10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
20456327cSAdam Nemet //
30456327cSAdam Nemet //                     The LLVM Compiler Infrastructure
40456327cSAdam Nemet //
50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source
60456327cSAdam Nemet // License. See LICENSE.TXT for details.
70456327cSAdam Nemet //
80456327cSAdam Nemet //===----------------------------------------------------------------------===//
90456327cSAdam Nemet //
100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally
110456327cSAdam Nemet // developed for the loop vectorizer.
120456327cSAdam Nemet //
130456327cSAdam Nemet //===----------------------------------------------------------------------===//
140456327cSAdam Nemet 
153bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAccessAnalysis.h"
16a3fe70d2SEugene Zelenko #include "llvm/ADT/APInt.h"
17a3fe70d2SEugene Zelenko #include "llvm/ADT/DenseMap.h"
18a3fe70d2SEugene Zelenko #include "llvm/ADT/DepthFirstIterator.h"
19a3fe70d2SEugene Zelenko #include "llvm/ADT/EquivalenceClasses.h"
20a3fe70d2SEugene Zelenko #include "llvm/ADT/PointerIntPair.h"
213bab7e1aSChandler Carruth #include "llvm/ADT/STLExtras.h"
22a3fe70d2SEugene Zelenko #include "llvm/ADT/SetVector.h"
23a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallPtrSet.h"
24a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallSet.h"
25a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallVector.h"
263bab7e1aSChandler Carruth #include "llvm/ADT/iterator_range.h"
27a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasAnalysis.h"
28a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasSetTracker.h"
293bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAnalysisManager.h"
300456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
31a3fe70d2SEugene Zelenko #include "llvm/Analysis/MemoryLocation.h"
320965da20SAdam Nemet #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolution.h"
347206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h"
35a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h"
370456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h"
38f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h"
39a3fe70d2SEugene Zelenko #include "llvm/IR/BasicBlock.h"
40a3fe70d2SEugene Zelenko #include "llvm/IR/Constants.h"
41a3fe70d2SEugene Zelenko #include "llvm/IR/DataLayout.h"
42a3fe70d2SEugene Zelenko #include "llvm/IR/DebugLoc.h"
43a3fe70d2SEugene Zelenko #include "llvm/IR/DerivedTypes.h"
44a3fe70d2SEugene Zelenko #include "llvm/IR/DiagnosticInfo.h"
450456327cSAdam Nemet #include "llvm/IR/Dominators.h"
46a3fe70d2SEugene Zelenko #include "llvm/IR/Function.h"
473bab7e1aSChandler Carruth #include "llvm/IR/IRBuilder.h"
48a3fe70d2SEugene Zelenko #include "llvm/IR/InstrTypes.h"
49a3fe70d2SEugene Zelenko #include "llvm/IR/Instruction.h"
50a3fe70d2SEugene Zelenko #include "llvm/IR/Instructions.h"
51a3fe70d2SEugene Zelenko #include "llvm/IR/Operator.h"
528a021317SXinliang David Li #include "llvm/IR/PassManager.h"
53a3fe70d2SEugene Zelenko #include "llvm/IR/Type.h"
54a3fe70d2SEugene Zelenko #include "llvm/IR/Value.h"
55a3fe70d2SEugene Zelenko #include "llvm/IR/ValueHandle.h"
56a3fe70d2SEugene Zelenko #include "llvm/Pass.h"
57a3fe70d2SEugene Zelenko #include "llvm/Support/Casting.h"
58a3fe70d2SEugene Zelenko #include "llvm/Support/CommandLine.h"
590456327cSAdam Nemet #include "llvm/Support/Debug.h"
60a3fe70d2SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
61799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h"
62a3fe70d2SEugene Zelenko #include <algorithm>
63a3fe70d2SEugene Zelenko #include <cassert>
64a3fe70d2SEugene Zelenko #include <cstdint>
65a3fe70d2SEugene Zelenko #include <cstdlib>
66a3fe70d2SEugene Zelenko #include <iterator>
67a3fe70d2SEugene Zelenko #include <utility>
68a3fe70d2SEugene Zelenko #include <vector>
69a3fe70d2SEugene Zelenko 
700456327cSAdam Nemet using namespace llvm;
710456327cSAdam Nemet 
72339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses"
730456327cSAdam Nemet 
74f219c647SAdam Nemet static cl::opt<unsigned, true>
75f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden,
76f219c647SAdam Nemet                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77f219c647SAdam Nemet                     cl::location(VectorizerParams::VectorizationFactor));
781d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor;
79f219c647SAdam Nemet 
80f219c647SAdam Nemet static cl::opt<unsigned, true>
81f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden,
82f219c647SAdam Nemet                         cl::desc("Sets the vectorization interleave count. "
83f219c647SAdam Nemet                                  "Zero is autoselect."),
84f219c647SAdam Nemet                         cl::location(
85f219c647SAdam Nemet                             VectorizerParams::VectorizationInterleave));
861d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave;
87f219c647SAdam Nemet 
881d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
891d862af7SAdam Nemet     "runtime-memory-check-threshold", cl::Hidden,
901d862af7SAdam Nemet     cl::desc("When performing memory disambiguation checks at runtime do not "
911d862af7SAdam Nemet              "generate more than this number of comparisons (default = 8)."),
921d862af7SAdam Nemet     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
931d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94f219c647SAdam Nemet 
955f8f34e4SAdrian Prantl /// The maximum iterations used to merge memory checks
961b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold(
971b6b50a9SSilviu Baranga     "memory-check-merge-threshold", cl::Hidden,
981b6b50a9SSilviu Baranga     cl::desc("Maximum number of comparisons done when trying to merge "
991b6b50a9SSilviu Baranga              "runtime memory checks. (default = 100)"),
1001b6b50a9SSilviu Baranga     cl::init(100));
1011b6b50a9SSilviu Baranga 
102f219c647SAdam Nemet /// Maximum SIMD width.
103f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64;
104f219c647SAdam Nemet 
1055f8f34e4SAdrian Prantl /// We collect dependences up to this threshold.
106a2df750fSAdam Nemet static cl::opt<unsigned>
107a2df750fSAdam Nemet     MaxDependences("max-dependences", cl::Hidden,
108a2df750fSAdam Nemet                    cl::desc("Maximum number of dependences collected by "
1099c926579SAdam Nemet                             "loop-access analysis (default = 100)"),
1109c926579SAdam Nemet                    cl::init(100));
1119c926579SAdam Nemet 
112a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory
113a9f09c62SAdam Nemet /// accesses in code like the following.
114a9f09c62SAdam Nemet ///   for (i = 0; i < N; ++i)
115a9f09c62SAdam Nemet ///     A[i * Stride1] += B[i * Stride2] ...
116a9f09c62SAdam Nemet ///
117a9f09c62SAdam Nemet /// Will be roughly translated to
118a9f09c62SAdam Nemet ///    if (Stride1 == 1 && Stride2 == 1) {
119a9f09c62SAdam Nemet ///      for (i = 0; i < N; i+=4)
120a9f09c62SAdam Nemet ///       A[i:i+3] += ...
121a9f09c62SAdam Nemet ///    } else
122a9f09c62SAdam Nemet ///      ...
123a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning(
124a9f09c62SAdam Nemet     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125a9f09c62SAdam Nemet     cl::desc("Enable symbolic stride memory access versioning"));
126a9f09c62SAdam Nemet 
1275f8f34e4SAdrian Prantl /// Enable store-to-load forwarding conflict detection. This option can
12837ec5f91SMatthew Simpson /// be disabled for correctness testing.
12937ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection(
13037ec5f91SMatthew Simpson     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131a250dc9fSMatthew Simpson     cl::desc("Enable conflict detection in loop-access analysis"),
132a250dc9fSMatthew Simpson     cl::init(true));
133a250dc9fSMatthew Simpson 
134f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() {
135f219c647SAdam Nemet   return ::VectorizationInterleave.getNumOccurrences() > 0;
136f219c647SAdam Nemet }
137f219c647SAdam Nemet 
1380456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) {
1398b401013SDavid Majnemer   if (auto *CI = dyn_cast<CastInst>(V))
1400456327cSAdam Nemet     if (CI->getOperand(0)->getType()->isIntegerTy())
1410456327cSAdam Nemet       return CI->getOperand(0);
1420456327cSAdam Nemet   return V;
1430456327cSAdam Nemet }
1440456327cSAdam Nemet 
1459cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
1468bc61df9SAdam Nemet                                             const ValueToValueMap &PtrToStride,
1470456327cSAdam Nemet                                             Value *Ptr, Value *OrigPtr) {
1489cd9a7e3SSilviu Baranga   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
1490456327cSAdam Nemet 
1500456327cSAdam Nemet   // If there is an entry in the map return the SCEV of the pointer with the
1510456327cSAdam Nemet   // symbolic stride replaced by one.
1528bc61df9SAdam Nemet   ValueToValueMap::const_iterator SI =
1538bc61df9SAdam Nemet       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1540456327cSAdam Nemet   if (SI != PtrToStride.end()) {
1550456327cSAdam Nemet     Value *StrideVal = SI->second;
1560456327cSAdam Nemet 
1570456327cSAdam Nemet     // Strip casts.
1580456327cSAdam Nemet     StrideVal = stripIntegerCast(StrideVal);
1590456327cSAdam Nemet 
1609cd9a7e3SSilviu Baranga     ScalarEvolution *SE = PSE.getSE();
161e3c0534bSSilviu Baranga     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
162e3c0534bSSilviu Baranga     const auto *CT =
163e3c0534bSSilviu Baranga         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
164e3c0534bSSilviu Baranga 
1659cd9a7e3SSilviu Baranga     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
1669cd9a7e3SSilviu Baranga     auto *Expr = PSE.getSCEV(Ptr);
167e3c0534bSSilviu Baranga 
168d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
169d34e60caSNicola Zaghen                       << " by: " << *Expr << "\n");
1709cd9a7e3SSilviu Baranga     return Expr;
1710456327cSAdam Nemet   }
1720456327cSAdam Nemet 
1730456327cSAdam Nemet   // Otherwise, just return the SCEV of the original pointer.
174e3c0534bSSilviu Baranga   return OrigSCEV;
1750456327cSAdam Nemet }
1760456327cSAdam Nemet 
1773622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access.
1783622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop
1793622fbfcSElena Demikhovsky /// iteration. Then B is calculated as:
1803622fbfcSElena Demikhovsky ///   B = A + Step*N .
1813622fbfcSElena Demikhovsky /// Step value may be positive or negative.
1823622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count:
1833622fbfcSElena Demikhovsky ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
1843622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way:
1853622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
1863622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes.
1873622fbfcSElena Demikhovsky ///
1883622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint:
1893622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
1907cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
1917cdebac0SAdam Nemet                                     unsigned DepSetId, unsigned ASId,
192e3c0534bSSilviu Baranga                                     const ValueToValueMap &Strides,
1939cd9a7e3SSilviu Baranga                                     PredicatedScalarEvolution &PSE) {
1940456327cSAdam Nemet   // Get the stride replaced scev.
1959cd9a7e3SSilviu Baranga   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
196279784ffSAdam Nemet   ScalarEvolution *SE = PSE.getSE();
197279784ffSAdam Nemet 
198279784ffSAdam Nemet   const SCEV *ScStart;
199279784ffSAdam Nemet   const SCEV *ScEnd;
200279784ffSAdam Nemet 
20159a65504SAdam Nemet   if (SE->isLoopInvariant(Sc, Lp))
202279784ffSAdam Nemet     ScStart = ScEnd = Sc;
203279784ffSAdam Nemet   else {
2040456327cSAdam Nemet     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
2050456327cSAdam Nemet     assert(AR && "Invalid addrec expression");
2066f444dfdSSilviu Baranga     const SCEV *Ex = PSE.getBackedgeTakenCount();
2070e5804a6SSilviu Baranga 
208279784ffSAdam Nemet     ScStart = AR->getStart();
209279784ffSAdam Nemet     ScEnd = AR->evaluateAtIteration(Ex, *SE);
2100e5804a6SSilviu Baranga     const SCEV *Step = AR->getStepRecurrence(*SE);
2110e5804a6SSilviu Baranga 
2120e5804a6SSilviu Baranga     // For expressions with negative step, the upper bound is ScStart and the
2130e5804a6SSilviu Baranga     // lower bound is ScEnd.
2148b401013SDavid Majnemer     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
2150e5804a6SSilviu Baranga       if (CStep->getValue()->isNegative())
2160e5804a6SSilviu Baranga         std::swap(ScStart, ScEnd);
2170e5804a6SSilviu Baranga     } else {
2183622fbfcSElena Demikhovsky       // Fallback case: the step is not constant, but we can still
2190e5804a6SSilviu Baranga       // get the upper and lower bounds of the interval by using min/max
2200e5804a6SSilviu Baranga       // expressions.
2210e5804a6SSilviu Baranga       ScStart = SE->getUMinExpr(ScStart, ScEnd);
2220e5804a6SSilviu Baranga       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
2230e5804a6SSilviu Baranga     }
2243622fbfcSElena Demikhovsky     // Add the size of the pointed element to ScEnd.
2253622fbfcSElena Demikhovsky     unsigned EltSize =
2263622fbfcSElena Demikhovsky       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
2273622fbfcSElena Demikhovsky     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
2283622fbfcSElena Demikhovsky     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
229279784ffSAdam Nemet   }
2300e5804a6SSilviu Baranga 
2310e5804a6SSilviu Baranga   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
2321b6b50a9SSilviu Baranga }
2331b6b50a9SSilviu Baranga 
234bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4>
23538530887SAdam Nemet RuntimePointerChecking::generateChecks() const {
236bbe1f1deSAdam Nemet   SmallVector<PointerCheck, 4> Checks;
237bbe1f1deSAdam Nemet 
2387c52e052SAdam Nemet   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
2397c52e052SAdam Nemet     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
2407c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
2417c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
242bbe1f1deSAdam Nemet 
24338530887SAdam Nemet       if (needsChecking(CGI, CGJ))
244bbe1f1deSAdam Nemet         Checks.push_back(std::make_pair(&CGI, &CGJ));
245bbe1f1deSAdam Nemet     }
246bbe1f1deSAdam Nemet   }
247bbe1f1deSAdam Nemet   return Checks;
248bbe1f1deSAdam Nemet }
249bbe1f1deSAdam Nemet 
25015840393SAdam Nemet void RuntimePointerChecking::generateChecks(
25115840393SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
25215840393SAdam Nemet   assert(Checks.empty() && "Checks is not empty");
25315840393SAdam Nemet   groupChecks(DepCands, UseDependencies);
25415840393SAdam Nemet   Checks = generateChecks();
25515840393SAdam Nemet }
25615840393SAdam Nemet 
257651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
258651a5a24SAdam Nemet                                            const CheckingPtrGroup &N) const {
2591b6b50a9SSilviu Baranga   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
2601b6b50a9SSilviu Baranga     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
261651a5a24SAdam Nemet       if (needsChecking(M.Members[I], N.Members[J]))
2621b6b50a9SSilviu Baranga         return true;
2631b6b50a9SSilviu Baranga   return false;
2641b6b50a9SSilviu Baranga }
2651b6b50a9SSilviu Baranga 
2661b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum.
2671b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer.
2681b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
2691b6b50a9SSilviu Baranga                                    ScalarEvolution *SE) {
2701b6b50a9SSilviu Baranga   const SCEV *Diff = SE->getMinusSCEV(J, I);
2711b6b50a9SSilviu Baranga   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
2721b6b50a9SSilviu Baranga 
2731b6b50a9SSilviu Baranga   if (!C)
2741b6b50a9SSilviu Baranga     return nullptr;
2751b6b50a9SSilviu Baranga   if (C->getValue()->isNegative())
2761b6b50a9SSilviu Baranga     return J;
2771b6b50a9SSilviu Baranga   return I;
2781b6b50a9SSilviu Baranga }
2791b6b50a9SSilviu Baranga 
2807cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
2819f7dedc3SAdam Nemet   const SCEV *Start = RtCheck.Pointers[Index].Start;
2829f7dedc3SAdam Nemet   const SCEV *End = RtCheck.Pointers[Index].End;
2839f7dedc3SAdam Nemet 
2841b6b50a9SSilviu Baranga   // Compare the starts and ends with the known minimum and maximum
2851b6b50a9SSilviu Baranga   // of this set. We need to know how we compare against the min/max
2861b6b50a9SSilviu Baranga   // of the set in order to be able to emit memchecks.
2879f7dedc3SAdam Nemet   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
2881b6b50a9SSilviu Baranga   if (!Min0)
2891b6b50a9SSilviu Baranga     return false;
2901b6b50a9SSilviu Baranga 
2919f7dedc3SAdam Nemet   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
2921b6b50a9SSilviu Baranga   if (!Min1)
2931b6b50a9SSilviu Baranga     return false;
2941b6b50a9SSilviu Baranga 
2951b6b50a9SSilviu Baranga   // Update the low bound  expression if we've found a new min value.
2969f7dedc3SAdam Nemet   if (Min0 == Start)
2979f7dedc3SAdam Nemet     Low = Start;
2981b6b50a9SSilviu Baranga 
2991b6b50a9SSilviu Baranga   // Update the high bound expression if we've found a new max value.
3009f7dedc3SAdam Nemet   if (Min1 != End)
3019f7dedc3SAdam Nemet     High = End;
3021b6b50a9SSilviu Baranga 
3031b6b50a9SSilviu Baranga   Members.push_back(Index);
3041b6b50a9SSilviu Baranga   return true;
3051b6b50a9SSilviu Baranga }
3061b6b50a9SSilviu Baranga 
3077cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks(
3087cdebac0SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
3091b6b50a9SSilviu Baranga   // We build the groups from dependency candidates equivalence classes
3101b6b50a9SSilviu Baranga   // because:
3111b6b50a9SSilviu Baranga   //    - We know that pointers in the same equivalence class share
3121b6b50a9SSilviu Baranga   //      the same underlying object and therefore there is a chance
3131b6b50a9SSilviu Baranga   //      that we can compare pointers
3141b6b50a9SSilviu Baranga   //    - We wouldn't be able to merge two pointers for which we need
3151b6b50a9SSilviu Baranga   //      to emit a memcheck. The classes in DepCands are already
3161b6b50a9SSilviu Baranga   //      conveniently built such that no two pointers in the same
3171b6b50a9SSilviu Baranga   //      class need checking against each other.
