyze that.
906c4866d29SAdam Nemet   Value *NonConstIndex = nullptr;
9078b401013SDavid Majnemer   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
9088b401013SDavid Majnemer     if (!isa<ConstantInt>(Index)) {
909c4866d29SAdam Nemet       if (NonConstIndex)
910c4866d29SAdam Nemet         return false;
9118b401013SDavid Majnemer       NonConstIndex = Index;
912c4866d29SAdam Nemet     }
913c4866d29SAdam Nemet   if (!NonConstIndex)
914c4866d29SAdam Nemet     // The recurrence is on the pointer, ignore for now.
915c4866d29SAdam Nemet     return false;
916c4866d29SAdam Nemet 
917c4866d29SAdam Nemet   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
918c4866d29SAdam Nemet   // AddRec using a NSW operation.
919c4866d29SAdam Nemet   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
920c4866d29SAdam Nemet     if (OBO->hasNoSignedWrap() &&
921c4866d29SAdam Nemet         // Assume constant for other the operand so that the AddRec can be
922c4866d29SAdam Nemet         // easily found.
923c4866d29SAdam Nemet         isa<ConstantInt>(OBO->getOperand(1))) {
924ea63a7f5SSilviu Baranga       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
925c4866d29SAdam Nemet 
926c4866d29SAdam Nemet       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
927c4866d29SAdam Nemet         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
928c4866d29SAdam Nemet     }
929c4866d29SAdam Nemet 
930c4866d29SAdam Nemet   return false;
931c4866d29SAdam Nemet }
932c4866d29SAdam Nemet 
9330456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride.
9347afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
935ea63a7f5SSilviu Baranga                            const Loop *Lp, const ValueToValueMap &StridesMap,
9365f8cc0c3SElena Demikhovsky                            bool Assume, bool ShouldCheckWrap) {
937e3dcce97SCraig Topper   Type *Ty = Ptr->getType();
9380456327cSAdam Nemet   assert(Ty->isPointerTy() && "Unexpected non-ptr");
9390456327cSAdam Nemet 
9400456327cSAdam Nemet   // Make sure that the pointer does not point to aggregate types.
941e3dcce97SCraig Topper   auto *PtrTy = cast<PointerType>(Ty);
9420456327cSAdam Nemet   if (PtrTy->getElementType()->isAggregateType()) {
943ea63a7f5SSilviu Baranga     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
944ea63a7f5SSilviu Baranga                  << "\n");
9450456327cSAdam Nemet     return 0;
9460456327cSAdam Nemet   }
9470456327cSAdam Nemet 
9489cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
9490456327cSAdam Nemet 
9500456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
951ea63a7f5SSilviu Baranga   if (Assume && !AR)
952d68ed854SSilviu Baranga     AR = PSE.getAsAddRec(Ptr);
953ea63a7f5SSilviu Baranga 
9540456327cSAdam Nemet   if (!AR) {
955ea63a7f5SSilviu Baranga     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
956ea63a7f5SSilviu Baranga                  << " SCEV: " << *PtrScev << "\n");
9570456327cSAdam Nemet     return 0;
9580456327cSAdam Nemet   }
9590456327cSAdam Nemet 
9600456327cSAdam Nemet   // The accesss function must stride over the innermost loop.
9610456327cSAdam Nemet   if (Lp != AR->getLoop()) {
962339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
963ea63a7f5SSilviu Baranga           *Ptr << " SCEV: " << *AR << "\n");
964a02ce98bSKyle Butt     return 0;
9650456327cSAdam Nemet   }
9660456327cSAdam Nemet 
9670456327cSAdam Nemet   // The address calculation must not wrap. Otherwise, a dependence could be
9680456327cSAdam Nemet   // inverted.
9690456327cSAdam Nemet   // An inbounds getelementptr that is a AddRec with a unit stride
9700456327cSAdam Nemet   // cannot wrap per definition. The unit stride requirement is checked later.
9710456327cSAdam Nemet   // An getelementptr without an inbounds attribute and unit stride would have
9720456327cSAdam Nemet   // to access the pointer value "0" which is undefined behavior in address
9730456327cSAdam Nemet   // space 0, therefore we can also vectorize this case.
9740456327cSAdam Nemet   bool IsInBoundsGEP = isInBoundsGep(Ptr);
9755f8cc0c3SElena Demikhovsky   bool IsNoWrapAddRec = !ShouldCheckWrap ||
976ea63a7f5SSilviu Baranga     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
977ea63a7f5SSilviu Baranga     isNoWrapAddRec(Ptr, AR, PSE, Lp);
9780456327cSAdam Nemet   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
9790456327cSAdam Nemet   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
980ea63a7f5SSilviu Baranga     if (Assume) {
981ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
982ea63a7f5SSilviu Baranga       IsNoWrapAddRec = true;
983ea63a7f5SSilviu Baranga       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
984ea63a7f5SSilviu Baranga                    << "LAA:   Pointer: " << *Ptr << "\n"
985ea63a7f5SSilviu Baranga                    << "LAA:   SCEV: " << *AR << "\n"
986ea63a7f5SSilviu Baranga                    << "LAA:   Added an overflow assumption\n");
987ea63a7f5SSilviu Baranga     } else {
988339f42b3SAdam Nemet       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
989ea63a7f5SSilviu Baranga                    << *Ptr << " SCEV: " << *AR << "\n");
9900456327cSAdam Nemet       return 0;
9910456327cSAdam Nemet     }
992ea63a7f5SSilviu Baranga   }
9930456327cSAdam Nemet 
9940456327cSAdam Nemet   // Check the step is constant.
9959cd9a7e3SSilviu Baranga   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
9960456327cSAdam Nemet 
997943befedSAdam Nemet   // Calculate the pointer stride and check if it is constant.
9980456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
9990456327cSAdam Nemet   if (!C) {
1000339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
1001ea63a7f5SSilviu Baranga           " SCEV: " << *AR << "\n");
10020456327cSAdam Nemet     return 0;
10030456327cSAdam Nemet   }
10040456327cSAdam Nemet 
1005a28d91d8SMehdi Amini   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1006a28d91d8SMehdi Amini   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
10070de2feceSSanjoy Das   const APInt &APStepVal = C->getAPInt();
10080456327cSAdam Nemet 
10090456327cSAdam Nemet   // Huge step value - give up.
10100456327cSAdam Nemet   if (APStepVal.getBitWidth() > 64)
10110456327cSAdam Nemet     return 0;
10120456327cSAdam Nemet 
10130456327cSAdam Nemet   int64_t StepVal = APStepVal.getSExtValue();
10140456327cSAdam Nemet 
10150456327cSAdam Nemet   // Strided access.
10160456327cSAdam Nemet   int64_t Stride = StepVal / Size;
10170456327cSAdam Nemet   int64_t Rem = StepVal % Size;
10180456327cSAdam Nemet   if (Rem)
10190456327cSAdam Nemet     return 0;
10200456327cSAdam Nemet 
10210456327cSAdam Nemet   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
10220456327cSAdam Nemet   // know we can't "wrap around the address space". In case of address space
10230456327cSAdam Nemet   // zero we know that this won't happen without triggering undefined behavior.
10240456327cSAdam Nemet   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
1025ea63a7f5SSilviu Baranga       Stride != 1 && Stride != -1) {
1026ea63a7f5SSilviu Baranga     if (Assume) {
1027ea63a7f5SSilviu Baranga       // We can avoid this case by adding a run-time check.
1028ea63a7f5SSilviu Baranga       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1029ea63a7f5SSilviu Baranga                    << "inbouds or in address space 0 may wrap:\n"
1030ea63a7f5SSilviu Baranga                    << "LAA:   Pointer: " << *Ptr << "\n"
1031ea63a7f5SSilviu Baranga                    << "LAA:   SCEV: " << *AR << "\n"
1032ea63a7f5SSilviu Baranga                    << "LAA:   Added an overflow assumption\n");
1033ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1034ea63a7f5SSilviu Baranga     } else
10350456327cSAdam Nemet       return 0;
1036ea63a7f5SSilviu Baranga   }
10370456327cSAdam Nemet 
10380456327cSAdam Nemet   return Stride;
10390456327cSAdam Nemet }
10400456327cSAdam Nemet 
1041f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction.
1042f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction.
1043f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) {
10448b401013SDavid Majnemer   if (auto *LI = dyn_cast<LoadInst>(I))
1045f1c00a22SHaicheng Wu     return LI->getPointerOperand();
10468b401013SDavid Majnemer   if (auto *SI = dyn_cast<StoreInst>(I))
1047f1c00a22SHaicheng Wu     return SI->getPointerOperand();
1048f1c00a22SHaicheng Wu   return nullptr;
1049f1c00a22SHaicheng Wu }
1050f1c00a22SHaicheng Wu 
1051f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction.
1052f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction.
1053f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) {
1054f1c00a22SHaicheng Wu   if (LoadInst *L = dyn_cast<LoadInst>(I))
1055f1c00a22SHaicheng Wu     return L->getPointerAddressSpace();
1056f1c00a22SHaicheng Wu   if (StoreInst *S = dyn_cast<StoreInst>(I))
1057f1c00a22SHaicheng Wu     return S->getPointerAddressSpace();
1058f1c00a22SHaicheng Wu   return -1;
1059f1c00a22SHaicheng Wu }
1060f1c00a22SHaicheng Wu 
1061f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive.
