10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 20456327cSAdam Nemet // 30456327cSAdam Nemet // The LLVM Compiler Infrastructure 40456327cSAdam Nemet // 50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source 60456327cSAdam Nemet // License. See LICENSE.TXT for details. 70456327cSAdam Nemet // 80456327cSAdam Nemet //===----------------------------------------------------------------------===// 90456327cSAdam Nemet // 100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally 110456327cSAdam Nemet // developed for the loop vectorizer. 120456327cSAdam Nemet // 130456327cSAdam Nemet //===----------------------------------------------------------------------===// 140456327cSAdam Nemet 150456327cSAdam Nemet #include "llvm/Analysis/LoopAccessAnalysis.h" 160456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 177206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h" 18799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h" 190456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h" 200456327cSAdam Nemet #include "llvm/IR/DiagnosticInfo.h" 210456327cSAdam Nemet #include "llvm/IR/Dominators.h" 227206d7a5SAdam Nemet #include "llvm/IR/IRBuilder.h" 230456327cSAdam Nemet #include "llvm/Support/Debug.h" 24799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h" 25b447ac64SDavid Blaikie #include "llvm/Analysis/VectorUtils.h" 260456327cSAdam Nemet using namespace llvm; 270456327cSAdam Nemet 28339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses" 290456327cSAdam Nemet 30f219c647SAdam Nemet static cl::opt<unsigned, true> 31f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden, 32f219c647SAdam Nemet cl::desc("Sets the SIMD width. Zero is autoselect."), 33f219c647SAdam Nemet cl::location(VectorizerParams::VectorizationFactor)); 341d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor; 35f219c647SAdam Nemet 36f219c647SAdam Nemet static cl::opt<unsigned, true> 37f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden, 38f219c647SAdam Nemet cl::desc("Sets the vectorization interleave count. " 39f219c647SAdam Nemet "Zero is autoselect."), 40f219c647SAdam Nemet cl::location( 41f219c647SAdam Nemet VectorizerParams::VectorizationInterleave)); 421d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave; 43f219c647SAdam Nemet 441d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 451d862af7SAdam Nemet "runtime-memory-check-threshold", cl::Hidden, 461d862af7SAdam Nemet cl::desc("When performing memory disambiguation checks at runtime do not " 471d862af7SAdam Nemet "generate more than this number of comparisons (default = 8)."), 481d862af7SAdam Nemet cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 491d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50f219c647SAdam Nemet 511b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks 521b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold( 531b6b50a9SSilviu Baranga "memory-check-merge-threshold", cl::Hidden, 541b6b50a9SSilviu Baranga cl::desc("Maximum number of comparisons done when trying to merge " 551b6b50a9SSilviu Baranga "runtime memory checks. (default = 100)"), 561b6b50a9SSilviu Baranga cl::init(100)); 571b6b50a9SSilviu Baranga 58f219c647SAdam Nemet /// Maximum SIMD width. 59f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64; 60f219c647SAdam Nemet 619c926579SAdam Nemet /// \brief We collect interesting dependences up to this threshold. 629c926579SAdam Nemet static cl::opt<unsigned> MaxInterestingDependence( 639c926579SAdam Nemet "max-interesting-dependences", cl::Hidden, 649c926579SAdam Nemet cl::desc("Maximum number of interesting dependences collected by " 659c926579SAdam Nemet "loop-access analysis (default = 100)"), 669c926579SAdam Nemet cl::init(100)); 679c926579SAdam Nemet 68f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() { 69f219c647SAdam Nemet return ::VectorizationInterleave.getNumOccurrences() > 0; 70f219c647SAdam Nemet } 71f219c647SAdam Nemet 722bd6e984SAdam Nemet void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 730456327cSAdam Nemet const Function *TheFunction, 74339f42b3SAdam Nemet const Loop *TheLoop, 75339f42b3SAdam Nemet const char *PassName) { 760456327cSAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 773e87634fSAdam Nemet if (const Instruction *I = Message.getInstr()) 780456327cSAdam Nemet DL = I->getDebugLoc(); 79339f42b3SAdam Nemet emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 800456327cSAdam Nemet *TheFunction, DL, Message.str()); 810456327cSAdam Nemet } 820456327cSAdam Nemet 830456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) { 840456327cSAdam Nemet if (CastInst *CI = dyn_cast<CastInst>(V)) 850456327cSAdam Nemet if (CI->getOperand(0)->getType()->isIntegerTy()) 860456327cSAdam Nemet return CI->getOperand(0); 870456327cSAdam Nemet return V; 880456327cSAdam Nemet } 890456327cSAdam Nemet 900456327cSAdam Nemet const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 918bc61df9SAdam Nemet const ValueToValueMap &PtrToStride, 920456327cSAdam Nemet Value *Ptr, Value *OrigPtr) { 930456327cSAdam Nemet 940456327cSAdam Nemet const SCEV *OrigSCEV = SE->getSCEV(Ptr); 950456327cSAdam Nemet 960456327cSAdam Nemet // If there is an entry in the map return the SCEV of the pointer with the 970456327cSAdam Nemet // symbolic stride replaced by one. 988bc61df9SAdam Nemet ValueToValueMap::const_iterator SI = 998bc61df9SAdam Nemet PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1000456327cSAdam Nemet if (SI != PtrToStride.end()) { 1010456327cSAdam Nemet Value *StrideVal = SI->second; 1020456327cSAdam Nemet 1030456327cSAdam Nemet // Strip casts. 1040456327cSAdam Nemet StrideVal = stripIntegerCast(StrideVal); 1050456327cSAdam Nemet 1060456327cSAdam Nemet // Replace symbolic stride by one. 1070456327cSAdam Nemet Value *One = ConstantInt::get(StrideVal->getType(), 1); 1080456327cSAdam Nemet ValueToValueMap RewriteMap; 1090456327cSAdam Nemet RewriteMap[StrideVal] = One; 1100456327cSAdam Nemet 1110456327cSAdam Nemet const SCEV *ByOne = 1120456327cSAdam Nemet SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 113339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1140456327cSAdam Nemet << "\n"); 1150456327cSAdam Nemet return ByOne; 1160456327cSAdam Nemet } 1170456327cSAdam Nemet 1180456327cSAdam Nemet // Otherwise, just return the SCEV of the original pointer. 1190456327cSAdam Nemet return SE->getSCEV(Ptr); 1200456327cSAdam Nemet } 1210456327cSAdam Nemet 1227cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 1237cdebac0SAdam Nemet unsigned DepSetId, unsigned ASId, 1241b6b50a9SSilviu Baranga const ValueToValueMap &Strides) { 1250456327cSAdam Nemet // Get the stride replaced scev. 1260456327cSAdam Nemet const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1270456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1280456327cSAdam Nemet assert(AR && "Invalid addrec expression"); 1290456327cSAdam Nemet const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1300e5804a6SSilviu Baranga 1310e5804a6SSilviu Baranga const SCEV *ScStart = AR->getStart(); 1320456327cSAdam Nemet const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1330e5804a6SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*SE); 1340e5804a6SSilviu Baranga 1350e5804a6SSilviu Baranga // For expressions with negative step, the upper bound is ScStart and the 1360e5804a6SSilviu Baranga // lower bound is ScEnd. 1370e5804a6SSilviu Baranga if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 1380e5804a6SSilviu Baranga if (CStep->getValue()->isNegative()) 1390e5804a6SSilviu Baranga std::swap(ScStart, ScEnd); 1400e5804a6SSilviu Baranga } else { 1410e5804a6SSilviu Baranga // Fallback case: the step is not constant, but the we can still 1420e5804a6SSilviu Baranga // get the upper and lower bounds of the interval by using min/max 1430e5804a6SSilviu Baranga // expressions. 1440e5804a6SSilviu Baranga ScStart = SE->getUMinExpr(ScStart, ScEnd); 1450e5804a6SSilviu Baranga ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 1460e5804a6SSilviu Baranga } 1470e5804a6SSilviu Baranga 1480e5804a6SSilviu Baranga Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 1491b6b50a9SSilviu Baranga } 1501b6b50a9SSilviu Baranga 151bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4> 15238530887SAdam Nemet RuntimePointerChecking::generateChecks() const { 153bbe1f1deSAdam Nemet SmallVector<PointerCheck, 4> Checks; 154bbe1f1deSAdam Nemet 1557c52e052SAdam Nemet for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 1567c52e052SAdam Nemet for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 1577c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 1587c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 159bbe1f1deSAdam Nemet 16038530887SAdam Nemet if (needsChecking(CGI, CGJ)) 161bbe1f1deSAdam Nemet Checks.push_back(std::make_pair(&CGI, &CGJ)); 162bbe1f1deSAdam Nemet } 163bbe1f1deSAdam Nemet } 164bbe1f1deSAdam Nemet return Checks; 165bbe1f1deSAdam Nemet } 166bbe1f1deSAdam Nemet 16715840393SAdam Nemet void RuntimePointerChecking::generateChecks( 16815840393SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 16915840393SAdam Nemet assert(Checks.empty() && "Checks is not empty"); 17015840393SAdam Nemet groupChecks(DepCands, UseDependencies); 17115840393SAdam Nemet Checks = generateChecks(); 17215840393SAdam Nemet } 17315840393SAdam Nemet 174651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 175651a5a24SAdam Nemet const CheckingPtrGroup &N) const { 1761b6b50a9SSilviu Baranga for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 1771b6b50a9SSilviu Baranga for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 178651a5a24SAdam Nemet if (needsChecking(M.Members[I], N.Members[J])) 1791b6b50a9SSilviu Baranga return true; 1801b6b50a9SSilviu Baranga return false; 1811b6b50a9SSilviu Baranga } 1821b6b50a9SSilviu Baranga 1831b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum. 1841b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer. 1851b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 1861b6b50a9SSilviu Baranga ScalarEvolution *SE) { 1871b6b50a9SSilviu Baranga const SCEV *Diff = SE->getMinusSCEV(J, I); 1881b6b50a9SSilviu Baranga const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 1891b6b50a9SSilviu Baranga 1901b6b50a9SSilviu Baranga if (!C) 1911b6b50a9SSilviu Baranga return nullptr; 1921b6b50a9SSilviu Baranga if (C->getValue()->isNegative()) 1931b6b50a9SSilviu Baranga return J; 1941b6b50a9SSilviu Baranga return I; 1951b6b50a9SSilviu Baranga } 1961b6b50a9SSilviu Baranga 1977cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 1989f7dedc3SAdam Nemet const SCEV *Start = RtCheck.Pointers[Index].Start; 1999f7dedc3SAdam Nemet const SCEV *End = RtCheck.Pointers[Index].End; 2009f7dedc3SAdam Nemet 2011b6b50a9SSilviu Baranga // Compare the starts and ends with the known minimum and maximum 2021b6b50a9SSilviu Baranga // of this set. We need to know how we compare against the min/max 2031b6b50a9SSilviu Baranga // of the set in order to be able to emit memchecks. 2049f7dedc3SAdam Nemet const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 2051b6b50a9SSilviu Baranga if (!Min0) 2061b6b50a9SSilviu Baranga return false; 2071b6b50a9SSilviu Baranga 2089f7dedc3SAdam Nemet const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 2091b6b50a9SSilviu Baranga if (!Min1) 2101b6b50a9SSilviu Baranga return false; 2111b6b50a9SSilviu Baranga 2121b6b50a9SSilviu Baranga // Update the low bound expression if we've found a new min value. 2139f7dedc3SAdam Nemet if (Min0 == Start) 2149f7dedc3SAdam Nemet Low = Start; 2151b6b50a9SSilviu Baranga 2161b6b50a9SSilviu Baranga // Update the high bound expression if we've found a new max value. 2179f7dedc3SAdam Nemet if (Min1 != End) 2189f7dedc3SAdam Nemet High = End; 2191b6b50a9SSilviu Baranga 2201b6b50a9SSilviu Baranga Members.push_back(Index); 2211b6b50a9SSilviu Baranga return true; 2221b6b50a9SSilviu Baranga } 2231b6b50a9SSilviu Baranga 2247cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks( 2257cdebac0SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 2261b6b50a9SSilviu Baranga // We build the groups from dependency candidates equivalence classes 2271b6b50a9SSilviu Baranga // because: 2281b6b50a9SSilviu Baranga // - We know that pointers in the same equivalence class share 2291b6b50a9SSilviu Baranga // the same underlying object and therefore there is a chance 2301b6b50a9SSilviu Baranga // that we can compare pointers 2311b6b50a9SSilviu Baranga // - We wouldn't be able to merge two pointers for which we need 2321b6b50a9SSilviu Baranga // to emit a memcheck. The classes in DepCands are already 2331b6b50a9SSilviu Baranga // conveniently built such that no two pointers in the same 2341b6b50a9SSilviu Baranga // class need checking against each other. 