3181b6b50a9SSilviu Baranga 
3191b6b50a9SSilviu Baranga   // We use the following (greedy) algorithm to construct the groups
3201b6b50a9SSilviu Baranga   // For every pointer in the equivalence class:
3211b6b50a9SSilviu Baranga   //   For each existing group:
3221b6b50a9SSilviu Baranga   //   - if the difference between this pointer and the min/max bounds
3231b6b50a9SSilviu Baranga   //     of the group is a constant, then make the pointer part of the
3241b6b50a9SSilviu Baranga   //     group and update the min/max bounds of that group as required.
3251b6b50a9SSilviu Baranga 
3261b6b50a9SSilviu Baranga   CheckingGroups.clear();
3271b6b50a9SSilviu Baranga 
32848250600SSilviu Baranga   // If we need to check two pointers to the same underlying object
32948250600SSilviu Baranga   // with a non-constant difference, we shouldn't perform any pointer
33048250600SSilviu Baranga   // grouping with those pointers. This is because we can easily get
33148250600SSilviu Baranga   // into cases where the resulting check would return false, even when
33248250600SSilviu Baranga   // the accesses are safe.
33348250600SSilviu Baranga   //
33448250600SSilviu Baranga   // The following example shows this:
33548250600SSilviu Baranga   // for (i = 0; i < 1000; ++i)
33648250600SSilviu Baranga   //   a[5000 + i * m] = a[i] + a[i + 9000]
33748250600SSilviu Baranga   //
33848250600SSilviu Baranga   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
33948250600SSilviu Baranga   // (0, 10000) which is always false. However, if m is 1, there is no
34048250600SSilviu Baranga   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
34148250600SSilviu Baranga   // us to perform an accurate check in this case.
34248250600SSilviu Baranga   //
34348250600SSilviu Baranga   // The above case requires that we have an UnknownDependence between
34448250600SSilviu Baranga   // accesses to the same underlying object. This cannot happen unless
34548250600SSilviu Baranga   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
34648250600SSilviu Baranga   // is also false. In this case we will use the fallback path and create
34748250600SSilviu Baranga   // separate checking groups for all pointers.
34848250600SSilviu Baranga 
3491b6b50a9SSilviu Baranga   // If we don't have the dependency partitions, construct a new
35048250600SSilviu Baranga   // checking pointer group for each pointer. This is also required
35148250600SSilviu Baranga   // for correctness, because in this case we can have checking between
35248250600SSilviu Baranga   // pointers to the same underlying object.
3531b6b50a9SSilviu Baranga   if (!UseDependencies) {
3541b6b50a9SSilviu Baranga     for (unsigned I = 0; I < Pointers.size(); ++I)
3551b6b50a9SSilviu Baranga       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
3561b6b50a9SSilviu Baranga     return;
3571b6b50a9SSilviu Baranga   }
3581b6b50a9SSilviu Baranga 
3591b6b50a9SSilviu Baranga   unsigned TotalComparisons = 0;
3601b6b50a9SSilviu Baranga 
3611b6b50a9SSilviu Baranga   DenseMap<Value *, unsigned> PositionMap;
3629f7dedc3SAdam Nemet   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
3639f7dedc3SAdam Nemet     PositionMap[Pointers[Index].PointerValue] = Index;
3641b6b50a9SSilviu Baranga 
365ce3877fcSSilviu Baranga   // We need to keep track of what pointers we've already seen so we
366ce3877fcSSilviu Baranga   // don't process them twice.
367ce3877fcSSilviu Baranga   SmallSet<unsigned, 2> Seen;
368ce3877fcSSilviu Baranga 
369e4b9f507SSanjay Patel   // Go through all equivalence classes, get the "pointer check groups"
370ce3877fcSSilviu Baranga   // and add them to the overall solution. We use the order in which accesses
371ce3877fcSSilviu Baranga   // appear in 'Pointers' to enforce determinism.
372ce3877fcSSilviu Baranga   for (unsigned I = 0; I < Pointers.size(); ++I) {
373ce3877fcSSilviu Baranga     // We've seen this pointer before, and therefore already processed
374ce3877fcSSilviu Baranga     // its equivalence class.
375ce3877fcSSilviu Baranga     if (Seen.count(I))
3761b6b50a9SSilviu Baranga       continue;
3771b6b50a9SSilviu Baranga 
3789f7dedc3SAdam Nemet     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
3799f7dedc3SAdam Nemet                                            Pointers[I].IsWritePtr);
3801b6b50a9SSilviu Baranga 
381ce3877fcSSilviu Baranga     SmallVector<CheckingPtrGroup, 2> Groups;
382ce3877fcSSilviu Baranga     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
383ce3877fcSSilviu Baranga 
384a647c30fSSilviu Baranga     // Because DepCands is constructed by visiting accesses in the order in
385a647c30fSSilviu Baranga     // which they appear in alias sets (which is deterministic) and the
386a647c30fSSilviu Baranga     // iteration order within an equivalence class member is only dependent on
387a647c30fSSilviu Baranga     // the order in which unions and insertions are performed on the
388a647c30fSSilviu Baranga     // equivalence class, the iteration order is deterministic.
389ce3877fcSSilviu Baranga     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
3901b6b50a9SSilviu Baranga          MI != ME; ++MI) {
3911b6b50a9SSilviu Baranga       unsigned Pointer = PositionMap[MI->getPointer()];
3921b6b50a9SSilviu Baranga       bool Merged = false;
393ce3877fcSSilviu Baranga       // Mark this pointer as seen.
394ce3877fcSSilviu Baranga       Seen.insert(Pointer);
3951b6b50a9SSilviu Baranga 
3961b6b50a9SSilviu Baranga       // Go through all the existing sets and see if we can find one
3971b6b50a9SSilviu Baranga       // which can include this pointer.
3981b6b50a9SSilviu Baranga       for (CheckingPtrGroup &Group : Groups) {
3991b6b50a9SSilviu Baranga         // Don't perform more than a certain amount of comparisons.
4001b6b50a9SSilviu Baranga         // This should limit the cost of grouping the pointers to something
4011b6b50a9SSilviu Baranga         // reasonable.  If we do end up hitting this threshold, the algorithm
4021b6b50a9SSilviu Baranga         // will create separate groups for all remaining pointers.
4031b6b50a9SSilviu Baranga         if (TotalComparisons > MemoryCheckMergeThreshold)
4041b6b50a9SSilviu Baranga           break;
4051b6b50a9SSilviu Baranga 
4061b6b50a9SSilviu Baranga         TotalComparisons++;
4071b6b50a9SSilviu Baranga 
4081b6b50a9SSilviu Baranga         if (Group.addPointer(Pointer)) {
4091b6b50a9SSilviu Baranga           Merged = true;
4101b6b50a9SSilviu Baranga           break;
4111b6b50a9SSilviu Baranga         }
4121b6b50a9SSilviu Baranga       }
4131b6b50a9SSilviu Baranga 
4141b6b50a9SSilviu Baranga       if (!Merged)
4151b6b50a9SSilviu Baranga         // We couldn't add this pointer to any existing set or the threshold
4161b6b50a9SSilviu Baranga         // for the number of comparisons has been reached. Create a new group
4171b6b50a9SSilviu Baranga         // to hold the current pointer.
4181b6b50a9SSilviu Baranga         Groups.push_back(CheckingPtrGroup(Pointer, *this));
4191b6b50a9SSilviu Baranga     }
4201b6b50a9SSilviu Baranga 
4211b6b50a9SSilviu Baranga     // We've computed the grouped checks for this partition.
4221b6b50a9SSilviu Baranga     // Save the results and continue with the next one.
4231b6b50a9SSilviu Baranga     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
4241b6b50a9SSilviu Baranga   }
4250456327cSAdam Nemet }
4260456327cSAdam Nemet 
427041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition(
428041e6debSAdam Nemet     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
429041e6debSAdam Nemet     unsigned PtrIdx2) {
430041e6debSAdam Nemet   return (PtrToPartition[PtrIdx1] != -1 &&
431041e6debSAdam Nemet           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
432041e6debSAdam Nemet }
433041e6debSAdam Nemet 
434651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
4359f7dedc3SAdam Nemet   const PointerInfo &PointerI = Pointers[I];
4369f7dedc3SAdam Nemet   const PointerInfo &PointerJ = Pointers[J];
4379f7dedc3SAdam Nemet 
438a8945b77SAdam Nemet   // No need to check if two readonly pointers intersect.
4399f7dedc3SAdam Nemet   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
440a8945b77SAdam Nemet     return false;
441a8945b77SAdam Nemet 
442a8945b77SAdam Nemet   // Only need to check pointers between two different dependency sets.
4439f7dedc3SAdam Nemet   if (PointerI.DependencySetId == PointerJ.DependencySetId)
444a8945b77SAdam Nemet     return false;
445a8945b77SAdam Nemet 
446a8945b77SAdam Nemet   // Only need to check pointers in the same alias set.
4479f7dedc3SAdam Nemet   if (PointerI.AliasSetId != PointerJ.AliasSetId)
448a8945b77SAdam Nemet     return false;
449a8945b77SAdam Nemet 
450a8945b77SAdam Nemet   return true;
451a8945b77SAdam Nemet }
452a8945b77SAdam Nemet 
45354f0b83eSAdam Nemet void RuntimePointerChecking::printChecks(
45454f0b83eSAdam Nemet     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
45554f0b83eSAdam Nemet     unsigned Depth) const {
45654f0b83eSAdam Nemet   unsigned N = 0;
45754f0b83eSAdam Nemet   for (const auto &Check : Checks) {
45854f0b83eSAdam Nemet     const auto &First = Check.first->Members, &Second = Check.second->Members;
45954f0b83eSAdam Nemet 
46054f0b83eSAdam Nemet     OS.indent(Depth) << "Check " << N++ << ":\n";
46154f0b83eSAdam Nemet 
46254f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
46354f0b83eSAdam Nemet     for (unsigned K = 0; K < First.size(); ++K)
46454f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
46554f0b83eSAdam Nemet 
46654f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
46754f0b83eSAdam Nemet     for (unsigned K = 0; K < Second.size(); ++K)
46854f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
46954f0b83eSAdam Nemet   }
47054f0b83eSAdam Nemet }
47154f0b83eSAdam Nemet 
4723a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
473e91cc6efSAdam Nemet 
474e91cc6efSAdam Nemet   OS.indent(Depth) << "Run-time memory checks:\n";
47515840393SAdam Nemet   printChecks(OS, Checks, Depth);
4761b6b50a9SSilviu Baranga 
4771b6b50a9SSilviu Baranga   OS.indent(Depth) << "Grouped accesses:\n";
4781b6b50a9SSilviu Baranga   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
47954f0b83eSAdam Nemet     const auto &CG = CheckingGroups[I];
48054f0b83eSAdam Nemet 
48154f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
48254f0b83eSAdam Nemet     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
48354f0b83eSAdam Nemet                          << ")\n";
48454f0b83eSAdam Nemet     for (unsigned J = 0; J < CG.Members.size(); ++J) {
48554f0b83eSAdam Nemet       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
4861b6b50a9SSilviu Baranga                            << "\n";
4871b6b50a9SSilviu Baranga     }
488e91cc6efSAdam Nemet   }
489e91cc6efSAdam Nemet }
490e91cc6efSAdam Nemet 
4910456327cSAdam Nemet namespace {
492a3fe70d2SEugene Zelenko 
4935f8f34e4SAdrian Prantl /// Analyses memory accesses in a loop.
4940456327cSAdam Nemet ///
4950456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data
4960456327cSAdam Nemet /// dependence checking.
4970456327cSAdam Nemet class AccessAnalysis {
4980456327cSAdam Nemet public:
4995f8f34e4SAdrian Prantl   /// Read or write access location.
5000456327cSAdam Nemet   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
5015448e989SAmjad Aboud   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
5020456327cSAdam Nemet 
50377eeac3dSManoj Gupta   AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
50477eeac3dSManoj Gupta                  LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
5059cd9a7e3SSilviu Baranga                  PredicatedScalarEvolution &PSE)
50677eeac3dSManoj Gupta       : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
50777eeac3dSManoj Gupta         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
5080456327cSAdam Nemet 
5095f8f34e4SAdrian Prantl   /// Register a load  and whether it is only read from.
510ac80dc75SChandler Carruth   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
5110456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
512*6ef8002cSGeorge Burgess IV     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
5130456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, false));
5140456327cSAdam Nemet     if (IsReadOnly)
5150456327cSAdam Nemet       ReadOnlyPtr.insert(Ptr);
5160456327cSAdam Nemet   }
5170456327cSAdam Nemet 
5185f8f34e4SAdrian Prantl   /// Register a store.
519ac80dc75SChandler Carruth   void addStore(MemoryLocation &Loc) {
5200456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
521*6ef8002cSGeorge Burgess IV     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
5220456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, true));
5230456327cSAdam Nemet   }
5240456327cSAdam Nemet 
5255f8f34e4SAdrian Prantl   /// Check if we can emit a run-time no-alias check for \p Access.
526ac920f77SSilviu Baranga   ///
527ac920f77SSilviu Baranga   /// Returns true if we can emit a run-time no alias check for \p Access.
528ac920f77SSilviu Baranga   /// If we can check this access, this also adds it to a dependence set and
529ac920f77SSilviu Baranga   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
530ac920f77SSilviu Baranga   /// we will attempt to use additional run-time checks in order to get
531ac920f77SSilviu Baranga   /// the bounds of the pointer.
532ac920f77SSilviu Baranga   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
533ac920f77SSilviu Baranga                             MemAccessInfo Access,
534ac920f77SSilviu Baranga                             const ValueToValueMap &Strides,
535ac920f77SSilviu Baranga                             DenseMap<Value *, unsigned> &DepSetId,
536ac920f77SSilviu Baranga                             Loop *TheLoop, unsigned &RunningDepId,
537ac920f77SSilviu Baranga                             unsigned ASId, bool ShouldCheckStride,
538ac920f77SSilviu Baranga                             bool Assume);
539ac920f77SSilviu Baranga 
5405f8f34e4SAdrian Prantl   /// Check whether we can check the pointers at runtime for
541ee61474aSAdam Nemet   /// non-intersection.
542ee61474aSAdam Nemet   ///
543ee61474aSAdam Nemet   /// Returns true if we need no check or if we do and we can generate them
544ee61474aSAdam Nemet   /// (i.e. the pointers have computable bounds).
5457cdebac0SAdam Nemet   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
5467cdebac0SAdam Nemet                        Loop *TheLoop, const ValueToValueMap &Strides,
5479f02c586SAndrey Turetskiy                        bool ShouldCheckWrap = false);
5480456327cSAdam Nemet 
5495f8f34e4SAdrian Prantl   /// Goes over all memory accesses, checks whether a RT check is needed
5500456327cSAdam Nemet   /// and builds sets of dependent accesses.
5510456327cSAdam Nemet   void buildDependenceSets() {
5520456327cSAdam Nemet     processMemAccesses();
5530456327cSAdam Nemet   }
5540456327cSAdam Nemet 
5555f8f34e4SAdrian Prantl   /// Initial processing of memory accesses determined that we need to
5565dc3b2cfSAdam Nemet   /// perform dependency checking.
5575dc3b2cfSAdam Nemet   ///
5585dc3b2cfSAdam Nemet   /// Note that this can later be cleared if we retry memcheck analysis without
5595dc3b2cfSAdam Nemet   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
5600456327cSAdam Nemet   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
561df3dc5b9SAdam Nemet 
562df3dc5b9SAdam Nemet   /// We decided that no dependence analysis would be used.  Reset the state.
563df3dc5b9SAdam Nemet   void resetDepChecks(MemoryDepChecker &DepChecker) {
564df3dc5b9SAdam Nemet     CheckDeps.clear();
565a2df750fSAdam Nemet     DepChecker.clearDependences();
566df3dc5b9SAdam Nemet   }
5670456327cSAdam Nemet 
5685448e989SAmjad Aboud   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
5690456327cSAdam Nemet 
5700456327cSAdam Nemet private:
5710456327cSAdam Nemet   typedef SetVector<MemAccessInfo> PtrAccessSet;
5720456327cSAdam Nemet 
5735f8f34e4SAdrian Prantl   /// Go over all memory access and check whether runtime pointer checks
574b41d2d3fSAdam Nemet   /// are needed and build sets of dependency check candidates.
5750456327cSAdam Nemet   void processMemAccesses();
5760456327cSAdam Nemet 
5770456327cSAdam Nemet   /// Set of all accesses.
5780456327cSAdam Nemet   PtrAccessSet Accesses;
5790456327cSAdam Nemet 
580a28d91d8SMehdi Amini   const DataLayout &DL;
581a28d91d8SMehdi Amini 
58277eeac3dSManoj Gupta   /// The loop being checked.
58377eeac3dSManoj Gupta   const Loop *TheLoop;
58477eeac3dSManoj Gupta 
5855448e989SAmjad Aboud   /// List of accesses that need a further dependence check.
5865448e989SAmjad Aboud   MemAccessInfoList CheckDeps;
5870456327cSAdam Nemet 
5880456327cSAdam Nemet   /// Set of pointers that are read only.
5890456327cSAdam Nemet   SmallPtrSet<Value*, 16> ReadOnlyPtr;
5900456327cSAdam Nemet 
5910456327cSAdam Nemet   /// An alias set tracker to partition the access set by underlying object and
5920456327cSAdam Nemet   //intrinsic property (such as TBAA metadata).
