10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 20456327cSAdam Nemet // 30456327cSAdam Nemet // The LLVM Compiler Infrastructure 40456327cSAdam Nemet // 50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source 60456327cSAdam Nemet // License. See LICENSE.TXT for details. 70456327cSAdam Nemet // 80456327cSAdam Nemet //===----------------------------------------------------------------------===// 90456327cSAdam Nemet // 100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally 110456327cSAdam Nemet // developed for the loop vectorizer. 120456327cSAdam Nemet // 130456327cSAdam Nemet //===----------------------------------------------------------------------===// 140456327cSAdam Nemet 153bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAccessAnalysis.h" 16a3fe70d2SEugene Zelenko #include "llvm/ADT/APInt.h" 17a3fe70d2SEugene Zelenko #include "llvm/ADT/DenseMap.h" 18a3fe70d2SEugene Zelenko #include "llvm/ADT/DepthFirstIterator.h" 19a3fe70d2SEugene Zelenko #include "llvm/ADT/EquivalenceClasses.h" 20a3fe70d2SEugene Zelenko #include "llvm/ADT/PointerIntPair.h" 213bab7e1aSChandler Carruth #include "llvm/ADT/STLExtras.h" 22a3fe70d2SEugene Zelenko #include "llvm/ADT/SetVector.h" 23a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallPtrSet.h" 24a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallSet.h" 25a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallVector.h" 263bab7e1aSChandler Carruth #include "llvm/ADT/iterator_range.h" 27a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasAnalysis.h" 28a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasSetTracker.h" 293bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAnalysisManager.h" 300456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 31a3fe70d2SEugene Zelenko #include "llvm/Analysis/MemoryLocation.h" 325b3a5cf6SAdam Nemet #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 33a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolution.h" 347206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h" 35a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h" 370456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h" 38f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h" 39a3fe70d2SEugene Zelenko #include "llvm/IR/BasicBlock.h" 40a3fe70d2SEugene Zelenko #include "llvm/IR/Constants.h" 41a3fe70d2SEugene Zelenko #include "llvm/IR/DataLayout.h" 42a3fe70d2SEugene Zelenko #include "llvm/IR/DebugLoc.h" 43a3fe70d2SEugene Zelenko #include "llvm/IR/DerivedTypes.h" 44a3fe70d2SEugene Zelenko #include "llvm/IR/DiagnosticInfo.h" 450456327cSAdam Nemet #include "llvm/IR/Dominators.h" 46a3fe70d2SEugene Zelenko #include "llvm/IR/Function.h" 473bab7e1aSChandler Carruth #include "llvm/IR/IRBuilder.h" 48a3fe70d2SEugene Zelenko #include "llvm/IR/InstrTypes.h" 49a3fe70d2SEugene Zelenko #include "llvm/IR/Instruction.h" 50a3fe70d2SEugene Zelenko #include "llvm/IR/Instructions.h" 51a3fe70d2SEugene Zelenko #include "llvm/IR/Operator.h" 528a021317SXinliang David Li #include "llvm/IR/PassManager.h" 53a3fe70d2SEugene Zelenko #include "llvm/IR/Type.h" 54a3fe70d2SEugene Zelenko #include "llvm/IR/Value.h" 55a3fe70d2SEugene Zelenko #include "llvm/IR/ValueHandle.h" 56a3fe70d2SEugene Zelenko #include "llvm/Pass.h" 57a3fe70d2SEugene Zelenko #include "llvm/Support/Casting.h" 58a3fe70d2SEugene Zelenko #include "llvm/Support/CommandLine.h" 590456327cSAdam Nemet #include "llvm/Support/Debug.h" 60a3fe70d2SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 61799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h" 62a3fe70d2SEugene Zelenko #include <algorithm> 63a3fe70d2SEugene Zelenko #include <cassert> 64a3fe70d2SEugene Zelenko #include <cstdint> 65a3fe70d2SEugene Zelenko #include <cstdlib> 66a3fe70d2SEugene Zelenko #include <iterator> 67a3fe70d2SEugene Zelenko #include <utility> 68a3fe70d2SEugene Zelenko #include <vector> 69a3fe70d2SEugene Zelenko 700456327cSAdam Nemet using namespace llvm; 710456327cSAdam Nemet 72339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses" 730456327cSAdam Nemet 74f219c647SAdam Nemet static cl::opt<unsigned, true> 75f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden, 76f219c647SAdam Nemet cl::desc("Sets the SIMD width. Zero is autoselect."), 77f219c647SAdam Nemet cl::location(VectorizerParams::VectorizationFactor)); 781d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor; 79f219c647SAdam Nemet 80f219c647SAdam Nemet static cl::opt<unsigned, true> 81f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden, 82f219c647SAdam Nemet cl::desc("Sets the vectorization interleave count. " 83f219c647SAdam Nemet "Zero is autoselect."), 84f219c647SAdam Nemet cl::location( 85f219c647SAdam Nemet VectorizerParams::VectorizationInterleave)); 861d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave; 87f219c647SAdam Nemet 881d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 891d862af7SAdam Nemet "runtime-memory-check-threshold", cl::Hidden, 901d862af7SAdam Nemet cl::desc("When performing memory disambiguation checks at runtime do not " 911d862af7SAdam Nemet "generate more than this number of comparisons (default = 8)."), 921d862af7SAdam Nemet cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 931d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94f219c647SAdam Nemet 951b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks 961b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold( 971b6b50a9SSilviu Baranga "memory-check-merge-threshold", cl::Hidden, 981b6b50a9SSilviu Baranga cl::desc("Maximum number of comparisons done when trying to merge " 991b6b50a9SSilviu Baranga "runtime memory checks. (default = 100)"), 1001b6b50a9SSilviu Baranga cl::init(100)); 1011b6b50a9SSilviu Baranga 102f219c647SAdam Nemet /// Maximum SIMD width. 103f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64; 104f219c647SAdam Nemet 105a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold. 106a2df750fSAdam Nemet static cl::opt<unsigned> 107a2df750fSAdam Nemet MaxDependences("max-dependences", cl::Hidden, 108a2df750fSAdam Nemet cl::desc("Maximum number of dependences collected by " 1099c926579SAdam Nemet "loop-access analysis (default = 100)"), 1109c926579SAdam Nemet cl::init(100)); 1119c926579SAdam Nemet 112a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory 113a9f09c62SAdam Nemet /// accesses in code like the following. 114a9f09c62SAdam Nemet /// for (i = 0; i < N; ++i) 115a9f09c62SAdam Nemet /// A[i * Stride1] += B[i * Stride2] ... 116a9f09c62SAdam Nemet /// 117a9f09c62SAdam Nemet /// Will be roughly translated to 118a9f09c62SAdam Nemet /// if (Stride1 == 1 && Stride2 == 1) { 119a9f09c62SAdam Nemet /// for (i = 0; i < N; i+=4) 120a9f09c62SAdam Nemet /// A[i:i+3] += ... 121a9f09c62SAdam Nemet /// } else 122a9f09c62SAdam Nemet /// ... 123a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning( 124a9f09c62SAdam Nemet "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125a9f09c62SAdam Nemet cl::desc("Enable symbolic stride memory access versioning")); 126a9f09c62SAdam Nemet 12737ec5f91SMatthew Simpson /// \brief Enable store-to-load forwarding conflict detection. This option can 12837ec5f91SMatthew Simpson /// be disabled for correctness testing. 12937ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection( 13037ec5f91SMatthew Simpson "store-to-load-forwarding-conflict-detection", cl::Hidden, 131a250dc9fSMatthew Simpson cl::desc("Enable conflict detection in loop-access analysis"), 132a250dc9fSMatthew Simpson cl::init(true)); 133a250dc9fSMatthew Simpson 134f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() { 135f219c647SAdam Nemet return ::VectorizationInterleave.getNumOccurrences() > 0; 136f219c647SAdam Nemet } 137f219c647SAdam Nemet 1380456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) { 1398b401013SDavid Majnemer if (auto *CI = dyn_cast<CastInst>(V)) 1400456327cSAdam Nemet if (CI->getOperand(0)->getType()->isIntegerTy()) 1410456327cSAdam Nemet return CI->getOperand(0); 1420456327cSAdam Nemet return V; 1430456327cSAdam Nemet } 1440456327cSAdam Nemet 1459cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 1468bc61df9SAdam Nemet const ValueToValueMap &PtrToStride, 1470456327cSAdam Nemet Value *Ptr, Value *OrigPtr) { 1489cd9a7e3SSilviu Baranga const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 1490456327cSAdam Nemet 1500456327cSAdam Nemet // If there is an entry in the map return the SCEV of the pointer with the 1510456327cSAdam Nemet // symbolic stride replaced by one. 1528bc61df9SAdam Nemet ValueToValueMap::const_iterator SI = 1538bc61df9SAdam Nemet PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1540456327cSAdam Nemet if (SI != PtrToStride.end()) { 1550456327cSAdam Nemet Value *StrideVal = SI->second; 1560456327cSAdam Nemet 1570456327cSAdam Nemet // Strip casts. 1580456327cSAdam Nemet StrideVal = stripIntegerCast(StrideVal); 1590456327cSAdam Nemet 1609cd9a7e3SSilviu Baranga ScalarEvolution *SE = PSE.getSE(); 161e3c0534bSSilviu Baranga const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 162e3c0534bSSilviu Baranga const auto *CT = 163e3c0534bSSilviu Baranga static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 164e3c0534bSSilviu Baranga 1659cd9a7e3SSilviu Baranga PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 1669cd9a7e3SSilviu Baranga auto *Expr = PSE.getSCEV(Ptr); 167e3c0534bSSilviu Baranga 1689cd9a7e3SSilviu Baranga DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 1690456327cSAdam Nemet << "\n"); 1709cd9a7e3SSilviu Baranga return Expr; 1710456327cSAdam Nemet } 1720456327cSAdam Nemet 1730456327cSAdam Nemet // Otherwise, just return the SCEV of the original pointer. 174e3c0534bSSilviu Baranga return OrigSCEV; 1750456327cSAdam Nemet } 1760456327cSAdam Nemet 1773622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access. 1783622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop 1793622fbfcSElena Demikhovsky /// iteration. Then B is calculated as: 1803622fbfcSElena Demikhovsky /// B = A + Step*N . 1813622fbfcSElena Demikhovsky /// Step value may be positive or negative. 1823622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count: 1833622fbfcSElena Demikhovsky /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 1843622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way: 1853622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 1863622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes. 1873622fbfcSElena Demikhovsky /// 1883622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint: 1893622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 1907cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 1917cdebac0SAdam Nemet unsigned DepSetId, unsigned ASId, 192e3c0534bSSilviu Baranga const ValueToValueMap &Strides, 1939cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) { 1940456327cSAdam Nemet // Get the stride replaced scev. 1959cd9a7e3SSilviu Baranga const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 196279784ffSAdam Nemet ScalarEvolution *SE = PSE.getSE(); 197279784ffSAdam Nemet 198279784ffSAdam Nemet const SCEV *ScStart; 199279784ffSAdam Nemet const SCEV *ScEnd; 200279784ffSAdam Nemet 20159a65504SAdam Nemet if (SE->isLoopInvariant(Sc, Lp)) 202279784ffSAdam Nemet ScStart = ScEnd = Sc; 203279784ffSAdam Nemet else { 2040456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 2050456327cSAdam Nemet assert(AR && "Invalid addrec expression"); 2066f444dfdSSilviu Baranga const SCEV *Ex = PSE.getBackedgeTakenCount(); 2070e5804a6SSilviu Baranga 208279784ffSAdam Nemet ScStart = AR->getStart(); 209279784ffSAdam Nemet ScEnd = AR->evaluateAtIteration(Ex, *SE); 2100e5804a6SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*SE); 2110e5804a6SSilviu Baranga 2120e5804a6SSilviu Baranga // For expressions with negative step, the upper bound is ScStart and the 2130e5804a6SSilviu Baranga // lower bound is ScEnd. 