2351b6b50a9SSilviu Baranga 2361b6b50a9SSilviu Baranga // We use the following (greedy) algorithm to construct the groups 2371b6b50a9SSilviu Baranga // For every pointer in the equivalence class: 2381b6b50a9SSilviu Baranga // For each existing group: 2391b6b50a9SSilviu Baranga // - if the difference between this pointer and the min/max bounds 2401b6b50a9SSilviu Baranga // of the group is a constant, then make the pointer part of the 2411b6b50a9SSilviu Baranga // group and update the min/max bounds of that group as required. 2421b6b50a9SSilviu Baranga 2431b6b50a9SSilviu Baranga CheckingGroups.clear(); 2441b6b50a9SSilviu Baranga 24548250600SSilviu Baranga // If we need to check two pointers to the same underlying object 24648250600SSilviu Baranga // with a non-constant difference, we shouldn't perform any pointer 24748250600SSilviu Baranga // grouping with those pointers. This is because we can easily get 24848250600SSilviu Baranga // into cases where the resulting check would return false, even when 24948250600SSilviu Baranga // the accesses are safe. 25048250600SSilviu Baranga // 25148250600SSilviu Baranga // The following example shows this: 25248250600SSilviu Baranga // for (i = 0; i < 1000; ++i) 25348250600SSilviu Baranga // a[5000 + i * m] = a[i] + a[i + 9000] 25448250600SSilviu Baranga // 25548250600SSilviu Baranga // Here grouping gives a check of (5000, 5000 + 1000 * m) against 25648250600SSilviu Baranga // (0, 10000) which is always false. However, if m is 1, there is no 25748250600SSilviu Baranga // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 25848250600SSilviu Baranga // us to perform an accurate check in this case. 25948250600SSilviu Baranga // 26048250600SSilviu Baranga // The above case requires that we have an UnknownDependence between 26148250600SSilviu Baranga // accesses to the same underlying object. This cannot happen unless 26248250600SSilviu Baranga // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 26348250600SSilviu Baranga // is also false. In this case we will use the fallback path and create 26448250600SSilviu Baranga // separate checking groups for all pointers. 26548250600SSilviu Baranga 2661b6b50a9SSilviu Baranga // If we don't have the dependency partitions, construct a new 26748250600SSilviu Baranga // checking pointer group for each pointer. This is also required 26848250600SSilviu Baranga // for correctness, because in this case we can have checking between 26948250600SSilviu Baranga // pointers to the same underlying object. 2701b6b50a9SSilviu Baranga if (!UseDependencies) { 2711b6b50a9SSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) 2721b6b50a9SSilviu Baranga CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 2731b6b50a9SSilviu Baranga return; 2741b6b50a9SSilviu Baranga } 2751b6b50a9SSilviu Baranga 2761b6b50a9SSilviu Baranga unsigned TotalComparisons = 0; 2771b6b50a9SSilviu Baranga 2781b6b50a9SSilviu Baranga DenseMap<Value *, unsigned> PositionMap; 2799f7dedc3SAdam Nemet for (unsigned Index = 0; Index < Pointers.size(); ++Index) 2809f7dedc3SAdam Nemet PositionMap[Pointers[Index].PointerValue] = Index; 2811b6b50a9SSilviu Baranga 282ce3877fcSSilviu Baranga // We need to keep track of what pointers we've already seen so we 283ce3877fcSSilviu Baranga // don't process them twice. 284ce3877fcSSilviu Baranga SmallSet<unsigned, 2> Seen; 285ce3877fcSSilviu Baranga 2861b6b50a9SSilviu Baranga // Go through all equivalence classes, get the the "pointer check groups" 287ce3877fcSSilviu Baranga // and add them to the overall solution. We use the order in which accesses 288ce3877fcSSilviu Baranga // appear in 'Pointers' to enforce determinism. 289ce3877fcSSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) { 290ce3877fcSSilviu Baranga // We've seen this pointer before, and therefore already processed 291ce3877fcSSilviu Baranga // its equivalence class. 292ce3877fcSSilviu Baranga if (Seen.count(I)) 2931b6b50a9SSilviu Baranga continue; 2941b6b50a9SSilviu Baranga 2959f7dedc3SAdam Nemet MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 2969f7dedc3SAdam Nemet Pointers[I].IsWritePtr); 2971b6b50a9SSilviu Baranga 298ce3877fcSSilviu Baranga SmallVector<CheckingPtrGroup, 2> Groups; 299ce3877fcSSilviu Baranga auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 300ce3877fcSSilviu Baranga 301a647c30fSSilviu Baranga // Because DepCands is constructed by visiting accesses in the order in 302a647c30fSSilviu Baranga // which they appear in alias sets (which is deterministic) and the 303a647c30fSSilviu Baranga // iteration order within an equivalence class member is only dependent on 304a647c30fSSilviu Baranga // the order in which unions and insertions are performed on the 305a647c30fSSilviu Baranga // equivalence class, the iteration order is deterministic. 306ce3877fcSSilviu Baranga for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 3071b6b50a9SSilviu Baranga MI != ME; ++MI) { 3081b6b50a9SSilviu Baranga unsigned Pointer = PositionMap[MI->getPointer()]; 3091b6b50a9SSilviu Baranga bool Merged = false; 310ce3877fcSSilviu Baranga // Mark this pointer as seen. 311ce3877fcSSilviu Baranga Seen.insert(Pointer); 3121b6b50a9SSilviu Baranga 3131b6b50a9SSilviu Baranga // Go through all the existing sets and see if we can find one 3141b6b50a9SSilviu Baranga // which can include this pointer. 3151b6b50a9SSilviu Baranga for (CheckingPtrGroup &Group : Groups) { 3161b6b50a9SSilviu Baranga // Don't perform more than a certain amount of comparisons. 3171b6b50a9SSilviu Baranga // This should limit the cost of grouping the pointers to something 3181b6b50a9SSilviu Baranga // reasonable. If we do end up hitting this threshold, the algorithm 3191b6b50a9SSilviu Baranga // will create separate groups for all remaining pointers. 3201b6b50a9SSilviu Baranga if (TotalComparisons > MemoryCheckMergeThreshold) 3211b6b50a9SSilviu Baranga break; 3221b6b50a9SSilviu Baranga 3231b6b50a9SSilviu Baranga TotalComparisons++; 3241b6b50a9SSilviu Baranga 3251b6b50a9SSilviu Baranga if (Group.addPointer(Pointer)) { 3261b6b50a9SSilviu Baranga Merged = true; 3271b6b50a9SSilviu Baranga break; 3281b6b50a9SSilviu Baranga } 3291b6b50a9SSilviu Baranga } 3301b6b50a9SSilviu Baranga 3311b6b50a9SSilviu Baranga if (!Merged) 3321b6b50a9SSilviu Baranga // We couldn't add this pointer to any existing set or the threshold 3331b6b50a9SSilviu Baranga // for the number of comparisons has been reached. Create a new group 3341b6b50a9SSilviu Baranga // to hold the current pointer. 3351b6b50a9SSilviu Baranga Groups.push_back(CheckingPtrGroup(Pointer, *this)); 3361b6b50a9SSilviu Baranga } 3371b6b50a9SSilviu Baranga 3381b6b50a9SSilviu Baranga // We've computed the grouped checks for this partition. 3391b6b50a9SSilviu Baranga // Save the results and continue with the next one. 3401b6b50a9SSilviu Baranga std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 3411b6b50a9SSilviu Baranga } 3420456327cSAdam Nemet } 3430456327cSAdam Nemet 344041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition( 345041e6debSAdam Nemet const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 346041e6debSAdam Nemet unsigned PtrIdx2) { 347041e6debSAdam Nemet return (PtrToPartition[PtrIdx1] != -1 && 348041e6debSAdam Nemet PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 349041e6debSAdam Nemet } 350041e6debSAdam Nemet 351651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 3529f7dedc3SAdam Nemet const PointerInfo &PointerI = Pointers[I]; 3539f7dedc3SAdam Nemet const PointerInfo &PointerJ = Pointers[J]; 3549f7dedc3SAdam Nemet 355a8945b77SAdam Nemet // No need to check if two readonly pointers intersect. 3569f7dedc3SAdam Nemet if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 357a8945b77SAdam Nemet return false; 358a8945b77SAdam Nemet 359a8945b77SAdam Nemet // Only need to check pointers between two different dependency sets. 3609f7dedc3SAdam Nemet if (PointerI.DependencySetId == PointerJ.DependencySetId) 361a8945b77SAdam Nemet return false; 362a8945b77SAdam Nemet 363a8945b77SAdam Nemet // Only need to check pointers in the same alias set. 3649f7dedc3SAdam Nemet if (PointerI.AliasSetId != PointerJ.AliasSetId) 365a8945b77SAdam Nemet return false; 366a8945b77SAdam Nemet 367a8945b77SAdam Nemet return true; 368a8945b77SAdam Nemet } 369a8945b77SAdam Nemet 37054f0b83eSAdam Nemet void RuntimePointerChecking::printChecks( 37154f0b83eSAdam Nemet raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 37254f0b83eSAdam Nemet unsigned Depth) const { 37354f0b83eSAdam Nemet unsigned N = 0; 37454f0b83eSAdam Nemet for (const auto &Check : Checks) { 37554f0b83eSAdam Nemet const auto &First = Check.first->Members, &Second = Check.second->Members; 37654f0b83eSAdam Nemet 37754f0b83eSAdam Nemet OS.indent(Depth) << "Check " << N++ << ":\n"; 37854f0b83eSAdam Nemet 37954f0b83eSAdam Nemet OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 38054f0b83eSAdam Nemet for (unsigned K = 0; K < First.size(); ++K) 38154f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 38254f0b83eSAdam Nemet 38354f0b83eSAdam Nemet OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 38454f0b83eSAdam Nemet for (unsigned K = 0; K < Second.size(); ++K) 38554f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 38654f0b83eSAdam Nemet } 38754f0b83eSAdam Nemet } 38854f0b83eSAdam Nemet 3893a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 390e91cc6efSAdam Nemet 391e91cc6efSAdam Nemet OS.indent(Depth) << "Run-time memory checks:\n"; 39215840393SAdam Nemet printChecks(OS, Checks, Depth); 3931b6b50a9SSilviu Baranga 3941b6b50a9SSilviu Baranga OS.indent(Depth) << "Grouped accesses:\n"; 3951b6b50a9SSilviu Baranga for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 39654f0b83eSAdam Nemet const auto &CG = CheckingGroups[I]; 39754f0b83eSAdam Nemet 39854f0b83eSAdam Nemet OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 39954f0b83eSAdam Nemet OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 40054f0b83eSAdam Nemet << ")\n"; 40154f0b83eSAdam Nemet for (unsigned J = 0; J < CG.Members.size(); ++J) { 40254f0b83eSAdam Nemet OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 4031b6b50a9SSilviu Baranga << "\n"; 4041b6b50a9SSilviu Baranga } 405e91cc6efSAdam Nemet } 406e91cc6efSAdam Nemet } 407e91cc6efSAdam Nemet 4080456327cSAdam Nemet namespace { 4090456327cSAdam Nemet /// \brief Analyses memory accesses in a loop. 4100456327cSAdam Nemet /// 4110456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data 4120456327cSAdam Nemet /// dependence checking. 4130456327cSAdam Nemet class AccessAnalysis { 4140456327cSAdam Nemet public: 4150456327cSAdam Nemet /// \brief Read or write access location. 4160456327cSAdam Nemet typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4170456327cSAdam Nemet typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4180456327cSAdam Nemet 419e2b885c4SAdam Nemet AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 420dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DA) 4215dc3b2cfSAdam Nemet : DL(Dl), AST(*AA), LI(LI), DepCands(DA), 4225dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded(false) {} 4230456327cSAdam Nemet 4240456327cSAdam Nemet /// \brief Register a load and whether it is only read from. 425ac80dc75SChandler Carruth void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 4260456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 427ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4280456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, false)); 4290456327cSAdam Nemet if (IsReadOnly) 4300456327cSAdam Nemet ReadOnlyPtr.insert(Ptr); 4310456327cSAdam Nemet } 4320456327cSAdam Nemet 4330456327cSAdam Nemet /// \brief Register a store. 434ac80dc75SChandler Carruth void addStore(MemoryLocation &Loc) { 4350456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 436ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4370456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, true)); 4380456327cSAdam Nemet } 4390456327cSAdam Nemet 4400456327cSAdam Nemet /// \brief Check whether we can check the pointers at runtime for 441ee61474aSAdam Nemet /// non-intersection. 442ee61474aSAdam Nemet /// 443ee61474aSAdam Nemet /// Returns true if we need no check or if we do and we can generate them 444ee61474aSAdam Nemet /// (i.e. the pointers have computable bounds). 