1062f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1063f1c00a22SHaicheng Wu                                ScalarEvolution &SE, bool CheckType) {
1064f1c00a22SHaicheng Wu   Value *PtrA = getPointerOperand(A);
1065f1c00a22SHaicheng Wu   Value *PtrB = getPointerOperand(B);
1066f1c00a22SHaicheng Wu   unsigned ASA = getAddressSpaceOperand(A);
1067f1c00a22SHaicheng Wu   unsigned ASB = getAddressSpaceOperand(B);
1068f1c00a22SHaicheng Wu 
1069f1c00a22SHaicheng Wu   // Check that the address spaces match and that the pointers are valid.
1070f1c00a22SHaicheng Wu   if (!PtrA || !PtrB || (ASA != ASB))
1071f1c00a22SHaicheng Wu     return false;
1072f1c00a22SHaicheng Wu 
1073f1c00a22SHaicheng Wu   // Make sure that A and B are different pointers.
1074f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1075f1c00a22SHaicheng Wu     return false;
1076f1c00a22SHaicheng Wu 
1077f1c00a22SHaicheng Wu   // Make sure that A and B have the same type if required.
1078f1c00a22SHaicheng Wu   if (CheckType && PtrA->getType() != PtrB->getType())
1079f1c00a22SHaicheng Wu     return false;
1080f1c00a22SHaicheng Wu 
1081f1c00a22SHaicheng Wu   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1082f1c00a22SHaicheng Wu   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1083f1c00a22SHaicheng Wu   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1084f1c00a22SHaicheng Wu 
1085f1c00a22SHaicheng Wu   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1086f1c00a22SHaicheng Wu   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1087f1c00a22SHaicheng Wu   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1088f1c00a22SHaicheng Wu 
1089f1c00a22SHaicheng Wu   //  OffsetDelta = OffsetB - OffsetA;
1090f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1091f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1092f1c00a22SHaicheng Wu   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1093f1c00a22SHaicheng Wu   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1094f1c00a22SHaicheng Wu   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1095f1c00a22SHaicheng Wu   // Check if they are based on the same pointer. That makes the offsets
1096f1c00a22SHaicheng Wu   // sufficient.
1097f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1098f1c00a22SHaicheng Wu     return OffsetDelta == Size;
1099f1c00a22SHaicheng Wu 
1100f1c00a22SHaicheng Wu   // Compute the necessary base pointer delta to have the necessary final delta
1101f1c00a22SHaicheng Wu   // equal to the size.
1102f1c00a22SHaicheng Wu   // BaseDelta = Size - OffsetDelta;
1103f1c00a22SHaicheng Wu   const SCEV *SizeSCEV = SE.getConstant(Size);
1104f1c00a22SHaicheng Wu   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1105f1c00a22SHaicheng Wu 
1106f1c00a22SHaicheng Wu   // Otherwise compute the distance with SCEV between the base pointers.
1107f1c00a22SHaicheng Wu   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1108f1c00a22SHaicheng Wu   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1109f1c00a22SHaicheng Wu   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1110f1c00a22SHaicheng Wu   return X == PtrSCEVB;
1111f1c00a22SHaicheng Wu }
1112f1c00a22SHaicheng Wu 
11139c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
11149c926579SAdam Nemet   switch (Type) {
11159c926579SAdam Nemet   case NoDep:
11169c926579SAdam Nemet   case Forward:
11179c926579SAdam Nemet   case BackwardVectorizable:
11189c926579SAdam Nemet     return true;
11199c926579SAdam Nemet 
11209c926579SAdam Nemet   case Unknown:
11219c926579SAdam Nemet   case ForwardButPreventsForwarding:
11229c926579SAdam Nemet   case Backward:
11239c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
11249c926579SAdam Nemet     return false;
11259c926579SAdam Nemet   }
1126d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
11279c926579SAdam Nemet }
11289c926579SAdam Nemet 
1129397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const {
11309c926579SAdam Nemet   switch (Type) {
11319c926579SAdam Nemet   case NoDep:
11329c926579SAdam Nemet   case Forward:
11339c926579SAdam Nemet   case ForwardButPreventsForwarding:
1134397f5829SAdam Nemet   case Unknown:
11359c926579SAdam Nemet     return false;
11369c926579SAdam Nemet 
11379c926579SAdam Nemet   case BackwardVectorizable:
11389c926579SAdam Nemet   case Backward:
11399c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
11409c926579SAdam Nemet     return true;
11419c926579SAdam Nemet   }
1142d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
11439c926579SAdam Nemet }
11449c926579SAdam Nemet 
1145397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1146397f5829SAdam Nemet   return isBackward() || Type == Unknown;
1147397f5829SAdam Nemet }
1148397f5829SAdam Nemet 
1149397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const {
1150397f5829SAdam Nemet   switch (Type) {
1151397f5829SAdam Nemet   case Forward:
1152397f5829SAdam Nemet   case ForwardButPreventsForwarding:
1153397f5829SAdam Nemet     return true;
1154397f5829SAdam Nemet 
1155397f5829SAdam Nemet   case NoDep:
1156397f5829SAdam Nemet   case Unknown:
1157397f5829SAdam Nemet   case BackwardVectorizable:
1158397f5829SAdam Nemet   case Backward:
1159397f5829SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
1160397f5829SAdam Nemet     return false;
1161397f5829SAdam Nemet   }
1162397f5829SAdam Nemet   llvm_unreachable("unexpected DepType!");
1163397f5829SAdam Nemet }
1164397f5829SAdam Nemet 
11657afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
11667afb46d3SDavid Majnemer                                                     uint64_t TypeByteSize) {
11670456327cSAdam Nemet   // If loads occur at a distance that is not a multiple of a feasible vector
11680456327cSAdam Nemet   // factor store-load forwarding does not take place.
11690456327cSAdam Nemet   // Positive dependences might cause troubles because vectorizing them might
11700456327cSAdam Nemet   // prevent store-load forwarding making vectorized code run a lot slower.
11710456327cSAdam Nemet   //   a[i] = a[i-3] ^ a[i-8];
11720456327cSAdam Nemet   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
11730456327cSAdam Nemet   //   hence on your typical architecture store-load forwarding does not take
11740456327cSAdam Nemet   //   place. Vectorizing in such cases does not make sense.
11750456327cSAdam Nemet   // Store-load forwarding distance.
1176884d313bSAdam Nemet 
1177884d313bSAdam Nemet   // After this many iterations store-to-load forwarding conflicts should not
1178884d313bSAdam Nemet   // cause any slowdowns.
11797afb46d3SDavid Majnemer   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
11800456327cSAdam Nemet   // Maximum vector factor.
11817afb46d3SDavid Majnemer   uint64_t MaxVFWithoutSLForwardIssues = std::min(
11822c34ab51SAdam Nemet       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
11830456327cSAdam Nemet 
1184884d313bSAdam Nemet   // Compute the smallest VF at which the store and load would be misaligned.
11857afb46d3SDavid Majnemer   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
11869b5852aeSAdam Nemet        VF *= 2) {
1187884d313bSAdam Nemet     // If the number of vector iteration between the store and the load are
1188884d313bSAdam Nemet     // small we could incur conflicts.
1189884d313bSAdam Nemet     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
11909b5852aeSAdam Nemet       MaxVFWithoutSLForwardIssues = (VF >>= 1);
11910456327cSAdam Nemet       break;
11920456327cSAdam Nemet     }
11930456327cSAdam Nemet   }
11940456327cSAdam Nemet 
11950456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
11969b5852aeSAdam Nemet     DEBUG(dbgs() << "LAA: Distance " << Distance
11979b5852aeSAdam Nemet                  << " that could cause a store-load forwarding conflict\n");
11980456327cSAdam Nemet     return true;
11990456327cSAdam Nemet   }
12000456327cSAdam Nemet 
12010456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1202f219c647SAdam Nemet       MaxVFWithoutSLForwardIssues !=
1203f219c647SAdam Nemet           VectorizerParams::MaxVectorWidth * TypeByteSize)
12040456327cSAdam Nemet     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
12050456327cSAdam Nemet   return false;
12060456327cSAdam Nemet }
12070456327cSAdam Nemet 
1208751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride.
1209751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in
1210751004a6SHao Liu /// bytes.
1211751004a6SHao Liu ///
1212751004a6SHao Liu /// \returns true if they are independent.
12137afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
12147afb46d3SDavid Majnemer                                           uint64_t TypeByteSize) {
1215751004a6SHao Liu   assert(Stride > 1 && "The stride must be greater than 1");
1216751004a6SHao Liu   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1217751004a6SHao Liu   assert(Distance > 0 && "The distance must be non-zero");
1218751004a6SHao Liu 
1219751004a6SHao Liu   // Skip if the distance is not multiple of type byte size.