2148b401013SDavid Majnemer if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 2150e5804a6SSilviu Baranga if (CStep->getValue()->isNegative()) 2160e5804a6SSilviu Baranga std::swap(ScStart, ScEnd); 2170e5804a6SSilviu Baranga } else { 2183622fbfcSElena Demikhovsky // Fallback case: the step is not constant, but we can still 2190e5804a6SSilviu Baranga // get the upper and lower bounds of the interval by using min/max 2200e5804a6SSilviu Baranga // expressions. 2210e5804a6SSilviu Baranga ScStart = SE->getUMinExpr(ScStart, ScEnd); 2220e5804a6SSilviu Baranga ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 2230e5804a6SSilviu Baranga } 2243622fbfcSElena Demikhovsky // Add the size of the pointed element to ScEnd. 2253622fbfcSElena Demikhovsky unsigned EltSize = 2263622fbfcSElena Demikhovsky Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 2273622fbfcSElena Demikhovsky const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 2283622fbfcSElena Demikhovsky ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 229279784ffSAdam Nemet } 2300e5804a6SSilviu Baranga 2310e5804a6SSilviu Baranga Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 2321b6b50a9SSilviu Baranga } 2331b6b50a9SSilviu Baranga 234bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4> 23538530887SAdam Nemet RuntimePointerChecking::generateChecks() const { 236bbe1f1deSAdam Nemet SmallVector<PointerCheck, 4> Checks; 237bbe1f1deSAdam Nemet 2387c52e052SAdam Nemet for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 2397c52e052SAdam Nemet for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 2407c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 2417c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 242bbe1f1deSAdam Nemet 24338530887SAdam Nemet if (needsChecking(CGI, CGJ)) 244bbe1f1deSAdam Nemet Checks.push_back(std::make_pair(&CGI, &CGJ)); 245bbe1f1deSAdam Nemet } 246bbe1f1deSAdam Nemet } 247bbe1f1deSAdam Nemet return Checks; 248bbe1f1deSAdam Nemet } 249bbe1f1deSAdam Nemet 25015840393SAdam Nemet void RuntimePointerChecking::generateChecks( 25115840393SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 25215840393SAdam Nemet assert(Checks.empty() && "Checks is not empty"); 25315840393SAdam Nemet groupChecks(DepCands, UseDependencies); 25415840393SAdam Nemet Checks = generateChecks(); 25515840393SAdam Nemet } 25615840393SAdam Nemet 257651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 258651a5a24SAdam Nemet const CheckingPtrGroup &N) const { 2591b6b50a9SSilviu Baranga for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 2601b6b50a9SSilviu Baranga for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 261651a5a24SAdam Nemet if (needsChecking(M.Members[I], N.Members[J])) 2621b6b50a9SSilviu Baranga return true; 2631b6b50a9SSilviu Baranga return false; 2641b6b50a9SSilviu Baranga } 2651b6b50a9SSilviu Baranga 2661b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum. 2671b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer. 2681b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 2691b6b50a9SSilviu Baranga ScalarEvolution *SE) { 2701b6b50a9SSilviu Baranga const SCEV *Diff = SE->getMinusSCEV(J, I); 2711b6b50a9SSilviu Baranga const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 2721b6b50a9SSilviu Baranga 2731b6b50a9SSilviu Baranga if (!C) 2741b6b50a9SSilviu Baranga return nullptr; 2751b6b50a9SSilviu Baranga if (C->getValue()->isNegative()) 2761b6b50a9SSilviu Baranga return J; 2771b6b50a9SSilviu Baranga return I; 2781b6b50a9SSilviu Baranga } 2791b6b50a9SSilviu Baranga 2807cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 2819f7dedc3SAdam Nemet const SCEV *Start = RtCheck.Pointers[Index].Start; 2829f7dedc3SAdam Nemet const SCEV *End = RtCheck.Pointers[Index].End; 2839f7dedc3SAdam Nemet 2841b6b50a9SSilviu Baranga // Compare the starts and ends with the known minimum and maximum 2851b6b50a9SSilviu Baranga // of this set. We need to know how we compare against the min/max 2861b6b50a9SSilviu Baranga // of the set in order to be able to emit memchecks. 2879f7dedc3SAdam Nemet const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 2881b6b50a9SSilviu Baranga if (!Min0) 2891b6b50a9SSilviu Baranga return false; 2901b6b50a9SSilviu Baranga 2919f7dedc3SAdam Nemet const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 2921b6b50a9SSilviu Baranga if (!Min1) 2931b6b50a9SSilviu Baranga return false; 2941b6b50a9SSilviu Baranga 2951b6b50a9SSilviu Baranga // Update the low bound expression if we've found a new min value. 2969f7dedc3SAdam Nemet if (Min0 == Start) 2979f7dedc3SAdam Nemet Low = Start; 2981b6b50a9SSilviu Baranga 2991b6b50a9SSilviu Baranga // Update the high bound expression if we've found a new max value. 3009f7dedc3SAdam Nemet if (Min1 != End) 3019f7dedc3SAdam Nemet High = End; 3021b6b50a9SSilviu Baranga 3031b6b50a9SSilviu Baranga Members.push_back(Index); 3041b6b50a9SSilviu Baranga return true; 3051b6b50a9SSilviu Baranga } 3061b6b50a9SSilviu Baranga 3077cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks( 3087cdebac0SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 3091b6b50a9SSilviu Baranga // We build the groups from dependency candidates equivalence classes 3101b6b50a9SSilviu Baranga // because: 3111b6b50a9SSilviu Baranga // - We know that pointers in the same equivalence class share 3121b6b50a9SSilviu Baranga // the same underlying object and therefore there is a chance 3131b6b50a9SSilviu Baranga // that we can compare pointers 3141b6b50a9SSilviu Baranga // - We wouldn't be able to merge two pointers for which we need 3151b6b50a9SSilviu Baranga // to emit a memcheck. The classes in DepCands are already 3161b6b50a9SSilviu Baranga // conveniently built such that no two pointers in the same 3171b6b50a9SSilviu Baranga // class need checking against each other. 3181b6b50a9SSilviu Baranga 3191b6b50a9SSilviu Baranga // We use the following (greedy) algorithm to construct the groups 3201b6b50a9SSilviu Baranga // For every pointer in the equivalence class: 3211b6b50a9SSilviu Baranga // For each existing group: 3221b6b50a9SSilviu Baranga // - if the difference between this pointer and the min/max bounds 3231b6b50a9SSilviu Baranga // of the group is a constant, then make the pointer part of the 3241b6b50a9SSilviu Baranga // group and update the min/max bounds of that group as required. 3251b6b50a9SSilviu Baranga 3261b6b50a9SSilviu Baranga CheckingGroups.clear(); 3271b6b50a9SSilviu Baranga 32848250600SSilviu Baranga // If we need to check two pointers to the same underlying object 32948250600SSilviu Baranga // with a non-constant difference, we shouldn't perform any pointer 33048250600SSilviu Baranga // grouping with those pointers. This is because we can easily get 33148250600SSilviu Baranga // into cases where the resulting check would return false, even when 33248250600SSilviu Baranga // the accesses are safe. 33348250600SSilviu Baranga // 33448250600SSilviu Baranga // The following example shows this: 33548250600SSilviu Baranga // for (i = 0; i < 1000; ++i) 33648250600SSilviu Baranga // a[5000 + i * m] = a[i] + a[i + 9000] 33748250600SSilviu Baranga // 33848250600SSilviu Baranga // Here grouping gives a check of (5000, 5000 + 1000 * m) against 33948250600SSilviu Baranga // (0, 10000) which is always false. However, if m is 1, there is no 34048250600SSilviu Baranga // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 34148250600SSilviu Baranga // us to perform an accurate check in this case. 34248250600SSilviu Baranga // 34348250600SSilviu Baranga // The above case requires that we have an UnknownDependence between 34448250600SSilviu Baranga // accesses to the same underlying object. This cannot happen unless 34548250600SSilviu Baranga // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 34648250600SSilviu Baranga // is also false. In this case we will use the fallback path and create 34748250600SSilviu Baranga // separate checking groups for all pointers. 34848250600SSilviu Baranga 3491b6b50a9SSilviu Baranga // If we don't have the dependency partitions, construct a new 35048250600SSilviu Baranga // checking pointer group for each pointer. This is also required 35148250600SSilviu Baranga // for correctness, because in this case we can have checking between 35248250600SSilviu Baranga // pointers to the same underlying object. 3531b6b50a9SSilviu Baranga if (!UseDependencies) { 3541b6b50a9SSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) 3551b6b50a9SSilviu Baranga CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 3561b6b50a9SSilviu Baranga return; 3571b6b50a9SSilviu Baranga } 3581b6b50a9SSilviu Baranga 3591b6b50a9SSilviu Baranga unsigned TotalComparisons = 0; 3601b6b50a9SSilviu Baranga 3611b6b50a9SSilviu Baranga DenseMap<Value *, unsigned> PositionMap; 3629f7dedc3SAdam Nemet for (unsigned Index = 0; Index < Pointers.size(); ++Index) 3639f7dedc3SAdam Nemet PositionMap[Pointers[Index].PointerValue] = Index; 3641b6b50a9SSilviu Baranga 365ce3877fcSSilviu Baranga // We need to keep track of what pointers we've already seen so we 366ce3877fcSSilviu Baranga // don't process them twice. 367ce3877fcSSilviu Baranga SmallSet<unsigned, 2> Seen; 368ce3877fcSSilviu Baranga 369e4b9f507SSanjay Patel // Go through all equivalence classes, get the "pointer check groups" 370ce3877fcSSilviu Baranga // and add them to the overall solution. We use the order in which accesses 371ce3877fcSSilviu Baranga // appear in 'Pointers' to enforce determinism. 372ce3877fcSSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) { 373ce3877fcSSilviu Baranga // We've seen this pointer before, and therefore already processed 374ce3877fcSSilviu Baranga // its equivalence class. 375ce3877fcSSilviu Baranga if (Seen.count(I)) 3761b6b50a9SSilviu Baranga continue; 3771b6b50a9SSilviu Baranga 3789f7dedc3SAdam Nemet MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 3799f7dedc3SAdam Nemet Pointers[I].IsWritePtr); 3801b6b50a9SSilviu Baranga 381ce3877fcSSilviu Baranga SmallVector<CheckingPtrGroup, 2> Groups; 382ce3877fcSSilviu Baranga auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 383ce3877fcSSilviu Baranga 384a647c30fSSilviu Baranga // Because DepCands is constructed by visiting accesses in the order in 385a647c30fSSilviu Baranga // which they appear in alias sets (which is deterministic) and the 386a647c30fSSilviu Baranga // iteration order within an equivalence class member is only dependent on 387a647c30fSSilviu Baranga // the order in which unions and insertions are performed on the 388a647c30fSSilviu Baranga // equivalence class, the iteration order is deterministic. 389ce3877fcSSilviu Baranga for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 3901b6b50a9SSilviu Baranga MI != ME; ++MI) { 3911b6b50a9SSilviu Baranga unsigned Pointer = PositionMap[MI->getPointer()]; 3921b6b50a9SSilviu Baranga bool Merged = false; 393ce3877fcSSilviu Baranga // Mark this pointer as seen. 394ce3877fcSSilviu Baranga Seen.insert(Pointer); 3951b6b50a9SSilviu Baranga 3961b6b50a9SSilviu Baranga // Go through all the existing sets and see if we can find one 3971b6b50a9SSilviu Baranga // which can include this pointer. 3981b6b50a9SSilviu Baranga for (CheckingPtrGroup &Group : Groups) { 3991b6b50a9SSilviu Baranga // Don't perform more than a certain amount of comparisons. 