4457cdebac0SAdam Nemet bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 4467cdebac0SAdam Nemet Loop *TheLoop, const ValueToValueMap &Strides, 4470456327cSAdam Nemet bool ShouldCheckStride = false); 4480456327cSAdam Nemet 4490456327cSAdam Nemet /// \brief Goes over all memory accesses, checks whether a RT check is needed 4500456327cSAdam Nemet /// and builds sets of dependent accesses. 4510456327cSAdam Nemet void buildDependenceSets() { 4520456327cSAdam Nemet processMemAccesses(); 4530456327cSAdam Nemet } 4540456327cSAdam Nemet 4555dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we need to 4565dc3b2cfSAdam Nemet /// perform dependency checking. 4575dc3b2cfSAdam Nemet /// 4585dc3b2cfSAdam Nemet /// Note that this can later be cleared if we retry memcheck analysis without 4595dc3b2cfSAdam Nemet /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 4600456327cSAdam Nemet bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 461df3dc5b9SAdam Nemet 462df3dc5b9SAdam Nemet /// We decided that no dependence analysis would be used. Reset the state. 463df3dc5b9SAdam Nemet void resetDepChecks(MemoryDepChecker &DepChecker) { 464df3dc5b9SAdam Nemet CheckDeps.clear(); 465df3dc5b9SAdam Nemet DepChecker.clearInterestingDependences(); 466df3dc5b9SAdam Nemet } 4670456327cSAdam Nemet 4680456327cSAdam Nemet MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4690456327cSAdam Nemet 4700456327cSAdam Nemet private: 4710456327cSAdam Nemet typedef SetVector<MemAccessInfo> PtrAccessSet; 4720456327cSAdam Nemet 4730456327cSAdam Nemet /// \brief Go over all memory access and check whether runtime pointer checks 474b41d2d3fSAdam Nemet /// are needed and build sets of dependency check candidates. 4750456327cSAdam Nemet void processMemAccesses(); 4760456327cSAdam Nemet 4770456327cSAdam Nemet /// Set of all accesses. 4780456327cSAdam Nemet PtrAccessSet Accesses; 4790456327cSAdam Nemet 480a28d91d8SMehdi Amini const DataLayout &DL; 481a28d91d8SMehdi Amini 4820456327cSAdam Nemet /// Set of accesses that need a further dependence check. 4830456327cSAdam Nemet MemAccessInfoSet CheckDeps; 4840456327cSAdam Nemet 4850456327cSAdam Nemet /// Set of pointers that are read only. 4860456327cSAdam Nemet SmallPtrSet<Value*, 16> ReadOnlyPtr; 4870456327cSAdam Nemet 4880456327cSAdam Nemet /// An alias set tracker to partition the access set by underlying object and 4890456327cSAdam Nemet //intrinsic property (such as TBAA metadata). 4900456327cSAdam Nemet AliasSetTracker AST; 4910456327cSAdam Nemet 492e2b885c4SAdam Nemet LoopInfo *LI; 493e2b885c4SAdam Nemet 4940456327cSAdam Nemet /// Sets of potentially dependent accesses - members of one set share an 4950456327cSAdam Nemet /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4960456327cSAdam Nemet /// dependence check. 497dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DepCands; 4980456327cSAdam Nemet 4995dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we may need 5005dc3b2cfSAdam Nemet /// to add memchecks. Perform the analysis to determine the necessary checks. 5015dc3b2cfSAdam Nemet /// 5025dc3b2cfSAdam Nemet /// Note that, this is different from isDependencyCheckNeeded. When we retry 5035dc3b2cfSAdam Nemet /// memcheck analysis without dependency checking 5045dc3b2cfSAdam Nemet /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 5055dc3b2cfSAdam Nemet /// while this remains set if we have potentially dependent accesses. 5065dc3b2cfSAdam Nemet bool IsRTCheckAnalysisNeeded; 5070456327cSAdam Nemet }; 5080456327cSAdam Nemet 5090456327cSAdam Nemet } // end anonymous namespace 5100456327cSAdam Nemet 5110456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check. 5128bc61df9SAdam Nemet static bool hasComputableBounds(ScalarEvolution *SE, 5138bc61df9SAdam Nemet const ValueToValueMap &Strides, Value *Ptr) { 5140456327cSAdam Nemet const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 5150456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 5160456327cSAdam Nemet if (!AR) 5170456327cSAdam Nemet return false; 5180456327cSAdam Nemet 5190456327cSAdam Nemet return AR->isAffine(); 5200456327cSAdam Nemet } 5210456327cSAdam Nemet 5227cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 5237cdebac0SAdam Nemet ScalarEvolution *SE, Loop *TheLoop, 5247cdebac0SAdam Nemet const ValueToValueMap &StridesMap, 5257cdebac0SAdam Nemet bool ShouldCheckStride) { 5260456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 5270456327cSAdam Nemet // to place a runtime bound check. 5280456327cSAdam Nemet bool CanDoRT = true; 5290456327cSAdam Nemet 530ee61474aSAdam Nemet bool NeedRTCheck = false; 5315dc3b2cfSAdam Nemet if (!IsRTCheckAnalysisNeeded) return true; 53298a13719SSilviu Baranga 5330456327cSAdam Nemet bool IsDepCheckNeeded = isDependencyCheckNeeded(); 5340456327cSAdam Nemet 5350456327cSAdam Nemet // We assign a consecutive id to access from different alias sets. 5360456327cSAdam Nemet // Accesses between different groups doesn't need to be checked. 5370456327cSAdam Nemet unsigned ASId = 1; 5380456327cSAdam Nemet for (auto &AS : AST) { 539424edc6cSAdam Nemet int NumReadPtrChecks = 0; 540424edc6cSAdam Nemet int NumWritePtrChecks = 0; 541424edc6cSAdam Nemet 5420456327cSAdam Nemet // We assign consecutive id to access from different dependence sets. 5430456327cSAdam Nemet // Accesses within the same set don't need a runtime check. 5440456327cSAdam Nemet unsigned RunningDepId = 1; 5450456327cSAdam Nemet DenseMap<Value *, unsigned> DepSetId; 5460456327cSAdam Nemet 5470456327cSAdam Nemet for (auto A : AS) { 5480456327cSAdam Nemet Value *Ptr = A.getValue(); 5490456327cSAdam Nemet bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 5500456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 5510456327cSAdam Nemet 552424edc6cSAdam Nemet if (IsWrite) 553424edc6cSAdam Nemet ++NumWritePtrChecks; 554424edc6cSAdam Nemet else 555424edc6cSAdam Nemet ++NumReadPtrChecks; 556424edc6cSAdam Nemet 5570456327cSAdam Nemet if (hasComputableBounds(SE, StridesMap, Ptr) && 558a28d91d8SMehdi Amini // When we run after a failing dependency check we have to make sure 559a28d91d8SMehdi Amini // we don't have wrapping pointers. 5600456327cSAdam Nemet (!ShouldCheckStride || 561a28d91d8SMehdi Amini isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 5620456327cSAdam Nemet // The id of the dependence set. 5630456327cSAdam Nemet unsigned DepId; 5640456327cSAdam Nemet 5650456327cSAdam Nemet if (IsDepCheckNeeded) { 5660456327cSAdam Nemet Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 5670456327cSAdam Nemet unsigned &LeaderId = DepSetId[Leader]; 5680456327cSAdam Nemet if (!LeaderId) 5690456327cSAdam Nemet LeaderId = RunningDepId++; 5700456327cSAdam Nemet DepId = LeaderId; 5710456327cSAdam Nemet } else 5720456327cSAdam Nemet // Each access has its own dependence set. 5730456327cSAdam Nemet DepId = RunningDepId++; 5740456327cSAdam Nemet 5751b6b50a9SSilviu Baranga RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 5760456327cSAdam Nemet 577339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 5780456327cSAdam Nemet } else { 579f10ca278SAdam Nemet DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 5800456327cSAdam Nemet CanDoRT = false; 5810456327cSAdam Nemet } 5820456327cSAdam Nemet } 5830456327cSAdam Nemet 584424edc6cSAdam Nemet // If we have at least two writes or one write and a read then we need to 585424edc6cSAdam Nemet // check them. But there is no need to checks if there is only one 586424edc6cSAdam Nemet // dependence set for this alias set. 587424edc6cSAdam Nemet // 588424edc6cSAdam Nemet // Note that this function computes CanDoRT and NeedRTCheck independently. 589424edc6cSAdam Nemet // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 590424edc6cSAdam Nemet // for which we couldn't find the bounds but we don't actually need to emit 591424edc6cSAdam Nemet // any checks so it does not matter. 592424edc6cSAdam Nemet if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 593424edc6cSAdam Nemet NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 594424edc6cSAdam Nemet NumWritePtrChecks >= 1)); 595424edc6cSAdam Nemet 5960456327cSAdam Nemet ++ASId; 5970456327cSAdam Nemet } 5980456327cSAdam Nemet 5990456327cSAdam Nemet // If the pointers that we would use for the bounds comparison have different 6000456327cSAdam Nemet // address spaces, assume the values aren't directly comparable, so we can't 6010456327cSAdam Nemet // use them for the runtime check. We also have to assume they could 6020456327cSAdam Nemet // overlap. In the future there should be metadata for whether address spaces 6030456327cSAdam Nemet // are disjoint. 6040456327cSAdam Nemet unsigned NumPointers = RtCheck.Pointers.size(); 6050456327cSAdam Nemet for (unsigned i = 0; i < NumPointers; ++i) { 6060456327cSAdam Nemet for (unsigned j = i + 1; j < NumPointers; ++j) { 6070456327cSAdam Nemet // Only need to check pointers between two different dependency sets. 6089f7dedc3SAdam Nemet if (RtCheck.Pointers[i].DependencySetId == 6099f7dedc3SAdam Nemet RtCheck.Pointers[j].DependencySetId) 6100456327cSAdam Nemet continue; 6110456327cSAdam Nemet // Only need to check pointers in the same alias set. 6129f7dedc3SAdam Nemet if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 6130456327cSAdam Nemet continue; 6140456327cSAdam Nemet 6159f7dedc3SAdam Nemet Value *PtrI = RtCheck.Pointers[i].PointerValue; 6169f7dedc3SAdam Nemet Value *PtrJ = RtCheck.Pointers[j].PointerValue; 6170456327cSAdam Nemet 6180456327cSAdam Nemet unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 6190456327cSAdam Nemet unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 6200456327cSAdam Nemet if (ASi != ASj) { 621339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 6220456327cSAdam Nemet " different address spaces\n"); 6230456327cSAdam Nemet return false; 6240456327cSAdam Nemet } 6250456327cSAdam Nemet } 6260456327cSAdam Nemet } 6270456327cSAdam Nemet 6281b6b50a9SSilviu Baranga if (NeedRTCheck && CanDoRT) 62915840393SAdam Nemet RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 6301b6b50a9SSilviu Baranga 631155e8741SAdam Nemet DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 632ee61474aSAdam Nemet << " pointer comparisons.\n"); 633ee61474aSAdam Nemet 634ee61474aSAdam Nemet RtCheck.Need = NeedRTCheck; 635ee61474aSAdam Nemet 636ee61474aSAdam Nemet bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 637ee61474aSAdam Nemet if (!CanDoRTIfNeeded) 638ee61474aSAdam Nemet RtCheck.reset(); 639ee61474aSAdam Nemet return CanDoRTIfNeeded; 6400456327cSAdam Nemet } 6410456327cSAdam Nemet 6420456327cSAdam Nemet void AccessAnalysis::processMemAccesses() { 6430456327cSAdam Nemet // We process the set twice: first we process read-write pointers, last we 6440456327cSAdam Nemet // process read-only pointers. This allows us to skip dependence tests for 6450456327cSAdam Nemet // read-only pointers. 6460456327cSAdam Nemet 647339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 6480456327cSAdam Nemet DEBUG(dbgs() << " AST: "; AST.dump()); 6499c926579SAdam Nemet DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 6500456327cSAdam Nemet DEBUG({ 6510456327cSAdam Nemet for (auto A : Accesses) 6520456327cSAdam Nemet dbgs() << "\t" << *A.getPointer() << " (" << 6530456327cSAdam Nemet (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 6540456327cSAdam Nemet "read-only" : "read")) << ")\n"; 6550456327cSAdam Nemet }); 6560456327cSAdam Nemet 6570456327cSAdam Nemet // The AliasSetTracker has nicely partitioned our pointers by metadata 6580456327cSAdam Nemet // compatibility and potential for underlying-object overlap. As a result, we 6590456327cSAdam Nemet // only need to check for potential pointer dependencies within each alias 6600456327cSAdam Nemet // set. 6610456327cSAdam Nemet for (auto &AS : AST) { 6620456327cSAdam Nemet // Note that both the alias-set tracker and the alias sets themselves used 6630456327cSAdam Nemet // linked lists internally and so the iteration order here is deterministic 6640456327cSAdam Nemet // (matching the original instruction order within each set). 6650456327cSAdam Nemet 6660456327cSAdam Nemet bool SetHasWrite = false; 6670456327cSAdam Nemet 6680456327cSAdam Nemet // Map of pointers to last access encountered. 6690456327cSAdam Nemet typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 6700456327cSAdam Nemet UnderlyingObjToAccessMap ObjToLastAccess; 6710456327cSAdam Nemet 6720456327cSAdam Nemet // Set of access to check after all writes have been processed. 