5930456327cSAdam Nemet   AliasSetTracker AST;
5940456327cSAdam Nemet 
595e2b885c4SAdam Nemet   LoopInfo *LI;
596e2b885c4SAdam Nemet 
5970456327cSAdam Nemet   /// Sets of potentially dependent accesses - members of one set share an
5980456327cSAdam Nemet   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
5990456327cSAdam Nemet   /// dependence check.
600dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates &DepCands;
6010456327cSAdam Nemet 
6025f8f34e4SAdrian Prantl   /// Initial processing of memory accesses determined that we may need
6035dc3b2cfSAdam Nemet   /// to add memchecks.  Perform the analysis to determine the necessary checks.
6045dc3b2cfSAdam Nemet   ///
6055dc3b2cfSAdam Nemet   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
6065dc3b2cfSAdam Nemet   /// memcheck analysis without dependency checking
6075dc3b2cfSAdam Nemet   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
6085dc3b2cfSAdam Nemet   /// while this remains set if we have potentially dependent accesses.
6095dc3b2cfSAdam Nemet   bool IsRTCheckAnalysisNeeded;
610e3c0534bSSilviu Baranga 
611e3c0534bSSilviu Baranga   /// The SCEV predicate containing all the SCEV-related assumptions.
6129cd9a7e3SSilviu Baranga   PredicatedScalarEvolution &PSE;
6130456327cSAdam Nemet };
6140456327cSAdam Nemet 
6150456327cSAdam Nemet } // end anonymous namespace
6160456327cSAdam Nemet 
6175f8f34e4SAdrian Prantl /// Check whether a pointer can participate in a runtime bounds check.
618ac920f77SSilviu Baranga /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
619ac920f77SSilviu Baranga /// by adding run-time checks (overflow checks) if necessary.
6209cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
621e3c0534bSSilviu Baranga                                 const ValueToValueMap &Strides, Value *Ptr,
622ac920f77SSilviu Baranga                                 Loop *L, bool Assume) {
6239cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
624279784ffSAdam Nemet 
625279784ffSAdam Nemet   // The bounds for loop-invariant pointer is trivial.
626279784ffSAdam Nemet   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627279784ffSAdam Nemet     return true;
628279784ffSAdam Nemet 
6290456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630ac920f77SSilviu Baranga 
631ac920f77SSilviu Baranga   if (!AR && Assume)
632ac920f77SSilviu Baranga     AR = PSE.getAsAddRec(Ptr);
633ac920f77SSilviu Baranga 
6340456327cSAdam Nemet   if (!AR)
6350456327cSAdam Nemet     return false;
6360456327cSAdam Nemet 
6370456327cSAdam Nemet   return AR->isAffine();
6380456327cSAdam Nemet }
6390456327cSAdam Nemet 
6405f8f34e4SAdrian Prantl /// Check whether a pointer address cannot wrap.
6419f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE,
6429f02c586SAndrey Turetskiy                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
6439f02c586SAndrey Turetskiy   const SCEV *PtrScev = PSE.getSCEV(Ptr);
6449f02c586SAndrey Turetskiy   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
6459f02c586SAndrey Turetskiy     return true;
6469f02c586SAndrey Turetskiy 
6477afb46d3SDavid Majnemer   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
648ac920f77SSilviu Baranga   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
649ac920f77SSilviu Baranga     return true;
650ac920f77SSilviu Baranga 
651ac920f77SSilviu Baranga   return false;
652ac920f77SSilviu Baranga }
653ac920f77SSilviu Baranga 
654ac920f77SSilviu Baranga bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
655ac920f77SSilviu Baranga                                           MemAccessInfo Access,
656ac920f77SSilviu Baranga                                           const ValueToValueMap &StridesMap,
657ac920f77SSilviu Baranga                                           DenseMap<Value *, unsigned> &DepSetId,
658ac920f77SSilviu Baranga                                           Loop *TheLoop, unsigned &RunningDepId,
659ac920f77SSilviu Baranga                                           unsigned ASId, bool ShouldCheckWrap,
660ac920f77SSilviu Baranga                                           bool Assume) {
661ac920f77SSilviu Baranga   Value *Ptr = Access.getPointer();
662ac920f77SSilviu Baranga 
663ac920f77SSilviu Baranga   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
664ac920f77SSilviu Baranga     return false;
665ac920f77SSilviu Baranga 
666ac920f77SSilviu Baranga   // When we run after a failing dependency check we have to make sure
667ac920f77SSilviu Baranga   // we don't have wrapping pointers.
668ac920f77SSilviu Baranga   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
669ac920f77SSilviu Baranga     auto *Expr = PSE.getSCEV(Ptr);
670ac920f77SSilviu Baranga     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
671ac920f77SSilviu Baranga       return false;
672ac920f77SSilviu Baranga     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
673ac920f77SSilviu Baranga   }
674ac920f77SSilviu Baranga 
675ac920f77SSilviu Baranga   // The id of the dependence set.
676ac920f77SSilviu Baranga   unsigned DepId;
677ac920f77SSilviu Baranga 
678ac920f77SSilviu Baranga   if (isDependencyCheckNeeded()) {
679ac920f77SSilviu Baranga     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
680ac920f77SSilviu Baranga     unsigned &LeaderId = DepSetId[Leader];
681ac920f77SSilviu Baranga     if (!LeaderId)
682ac920f77SSilviu Baranga       LeaderId = RunningDepId++;
683ac920f77SSilviu Baranga     DepId = LeaderId;
684ac920f77SSilviu Baranga   } else
685ac920f77SSilviu Baranga     // Each access has its own dependence set.
686ac920f77SSilviu Baranga     DepId = RunningDepId++;
687ac920f77SSilviu Baranga 
688ac920f77SSilviu Baranga   bool IsWrite = Access.getInt();
689ac920f77SSilviu Baranga   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
690d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
691ac920f77SSilviu Baranga 
692ac920f77SSilviu Baranga   return true;
6939f02c586SAndrey Turetskiy  }
6949f02c586SAndrey Turetskiy 
6957cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
6967cdebac0SAdam Nemet                                      ScalarEvolution *SE, Loop *TheLoop,
6977cdebac0SAdam Nemet                                      const ValueToValueMap &StridesMap,
6989f02c586SAndrey Turetskiy                                      bool ShouldCheckWrap) {
6990456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
7000456327cSAdam Nemet   // to place a runtime bound check.
7010456327cSAdam Nemet   bool CanDoRT = true;
7020456327cSAdam Nemet 
703ee61474aSAdam Nemet   bool NeedRTCheck = false;
7045dc3b2cfSAdam Nemet   if (!IsRTCheckAnalysisNeeded) return true;
70598a13719SSilviu Baranga 
7060456327cSAdam Nemet   bool IsDepCheckNeeded = isDependencyCheckNeeded();
7070456327cSAdam Nemet 
7080456327cSAdam Nemet   // We assign a consecutive id to access from different alias sets.
7090456327cSAdam Nemet   // Accesses between different groups doesn't need to be checked.
7100456327cSAdam Nemet   unsigned ASId = 1;
7110456327cSAdam Nemet   for (auto &AS : AST) {
712424edc6cSAdam Nemet     int NumReadPtrChecks = 0;
713424edc6cSAdam Nemet     int NumWritePtrChecks = 0;
714ac920f77SSilviu Baranga     bool CanDoAliasSetRT = true;
715424edc6cSAdam Nemet 
7160456327cSAdam Nemet     // We assign consecutive id to access from different dependence sets.
7170456327cSAdam Nemet     // Accesses within the same set don't need a runtime check.
7180456327cSAdam Nemet     unsigned RunningDepId = 1;
7190456327cSAdam Nemet     DenseMap<Value *, unsigned> DepSetId;
7200456327cSAdam Nemet 
721ac920f77SSilviu Baranga     SmallVector<MemAccessInfo, 4> Retries;
722ac920f77SSilviu Baranga 
7230456327cSAdam Nemet     for (auto A : AS) {
7240456327cSAdam Nemet       Value *Ptr = A.getValue();
7250456327cSAdam Nemet       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
7260456327cSAdam Nemet       MemAccessInfo Access(Ptr, IsWrite);
7270456327cSAdam Nemet 
728424edc6cSAdam Nemet       if (IsWrite)
729424edc6cSAdam Nemet         ++NumWritePtrChecks;
730424edc6cSAdam Nemet       else
731424edc6cSAdam Nemet         ++NumReadPtrChecks;
732424edc6cSAdam Nemet 
733ac920f77SSilviu Baranga       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
734ac920f77SSilviu Baranga                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
735d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
736ac920f77SSilviu Baranga         Retries.push_back(Access);
737ac920f77SSilviu Baranga         CanDoAliasSetRT = false;
7380456327cSAdam Nemet       }
7390456327cSAdam Nemet     }
7400456327cSAdam Nemet 
741424edc6cSAdam Nemet     // If we have at least two writes or one write and a read then we need to
742424edc6cSAdam Nemet     // check them.  But there is no need to checks if there is only one
743424edc6cSAdam Nemet     // dependence set for this alias set.
744424edc6cSAdam Nemet     //
745424edc6cSAdam Nemet     // Note that this function computes CanDoRT and NeedRTCheck independently.
746424edc6cSAdam Nemet     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
747424edc6cSAdam Nemet     // for which we couldn't find the bounds but we don't actually need to emit
748424edc6cSAdam Nemet     // any checks so it does not matter.
749ac920f77SSilviu Baranga     bool NeedsAliasSetRTCheck = false;
750ac920f77SSilviu Baranga     if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
751ac920f77SSilviu Baranga       NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
752ac920f77SSilviu Baranga                              (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
753424edc6cSAdam Nemet 
754ac920f77SSilviu Baranga     // We need to perform run-time alias checks, but some pointers had bounds
755ac920f77SSilviu Baranga     // that couldn't be checked.
756ac920f77SSilviu Baranga     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
757ac920f77SSilviu Baranga       // Reset the CanDoSetRt flag and retry all accesses that have failed.
758ac920f77SSilviu Baranga       // We know that we need these checks, so we can now be more aggressive
759ac920f77SSilviu Baranga       // and add further checks if required (overflow checks).
760ac920f77SSilviu Baranga       CanDoAliasSetRT = true;
761ac920f77SSilviu Baranga       for (auto Access : Retries)
762ac920f77SSilviu Baranga         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
763ac920f77SSilviu Baranga                                   TheLoop, RunningDepId, ASId,
764ac920f77SSilviu Baranga                                   ShouldCheckWrap, /*Assume=*/true)) {
765ac920f77SSilviu Baranga           CanDoAliasSetRT = false;
766ac920f77SSilviu Baranga           break;
767ac920f77SSilviu Baranga         }
768ac920f77SSilviu Baranga     }
769ac920f77SSilviu Baranga 
770ac920f77SSilviu Baranga     CanDoRT &= CanDoAliasSetRT;
771ac920f77SSilviu Baranga     NeedRTCheck |= NeedsAliasSetRTCheck;
7720456327cSAdam Nemet     ++ASId;
7730456327cSAdam Nemet   }
7740456327cSAdam Nemet 
7750456327cSAdam Nemet   // If the pointers that we would use for the bounds comparison have different
7760456327cSAdam Nemet   // address spaces, assume the values aren't directly comparable, so we can't
7770456327cSAdam Nemet   // use them for the runtime check. We also have to assume they could
7780456327cSAdam Nemet   // overlap. In the future there should be metadata for whether address spaces
7790456327cSAdam Nemet   // are disjoint.
7800456327cSAdam Nemet   unsigned NumPointers = RtCheck.Pointers.size();
7810456327cSAdam Nemet   for (unsigned i = 0; i < NumPointers; ++i) {
7820456327cSAdam Nemet     for (unsigned j = i + 1; j < NumPointers; ++j) {
7830456327cSAdam Nemet       // Only need to check pointers between two different dependency sets.
7849f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].DependencySetId ==
7859f7dedc3SAdam Nemet           RtCheck.Pointers[j].DependencySetId)
7860456327cSAdam Nemet        continue;
7870456327cSAdam Nemet       // Only need to check pointers in the same alias set.
7889f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
7890456327cSAdam Nemet         continue;
7900456327cSAdam Nemet 
7919f7dedc3SAdam Nemet       Value *PtrI = RtCheck.Pointers[i].PointerValue;
7929f7dedc3SAdam Nemet       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
7930456327cSAdam Nemet 
7940456327cSAdam Nemet       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
7950456327cSAdam Nemet       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
7960456327cSAdam Nemet       if (ASi != ASj) {
797d34e60caSNicola Zaghen         LLVM_DEBUG(
798d34e60caSNicola Zaghen             dbgs() << "LAA: Runtime check would require comparison between"
7990456327cSAdam Nemet                       " different address spaces\n");
8000456327cSAdam Nemet         return false;
8010456327cSAdam Nemet       }
8020456327cSAdam Nemet     }
8030456327cSAdam Nemet   }
8040456327cSAdam Nemet 
8051b6b50a9SSilviu Baranga   if (NeedRTCheck && CanDoRT)
80615840393SAdam Nemet     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
8071b6b50a9SSilviu Baranga 
808d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
809ee61474aSAdam Nemet                     << " pointer comparisons.\n");
810ee61474aSAdam Nemet 
811ee61474aSAdam Nemet   RtCheck.Need = NeedRTCheck;
812ee61474aSAdam Nemet 
813ee61474aSAdam Nemet   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
814ee61474aSAdam Nemet   if (!CanDoRTIfNeeded)
815ee61474aSAdam Nemet     RtCheck.reset();
816ee61474aSAdam Nemet   return CanDoRTIfNeeded;
8170456327cSAdam Nemet }
8180456327cSAdam Nemet 
8190456327cSAdam Nemet void AccessAnalysis::processMemAccesses() {
8200456327cSAdam Nemet   // We process the set twice: first we process read-write pointers, last we
8210456327cSAdam Nemet   // process read-only pointers. This allows us to skip dependence tests for
8220456327cSAdam Nemet   // read-only pointers.
8230456327cSAdam Nemet 
824d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
825d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
826d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
827d34e60caSNicola Zaghen   LLVM_DEBUG({
8280456327cSAdam Nemet     for (auto A : Accesses)
8290456327cSAdam Nemet       dbgs() << "\t" << *A.getPointer() << " (" <<
8300456327cSAdam Nemet                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
8310456327cSAdam Nemet                                          "read-only" : "read")) << ")\n";
8320456327cSAdam Nemet   });
8330456327cSAdam Nemet 
8340456327cSAdam Nemet   // The AliasSetTracker has nicely partitioned our pointers by metadata
8350456327cSAdam Nemet   // compatibility and potential for underlying-object overlap. As a result, we
8360456327cSAdam Nemet   // only need to check for potential pointer dependencies within each alias
8370456327cSAdam Nemet   // set.
8380456327cSAdam Nemet   for (auto &AS : AST) {
8390456327cSAdam Nemet     // Note that both the alias-set tracker and the alias sets themselves used
8400456327cSAdam Nemet     // linked lists internally and so the iteration order here is deterministic
8410456327cSAdam Nemet     // (matching the original instruction order within each set).
8420456327cSAdam Nemet 
8430456327cSAdam Nemet     bool SetHasWrite = false;
8440456327cSAdam Nemet 
8450456327cSAdam Nemet     // Map of pointers to last access encountered.
8460456327cSAdam Nemet     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
8470456327cSAdam Nemet     UnderlyingObjToAccessMap ObjToLastAccess;
8480456327cSAdam Nemet 
8490456327cSAdam Nemet     // Set of access to check after all writes have been processed.
8500456327cSAdam Nemet     PtrAccessSet DeferredAccesses;
8510456327cSAdam Nemet 
8520456327cSAdam Nemet     // Iterate over each alias set twice, once to process read/write pointers,
8530456327cSAdam Nemet     // and then to process read-only pointers.
8540456327cSAdam Nemet     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
8550456327cSAdam Nemet       bool UseDeferred = SetIteration > 0;
8560456327cSAdam Nemet       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
8570456327cSAdam Nemet 
8580456327cSAdam Nemet       for (auto AV : AS) {
8590456327cSAdam Nemet         Value *Ptr = AV.getValue();
8600456327cSAdam Nemet 
8610456327cSAdam Nemet         // For a single memory access in AliasSetTracker, Accesses may contain
8620456327cSAdam Nemet         // both read and write, and they both need to be handled for CheckDeps.
8630456327cSAdam Nemet         for (auto AC : S) {
8640456327cSAdam Nemet           if (AC.getPointer() != Ptr)
8650456327cSAdam Nemet             continue;
8660456327cSAdam Nemet 
8670456327cSAdam Nemet           bool IsWrite = AC.getInt();
8680456327cSAdam Nemet 
8690456327cSAdam Nemet           // If we're using the deferred access set, then it contains only
8700456327cSAdam Nemet           // reads.
8710456327cSAdam Nemet           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
8720456327cSAdam Nemet           if (UseDeferred && !IsReadOnlyPtr)
8730456327cSAdam Nemet             continue;
8740456327cSAdam Nemet           // Otherwise, the pointer must be in the PtrAccessSet, either as a
8750456327cSAdam Nemet           // read or a write.
8760456327cSAdam Nemet           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
8770456327cSAdam Nemet                   S.count(MemAccessInfo(Ptr, false))) &&
8780456327cSAdam Nemet                  "Alias-set pointer not in the access set?");
8790456327cSAdam Nemet 
8800456327cSAdam Nemet           MemAccessInfo Access(Ptr, IsWrite);
8810456327cSAdam Nemet           DepCands.insert(Access);
8820456327cSAdam Nemet 
8830456327cSAdam Nemet           // Memorize read-only pointers for later processing and skip them in
8840456327cSAdam Nemet           // the first round (they need to be checked after we have seen all
8850456327cSAdam Nemet           // write pointers). Note: we also mark pointer that are not
8860456327cSAdam Nemet           // consecutive as "read-only" pointers (so that we check
8870456327cSAdam Nemet           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
8880456327cSAdam Nemet           if (!UseDeferred && IsReadOnlyPtr) {
8890456327cSAdam Nemet             DeferredAccesses.insert(Access);
8900456327cSAdam Nemet             continue;
8910456327cSAdam Nemet           }
8920456327cSAdam Nemet 
8930456327cSAdam Nemet           // If this is a write - check other reads and writes for conflicts. If
8940456327cSAdam Nemet           // this is a read only check other writes for conflicts (but only if
8950456327cSAdam Nemet           // there is no other write to the ptr - this is an optimization to
8960456327cSAdam Nemet           // catch "a[i] = a[i] + " without having to do a dependence check).