4001b6b50a9SSilviu Baranga // This should limit the cost of grouping the pointers to something 4011b6b50a9SSilviu Baranga // reasonable. If we do end up hitting this threshold, the algorithm 4021b6b50a9SSilviu Baranga // will create separate groups for all remaining pointers. 4031b6b50a9SSilviu Baranga if (TotalComparisons > MemoryCheckMergeThreshold) 4041b6b50a9SSilviu Baranga break; 4051b6b50a9SSilviu Baranga 4061b6b50a9SSilviu Baranga TotalComparisons++; 4071b6b50a9SSilviu Baranga 4081b6b50a9SSilviu Baranga if (Group.addPointer(Pointer)) { 4091b6b50a9SSilviu Baranga Merged = true; 4101b6b50a9SSilviu Baranga break; 4111b6b50a9SSilviu Baranga } 4121b6b50a9SSilviu Baranga } 4131b6b50a9SSilviu Baranga 4141b6b50a9SSilviu Baranga if (!Merged) 4151b6b50a9SSilviu Baranga // We couldn't add this pointer to any existing set or the threshold 4161b6b50a9SSilviu Baranga // for the number of comparisons has been reached. Create a new group 4171b6b50a9SSilviu Baranga // to hold the current pointer. 4181b6b50a9SSilviu Baranga Groups.push_back(CheckingPtrGroup(Pointer, *this)); 4191b6b50a9SSilviu Baranga } 4201b6b50a9SSilviu Baranga 4211b6b50a9SSilviu Baranga // We've computed the grouped checks for this partition. 4221b6b50a9SSilviu Baranga // Save the results and continue with the next one. 4231b6b50a9SSilviu Baranga std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 4241b6b50a9SSilviu Baranga } 4250456327cSAdam Nemet } 4260456327cSAdam Nemet 427041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition( 428041e6debSAdam Nemet const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 429041e6debSAdam Nemet unsigned PtrIdx2) { 430041e6debSAdam Nemet return (PtrToPartition[PtrIdx1] != -1 && 431041e6debSAdam Nemet PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 432041e6debSAdam Nemet } 433041e6debSAdam Nemet 434651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 4359f7dedc3SAdam Nemet const PointerInfo &PointerI = Pointers[I]; 4369f7dedc3SAdam Nemet const PointerInfo &PointerJ = Pointers[J]; 4379f7dedc3SAdam Nemet 438a8945b77SAdam Nemet // No need to check if two readonly pointers intersect. 4399f7dedc3SAdam Nemet if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 440a8945b77SAdam Nemet return false; 441a8945b77SAdam Nemet 442a8945b77SAdam Nemet // Only need to check pointers between two different dependency sets. 4439f7dedc3SAdam Nemet if (PointerI.DependencySetId == PointerJ.DependencySetId) 444a8945b77SAdam Nemet return false; 445a8945b77SAdam Nemet 446a8945b77SAdam Nemet // Only need to check pointers in the same alias set. 4479f7dedc3SAdam Nemet if (PointerI.AliasSetId != PointerJ.AliasSetId) 448a8945b77SAdam Nemet return false; 449a8945b77SAdam Nemet 450a8945b77SAdam Nemet return true; 451a8945b77SAdam Nemet } 452a8945b77SAdam Nemet 45354f0b83eSAdam Nemet void RuntimePointerChecking::printChecks( 45454f0b83eSAdam Nemet raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 45554f0b83eSAdam Nemet unsigned Depth) const { 45654f0b83eSAdam Nemet unsigned N = 0; 45754f0b83eSAdam Nemet for (const auto &Check : Checks) { 45854f0b83eSAdam Nemet const auto &First = Check.first->Members, &Second = Check.second->Members; 45954f0b83eSAdam Nemet 46054f0b83eSAdam Nemet OS.indent(Depth) << "Check " << N++ << ":\n"; 46154f0b83eSAdam Nemet 46254f0b83eSAdam Nemet OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 46354f0b83eSAdam Nemet for (unsigned K = 0; K < First.size(); ++K) 46454f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 46554f0b83eSAdam Nemet 46654f0b83eSAdam Nemet OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 46754f0b83eSAdam Nemet for (unsigned K = 0; K < Second.size(); ++K) 46854f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 46954f0b83eSAdam Nemet } 47054f0b83eSAdam Nemet } 47154f0b83eSAdam Nemet 4723a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 473e91cc6efSAdam Nemet 474e91cc6efSAdam Nemet OS.indent(Depth) << "Run-time memory checks:\n"; 47515840393SAdam Nemet printChecks(OS, Checks, Depth); 4761b6b50a9SSilviu Baranga 4771b6b50a9SSilviu Baranga OS.indent(Depth) << "Grouped accesses:\n"; 4781b6b50a9SSilviu Baranga for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 47954f0b83eSAdam Nemet const auto &CG = CheckingGroups[I]; 48054f0b83eSAdam Nemet 48154f0b83eSAdam Nemet OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 48254f0b83eSAdam Nemet OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 48354f0b83eSAdam Nemet << ")\n"; 48454f0b83eSAdam Nemet for (unsigned J = 0; J < CG.Members.size(); ++J) { 48554f0b83eSAdam Nemet OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 4861b6b50a9SSilviu Baranga << "\n"; 4871b6b50a9SSilviu Baranga } 488e91cc6efSAdam Nemet } 489e91cc6efSAdam Nemet } 490e91cc6efSAdam Nemet 4910456327cSAdam Nemet namespace { 492a3fe70d2SEugene Zelenko 4930456327cSAdam Nemet /// \brief Analyses memory accesses in a loop. 4940456327cSAdam Nemet /// 4950456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data 4960456327cSAdam Nemet /// dependence checking. 4970456327cSAdam Nemet class AccessAnalysis { 4980456327cSAdam Nemet public: 4990456327cSAdam Nemet /// \brief Read or write access location. 5000456327cSAdam Nemet typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 5015448e989SAmjad Aboud typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 5020456327cSAdam Nemet 503e2b885c4SAdam Nemet AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 5049cd9a7e3SSilviu Baranga MemoryDepChecker::DepCandidates &DA, 5059cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) 506e3c0534bSSilviu Baranga : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 5079cd9a7e3SSilviu Baranga PSE(PSE) {} 5080456327cSAdam Nemet 5090456327cSAdam Nemet /// \brief Register a load and whether it is only read from. 510ac80dc75SChandler Carruth void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 5110456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 512ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 5130456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, false)); 5140456327cSAdam Nemet if (IsReadOnly) 5150456327cSAdam Nemet ReadOnlyPtr.insert(Ptr); 5160456327cSAdam Nemet } 5170456327cSAdam Nemet 5180456327cSAdam Nemet /// \brief Register a store. 519ac80dc75SChandler Carruth void addStore(MemoryLocation &Loc) { 5200456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 521ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 5220456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, true)); 5230456327cSAdam Nemet } 5240456327cSAdam Nemet 5250456327cSAdam Nemet /// \brief Check whether we can check the pointers at runtime for 526ee61474aSAdam Nemet /// non-intersection. 527ee61474aSAdam Nemet /// 528ee61474aSAdam Nemet /// Returns true if we need no check or if we do and we can generate them 529ee61474aSAdam Nemet /// (i.e. the pointers have computable bounds). 5307cdebac0SAdam Nemet bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 5317cdebac0SAdam Nemet Loop *TheLoop, const ValueToValueMap &Strides, 5329f02c586SAndrey Turetskiy bool ShouldCheckWrap = false); 5330456327cSAdam Nemet 5340456327cSAdam Nemet /// \brief Goes over all memory accesses, checks whether a RT check is needed 5350456327cSAdam Nemet /// and builds sets of dependent accesses. 5360456327cSAdam Nemet void buildDependenceSets() { 5370456327cSAdam Nemet processMemAccesses(); 5380456327cSAdam Nemet } 5390456327cSAdam Nemet 5405dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we need to 5415dc3b2cfSAdam Nemet /// perform dependency checking. 5425dc3b2cfSAdam Nemet /// 5435dc3b2cfSAdam Nemet /// Note that this can later be cleared if we retry memcheck analysis without 5445dc3b2cfSAdam Nemet /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 5450456327cSAdam Nemet bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 546df3dc5b9SAdam Nemet 547df3dc5b9SAdam Nemet /// We decided that no dependence analysis would be used. Reset the state. 548df3dc5b9SAdam Nemet void resetDepChecks(MemoryDepChecker &DepChecker) { 549df3dc5b9SAdam Nemet CheckDeps.clear(); 550a2df750fSAdam Nemet DepChecker.clearDependences(); 551df3dc5b9SAdam Nemet } 5520456327cSAdam Nemet 5535448e989SAmjad Aboud MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 5540456327cSAdam Nemet 5550456327cSAdam Nemet private: 5560456327cSAdam Nemet typedef SetVector<MemAccessInfo> PtrAccessSet; 5570456327cSAdam Nemet 5580456327cSAdam Nemet /// \brief Go over all memory access and check whether runtime pointer checks 559b41d2d3fSAdam Nemet /// are needed and build sets of dependency check candidates. 5600456327cSAdam Nemet void processMemAccesses(); 5610456327cSAdam Nemet 5620456327cSAdam Nemet /// Set of all accesses. 5630456327cSAdam Nemet PtrAccessSet Accesses; 5640456327cSAdam Nemet 565a28d91d8SMehdi Amini const DataLayout &DL; 566a28d91d8SMehdi Amini 5675448e989SAmjad Aboud /// List of accesses that need a further dependence check. 5685448e989SAmjad Aboud MemAccessInfoList CheckDeps; 5690456327cSAdam Nemet 5700456327cSAdam Nemet /// Set of pointers that are read only. 5710456327cSAdam Nemet SmallPtrSet<Value*, 16> ReadOnlyPtr; 5720456327cSAdam Nemet 5730456327cSAdam Nemet /// An alias set tracker to partition the access set by underlying object and 5740456327cSAdam Nemet //intrinsic property (such as TBAA metadata). 5750456327cSAdam Nemet AliasSetTracker AST; 5760456327cSAdam Nemet 577e2b885c4SAdam Nemet LoopInfo *LI; 578e2b885c4SAdam Nemet 5790456327cSAdam Nemet /// Sets of potentially dependent accesses - members of one set share an 5800456327cSAdam Nemet /// underlying pointer. The set "CheckDeps" identfies which sets really need a 5810456327cSAdam Nemet /// dependence check. 582dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DepCands; 5830456327cSAdam Nemet 5845dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we may need 5855dc3b2cfSAdam Nemet /// to add memchecks. Perform the analysis to determine the necessary checks. 5865dc3b2cfSAdam Nemet /// 5875dc3b2cfSAdam Nemet /// Note that, this is different from isDependencyCheckNeeded. When we retry 5885dc3b2cfSAdam Nemet /// memcheck analysis without dependency checking 5895dc3b2cfSAdam Nemet /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 5905dc3b2cfSAdam Nemet /// while this remains set if we have potentially dependent accesses. 5915dc3b2cfSAdam Nemet bool IsRTCheckAnalysisNeeded; 592e3c0534bSSilviu Baranga 593e3c0534bSSilviu Baranga /// The SCEV predicate containing all the SCEV-related assumptions. 5949cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE; 5950456327cSAdam Nemet }; 5960456327cSAdam Nemet 5970456327cSAdam Nemet } // end anonymous namespace 5980456327cSAdam Nemet 5990456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check. 6009cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 601e3c0534bSSilviu Baranga const ValueToValueMap &Strides, Value *Ptr, 6029cd9a7e3SSilviu Baranga Loop *L) { 6039cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 604279784ffSAdam Nemet 605279784ffSAdam Nemet // The bounds for loop-invariant pointer is trivial. 