6730456327cSAdam Nemet PtrAccessSet DeferredAccesses; 6740456327cSAdam Nemet 6750456327cSAdam Nemet // Iterate over each alias set twice, once to process read/write pointers, 6760456327cSAdam Nemet // and then to process read-only pointers. 6770456327cSAdam Nemet for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 6780456327cSAdam Nemet bool UseDeferred = SetIteration > 0; 6790456327cSAdam Nemet PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 6800456327cSAdam Nemet 6810456327cSAdam Nemet for (auto AV : AS) { 6820456327cSAdam Nemet Value *Ptr = AV.getValue(); 6830456327cSAdam Nemet 6840456327cSAdam Nemet // For a single memory access in AliasSetTracker, Accesses may contain 6850456327cSAdam Nemet // both read and write, and they both need to be handled for CheckDeps. 6860456327cSAdam Nemet for (auto AC : S) { 6870456327cSAdam Nemet if (AC.getPointer() != Ptr) 6880456327cSAdam Nemet continue; 6890456327cSAdam Nemet 6900456327cSAdam Nemet bool IsWrite = AC.getInt(); 6910456327cSAdam Nemet 6920456327cSAdam Nemet // If we're using the deferred access set, then it contains only 6930456327cSAdam Nemet // reads. 6940456327cSAdam Nemet bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 6950456327cSAdam Nemet if (UseDeferred && !IsReadOnlyPtr) 6960456327cSAdam Nemet continue; 6970456327cSAdam Nemet // Otherwise, the pointer must be in the PtrAccessSet, either as a 6980456327cSAdam Nemet // read or a write. 6990456327cSAdam Nemet assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 7000456327cSAdam Nemet S.count(MemAccessInfo(Ptr, false))) && 7010456327cSAdam Nemet "Alias-set pointer not in the access set?"); 7020456327cSAdam Nemet 7030456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 7040456327cSAdam Nemet DepCands.insert(Access); 7050456327cSAdam Nemet 7060456327cSAdam Nemet // Memorize read-only pointers for later processing and skip them in 7070456327cSAdam Nemet // the first round (they need to be checked after we have seen all 7080456327cSAdam Nemet // write pointers). Note: we also mark pointer that are not 7090456327cSAdam Nemet // consecutive as "read-only" pointers (so that we check 7100456327cSAdam Nemet // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 7110456327cSAdam Nemet if (!UseDeferred && IsReadOnlyPtr) { 7120456327cSAdam Nemet DeferredAccesses.insert(Access); 7130456327cSAdam Nemet continue; 7140456327cSAdam Nemet } 7150456327cSAdam Nemet 7160456327cSAdam Nemet // If this is a write - check other reads and writes for conflicts. If 7170456327cSAdam Nemet // this is a read only check other writes for conflicts (but only if 7180456327cSAdam Nemet // there is no other write to the ptr - this is an optimization to 7190456327cSAdam Nemet // catch "a[i] = a[i] + " without having to do a dependence check). 7200456327cSAdam Nemet if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 7210456327cSAdam Nemet CheckDeps.insert(Access); 7225dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded = true; 7230456327cSAdam Nemet } 7240456327cSAdam Nemet 7250456327cSAdam Nemet if (IsWrite) 7260456327cSAdam Nemet SetHasWrite = true; 7270456327cSAdam Nemet 7280456327cSAdam Nemet // Create sets of pointers connected by a shared alias set and 7290456327cSAdam Nemet // underlying object. 7300456327cSAdam Nemet typedef SmallVector<Value *, 16> ValueVector; 7310456327cSAdam Nemet ValueVector TempObjects; 732e2b885c4SAdam Nemet 733e2b885c4SAdam Nemet GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 734e2b885c4SAdam Nemet DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 7350456327cSAdam Nemet for (Value *UnderlyingObj : TempObjects) { 7360456327cSAdam Nemet UnderlyingObjToAccessMap::iterator Prev = 7370456327cSAdam Nemet ObjToLastAccess.find(UnderlyingObj); 7380456327cSAdam Nemet if (Prev != ObjToLastAccess.end()) 7390456327cSAdam Nemet DepCands.unionSets(Access, Prev->second); 7400456327cSAdam Nemet 7410456327cSAdam Nemet ObjToLastAccess[UnderlyingObj] = Access; 742e2b885c4SAdam Nemet DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 7430456327cSAdam Nemet } 7440456327cSAdam Nemet } 7450456327cSAdam Nemet } 7460456327cSAdam Nemet } 7470456327cSAdam Nemet } 7480456327cSAdam Nemet } 7490456327cSAdam Nemet 7500456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) { 7510456327cSAdam Nemet if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 7520456327cSAdam Nemet return GEP->isInBounds(); 7530456327cSAdam Nemet return false; 7540456327cSAdam Nemet } 7550456327cSAdam Nemet 756c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 757c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing. 758c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 759c4866d29SAdam Nemet ScalarEvolution *SE, const Loop *L) { 760c4866d29SAdam Nemet // FIXME: This should probably only return true for NUW. 761c4866d29SAdam Nemet if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 762c4866d29SAdam Nemet return true; 763c4866d29SAdam Nemet 764c4866d29SAdam Nemet // Scalar evolution does not propagate the non-wrapping flags to values that 765c4866d29SAdam Nemet // are derived from a non-wrapping induction variable because non-wrapping 766c4866d29SAdam Nemet // could be flow-sensitive. 767c4866d29SAdam Nemet // 768c4866d29SAdam Nemet // Look through the potentially overflowing instruction to try to prove 769c4866d29SAdam Nemet // non-wrapping for the *specific* value of Ptr. 770c4866d29SAdam Nemet 771c4866d29SAdam Nemet // The arithmetic implied by an inbounds GEP can't overflow. 772c4866d29SAdam Nemet auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 773c4866d29SAdam Nemet if (!GEP || !GEP->isInBounds()) 774c4866d29SAdam Nemet return false; 775c4866d29SAdam Nemet 776c4866d29SAdam Nemet // Make sure there is only one non-const index and analyze that. 777c4866d29SAdam Nemet Value *NonConstIndex = nullptr; 778c4866d29SAdam Nemet for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 779c4866d29SAdam Nemet if (!isa<ConstantInt>(*Index)) { 780c4866d29SAdam Nemet if (NonConstIndex) 781c4866d29SAdam Nemet return false; 782c4866d29SAdam Nemet NonConstIndex = *Index; 783c4866d29SAdam Nemet } 784c4866d29SAdam Nemet if (!NonConstIndex) 785c4866d29SAdam Nemet // The recurrence is on the pointer, ignore for now. 786c4866d29SAdam Nemet return false; 787c4866d29SAdam Nemet 788c4866d29SAdam Nemet // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 789c4866d29SAdam Nemet // AddRec using a NSW operation. 790c4866d29SAdam Nemet if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 791c4866d29SAdam Nemet if (OBO->hasNoSignedWrap() && 792c4866d29SAdam Nemet // Assume constant for other the operand so that the AddRec can be 793c4866d29SAdam Nemet // easily found. 794c4866d29SAdam Nemet isa<ConstantInt>(OBO->getOperand(1))) { 795c4866d29SAdam Nemet auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 796c4866d29SAdam Nemet 797c4866d29SAdam Nemet if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 798c4866d29SAdam Nemet return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 799c4866d29SAdam Nemet } 800c4866d29SAdam Nemet 801c4866d29SAdam Nemet return false; 802c4866d29SAdam Nemet } 803c4866d29SAdam Nemet 8040456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride. 80532c05396SHao Liu int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 806a28d91d8SMehdi Amini const ValueToValueMap &StridesMap) { 807e3dcce97SCraig Topper Type *Ty = Ptr->getType(); 8080456327cSAdam Nemet assert(Ty->isPointerTy() && "Unexpected non-ptr"); 8090456327cSAdam Nemet 8100456327cSAdam Nemet // Make sure that the pointer does not point to aggregate types. 811e3dcce97SCraig Topper auto *PtrTy = cast<PointerType>(Ty); 8120456327cSAdam Nemet if (PtrTy->getElementType()->isAggregateType()) { 813339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 814339f42b3SAdam Nemet << *Ptr << "\n"); 8150456327cSAdam Nemet return 0; 8160456327cSAdam Nemet } 8170456327cSAdam Nemet 8180456327cSAdam Nemet const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 8190456327cSAdam Nemet 8200456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 8210456327cSAdam Nemet if (!AR) { 822339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 82304d4163eSAdam Nemet << *Ptr << " SCEV: " << *PtrScev << "\n"); 8240456327cSAdam Nemet return 0; 8250456327cSAdam Nemet } 8260456327cSAdam Nemet 8270456327cSAdam Nemet // The accesss function must stride over the innermost loop. 8280456327cSAdam Nemet if (Lp != AR->getLoop()) { 829339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 83004d4163eSAdam Nemet *Ptr << " SCEV: " << *PtrScev << "\n"); 8310456327cSAdam Nemet } 8320456327cSAdam Nemet 8330456327cSAdam Nemet // The address calculation must not wrap. Otherwise, a dependence could be 8340456327cSAdam Nemet // inverted. 8350456327cSAdam Nemet // An inbounds getelementptr that is a AddRec with a unit stride 8360456327cSAdam Nemet // cannot wrap per definition. The unit stride requirement is checked later. 8370456327cSAdam Nemet // An getelementptr without an inbounds attribute and unit stride would have 8380456327cSAdam Nemet // to access the pointer value "0" which is undefined behavior in address 8390456327cSAdam Nemet // space 0, therefore we can also vectorize this case. 8400456327cSAdam Nemet bool IsInBoundsGEP = isInBoundsGep(Ptr); 841c4866d29SAdam Nemet bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); 8420456327cSAdam Nemet bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 8430456327cSAdam Nemet if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 844339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 8450456327cSAdam Nemet << *Ptr << " SCEV: " << *PtrScev << "\n"); 8460456327cSAdam Nemet return 0; 8470456327cSAdam Nemet } 8480456327cSAdam Nemet 8490456327cSAdam Nemet // Check the step is constant. 8500456327cSAdam Nemet const SCEV *Step = AR->getStepRecurrence(*SE); 8510456327cSAdam Nemet 852943befedSAdam Nemet // Calculate the pointer stride and check if it is constant. 8530456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 8540456327cSAdam Nemet if (!C) { 855339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 85604d4163eSAdam Nemet " SCEV: " << *PtrScev << "\n"); 8570456327cSAdam Nemet return 0; 8580456327cSAdam Nemet } 8590456327cSAdam Nemet 860a28d91d8SMehdi Amini auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 861a28d91d8SMehdi Amini int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 8620456327cSAdam Nemet const APInt &APStepVal = C->getValue()->getValue(); 8630456327cSAdam Nemet 8640456327cSAdam Nemet // Huge step value - give up. 8650456327cSAdam Nemet if (APStepVal.getBitWidth() > 64) 8660456327cSAdam Nemet return 0; 8670456327cSAdam Nemet 8680456327cSAdam Nemet int64_t StepVal = APStepVal.getSExtValue(); 8690456327cSAdam Nemet 8700456327cSAdam Nemet // Strided access. 8710456327cSAdam Nemet int64_t Stride = StepVal / Size; 8720456327cSAdam Nemet int64_t Rem = StepVal % Size; 8730456327cSAdam Nemet if (Rem) 8740456327cSAdam Nemet return 0; 8750456327cSAdam Nemet 8760456327cSAdam Nemet // If the SCEV could wrap but we have an inbounds gep with a unit stride we 8770456327cSAdam Nemet // know we can't "wrap around the address space". In case of address space 8780456327cSAdam Nemet // zero we know that this won't happen without triggering undefined behavior. 