8970456327cSAdam Nemet           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
8985448e989SAmjad Aboud             CheckDeps.push_back(Access);
8995dc3b2cfSAdam Nemet             IsRTCheckAnalysisNeeded = true;
9000456327cSAdam Nemet           }
9010456327cSAdam Nemet 
9020456327cSAdam Nemet           if (IsWrite)
9030456327cSAdam Nemet             SetHasWrite = true;
9040456327cSAdam Nemet 
9050456327cSAdam Nemet           // Create sets of pointers connected by a shared alias set and
9060456327cSAdam Nemet           // underlying object.
9070456327cSAdam Nemet           typedef SmallVector<Value *, 16> ValueVector;
9080456327cSAdam Nemet           ValueVector TempObjects;
909e2b885c4SAdam Nemet 
910e2b885c4SAdam Nemet           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
911d34e60caSNicola Zaghen           LLVM_DEBUG(dbgs()
912d34e60caSNicola Zaghen                      << "Underlying objects for pointer " << *Ptr << "\n");
9130456327cSAdam Nemet           for (Value *UnderlyingObj : TempObjects) {
914afd13519SMehdi Amini             // nullptr never alias, don't join sets for pointer that have "null"
915afd13519SMehdi Amini             // in their UnderlyingObjects list.
91677eeac3dSManoj Gupta             if (isa<ConstantPointerNull>(UnderlyingObj) &&
91777eeac3dSManoj Gupta                 !NullPointerIsDefined(
91877eeac3dSManoj Gupta                     TheLoop->getHeader()->getParent(),
91977eeac3dSManoj Gupta                     UnderlyingObj->getType()->getPointerAddressSpace()))
920afd13519SMehdi Amini               continue;
921afd13519SMehdi Amini 
9220456327cSAdam Nemet             UnderlyingObjToAccessMap::iterator Prev =
9230456327cSAdam Nemet                 ObjToLastAccess.find(UnderlyingObj);
9240456327cSAdam Nemet             if (Prev != ObjToLastAccess.end())
9250456327cSAdam Nemet               DepCands.unionSets(Access, Prev->second);
9260456327cSAdam Nemet 
9270456327cSAdam Nemet             ObjToLastAccess[UnderlyingObj] = Access;
928d34e60caSNicola Zaghen             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
9290456327cSAdam Nemet           }
9300456327cSAdam Nemet         }
9310456327cSAdam Nemet       }
9320456327cSAdam Nemet     }
9330456327cSAdam Nemet   }
9340456327cSAdam Nemet }
9350456327cSAdam Nemet 
9360456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) {
9370456327cSAdam Nemet   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
9380456327cSAdam Nemet     return GEP->isInBounds();
9390456327cSAdam Nemet   return false;
9400456327cSAdam Nemet }
9410456327cSAdam Nemet 
9425f8f34e4SAdrian Prantl /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
943c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing.
944c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
945ea63a7f5SSilviu Baranga                            PredicatedScalarEvolution &PSE, const Loop *L) {
946c4866d29SAdam Nemet   // FIXME: This should probably only return true for NUW.
947c4866d29SAdam Nemet   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
948c4866d29SAdam Nemet     return true;
949c4866d29SAdam Nemet 
950c4866d29SAdam Nemet   // Scalar evolution does not propagate the non-wrapping flags to values that
951c4866d29SAdam Nemet   // are derived from a non-wrapping induction variable because non-wrapping
952c4866d29SAdam Nemet   // could be flow-sensitive.
953c4866d29SAdam Nemet   //
954c4866d29SAdam Nemet   // Look through the potentially overflowing instruction to try to prove
955c4866d29SAdam Nemet   // non-wrapping for the *specific* value of Ptr.
956c4866d29SAdam Nemet 
957c4866d29SAdam Nemet   // The arithmetic implied by an inbounds GEP can't overflow.
958c4866d29SAdam Nemet   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
959c4866d29SAdam Nemet   if (!GEP || !GEP->isInBounds())
960c4866d29SAdam Nemet     return false;
961c4866d29SAdam Nemet 
962c4866d29SAdam Nemet   // Make sure there is only one non-const index and analyze that.
963c4866d29SAdam Nemet   Value *NonConstIndex = nullptr;
9648b401013SDavid Majnemer   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
9658b401013SDavid Majnemer     if (!isa<ConstantInt>(Index)) {
966c4866d29SAdam Nemet       if (NonConstIndex)
967c4866d29SAdam Nemet         return false;
9688b401013SDavid Majnemer       NonConstIndex = Index;
969c4866d29SAdam Nemet     }
970c4866d29SAdam Nemet   if (!NonConstIndex)
971c4866d29SAdam Nemet     // The recurrence is on the pointer, ignore for now.
972c4866d29SAdam Nemet     return false;
973c4866d29SAdam Nemet 
974c4866d29SAdam Nemet   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
975c4866d29SAdam Nemet   // AddRec using a NSW operation.
976c4866d29SAdam Nemet   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
977c4866d29SAdam Nemet     if (OBO->hasNoSignedWrap() &&
978c4866d29SAdam Nemet         // Assume constant for other the operand so that the AddRec can be
979c4866d29SAdam Nemet         // easily found.
980c4866d29SAdam Nemet         isa<ConstantInt>(OBO->getOperand(1))) {
981ea63a7f5SSilviu Baranga       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
982c4866d29SAdam Nemet 
983c4866d29SAdam Nemet       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
984c4866d29SAdam Nemet         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
985c4866d29SAdam Nemet     }
986c4866d29SAdam Nemet 
987c4866d29SAdam Nemet   return false;
988c4866d29SAdam Nemet }
989c4866d29SAdam Nemet 
9905f8f34e4SAdrian Prantl /// Check whether the access through \p Ptr has a constant stride.
9917afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
992ea63a7f5SSilviu Baranga                            const Loop *Lp, const ValueToValueMap &StridesMap,
9935f8cc0c3SElena Demikhovsky                            bool Assume, bool ShouldCheckWrap) {
994e3dcce97SCraig Topper   Type *Ty = Ptr->getType();
9950456327cSAdam Nemet   assert(Ty->isPointerTy() && "Unexpected non-ptr");
9960456327cSAdam Nemet 
9970456327cSAdam Nemet   // Make sure that the pointer does not point to aggregate types.
998e3dcce97SCraig Topper   auto *PtrTy = cast<PointerType>(Ty);
9990456327cSAdam Nemet   if (PtrTy->getElementType()->isAggregateType()) {
1000d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1001d34e60caSNicola Zaghen                       << *Ptr << "\n");
10020456327cSAdam Nemet     return 0;
10030456327cSAdam Nemet   }
10040456327cSAdam Nemet 
10059cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
10060456327cSAdam Nemet 
10070456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1008ea63a7f5SSilviu Baranga   if (Assume && !AR)
1009d68ed854SSilviu Baranga     AR = PSE.getAsAddRec(Ptr);
1010ea63a7f5SSilviu Baranga 
10110456327cSAdam Nemet   if (!AR) {
1012d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1013ea63a7f5SSilviu Baranga                       << " SCEV: " << *PtrScev << "\n");
10140456327cSAdam Nemet     return 0;
10150456327cSAdam Nemet   }
10160456327cSAdam Nemet 
10170456327cSAdam Nemet   // The accesss function must stride over the innermost loop.
10180456327cSAdam Nemet   if (Lp != AR->getLoop()) {
1019d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1020d34e60caSNicola Zaghen                       << *Ptr << " SCEV: " << *AR << "\n");
1021a02ce98bSKyle Butt     return 0;
10220456327cSAdam Nemet   }
10230456327cSAdam Nemet 
10240456327cSAdam Nemet   // The address calculation must not wrap. Otherwise, a dependence could be
10250456327cSAdam Nemet   // inverted.
10260456327cSAdam Nemet   // An inbounds getelementptr that is a AddRec with a unit stride
10270456327cSAdam Nemet   // cannot wrap per definition. The unit stride requirement is checked later.
10280456327cSAdam Nemet   // An getelementptr without an inbounds attribute and unit stride would have
10290456327cSAdam Nemet   // to access the pointer value "0" which is undefined behavior in address
10300456327cSAdam Nemet   // space 0, therefore we can also vectorize this case.
10310456327cSAdam Nemet   bool IsInBoundsGEP = isInBoundsGep(Ptr);
10325f8cc0c3SElena Demikhovsky   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1033ea63a7f5SSilviu Baranga     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1034ea63a7f5SSilviu Baranga     isNoWrapAddRec(Ptr, AR, PSE, Lp);
103577eeac3dSManoj Gupta   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
103677eeac3dSManoj Gupta       NullPointerIsDefined(Lp->getHeader()->getParent(),
103777eeac3dSManoj Gupta                            PtrTy->getAddressSpace())) {
1038ea63a7f5SSilviu Baranga     if (Assume) {
1039ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1040ea63a7f5SSilviu Baranga       IsNoWrapAddRec = true;
1041d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1042ea63a7f5SSilviu Baranga                         << "LAA:   Pointer: " << *Ptr << "\n"
1043ea63a7f5SSilviu Baranga                         << "LAA:   SCEV: " << *AR << "\n"
1044ea63a7f5SSilviu Baranga                         << "LAA:   Added an overflow assumption\n");
1045ea63a7f5SSilviu Baranga     } else {
1046d34e60caSNicola Zaghen       LLVM_DEBUG(
1047d34e60caSNicola Zaghen           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1048ea63a7f5SSilviu Baranga                  << *Ptr << " SCEV: " << *AR << "\n");
10490456327cSAdam Nemet       return 0;
10500456327cSAdam Nemet     }
1051ea63a7f5SSilviu Baranga   }
10520456327cSAdam Nemet 
10530456327cSAdam Nemet   // Check the step is constant.
10549cd9a7e3SSilviu Baranga   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
10550456327cSAdam Nemet 
1056943befedSAdam Nemet   // Calculate the pointer stride and check if it is constant.
10570456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
10580456327cSAdam Nemet   if (!C) {
1059d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1060d34e60caSNicola Zaghen                       << " SCEV: " << *AR << "\n");
10610456327cSAdam Nemet     return 0;
10620456327cSAdam Nemet   }
10630456327cSAdam Nemet 
1064a28d91d8SMehdi Amini   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1065a28d91d8SMehdi Amini   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
10660de2feceSSanjoy Das   const APInt &APStepVal = C->getAPInt();
10670456327cSAdam Nemet 
10680456327cSAdam Nemet   // Huge step value - give up.
10690456327cSAdam Nemet   if (APStepVal.getBitWidth() > 64)
10700456327cSAdam Nemet     return 0;
10710456327cSAdam Nemet 
10720456327cSAdam Nemet   int64_t StepVal = APStepVal.getSExtValue();
10730456327cSAdam Nemet 
10740456327cSAdam Nemet   // Strided access.
10750456327cSAdam Nemet   int64_t Stride = StepVal / Size;
10760456327cSAdam Nemet   int64_t Rem = StepVal % Size;
10770456327cSAdam Nemet   if (Rem)
10780456327cSAdam Nemet     return 0;
10790456327cSAdam Nemet 
10800456327cSAdam Nemet   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
10810456327cSAdam Nemet   // know we can't "wrap around the address space". In case of address space
10820456327cSAdam Nemet   // zero we know that this won't happen without triggering undefined behavior.
108377eeac3dSManoj Gupta   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
108477eeac3dSManoj Gupta       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
108577eeac3dSManoj Gupta                                               PtrTy->getAddressSpace()))) {
1086ea63a7f5SSilviu Baranga     if (Assume) {
1087ea63a7f5SSilviu Baranga       // We can avoid this case by adding a run-time check.
1088d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1089ea63a7f5SSilviu Baranga                         << "inbouds or in address space 0 may wrap:\n"
1090ea63a7f5SSilviu Baranga                         << "LAA:   Pointer: " << *Ptr << "\n"
1091ea63a7f5SSilviu Baranga                         << "LAA:   SCEV: " << *AR << "\n"
1092ea63a7f5SSilviu Baranga                         << "LAA:   Added an overflow assumption\n");
1093ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1094ea63a7f5SSilviu Baranga     } else
10950456327cSAdam Nemet       return 0;
1096ea63a7f5SSilviu Baranga   }
10970456327cSAdam Nemet 
10980456327cSAdam Nemet   return Stride;
10990456327cSAdam Nemet }
11000456327cSAdam Nemet 
1101428e9d9dSAlexey Bataev bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1102428e9d9dSAlexey Bataev                            ScalarEvolution &SE,
1103428e9d9dSAlexey Bataev                            SmallVectorImpl<unsigned> &SortedIndices) {
1104428e9d9dSAlexey Bataev   assert(llvm::all_of(
1105428e9d9dSAlexey Bataev              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1106428e9d9dSAlexey Bataev          "Expected list of pointer operands.");
1107428e9d9dSAlexey Bataev   SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1108428e9d9dSAlexey Bataev   OffValPairs.reserve(VL.size());
1109428e9d9dSAlexey Bataev 
1110428e9d9dSAlexey Bataev   // Walk over the pointers, and map each of them to an offset relative to
1111428e9d9dSAlexey Bataev   // first pointer in the array.
1112428e9d9dSAlexey Bataev   Value *Ptr0 = VL[0];
1113428e9d9dSAlexey Bataev   const SCEV *Scev0 = SE.getSCEV(Ptr0);
1114428e9d9dSAlexey Bataev   Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1115428e9d9dSAlexey Bataev 
1116428e9d9dSAlexey Bataev   llvm::SmallSet<int64_t, 4> Offsets;
1117428e9d9dSAlexey Bataev   for (auto *Ptr : VL) {
1118428e9d9dSAlexey Bataev     // TODO: Outline this code as a special, more time consuming, version of
1119428e9d9dSAlexey Bataev     // computeConstantDifference() function.
1120428e9d9dSAlexey Bataev     if (Ptr->getType()->getPointerAddressSpace() !=
1121428e9d9dSAlexey Bataev         Ptr0->getType()->getPointerAddressSpace())
1122428e9d9dSAlexey Bataev       return false;
1123428e9d9dSAlexey Bataev     // If a pointer refers to a different underlying object, bail - the
1124428e9d9dSAlexey Bataev     // pointers are by definition incomparable.
1125428e9d9dSAlexey Bataev     Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1126428e9d9dSAlexey Bataev     if (CurrObj != Obj0)
1127428e9d9dSAlexey Bataev       return false;
1128428e9d9dSAlexey Bataev 
1129428e9d9dSAlexey Bataev     const SCEV *Scev = SE.getSCEV(Ptr);
1130428e9d9dSAlexey Bataev     const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1131428e9d9dSAlexey Bataev     // The pointers may not have a constant offset from each other, or SCEV
1132428e9d9dSAlexey Bataev     // may just not be smart enough to figure out they do. Regardless,
1133428e9d9dSAlexey Bataev     // there's nothing we can do.
1134428e9d9dSAlexey Bataev     if (!Diff)
1135428e9d9dSAlexey Bataev       return false;
1136428e9d9dSAlexey Bataev 
1137428e9d9dSAlexey Bataev     // Check if the pointer with the same offset is found.
1138428e9d9dSAlexey Bataev     int64_t Offset = Diff->getAPInt().getSExtValue();
1139428e9d9dSAlexey Bataev     if (!Offsets.insert(Offset).second)
1140428e9d9dSAlexey Bataev       return false;
1141428e9d9dSAlexey Bataev     OffValPairs.emplace_back(Offset, Ptr);
1142428e9d9dSAlexey Bataev   }
1143428e9d9dSAlexey Bataev   SortedIndices.clear();
1144428e9d9dSAlexey Bataev   SortedIndices.resize(VL.size());
1145428e9d9dSAlexey Bataev   std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1146428e9d9dSAlexey Bataev 
1147428e9d9dSAlexey Bataev   // Sort the memory accesses and keep the order of their uses in UseOrder.
1148428e9d9dSAlexey Bataev   std::stable_sort(SortedIndices.begin(), SortedIndices.end(),
1149428e9d9dSAlexey Bataev                    [&OffValPairs](unsigned Left, unsigned Right) {
1150428e9d9dSAlexey Bataev                      return OffValPairs[Left].first < OffValPairs[Right].first;
1151428e9d9dSAlexey Bataev                    });
1152428e9d9dSAlexey Bataev 
1153428e9d9dSAlexey Bataev   // Check if the order is consecutive already.
1154428e9d9dSAlexey Bataev   if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1155428e9d9dSAlexey Bataev         return I == SortedIndices[I];
1156428e9d9dSAlexey Bataev       }))
1157428e9d9dSAlexey Bataev     SortedIndices.clear();
1158428e9d9dSAlexey Bataev 
1159428e9d9dSAlexey Bataev   return true;
1160428e9d9dSAlexey Bataev }
1161428e9d9dSAlexey Bataev 
1162f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction.
1163f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction.
1164f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) {
1165f1c00a22SHaicheng Wu   if (LoadInst *L = dyn_cast<LoadInst>(I))
1166f1c00a22SHaicheng Wu     return L->getPointerAddressSpace();
1167f1c00a22SHaicheng Wu   if (StoreInst *S = dyn_cast<StoreInst>(I))
1168f1c00a22SHaicheng Wu     return S->getPointerAddressSpace();
1169f1c00a22SHaicheng Wu   return -1;
1170f1c00a22SHaicheng Wu }
1171f1c00a22SHaicheng Wu 
1172f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive.