1220751004a6SHao Liu   if (Distance % TypeByteSize)
1221751004a6SHao Liu     return false;
1222751004a6SHao Liu 
12237afb46d3SDavid Majnemer   uint64_t ScaledDist = Distance / TypeByteSize;
1224751004a6SHao Liu 
1225751004a6SHao Liu   // No dependence if the scaled distance is not multiple of the stride.
1226751004a6SHao Liu   // E.g.
1227751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 4)
1228751004a6SHao Liu   //        A[i+2] = A[i] + 1;
1229751004a6SHao Liu   //
1230751004a6SHao Liu   // Two accesses in memory (scaled distance is 2, stride is 4):
1231751004a6SHao Liu   //     | A[0] |      |      |      | A[4] |      |      |      |
1232751004a6SHao Liu   //     |      |      | A[2] |      |      |      | A[6] |      |
1233751004a6SHao Liu   //
1234751004a6SHao Liu   // E.g.
1235751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 3)
1236751004a6SHao Liu   //        A[i+4] = A[i] + 1;
1237751004a6SHao Liu   //
1238751004a6SHao Liu   // Two accesses in memory (scaled distance is 4, stride is 3):
1239751004a6SHao Liu   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1240751004a6SHao Liu   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1241751004a6SHao Liu   return ScaledDist % Stride;
1242751004a6SHao Liu }
1243751004a6SHao Liu 
12449c926579SAdam Nemet MemoryDepChecker::Dependence::DepType
12459c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
12460456327cSAdam Nemet                               const MemAccessInfo &B, unsigned BIdx,
12478bc61df9SAdam Nemet                               const ValueToValueMap &Strides) {
12480456327cSAdam Nemet   assert (AIdx < BIdx && "Must pass arguments in program order");
12490456327cSAdam Nemet 
12500456327cSAdam Nemet   Value *APtr = A.getPointer();
12510456327cSAdam Nemet   Value *BPtr = B.getPointer();
12520456327cSAdam Nemet   bool AIsWrite = A.getInt();
12530456327cSAdam Nemet   bool BIsWrite = B.getInt();
12540456327cSAdam Nemet 
12550456327cSAdam Nemet   // Two reads are independent.
12560456327cSAdam Nemet   if (!AIsWrite && !BIsWrite)
12579c926579SAdam Nemet     return Dependence::NoDep;
12580456327cSAdam Nemet 
12590456327cSAdam Nemet   // We cannot check pointers in different address spaces.
12600456327cSAdam Nemet   if (APtr->getType()->getPointerAddressSpace() !=
12610456327cSAdam Nemet       BPtr->getType()->getPointerAddressSpace())
12629c926579SAdam Nemet     return Dependence::Unknown;
12630456327cSAdam Nemet 
12647afb46d3SDavid Majnemer   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
12657afb46d3SDavid Majnemer   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
12660456327cSAdam Nemet 
1267adf4b739SSilviu Baranga   const SCEV *Src = PSE.getSCEV(APtr);
1268adf4b739SSilviu Baranga   const SCEV *Sink = PSE.getSCEV(BPtr);
12690456327cSAdam Nemet 
12700456327cSAdam Nemet   // If the induction step is negative we have to invert source and sink of the
12710456327cSAdam Nemet   // dependence.
12720456327cSAdam Nemet   if (StrideAPtr < 0) {
12730456327cSAdam Nemet     std::swap(APtr, BPtr);
12740456327cSAdam Nemet     std::swap(Src, Sink);
12750456327cSAdam Nemet     std::swap(AIsWrite, BIsWrite);
12760456327cSAdam Nemet     std::swap(AIdx, BIdx);
12770456327cSAdam Nemet     std::swap(StrideAPtr, StrideBPtr);
12780456327cSAdam Nemet   }
12790456327cSAdam Nemet 
12809cd9a7e3SSilviu Baranga   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
12810456327cSAdam Nemet 
1282339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
12830456327cSAdam Nemet                << "(Induction step: " << StrideAPtr << ")\n");
1284339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
12850456327cSAdam Nemet                << *InstMap[BIdx] << ": " << *Dist << "\n");
12860456327cSAdam Nemet 
1287943befedSAdam Nemet   // Need accesses with constant stride. We don't want to vectorize
12880456327cSAdam Nemet   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
12890456327cSAdam Nemet   // the address space.
12900456327cSAdam Nemet   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1291943befedSAdam Nemet     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
12929c926579SAdam Nemet     return Dependence::Unknown;
12930456327cSAdam Nemet   }
12940456327cSAdam Nemet 
12950456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
12960456327cSAdam Nemet   if (!C) {
1297339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
12980456327cSAdam Nemet     ShouldRetryWithRuntimeCheck = true;
12999c926579SAdam Nemet     return Dependence::Unknown;
13000456327cSAdam Nemet   }
13010456327cSAdam Nemet 
13020456327cSAdam Nemet   Type *ATy = APtr->getType()->getPointerElementType();
13030456327cSAdam Nemet   Type *BTy = BPtr->getType()->getPointerElementType();
1304a28d91d8SMehdi Amini   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
13057afb46d3SDavid Majnemer   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
13060456327cSAdam Nemet 
13070de2feceSSanjoy Das   const APInt &Val = C->getAPInt();
13086feebe98SMatthew Simpson   int64_t Distance = Val.getSExtValue();
13097afb46d3SDavid Majnemer   uint64_t Stride = std::abs(StrideAPtr);
13106feebe98SMatthew Simpson 
13116feebe98SMatthew Simpson   // Attempt to prove strided accesses independent.
13126feebe98SMatthew Simpson   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
13136feebe98SMatthew Simpson       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
13146feebe98SMatthew Simpson     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
13156feebe98SMatthew Simpson     return Dependence::NoDep;
13166feebe98SMatthew Simpson   }
13176feebe98SMatthew Simpson 
13186feebe98SMatthew Simpson   // Negative distances are not plausible dependencies.
13190456327cSAdam Nemet   if (Val.isNegative()) {
13200456327cSAdam Nemet     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
132137ec5f91SMatthew Simpson     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
13220456327cSAdam Nemet         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1323b8486e5aSAdam Nemet          ATy != BTy)) {
1324b8486e5aSAdam Nemet       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
13259c926579SAdam Nemet       return Dependence::ForwardButPreventsForwarding;
1326b8486e5aSAdam Nemet     }
13270456327cSAdam Nemet 
1328724ab223SAdam Nemet     DEBUG(dbgs() << "LAA: Dependence is negative\n");
13299c926579SAdam Nemet     return Dependence::Forward;
13300456327cSAdam Nemet   }
13310456327cSAdam Nemet 
13320456327cSAdam Nemet   // Write to the same location with the same size.
13330456327cSAdam Nemet   // Could be improved to assert type sizes are the same (i32 == float, etc).
13340456327cSAdam Nemet   if (Val == 0) {
13350456327cSAdam Nemet     if (ATy == BTy)
1336d7037c56SAdam Nemet       return Dependence::Forward;
1337339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
13389c926579SAdam Nemet     return Dependence::Unknown;
13390456327cSAdam Nemet   }
13400456327cSAdam Nemet 
13410456327cSAdam Nemet   assert(Val.isStrictlyPositive() && "Expect a positive value");
13420456327cSAdam Nemet 
13430456327cSAdam Nemet   if (ATy != BTy) {
134404d4163eSAdam Nemet     DEBUG(dbgs() <<
1345339f42b3SAdam Nemet           "LAA: ReadWrite-Write positive dependency with different types\n");
13469c926579SAdam Nemet     return Dependence::Unknown;
13470456327cSAdam Nemet   }
13480456327cSAdam Nemet 
13490456327cSAdam Nemet   // Bail out early if passed-in parameters make vectorization not feasible.
1350f219c647SAdam Nemet   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1351f219c647SAdam Nemet                            VectorizerParams::VectorizationFactor : 1);
1352f219c647SAdam Nemet   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1353f219c647SAdam Nemet                            VectorizerParams::VectorizationInterleave : 1);
1354751004a6SHao Liu   // The minimum number of iterations for a vectorized/unrolled version.
1355751004a6SHao Liu   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
13560456327cSAdam Nemet 
1357751004a6SHao Liu   // It's not vectorizable if the distance is smaller than the minimum distance
1358751004a6SHao Liu   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1359751004a6SHao Liu   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1360751004a6SHao Liu   // TypeByteSize (No need to plus the last gap distance).
1361751004a6SHao Liu   //
1362751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1363751004a6SHao Liu   //      foo(int *A) {
1364751004a6SHao Liu   //        int *B = (int *)((char *)A + 14);
1365751004a6SHao Liu   //        for (i = 0 ; i < 1024 ; i += 2)
1366751004a6SHao Liu   //          B[i] = A[i] + 1;
1367751004a6SHao Liu   //      }
1368751004a6SHao Liu   //
1369751004a6SHao Liu   // Two accesses in memory (stride is 2):
1370751004a6SHao Liu   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1371751004a6SHao Liu   //                              | B[0] |      | B[2] |      | B[4] |
1372751004a6SHao Liu   //
1373751004a6SHao Liu   // Distance needs for vectorizing iterations except the last iteration:
1374751004a6SHao Liu   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1375751004a6SHao Liu   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1376751004a6SHao Liu   //
1377751004a6SHao Liu   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1378751004a6SHao Liu   // 12, which is less than distance.