606279784ffSAdam Nemet if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 607279784ffSAdam Nemet return true; 608279784ffSAdam Nemet 6090456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 6100456327cSAdam Nemet if (!AR) 6110456327cSAdam Nemet return false; 6120456327cSAdam Nemet 6130456327cSAdam Nemet return AR->isAffine(); 6140456327cSAdam Nemet } 6150456327cSAdam Nemet 6169f02c586SAndrey Turetskiy /// \brief Check whether a pointer address cannot wrap. 6179f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE, 6189f02c586SAndrey Turetskiy const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 6199f02c586SAndrey Turetskiy const SCEV *PtrScev = PSE.getSCEV(Ptr); 6209f02c586SAndrey Turetskiy if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 6219f02c586SAndrey Turetskiy return true; 6229f02c586SAndrey Turetskiy 6237afb46d3SDavid Majnemer int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 6249f02c586SAndrey Turetskiy return Stride == 1; 6259f02c586SAndrey Turetskiy } 6269f02c586SAndrey Turetskiy 6277cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 6287cdebac0SAdam Nemet ScalarEvolution *SE, Loop *TheLoop, 6297cdebac0SAdam Nemet const ValueToValueMap &StridesMap, 6309f02c586SAndrey Turetskiy bool ShouldCheckWrap) { 6310456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 6320456327cSAdam Nemet // to place a runtime bound check. 6330456327cSAdam Nemet bool CanDoRT = true; 6340456327cSAdam Nemet 635ee61474aSAdam Nemet bool NeedRTCheck = false; 6365dc3b2cfSAdam Nemet if (!IsRTCheckAnalysisNeeded) return true; 63798a13719SSilviu Baranga 6380456327cSAdam Nemet bool IsDepCheckNeeded = isDependencyCheckNeeded(); 6390456327cSAdam Nemet 6400456327cSAdam Nemet // We assign a consecutive id to access from different alias sets. 6410456327cSAdam Nemet // Accesses between different groups doesn't need to be checked. 6420456327cSAdam Nemet unsigned ASId = 1; 6430456327cSAdam Nemet for (auto &AS : AST) { 644424edc6cSAdam Nemet int NumReadPtrChecks = 0; 645424edc6cSAdam Nemet int NumWritePtrChecks = 0; 646424edc6cSAdam Nemet 6470456327cSAdam Nemet // We assign consecutive id to access from different dependence sets. 6480456327cSAdam Nemet // Accesses within the same set don't need a runtime check. 6490456327cSAdam Nemet unsigned RunningDepId = 1; 6500456327cSAdam Nemet DenseMap<Value *, unsigned> DepSetId; 6510456327cSAdam Nemet 6520456327cSAdam Nemet for (auto A : AS) { 6530456327cSAdam Nemet Value *Ptr = A.getValue(); 6540456327cSAdam Nemet bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 6550456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 6560456327cSAdam Nemet 657424edc6cSAdam Nemet if (IsWrite) 658424edc6cSAdam Nemet ++NumWritePtrChecks; 659424edc6cSAdam Nemet else 660424edc6cSAdam Nemet ++NumReadPtrChecks; 661424edc6cSAdam Nemet 6629cd9a7e3SSilviu Baranga if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 663a28d91d8SMehdi Amini // When we run after a failing dependency check we have to make sure 664a28d91d8SMehdi Amini // we don't have wrapping pointers. 6659f02c586SAndrey Turetskiy (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 6660456327cSAdam Nemet // The id of the dependence set. 6670456327cSAdam Nemet unsigned DepId; 6680456327cSAdam Nemet 6690456327cSAdam Nemet if (IsDepCheckNeeded) { 6700456327cSAdam Nemet Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 6710456327cSAdam Nemet unsigned &LeaderId = DepSetId[Leader]; 6720456327cSAdam Nemet if (!LeaderId) 6730456327cSAdam Nemet LeaderId = RunningDepId++; 6740456327cSAdam Nemet DepId = LeaderId; 6750456327cSAdam Nemet } else 6760456327cSAdam Nemet // Each access has its own dependence set. 6770456327cSAdam Nemet DepId = RunningDepId++; 6780456327cSAdam Nemet 6799cd9a7e3SSilviu Baranga RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 6800456327cSAdam Nemet 681339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 6820456327cSAdam Nemet } else { 683f10ca278SAdam Nemet DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 6840456327cSAdam Nemet CanDoRT = false; 6850456327cSAdam Nemet } 6860456327cSAdam Nemet } 6870456327cSAdam Nemet 688424edc6cSAdam Nemet // If we have at least two writes or one write and a read then we need to 689424edc6cSAdam Nemet // check them. But there is no need to checks if there is only one 690424edc6cSAdam Nemet // dependence set for this alias set. 691424edc6cSAdam Nemet // 692424edc6cSAdam Nemet // Note that this function computes CanDoRT and NeedRTCheck independently. 693424edc6cSAdam Nemet // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 694424edc6cSAdam Nemet // for which we couldn't find the bounds but we don't actually need to emit 695424edc6cSAdam Nemet // any checks so it does not matter. 696424edc6cSAdam Nemet if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 697424edc6cSAdam Nemet NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 698424edc6cSAdam Nemet NumWritePtrChecks >= 1)); 699424edc6cSAdam Nemet 7000456327cSAdam Nemet ++ASId; 7010456327cSAdam Nemet } 7020456327cSAdam Nemet 7030456327cSAdam Nemet // If the pointers that we would use for the bounds comparison have different 7040456327cSAdam Nemet // address spaces, assume the values aren't directly comparable, so we can't 7050456327cSAdam Nemet // use them for the runtime check. We also have to assume they could 7060456327cSAdam Nemet // overlap. In the future there should be metadata for whether address spaces 7070456327cSAdam Nemet // are disjoint. 7080456327cSAdam Nemet unsigned NumPointers = RtCheck.Pointers.size(); 7090456327cSAdam Nemet for (unsigned i = 0; i < NumPointers; ++i) { 7100456327cSAdam Nemet for (unsigned j = i + 1; j < NumPointers; ++j) { 7110456327cSAdam Nemet // Only need to check pointers between two different dependency sets. 7129f7dedc3SAdam Nemet if (RtCheck.Pointers[i].DependencySetId == 7139f7dedc3SAdam Nemet RtCheck.Pointers[j].DependencySetId) 7140456327cSAdam Nemet continue; 7150456327cSAdam Nemet // Only need to check pointers in the same alias set. 7169f7dedc3SAdam Nemet if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 7170456327cSAdam Nemet continue; 7180456327cSAdam Nemet 7199f7dedc3SAdam Nemet Value *PtrI = RtCheck.Pointers[i].PointerValue; 7209f7dedc3SAdam Nemet Value *PtrJ = RtCheck.Pointers[j].PointerValue; 7210456327cSAdam Nemet 7220456327cSAdam Nemet unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 7230456327cSAdam Nemet unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 7240456327cSAdam Nemet if (ASi != ASj) { 725339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 7260456327cSAdam Nemet " different address spaces\n"); 7270456327cSAdam Nemet return false; 7280456327cSAdam Nemet } 7290456327cSAdam Nemet } 7300456327cSAdam Nemet } 7310456327cSAdam Nemet 7321b6b50a9SSilviu Baranga if (NeedRTCheck && CanDoRT) 73315840393SAdam Nemet RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 7341b6b50a9SSilviu Baranga 735155e8741SAdam Nemet DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 736ee61474aSAdam Nemet << " pointer comparisons.\n"); 737ee61474aSAdam Nemet 738ee61474aSAdam Nemet RtCheck.Need = NeedRTCheck; 739ee61474aSAdam Nemet 740ee61474aSAdam Nemet bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 741ee61474aSAdam Nemet if (!CanDoRTIfNeeded) 742ee61474aSAdam Nemet RtCheck.reset(); 743ee61474aSAdam Nemet return CanDoRTIfNeeded; 7440456327cSAdam Nemet } 7450456327cSAdam Nemet 7460456327cSAdam Nemet void AccessAnalysis::processMemAccesses() { 7470456327cSAdam Nemet // We process the set twice: first we process read-write pointers, last we 7480456327cSAdam Nemet // process read-only pointers. This allows us to skip dependence tests for 7490456327cSAdam Nemet // read-only pointers. 7500456327cSAdam Nemet 751339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 7520456327cSAdam Nemet DEBUG(dbgs() << " AST: "; AST.dump()); 7539c926579SAdam Nemet DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 7540456327cSAdam Nemet DEBUG({ 7550456327cSAdam Nemet for (auto A : Accesses) 7560456327cSAdam Nemet dbgs() << "\t" << *A.getPointer() << " (" << 7570456327cSAdam Nemet (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 7580456327cSAdam Nemet "read-only" : "read")) << ")\n"; 7590456327cSAdam Nemet }); 7600456327cSAdam Nemet 7610456327cSAdam Nemet // The AliasSetTracker has nicely partitioned our pointers by metadata 7620456327cSAdam Nemet // compatibility and potential for underlying-object overlap. As a result, we 7630456327cSAdam Nemet // only need to check for potential pointer dependencies within each alias 7640456327cSAdam Nemet // set. 7650456327cSAdam Nemet for (auto &AS : AST) { 7660456327cSAdam Nemet // Note that both the alias-set tracker and the alias sets themselves used 7670456327cSAdam Nemet // linked lists internally and so the iteration order here is deterministic 7680456327cSAdam Nemet // (matching the original instruction order within each set). 7690456327cSAdam Nemet 7700456327cSAdam Nemet bool SetHasWrite = false; 7710456327cSAdam Nemet 7720456327cSAdam Nemet // Map of pointers to last access encountered. 7730456327cSAdam Nemet typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 7740456327cSAdam Nemet UnderlyingObjToAccessMap ObjToLastAccess; 7750456327cSAdam Nemet 7760456327cSAdam Nemet // Set of access to check after all writes have been processed. 7770456327cSAdam Nemet PtrAccessSet DeferredAccesses; 7780456327cSAdam Nemet 7790456327cSAdam Nemet // Iterate over each alias set twice, once to process read/write pointers, 7800456327cSAdam Nemet // and then to process read-only pointers. 7810456327cSAdam Nemet for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 7820456327cSAdam Nemet bool UseDeferred = SetIteration > 0; 7830456327cSAdam Nemet PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 7840456327cSAdam Nemet 7850456327cSAdam Nemet for (auto AV : AS) { 7860456327cSAdam Nemet Value *Ptr = AV.getValue(); 7870456327cSAdam Nemet 7880456327cSAdam Nemet // For a single memory access in AliasSetTracker, Accesses may contain 7890456327cSAdam Nemet // both read and write, and they both need to be handled for CheckDeps. 7900456327cSAdam Nemet for (auto AC : S) { 7910456327cSAdam Nemet if (AC.getPointer() != Ptr) 7920456327cSAdam Nemet continue; 7930456327cSAdam Nemet 7940456327cSAdam Nemet bool IsWrite = AC.getInt(); 7950456327cSAdam Nemet 7960456327cSAdam Nemet // If we're using the deferred access set, then it contains only 7970456327cSAdam Nemet // reads. 7980456327cSAdam Nemet bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 7990456327cSAdam Nemet if (UseDeferred && !IsReadOnlyPtr) 8000456327cSAdam Nemet continue; 8010456327cSAdam Nemet // Otherwise, the pointer must be in the PtrAccessSet, either as a 8020456327cSAdam Nemet // read or a write. 8030456327cSAdam Nemet assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 8040456327cSAdam Nemet S.count(MemAccessInfo(Ptr, false))) && 8050456327cSAdam Nemet "Alias-set pointer not in the access set?"); 8060456327cSAdam Nemet 8070456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 8080456327cSAdam Nemet DepCands.insert(Access); 8090456327cSAdam Nemet 8100456327cSAdam Nemet // Memorize read-only pointers for later processing and skip them in 8110456327cSAdam Nemet // the first round (they need to be checked after we have seen all 8120456327cSAdam Nemet // write pointers). Note: we also mark pointer that are not 8130456327cSAdam Nemet // consecutive as "read-only" pointers (so that we check 8140456327cSAdam Nemet // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 8150456327cSAdam Nemet if (!UseDeferred && IsReadOnlyPtr) { 8160456327cSAdam Nemet DeferredAccesses.insert(Access); 8170456327cSAdam Nemet continue; 8180456327cSAdam Nemet } 8190456327cSAdam Nemet 8200456327cSAdam Nemet // If this is a write - check other reads and writes for conflicts. If 8210456327cSAdam Nemet // this is a read only check other writes for conflicts (but only if 8220456327cSAdam Nemet // there is no other write to the ptr - this is an optimization to 8230456327cSAdam Nemet // catch "a[i] = a[i] + " without having to do a dependence check). 