1173f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1174f1c00a22SHaicheng Wu                                ScalarEvolution &SE, bool CheckType) {
1175038ede2aSRenato Golin   Value *PtrA = getLoadStorePointerOperand(A);
1176038ede2aSRenato Golin   Value *PtrB = getLoadStorePointerOperand(B);
1177f1c00a22SHaicheng Wu   unsigned ASA = getAddressSpaceOperand(A);
1178f1c00a22SHaicheng Wu   unsigned ASB = getAddressSpaceOperand(B);
1179f1c00a22SHaicheng Wu 
1180f1c00a22SHaicheng Wu   // Check that the address spaces match and that the pointers are valid.
1181f1c00a22SHaicheng Wu   if (!PtrA || !PtrB || (ASA != ASB))
1182f1c00a22SHaicheng Wu     return false;
1183f1c00a22SHaicheng Wu 
1184f1c00a22SHaicheng Wu   // Make sure that A and B are different pointers.
1185f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1186f1c00a22SHaicheng Wu     return false;
1187f1c00a22SHaicheng Wu 
1188f1c00a22SHaicheng Wu   // Make sure that A and B have the same type if required.
1189f1c00a22SHaicheng Wu   if (CheckType && PtrA->getType() != PtrB->getType())
1190f1c00a22SHaicheng Wu     return false;
1191f1c00a22SHaicheng Wu 
1192945b7e5aSElena Demikhovsky   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1193f1c00a22SHaicheng Wu   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1194945b7e5aSElena Demikhovsky   APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
1195f1c00a22SHaicheng Wu 
1196945b7e5aSElena Demikhovsky   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1197f1c00a22SHaicheng Wu   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1198f1c00a22SHaicheng Wu   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1199f1c00a22SHaicheng Wu 
1200f1c00a22SHaicheng Wu   //  OffsetDelta = OffsetB - OffsetA;
1201f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1202f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1203f1c00a22SHaicheng Wu   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1204f1c00a22SHaicheng Wu   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1205f1c00a22SHaicheng Wu   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1206f1c00a22SHaicheng Wu   // Check if they are based on the same pointer. That makes the offsets
1207f1c00a22SHaicheng Wu   // sufficient.
1208f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1209f1c00a22SHaicheng Wu     return OffsetDelta == Size;
1210f1c00a22SHaicheng Wu 
1211f1c00a22SHaicheng Wu   // Compute the necessary base pointer delta to have the necessary final delta
1212f1c00a22SHaicheng Wu   // equal to the size.
1213f1c00a22SHaicheng Wu   // BaseDelta = Size - OffsetDelta;
1214f1c00a22SHaicheng Wu   const SCEV *SizeSCEV = SE.getConstant(Size);
1215f1c00a22SHaicheng Wu   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1216f1c00a22SHaicheng Wu 
1217f1c00a22SHaicheng Wu   // Otherwise compute the distance with SCEV between the base pointers.
1218f1c00a22SHaicheng Wu   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1219f1c00a22SHaicheng Wu   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1220f1c00a22SHaicheng Wu   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1221f1c00a22SHaicheng Wu   return X == PtrSCEVB;
1222f1c00a22SHaicheng Wu }
1223f1c00a22SHaicheng Wu 
12249c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
12259c926579SAdam Nemet   switch (Type) {
12269c926579SAdam Nemet   case NoDep:
12279c926579SAdam Nemet   case Forward:
12289c926579SAdam Nemet   case BackwardVectorizable:
12299c926579SAdam Nemet     return true;
12309c926579SAdam Nemet 
12319c926579SAdam Nemet   case Unknown:
12329c926579SAdam Nemet   case ForwardButPreventsForwarding:
12339c926579SAdam Nemet   case Backward:
12349c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
12359c926579SAdam Nemet     return false;
12369c926579SAdam Nemet   }
1237d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
12389c926579SAdam Nemet }
12399c926579SAdam Nemet 
1240397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const {
12419c926579SAdam Nemet   switch (Type) {
12429c926579SAdam Nemet   case NoDep:
12439c926579SAdam Nemet   case Forward:
12449c926579SAdam Nemet   case ForwardButPreventsForwarding:
1245397f5829SAdam Nemet   case Unknown:
12469c926579SAdam Nemet     return false;
12479c926579SAdam Nemet 
12489c926579SAdam Nemet   case BackwardVectorizable:
12499c926579SAdam Nemet   case Backward:
12509c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
12519c926579SAdam Nemet     return true;
12529c926579SAdam Nemet   }
1253d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
12549c926579SAdam Nemet }
12559c926579SAdam Nemet 
1256397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1257397f5829SAdam Nemet   return isBackward() || Type == Unknown;
1258397f5829SAdam Nemet }
1259397f5829SAdam Nemet 
1260397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const {
1261397f5829SAdam Nemet   switch (Type) {
1262397f5829SAdam Nemet   case Forward:
1263397f5829SAdam Nemet   case ForwardButPreventsForwarding:
1264397f5829SAdam Nemet     return true;
1265397f5829SAdam Nemet 
1266397f5829SAdam Nemet   case NoDep:
1267397f5829SAdam Nemet   case Unknown:
1268397f5829SAdam Nemet   case BackwardVectorizable:
1269397f5829SAdam Nemet   case Backward:
1270397f5829SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
1271397f5829SAdam Nemet     return false;
1272397f5829SAdam Nemet   }
1273397f5829SAdam Nemet   llvm_unreachable("unexpected DepType!");
1274397f5829SAdam Nemet }
1275397f5829SAdam Nemet 
12767afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
12777afb46d3SDavid Majnemer                                                     uint64_t TypeByteSize) {
12780456327cSAdam Nemet   // If loads occur at a distance that is not a multiple of a feasible vector
12790456327cSAdam Nemet   // factor store-load forwarding does not take place.
12800456327cSAdam Nemet   // Positive dependences might cause troubles because vectorizing them might
12810456327cSAdam Nemet   // prevent store-load forwarding making vectorized code run a lot slower.
12820456327cSAdam Nemet   //   a[i] = a[i-3] ^ a[i-8];
12830456327cSAdam Nemet   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
12840456327cSAdam Nemet   //   hence on your typical architecture store-load forwarding does not take
12850456327cSAdam Nemet   //   place. Vectorizing in such cases does not make sense.
12860456327cSAdam Nemet   // Store-load forwarding distance.
1287884d313bSAdam Nemet 
1288884d313bSAdam Nemet   // After this many iterations store-to-load forwarding conflicts should not
1289884d313bSAdam Nemet   // cause any slowdowns.
12907afb46d3SDavid Majnemer   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
12910456327cSAdam Nemet   // Maximum vector factor.
12927afb46d3SDavid Majnemer   uint64_t MaxVFWithoutSLForwardIssues = std::min(
12932c34ab51SAdam Nemet       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
12940456327cSAdam Nemet 
1295884d313bSAdam Nemet   // Compute the smallest VF at which the store and load would be misaligned.
12967afb46d3SDavid Majnemer   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
12979b5852aeSAdam Nemet        VF *= 2) {
1298884d313bSAdam Nemet     // If the number of vector iteration between the store and the load are
1299884d313bSAdam Nemet     // small we could incur conflicts.
1300884d313bSAdam Nemet     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
13019b5852aeSAdam Nemet       MaxVFWithoutSLForwardIssues = (VF >>= 1);
13020456327cSAdam Nemet       break;
13030456327cSAdam Nemet     }
13040456327cSAdam Nemet   }
13050456327cSAdam Nemet 
13060456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1307d34e60caSNicola Zaghen     LLVM_DEBUG(
1308d34e60caSNicola Zaghen         dbgs() << "LAA: Distance " << Distance
13099b5852aeSAdam Nemet                << " that could cause a store-load forwarding conflict\n");
13100456327cSAdam Nemet     return true;
13110456327cSAdam Nemet   }
13120456327cSAdam Nemet 
13130456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1314f219c647SAdam Nemet       MaxVFWithoutSLForwardIssues !=
1315f219c647SAdam Nemet           VectorizerParams::MaxVectorWidth * TypeByteSize)
13160456327cSAdam Nemet     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
13170456327cSAdam Nemet   return false;
13180456327cSAdam Nemet }
13190456327cSAdam Nemet 
1320eac89d73SDorit Nuzman /// Given a non-constant (unknown) dependence-distance \p Dist between two
1321eac89d73SDorit Nuzman /// memory accesses, that have the same stride whose absolute value is given
1322eac89d73SDorit Nuzman /// in \p Stride, and that have the same type size \p TypeByteSize,
1323eac89d73SDorit Nuzman /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1324eac89d73SDorit Nuzman /// possible to prove statically that the dependence distance is larger
1325eac89d73SDorit Nuzman /// than the range that the accesses will travel through the execution of
1326eac89d73SDorit Nuzman /// the loop. If so, return true; false otherwise. This is useful for
1327eac89d73SDorit Nuzman /// example in loops such as the following (PR31098):
1328eac89d73SDorit Nuzman ///     for (i = 0; i < D; ++i) {
1329eac89d73SDorit Nuzman ///                = out[i];
1330eac89d73SDorit Nuzman ///       out[i+D] =
1331eac89d73SDorit Nuzman ///     }
1332eac89d73SDorit Nuzman static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1333eac89d73SDorit Nuzman                                      const SCEV &BackedgeTakenCount,
1334eac89d73SDorit Nuzman                                      const SCEV &Dist, uint64_t Stride,
1335eac89d73SDorit Nuzman                                      uint64_t TypeByteSize) {
1336eac89d73SDorit Nuzman 
1337eac89d73SDorit Nuzman   // If we can prove that
1338eac89d73SDorit Nuzman   //      (**) |Dist| > BackedgeTakenCount * Step
1339eac89d73SDorit Nuzman   // where Step is the absolute stride of the memory accesses in bytes,
1340eac89d73SDorit Nuzman   // then there is no dependence.
1341eac89d73SDorit Nuzman   //
1342eac89d73SDorit Nuzman   // Ratioanle:
1343eac89d73SDorit Nuzman   // We basically want to check if the absolute distance (|Dist/Step|)
1344eac89d73SDorit Nuzman   // is >= the loop iteration count (or > BackedgeTakenCount).
1345eac89d73SDorit Nuzman   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1346eac89d73SDorit Nuzman   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1347eac89d73SDorit Nuzman   // that the dependence distance is >= VF; This is checked elsewhere.
1348eac89d73SDorit Nuzman   // But in some cases we can prune unknown dependence distances early, and
1349eac89d73SDorit Nuzman   // even before selecting the VF, and without a runtime test, by comparing
1350eac89d73SDorit Nuzman   // the distance against the loop iteration count. Since the vectorized code
1351eac89d73SDorit Nuzman   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1352eac89d73SDorit Nuzman   // also guarantees that distance >= VF.
1353eac89d73SDorit Nuzman   //
1354eac89d73SDorit Nuzman   const uint64_t ByteStride = Stride * TypeByteSize;
1355eac89d73SDorit Nuzman   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1356eac89d73SDorit Nuzman   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1357eac89d73SDorit Nuzman 
1358eac89d73SDorit Nuzman   const SCEV *CastedDist = &Dist;
1359eac89d73SDorit Nuzman   const SCEV *CastedProduct = Product;
1360eac89d73SDorit Nuzman   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1361eac89d73SDorit Nuzman   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1362eac89d73SDorit Nuzman 
1363eac89d73SDorit Nuzman   // The dependence distance can be positive/negative, so we sign extend Dist;
1364eac89d73SDorit Nuzman   // The multiplication of the absolute stride in bytes and the
1365eac89d73SDorit Nuzman   // backdgeTakenCount is non-negative, so we zero extend Product.
1366eac89d73SDorit Nuzman   if (DistTypeSize > ProductTypeSize)
1367eac89d73SDorit Nuzman     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1368eac89d73SDorit Nuzman   else
1369eac89d73SDorit Nuzman     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1370eac89d73SDorit Nuzman 
1371eac89d73SDorit Nuzman   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1372eac89d73SDorit Nuzman   // (If so, then we have proven (**) because |Dist| >= Dist)
1373eac89d73SDorit Nuzman   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1374eac89d73SDorit Nuzman   if (SE.isKnownPositive(Minus))
1375eac89d73SDorit Nuzman     return true;
1376eac89d73SDorit Nuzman 
1377eac89d73SDorit Nuzman   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1378eac89d73SDorit Nuzman   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1379eac89d73SDorit Nuzman   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1380eac89d73SDorit Nuzman   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1381eac89d73SDorit Nuzman   if (SE.isKnownPositive(Minus))
1382eac89d73SDorit Nuzman     return true;
1383eac89d73SDorit Nuzman 
1384eac89d73SDorit Nuzman   return false;
1385eac89d73SDorit Nuzman }
1386eac89d73SDorit Nuzman 
13875f8f34e4SAdrian Prantl /// Check the dependence for two accesses with the same stride \p Stride.
1388751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in
1389751004a6SHao Liu /// bytes.
1390751004a6SHao Liu ///
1391751004a6SHao Liu /// \returns true if they are independent.
13927afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
13937afb46d3SDavid Majnemer                                           uint64_t TypeByteSize) {
1394751004a6SHao Liu   assert(Stride > 1 && "The stride must be greater than 1");
1395751004a6SHao Liu   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1396751004a6SHao Liu   assert(Distance > 0 && "The distance must be non-zero");
1397751004a6SHao Liu 
1398751004a6SHao Liu   // Skip if the distance is not multiple of type byte size.
1399751004a6SHao Liu   if (Distance % TypeByteSize)
1400751004a6SHao Liu     return false;
1401751004a6SHao Liu 
14027afb46d3SDavid Majnemer   uint64_t ScaledDist = Distance / TypeByteSize;
1403751004a6SHao Liu 
1404751004a6SHao Liu   // No dependence if the scaled distance is not multiple of the stride.
1405751004a6SHao Liu   // E.g.
1406751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 4)
1407751004a6SHao Liu   //        A[i+2] = A[i] + 1;
1408751004a6SHao Liu   //
1409751004a6SHao Liu   // Two accesses in memory (scaled distance is 2, stride is 4):
1410751004a6SHao Liu   //     | A[0] |      |      |      | A[4] |      |      |      |
1411751004a6SHao Liu   //     |      |      | A[2] |      |      |      | A[6] |      |
1412751004a6SHao Liu   //
1413751004a6SHao Liu   // E.g.
1414751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 3)
1415751004a6SHao Liu   //        A[i+4] = A[i] + 1;
1416751004a6SHao Liu   //
1417751004a6SHao Liu   // Two accesses in memory (scaled distance is 4, stride is 3):
1418751004a6SHao Liu   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1419751004a6SHao Liu   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1420751004a6SHao Liu   return ScaledDist % Stride;
1421751004a6SHao Liu }
1422751004a6SHao Liu 
14239c926579SAdam Nemet MemoryDepChecker::Dependence::DepType
14249c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
14250456327cSAdam Nemet                               const MemAccessInfo &B, unsigned BIdx,
14268bc61df9SAdam Nemet                               const ValueToValueMap &Strides) {
14270456327cSAdam Nemet   assert (AIdx < BIdx && "Must pass arguments in program order");
14280456327cSAdam Nemet 
14290456327cSAdam Nemet   Value *APtr = A.getPointer();
14300456327cSAdam Nemet   Value *BPtr = B.getPointer();
14310456327cSAdam Nemet   bool AIsWrite = A.getInt();
14320456327cSAdam Nemet   bool BIsWrite = B.getInt();
14330456327cSAdam Nemet 
14340456327cSAdam Nemet   // Two reads are independent.
14350456327cSAdam Nemet   if (!AIsWrite && !BIsWrite)
14369c926579SAdam Nemet     return Dependence::NoDep;
14370456327cSAdam Nemet 
14380456327cSAdam Nemet   // We cannot check pointers in different address spaces.
14390456327cSAdam Nemet   if (APtr->getType()->getPointerAddressSpace() !=
14400456327cSAdam Nemet       BPtr->getType()->getPointerAddressSpace())
14419c926579SAdam Nemet     return Dependence::Unknown;
14420456327cSAdam Nemet 
14437afb46d3SDavid Majnemer   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
14447afb46d3SDavid Majnemer   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
14450456327cSAdam Nemet 
1446adf4b739SSilviu Baranga   const SCEV *Src = PSE.getSCEV(APtr);
1447adf4b739SSilviu Baranga   const SCEV *Sink = PSE.getSCEV(BPtr);
14480456327cSAdam Nemet 
14490456327cSAdam Nemet   // If the induction step is negative we have to invert source and sink of the
14500456327cSAdam Nemet   // dependence.
14510456327cSAdam Nemet   if (StrideAPtr < 0) {
14520456327cSAdam Nemet     std::swap(APtr, BPtr);
14530456327cSAdam Nemet     std::swap(Src, Sink);
14540456327cSAdam Nemet     std::swap(AIsWrite, BIsWrite);
14550456327cSAdam Nemet     std::swap(AIdx, BIdx);
14560456327cSAdam Nemet     std::swap(StrideAPtr, StrideBPtr);
14570456327cSAdam Nemet   }
14580456327cSAdam Nemet 
14599cd9a7e3SSilviu Baranga   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
14600456327cSAdam Nemet 
1461d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
14620456327cSAdam Nemet                     << "(Induction step: " << StrideAPtr << ")\n");
1463d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
14640456327cSAdam Nemet                     << *InstMap[BIdx] << ": " << *Dist << "\n");
14650456327cSAdam Nemet 
1466943befedSAdam Nemet   // Need accesses with constant stride. We don't want to vectorize
14670456327cSAdam Nemet   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
14680456327cSAdam Nemet   // the address space.