1379751004a6SHao Liu   //
1380751004a6SHao Liu   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1381751004a6SHao Liu   // the minimum distance needed is 28, which is greater than distance. It is
1382751004a6SHao Liu   // not safe to do vectorization.
13837afb46d3SDavid Majnemer   uint64_t MinDistanceNeeded =
1384751004a6SHao Liu       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
13857afb46d3SDavid Majnemer   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1386751004a6SHao Liu     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1387751004a6SHao Liu                  << '\n');
1388751004a6SHao Liu     return Dependence::Backward;
1389751004a6SHao Liu   }
1390751004a6SHao Liu 
1391751004a6SHao Liu   // Unsafe if the minimum distance needed is greater than max safe distance.
1392751004a6SHao Liu   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1393751004a6SHao Liu     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1394751004a6SHao Liu                  << MinDistanceNeeded << " size in bytes");
13959c926579SAdam Nemet     return Dependence::Backward;
13960456327cSAdam Nemet   }
13970456327cSAdam Nemet 
13989cc0c399SAdam Nemet   // Positive distance bigger than max vectorization factor.
1399751004a6SHao Liu   // FIXME: Should use max factor instead of max distance in bytes, which could
1400751004a6SHao Liu   // not handle different types.
1401751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1402751004a6SHao Liu   //      void foo (int *A, char *B) {
1403751004a6SHao Liu   //        for (unsigned i = 0; i < 1024; i++) {
1404751004a6SHao Liu   //          A[i+2] = A[i] + 1;
1405751004a6SHao Liu   //          B[i+2] = B[i] + 1;
1406751004a6SHao Liu   //        }
1407751004a6SHao Liu   //      }
1408751004a6SHao Liu   //
1409751004a6SHao Liu   // This case is currently unsafe according to the max safe distance. If we
1410751004a6SHao Liu   // analyze the two accesses on array B, the max safe dependence distance
1411751004a6SHao Liu   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1412751004a6SHao Liu   // is 8, which is less than 2 and forbidden vectorization, But actually
1413751004a6SHao Liu   // both A and B could be vectorized by 2 iterations.
1414751004a6SHao Liu   MaxSafeDepDistBytes =
14157afb46d3SDavid Majnemer       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
14160456327cSAdam Nemet 
14170456327cSAdam Nemet   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
141837ec5f91SMatthew Simpson   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
14190456327cSAdam Nemet       couldPreventStoreLoadForward(Distance, TypeByteSize))
14209c926579SAdam Nemet     return Dependence::BackwardVectorizableButPreventsForwarding;
14210456327cSAdam Nemet 
1422751004a6SHao Liu   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1423751004a6SHao Liu                << " with max VF = "
1424751004a6SHao Liu                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
14250456327cSAdam Nemet 
14269c926579SAdam Nemet   return Dependence::BackwardVectorizable;
14270456327cSAdam Nemet }
14280456327cSAdam Nemet 
1429dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
14300456327cSAdam Nemet                                    MemAccessInfoSet &CheckDeps,
14318bc61df9SAdam Nemet                                    const ValueToValueMap &Strides) {
14320456327cSAdam Nemet 
14337afb46d3SDavid Majnemer   MaxSafeDepDistBytes = -1;
14340456327cSAdam Nemet   while (!CheckDeps.empty()) {
14350456327cSAdam Nemet     MemAccessInfo CurAccess = *CheckDeps.begin();
14360456327cSAdam Nemet 
14370456327cSAdam Nemet     // Get the relevant memory access set.
14380456327cSAdam Nemet     EquivalenceClasses<MemAccessInfo>::iterator I =
14390456327cSAdam Nemet       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
14400456327cSAdam Nemet 
14410456327cSAdam Nemet     // Check accesses within this set.
14427a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
14437a083814SRichard Trieu         AccessSets.member_begin(I);
14447a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
14457a083814SRichard Trieu         AccessSets.member_end();
14460456327cSAdam Nemet 
14470456327cSAdam Nemet     // Check every access pair.
14480456327cSAdam Nemet     while (AI != AE) {
14490456327cSAdam Nemet       CheckDeps.erase(*AI);
14500456327cSAdam Nemet       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
14510456327cSAdam Nemet       while (OI != AE) {
14520456327cSAdam Nemet         // Check every accessing instruction pair in program order.
14530456327cSAdam Nemet         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
14540456327cSAdam Nemet              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
14550456327cSAdam Nemet           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
14560456327cSAdam Nemet                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
14579c926579SAdam Nemet             auto A = std::make_pair(&*AI, *I1);
14589c926579SAdam Nemet             auto B = std::make_pair(&*OI, *I2);
14599c926579SAdam Nemet 
14609c926579SAdam Nemet             assert(*I1 != *I2);
14619c926579SAdam Nemet             if (*I1 > *I2)
14629c926579SAdam Nemet               std::swap(A, B);
14639c926579SAdam Nemet 
14649c926579SAdam Nemet             Dependence::DepType Type =
14659c926579SAdam Nemet                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
14669c926579SAdam Nemet             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
14679c926579SAdam Nemet 
1468a2df750fSAdam Nemet             // Gather dependences unless we accumulated MaxDependences
14699c926579SAdam Nemet             // dependences.  In that case return as soon as we find the first
14709c926579SAdam Nemet             // unsafe dependence.  This puts a limit on this quadratic
14719c926579SAdam Nemet             // algorithm.
1472a2df750fSAdam Nemet             if (RecordDependences) {
1473a2df750fSAdam Nemet               if (Type != Dependence::NoDep)
1474a2df750fSAdam Nemet                 Dependences.push_back(Dependence(A.second, B.second, Type));
14759c926579SAdam Nemet 
1476a2df750fSAdam Nemet               if (Dependences.size() >= MaxDependences) {
1477a2df750fSAdam Nemet                 RecordDependences = false;
1478a2df750fSAdam Nemet                 Dependences.clear();
14799c926579SAdam Nemet                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
14809c926579SAdam Nemet               }
14819c926579SAdam Nemet             }
1482a2df750fSAdam Nemet             if (!RecordDependences && !SafeForVectorization)
14830456327cSAdam Nemet               return false;
14840456327cSAdam Nemet           }
14850456327cSAdam Nemet         ++OI;
14860456327cSAdam Nemet       }
14870456327cSAdam Nemet       AI++;
14880456327cSAdam Nemet     }
14890456327cSAdam Nemet   }
14909c926579SAdam Nemet 
1491a2df750fSAdam Nemet   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
14929c926579SAdam Nemet   return SafeForVectorization;
14930456327cSAdam Nemet }
14940456327cSAdam Nemet 
1495ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4>
1496ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1497ec1e2bb6SAdam Nemet   MemAccessInfo Access(Ptr, isWrite);
1498ec1e2bb6SAdam Nemet   auto &IndexVector = Accesses.find(Access)->second;
1499ec1e2bb6SAdam Nemet 
1500ec1e2bb6SAdam Nemet   SmallVector<Instruction *, 4> Insts;
15012d006e76SDavid Majnemer   transform(IndexVector,
1502ec1e2bb6SAdam Nemet                  std::back_inserter(Insts),
1503ec1e2bb6SAdam Nemet                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1504ec1e2bb6SAdam Nemet   return Insts;
1505ec1e2bb6SAdam Nemet }
1506ec1e2bb6SAdam Nemet 
150758913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = {
150858913d65SAdam Nemet     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
150958913d65SAdam Nemet     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
151058913d65SAdam Nemet 
151158913d65SAdam Nemet void MemoryDepChecker::Dependence::print(
151258913d65SAdam Nemet     raw_ostream &OS, unsigned Depth,
151358913d65SAdam Nemet     const SmallVectorImpl<Instruction *> &Instrs) const {
151458913d65SAdam Nemet   OS.indent(Depth) << DepName[Type] << ":\n";
151558913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
151658913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
151758913d65SAdam Nemet }
151858913d65SAdam Nemet 
1519929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() {
15208dcb3b6aSAdam Nemet   // We need to have a loop header.
1521d8968f09SAdam Nemet   DEBUG(dbgs() << "LAA: Found a loop in "
1522d8968f09SAdam Nemet                << TheLoop->getHeader()->getParent()->getName() << ": "
1523d8968f09SAdam Nemet                << TheLoop->getHeader()->getName() << '\n');
15248dcb3b6aSAdam Nemet 
1525929c38e8SAdam Nemet   // We can only analyze innermost loops.
1526929c38e8SAdam Nemet   if (!TheLoop->empty()) {
15278dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1528877ccee8SAdam Nemet     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1529929c38e8SAdam Nemet     return false;
1530929c38e8SAdam Nemet   }
1531929c38e8SAdam Nemet 
1532929c38e8SAdam Nemet   // We must have a single backedge.
1533929c38e8SAdam Nemet   if (TheLoop->getNumBackEdges() != 1) {
15348dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1535877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1536877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1537929c38e8SAdam Nemet     return false;
1538929c38e8SAdam Nemet   }
1539929c38e8SAdam Nemet 
1540929c38e8SAdam Nemet   // We must have a single exiting block.