8240456327cSAdam Nemet if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 8255448e989SAmjad Aboud CheckDeps.push_back(Access); 8265dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded = true; 8270456327cSAdam Nemet } 8280456327cSAdam Nemet 8290456327cSAdam Nemet if (IsWrite) 8300456327cSAdam Nemet SetHasWrite = true; 8310456327cSAdam Nemet 8320456327cSAdam Nemet // Create sets of pointers connected by a shared alias set and 8330456327cSAdam Nemet // underlying object. 8340456327cSAdam Nemet typedef SmallVector<Value *, 16> ValueVector; 8350456327cSAdam Nemet ValueVector TempObjects; 836e2b885c4SAdam Nemet 837e2b885c4SAdam Nemet GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 838e2b885c4SAdam Nemet DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 8390456327cSAdam Nemet for (Value *UnderlyingObj : TempObjects) { 840afd13519SMehdi Amini // nullptr never alias, don't join sets for pointer that have "null" 841afd13519SMehdi Amini // in their UnderlyingObjects list. 842afd13519SMehdi Amini if (isa<ConstantPointerNull>(UnderlyingObj)) 843afd13519SMehdi Amini continue; 844afd13519SMehdi Amini 8450456327cSAdam Nemet UnderlyingObjToAccessMap::iterator Prev = 8460456327cSAdam Nemet ObjToLastAccess.find(UnderlyingObj); 8470456327cSAdam Nemet if (Prev != ObjToLastAccess.end()) 8480456327cSAdam Nemet DepCands.unionSets(Access, Prev->second); 8490456327cSAdam Nemet 8500456327cSAdam Nemet ObjToLastAccess[UnderlyingObj] = Access; 851e2b885c4SAdam Nemet DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 8520456327cSAdam Nemet } 8530456327cSAdam Nemet } 8540456327cSAdam Nemet } 8550456327cSAdam Nemet } 8560456327cSAdam Nemet } 8570456327cSAdam Nemet } 8580456327cSAdam Nemet 8590456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) { 8600456327cSAdam Nemet if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 8610456327cSAdam Nemet return GEP->isInBounds(); 8620456327cSAdam Nemet return false; 8630456327cSAdam Nemet } 8640456327cSAdam Nemet 865c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 866c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing. 867c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 868ea63a7f5SSilviu Baranga PredicatedScalarEvolution &PSE, const Loop *L) { 869c4866d29SAdam Nemet // FIXME: This should probably only return true for NUW. 870c4866d29SAdam Nemet if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 871c4866d29SAdam Nemet return true; 872c4866d29SAdam Nemet 873c4866d29SAdam Nemet // Scalar evolution does not propagate the non-wrapping flags to values that 874c4866d29SAdam Nemet // are derived from a non-wrapping induction variable because non-wrapping 875c4866d29SAdam Nemet // could be flow-sensitive. 876c4866d29SAdam Nemet // 877c4866d29SAdam Nemet // Look through the potentially overflowing instruction to try to prove 878c4866d29SAdam Nemet // non-wrapping for the *specific* value of Ptr. 879c4866d29SAdam Nemet 880c4866d29SAdam Nemet // The arithmetic implied by an inbounds GEP can't overflow. 881c4866d29SAdam Nemet auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 882c4866d29SAdam Nemet if (!GEP || !GEP->isInBounds()) 883c4866d29SAdam Nemet return false; 884c4866d29SAdam Nemet 885c4866d29SAdam Nemet // Make sure there is only one non-const index and analyze that. 886c4866d29SAdam Nemet Value *NonConstIndex = nullptr; 8878b401013SDavid Majnemer for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 8888b401013SDavid Majnemer if (!isa<ConstantInt>(Index)) { 889c4866d29SAdam Nemet if (NonConstIndex) 890c4866d29SAdam Nemet return false; 8918b401013SDavid Majnemer NonConstIndex = Index; 892c4866d29SAdam Nemet } 893c4866d29SAdam Nemet if (!NonConstIndex) 894c4866d29SAdam Nemet // The recurrence is on the pointer, ignore for now. 895c4866d29SAdam Nemet return false; 896c4866d29SAdam Nemet 897c4866d29SAdam Nemet // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 898c4866d29SAdam Nemet // AddRec using a NSW operation. 899c4866d29SAdam Nemet if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 900c4866d29SAdam Nemet if (OBO->hasNoSignedWrap() && 901c4866d29SAdam Nemet // Assume constant for other the operand so that the AddRec can be 902c4866d29SAdam Nemet // easily found. 903c4866d29SAdam Nemet isa<ConstantInt>(OBO->getOperand(1))) { 904ea63a7f5SSilviu Baranga auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 905c4866d29SAdam Nemet 906c4866d29SAdam Nemet if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 907c4866d29SAdam Nemet return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 908c4866d29SAdam Nemet } 909c4866d29SAdam Nemet 910c4866d29SAdam Nemet return false; 911c4866d29SAdam Nemet } 912c4866d29SAdam Nemet 9130456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride. 9147afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 915ea63a7f5SSilviu Baranga const Loop *Lp, const ValueToValueMap &StridesMap, 9165f8cc0c3SElena Demikhovsky bool Assume, bool ShouldCheckWrap) { 917e3dcce97SCraig Topper Type *Ty = Ptr->getType(); 9180456327cSAdam Nemet assert(Ty->isPointerTy() && "Unexpected non-ptr"); 9190456327cSAdam Nemet 9200456327cSAdam Nemet // Make sure that the pointer does not point to aggregate types. 921e3dcce97SCraig Topper auto *PtrTy = cast<PointerType>(Ty); 9220456327cSAdam Nemet if (PtrTy->getElementType()->isAggregateType()) { 923ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 924ea63a7f5SSilviu Baranga << "\n"); 9250456327cSAdam Nemet return 0; 9260456327cSAdam Nemet } 9270456327cSAdam Nemet 9289cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 9290456327cSAdam Nemet 9300456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 931ea63a7f5SSilviu Baranga if (Assume && !AR) 932d68ed854SSilviu Baranga AR = PSE.getAsAddRec(Ptr); 933ea63a7f5SSilviu Baranga 9340456327cSAdam Nemet if (!AR) { 935ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 936ea63a7f5SSilviu Baranga << " SCEV: " << *PtrScev << "\n"); 9370456327cSAdam Nemet return 0; 9380456327cSAdam Nemet } 9390456327cSAdam Nemet 9400456327cSAdam Nemet // The accesss function must stride over the innermost loop. 9410456327cSAdam Nemet if (Lp != AR->getLoop()) { 942339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 943ea63a7f5SSilviu Baranga *Ptr << " SCEV: " << *AR << "\n"); 944a02ce98bSKyle Butt return 0; 9450456327cSAdam Nemet } 9460456327cSAdam Nemet 9470456327cSAdam Nemet // The address calculation must not wrap. Otherwise, a dependence could be 9480456327cSAdam Nemet // inverted. 9490456327cSAdam Nemet // An inbounds getelementptr that is a AddRec with a unit stride 9500456327cSAdam Nemet // cannot wrap per definition. The unit stride requirement is checked later. 9510456327cSAdam Nemet // An getelementptr without an inbounds attribute and unit stride would have 9520456327cSAdam Nemet // to access the pointer value "0" which is undefined behavior in address 9530456327cSAdam Nemet // space 0, therefore we can also vectorize this case. 9540456327cSAdam Nemet bool IsInBoundsGEP = isInBoundsGep(Ptr); 9555f8cc0c3SElena Demikhovsky bool IsNoWrapAddRec = !ShouldCheckWrap || 956ea63a7f5SSilviu Baranga PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 957ea63a7f5SSilviu Baranga isNoWrapAddRec(Ptr, AR, PSE, Lp); 9580456327cSAdam Nemet bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 9590456327cSAdam Nemet if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 960ea63a7f5SSilviu Baranga if (Assume) { 961ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 962ea63a7f5SSilviu Baranga IsNoWrapAddRec = true; 963ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 964ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 965ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 966ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 967ea63a7f5SSilviu Baranga } else { 968339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 969ea63a7f5SSilviu Baranga << *Ptr << " SCEV: " << *AR << "\n"); 9700456327cSAdam Nemet return 0; 9710456327cSAdam Nemet } 972ea63a7f5SSilviu Baranga } 9730456327cSAdam Nemet 9740456327cSAdam Nemet // Check the step is constant. 9759cd9a7e3SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 9760456327cSAdam Nemet 977943befedSAdam Nemet // Calculate the pointer stride and check if it is constant. 9780456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 9790456327cSAdam Nemet if (!C) { 980339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 981ea63a7f5SSilviu Baranga " SCEV: " << *AR << "\n"); 9820456327cSAdam Nemet return 0; 9830456327cSAdam Nemet } 9840456327cSAdam Nemet 985a28d91d8SMehdi Amini auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 986a28d91d8SMehdi Amini int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 9870de2feceSSanjoy Das const APInt &APStepVal = C->getAPInt(); 9880456327cSAdam Nemet 9890456327cSAdam Nemet // Huge step value - give up. 9900456327cSAdam Nemet if (APStepVal.getBitWidth() > 64) 9910456327cSAdam Nemet return 0; 9920456327cSAdam Nemet 9930456327cSAdam Nemet int64_t StepVal = APStepVal.getSExtValue(); 9940456327cSAdam Nemet 9950456327cSAdam Nemet // Strided access. 9960456327cSAdam Nemet int64_t Stride = StepVal / Size; 9970456327cSAdam Nemet int64_t Rem = StepVal % Size; 9980456327cSAdam Nemet if (Rem) 9990456327cSAdam Nemet return 0; 10000456327cSAdam Nemet 10010456327cSAdam Nemet // If the SCEV could wrap but we have an inbounds gep with a unit stride we 10020456327cSAdam Nemet // know we can't "wrap around the address space". In case of address space 10030456327cSAdam Nemet // zero we know that this won't happen without triggering undefined behavior. 10040456327cSAdam Nemet if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 1005ea63a7f5SSilviu Baranga Stride != 1 && Stride != -1) { 1006ea63a7f5SSilviu Baranga if (Assume) { 1007ea63a7f5SSilviu Baranga // We can avoid this case by adding a run-time check. 1008ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1009ea63a7f5SSilviu Baranga << "inbouds or in address space 0 may wrap:\n" 1010ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 1011ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 1012ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 1013ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1014ea63a7f5SSilviu Baranga } else 10150456327cSAdam Nemet return 0; 1016ea63a7f5SSilviu Baranga } 10170456327cSAdam Nemet 10180456327cSAdam Nemet return Stride; 10190456327cSAdam Nemet } 10200456327cSAdam Nemet 1021f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction. 1022f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction. 1023f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) { 10248b401013SDavid Majnemer if (auto *LI = dyn_cast<LoadInst>(I)) 1025f1c00a22SHaicheng Wu return LI->getPointerOperand(); 10268b401013SDavid Majnemer if (auto *SI = dyn_cast<StoreInst>(I)) 1027f1c00a22SHaicheng Wu return SI->getPointerOperand(); 1028f1c00a22SHaicheng Wu return nullptr; 1029f1c00a22SHaicheng Wu } 1030f1c00a22SHaicheng Wu 1031f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction. 1032f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction. 