14690456327cSAdam Nemet   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1470d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
14719c926579SAdam Nemet     return Dependence::Unknown;
14720456327cSAdam Nemet   }
14730456327cSAdam Nemet 
1474eac89d73SDorit Nuzman   Type *ATy = APtr->getType()->getPointerElementType();
1475eac89d73SDorit Nuzman   Type *BTy = BPtr->getType()->getPointerElementType();
1476eac89d73SDorit Nuzman   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1477eac89d73SDorit Nuzman   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1478eac89d73SDorit Nuzman   uint64_t Stride = std::abs(StrideAPtr);
14790456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
14800456327cSAdam Nemet   if (!C) {
1481eac89d73SDorit Nuzman     if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1482eac89d73SDorit Nuzman         isSafeDependenceDistance(DL, *(PSE.getSE()),
1483eac89d73SDorit Nuzman                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1484eac89d73SDorit Nuzman                                  TypeByteSize))
1485eac89d73SDorit Nuzman       return Dependence::NoDep;
1486eac89d73SDorit Nuzman 
1487d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
14880456327cSAdam Nemet     ShouldRetryWithRuntimeCheck = true;
14899c926579SAdam Nemet     return Dependence::Unknown;
14900456327cSAdam Nemet   }
14910456327cSAdam Nemet 
14920de2feceSSanjoy Das   const APInt &Val = C->getAPInt();
14936feebe98SMatthew Simpson   int64_t Distance = Val.getSExtValue();
14946feebe98SMatthew Simpson 
14956feebe98SMatthew Simpson   // Attempt to prove strided accesses independent.
14966feebe98SMatthew Simpson   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
14976feebe98SMatthew Simpson       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1498d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
14996feebe98SMatthew Simpson     return Dependence::NoDep;
15006feebe98SMatthew Simpson   }
15016feebe98SMatthew Simpson 
15026feebe98SMatthew Simpson   // Negative distances are not plausible dependencies.
15030456327cSAdam Nemet   if (Val.isNegative()) {
15040456327cSAdam Nemet     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
150537ec5f91SMatthew Simpson     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
15060456327cSAdam Nemet         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1507b8486e5aSAdam Nemet          ATy != BTy)) {
1508d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
15099c926579SAdam Nemet       return Dependence::ForwardButPreventsForwarding;
1510b8486e5aSAdam Nemet     }
15110456327cSAdam Nemet 
1512d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
15139c926579SAdam Nemet     return Dependence::Forward;
15140456327cSAdam Nemet   }
15150456327cSAdam Nemet 
15160456327cSAdam Nemet   // Write to the same location with the same size.
15170456327cSAdam Nemet   // Could be improved to assert type sizes are the same (i32 == float, etc).
15180456327cSAdam Nemet   if (Val == 0) {
15190456327cSAdam Nemet     if (ATy == BTy)
1520d7037c56SAdam Nemet       return Dependence::Forward;
1521d34e60caSNicola Zaghen     LLVM_DEBUG(
1522d34e60caSNicola Zaghen         dbgs() << "LAA: Zero dependence difference but different types\n");
15239c926579SAdam Nemet     return Dependence::Unknown;
15240456327cSAdam Nemet   }
15250456327cSAdam Nemet 
15260456327cSAdam Nemet   assert(Val.isStrictlyPositive() && "Expect a positive value");
15270456327cSAdam Nemet 
15280456327cSAdam Nemet   if (ATy != BTy) {
1529d34e60caSNicola Zaghen     LLVM_DEBUG(
1530d34e60caSNicola Zaghen         dbgs()
1531d34e60caSNicola Zaghen         << "LAA: ReadWrite-Write positive dependency with different types\n");
15329c926579SAdam Nemet     return Dependence::Unknown;
15330456327cSAdam Nemet   }
15340456327cSAdam Nemet 
15350456327cSAdam Nemet   // Bail out early if passed-in parameters make vectorization not feasible.
1536f219c647SAdam Nemet   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1537f219c647SAdam Nemet                            VectorizerParams::VectorizationFactor : 1);
1538f219c647SAdam Nemet   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1539f219c647SAdam Nemet                            VectorizerParams::VectorizationInterleave : 1);
1540751004a6SHao Liu   // The minimum number of iterations for a vectorized/unrolled version.
1541751004a6SHao Liu   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
15420456327cSAdam Nemet 
1543751004a6SHao Liu   // It's not vectorizable if the distance is smaller than the minimum distance
1544751004a6SHao Liu   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1545751004a6SHao Liu   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1546751004a6SHao Liu   // TypeByteSize (No need to plus the last gap distance).
1547751004a6SHao Liu   //
1548751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1549751004a6SHao Liu   //      foo(int *A) {
1550751004a6SHao Liu   //        int *B = (int *)((char *)A + 14);
1551751004a6SHao Liu   //        for (i = 0 ; i < 1024 ; i += 2)
1552751004a6SHao Liu   //          B[i] = A[i] + 1;
1553751004a6SHao Liu   //      }
1554751004a6SHao Liu   //
1555751004a6SHao Liu   // Two accesses in memory (stride is 2):
1556751004a6SHao Liu   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1557751004a6SHao Liu   //                              | B[0] |      | B[2] |      | B[4] |
1558751004a6SHao Liu   //
1559751004a6SHao Liu   // Distance needs for vectorizing iterations except the last iteration:
1560751004a6SHao Liu   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1561751004a6SHao Liu   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1562751004a6SHao Liu   //
1563751004a6SHao Liu   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1564751004a6SHao Liu   // 12, which is less than distance.
1565751004a6SHao Liu   //
1566751004a6SHao Liu   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1567751004a6SHao Liu   // the minimum distance needed is 28, which is greater than distance. It is
1568751004a6SHao Liu   // not safe to do vectorization.
15697afb46d3SDavid Majnemer   uint64_t MinDistanceNeeded =
1570751004a6SHao Liu       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
15717afb46d3SDavid Majnemer   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1572d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1573d34e60caSNicola Zaghen                       << Distance << '\n');
1574751004a6SHao Liu     return Dependence::Backward;
1575751004a6SHao Liu   }
1576751004a6SHao Liu 
1577751004a6SHao Liu   // Unsafe if the minimum distance needed is greater than max safe distance.
1578751004a6SHao Liu   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1579d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1580751004a6SHao Liu                       << MinDistanceNeeded << " size in bytes");
15819c926579SAdam Nemet     return Dependence::Backward;
15820456327cSAdam Nemet   }
15830456327cSAdam Nemet 
15849cc0c399SAdam Nemet   // Positive distance bigger than max vectorization factor.
1585751004a6SHao Liu   // FIXME: Should use max factor instead of max distance in bytes, which could
1586751004a6SHao Liu   // not handle different types.
1587751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1588751004a6SHao Liu   //      void foo (int *A, char *B) {
1589751004a6SHao Liu   //        for (unsigned i = 0; i < 1024; i++) {
1590751004a6SHao Liu   //          A[i+2] = A[i] + 1;
1591751004a6SHao Liu   //          B[i+2] = B[i] + 1;
1592751004a6SHao Liu   //        }
1593751004a6SHao Liu   //      }
1594751004a6SHao Liu   //
1595751004a6SHao Liu   // This case is currently unsafe according to the max safe distance. If we
1596751004a6SHao Liu   // analyze the two accesses on array B, the max safe dependence distance
1597751004a6SHao Liu   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1598751004a6SHao Liu   // is 8, which is less than 2 and forbidden vectorization, But actually
1599751004a6SHao Liu   // both A and B could be vectorized by 2 iterations.
1600751004a6SHao Liu   MaxSafeDepDistBytes =
16017afb46d3SDavid Majnemer       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
16020456327cSAdam Nemet 
16030456327cSAdam Nemet   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
160437ec5f91SMatthew Simpson   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
16050456327cSAdam Nemet       couldPreventStoreLoadForward(Distance, TypeByteSize))
16069c926579SAdam Nemet     return Dependence::BackwardVectorizableButPreventsForwarding;
16070456327cSAdam Nemet 
1608682cfc1dSAlon Kom   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1609d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1610682cfc1dSAlon Kom                     << " with max VF = " << MaxVF << '\n');
1611682cfc1dSAlon Kom   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1612682cfc1dSAlon Kom   MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
16139c926579SAdam Nemet   return Dependence::BackwardVectorizable;
16140456327cSAdam Nemet }
16150456327cSAdam Nemet 
1616dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
16175448e989SAmjad Aboud                                    MemAccessInfoList &CheckDeps,
16188bc61df9SAdam Nemet                                    const ValueToValueMap &Strides) {
16190456327cSAdam Nemet 
16207afb46d3SDavid Majnemer   MaxSafeDepDistBytes = -1;
16215448e989SAmjad Aboud   SmallPtrSet<MemAccessInfo, 8> Visited;
16225448e989SAmjad Aboud   for (MemAccessInfo CurAccess : CheckDeps) {
16235448e989SAmjad Aboud     if (Visited.count(CurAccess))
16245448e989SAmjad Aboud       continue;
16250456327cSAdam Nemet 
16260456327cSAdam Nemet     // Get the relevant memory access set.
16270456327cSAdam Nemet     EquivalenceClasses<MemAccessInfo>::iterator I =
16280456327cSAdam Nemet       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
16290456327cSAdam Nemet 
16300456327cSAdam Nemet     // Check accesses within this set.
16317a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
16327a083814SRichard Trieu         AccessSets.member_begin(I);
16337a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
16347a083814SRichard Trieu         AccessSets.member_end();
16350456327cSAdam Nemet 
16360456327cSAdam Nemet     // Check every access pair.
16370456327cSAdam Nemet     while (AI != AE) {
16385448e989SAmjad Aboud       Visited.insert(*AI);
16390456327cSAdam Nemet       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
16400456327cSAdam Nemet       while (OI != AE) {
16410456327cSAdam Nemet         // Check every accessing instruction pair in program order.
16420456327cSAdam Nemet         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
16430456327cSAdam Nemet              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
16440456327cSAdam Nemet           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
16450456327cSAdam Nemet                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
16469c926579SAdam Nemet             auto A = std::make_pair(&*AI, *I1);
16479c926579SAdam Nemet             auto B = std::make_pair(&*OI, *I2);
16489c926579SAdam Nemet 
16499c926579SAdam Nemet             assert(*I1 != *I2);
16509c926579SAdam Nemet             if (*I1 > *I2)
16519c926579SAdam Nemet               std::swap(A, B);
16529c926579SAdam Nemet 
16539c926579SAdam Nemet             Dependence::DepType Type =
16549c926579SAdam Nemet                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
16559c926579SAdam Nemet             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
16569c926579SAdam Nemet 
1657a2df750fSAdam Nemet             // Gather dependences unless we accumulated MaxDependences
16589c926579SAdam Nemet             // dependences.  In that case return as soon as we find the first
16599c926579SAdam Nemet             // unsafe dependence.  This puts a limit on this quadratic
16609c926579SAdam Nemet             // algorithm.
1661a2df750fSAdam Nemet             if (RecordDependences) {
1662a2df750fSAdam Nemet               if (Type != Dependence::NoDep)
1663a2df750fSAdam Nemet                 Dependences.push_back(Dependence(A.second, B.second, Type));
16649c926579SAdam Nemet 
1665a2df750fSAdam Nemet               if (Dependences.size() >= MaxDependences) {
1666a2df750fSAdam Nemet                 RecordDependences = false;
1667a2df750fSAdam Nemet                 Dependences.clear();
1668d34e60caSNicola Zaghen                 LLVM_DEBUG(dbgs()
1669d34e60caSNicola Zaghen                            << "Too many dependences, stopped recording\n");
16709c926579SAdam Nemet               }
16719c926579SAdam Nemet             }
1672a2df750fSAdam Nemet             if (!RecordDependences && !SafeForVectorization)
16730456327cSAdam Nemet               return false;
16740456327cSAdam Nemet           }
16750456327cSAdam Nemet         ++OI;
16760456327cSAdam Nemet       }
16770456327cSAdam Nemet       AI++;
16780456327cSAdam Nemet     }
16790456327cSAdam Nemet   }
16809c926579SAdam Nemet 
1681d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
16829c926579SAdam Nemet   return SafeForVectorization;
16830456327cSAdam Nemet }
16840456327cSAdam Nemet 
1685ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4>
1686ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1687ec1e2bb6SAdam Nemet   MemAccessInfo Access(Ptr, isWrite);
1688ec1e2bb6SAdam Nemet   auto &IndexVector = Accesses.find(Access)->second;
1689ec1e2bb6SAdam Nemet 
1690ec1e2bb6SAdam Nemet   SmallVector<Instruction *, 4> Insts;
16912d006e76SDavid Majnemer   transform(IndexVector,
1692ec1e2bb6SAdam Nemet                  std::back_inserter(Insts),
1693ec1e2bb6SAdam Nemet                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1694ec1e2bb6SAdam Nemet   return Insts;
1695ec1e2bb6SAdam Nemet }
1696ec1e2bb6SAdam Nemet 
169758913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = {
169858913d65SAdam Nemet     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
169958913d65SAdam Nemet     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
170058913d65SAdam Nemet 
170158913d65SAdam Nemet void MemoryDepChecker::Dependence::print(
170258913d65SAdam Nemet     raw_ostream &OS, unsigned Depth,
170358913d65SAdam Nemet     const SmallVectorImpl<Instruction *> &Instrs) const {
170458913d65SAdam Nemet   OS.indent(Depth) << DepName[Type] << ":\n";
170558913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
170658913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
170758913d65SAdam Nemet }
170858913d65SAdam Nemet 
1709929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() {
17108dcb3b6aSAdam Nemet   // We need to have a loop header.
1711d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1712d8968f09SAdam Nemet                     << TheLoop->getHeader()->getParent()->getName() << ": "
1713d8968f09SAdam Nemet                     << TheLoop->getHeader()->getName() << '\n');
17148dcb3b6aSAdam Nemet 
1715929c38e8SAdam Nemet   // We can only analyze innermost loops.
1716929c38e8SAdam Nemet   if (!TheLoop->empty()) {
1717d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1718877ccee8SAdam Nemet     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1719929c38e8SAdam Nemet     return false;
1720929c38e8SAdam Nemet   }
1721929c38e8SAdam Nemet 
1722929c38e8SAdam Nemet   // We must have a single backedge.
1723929c38e8SAdam Nemet   if (TheLoop->getNumBackEdges() != 1) {
1724d34e60caSNicola Zaghen     LLVM_DEBUG(
1725d34e60caSNicola Zaghen         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1726877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1727877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1728929c38e8SAdam Nemet     return false;
1729929c38e8SAdam Nemet   }
1730929c38e8SAdam Nemet 
1731929c38e8SAdam Nemet   // We must have a single exiting block.
1732929c38e8SAdam Nemet   if (!TheLoop->getExitingBlock()) {
1733d34e60caSNicola Zaghen     LLVM_DEBUG(
1734d34e60caSNicola Zaghen         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1735877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1736877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1737929c38e8SAdam Nemet     return false;
1738929c38e8SAdam Nemet   }
1739929c38e8SAdam Nemet 
1740929c38e8SAdam Nemet   // We only handle bottom-tested loops, i.e. loop in which the condition is
1741929c38e8SAdam Nemet   // checked at the end of each iteration. With that we can assume that all
1742929c38e8SAdam Nemet   // instructions in the loop are executed the same number of times.
1743929c38e8SAdam Nemet   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1744d34e60caSNicola Zaghen     LLVM_DEBUG(
1745d34e60caSNicola Zaghen         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1746877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1747877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1748929c38e8SAdam Nemet     return false;
1749929c38e8SAdam Nemet   }
1750929c38e8SAdam Nemet 
1751929c38e8SAdam Nemet   // ScalarEvolution needs to be able to find the exit count.
175294734eefSXinliang David Li   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
175394734eefSXinliang David Li   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1754877ccee8SAdam Nemet     recordAnalysis("CantComputeNumberOfIterations")
1755877ccee8SAdam Nemet         << "could not determine number of loop iterations";
1756d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1757929c38e8SAdam Nemet     return false;
1758929c38e8SAdam Nemet   }
1759929c38e8SAdam Nemet 
1760929c38e8SAdam Nemet   return true;
1761929c38e8SAdam Nemet }
1762929c38e8SAdam Nemet 
1763b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
17647da74abfSAdam Nemet                                  const TargetLibraryInfo *TLI,
17657da74abfSAdam Nemet                                  DominatorTree *DT) {
17660456327cSAdam Nemet   typedef SmallPtrSet<Value*, 16> ValueSet;
17670456327cSAdam Nemet 
1768e3e3b994SMatthew Simpson   // Holds the Load and Store instructions.
1769e3e3b994SMatthew Simpson   SmallVector<LoadInst *, 16> Loads;
1770e3e3b994SMatthew Simpson   SmallVector<StoreInst *, 16> Stores;
17710456327cSAdam Nemet 
17720456327cSAdam Nemet   // Holds all the different accesses in the loop.
17730456327cSAdam Nemet   unsigned NumReads = 0;
17740456327cSAdam Nemet   unsigned NumReadWrites = 0;
17750456327cSAdam Nemet 
1776ce030acbSXinliang David Li   PtrRtChecking->Pointers.clear();
1777ce030acbSXinliang David Li   PtrRtChecking->Need = false;
17780456327cSAdam Nemet 
17790456327cSAdam Nemet   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
17800456327cSAdam Nemet 
17810456327cSAdam Nemet   // For each block.
17828b401013SDavid Majnemer   for (BasicBlock *BB : TheLoop->blocks()) {
17830456327cSAdam Nemet     // Scan the BB and collect legal loads and stores.
17848b401013SDavid Majnemer     for (Instruction &I : *BB) {
17850456327cSAdam Nemet       // If this is a load, save it. If this instruction can read from memory
17860456327cSAdam Nemet       // but is not a load, then we quit. Notice that we don't handle function
17870456327cSAdam Nemet       // calls that read or write.