8790456327cSAdam Nemet if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 8800456327cSAdam Nemet Stride != 1 && Stride != -1) 8810456327cSAdam Nemet return 0; 8820456327cSAdam Nemet 8830456327cSAdam Nemet return Stride; 8840456327cSAdam Nemet } 8850456327cSAdam Nemet 8869c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 8879c926579SAdam Nemet switch (Type) { 8889c926579SAdam Nemet case NoDep: 8899c926579SAdam Nemet case Forward: 8909c926579SAdam Nemet case BackwardVectorizable: 8919c926579SAdam Nemet return true; 8929c926579SAdam Nemet 8939c926579SAdam Nemet case Unknown: 8949c926579SAdam Nemet case ForwardButPreventsForwarding: 8959c926579SAdam Nemet case Backward: 8969c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 8979c926579SAdam Nemet return false; 8989c926579SAdam Nemet } 899d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 9009c926579SAdam Nemet } 9019c926579SAdam Nemet 9029c926579SAdam Nemet bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 9039c926579SAdam Nemet switch (Type) { 9049c926579SAdam Nemet case NoDep: 9059c926579SAdam Nemet case Forward: 9069c926579SAdam Nemet return false; 9079c926579SAdam Nemet 9089c926579SAdam Nemet case BackwardVectorizable: 9099c926579SAdam Nemet case Unknown: 9109c926579SAdam Nemet case ForwardButPreventsForwarding: 9119c926579SAdam Nemet case Backward: 9129c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 9139c926579SAdam Nemet return true; 9149c926579SAdam Nemet } 915d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 9169c926579SAdam Nemet } 9179c926579SAdam Nemet 9189c926579SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 9199c926579SAdam Nemet switch (Type) { 9209c926579SAdam Nemet case NoDep: 9219c926579SAdam Nemet case Forward: 9229c926579SAdam Nemet case ForwardButPreventsForwarding: 9239c926579SAdam Nemet return false; 9249c926579SAdam Nemet 9259c926579SAdam Nemet case Unknown: 9269c926579SAdam Nemet case BackwardVectorizable: 9279c926579SAdam Nemet case Backward: 9289c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 9299c926579SAdam Nemet return true; 9309c926579SAdam Nemet } 931d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 9329c926579SAdam Nemet } 9339c926579SAdam Nemet 9340456327cSAdam Nemet bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 9350456327cSAdam Nemet unsigned TypeByteSize) { 9360456327cSAdam Nemet // If loads occur at a distance that is not a multiple of a feasible vector 9370456327cSAdam Nemet // factor store-load forwarding does not take place. 9380456327cSAdam Nemet // Positive dependences might cause troubles because vectorizing them might 9390456327cSAdam Nemet // prevent store-load forwarding making vectorized code run a lot slower. 9400456327cSAdam Nemet // a[i] = a[i-3] ^ a[i-8]; 9410456327cSAdam Nemet // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 9420456327cSAdam Nemet // hence on your typical architecture store-load forwarding does not take 9430456327cSAdam Nemet // place. Vectorizing in such cases does not make sense. 9440456327cSAdam Nemet // Store-load forwarding distance. 9450456327cSAdam Nemet const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 9460456327cSAdam Nemet // Maximum vector factor. 947f219c647SAdam Nemet unsigned MaxVFWithoutSLForwardIssues = 948f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize; 9490456327cSAdam Nemet if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 9500456327cSAdam Nemet MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 9510456327cSAdam Nemet 9520456327cSAdam Nemet for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 9530456327cSAdam Nemet vf *= 2) { 9540456327cSAdam Nemet if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 9550456327cSAdam Nemet MaxVFWithoutSLForwardIssues = (vf >>=1); 9560456327cSAdam Nemet break; 9570456327cSAdam Nemet } 9580456327cSAdam Nemet } 9590456327cSAdam Nemet 9600456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 961339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance " << Distance << 96204d4163eSAdam Nemet " that could cause a store-load forwarding conflict\n"); 9630456327cSAdam Nemet return true; 9640456327cSAdam Nemet } 9650456327cSAdam Nemet 9660456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 967f219c647SAdam Nemet MaxVFWithoutSLForwardIssues != 968f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize) 9690456327cSAdam Nemet MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 9700456327cSAdam Nemet return false; 9710456327cSAdam Nemet } 9720456327cSAdam Nemet 973751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride. 974751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in 975751004a6SHao Liu /// bytes. 976751004a6SHao Liu /// 977751004a6SHao Liu /// \returns true if they are independent. 978751004a6SHao Liu static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 979751004a6SHao Liu unsigned TypeByteSize) { 980751004a6SHao Liu assert(Stride > 1 && "The stride must be greater than 1"); 981751004a6SHao Liu assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 982751004a6SHao Liu assert(Distance > 0 && "The distance must be non-zero"); 983751004a6SHao Liu 984751004a6SHao Liu // Skip if the distance is not multiple of type byte size. 985751004a6SHao Liu if (Distance % TypeByteSize) 986751004a6SHao Liu return false; 987751004a6SHao Liu 988751004a6SHao Liu unsigned ScaledDist = Distance / TypeByteSize; 989751004a6SHao Liu 990751004a6SHao Liu // No dependence if the scaled distance is not multiple of the stride. 991751004a6SHao Liu // E.g. 992751004a6SHao Liu // for (i = 0; i < 1024 ; i += 4) 993751004a6SHao Liu // A[i+2] = A[i] + 1; 994751004a6SHao Liu // 995751004a6SHao Liu // Two accesses in memory (scaled distance is 2, stride is 4): 996751004a6SHao Liu // | A[0] | | | | A[4] | | | | 997751004a6SHao Liu // | | | A[2] | | | | A[6] | | 998751004a6SHao Liu // 999751004a6SHao Liu // E.g. 1000751004a6SHao Liu // for (i = 0; i < 1024 ; i += 3) 1001751004a6SHao Liu // A[i+4] = A[i] + 1; 1002751004a6SHao Liu // 1003751004a6SHao Liu // Two accesses in memory (scaled distance is 4, stride is 3): 1004751004a6SHao Liu // | A[0] | | | A[3] | | | A[6] | | | 1005751004a6SHao Liu // | | | | | A[4] | | | A[7] | | 1006751004a6SHao Liu return ScaledDist % Stride; 1007751004a6SHao Liu } 1008751004a6SHao Liu 10099c926579SAdam Nemet MemoryDepChecker::Dependence::DepType 10109c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 10110456327cSAdam Nemet const MemAccessInfo &B, unsigned BIdx, 10128bc61df9SAdam Nemet const ValueToValueMap &Strides) { 10130456327cSAdam Nemet assert (AIdx < BIdx && "Must pass arguments in program order"); 10140456327cSAdam Nemet 10150456327cSAdam Nemet Value *APtr = A.getPointer(); 10160456327cSAdam Nemet Value *BPtr = B.getPointer(); 10170456327cSAdam Nemet bool AIsWrite = A.getInt(); 10180456327cSAdam Nemet bool BIsWrite = B.getInt(); 10190456327cSAdam Nemet 10200456327cSAdam Nemet // Two reads are independent. 10210456327cSAdam Nemet if (!AIsWrite && !BIsWrite) 10229c926579SAdam Nemet return Dependence::NoDep; 10230456327cSAdam Nemet 10240456327cSAdam Nemet // We cannot check pointers in different address spaces. 10250456327cSAdam Nemet if (APtr->getType()->getPointerAddressSpace() != 10260456327cSAdam Nemet BPtr->getType()->getPointerAddressSpace()) 10279c926579SAdam Nemet return Dependence::Unknown; 10280456327cSAdam Nemet 10290456327cSAdam Nemet const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 10300456327cSAdam Nemet const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 10310456327cSAdam Nemet 1032a28d91d8SMehdi Amini int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 1033a28d91d8SMehdi Amini int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 10340456327cSAdam Nemet 10350456327cSAdam Nemet const SCEV *Src = AScev; 10360456327cSAdam Nemet const SCEV *Sink = BScev; 10370456327cSAdam Nemet 10380456327cSAdam Nemet // If the induction step is negative we have to invert source and sink of the 10390456327cSAdam Nemet // dependence. 10400456327cSAdam Nemet if (StrideAPtr < 0) { 10410456327cSAdam Nemet //Src = BScev; 10420456327cSAdam Nemet //Sink = AScev; 10430456327cSAdam Nemet std::swap(APtr, BPtr); 10440456327cSAdam Nemet std::swap(Src, Sink); 10450456327cSAdam Nemet std::swap(AIsWrite, BIsWrite); 10460456327cSAdam Nemet std::swap(AIdx, BIdx); 10470456327cSAdam Nemet std::swap(StrideAPtr, StrideBPtr); 10480456327cSAdam Nemet } 10490456327cSAdam Nemet 10500456327cSAdam Nemet const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 10510456327cSAdam Nemet 1052339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 10530456327cSAdam Nemet << "(Induction step: " << StrideAPtr << ")\n"); 1054339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 10550456327cSAdam Nemet << *InstMap[BIdx] << ": " << *Dist << "\n"); 10560456327cSAdam Nemet 1057943befedSAdam Nemet // Need accesses with constant stride. We don't want to vectorize 10580456327cSAdam Nemet // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 10590456327cSAdam Nemet // the address space. 10600456327cSAdam Nemet if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1061943befedSAdam Nemet DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 10629c926579SAdam Nemet return Dependence::Unknown; 10630456327cSAdam Nemet } 10640456327cSAdam Nemet 10650456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 10660456327cSAdam Nemet if (!C) { 1067339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 10680456327cSAdam Nemet ShouldRetryWithRuntimeCheck = true; 10699c926579SAdam Nemet return Dependence::Unknown; 10700456327cSAdam Nemet } 10710456327cSAdam Nemet 10720456327cSAdam Nemet Type *ATy = APtr->getType()->getPointerElementType(); 10730456327cSAdam Nemet Type *BTy = BPtr->getType()->getPointerElementType(); 1074a28d91d8SMehdi Amini auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1075a28d91d8SMehdi Amini unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 10760456327cSAdam Nemet 10770456327cSAdam Nemet // Negative distances are not plausible dependencies. 10780456327cSAdam Nemet const APInt &Val = C->getValue()->getValue(); 10790456327cSAdam Nemet if (Val.isNegative()) { 10800456327cSAdam Nemet bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 10810456327cSAdam Nemet if (IsTrueDataDependence && 10820456327cSAdam Nemet (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 10830456327cSAdam Nemet ATy != BTy)) 10849c926579SAdam Nemet return Dependence::ForwardButPreventsForwarding; 10850456327cSAdam Nemet 1086339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 10879c926579SAdam Nemet return Dependence::Forward; 10880456327cSAdam Nemet } 10890456327cSAdam Nemet 10900456327cSAdam Nemet // Write to the same location with the same size. 10910456327cSAdam Nemet // Could be improved to assert type sizes are the same (i32 == float, etc). 10920456327cSAdam Nemet if (Val == 0) { 10930456327cSAdam Nemet if (ATy == BTy) 10949c926579SAdam Nemet return Dependence::NoDep; 1095339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 10969c926579SAdam Nemet return Dependence::Unknown; 10970456327cSAdam Nemet } 10980456327cSAdam Nemet 10990456327cSAdam Nemet assert(Val.isStrictlyPositive() && "Expect a positive value"); 11000456327cSAdam Nemet 11010456327cSAdam Nemet if (ATy != BTy) { 110204d4163eSAdam Nemet DEBUG(dbgs() << 1103339f42b3SAdam Nemet "LAA: ReadWrite-Write positive dependency with different types\n"); 11049c926579SAdam Nemet return Dependence::Unknown; 11050456327cSAdam Nemet } 11060456327cSAdam Nemet 11070456327cSAdam Nemet unsigned Distance = (unsigned) Val.getZExtValue(); 11080456327cSAdam Nemet 1109751004a6SHao Liu unsigned Stride = std::abs(StrideAPtr); 1110751004a6SHao Liu if (Stride > 1 && 11110131a569SAdam Nemet areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 11120131a569SAdam Nemet DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1113751004a6SHao Liu return Dependence::NoDep; 11140131a569SAdam Nemet } 1115751004a6SHao Liu 11160456327cSAdam Nemet // Bail out early if passed-in parameters make vectorization not feasible. 1117f219c647SAdam Nemet unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1118f219c647SAdam Nemet VectorizerParams::VectorizationFactor : 1); 1119f219c647SAdam Nemet unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1120f219c647SAdam Nemet VectorizerParams::VectorizationInterleave : 1); 1121751004a6SHao Liu // The minimum number of iterations for a vectorized/unrolled version. 1122751004a6SHao Liu unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 11230456327cSAdam Nemet 1124751004a6SHao Liu // It's not vectorizable if the distance is smaller than the minimum distance 1125751004a6SHao Liu // needed for a vectroized/unrolled version. Vectorizing one iteration in 1126751004a6SHao Liu // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1127751004a6SHao Liu // TypeByteSize (No need to plus the last gap distance). 1128751004a6SHao Liu // 1129751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1130751004a6SHao Liu // foo(int *A) { 1131751004a6SHao Liu // int *B = (int *)((char *)A + 14); 1132751004a6SHao Liu // for (i = 0 ; i < 1024 ; i += 2) 1133751004a6SHao Liu // B[i] = A[i] + 1; 1134751004a6SHao Liu // } 1135751004a6SHao Liu // 1136751004a6SHao Liu // Two accesses in memory (stride is 2): 1137751004a6SHao Liu // | A[0] | | A[2] | | A[4] | | A[6] | | 1138751004a6SHao Liu // | B[0] | | B[2] | | B[4] | 1139751004a6SHao Liu // 1140751004a6SHao Liu // Distance needs for vectorizing iterations except the last iteration: 1141751004a6SHao Liu // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1142751004a6SHao Liu // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1143751004a6SHao Liu // 1144751004a6SHao Liu // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1145751004a6SHao Liu // 12, which is less than distance. 