1541929c38e8SAdam Nemet   if (!TheLoop->getExitingBlock()) {
15428dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1543877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1544877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1545929c38e8SAdam Nemet     return false;
1546929c38e8SAdam Nemet   }
1547929c38e8SAdam Nemet 
1548929c38e8SAdam Nemet   // We only handle bottom-tested loops, i.e. loop in which the condition is
1549929c38e8SAdam Nemet   // checked at the end of each iteration. With that we can assume that all
1550929c38e8SAdam Nemet   // instructions in the loop are executed the same number of times.
1551929c38e8SAdam Nemet   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
15528dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1553877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1554877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1555929c38e8SAdam Nemet     return false;
1556929c38e8SAdam Nemet   }
1557929c38e8SAdam Nemet 
1558929c38e8SAdam Nemet   // ScalarEvolution needs to be able to find the exit count.
155994734eefSXinliang David Li   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
156094734eefSXinliang David Li   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1561877ccee8SAdam Nemet     recordAnalysis("CantComputeNumberOfIterations")
1562877ccee8SAdam Nemet         << "could not determine number of loop iterations";
1563929c38e8SAdam Nemet     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1564929c38e8SAdam Nemet     return false;
1565929c38e8SAdam Nemet   }
1566929c38e8SAdam Nemet 
1567929c38e8SAdam Nemet   return true;
1568929c38e8SAdam Nemet }
1569929c38e8SAdam Nemet 
1570b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
15717da74abfSAdam Nemet                                  const TargetLibraryInfo *TLI,
15727da74abfSAdam Nemet                                  DominatorTree *DT) {
15730456327cSAdam Nemet   typedef SmallPtrSet<Value*, 16> ValueSet;
15740456327cSAdam Nemet 
1575e3e3b994SMatthew Simpson   // Holds the Load and Store instructions.
1576e3e3b994SMatthew Simpson   SmallVector<LoadInst *, 16> Loads;
1577e3e3b994SMatthew Simpson   SmallVector<StoreInst *, 16> Stores;
15780456327cSAdam Nemet 
15790456327cSAdam Nemet   // Holds all the different accesses in the loop.
15800456327cSAdam Nemet   unsigned NumReads = 0;
15810456327cSAdam Nemet   unsigned NumReadWrites = 0;
15820456327cSAdam Nemet 
1583ce030acbSXinliang David Li   PtrRtChecking->Pointers.clear();
1584ce030acbSXinliang David Li   PtrRtChecking->Need = false;
15850456327cSAdam Nemet 
15860456327cSAdam Nemet   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
15870456327cSAdam Nemet 
15880456327cSAdam Nemet   // For each block.
15898b401013SDavid Majnemer   for (BasicBlock *BB : TheLoop->blocks()) {
15900456327cSAdam Nemet     // Scan the BB and collect legal loads and stores.
15918b401013SDavid Majnemer     for (Instruction &I : *BB) {
15920456327cSAdam Nemet       // If this is a load, save it. If this instruction can read from memory
15930456327cSAdam Nemet       // but is not a load, then we quit. Notice that we don't handle function
15940456327cSAdam Nemet       // calls that read or write.
15958b401013SDavid Majnemer       if (I.mayReadFromMemory()) {
15960456327cSAdam Nemet         // Many math library functions read the rounding mode. We will only
15970456327cSAdam Nemet         // vectorize a loop if it contains known function calls that don't set
15980456327cSAdam Nemet         // the flag. Therefore, it is safe to ignore this read from memory.
15998b401013SDavid Majnemer         auto *Call = dyn_cast<CallInst>(&I);
1600b4b27230SDavid Majnemer         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
16010456327cSAdam Nemet           continue;
16020456327cSAdam Nemet 
16039b3cf604SMichael Zolotukhin         // If the function has an explicit vectorized counterpart, we can safely
16049b3cf604SMichael Zolotukhin         // assume that it can be vectorized.
16059b3cf604SMichael Zolotukhin         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
16069b3cf604SMichael Zolotukhin             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
16079b3cf604SMichael Zolotukhin           continue;
16089b3cf604SMichael Zolotukhin 
16098b401013SDavid Majnemer         auto *Ld = dyn_cast<LoadInst>(&I);
16100456327cSAdam Nemet         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1611877ccee8SAdam Nemet           recordAnalysis("NonSimpleLoad", Ld)
1612877ccee8SAdam Nemet               << "read with atomic ordering or volatile read";
1613339f42b3SAdam Nemet           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1614436018c3SAdam Nemet           CanVecMem = false;
1615436018c3SAdam Nemet           return;
16160456327cSAdam Nemet         }
16170456327cSAdam Nemet         NumLoads++;
16180456327cSAdam Nemet         Loads.push_back(Ld);
1619ce030acbSXinliang David Li         DepChecker->addAccess(Ld);
1620a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1621c953bb99SAdam Nemet           collectStridedAccess(Ld);
16220456327cSAdam Nemet         continue;
16230456327cSAdam Nemet       }
16240456327cSAdam Nemet 
16250456327cSAdam Nemet       // Save 'store' instructions. Abort if other instructions write to memory.
16268b401013SDavid Majnemer       if (I.mayWriteToMemory()) {
16278b401013SDavid Majnemer         auto *St = dyn_cast<StoreInst>(&I);
16280456327cSAdam Nemet         if (!St) {
1629877ccee8SAdam Nemet           recordAnalysis("CantVectorizeInstruction", St)
1630877ccee8SAdam Nemet               << "instruction cannot be vectorized";
1631436018c3SAdam Nemet           CanVecMem = false;
1632436018c3SAdam Nemet           return;
16330456327cSAdam Nemet         }
16340456327cSAdam Nemet         if (!St->isSimple() && !IsAnnotatedParallel) {
1635877ccee8SAdam Nemet           recordAnalysis("NonSimpleStore", St)
1636877ccee8SAdam Nemet               << "write with atomic ordering or volatile write";
1637339f42b3SAdam Nemet           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1638436018c3SAdam Nemet           CanVecMem = false;
1639436018c3SAdam Nemet           return;
16400456327cSAdam Nemet         }
16410456327cSAdam Nemet         NumStores++;
16420456327cSAdam Nemet         Stores.push_back(St);
1643ce030acbSXinliang David Li         DepChecker->addAccess(St);
1644a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1645c953bb99SAdam Nemet           collectStridedAccess(St);
16460456327cSAdam Nemet       }
16470456327cSAdam Nemet     } // Next instr.
16480456327cSAdam Nemet   } // Next block.
16490456327cSAdam Nemet 
16500456327cSAdam Nemet   // Now we have two lists that hold the loads and the stores.
16510456327cSAdam Nemet   // Next, we find the pointers that they use.
16520456327cSAdam Nemet 
16530456327cSAdam Nemet   // Check if we see any stores. If there are no stores, then we don't
16540456327cSAdam Nemet   // care if the pointers are *restrict*.
16550456327cSAdam Nemet   if (!Stores.size()) {
1656339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1657436018c3SAdam Nemet     CanVecMem = true;
1658436018c3SAdam Nemet     return;
16590456327cSAdam Nemet   }
16600456327cSAdam Nemet 
1661dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates DependentAccesses;
1662a28d91d8SMehdi Amini   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
166394734eefSXinliang David Li                           AA, LI, DependentAccesses, *PSE);
16640456327cSAdam Nemet 
16650456327cSAdam Nemet   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
16660456327cSAdam Nemet   // multiple times on the same object. If the ptr is accessed twice, once
16670456327cSAdam Nemet   // for read and once for write, it will only appear once (on the write
16680456327cSAdam Nemet   // list). This is okay, since we are going to check for conflicts between
16690456327cSAdam Nemet   // writes and between reads and writes, but not between reads and reads.
16700456327cSAdam Nemet   ValueSet Seen;
16710456327cSAdam Nemet 
1672e3e3b994SMatthew Simpson   for (StoreInst *ST : Stores) {
16730456327cSAdam Nemet     Value *Ptr = ST->getPointerOperand();
1674ce48250fSAdam Nemet     // Check for store to loop invariant address.
1675ce48250fSAdam Nemet     StoreToLoopInvariantAddress |= isUniform(Ptr);
16760456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to  the read-write
16770456327cSAdam Nemet     // list. At this phase it is only a 'write' list.
16780456327cSAdam Nemet     if (Seen.insert(Ptr).second) {
16790456327cSAdam Nemet       ++NumReadWrites;
16800456327cSAdam Nemet 
1681ac80dc75SChandler Carruth       MemoryLocation Loc = MemoryLocation::get(ST);
16820456327cSAdam Nemet       // The TBAA metadata could have a control dependency on the predication
16830456327cSAdam Nemet       // condition, so we cannot rely on it when determining whether or not we
16840456327cSAdam Nemet       // need runtime pointer checks.