1033f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) { 1034f1c00a22SHaicheng Wu if (LoadInst *L = dyn_cast<LoadInst>(I)) 1035f1c00a22SHaicheng Wu return L->getPointerAddressSpace(); 1036f1c00a22SHaicheng Wu if (StoreInst *S = dyn_cast<StoreInst>(I)) 1037f1c00a22SHaicheng Wu return S->getPointerAddressSpace(); 1038f1c00a22SHaicheng Wu return -1; 1039f1c00a22SHaicheng Wu } 1040f1c00a22SHaicheng Wu 1041f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive. 1042f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1043f1c00a22SHaicheng Wu ScalarEvolution &SE, bool CheckType) { 1044f1c00a22SHaicheng Wu Value *PtrA = getPointerOperand(A); 1045f1c00a22SHaicheng Wu Value *PtrB = getPointerOperand(B); 1046f1c00a22SHaicheng Wu unsigned ASA = getAddressSpaceOperand(A); 1047f1c00a22SHaicheng Wu unsigned ASB = getAddressSpaceOperand(B); 1048f1c00a22SHaicheng Wu 1049f1c00a22SHaicheng Wu // Check that the address spaces match and that the pointers are valid. 1050f1c00a22SHaicheng Wu if (!PtrA || !PtrB || (ASA != ASB)) 1051f1c00a22SHaicheng Wu return false; 1052f1c00a22SHaicheng Wu 1053f1c00a22SHaicheng Wu // Make sure that A and B are different pointers. 1054f1c00a22SHaicheng Wu if (PtrA == PtrB) 1055f1c00a22SHaicheng Wu return false; 1056f1c00a22SHaicheng Wu 1057f1c00a22SHaicheng Wu // Make sure that A and B have the same type if required. 1058f1c00a22SHaicheng Wu if (CheckType && PtrA->getType() != PtrB->getType()) 1059f1c00a22SHaicheng Wu return false; 1060f1c00a22SHaicheng Wu 1061f1c00a22SHaicheng Wu unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1062f1c00a22SHaicheng Wu Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1063f1c00a22SHaicheng Wu APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1064f1c00a22SHaicheng Wu 1065f1c00a22SHaicheng Wu APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1066f1c00a22SHaicheng Wu PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1067f1c00a22SHaicheng Wu PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1068f1c00a22SHaicheng Wu 1069f1c00a22SHaicheng Wu // OffsetDelta = OffsetB - OffsetA; 1070f1c00a22SHaicheng Wu const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1071f1c00a22SHaicheng Wu const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1072f1c00a22SHaicheng Wu const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1073f1c00a22SHaicheng Wu const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1074f1c00a22SHaicheng Wu const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1075f1c00a22SHaicheng Wu // Check if they are based on the same pointer. That makes the offsets 1076f1c00a22SHaicheng Wu // sufficient. 1077f1c00a22SHaicheng Wu if (PtrA == PtrB) 1078f1c00a22SHaicheng Wu return OffsetDelta == Size; 1079f1c00a22SHaicheng Wu 1080f1c00a22SHaicheng Wu // Compute the necessary base pointer delta to have the necessary final delta 1081f1c00a22SHaicheng Wu // equal to the size. 1082f1c00a22SHaicheng Wu // BaseDelta = Size - OffsetDelta; 1083f1c00a22SHaicheng Wu const SCEV *SizeSCEV = SE.getConstant(Size); 1084f1c00a22SHaicheng Wu const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1085f1c00a22SHaicheng Wu 1086f1c00a22SHaicheng Wu // Otherwise compute the distance with SCEV between the base pointers. 1087f1c00a22SHaicheng Wu const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1088f1c00a22SHaicheng Wu const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1089f1c00a22SHaicheng Wu const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1090f1c00a22SHaicheng Wu return X == PtrSCEVB; 1091f1c00a22SHaicheng Wu } 1092f1c00a22SHaicheng Wu 10939c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 10949c926579SAdam Nemet switch (Type) { 10959c926579SAdam Nemet case NoDep: 10969c926579SAdam Nemet case Forward: 10979c926579SAdam Nemet case BackwardVectorizable: 10989c926579SAdam Nemet return true; 10999c926579SAdam Nemet 11009c926579SAdam Nemet case Unknown: 11019c926579SAdam Nemet case ForwardButPreventsForwarding: 11029c926579SAdam Nemet case Backward: 11039c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 11049c926579SAdam Nemet return false; 11059c926579SAdam Nemet } 1106d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 11079c926579SAdam Nemet } 11089c926579SAdam Nemet 1109397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const { 11109c926579SAdam Nemet switch (Type) { 11119c926579SAdam Nemet case NoDep: 11129c926579SAdam Nemet case Forward: 11139c926579SAdam Nemet case ForwardButPreventsForwarding: 1114397f5829SAdam Nemet case Unknown: 11159c926579SAdam Nemet return false; 11169c926579SAdam Nemet 11179c926579SAdam Nemet case BackwardVectorizable: 11189c926579SAdam Nemet case Backward: 11199c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 11209c926579SAdam Nemet return true; 11219c926579SAdam Nemet } 1122d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 11239c926579SAdam Nemet } 11249c926579SAdam Nemet 1125397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1126397f5829SAdam Nemet return isBackward() || Type == Unknown; 1127397f5829SAdam Nemet } 1128397f5829SAdam Nemet 1129397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const { 1130397f5829SAdam Nemet switch (Type) { 1131397f5829SAdam Nemet case Forward: 1132397f5829SAdam Nemet case ForwardButPreventsForwarding: 1133397f5829SAdam Nemet return true; 1134397f5829SAdam Nemet 1135397f5829SAdam Nemet case NoDep: 1136397f5829SAdam Nemet case Unknown: 1137397f5829SAdam Nemet case BackwardVectorizable: 1138397f5829SAdam Nemet case Backward: 1139397f5829SAdam Nemet case BackwardVectorizableButPreventsForwarding: 1140397f5829SAdam Nemet return false; 1141397f5829SAdam Nemet } 1142397f5829SAdam Nemet llvm_unreachable("unexpected DepType!"); 1143397f5829SAdam Nemet } 1144397f5829SAdam Nemet 11457afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 11467afb46d3SDavid Majnemer uint64_t TypeByteSize) { 11470456327cSAdam Nemet // If loads occur at a distance that is not a multiple of a feasible vector 11480456327cSAdam Nemet // factor store-load forwarding does not take place. 11490456327cSAdam Nemet // Positive dependences might cause troubles because vectorizing them might 11500456327cSAdam Nemet // prevent store-load forwarding making vectorized code run a lot slower. 11510456327cSAdam Nemet // a[i] = a[i-3] ^ a[i-8]; 11520456327cSAdam Nemet // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 11530456327cSAdam Nemet // hence on your typical architecture store-load forwarding does not take 11540456327cSAdam Nemet // place. Vectorizing in such cases does not make sense. 11550456327cSAdam Nemet // Store-load forwarding distance. 1156884d313bSAdam Nemet 1157884d313bSAdam Nemet // After this many iterations store-to-load forwarding conflicts should not 1158884d313bSAdam Nemet // cause any slowdowns. 11597afb46d3SDavid Majnemer const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 11600456327cSAdam Nemet // Maximum vector factor. 11617afb46d3SDavid Majnemer uint64_t MaxVFWithoutSLForwardIssues = std::min( 11622c34ab51SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 11630456327cSAdam Nemet 1164884d313bSAdam Nemet // Compute the smallest VF at which the store and load would be misaligned. 11657afb46d3SDavid Majnemer for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 11669b5852aeSAdam Nemet VF *= 2) { 1167884d313bSAdam Nemet // If the number of vector iteration between the store and the load are 1168884d313bSAdam Nemet // small we could incur conflicts. 1169884d313bSAdam Nemet if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 11709b5852aeSAdam Nemet MaxVFWithoutSLForwardIssues = (VF >>= 1); 11710456327cSAdam Nemet break; 11720456327cSAdam Nemet } 11730456327cSAdam Nemet } 11740456327cSAdam Nemet 11750456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 11769b5852aeSAdam Nemet DEBUG(dbgs() << "LAA: Distance " << Distance 11779b5852aeSAdam Nemet << " that could cause a store-load forwarding conflict\n"); 11780456327cSAdam Nemet return true; 11790456327cSAdam Nemet } 11800456327cSAdam Nemet 11810456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1182f219c647SAdam Nemet MaxVFWithoutSLForwardIssues != 1183f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize) 11840456327cSAdam Nemet MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 11850456327cSAdam Nemet return false; 11860456327cSAdam Nemet } 11870456327cSAdam Nemet 1188eac89d73SDorit Nuzman /// Given a non-constant (unknown) dependence-distance \p Dist between two 1189eac89d73SDorit Nuzman /// memory accesses, that have the same stride whose absolute value is given 1190eac89d73SDorit Nuzman /// in \p Stride, and that have the same type size \p TypeByteSize, 1191eac89d73SDorit Nuzman /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1192eac89d73SDorit Nuzman /// possible to prove statically that the dependence distance is larger 1193eac89d73SDorit Nuzman /// than the range that the accesses will travel through the execution of 1194eac89d73SDorit Nuzman /// the loop. If so, return true; false otherwise. This is useful for 1195eac89d73SDorit Nuzman /// example in loops such as the following (PR31098): 1196eac89d73SDorit Nuzman /// for (i = 0; i < D; ++i) { 1197eac89d73SDorit Nuzman /// = out[i]; 1198eac89d73SDorit Nuzman /// out[i+D] = 1199eac89d73SDorit Nuzman /// } 1200eac89d73SDorit Nuzman static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1201eac89d73SDorit Nuzman const SCEV &BackedgeTakenCount, 1202eac89d73SDorit Nuzman const SCEV &Dist, uint64_t Stride, 1203eac89d73SDorit Nuzman uint64_t TypeByteSize) { 1204eac89d73SDorit Nuzman 1205eac89d73SDorit Nuzman // If we can prove that 1206eac89d73SDorit Nuzman // (**) |Dist| > BackedgeTakenCount * Step 1207eac89d73SDorit Nuzman // where Step is the absolute stride of the memory accesses in bytes, 1208eac89d73SDorit Nuzman // then there is no dependence. 1209eac89d73SDorit Nuzman // 1210eac89d73SDorit Nuzman // Ratioanle: 1211eac89d73SDorit Nuzman // We basically want to check if the absolute distance (|Dist/Step|) 1212eac89d73SDorit Nuzman // is >= the loop iteration count (or > BackedgeTakenCount). 1213eac89d73SDorit Nuzman // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1214eac89d73SDorit Nuzman // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1215eac89d73SDorit Nuzman // that the dependence distance is >= VF; This is checked elsewhere. 1216eac89d73SDorit Nuzman // But in some cases we can prune unknown dependence distances early, and 1217eac89d73SDorit Nuzman // even before selecting the VF, and without a runtime test, by comparing 1218eac89d73SDorit Nuzman // the distance against the loop iteration count. Since the vectorized code 1219eac89d73SDorit Nuzman // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1220eac89d73SDorit Nuzman // also guarantees that distance >= VF. 1221eac89d73SDorit Nuzman // 1222eac89d73SDorit Nuzman const uint64_t ByteStride = Stride * TypeByteSize; 1223eac89d73SDorit Nuzman const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1224eac89d73SDorit Nuzman const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1225eac89d73SDorit Nuzman 1226eac89d73SDorit Nuzman const SCEV *CastedDist = &Dist; 1227eac89d73SDorit Nuzman const SCEV *CastedProduct = Product; 1228eac89d73SDorit Nuzman uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1229eac89d73SDorit Nuzman uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1230eac89d73SDorit Nuzman 1231eac89d73SDorit Nuzman // The dependence distance can be positive/negative, so we sign extend Dist; 1232eac89d73SDorit Nuzman // The multiplication of the absolute stride in bytes and the 1233eac89d73SDorit Nuzman // backdgeTakenCount is non-negative, so we zero extend Product. 