17888b401013SDavid Majnemer       if (I.mayReadFromMemory()) {
17890456327cSAdam Nemet         // Many math library functions read the rounding mode. We will only
17900456327cSAdam Nemet         // vectorize a loop if it contains known function calls that don't set
17910456327cSAdam Nemet         // the flag. Therefore, it is safe to ignore this read from memory.
17928b401013SDavid Majnemer         auto *Call = dyn_cast<CallInst>(&I);
1793b4b27230SDavid Majnemer         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
17940456327cSAdam Nemet           continue;
17950456327cSAdam Nemet 
17969b3cf604SMichael Zolotukhin         // If the function has an explicit vectorized counterpart, we can safely
17979b3cf604SMichael Zolotukhin         // assume that it can be vectorized.
17989b3cf604SMichael Zolotukhin         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
17999b3cf604SMichael Zolotukhin             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
18009b3cf604SMichael Zolotukhin           continue;
18019b3cf604SMichael Zolotukhin 
18028b401013SDavid Majnemer         auto *Ld = dyn_cast<LoadInst>(&I);
18030456327cSAdam Nemet         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1804877ccee8SAdam Nemet           recordAnalysis("NonSimpleLoad", Ld)
1805877ccee8SAdam Nemet               << "read with atomic ordering or volatile read";
1806d34e60caSNicola Zaghen           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1807436018c3SAdam Nemet           CanVecMem = false;
1808436018c3SAdam Nemet           return;
18090456327cSAdam Nemet         }
18100456327cSAdam Nemet         NumLoads++;
18110456327cSAdam Nemet         Loads.push_back(Ld);
1812ce030acbSXinliang David Li         DepChecker->addAccess(Ld);
1813a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1814c953bb99SAdam Nemet           collectStridedAccess(Ld);
18150456327cSAdam Nemet         continue;
18160456327cSAdam Nemet       }
18170456327cSAdam Nemet 
18180456327cSAdam Nemet       // Save 'store' instructions. Abort if other instructions write to memory.
18198b401013SDavid Majnemer       if (I.mayWriteToMemory()) {
18208b401013SDavid Majnemer         auto *St = dyn_cast<StoreInst>(&I);
18210456327cSAdam Nemet         if (!St) {
1822877ccee8SAdam Nemet           recordAnalysis("CantVectorizeInstruction", St)
1823877ccee8SAdam Nemet               << "instruction cannot be vectorized";
1824436018c3SAdam Nemet           CanVecMem = false;
1825436018c3SAdam Nemet           return;
18260456327cSAdam Nemet         }
18270456327cSAdam Nemet         if (!St->isSimple() && !IsAnnotatedParallel) {
1828877ccee8SAdam Nemet           recordAnalysis("NonSimpleStore", St)
1829877ccee8SAdam Nemet               << "write with atomic ordering or volatile write";
1830d34e60caSNicola Zaghen           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1831436018c3SAdam Nemet           CanVecMem = false;
1832436018c3SAdam Nemet           return;
18330456327cSAdam Nemet         }
18340456327cSAdam Nemet         NumStores++;
18350456327cSAdam Nemet         Stores.push_back(St);
1836ce030acbSXinliang David Li         DepChecker->addAccess(St);
1837a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1838c953bb99SAdam Nemet           collectStridedAccess(St);
18390456327cSAdam Nemet       }
18400456327cSAdam Nemet     } // Next instr.
18410456327cSAdam Nemet   } // Next block.
18420456327cSAdam Nemet 
18430456327cSAdam Nemet   // Now we have two lists that hold the loads and the stores.
18440456327cSAdam Nemet   // Next, we find the pointers that they use.
18450456327cSAdam Nemet 
18460456327cSAdam Nemet   // Check if we see any stores. If there are no stores, then we don't
18470456327cSAdam Nemet   // care if the pointers are *restrict*.
18480456327cSAdam Nemet   if (!Stores.size()) {
1849d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1850436018c3SAdam Nemet     CanVecMem = true;
1851436018c3SAdam Nemet     return;
18520456327cSAdam Nemet   }
18530456327cSAdam Nemet 
1854dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates DependentAccesses;
1855a28d91d8SMehdi Amini   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
185677eeac3dSManoj Gupta                           TheLoop, AA, LI, DependentAccesses, *PSE);
18570456327cSAdam Nemet 
18580456327cSAdam Nemet   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
18590456327cSAdam Nemet   // multiple times on the same object. If the ptr is accessed twice, once
18600456327cSAdam Nemet   // for read and once for write, it will only appear once (on the write
18610456327cSAdam Nemet   // list). This is okay, since we are going to check for conflicts between
18620456327cSAdam Nemet   // writes and between reads and writes, but not between reads and reads.
18630456327cSAdam Nemet   ValueSet Seen;
18640456327cSAdam Nemet 
1865b1e3d453SAnna Thomas   // Record uniform store addresses to identify if we have multiple stores
1866b1e3d453SAnna Thomas   // to the same address.
1867b1e3d453SAnna Thomas   ValueSet UniformStores;
1868b1e3d453SAnna Thomas 
1869e3e3b994SMatthew Simpson   for (StoreInst *ST : Stores) {
18700456327cSAdam Nemet     Value *Ptr = ST->getPointerOperand();
1871b1e3d453SAnna Thomas 
1872b1e3d453SAnna Thomas     if (isUniform(Ptr)) {
1873b1e3d453SAnna Thomas       // Consider multiple stores to the same uniform address as a store of a
1874b1e3d453SAnna Thomas       // variant value.
1875b1e3d453SAnna Thomas       bool MultipleStoresToUniformPtr = !UniformStores.insert(Ptr).second;
1876b1e3d453SAnna Thomas       HasVariantStoreToLoopInvariantAddress |=
1877b1e3d453SAnna Thomas           (!isUniform(ST->getValueOperand()) || MultipleStoresToUniformPtr);
1878b1e3d453SAnna Thomas     }
1879b1e3d453SAnna Thomas 
18800456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to  the read-write
18810456327cSAdam Nemet     // list. At this phase it is only a 'write' list.
18820456327cSAdam Nemet     if (Seen.insert(Ptr).second) {
18830456327cSAdam Nemet       ++NumReadWrites;
18840456327cSAdam Nemet 
1885ac80dc75SChandler Carruth       MemoryLocation Loc = MemoryLocation::get(ST);
18860456327cSAdam Nemet       // The TBAA metadata could have a control dependency on the predication
18870456327cSAdam Nemet       // condition, so we cannot rely on it when determining whether or not we
18880456327cSAdam Nemet       // need runtime pointer checks.
188901abb2c3SAdam Nemet       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
18900456327cSAdam Nemet         Loc.AATags.TBAA = nullptr;
18910456327cSAdam Nemet 
18920456327cSAdam Nemet       Accesses.addStore(Loc);
18930456327cSAdam Nemet     }
18940456327cSAdam Nemet   }
18950456327cSAdam Nemet 
18960456327cSAdam Nemet   if (IsAnnotatedParallel) {
1897d34e60caSNicola Zaghen     LLVM_DEBUG(
1898d34e60caSNicola Zaghen         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
18990456327cSAdam Nemet                << "checks.\n");
1900436018c3SAdam Nemet     CanVecMem = true;
1901436018c3SAdam Nemet     return;
19020456327cSAdam Nemet   }
19030456327cSAdam Nemet 
1904e3e3b994SMatthew Simpson   for (LoadInst *LD : Loads) {
19050456327cSAdam Nemet     Value *Ptr = LD->getPointerOperand();
19060456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to the
19070456327cSAdam Nemet     // read list. If we *did* see it before, then it is already in
19080456327cSAdam Nemet     // the read-write list. This allows us to vectorize expressions
19090456327cSAdam Nemet     // such as A[i] += x;  Because the address of A[i] is a read-write
19100456327cSAdam Nemet     // pointer. This only works if the index of A[i] is consecutive.
19110456327cSAdam Nemet     // If the address of i is unknown (for example A[B[i]]) then we may
19120456327cSAdam Nemet     // read a few words, modify, and write a few words, and some of the
19130456327cSAdam Nemet     // words may be written to the same address.
19140456327cSAdam Nemet     bool IsReadOnlyPtr = false;
1915139ffba3SAdam Nemet     if (Seen.insert(Ptr).second ||
191694734eefSXinliang David Li         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
19170456327cSAdam Nemet       ++NumReads;
19180456327cSAdam Nemet       IsReadOnlyPtr = true;
19190456327cSAdam Nemet     }
19200456327cSAdam Nemet 
1921ac80dc75SChandler Carruth     MemoryLocation Loc = MemoryLocation::get(LD);
19220456327cSAdam Nemet     // The TBAA metadata could have a control dependency on the predication
19230456327cSAdam Nemet     // condition, so we cannot rely on it when determining whether or not we
19240456327cSAdam Nemet     // need runtime pointer checks.
192501abb2c3SAdam Nemet     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
19260456327cSAdam Nemet       Loc.AATags.TBAA = nullptr;
19270456327cSAdam Nemet 
19280456327cSAdam Nemet     Accesses.addLoad(Loc, IsReadOnlyPtr);
19290456327cSAdam Nemet   }
19300456327cSAdam Nemet 
19310456327cSAdam Nemet   // If we write (or read-write) to a single destination and there are no
19320456327cSAdam Nemet   // other reads in this loop then is it safe to vectorize.
19330456327cSAdam Nemet   if (NumReadWrites == 1 && NumReads == 0) {
1934d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1935436018c3SAdam Nemet     CanVecMem = true;
1936436018c3SAdam Nemet     return;
19370456327cSAdam Nemet   }
19380456327cSAdam Nemet 
19390456327cSAdam Nemet   // Build dependence sets and check whether we need a runtime pointer bounds
19400456327cSAdam Nemet   // check.
19410456327cSAdam Nemet   Accesses.buildDependenceSets();
19420456327cSAdam Nemet 
19430456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
19440456327cSAdam Nemet   // to place a runtime bound check.
194594734eefSXinliang David Li   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1946139ffba3SAdam Nemet                                                   TheLoop, SymbolicStrides);
1947ee61474aSAdam Nemet   if (!CanDoRTIfNeeded) {
1948877ccee8SAdam Nemet     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1949d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1950ee61474aSAdam Nemet                       << "the array bounds.\n");
1951436018c3SAdam Nemet     CanVecMem = false;
1952436018c3SAdam Nemet     return;
19530456327cSAdam Nemet   }
19540456327cSAdam Nemet 
1955d34e60caSNicola Zaghen   LLVM_DEBUG(
1956d34e60caSNicola Zaghen       dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
19570456327cSAdam Nemet 
1958436018c3SAdam Nemet   CanVecMem = true;
19590456327cSAdam Nemet   if (Accesses.isDependencyCheckNeeded()) {
1960d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1961ce030acbSXinliang David Li     CanVecMem = DepChecker->areDepsSafe(
1962139ffba3SAdam Nemet         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1963ce030acbSXinliang David Li     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
19640456327cSAdam Nemet 
1965ce030acbSXinliang David Li     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
1966d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
19670456327cSAdam Nemet 
19680456327cSAdam Nemet       // Clear the dependency checks. We assume they are not needed.
1969ce030acbSXinliang David Li       Accesses.resetDepChecks(*DepChecker);
19700456327cSAdam Nemet 
1971ce030acbSXinliang David Li       PtrRtChecking->reset();
1972ce030acbSXinliang David Li       PtrRtChecking->Need = true;
19730456327cSAdam Nemet 
197494734eefSXinliang David Li       auto *SE = PSE->getSE();
1975ce030acbSXinliang David Li       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
1976139ffba3SAdam Nemet                                                  SymbolicStrides, true);
197798a13719SSilviu Baranga 
1978949e91a6SAdam Nemet       // Check that we found the bounds for the pointer.
1979ee61474aSAdam Nemet       if (!CanDoRTIfNeeded) {
1980877ccee8SAdam Nemet         recordAnalysis("CantCheckMemDepsAtRunTime")
1981877ccee8SAdam Nemet             << "cannot check memory dependencies at runtime";
1982d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1983b6dc76ffSAdam Nemet         CanVecMem = false;
1984b6dc76ffSAdam Nemet         return;
1985b6dc76ffSAdam Nemet       }
1986b6dc76ffSAdam Nemet 
19870456327cSAdam Nemet       CanVecMem = true;
19880456327cSAdam Nemet     }
19890456327cSAdam Nemet   }
19900456327cSAdam Nemet 
19914bb90a71SAdam Nemet   if (CanVecMem)
1992d34e60caSNicola Zaghen     LLVM_DEBUG(
1993d34e60caSNicola Zaghen         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1994ce030acbSXinliang David Li                << (PtrRtChecking->Need ? "" : " don't")
19950f67c6c1SAdam Nemet                << " need runtime memory checks.\n");
19964bb90a71SAdam Nemet   else {
1997877ccee8SAdam Nemet     recordAnalysis("UnsafeMemDep")
19980a77dfadSAdam Nemet         << "unsafe dependent memory operations in loop. Use "
19990a77dfadSAdam Nemet            "#pragma loop distribute(enable) to allow loop distribution "
20000a77dfadSAdam Nemet            "to attempt to isolate the offending operations into a separate "
2001877ccee8SAdam Nemet            "loop";
2002d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
20034bb90a71SAdam Nemet   }
20040456327cSAdam Nemet }
20050456327cSAdam Nemet 
200601abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
200701abb2c3SAdam Nemet                                            DominatorTree *DT)  {
20080456327cSAdam Nemet   assert(TheLoop->contains(BB) && "Unknown block used");
20090456327cSAdam Nemet 
20100456327cSAdam Nemet   // Blocks that do not dominate the latch need predication.
20110456327cSAdam Nemet   BasicBlock* Latch = TheLoop->getLoopLatch();
20120456327cSAdam Nemet   return !DT->dominates(BB, Latch);
20130456327cSAdam Nemet }
20140456327cSAdam Nemet 
2015877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2016877ccee8SAdam Nemet                                                            Instruction *I) {
2017c922853bSAdam Nemet   assert(!Report && "Multiple reports generated");
2018877ccee8SAdam Nemet 
2019877ccee8SAdam Nemet   Value *CodeRegion = TheLoop->getHeader();
2020877ccee8SAdam Nemet   DebugLoc DL = TheLoop->getStartLoc();
2021877ccee8SAdam Nemet 
2022877ccee8SAdam Nemet   if (I) {
2023877ccee8SAdam Nemet     CodeRegion = I->getParent();
2024877ccee8SAdam Nemet     // If there is no debug location attached to the instruction, revert back to
2025877ccee8SAdam Nemet     // using the loop's.
2026877ccee8SAdam Nemet     if (I->getDebugLoc())
2027877ccee8SAdam Nemet       DL = I->getDebugLoc();
2028877ccee8SAdam Nemet   }
2029877ccee8SAdam Nemet 
2030877ccee8SAdam Nemet   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2031877ccee8SAdam Nemet                                                    CodeRegion);
2032877ccee8SAdam Nemet   return *Report;
20330456327cSAdam Nemet }
20340456327cSAdam Nemet 
203557ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const {
20363ceac2bbSMichael Kuperstein   auto *SE = PSE->getSE();
20373ceac2bbSMichael Kuperstein   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
20383ceac2bbSMichael Kuperstein   // never considered uniform.
20393ceac2bbSMichael Kuperstein   // TODO: Is this really what we want? Even without FP SCEV, we may want some
20403ceac2bbSMichael Kuperstein   // trivially loop-invariant FP values to be considered uniform.
20413ceac2bbSMichael Kuperstein   if (!SE->isSCEVable(V->getType()))
20423ceac2bbSMichael Kuperstein     return false;
20433ceac2bbSMichael Kuperstein   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
20440456327cSAdam Nemet }
20457206d7a5SAdam Nemet 
20467206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in
20477206d7a5SAdam Nemet // LoopVectorize.cpp.
20487206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
20497206d7a5SAdam Nemet                                  Instruction *Loc) {
20507206d7a5SAdam Nemet   if (FirstInst)
20517206d7a5SAdam Nemet     return FirstInst;
20527206d7a5SAdam Nemet   if (Instruction *I = dyn_cast<Instruction>(V))
20537206d7a5SAdam Nemet     return I->getParent() == Loc->getParent() ? I : nullptr;
20547206d7a5SAdam Nemet   return nullptr;
20557206d7a5SAdam Nemet }
20567206d7a5SAdam Nemet 
2057039b1042SBenjamin Kramer namespace {
2058a3fe70d2SEugene Zelenko 
20595f8f34e4SAdrian Prantl /// IR Values for the lower and upper bounds of a pointer evolution.  We
20604e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously
20614e533ef7SAdam Nemet /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
20624e533ef7SAdam Nemet /// a previous one.
20631da7df37SAdam Nemet struct PointerBounds {
20644e533ef7SAdam Nemet   TrackingVH<Value> Start;
20654e533ef7SAdam Nemet   TrackingVH<Value> End;
20661da7df37SAdam Nemet };
2067a3fe70d2SEugene Zelenko 
2068039b1042SBenjamin Kramer } // end anonymous namespace
20697206d7a5SAdam Nemet 
20705f8f34e4SAdrian Prantl /// Expand code for the lower and upper bound of the pointer group \p CG
20711da7df37SAdam Nemet /// in \p TheLoop.  \return the values for the bounds.
20721da7df37SAdam Nemet static PointerBounds
20731da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
20741da7df37SAdam Nemet              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
20751da7df37SAdam Nemet              const RuntimePointerChecking &PtrRtChecking) {
20761da7df37SAdam Nemet   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
20777206d7a5SAdam Nemet   const SCEV *Sc = SE->getSCEV(Ptr);
20787206d7a5SAdam Nemet 
20797206d7a5SAdam Nemet   unsigned AS = Ptr->getType()->getPointerAddressSpace();
20801da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
20817206d7a5SAdam Nemet 
20827206d7a5SAdam Nemet   // Use this type for pointer arithmetic.