168501abb2c3SAdam Nemet       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
16860456327cSAdam Nemet         Loc.AATags.TBAA = nullptr;
16870456327cSAdam Nemet 
16880456327cSAdam Nemet       Accesses.addStore(Loc);
16890456327cSAdam Nemet     }
16900456327cSAdam Nemet   }
16910456327cSAdam Nemet 
16920456327cSAdam Nemet   if (IsAnnotatedParallel) {
169304d4163eSAdam Nemet     DEBUG(dbgs()
1694339f42b3SAdam Nemet           << "LAA: A loop annotated parallel, ignore memory dependency "
16950456327cSAdam Nemet           << "checks.\n");
1696436018c3SAdam Nemet     CanVecMem = true;
1697436018c3SAdam Nemet     return;
16980456327cSAdam Nemet   }
16990456327cSAdam Nemet 
1700e3e3b994SMatthew Simpson   for (LoadInst *LD : Loads) {
17010456327cSAdam Nemet     Value *Ptr = LD->getPointerOperand();
17020456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to the
17030456327cSAdam Nemet     // read list. If we *did* see it before, then it is already in
17040456327cSAdam Nemet     // the read-write list. This allows us to vectorize expressions
17050456327cSAdam Nemet     // such as A[i] += x;  Because the address of A[i] is a read-write
17060456327cSAdam Nemet     // pointer. This only works if the index of A[i] is consecutive.
17070456327cSAdam Nemet     // If the address of i is unknown (for example A[B[i]]) then we may
17080456327cSAdam Nemet     // read a few words, modify, and write a few words, and some of the
17090456327cSAdam Nemet     // words may be written to the same address.
17100456327cSAdam Nemet     bool IsReadOnlyPtr = false;
1711139ffba3SAdam Nemet     if (Seen.insert(Ptr).second ||
171294734eefSXinliang David Li         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
17130456327cSAdam Nemet       ++NumReads;
17140456327cSAdam Nemet       IsReadOnlyPtr = true;
17150456327cSAdam Nemet     }
17160456327cSAdam Nemet 
1717ac80dc75SChandler Carruth     MemoryLocation Loc = MemoryLocation::get(LD);
17180456327cSAdam Nemet     // The TBAA metadata could have a control dependency on the predication
17190456327cSAdam Nemet     // condition, so we cannot rely on it when determining whether or not we
17200456327cSAdam Nemet     // need runtime pointer checks.
172101abb2c3SAdam Nemet     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
17220456327cSAdam Nemet       Loc.AATags.TBAA = nullptr;
17230456327cSAdam Nemet 
17240456327cSAdam Nemet     Accesses.addLoad(Loc, IsReadOnlyPtr);
17250456327cSAdam Nemet   }
17260456327cSAdam Nemet 
17270456327cSAdam Nemet   // If we write (or read-write) to a single destination and there are no
17280456327cSAdam Nemet   // other reads in this loop then is it safe to vectorize.
17290456327cSAdam Nemet   if (NumReadWrites == 1 && NumReads == 0) {
1730339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1731436018c3SAdam Nemet     CanVecMem = true;
1732436018c3SAdam Nemet     return;
17330456327cSAdam Nemet   }
17340456327cSAdam Nemet 
17350456327cSAdam Nemet   // Build dependence sets and check whether we need a runtime pointer bounds
17360456327cSAdam Nemet   // check.
17370456327cSAdam Nemet   Accesses.buildDependenceSets();
17380456327cSAdam Nemet 
17390456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
17400456327cSAdam Nemet   // to place a runtime bound check.
174194734eefSXinliang David Li   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1742139ffba3SAdam Nemet                                                   TheLoop, SymbolicStrides);
1743ee61474aSAdam Nemet   if (!CanDoRTIfNeeded) {
1744877ccee8SAdam Nemet     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1745ee61474aSAdam Nemet     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1746ee61474aSAdam Nemet                  << "the array bounds.\n");
1747436018c3SAdam Nemet     CanVecMem = false;
1748436018c3SAdam Nemet     return;
17490456327cSAdam Nemet   }
17500456327cSAdam Nemet 
1751ee61474aSAdam Nemet   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
17520456327cSAdam Nemet 
1753436018c3SAdam Nemet   CanVecMem = true;
17540456327cSAdam Nemet   if (Accesses.isDependencyCheckNeeded()) {
1755339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1756ce030acbSXinliang David Li     CanVecMem = DepChecker->areDepsSafe(
1757139ffba3SAdam Nemet         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1758ce030acbSXinliang David Li     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
17590456327cSAdam Nemet 
1760ce030acbSXinliang David Li     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
1761339f42b3SAdam Nemet       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
17620456327cSAdam Nemet 
17630456327cSAdam Nemet       // Clear the dependency checks. We assume they are not needed.
1764ce030acbSXinliang David Li       Accesses.resetDepChecks(*DepChecker);
17650456327cSAdam Nemet 
1766ce030acbSXinliang David Li       PtrRtChecking->reset();
1767ce030acbSXinliang David Li       PtrRtChecking->Need = true;
17680456327cSAdam Nemet 
176994734eefSXinliang David Li       auto *SE = PSE->getSE();
1770ce030acbSXinliang David Li       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
1771139ffba3SAdam Nemet                                                  SymbolicStrides, true);
177298a13719SSilviu Baranga 
1773949e91a6SAdam Nemet       // Check that we found the bounds for the pointer.
1774ee61474aSAdam Nemet       if (!CanDoRTIfNeeded) {
1775877ccee8SAdam Nemet         recordAnalysis("CantCheckMemDepsAtRunTime")
1776877ccee8SAdam Nemet             << "cannot check memory dependencies at runtime";
1777b6dc76ffSAdam Nemet         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1778b6dc76ffSAdam Nemet         CanVecMem = false;
1779b6dc76ffSAdam Nemet         return;
1780b6dc76ffSAdam Nemet       }
1781b6dc76ffSAdam Nemet 
17820456327cSAdam Nemet       CanVecMem = true;
17830456327cSAdam Nemet     }
17840456327cSAdam Nemet   }
17850456327cSAdam Nemet 
17864bb90a71SAdam Nemet   if (CanVecMem)
17874bb90a71SAdam Nemet     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1788ce030acbSXinliang David Li                  << (PtrRtChecking->Need ? "" : " don't")
17890f67c6c1SAdam Nemet                  << " need runtime memory checks.\n");
17904bb90a71SAdam Nemet   else {
1791877ccee8SAdam Nemet     recordAnalysis("UnsafeMemDep")
17920a77dfadSAdam Nemet         << "unsafe dependent memory operations in loop. Use "
17930a77dfadSAdam Nemet            "#pragma loop distribute(enable) to allow loop distribution "
17940a77dfadSAdam Nemet            "to attempt to isolate the offending operations into a separate "
1795877ccee8SAdam Nemet            "loop";
17964bb90a71SAdam Nemet     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
17974bb90a71SAdam Nemet   }
17980456327cSAdam Nemet }
17990456327cSAdam Nemet 
180001abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
180101abb2c3SAdam Nemet                                            DominatorTree *DT)  {
18020456327cSAdam Nemet   assert(TheLoop->contains(BB) && "Unknown block used");
18030456327cSAdam Nemet 
18040456327cSAdam Nemet   // Blocks that do not dominate the latch need predication.
18050456327cSAdam Nemet   BasicBlock* Latch = TheLoop->getLoopLatch();
18060456327cSAdam Nemet   return !DT->dominates(BB, Latch);
18070456327cSAdam Nemet }
18080456327cSAdam Nemet 
1809877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1810877ccee8SAdam Nemet                                                            Instruction *I) {
1811c922853bSAdam Nemet   assert(!Report && "Multiple reports generated");
1812877ccee8SAdam Nemet 
1813877ccee8SAdam Nemet   Value *CodeRegion = TheLoop->getHeader();
1814877ccee8SAdam Nemet   DebugLoc DL = TheLoop->getStartLoc();
1815877ccee8SAdam Nemet 
1816877ccee8SAdam Nemet   if (I) {
1817877ccee8SAdam Nemet     CodeRegion = I->getParent();
1818877ccee8SAdam Nemet     // If there is no debug location attached to the instruction, revert back to
1819877ccee8SAdam Nemet     // using the loop's.
1820877ccee8SAdam Nemet     if (I->getDebugLoc())
1821877ccee8SAdam Nemet       DL = I->getDebugLoc();
1822877ccee8SAdam Nemet   }
1823877ccee8SAdam Nemet 
1824877ccee8SAdam Nemet   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1825877ccee8SAdam Nemet                                                    CodeRegion);
1826877ccee8SAdam Nemet   return *Report;
18270456327cSAdam Nemet }
18280456327cSAdam Nemet 
182957ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const {
18303ceac2bbSMichael Kuperstein   auto *SE = PSE->getSE();
18313ceac2bbSMichael Kuperstein   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
18323ceac2bbSMichael Kuperstein   // never considered uniform.
18333ceac2bbSMichael Kuperstein   // TODO: Is this really what we want? Even without FP SCEV, we may want some
18343ceac2bbSMichael Kuperstein   // trivially loop-invariant FP values to be considered uniform.
18353ceac2bbSMichael Kuperstein   if (!SE->isSCEVable(V->getType()))
18363ceac2bbSMichael Kuperstein     return false;
18373ceac2bbSMichael Kuperstein   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
18380456327cSAdam Nemet }
18397206d7a5SAdam Nemet 
18407206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in
18417206d7a5SAdam Nemet // LoopVectorize.cpp.