1234eac89d73SDorit Nuzman if (DistTypeSize > ProductTypeSize) 1235eac89d73SDorit Nuzman CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1236eac89d73SDorit Nuzman else 1237eac89d73SDorit Nuzman CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1238eac89d73SDorit Nuzman 1239eac89d73SDorit Nuzman // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1240eac89d73SDorit Nuzman // (If so, then we have proven (**) because |Dist| >= Dist) 1241eac89d73SDorit Nuzman const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1242eac89d73SDorit Nuzman if (SE.isKnownPositive(Minus)) 1243eac89d73SDorit Nuzman return true; 1244eac89d73SDorit Nuzman 1245eac89d73SDorit Nuzman // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1246eac89d73SDorit Nuzman // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1247eac89d73SDorit Nuzman const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1248eac89d73SDorit Nuzman Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1249eac89d73SDorit Nuzman if (SE.isKnownPositive(Minus)) 1250eac89d73SDorit Nuzman return true; 1251eac89d73SDorit Nuzman 1252eac89d73SDorit Nuzman return false; 1253eac89d73SDorit Nuzman } 1254eac89d73SDorit Nuzman 1255751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride. 1256751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in 1257751004a6SHao Liu /// bytes. 1258751004a6SHao Liu /// 1259751004a6SHao Liu /// \returns true if they are independent. 12607afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 12617afb46d3SDavid Majnemer uint64_t TypeByteSize) { 1262751004a6SHao Liu assert(Stride > 1 && "The stride must be greater than 1"); 1263751004a6SHao Liu assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1264751004a6SHao Liu assert(Distance > 0 && "The distance must be non-zero"); 1265751004a6SHao Liu 1266751004a6SHao Liu // Skip if the distance is not multiple of type byte size. 1267751004a6SHao Liu if (Distance % TypeByteSize) 1268751004a6SHao Liu return false; 1269751004a6SHao Liu 12707afb46d3SDavid Majnemer uint64_t ScaledDist = Distance / TypeByteSize; 1271751004a6SHao Liu 1272751004a6SHao Liu // No dependence if the scaled distance is not multiple of the stride. 1273751004a6SHao Liu // E.g. 1274751004a6SHao Liu // for (i = 0; i < 1024 ; i += 4) 1275751004a6SHao Liu // A[i+2] = A[i] + 1; 1276751004a6SHao Liu // 1277751004a6SHao Liu // Two accesses in memory (scaled distance is 2, stride is 4): 1278751004a6SHao Liu // | A[0] | | | | A[4] | | | | 1279751004a6SHao Liu // | | | A[2] | | | | A[6] | | 1280751004a6SHao Liu // 1281751004a6SHao Liu // E.g. 1282751004a6SHao Liu // for (i = 0; i < 1024 ; i += 3) 1283751004a6SHao Liu // A[i+4] = A[i] + 1; 1284751004a6SHao Liu // 1285751004a6SHao Liu // Two accesses in memory (scaled distance is 4, stride is 3): 1286751004a6SHao Liu // | A[0] | | | A[3] | | | A[6] | | | 1287751004a6SHao Liu // | | | | | A[4] | | | A[7] | | 1288751004a6SHao Liu return ScaledDist % Stride; 1289751004a6SHao Liu } 1290751004a6SHao Liu 12919c926579SAdam Nemet MemoryDepChecker::Dependence::DepType 12929c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 12930456327cSAdam Nemet const MemAccessInfo &B, unsigned BIdx, 12948bc61df9SAdam Nemet const ValueToValueMap &Strides) { 12950456327cSAdam Nemet assert (AIdx < BIdx && "Must pass arguments in program order"); 12960456327cSAdam Nemet 12970456327cSAdam Nemet Value *APtr = A.getPointer(); 12980456327cSAdam Nemet Value *BPtr = B.getPointer(); 12990456327cSAdam Nemet bool AIsWrite = A.getInt(); 13000456327cSAdam Nemet bool BIsWrite = B.getInt(); 13010456327cSAdam Nemet 13020456327cSAdam Nemet // Two reads are independent. 13030456327cSAdam Nemet if (!AIsWrite && !BIsWrite) 13049c926579SAdam Nemet return Dependence::NoDep; 13050456327cSAdam Nemet 13060456327cSAdam Nemet // We cannot check pointers in different address spaces. 13070456327cSAdam Nemet if (APtr->getType()->getPointerAddressSpace() != 13080456327cSAdam Nemet BPtr->getType()->getPointerAddressSpace()) 13099c926579SAdam Nemet return Dependence::Unknown; 13100456327cSAdam Nemet 13117afb46d3SDavid Majnemer int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 13127afb46d3SDavid Majnemer int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 13130456327cSAdam Nemet 1314adf4b739SSilviu Baranga const SCEV *Src = PSE.getSCEV(APtr); 1315adf4b739SSilviu Baranga const SCEV *Sink = PSE.getSCEV(BPtr); 13160456327cSAdam Nemet 13170456327cSAdam Nemet // If the induction step is negative we have to invert source and sink of the 13180456327cSAdam Nemet // dependence. 13190456327cSAdam Nemet if (StrideAPtr < 0) { 13200456327cSAdam Nemet std::swap(APtr, BPtr); 13210456327cSAdam Nemet std::swap(Src, Sink); 13220456327cSAdam Nemet std::swap(AIsWrite, BIsWrite); 13230456327cSAdam Nemet std::swap(AIdx, BIdx); 13240456327cSAdam Nemet std::swap(StrideAPtr, StrideBPtr); 13250456327cSAdam Nemet } 13260456327cSAdam Nemet 13279cd9a7e3SSilviu Baranga const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 13280456327cSAdam Nemet 1329339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 13300456327cSAdam Nemet << "(Induction step: " << StrideAPtr << ")\n"); 1331339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 13320456327cSAdam Nemet << *InstMap[BIdx] << ": " << *Dist << "\n"); 13330456327cSAdam Nemet 1334943befedSAdam Nemet // Need accesses with constant stride. We don't want to vectorize 13350456327cSAdam Nemet // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 13360456327cSAdam Nemet // the address space. 13370456327cSAdam Nemet if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1338943befedSAdam Nemet DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 13399c926579SAdam Nemet return Dependence::Unknown; 13400456327cSAdam Nemet } 13410456327cSAdam Nemet 1342eac89d73SDorit Nuzman Type *ATy = APtr->getType()->getPointerElementType(); 1343eac89d73SDorit Nuzman Type *BTy = BPtr->getType()->getPointerElementType(); 1344eac89d73SDorit Nuzman auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1345eac89d73SDorit Nuzman uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1346eac89d73SDorit Nuzman uint64_t Stride = std::abs(StrideAPtr); 13470456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 13480456327cSAdam Nemet if (!C) { 1349eac89d73SDorit Nuzman if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1350eac89d73SDorit Nuzman isSafeDependenceDistance(DL, *(PSE.getSE()), 1351eac89d73SDorit Nuzman *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1352eac89d73SDorit Nuzman TypeByteSize)) 1353eac89d73SDorit Nuzman return Dependence::NoDep; 1354eac89d73SDorit Nuzman 1355339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 13560456327cSAdam Nemet ShouldRetryWithRuntimeCheck = true; 13579c926579SAdam Nemet return Dependence::Unknown; 13580456327cSAdam Nemet } 13590456327cSAdam Nemet 13600de2feceSSanjoy Das const APInt &Val = C->getAPInt(); 13616feebe98SMatthew Simpson int64_t Distance = Val.getSExtValue(); 13626feebe98SMatthew Simpson 13636feebe98SMatthew Simpson // Attempt to prove strided accesses independent. 13646feebe98SMatthew Simpson if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 13656feebe98SMatthew Simpson areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 13666feebe98SMatthew Simpson DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 13676feebe98SMatthew Simpson return Dependence::NoDep; 13686feebe98SMatthew Simpson } 13696feebe98SMatthew Simpson 13706feebe98SMatthew Simpson // Negative distances are not plausible dependencies. 13710456327cSAdam Nemet if (Val.isNegative()) { 13720456327cSAdam Nemet bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 137337ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 13740456327cSAdam Nemet (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1375b8486e5aSAdam Nemet ATy != BTy)) { 1376b8486e5aSAdam Nemet DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 13779c926579SAdam Nemet return Dependence::ForwardButPreventsForwarding; 1378b8486e5aSAdam Nemet } 13790456327cSAdam Nemet 1380724ab223SAdam Nemet DEBUG(dbgs() << "LAA: Dependence is negative\n"); 13819c926579SAdam Nemet return Dependence::Forward; 13820456327cSAdam Nemet } 13830456327cSAdam Nemet 13840456327cSAdam Nemet // Write to the same location with the same size. 13850456327cSAdam Nemet // Could be improved to assert type sizes are the same (i32 == float, etc). 13860456327cSAdam Nemet if (Val == 0) { 13870456327cSAdam Nemet if (ATy == BTy) 1388d7037c56SAdam Nemet return Dependence::Forward; 1389339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 13909c926579SAdam Nemet return Dependence::Unknown; 13910456327cSAdam Nemet } 13920456327cSAdam Nemet 13930456327cSAdam Nemet assert(Val.isStrictlyPositive() && "Expect a positive value"); 13940456327cSAdam Nemet 13950456327cSAdam Nemet if (ATy != BTy) { 139604d4163eSAdam Nemet DEBUG(dbgs() << 1397339f42b3SAdam Nemet "LAA: ReadWrite-Write positive dependency with different types\n"); 13989c926579SAdam Nemet return Dependence::Unknown; 13990456327cSAdam Nemet } 14000456327cSAdam Nemet 14010456327cSAdam Nemet // Bail out early if passed-in parameters make vectorization not feasible. 1402f219c647SAdam Nemet unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1403f219c647SAdam Nemet VectorizerParams::VectorizationFactor : 1); 1404f219c647SAdam Nemet unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1405f219c647SAdam Nemet VectorizerParams::VectorizationInterleave : 1); 1406751004a6SHao Liu // The minimum number of iterations for a vectorized/unrolled version. 1407751004a6SHao Liu unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 14080456327cSAdam Nemet 1409751004a6SHao Liu // It's not vectorizable if the distance is smaller than the minimum distance 1410751004a6SHao Liu // needed for a vectroized/unrolled version. Vectorizing one iteration in 1411751004a6SHao Liu // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1412751004a6SHao Liu // TypeByteSize (No need to plus the last gap distance). 1413751004a6SHao Liu // 1414751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1415751004a6SHao Liu // foo(int *A) { 1416751004a6SHao Liu // int *B = (int *)((char *)A + 14); 1417751004a6SHao Liu // for (i = 0 ; i < 1024 ; i += 2) 1418751004a6SHao Liu // B[i] = A[i] + 1; 1419751004a6SHao Liu // } 1420751004a6SHao Liu // 1421751004a6SHao Liu // Two accesses in memory (stride is 2): 1422751004a6SHao Liu // | A[0] | | A[2] | | A[4] | | A[6] | | 1423751004a6SHao Liu // | B[0] | | B[2] | | B[4] | 1424751004a6SHao Liu // 1425751004a6SHao Liu // Distance needs for vectorizing iterations except the last iteration: 1426751004a6SHao Liu // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1427751004a6SHao Liu // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1428751004a6SHao Liu // 1429751004a6SHao Liu // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1430751004a6SHao Liu // 12, which is less than distance. 1431751004a6SHao Liu // 1432751004a6SHao Liu // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1433751004a6SHao Liu // the minimum distance needed is 28, which is greater than distance. It is 1434751004a6SHao Liu // not safe to do vectorization. 14357afb46d3SDavid Majnemer uint64_t MinDistanceNeeded = 1436751004a6SHao Liu TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 14377afb46d3SDavid Majnemer if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1438751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1439751004a6SHao Liu << '\n'); 1440751004a6SHao Liu return Dependence::Backward; 1441751004a6SHao Liu } 1442751004a6SHao Liu 1443751004a6SHao Liu // Unsafe if the minimum distance needed is greater than max safe distance. 