20837206d7a5SAdam Nemet   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
20847206d7a5SAdam Nemet 
208592f377bdSKeno Fischer   if (SE->isLoopInvariant(Sc, TheLoop)) {
2086d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2087d34e60caSNicola Zaghen                       << *Ptr << "\n");
208892f377bdSKeno Fischer     // Ptr could be in the loop body. If so, expand a new one at the correct
208992f377bdSKeno Fischer     // location.
209092f377bdSKeno Fischer     Instruction *Inst = dyn_cast<Instruction>(Ptr);
209192f377bdSKeno Fischer     Value *NewPtr = (Inst && TheLoop->contains(Inst))
209292f377bdSKeno Fischer                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
209392f377bdSKeno Fischer                         : Ptr;
209437dd4d7aSJames Molloy     // We must return a half-open range, which means incrementing Sc.
209537dd4d7aSJames Molloy     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
209637dd4d7aSJames Molloy     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
209737dd4d7aSJames Molloy     return {NewPtr, NewPtrPlusOne};
209892f377bdSKeno Fischer   } else {
209992f377bdSKeno Fischer     Value *Start = nullptr, *End = nullptr;
2100d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
21011da7df37SAdam Nemet     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
21021da7df37SAdam Nemet     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
2103d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
2104d34e60caSNicola Zaghen                       << "\n");
21051da7df37SAdam Nemet     return {Start, End};
21067206d7a5SAdam Nemet   }
21077206d7a5SAdam Nemet }
21087206d7a5SAdam Nemet 
21095f8f34e4SAdrian Prantl /// Turns a collection of checks into a collection of expanded upper and
21101da7df37SAdam Nemet /// lower bounds for both pointers in the check.
21111da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
21121da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
21131da7df37SAdam Nemet     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
21141da7df37SAdam Nemet     const RuntimePointerChecking &PtrRtChecking) {
21151da7df37SAdam Nemet   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
21161da7df37SAdam Nemet 
21171da7df37SAdam Nemet   // Here we're relying on the SCEV Expander's cache to only emit code for the
21181da7df37SAdam Nemet   // same bounds once.
21192d006e76SDavid Majnemer   transform(
21202d006e76SDavid Majnemer       PointerChecks, std::back_inserter(ChecksWithBounds),
21211da7df37SAdam Nemet       [&](const RuntimePointerChecking::PointerCheck &Check) {
212294abbbd6SNAKAMURA Takumi         PointerBounds
212394abbbd6SNAKAMURA Takumi           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
212494abbbd6SNAKAMURA Takumi           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
212594abbbd6SNAKAMURA Takumi         return std::make_pair(First, Second);
21261da7df37SAdam Nemet       });
21271da7df37SAdam Nemet 
21281da7df37SAdam Nemet   return ChecksWithBounds;
21291da7df37SAdam Nemet }
21301da7df37SAdam Nemet 
21315b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
21321da7df37SAdam Nemet     Instruction *Loc,
21331da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
21341da7df37SAdam Nemet     const {
21351824e411SAdam Nemet   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
213694734eefSXinliang David Li   auto *SE = PSE->getSE();
21371824e411SAdam Nemet   SCEVExpander Exp(*SE, DL, "induction");
21381da7df37SAdam Nemet   auto ExpandedChecks =
2139ce030acbSXinliang David Li       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
21401da7df37SAdam Nemet 
21411da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
21421da7df37SAdam Nemet   Instruction *FirstInst = nullptr;
21437206d7a5SAdam Nemet   IRBuilder<> ChkBuilder(Loc);
21447206d7a5SAdam Nemet   // Our instructions might fold to a constant.
21457206d7a5SAdam Nemet   Value *MemoryRuntimeCheck = nullptr;
21461b6b50a9SSilviu Baranga 
21471da7df37SAdam Nemet   for (const auto &Check : ExpandedChecks) {
21481da7df37SAdam Nemet     const PointerBounds &A = Check.first, &B = Check.second;
2149cdb791cdSAdam Nemet     // Check if two pointers (A and B) conflict where conflict is computed as:
2150cdb791cdSAdam Nemet     // start(A) <= end(B) && start(B) <= end(A)
21511da7df37SAdam Nemet     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
21521da7df37SAdam Nemet     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
21537206d7a5SAdam Nemet 
21541da7df37SAdam Nemet     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
21551da7df37SAdam Nemet            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
21567206d7a5SAdam Nemet            "Trying to bounds check pointers with different address spaces");
21577206d7a5SAdam Nemet 
21587206d7a5SAdam Nemet     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
21597206d7a5SAdam Nemet     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
21607206d7a5SAdam Nemet 
21611da7df37SAdam Nemet     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
21621da7df37SAdam Nemet     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
21631da7df37SAdam Nemet     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
21641da7df37SAdam Nemet     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
21657206d7a5SAdam Nemet 
21663622fbfcSElena Demikhovsky     // [A|B].Start points to the first accessed byte under base [A|B].
21673622fbfcSElena Demikhovsky     // [A|B].End points to the last accessed byte, plus one.
21683622fbfcSElena Demikhovsky     // There is no conflict when the intervals are disjoint:
21693622fbfcSElena Demikhovsky     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
21703622fbfcSElena Demikhovsky     //
21713622fbfcSElena Demikhovsky     // bound0 = (B.Start < A.End)
21723622fbfcSElena Demikhovsky     // bound1 = (A.Start < B.End)
21733622fbfcSElena Demikhovsky     //  IsConflict = bound0 & bound1
21743622fbfcSElena Demikhovsky     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
21757206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
21763622fbfcSElena Demikhovsky     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
21777206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
21787206d7a5SAdam Nemet     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
21797206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
21807206d7a5SAdam Nemet     if (MemoryRuntimeCheck) {
21811da7df37SAdam Nemet       IsConflict =
21821da7df37SAdam Nemet           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
21837206d7a5SAdam Nemet       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
21847206d7a5SAdam Nemet     }
21857206d7a5SAdam Nemet     MemoryRuntimeCheck = IsConflict;
21867206d7a5SAdam Nemet   }
21877206d7a5SAdam Nemet 
218890fec840SAdam Nemet   if (!MemoryRuntimeCheck)
218990fec840SAdam Nemet     return std::make_pair(nullptr, nullptr);
219090fec840SAdam Nemet 
21917206d7a5SAdam Nemet   // We have to do this trickery because the IRBuilder might fold the check to a
21927206d7a5SAdam Nemet   // constant expression in which case there is no Instruction anchored in a
21937206d7a5SAdam Nemet   // the block.
21947206d7a5SAdam Nemet   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
21957206d7a5SAdam Nemet                                                  ConstantInt::getTrue(Ctx));
21967206d7a5SAdam Nemet   ChkBuilder.Insert(Check, "memcheck.conflict");
21977206d7a5SAdam Nemet   FirstInst = getFirstInst(FirstInst, Check, Loc);
21987206d7a5SAdam Nemet   return std::make_pair(FirstInst, Check);
21997206d7a5SAdam Nemet }
22003bfd93d7SAdam Nemet 
22015b0a4795SAdam Nemet std::pair<Instruction *, Instruction *>
22025b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2203ce030acbSXinliang David Li   if (!PtrRtChecking->Need)
22041da7df37SAdam Nemet     return std::make_pair(nullptr, nullptr);
22051da7df37SAdam Nemet 
2206ce030acbSXinliang David Li   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
22071da7df37SAdam Nemet }
22081da7df37SAdam Nemet 
2209c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2210c953bb99SAdam Nemet   Value *Ptr = nullptr;
2211c953bb99SAdam Nemet   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2212c953bb99SAdam Nemet     Ptr = LI->getPointerOperand();
2213c953bb99SAdam Nemet   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2214c953bb99SAdam Nemet     Ptr = SI->getPointerOperand();
2215c953bb99SAdam Nemet   else
2216c953bb99SAdam Nemet     return;
2217c953bb99SAdam Nemet 
221894734eefSXinliang David Li   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2219c953bb99SAdam Nemet   if (!Stride)
2220c953bb99SAdam Nemet     return;
2221c953bb99SAdam Nemet 
2222d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2223eb13dd3eSDorit Nuzman                        "versioning:");
2224d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2225eb13dd3eSDorit Nuzman 
2226eb13dd3eSDorit Nuzman   // Avoid adding the "Stride == 1" predicate when we know that
2227eb13dd3eSDorit Nuzman   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2228eb13dd3eSDorit Nuzman   // or zero iteration loop, as Trip-Count <= Stride == 1.
2229eb13dd3eSDorit Nuzman   //
2230eb13dd3eSDorit Nuzman   // TODO: We are currently not making a very informed decision on when it is
2231eb13dd3eSDorit Nuzman   // beneficial to apply stride versioning. It might make more sense that the
2232eb13dd3eSDorit Nuzman   // users of this analysis (such as the vectorizer) will trigger it, based on
2233eb13dd3eSDorit Nuzman   // their specific cost considerations; For example, in cases where stride
2234eb13dd3eSDorit Nuzman   // versioning does  not help resolving memory accesses/dependences, the
2235eb13dd3eSDorit Nuzman   // vectorizer should evaluate the cost of the runtime test, and the benefit
2236eb13dd3eSDorit Nuzman   // of various possible stride specializations, considering the alternatives
2237eb13dd3eSDorit Nuzman   // of using gather/scatters (if available).
2238eb13dd3eSDorit Nuzman 
2239eb13dd3eSDorit Nuzman   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2240eb13dd3eSDorit Nuzman   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2241eb13dd3eSDorit Nuzman 
2242eb13dd3eSDorit Nuzman   // Match the types so we can compare the stride and the BETakenCount.
2243eb13dd3eSDorit Nuzman   // The Stride can be positive/negative, so we sign extend Stride;
2244eb13dd3eSDorit Nuzman   // The backdgeTakenCount is non-negative, so we zero extend BETakenCount.
2245eb13dd3eSDorit Nuzman   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2246eb13dd3eSDorit Nuzman   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2247eb13dd3eSDorit Nuzman   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2248eb13dd3eSDorit Nuzman   const SCEV *CastedStride = StrideExpr;
2249eb13dd3eSDorit Nuzman   const SCEV *CastedBECount = BETakenCount;
2250eb13dd3eSDorit Nuzman   ScalarEvolution *SE = PSE->getSE();
2251eb13dd3eSDorit Nuzman   if (BETypeSize >= StrideTypeSize)
2252eb13dd3eSDorit Nuzman     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2253eb13dd3eSDorit Nuzman   else
2254eb13dd3eSDorit Nuzman     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2255eb13dd3eSDorit Nuzman   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2256eb13dd3eSDorit Nuzman   // Since TripCount == BackEdgeTakenCount + 1, checking:
2257eb13dd3eSDorit Nuzman   // "Stride >= TripCount" is equivalent to checking:
2258eb13dd3eSDorit Nuzman   // Stride - BETakenCount > 0
2259eb13dd3eSDorit Nuzman   if (SE->isKnownPositive(StrideMinusBETaken)) {
2260d34e60caSNicola Zaghen     LLVM_DEBUG(
2261d34e60caSNicola Zaghen         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2262eb13dd3eSDorit Nuzman                   "Stride==1 predicate will imply that the loop executes "
2263eb13dd3eSDorit Nuzman                   "at most once.\n");
2264eb13dd3eSDorit Nuzman     return;
2265eb13dd3eSDorit Nuzman   }
2266d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2267eb13dd3eSDorit Nuzman 
2268c953bb99SAdam Nemet   SymbolicStrides[Ptr] = Stride;
2269c953bb99SAdam Nemet   StrideSet.insert(Stride);
2270c953bb99SAdam Nemet }
2271c953bb99SAdam Nemet 
22723bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
22733bfd93d7SAdam Nemet                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2274a9f09c62SAdam Nemet                                DominatorTree *DT, LoopInfo *LI)
227594734eefSXinliang David Li     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2276ce030acbSXinliang David Li       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
227794734eefSXinliang David Li       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
22787da74abfSAdam Nemet       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2279b1e3d453SAnna Thomas       HasVariantStoreToLoopInvariantAddress(false) {
2280929c38e8SAdam Nemet   if (canAnalyzeLoop())
22817da74abfSAdam Nemet     analyzeLoop(AA, LI, TLI, DT);
22823bfd93d7SAdam Nemet }
22833bfd93d7SAdam Nemet 
2284e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2285e91cc6efSAdam Nemet   if (CanVecMem) {
22864ad38b63SAdam Nemet     OS.indent(Depth) << "Memory dependences are safe";
22877afb46d3SDavid Majnemer     if (MaxSafeDepDistBytes != -1ULL)
2288c62e554eSAdam Nemet       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2289c62e554eSAdam Nemet          << " bytes";
2290ce030acbSXinliang David Li     if (PtrRtChecking->Need)
22914ad38b63SAdam Nemet       OS << " with run-time checks";
22924ad38b63SAdam Nemet     OS << "\n";
2293e91cc6efSAdam Nemet   }
2294e91cc6efSAdam Nemet 
2295e91cc6efSAdam Nemet   if (Report)
2296877ccee8SAdam Nemet     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2297e91cc6efSAdam Nemet 
2298ce030acbSXinliang David Li   if (auto *Dependences = DepChecker->getDependences()) {
2299a2df750fSAdam Nemet     OS.indent(Depth) << "Dependences:\n";
2300a2df750fSAdam Nemet     for (auto &Dep : *Dependences) {
2301ce030acbSXinliang David Li       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
230258913d65SAdam Nemet       OS << "\n";
230358913d65SAdam Nemet     }
230458913d65SAdam Nemet   } else
2305a2df750fSAdam Nemet     OS.indent(Depth) << "Too many dependences, not recorded\n";
2306e91cc6efSAdam Nemet 
2307e91cc6efSAdam Nemet   // List the pair of accesses need run-time checks to prove independence.
2308ce030acbSXinliang David Li   PtrRtChecking->print(OS, Depth);
2309e91cc6efSAdam Nemet   OS << "\n";
2310c3384320SAdam Nemet 
2311b1e3d453SAnna Thomas   OS.indent(Depth) << "Variant Store to invariant address was "
2312b1e3d453SAnna Thomas                    << (HasVariantStoreToLoopInvariantAddress ? "" : "not ")
2313c3384320SAdam Nemet                    << "found in loop.\n";
2314e3c0534bSSilviu Baranga 
2315e3c0534bSSilviu Baranga   OS.indent(Depth) << "SCEV assumptions:\n";
231694734eefSXinliang David Li   PSE->getUnionPredicate().print(OS, Depth);
2317b77365b5SSilviu Baranga 
2318b77365b5SSilviu Baranga   OS << "\n";
2319b77365b5SSilviu Baranga 
2320b77365b5SSilviu Baranga   OS.indent(Depth) << "Expressions re-written:\n";
232194734eefSXinliang David Li   PSE->print(OS, Depth);
2322e91cc6efSAdam Nemet }
2323e91cc6efSAdam Nemet 
23247853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
23253bfd93d7SAdam Nemet   auto &LAI = LoopAccessInfoMap[L];
23263bfd93d7SAdam Nemet 
23271824e411SAdam Nemet   if (!LAI)
23281824e411SAdam Nemet     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
23291824e411SAdam Nemet 
23303bfd93d7SAdam Nemet   return *LAI.get();
23313bfd93d7SAdam Nemet }
23323bfd93d7SAdam Nemet 
23337853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
23347853c1ddSXinliang David Li   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2335ecde1c7fSXinliang David Li 
2336e91cc6efSAdam Nemet   for (Loop *TopLevelLoop : *LI)
2337e91cc6efSAdam Nemet     for (Loop *L : depth_first(TopLevelLoop)) {
2338e91cc6efSAdam Nemet       OS.indent(2) << L->getHeader()->getName() << ":\n";
2339bdbc5227SAdam Nemet       auto &LAI = LAA.getInfo(L);
2340e91cc6efSAdam Nemet       LAI.print(OS, 4);
2341e91cc6efSAdam Nemet     }
2342e91cc6efSAdam Nemet }
2343e91cc6efSAdam Nemet 
23447853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2345ecde1c7fSXinliang David Li   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
23463bfd93d7SAdam Nemet   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2347ecde1c7fSXinliang David Li   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2348ecde1c7fSXinliang David Li   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2349ecde1c7fSXinliang David Li   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2350ecde1c7fSXinliang David Li   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
23513bfd93d7SAdam Nemet 
23523bfd93d7SAdam Nemet   return false;
23533bfd93d7SAdam Nemet }
23543bfd93d7SAdam Nemet 
23557853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
23562f1fd165SChandler Carruth     AU.addRequired<ScalarEvolutionWrapperPass>();
23577b560d40SChandler Carruth     AU.addRequired<AAResultsWrapperPass>();
23583bfd93d7SAdam Nemet     AU.addRequired<DominatorTreeWrapperPass>();
2359e91cc6efSAdam Nemet     AU.addRequired<LoopInfoWrapperPass>();
23603bfd93d7SAdam Nemet 
23613bfd93d7SAdam Nemet     AU.setPreservesAll();
23623bfd93d7SAdam Nemet }
23633bfd93d7SAdam Nemet 
23647853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0;
23653bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis";
23663bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses"
23673bfd93d7SAdam Nemet 
23687853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
23697b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
23702f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
23713bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2372e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
23737853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
23743bfd93d7SAdam Nemet 
2375dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key;
23768a021317SXinliang David Li 
2377410eaeb0SChandler Carruth LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2378410eaeb0SChandler Carruth                                        LoopStandardAnalysisResults &AR) {
2379410eaeb0SChandler Carruth   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
23808a021317SXinliang David Li }
23818a021317SXinliang David Li 
23823bfd93d7SAdam Nemet namespace llvm {
2383a3fe70d2SEugene Zelenko 
23843bfd93d7SAdam Nemet   Pass *createLAAPass() {
23857853c1ddSXinliang David Li     return new LoopAccessLegacyAnalysis();
23863bfd93d7SAdam Nemet   }
2387a3fe70d2SEugene Zelenko 
2388a3fe70d2SEugene Zelenko } // end namespace llvm
2389