18427206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
18437206d7a5SAdam Nemet                                  Instruction *Loc) {
18447206d7a5SAdam Nemet   if (FirstInst)
18457206d7a5SAdam Nemet     return FirstInst;
18467206d7a5SAdam Nemet   if (Instruction *I = dyn_cast<Instruction>(V))
18477206d7a5SAdam Nemet     return I->getParent() == Loc->getParent() ? I : nullptr;
18487206d7a5SAdam Nemet   return nullptr;
18497206d7a5SAdam Nemet }
18507206d7a5SAdam Nemet 
1851039b1042SBenjamin Kramer namespace {
1852a3fe70d2SEugene Zelenko 
18534e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
18544e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously
18554e533ef7SAdam Nemet /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
18564e533ef7SAdam Nemet /// a previous one.
18571da7df37SAdam Nemet struct PointerBounds {
18584e533ef7SAdam Nemet   TrackingVH<Value> Start;
18594e533ef7SAdam Nemet   TrackingVH<Value> End;
18601da7df37SAdam Nemet };
1861a3fe70d2SEugene Zelenko 
1862039b1042SBenjamin Kramer } // end anonymous namespace
18637206d7a5SAdam Nemet 
18641da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG
18651da7df37SAdam Nemet /// in \p TheLoop.  \return the values for the bounds.
18661da7df37SAdam Nemet static PointerBounds
18671da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
18681da7df37SAdam Nemet              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
18691da7df37SAdam Nemet              const RuntimePointerChecking &PtrRtChecking) {
18701da7df37SAdam Nemet   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
18717206d7a5SAdam Nemet   const SCEV *Sc = SE->getSCEV(Ptr);
18727206d7a5SAdam Nemet 
18737206d7a5SAdam Nemet   unsigned AS = Ptr->getType()->getPointerAddressSpace();
18741da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
18757206d7a5SAdam Nemet 
18767206d7a5SAdam Nemet   // Use this type for pointer arithmetic.
18777206d7a5SAdam Nemet   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
18787206d7a5SAdam Nemet 
1879*92f377bdSKeno Fischer   if (SE->isLoopInvariant(Sc, TheLoop)) {
1880*92f377bdSKeno Fischer     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1881*92f377bdSKeno Fischer                  << "\n");
1882*92f377bdSKeno Fischer     // Ptr could be in the loop body. If so, expand a new one at the correct
1883*92f377bdSKeno Fischer     // location.
1884*92f377bdSKeno Fischer     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1885*92f377bdSKeno Fischer     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1886*92f377bdSKeno Fischer                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1887*92f377bdSKeno Fischer                         : Ptr;
1888*92f377bdSKeno Fischer     return {NewPtr, NewPtr};
1889*92f377bdSKeno Fischer   } else {
1890*92f377bdSKeno Fischer     Value *Start = nullptr, *End = nullptr;
18911b6b50a9SSilviu Baranga     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
18921da7df37SAdam Nemet     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
18931da7df37SAdam Nemet     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
18941da7df37SAdam Nemet     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
18951da7df37SAdam Nemet     return {Start, End};
18967206d7a5SAdam Nemet   }
18977206d7a5SAdam Nemet }
18987206d7a5SAdam Nemet 
18991da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and
19001da7df37SAdam Nemet /// lower bounds for both pointers in the check.
19011da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
19021da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
19031da7df37SAdam Nemet     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
19041da7df37SAdam Nemet     const RuntimePointerChecking &PtrRtChecking) {
19051da7df37SAdam Nemet   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
19061da7df37SAdam Nemet 
19071da7df37SAdam Nemet   // Here we're relying on the SCEV Expander's cache to only emit code for the
19081da7df37SAdam Nemet   // same bounds once.
19092d006e76SDavid Majnemer   transform(
19102d006e76SDavid Majnemer       PointerChecks, std::back_inserter(ChecksWithBounds),
19111da7df37SAdam Nemet       [&](const RuntimePointerChecking::PointerCheck &Check) {
191294abbbd6SNAKAMURA Takumi         PointerBounds
191394abbbd6SNAKAMURA Takumi           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
191494abbbd6SNAKAMURA Takumi           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
191594abbbd6SNAKAMURA Takumi         return std::make_pair(First, Second);
19161da7df37SAdam Nemet       });
19171da7df37SAdam Nemet 
19181da7df37SAdam Nemet   return ChecksWithBounds;
19191da7df37SAdam Nemet }
19201da7df37SAdam Nemet 
19215b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
19221da7df37SAdam Nemet     Instruction *Loc,
19231da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
19241da7df37SAdam Nemet     const {
19251824e411SAdam Nemet   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
192694734eefSXinliang David Li   auto *SE = PSE->getSE();
19271824e411SAdam Nemet   SCEVExpander Exp(*SE, DL, "induction");
19281da7df37SAdam Nemet   auto ExpandedChecks =
1929ce030acbSXinliang David Li       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
19301da7df37SAdam Nemet 
19311da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
19321da7df37SAdam Nemet   Instruction *FirstInst = nullptr;
19337206d7a5SAdam Nemet   IRBuilder<> ChkBuilder(Loc);
19347206d7a5SAdam Nemet   // Our instructions might fold to a constant.
19357206d7a5SAdam Nemet   Value *MemoryRuntimeCheck = nullptr;
19361b6b50a9SSilviu Baranga 
19371da7df37SAdam Nemet   for (const auto &Check : ExpandedChecks) {
19381da7df37SAdam Nemet     const PointerBounds &A = Check.first, &B = Check.second;
1939cdb791cdSAdam Nemet     // Check if two pointers (A and B) conflict where conflict is computed as:
1940cdb791cdSAdam Nemet     // start(A) <= end(B) && start(B) <= end(A)
19411da7df37SAdam Nemet     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
19421da7df37SAdam Nemet     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
19437206d7a5SAdam Nemet 
19441da7df37SAdam Nemet     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
19451da7df37SAdam Nemet            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
19467206d7a5SAdam Nemet            "Trying to bounds check pointers with different address spaces");
19477206d7a5SAdam Nemet 
19487206d7a5SAdam Nemet     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
19497206d7a5SAdam Nemet     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
19507206d7a5SAdam Nemet 
19511da7df37SAdam Nemet     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
19521da7df37SAdam Nemet     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
19531da7df37SAdam Nemet     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
19541da7df37SAdam Nemet     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
19557206d7a5SAdam Nemet 
19563622fbfcSElena Demikhovsky     // [A|B].Start points to the first accessed byte under base [A|B].
19573622fbfcSElena Demikhovsky     // [A|B].End points to the last accessed byte, plus one.
19583622fbfcSElena Demikhovsky     // There is no conflict when the intervals are disjoint:
19593622fbfcSElena Demikhovsky     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
19603622fbfcSElena Demikhovsky     //
19613622fbfcSElena Demikhovsky     // bound0 = (B.Start < A.End)
19623622fbfcSElena Demikhovsky     // bound1 = (A.Start < B.End)
19633622fbfcSElena Demikhovsky     //  IsConflict = bound0 & bound1
19643622fbfcSElena Demikhovsky     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
19657206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
19663622fbfcSElena Demikhovsky     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
19677206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
19687206d7a5SAdam Nemet     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
19697206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
19707206d7a5SAdam Nemet     if (MemoryRuntimeCheck) {
19711da7df37SAdam Nemet       IsConflict =
19721da7df37SAdam Nemet           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
19737206d7a5SAdam Nemet       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
19747206d7a5SAdam Nemet     }
19757206d7a5SAdam Nemet     MemoryRuntimeCheck = IsConflict;
19767206d7a5SAdam Nemet   }
19777206d7a5SAdam Nemet 
197890fec840SAdam Nemet   if (!MemoryRuntimeCheck)
197990fec840SAdam Nemet     return std::make_pair(nullptr, nullptr);
198090fec840SAdam Nemet 
19817206d7a5SAdam Nemet   // We have to do this trickery because the IRBuilder might fold the check to a
19827206d7a5SAdam Nemet   // constant expression in which case there is no Instruction anchored in a
19837206d7a5SAdam Nemet   // the block.