1146751004a6SHao Liu // 1147751004a6SHao Liu // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1148751004a6SHao Liu // the minimum distance needed is 28, which is greater than distance. It is 1149751004a6SHao Liu // not safe to do vectorization. 1150751004a6SHao Liu unsigned MinDistanceNeeded = 1151751004a6SHao Liu TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1152751004a6SHao Liu if (MinDistanceNeeded > Distance) { 1153751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1154751004a6SHao Liu << '\n'); 1155751004a6SHao Liu return Dependence::Backward; 1156751004a6SHao Liu } 1157751004a6SHao Liu 1158751004a6SHao Liu // Unsafe if the minimum distance needed is greater than max safe distance. 1159751004a6SHao Liu if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1160751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because it needs at least " 1161751004a6SHao Liu << MinDistanceNeeded << " size in bytes"); 11629c926579SAdam Nemet return Dependence::Backward; 11630456327cSAdam Nemet } 11640456327cSAdam Nemet 11659cc0c399SAdam Nemet // Positive distance bigger than max vectorization factor. 1166751004a6SHao Liu // FIXME: Should use max factor instead of max distance in bytes, which could 1167751004a6SHao Liu // not handle different types. 1168751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1169751004a6SHao Liu // void foo (int *A, char *B) { 1170751004a6SHao Liu // for (unsigned i = 0; i < 1024; i++) { 1171751004a6SHao Liu // A[i+2] = A[i] + 1; 1172751004a6SHao Liu // B[i+2] = B[i] + 1; 1173751004a6SHao Liu // } 1174751004a6SHao Liu // } 1175751004a6SHao Liu // 1176751004a6SHao Liu // This case is currently unsafe according to the max safe distance. If we 1177751004a6SHao Liu // analyze the two accesses on array B, the max safe dependence distance 1178751004a6SHao Liu // is 2. Then we analyze the accesses on array A, the minimum distance needed 1179751004a6SHao Liu // is 8, which is less than 2 and forbidden vectorization, But actually 1180751004a6SHao Liu // both A and B could be vectorized by 2 iterations. 1181751004a6SHao Liu MaxSafeDepDistBytes = 1182751004a6SHao Liu Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 11830456327cSAdam Nemet 11840456327cSAdam Nemet bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 11850456327cSAdam Nemet if (IsTrueDataDependence && 11860456327cSAdam Nemet couldPreventStoreLoadForward(Distance, TypeByteSize)) 11879c926579SAdam Nemet return Dependence::BackwardVectorizableButPreventsForwarding; 11880456327cSAdam Nemet 1189751004a6SHao Liu DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1190751004a6SHao Liu << " with max VF = " 1191751004a6SHao Liu << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 11920456327cSAdam Nemet 11939c926579SAdam Nemet return Dependence::BackwardVectorizable; 11940456327cSAdam Nemet } 11950456327cSAdam Nemet 1196dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 11970456327cSAdam Nemet MemAccessInfoSet &CheckDeps, 11988bc61df9SAdam Nemet const ValueToValueMap &Strides) { 11990456327cSAdam Nemet 12000456327cSAdam Nemet MaxSafeDepDistBytes = -1U; 12010456327cSAdam Nemet while (!CheckDeps.empty()) { 12020456327cSAdam Nemet MemAccessInfo CurAccess = *CheckDeps.begin(); 12030456327cSAdam Nemet 12040456327cSAdam Nemet // Get the relevant memory access set. 12050456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::iterator I = 12060456327cSAdam Nemet AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 12070456327cSAdam Nemet 12080456327cSAdam Nemet // Check accesses within this set. 12090456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 12100456327cSAdam Nemet AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 12110456327cSAdam Nemet 12120456327cSAdam Nemet // Check every access pair. 12130456327cSAdam Nemet while (AI != AE) { 12140456327cSAdam Nemet CheckDeps.erase(*AI); 12150456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 12160456327cSAdam Nemet while (OI != AE) { 12170456327cSAdam Nemet // Check every accessing instruction pair in program order. 12180456327cSAdam Nemet for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 12190456327cSAdam Nemet I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 12200456327cSAdam Nemet for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 12210456327cSAdam Nemet I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 12229c926579SAdam Nemet auto A = std::make_pair(&*AI, *I1); 12239c926579SAdam Nemet auto B = std::make_pair(&*OI, *I2); 12249c926579SAdam Nemet 12259c926579SAdam Nemet assert(*I1 != *I2); 12269c926579SAdam Nemet if (*I1 > *I2) 12279c926579SAdam Nemet std::swap(A, B); 12289c926579SAdam Nemet 12299c926579SAdam Nemet Dependence::DepType Type = 12309c926579SAdam Nemet isDependent(*A.first, A.second, *B.first, B.second, Strides); 12319c926579SAdam Nemet SafeForVectorization &= Dependence::isSafeForVectorization(Type); 12329c926579SAdam Nemet 12339c926579SAdam Nemet // Gather dependences unless we accumulated MaxInterestingDependence 12349c926579SAdam Nemet // dependences. In that case return as soon as we find the first 12359c926579SAdam Nemet // unsafe dependence. This puts a limit on this quadratic 12369c926579SAdam Nemet // algorithm. 12379c926579SAdam Nemet if (RecordInterestingDependences) { 12389c926579SAdam Nemet if (Dependence::isInterestingDependence(Type)) 12399c926579SAdam Nemet InterestingDependences.push_back( 12409c926579SAdam Nemet Dependence(A.second, B.second, Type)); 12419c926579SAdam Nemet 12429c926579SAdam Nemet if (InterestingDependences.size() >= MaxInterestingDependence) { 12439c926579SAdam Nemet RecordInterestingDependences = false; 12449c926579SAdam Nemet InterestingDependences.clear(); 12459c926579SAdam Nemet DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 12469c926579SAdam Nemet } 12479c926579SAdam Nemet } 12489c926579SAdam Nemet if (!RecordInterestingDependences && !SafeForVectorization) 12490456327cSAdam Nemet return false; 12500456327cSAdam Nemet } 12510456327cSAdam Nemet ++OI; 12520456327cSAdam Nemet } 12530456327cSAdam Nemet AI++; 12540456327cSAdam Nemet } 12550456327cSAdam Nemet } 12569c926579SAdam Nemet 12579c926579SAdam Nemet DEBUG(dbgs() << "Total Interesting Dependences: " 12589c926579SAdam Nemet << InterestingDependences.size() << "\n"); 12599c926579SAdam Nemet return SafeForVectorization; 12600456327cSAdam Nemet } 12610456327cSAdam Nemet 1262ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> 1263ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1264ec1e2bb6SAdam Nemet MemAccessInfo Access(Ptr, isWrite); 1265ec1e2bb6SAdam Nemet auto &IndexVector = Accesses.find(Access)->second; 1266ec1e2bb6SAdam Nemet 1267ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> Insts; 1268ec1e2bb6SAdam Nemet std::transform(IndexVector.begin(), IndexVector.end(), 1269ec1e2bb6SAdam Nemet std::back_inserter(Insts), 1270ec1e2bb6SAdam Nemet [&](unsigned Idx) { return this->InstMap[Idx]; }); 1271ec1e2bb6SAdam Nemet return Insts; 1272ec1e2bb6SAdam Nemet } 1273ec1e2bb6SAdam Nemet 127458913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = { 127558913d65SAdam Nemet "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 127658913d65SAdam Nemet "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 127758913d65SAdam Nemet 127858913d65SAdam Nemet void MemoryDepChecker::Dependence::print( 127958913d65SAdam Nemet raw_ostream &OS, unsigned Depth, 128058913d65SAdam Nemet const SmallVectorImpl<Instruction *> &Instrs) const { 128158913d65SAdam Nemet OS.indent(Depth) << DepName[Type] << ":\n"; 128258913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 128358913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 128458913d65SAdam Nemet } 128558913d65SAdam Nemet 1286929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() { 12878dcb3b6aSAdam Nemet // We need to have a loop header. 12888dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: Found a loop: " << 12898dcb3b6aSAdam Nemet TheLoop->getHeader()->getName() << '\n'); 12908dcb3b6aSAdam Nemet 1291929c38e8SAdam Nemet // We can only analyze innermost loops. 1292929c38e8SAdam Nemet if (!TheLoop->empty()) { 12938dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 12942bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1295929c38e8SAdam Nemet return false; 1296929c38e8SAdam Nemet } 1297929c38e8SAdam Nemet 1298929c38e8SAdam Nemet // We must have a single backedge. 1299929c38e8SAdam Nemet if (TheLoop->getNumBackEdges() != 1) { 13008dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1301929c38e8SAdam Nemet emitAnalysis( 13022bd6e984SAdam Nemet LoopAccessReport() << 1303929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1304929c38e8SAdam Nemet return false; 1305929c38e8SAdam Nemet } 1306929c38e8SAdam Nemet 1307929c38e8SAdam Nemet // We must have a single exiting block. 1308929c38e8SAdam Nemet if (!TheLoop->getExitingBlock()) { 13098dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1310929c38e8SAdam Nemet emitAnalysis( 13112bd6e984SAdam Nemet LoopAccessReport() << 1312929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1313929c38e8SAdam Nemet return false; 1314929c38e8SAdam Nemet } 1315929c38e8SAdam Nemet 1316929c38e8SAdam Nemet // We only handle bottom-tested loops, i.e. loop in which the condition is 1317929c38e8SAdam Nemet // checked at the end of each iteration. With that we can assume that all 1318929c38e8SAdam Nemet // instructions in the loop are executed the same number of times. 1319929c38e8SAdam Nemet if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 13208dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1321929c38e8SAdam Nemet emitAnalysis( 13222bd6e984SAdam Nemet LoopAccessReport() << 1323929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1324929c38e8SAdam Nemet return false; 1325929c38e8SAdam Nemet } 1326929c38e8SAdam Nemet 1327929c38e8SAdam Nemet // ScalarEvolution needs to be able to find the exit count. 1328929c38e8SAdam Nemet const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 1329929c38e8SAdam Nemet if (ExitCount == SE->getCouldNotCompute()) { 13302bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << 1331929c38e8SAdam Nemet "could not determine number of loop iterations"); 1332929c38e8SAdam Nemet DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1333929c38e8SAdam Nemet return false; 1334929c38e8SAdam Nemet } 1335929c38e8SAdam Nemet 1336929c38e8SAdam Nemet return true; 1337929c38e8SAdam Nemet } 1338929c38e8SAdam Nemet 13398bc61df9SAdam Nemet void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 13400456327cSAdam Nemet 13410456327cSAdam Nemet typedef SmallVector<Value*, 16> ValueVector; 13420456327cSAdam Nemet typedef SmallPtrSet<Value*, 16> ValueSet; 13430456327cSAdam Nemet 13440456327cSAdam Nemet // Holds the Load and Store *instructions*. 13450456327cSAdam Nemet ValueVector Loads; 13460456327cSAdam Nemet ValueVector Stores; 13470456327cSAdam Nemet 13480456327cSAdam Nemet // Holds all the different accesses in the loop. 13490456327cSAdam Nemet unsigned NumReads = 0; 13500456327cSAdam Nemet unsigned NumReadWrites = 0; 13510456327cSAdam Nemet 13527cdebac0SAdam Nemet PtrRtChecking.Pointers.clear(); 13537cdebac0SAdam Nemet PtrRtChecking.Need = false; 13540456327cSAdam Nemet 13550456327cSAdam Nemet const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 13560456327cSAdam Nemet 13570456327cSAdam Nemet // For each block. 13580456327cSAdam Nemet for (Loop::block_iterator bb = TheLoop->block_begin(), 13590456327cSAdam Nemet be = TheLoop->block_end(); bb != be; ++bb) { 13600456327cSAdam Nemet 13610456327cSAdam Nemet // Scan the BB and collect legal loads and stores. 13620456327cSAdam Nemet for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 13630456327cSAdam Nemet ++it) { 13640456327cSAdam Nemet 13650456327cSAdam Nemet // If this is a load, save it. If this instruction can read from memory 13660456327cSAdam Nemet // but is not a load, then we quit. Notice that we don't handle function 13670456327cSAdam Nemet // calls that read or write. 13680456327cSAdam Nemet if (it->mayReadFromMemory()) { 13690456327cSAdam Nemet // Many math library functions read the rounding mode. We will only 13700456327cSAdam Nemet // vectorize a loop if it contains known function calls that don't set 13710456327cSAdam Nemet // the flag. Therefore, it is safe to ignore this read from memory. 