19847206d7a5SAdam Nemet   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
19857206d7a5SAdam Nemet                                                  ConstantInt::getTrue(Ctx));
19867206d7a5SAdam Nemet   ChkBuilder.Insert(Check, "memcheck.conflict");
19877206d7a5SAdam Nemet   FirstInst = getFirstInst(FirstInst, Check, Loc);
19887206d7a5SAdam Nemet   return std::make_pair(FirstInst, Check);
19897206d7a5SAdam Nemet }
19903bfd93d7SAdam Nemet 
19915b0a4795SAdam Nemet std::pair<Instruction *, Instruction *>
19925b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1993ce030acbSXinliang David Li   if (!PtrRtChecking->Need)
19941da7df37SAdam Nemet     return std::make_pair(nullptr, nullptr);
19951da7df37SAdam Nemet 
1996ce030acbSXinliang David Li   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
19971da7df37SAdam Nemet }
19981da7df37SAdam Nemet 
1999c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2000c953bb99SAdam Nemet   Value *Ptr = nullptr;
2001c953bb99SAdam Nemet   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2002c953bb99SAdam Nemet     Ptr = LI->getPointerOperand();
2003c953bb99SAdam Nemet   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2004c953bb99SAdam Nemet     Ptr = SI->getPointerOperand();
2005c953bb99SAdam Nemet   else
2006c953bb99SAdam Nemet     return;
2007c953bb99SAdam Nemet 
200894734eefSXinliang David Li   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2009c953bb99SAdam Nemet   if (!Stride)
2010c953bb99SAdam Nemet     return;
2011c953bb99SAdam Nemet 
2012c953bb99SAdam Nemet   DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2013c953bb99SAdam Nemet   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2014c953bb99SAdam Nemet   SymbolicStrides[Ptr] = Stride;
2015c953bb99SAdam Nemet   StrideSet.insert(Stride);
2016c953bb99SAdam Nemet }
2017c953bb99SAdam Nemet 
20183bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
20193bfd93d7SAdam Nemet                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2020a9f09c62SAdam Nemet                                DominatorTree *DT, LoopInfo *LI)
202194734eefSXinliang David Li     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2022ce030acbSXinliang David Li       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
202394734eefSXinliang David Li       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
20247da74abfSAdam Nemet       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
20257da74abfSAdam Nemet       StoreToLoopInvariantAddress(false) {
2026929c38e8SAdam Nemet   if (canAnalyzeLoop())
20277da74abfSAdam Nemet     analyzeLoop(AA, LI, TLI, DT);
20283bfd93d7SAdam Nemet }
20293bfd93d7SAdam Nemet 
2030e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2031e91cc6efSAdam Nemet   if (CanVecMem) {
20324ad38b63SAdam Nemet     OS.indent(Depth) << "Memory dependences are safe";
20337afb46d3SDavid Majnemer     if (MaxSafeDepDistBytes != -1ULL)
2034c62e554eSAdam Nemet       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2035c62e554eSAdam Nemet          << " bytes";
2036ce030acbSXinliang David Li     if (PtrRtChecking->Need)
20374ad38b63SAdam Nemet       OS << " with run-time checks";
20384ad38b63SAdam Nemet     OS << "\n";
2039e91cc6efSAdam Nemet   }
2040e91cc6efSAdam Nemet 
2041e91cc6efSAdam Nemet   if (Report)
2042877ccee8SAdam Nemet     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2043e91cc6efSAdam Nemet 
2044ce030acbSXinliang David Li   if (auto *Dependences = DepChecker->getDependences()) {
2045a2df750fSAdam Nemet     OS.indent(Depth) << "Dependences:\n";
2046a2df750fSAdam Nemet     for (auto &Dep : *Dependences) {
2047ce030acbSXinliang David Li       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
204858913d65SAdam Nemet       OS << "\n";
204958913d65SAdam Nemet     }
205058913d65SAdam Nemet   } else
2051a2df750fSAdam Nemet     OS.indent(Depth) << "Too many dependences, not recorded\n";
2052e91cc6efSAdam Nemet 
2053e91cc6efSAdam Nemet   // List the pair of accesses need run-time checks to prove independence.
2054ce030acbSXinliang David Li   PtrRtChecking->print(OS, Depth);
2055e91cc6efSAdam Nemet   OS << "\n";
2056c3384320SAdam Nemet 
2057c3384320SAdam Nemet   OS.indent(Depth) << "Store to invariant address was "
2058c3384320SAdam Nemet                    << (StoreToLoopInvariantAddress ? "" : "not ")
2059c3384320SAdam Nemet                    << "found in loop.\n";
2060e3c0534bSSilviu Baranga 
2061e3c0534bSSilviu Baranga   OS.indent(Depth) << "SCEV assumptions:\n";
206294734eefSXinliang David Li   PSE->getUnionPredicate().print(OS, Depth);
2063b77365b5SSilviu Baranga 
2064b77365b5SSilviu Baranga   OS << "\n";
2065b77365b5SSilviu Baranga 
2066b77365b5SSilviu Baranga   OS.indent(Depth) << "Expressions re-written:\n";
206794734eefSXinliang David Li   PSE->print(OS, Depth);
2068e91cc6efSAdam Nemet }
2069e91cc6efSAdam Nemet 
20707853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
20713bfd93d7SAdam Nemet   auto &LAI = LoopAccessInfoMap[L];
20723bfd93d7SAdam Nemet 
20731824e411SAdam Nemet   if (!LAI)
20741824e411SAdam Nemet     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
20751824e411SAdam Nemet 
20763bfd93d7SAdam Nemet   return *LAI.get();
20773bfd93d7SAdam Nemet }
20783bfd93d7SAdam Nemet 
20797853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
20807853c1ddSXinliang David Li   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2081ecde1c7fSXinliang David Li 
2082e91cc6efSAdam Nemet   for (Loop *TopLevelLoop : *LI)
2083e91cc6efSAdam Nemet     for (Loop *L : depth_first(TopLevelLoop)) {
2084e91cc6efSAdam Nemet       OS.indent(2) << L->getHeader()->getName() << ":\n";
2085bdbc5227SAdam Nemet       auto &LAI = LAA.getInfo(L);
2086e91cc6efSAdam Nemet       LAI.print(OS, 4);
2087e91cc6efSAdam Nemet     }
2088e91cc6efSAdam Nemet }
2089e91cc6efSAdam Nemet 
20907853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2091ecde1c7fSXinliang David Li   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
20923bfd93d7SAdam Nemet   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2093ecde1c7fSXinliang David Li   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2094ecde1c7fSXinliang David Li   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2095ecde1c7fSXinliang David Li   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2096ecde1c7fSXinliang David Li   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
20973bfd93d7SAdam Nemet 
20983bfd93d7SAdam Nemet   return false;
20993bfd93d7SAdam Nemet }
21003bfd93d7SAdam Nemet 
21017853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
21022f1fd165SChandler Carruth     AU.addRequired<ScalarEvolutionWrapperPass>();
21037b560d40SChandler Carruth     AU.addRequired<AAResultsWrapperPass>();
21043bfd93d7SAdam Nemet     AU.addRequired<DominatorTreeWrapperPass>();
2105e91cc6efSAdam Nemet     AU.addRequired<LoopInfoWrapperPass>();
21063bfd93d7SAdam Nemet 
21073bfd93d7SAdam Nemet     AU.setPreservesAll();
21083bfd93d7SAdam Nemet }
21093bfd93d7SAdam Nemet 
21107853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0;
21113bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis";
21123bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses"
21133bfd93d7SAdam Nemet 
21147853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
21157b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
21162f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
21173bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2118e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
21197853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
21203bfd93d7SAdam Nemet 
2121dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key;
21228a021317SXinliang David Li 
21230746f3bfSSean Silva LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM) {
212436e0d01eSSean Silva   const FunctionAnalysisManager &FAM =
2125284b0324SSean Silva       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
21268a021317SXinliang David Li   Function &F = *L.getHeader()->getParent();
2127284b0324SSean Silva   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F);
21288a021317SXinliang David Li   auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F);
2129284b0324SSean Silva   auto *AA = FAM.getCachedResult<AAManager>(F);
2130284b0324SSean Silva   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2131284b0324SSean Silva   auto *LI = FAM.getCachedResult<LoopAnalysis>(F);
2132284b0324SSean Silva   if (!SE)
2133284b0324SSean Silva     report_fatal_error(
2134284b0324SSean Silva         "ScalarEvolution must have been cached at a higher level");
2135284b0324SSean Silva   if (!AA)
2136284b0324SSean Silva     report_fatal_error("AliasAnalysis must have been cached at a higher level");
2137284b0324SSean Silva   if (!DT)
2138284b0324SSean Silva     report_fatal_error("DominatorTree must have been cached at a higher level");
2139284b0324SSean Silva   if (!LI)
2140284b0324SSean Silva     report_fatal_error("LoopInfo must have been cached at a higher level");
21411824e411SAdam Nemet   return LoopAccessInfo(&L, SE, TLI, AA, DT, LI);
21428a021317SXinliang David Li }
21438a021317SXinliang David Li 
21448a021317SXinliang David Li PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L,
21450746f3bfSSean Silva                                                  LoopAnalysisManager &AM) {
21468a021317SXinliang David Li   Function &F = *L.getHeader()->getParent();
214707e08fa3SXinliang David Li   auto &LAI = AM.getResult<LoopAccessAnalysis>(L);
21488a021317SXinliang David Li   OS << "Loop access info in function '" << F.getName() << "':\n";
21498a021317SXinliang David Li   OS.indent(2) << L.getHeader()->getName() << ":\n";
21508a021317SXinliang David Li   LAI.print(OS, 4);
21518a021317SXinliang David Li   return PreservedAnalyses::all();
21528a021317SXinliang David Li }
21538a021317SXinliang David Li 
21543bfd93d7SAdam Nemet namespace llvm {
2155a3fe70d2SEugene Zelenko 
21563bfd93d7SAdam Nemet   Pass *createLAAPass() {
21577853c1ddSXinliang David Li     return new LoopAccessLegacyAnalysis();
21583bfd93d7SAdam Nemet   }
2159a3fe70d2SEugene Zelenko 
2160a3fe70d2SEugene Zelenko } // end namespace llvm
2161