13720456327cSAdam Nemet CallInst *Call = dyn_cast<CallInst>(it); 13730456327cSAdam Nemet if (Call && getIntrinsicIDForCall(Call, TLI)) 13740456327cSAdam Nemet continue; 13750456327cSAdam Nemet 13769b3cf604SMichael Zolotukhin // If the function has an explicit vectorized counterpart, we can safely 13779b3cf604SMichael Zolotukhin // assume that it can be vectorized. 13789b3cf604SMichael Zolotukhin if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 13799b3cf604SMichael Zolotukhin TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 13809b3cf604SMichael Zolotukhin continue; 13819b3cf604SMichael Zolotukhin 13820456327cSAdam Nemet LoadInst *Ld = dyn_cast<LoadInst>(it); 13830456327cSAdam Nemet if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 13842bd6e984SAdam Nemet emitAnalysis(LoopAccessReport(Ld) 13850456327cSAdam Nemet << "read with atomic ordering or volatile read"); 1386339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1387436018c3SAdam Nemet CanVecMem = false; 1388436018c3SAdam Nemet return; 13890456327cSAdam Nemet } 13900456327cSAdam Nemet NumLoads++; 13910456327cSAdam Nemet Loads.push_back(Ld); 13920456327cSAdam Nemet DepChecker.addAccess(Ld); 13930456327cSAdam Nemet continue; 13940456327cSAdam Nemet } 13950456327cSAdam Nemet 13960456327cSAdam Nemet // Save 'store' instructions. Abort if other instructions write to memory. 13970456327cSAdam Nemet if (it->mayWriteToMemory()) { 13980456327cSAdam Nemet StoreInst *St = dyn_cast<StoreInst>(it); 13990456327cSAdam Nemet if (!St) { 14002bd6e984SAdam Nemet emitAnalysis(LoopAccessReport(it) << 140104d4163eSAdam Nemet "instruction cannot be vectorized"); 1402436018c3SAdam Nemet CanVecMem = false; 1403436018c3SAdam Nemet return; 14040456327cSAdam Nemet } 14050456327cSAdam Nemet if (!St->isSimple() && !IsAnnotatedParallel) { 14062bd6e984SAdam Nemet emitAnalysis(LoopAccessReport(St) 14070456327cSAdam Nemet << "write with atomic ordering or volatile write"); 1408339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1409436018c3SAdam Nemet CanVecMem = false; 1410436018c3SAdam Nemet return; 14110456327cSAdam Nemet } 14120456327cSAdam Nemet NumStores++; 14130456327cSAdam Nemet Stores.push_back(St); 14140456327cSAdam Nemet DepChecker.addAccess(St); 14150456327cSAdam Nemet } 14160456327cSAdam Nemet } // Next instr. 14170456327cSAdam Nemet } // Next block. 14180456327cSAdam Nemet 14190456327cSAdam Nemet // Now we have two lists that hold the loads and the stores. 14200456327cSAdam Nemet // Next, we find the pointers that they use. 14210456327cSAdam Nemet 14220456327cSAdam Nemet // Check if we see any stores. If there are no stores, then we don't 14230456327cSAdam Nemet // care if the pointers are *restrict*. 14240456327cSAdam Nemet if (!Stores.size()) { 1425339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1426436018c3SAdam Nemet CanVecMem = true; 1427436018c3SAdam Nemet return; 14280456327cSAdam Nemet } 14290456327cSAdam Nemet 1430dee666bcSAdam Nemet MemoryDepChecker::DepCandidates DependentAccesses; 1431a28d91d8SMehdi Amini AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1432e2b885c4SAdam Nemet AA, LI, DependentAccesses); 14330456327cSAdam Nemet 14340456327cSAdam Nemet // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 14350456327cSAdam Nemet // multiple times on the same object. If the ptr is accessed twice, once 14360456327cSAdam Nemet // for read and once for write, it will only appear once (on the write 14370456327cSAdam Nemet // list). This is okay, since we are going to check for conflicts between 14380456327cSAdam Nemet // writes and between reads and writes, but not between reads and reads. 14390456327cSAdam Nemet ValueSet Seen; 14400456327cSAdam Nemet 14410456327cSAdam Nemet ValueVector::iterator I, IE; 14420456327cSAdam Nemet for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 14430456327cSAdam Nemet StoreInst *ST = cast<StoreInst>(*I); 14440456327cSAdam Nemet Value* Ptr = ST->getPointerOperand(); 1445ce48250fSAdam Nemet // Check for store to loop invariant address. 1446ce48250fSAdam Nemet StoreToLoopInvariantAddress |= isUniform(Ptr); 14470456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the read-write 14480456327cSAdam Nemet // list. At this phase it is only a 'write' list. 14490456327cSAdam Nemet if (Seen.insert(Ptr).second) { 14500456327cSAdam Nemet ++NumReadWrites; 14510456327cSAdam Nemet 1452ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(ST); 14530456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 14540456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 14550456327cSAdam Nemet // need runtime pointer checks. 145601abb2c3SAdam Nemet if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 14570456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 14580456327cSAdam Nemet 14590456327cSAdam Nemet Accesses.addStore(Loc); 14600456327cSAdam Nemet } 14610456327cSAdam Nemet } 14620456327cSAdam Nemet 14630456327cSAdam Nemet if (IsAnnotatedParallel) { 146404d4163eSAdam Nemet DEBUG(dbgs() 1465339f42b3SAdam Nemet << "LAA: A loop annotated parallel, ignore memory dependency " 14660456327cSAdam Nemet << "checks.\n"); 1467436018c3SAdam Nemet CanVecMem = true; 1468436018c3SAdam Nemet return; 14690456327cSAdam Nemet } 14700456327cSAdam Nemet 14710456327cSAdam Nemet for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 14720456327cSAdam Nemet LoadInst *LD = cast<LoadInst>(*I); 14730456327cSAdam Nemet Value* Ptr = LD->getPointerOperand(); 14740456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the 14750456327cSAdam Nemet // read list. If we *did* see it before, then it is already in 14760456327cSAdam Nemet // the read-write list. This allows us to vectorize expressions 14770456327cSAdam Nemet // such as A[i] += x; Because the address of A[i] is a read-write 14780456327cSAdam Nemet // pointer. This only works if the index of A[i] is consecutive. 14790456327cSAdam Nemet // If the address of i is unknown (for example A[B[i]]) then we may 14800456327cSAdam Nemet // read a few words, modify, and write a few words, and some of the 14810456327cSAdam Nemet // words may be written to the same address. 14820456327cSAdam Nemet bool IsReadOnlyPtr = false; 1483a28d91d8SMehdi Amini if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 14840456327cSAdam Nemet ++NumReads; 14850456327cSAdam Nemet IsReadOnlyPtr = true; 14860456327cSAdam Nemet } 14870456327cSAdam Nemet 1488ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(LD); 14890456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 14900456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 14910456327cSAdam Nemet // need runtime pointer checks. 149201abb2c3SAdam Nemet if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 14930456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 14940456327cSAdam Nemet 14950456327cSAdam Nemet Accesses.addLoad(Loc, IsReadOnlyPtr); 14960456327cSAdam Nemet } 14970456327cSAdam Nemet 14980456327cSAdam Nemet // If we write (or read-write) to a single destination and there are no 14990456327cSAdam Nemet // other reads in this loop then is it safe to vectorize. 15000456327cSAdam Nemet if (NumReadWrites == 1 && NumReads == 0) { 1501339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1502436018c3SAdam Nemet CanVecMem = true; 1503436018c3SAdam Nemet return; 15040456327cSAdam Nemet } 15050456327cSAdam Nemet 15060456327cSAdam Nemet // Build dependence sets and check whether we need a runtime pointer bounds 15070456327cSAdam Nemet // check. 15080456327cSAdam Nemet Accesses.buildDependenceSets(); 15090456327cSAdam Nemet 15100456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 15110456327cSAdam Nemet // to place a runtime bound check. 1512ee61474aSAdam Nemet bool CanDoRTIfNeeded = 15137cdebac0SAdam Nemet Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides); 1514ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 15152bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1516ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1517ee61474aSAdam Nemet << "the array bounds.\n"); 1518436018c3SAdam Nemet CanVecMem = false; 1519436018c3SAdam Nemet return; 15200456327cSAdam Nemet } 15210456327cSAdam Nemet 1522ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 15230456327cSAdam Nemet 1524436018c3SAdam Nemet CanVecMem = true; 15250456327cSAdam Nemet if (Accesses.isDependencyCheckNeeded()) { 1526339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 15270456327cSAdam Nemet CanVecMem = DepChecker.areDepsSafe( 15280456327cSAdam Nemet DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 15290456327cSAdam Nemet MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 15300456327cSAdam Nemet 15310456327cSAdam Nemet if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1532339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 15330456327cSAdam Nemet 15340456327cSAdam Nemet // Clear the dependency checks. We assume they are not needed. 1535df3dc5b9SAdam Nemet Accesses.resetDepChecks(DepChecker); 15360456327cSAdam Nemet 15377cdebac0SAdam Nemet PtrRtChecking.reset(); 15387cdebac0SAdam Nemet PtrRtChecking.Need = true; 15390456327cSAdam Nemet 1540ee61474aSAdam Nemet CanDoRTIfNeeded = 15417cdebac0SAdam Nemet Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 154298a13719SSilviu Baranga 1543949e91a6SAdam Nemet // Check that we found the bounds for the pointer. 1544ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 15452bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() 15460456327cSAdam Nemet << "cannot check memory dependencies at runtime"); 1547b6dc76ffSAdam Nemet DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1548b6dc76ffSAdam Nemet CanVecMem = false; 1549b6dc76ffSAdam Nemet return; 1550b6dc76ffSAdam Nemet } 1551b6dc76ffSAdam Nemet 15520456327cSAdam Nemet CanVecMem = true; 15530456327cSAdam Nemet } 15540456327cSAdam Nemet } 15550456327cSAdam Nemet 15564bb90a71SAdam Nemet if (CanVecMem) 15574bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 15587cdebac0SAdam Nemet << (PtrRtChecking.Need ? "" : " don't") 15590f67c6c1SAdam Nemet << " need runtime memory checks.\n"); 15604bb90a71SAdam Nemet else { 15612bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << 156204d4163eSAdam Nemet "unsafe dependent memory operations in loop"); 15634bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 15644bb90a71SAdam Nemet } 15650456327cSAdam Nemet } 15660456327cSAdam Nemet 156701abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 156801abb2c3SAdam Nemet DominatorTree *DT) { 15690456327cSAdam Nemet assert(TheLoop->contains(BB) && "Unknown block used"); 15700456327cSAdam Nemet 15710456327cSAdam Nemet // Blocks that do not dominate the latch need predication. 15720456327cSAdam Nemet BasicBlock* Latch = TheLoop->getLoopLatch(); 15730456327cSAdam Nemet return !DT->dominates(BB, Latch); 15740456327cSAdam Nemet } 15750456327cSAdam Nemet 15762bd6e984SAdam Nemet void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1577c922853bSAdam Nemet assert(!Report && "Multiple reports generated"); 1578c922853bSAdam Nemet Report = Message; 15790456327cSAdam Nemet } 15800456327cSAdam Nemet 158157ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const { 15820456327cSAdam Nemet return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 15830456327cSAdam Nemet } 15847206d7a5SAdam Nemet 15857206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in 15867206d7a5SAdam Nemet // LoopVectorize.cpp. 15877206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 15887206d7a5SAdam Nemet Instruction *Loc) { 15897206d7a5SAdam Nemet if (FirstInst) 15907206d7a5SAdam Nemet return FirstInst; 15917206d7a5SAdam Nemet if (Instruction *I = dyn_cast<Instruction>(V)) 15927206d7a5SAdam Nemet return I->getParent() == Loc->getParent() ? I : nullptr; 15937206d7a5SAdam Nemet return nullptr; 15947206d7a5SAdam Nemet } 15957206d7a5SAdam Nemet 1596*4e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1597*4e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously 1598*4e533ef7SAdam Nemet /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1599*4e533ef7SAdam Nemet /// a previous one. 16001da7df37SAdam Nemet struct PointerBounds { 1601*4e533ef7SAdam Nemet TrackingVH<Value> Start; 1602*4e533ef7SAdam Nemet TrackingVH<Value> End; 16031da7df37SAdam Nemet }; 16047206d7a5SAdam Nemet 16051da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG 16061da7df37SAdam Nemet /// in \p TheLoop. \return the values for the bounds. 16071da7df37SAdam Nemet static PointerBounds 16081da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 16091da7df37SAdam Nemet Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 16101da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 16111da7df37SAdam Nemet Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 16127206d7a5SAdam Nemet const SCEV *Sc = SE->getSCEV(Ptr); 16137206d7a5SAdam Nemet 16147206d7a5SAdam Nemet if (SE->isLoopInvariant(Sc, TheLoop)) { 16151b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 16161b6b50a9SSilviu Baranga << "\n"); 16171da7df37SAdam Nemet return {Ptr, Ptr}; 16187206d7a5SAdam Nemet } else { 16197206d7a5SAdam Nemet unsigned AS = Ptr->getType()->getPointerAddressSpace(); 16201da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 16217206d7a5SAdam Nemet 16227206d7a5SAdam Nemet // Use this type for pointer arithmetic. 16237206d7a5SAdam Nemet Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 16241b6b50a9SSilviu Baranga Value *Start = nullptr, *End = nullptr; 16257206d7a5SAdam Nemet 16261b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 16271da7df37SAdam Nemet Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 16281da7df37SAdam Nemet End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 16291da7df37SAdam Nemet DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 16301da7df37SAdam Nemet return {Start, End}; 16317206d7a5SAdam Nemet } 16327206d7a5SAdam Nemet } 16337206d7a5SAdam Nemet 16341da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and 16351da7df37SAdam Nemet /// lower bounds for both pointers in the check. 16361da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 16371da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 16381da7df37SAdam Nemet Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 16391da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 16401da7df37SAdam Nemet SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 16411da7df37SAdam Nemet 16421da7df37SAdam Nemet // Here we're relying on the SCEV Expander's cache to only emit code for the 16431da7df37SAdam Nemet // same bounds once. 16441da7df37SAdam Nemet std::transform( 16451da7df37SAdam Nemet PointerChecks.begin(), PointerChecks.end(), 16461da7df37SAdam Nemet std::back_inserter(ChecksWithBounds), 16471da7df37SAdam Nemet [&](const RuntimePointerChecking::PointerCheck &Check) { 164894abbbd6SNAKAMURA Takumi PointerBounds 164994abbbd6SNAKAMURA Takumi First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 165094abbbd6SNAKAMURA Takumi Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 165194abbbd6SNAKAMURA Takumi return std::make_pair(First, Second); 16521da7df37SAdam Nemet }); 16531da7df37SAdam Nemet 16541da7df37SAdam Nemet return ChecksWithBounds; 16551da7df37SAdam Nemet } 16561da7df37SAdam Nemet 16575b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 16581da7df37SAdam Nemet Instruction *Loc, 16591da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 16601da7df37SAdam Nemet const { 16611da7df37SAdam Nemet 16621da7df37SAdam Nemet SCEVExpander Exp(*SE, DL, "induction"); 16631da7df37SAdam Nemet auto ExpandedChecks = 16641da7df37SAdam Nemet expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); 16651da7df37SAdam Nemet 16661da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 16671da7df37SAdam Nemet Instruction *FirstInst = nullptr; 16687206d7a5SAdam Nemet IRBuilder<> ChkBuilder(Loc); 16697206d7a5SAdam Nemet // Our instructions might fold to a constant. 16707206d7a5SAdam Nemet Value *MemoryRuntimeCheck = nullptr; 16711b6b50a9SSilviu Baranga 16721da7df37SAdam Nemet for (const auto &Check : ExpandedChecks) { 16731da7df37SAdam Nemet const PointerBounds &A = Check.first, &B = Check.second; 1674cdb791cdSAdam Nemet // Check if two pointers (A and B) conflict where conflict is computed as: 1675cdb791cdSAdam Nemet // start(A) <= end(B) && start(B) <= end(A) 16761da7df37SAdam Nemet unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 16771da7df37SAdam Nemet unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 16787206d7a5SAdam Nemet 16791da7df37SAdam Nemet assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 16801da7df37SAdam Nemet (AS1 == A.End->getType()->getPointerAddressSpace()) && 16817206d7a5SAdam Nemet "Trying to bounds check pointers with different address spaces"); 16827206d7a5SAdam Nemet 16837206d7a5SAdam Nemet Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 16847206d7a5SAdam Nemet Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 16857206d7a5SAdam Nemet 16861da7df37SAdam Nemet Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 16871da7df37SAdam Nemet Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 16881da7df37SAdam Nemet Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 16891da7df37SAdam Nemet Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 16907206d7a5SAdam Nemet 16917206d7a5SAdam Nemet Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 16927206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 16937206d7a5SAdam Nemet Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 16947206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 16957206d7a5SAdam Nemet Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 16967206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 16977206d7a5SAdam Nemet if (MemoryRuntimeCheck) { 16981da7df37SAdam Nemet IsConflict = 16991da7df37SAdam Nemet ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 17007206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 17017206d7a5SAdam Nemet } 17027206d7a5SAdam Nemet MemoryRuntimeCheck = IsConflict; 17037206d7a5SAdam Nemet } 17047206d7a5SAdam Nemet 170590fec840SAdam Nemet if (!MemoryRuntimeCheck) 170690fec840SAdam Nemet return std::make_pair(nullptr, nullptr); 170790fec840SAdam Nemet 17087206d7a5SAdam Nemet // We have to do this trickery because the IRBuilder might fold the check to a 17097206d7a5SAdam Nemet // constant expression in which case there is no Instruction anchored in a 17107206d7a5SAdam Nemet // the block. 17117206d7a5SAdam Nemet Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 17127206d7a5SAdam Nemet ConstantInt::getTrue(Ctx)); 17137206d7a5SAdam Nemet ChkBuilder.Insert(Check, "memcheck.conflict"); 17147206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Check, Loc); 17157206d7a5SAdam Nemet return std::make_pair(FirstInst, Check); 17167206d7a5SAdam Nemet } 17173bfd93d7SAdam Nemet 17185b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> 17195b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 17201da7df37SAdam Nemet if (!PtrRtChecking.Need) 17211da7df37SAdam Nemet return std::make_pair(nullptr, nullptr); 17221da7df37SAdam Nemet 17235b0a4795SAdam Nemet return addRuntimeChecks(Loc, PtrRtChecking.getChecks()); 17241da7df37SAdam Nemet } 17251da7df37SAdam Nemet 17263bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1727a28d91d8SMehdi Amini const DataLayout &DL, 17283bfd93d7SAdam Nemet const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1729e2b885c4SAdam Nemet DominatorTree *DT, LoopInfo *LI, 17308bc61df9SAdam Nemet const ValueToValueMap &Strides) 17317cdebac0SAdam Nemet : PtrRtChecking(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), 17327cdebac0SAdam Nemet TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1733ce48250fSAdam Nemet MaxSafeDepDistBytes(-1U), CanVecMem(false), 1734ce48250fSAdam Nemet StoreToLoopInvariantAddress(false) { 1735929c38e8SAdam Nemet if (canAnalyzeLoop()) 17363bfd93d7SAdam Nemet analyzeLoop(Strides); 17373bfd93d7SAdam Nemet } 17383bfd93d7SAdam Nemet 1739e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1740e91cc6efSAdam Nemet if (CanVecMem) { 17417cdebac0SAdam Nemet if (PtrRtChecking.Need) 1742e91cc6efSAdam Nemet OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 174326da8e98SAdam Nemet else 174426da8e98SAdam Nemet OS.indent(Depth) << "Memory dependences are safe\n"; 1745e91cc6efSAdam Nemet } 1746e91cc6efSAdam Nemet 1747e91cc6efSAdam Nemet if (Report) 1748e91cc6efSAdam Nemet OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1749e91cc6efSAdam Nemet 175058913d65SAdam Nemet if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 175158913d65SAdam Nemet OS.indent(Depth) << "Interesting Dependences:\n"; 175258913d65SAdam Nemet for (auto &Dep : *InterestingDependences) { 175358913d65SAdam Nemet Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 175458913d65SAdam Nemet OS << "\n"; 175558913d65SAdam Nemet } 175658913d65SAdam Nemet } else 175758913d65SAdam Nemet OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1758e91cc6efSAdam Nemet 1759e91cc6efSAdam Nemet // List the pair of accesses need run-time checks to prove independence. 17607cdebac0SAdam Nemet PtrRtChecking.print(OS, Depth); 1761e91cc6efSAdam Nemet OS << "\n"; 1762c3384320SAdam Nemet 1763c3384320SAdam Nemet OS.indent(Depth) << "Store to invariant address was " 1764c3384320SAdam Nemet << (StoreToLoopInvariantAddress ? "" : "not ") 1765c3384320SAdam Nemet << "found in loop.\n"; 1766e91cc6efSAdam Nemet } 1767e91cc6efSAdam Nemet 17688bc61df9SAdam Nemet const LoopAccessInfo & 17698bc61df9SAdam Nemet LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 17703bfd93d7SAdam Nemet auto &LAI = LoopAccessInfoMap[L]; 17713bfd93d7SAdam Nemet 17723bfd93d7SAdam Nemet #ifndef NDEBUG 17733bfd93d7SAdam Nemet assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 17743bfd93d7SAdam Nemet "Symbolic strides changed for loop"); 17753bfd93d7SAdam Nemet #endif 17763bfd93d7SAdam Nemet 17773bfd93d7SAdam Nemet if (!LAI) { 1778a28d91d8SMehdi Amini const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1779e2b885c4SAdam Nemet LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1780e2b885c4SAdam Nemet Strides); 17813bfd93d7SAdam Nemet #ifndef NDEBUG 17823bfd93d7SAdam Nemet LAI->NumSymbolicStrides = Strides.size(); 17833bfd93d7SAdam Nemet #endif 17843bfd93d7SAdam Nemet } 17853bfd93d7SAdam Nemet return *LAI.get(); 17863bfd93d7SAdam Nemet } 17873bfd93d7SAdam Nemet 1788e91cc6efSAdam Nemet void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1789e91cc6efSAdam Nemet LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1790e91cc6efSAdam Nemet 1791e91cc6efSAdam Nemet ValueToValueMap NoSymbolicStrides; 1792e91cc6efSAdam Nemet 1793e91cc6efSAdam Nemet for (Loop *TopLevelLoop : *LI) 1794e91cc6efSAdam Nemet for (Loop *L : depth_first(TopLevelLoop)) { 1795e91cc6efSAdam Nemet OS.indent(2) << L->getHeader()->getName() << ":\n"; 1796e91cc6efSAdam Nemet auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1797e91cc6efSAdam Nemet LAI.print(OS, 4); 1798e91cc6efSAdam Nemet } 1799e91cc6efSAdam Nemet } 1800e91cc6efSAdam Nemet 18013bfd93d7SAdam Nemet bool LoopAccessAnalysis::runOnFunction(Function &F) { 18022f1fd165SChandler Carruth SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 18033bfd93d7SAdam Nemet auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 18043bfd93d7SAdam Nemet TLI = TLIP ? &TLIP->getTLI() : nullptr; 18053bfd93d7SAdam Nemet AA = &getAnalysis<AliasAnalysis>(); 18063bfd93d7SAdam Nemet DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1807e2b885c4SAdam Nemet LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 18083bfd93d7SAdam Nemet 18093bfd93d7SAdam Nemet return false; 18103bfd93d7SAdam Nemet } 18113bfd93d7SAdam Nemet 18123bfd93d7SAdam Nemet void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 18132f1fd165SChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 18143bfd93d7SAdam Nemet AU.addRequired<AliasAnalysis>(); 18153bfd93d7SAdam Nemet AU.addRequired<DominatorTreeWrapperPass>(); 1816e91cc6efSAdam Nemet AU.addRequired<LoopInfoWrapperPass>(); 18173bfd93d7SAdam Nemet 18183bfd93d7SAdam Nemet AU.setPreservesAll(); 18193bfd93d7SAdam Nemet } 18203bfd93d7SAdam Nemet 18213bfd93d7SAdam Nemet char LoopAccessAnalysis::ID = 0; 18223bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis"; 18233bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses" 18243bfd93d7SAdam Nemet 18253bfd93d7SAdam Nemet INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 18263bfd93d7SAdam Nemet INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 18272f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 18283bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1829e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 18303bfd93d7SAdam Nemet INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 18313bfd93d7SAdam Nemet 18323bfd93d7SAdam Nemet namespace llvm { 18333bfd93d7SAdam Nemet Pass *createLAAPass() { 18343bfd93d7SAdam Nemet return new LoopAccessAnalysis(); 18353bfd93d7SAdam Nemet } 18363bfd93d7SAdam Nemet } 1837