1444751004a6SHao Liu if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1445751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because it needs at least " 1446751004a6SHao Liu << MinDistanceNeeded << " size in bytes"); 14479c926579SAdam Nemet return Dependence::Backward; 14480456327cSAdam Nemet } 14490456327cSAdam Nemet 14509cc0c399SAdam Nemet // Positive distance bigger than max vectorization factor. 1451751004a6SHao Liu // FIXME: Should use max factor instead of max distance in bytes, which could 1452751004a6SHao Liu // not handle different types. 1453751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1454751004a6SHao Liu // void foo (int *A, char *B) { 1455751004a6SHao Liu // for (unsigned i = 0; i < 1024; i++) { 1456751004a6SHao Liu // A[i+2] = A[i] + 1; 1457751004a6SHao Liu // B[i+2] = B[i] + 1; 1458751004a6SHao Liu // } 1459751004a6SHao Liu // } 1460751004a6SHao Liu // 1461751004a6SHao Liu // This case is currently unsafe according to the max safe distance. If we 1462751004a6SHao Liu // analyze the two accesses on array B, the max safe dependence distance 1463751004a6SHao Liu // is 2. Then we analyze the accesses on array A, the minimum distance needed 1464751004a6SHao Liu // is 8, which is less than 2 and forbidden vectorization, But actually 1465751004a6SHao Liu // both A and B could be vectorized by 2 iterations. 1466751004a6SHao Liu MaxSafeDepDistBytes = 14677afb46d3SDavid Majnemer std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 14680456327cSAdam Nemet 14690456327cSAdam Nemet bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 147037ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 14710456327cSAdam Nemet couldPreventStoreLoadForward(Distance, TypeByteSize)) 14729c926579SAdam Nemet return Dependence::BackwardVectorizableButPreventsForwarding; 14730456327cSAdam Nemet 1474751004a6SHao Liu DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1475751004a6SHao Liu << " with max VF = " 1476751004a6SHao Liu << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 14770456327cSAdam Nemet 14789c926579SAdam Nemet return Dependence::BackwardVectorizable; 14790456327cSAdam Nemet } 14800456327cSAdam Nemet 1481dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 14825448e989SAmjad Aboud MemAccessInfoList &CheckDeps, 14838bc61df9SAdam Nemet const ValueToValueMap &Strides) { 14840456327cSAdam Nemet 14857afb46d3SDavid Majnemer MaxSafeDepDistBytes = -1; 14865448e989SAmjad Aboud SmallPtrSet<MemAccessInfo, 8> Visited; 14875448e989SAmjad Aboud for (MemAccessInfo CurAccess : CheckDeps) { 14885448e989SAmjad Aboud if (Visited.count(CurAccess)) 14895448e989SAmjad Aboud continue; 14900456327cSAdam Nemet 14910456327cSAdam Nemet // Get the relevant memory access set. 14920456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::iterator I = 14930456327cSAdam Nemet AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 14940456327cSAdam Nemet 14950456327cSAdam Nemet // Check accesses within this set. 14967a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AI = 14977a083814SRichard Trieu AccessSets.member_begin(I); 14987a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AE = 14997a083814SRichard Trieu AccessSets.member_end(); 15000456327cSAdam Nemet 15010456327cSAdam Nemet // Check every access pair. 15020456327cSAdam Nemet while (AI != AE) { 15035448e989SAmjad Aboud Visited.insert(*AI); 15040456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 15050456327cSAdam Nemet while (OI != AE) { 15060456327cSAdam Nemet // Check every accessing instruction pair in program order. 15070456327cSAdam Nemet for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 15080456327cSAdam Nemet I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 15090456327cSAdam Nemet for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 15100456327cSAdam Nemet I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 15119c926579SAdam Nemet auto A = std::make_pair(&*AI, *I1); 15129c926579SAdam Nemet auto B = std::make_pair(&*OI, *I2); 15139c926579SAdam Nemet 15149c926579SAdam Nemet assert(*I1 != *I2); 15159c926579SAdam Nemet if (*I1 > *I2) 15169c926579SAdam Nemet std::swap(A, B); 15179c926579SAdam Nemet 15189c926579SAdam Nemet Dependence::DepType Type = 15199c926579SAdam Nemet isDependent(*A.first, A.second, *B.first, B.second, Strides); 15209c926579SAdam Nemet SafeForVectorization &= Dependence::isSafeForVectorization(Type); 15219c926579SAdam Nemet 1522a2df750fSAdam Nemet // Gather dependences unless we accumulated MaxDependences 15239c926579SAdam Nemet // dependences. In that case return as soon as we find the first 15249c926579SAdam Nemet // unsafe dependence. This puts a limit on this quadratic 15259c926579SAdam Nemet // algorithm. 1526a2df750fSAdam Nemet if (RecordDependences) { 1527a2df750fSAdam Nemet if (Type != Dependence::NoDep) 1528a2df750fSAdam Nemet Dependences.push_back(Dependence(A.second, B.second, Type)); 15299c926579SAdam Nemet 1530a2df750fSAdam Nemet if (Dependences.size() >= MaxDependences) { 1531a2df750fSAdam Nemet RecordDependences = false; 1532a2df750fSAdam Nemet Dependences.clear(); 15339c926579SAdam Nemet DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 15349c926579SAdam Nemet } 15359c926579SAdam Nemet } 1536a2df750fSAdam Nemet if (!RecordDependences && !SafeForVectorization) 15370456327cSAdam Nemet return false; 15380456327cSAdam Nemet } 15390456327cSAdam Nemet ++OI; 15400456327cSAdam Nemet } 15410456327cSAdam Nemet AI++; 15420456327cSAdam Nemet } 15430456327cSAdam Nemet } 15449c926579SAdam Nemet 1545a2df750fSAdam Nemet DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 15469c926579SAdam Nemet return SafeForVectorization; 15470456327cSAdam Nemet } 15480456327cSAdam Nemet 1549ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> 1550ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1551ec1e2bb6SAdam Nemet MemAccessInfo Access(Ptr, isWrite); 1552ec1e2bb6SAdam Nemet auto &IndexVector = Accesses.find(Access)->second; 1553ec1e2bb6SAdam Nemet 1554ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> Insts; 15552d006e76SDavid Majnemer transform(IndexVector, 1556ec1e2bb6SAdam Nemet std::back_inserter(Insts), 1557ec1e2bb6SAdam Nemet [&](unsigned Idx) { return this->InstMap[Idx]; }); 1558ec1e2bb6SAdam Nemet return Insts; 1559ec1e2bb6SAdam Nemet } 1560ec1e2bb6SAdam Nemet 156158913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = { 156258913d65SAdam Nemet "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 156358913d65SAdam Nemet "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 156458913d65SAdam Nemet 156558913d65SAdam Nemet void MemoryDepChecker::Dependence::print( 156658913d65SAdam Nemet raw_ostream &OS, unsigned Depth, 156758913d65SAdam Nemet const SmallVectorImpl<Instruction *> &Instrs) const { 156858913d65SAdam Nemet OS.indent(Depth) << DepName[Type] << ":\n"; 156958913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 157058913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 157158913d65SAdam Nemet } 157258913d65SAdam Nemet 1573929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() { 15748dcb3b6aSAdam Nemet // We need to have a loop header. 1575d8968f09SAdam Nemet DEBUG(dbgs() << "LAA: Found a loop in " 1576d8968f09SAdam Nemet << TheLoop->getHeader()->getParent()->getName() << ": " 1577d8968f09SAdam Nemet << TheLoop->getHeader()->getName() << '\n'); 15788dcb3b6aSAdam Nemet 1579929c38e8SAdam Nemet // We can only analyze innermost loops. 1580929c38e8SAdam Nemet if (!TheLoop->empty()) { 15818dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1582877ccee8SAdam Nemet recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1583929c38e8SAdam Nemet return false; 1584929c38e8SAdam Nemet } 1585929c38e8SAdam Nemet 1586929c38e8SAdam Nemet // We must have a single backedge. 1587929c38e8SAdam Nemet if (TheLoop->getNumBackEdges() != 1) { 15888dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1589877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1590877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1591929c38e8SAdam Nemet return false; 1592929c38e8SAdam Nemet } 1593929c38e8SAdam Nemet 1594929c38e8SAdam Nemet // We must have a single exiting block. 1595929c38e8SAdam Nemet if (!TheLoop->getExitingBlock()) { 15968dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1597877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1598877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1599929c38e8SAdam Nemet return false; 1600929c38e8SAdam Nemet } 1601929c38e8SAdam Nemet 1602929c38e8SAdam Nemet // We only handle bottom-tested loops, i.e. loop in which the condition is 1603929c38e8SAdam Nemet // checked at the end of each iteration. With that we can assume that all 1604929c38e8SAdam Nemet // instructions in the loop are executed the same number of times. 1605929c38e8SAdam Nemet if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 16068dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1607877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1608877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1609929c38e8SAdam Nemet return false; 1610929c38e8SAdam Nemet } 1611929c38e8SAdam Nemet 1612929c38e8SAdam Nemet // ScalarEvolution needs to be able to find the exit count. 161394734eefSXinliang David Li const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 161494734eefSXinliang David Li if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1615877ccee8SAdam Nemet recordAnalysis("CantComputeNumberOfIterations") 1616877ccee8SAdam Nemet << "could not determine number of loop iterations"; 1617929c38e8SAdam Nemet DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1618929c38e8SAdam Nemet return false; 1619929c38e8SAdam Nemet } 1620929c38e8SAdam Nemet 1621929c38e8SAdam Nemet return true; 1622929c38e8SAdam Nemet } 1623929c38e8SAdam Nemet 1624b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 16257da74abfSAdam Nemet const TargetLibraryInfo *TLI, 16267da74abfSAdam Nemet DominatorTree *DT) { 16270456327cSAdam Nemet typedef SmallPtrSet<Value*, 16> ValueSet; 16280456327cSAdam Nemet 1629e3e3b994SMatthew Simpson // Holds the Load and Store instructions. 1630e3e3b994SMatthew Simpson SmallVector<LoadInst *, 16> Loads; 1631e3e3b994SMatthew Simpson SmallVector<StoreInst *, 16> Stores; 16320456327cSAdam Nemet 16330456327cSAdam Nemet // Holds all the different accesses in the loop. 16340456327cSAdam Nemet unsigned NumReads = 0; 16350456327cSAdam Nemet unsigned NumReadWrites = 0; 16360456327cSAdam Nemet 1637ce030acbSXinliang David Li PtrRtChecking->Pointers.clear(); 1638ce030acbSXinliang David Li PtrRtChecking->Need = false; 16390456327cSAdam Nemet 16400456327cSAdam Nemet const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 16410456327cSAdam Nemet 16420456327cSAdam Nemet // For each block. 16438b401013SDavid Majnemer for (BasicBlock *BB : TheLoop->blocks()) { 16440456327cSAdam Nemet // Scan the BB and collect legal loads and stores. 16458b401013SDavid Majnemer for (Instruction &I : *BB) { 16460456327cSAdam Nemet // If this is a load, save it. If this instruction can read from memory 16470456327cSAdam Nemet // but is not a load, then we quit. Notice that we don't handle function 16480456327cSAdam Nemet // calls that read or write. 16498b401013SDavid Majnemer if (I.mayReadFromMemory()) { 16500456327cSAdam Nemet // Many math library functions read the rounding mode. We will only 16510456327cSAdam Nemet // vectorize a loop if it contains known function calls that don't set 16520456327cSAdam Nemet // the flag. Therefore, it is safe to ignore this read from memory. 16538b401013SDavid Majnemer auto *Call = dyn_cast<CallInst>(&I); 1654b4b27230SDavid Majnemer if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 16550456327cSAdam Nemet continue; 16560456327cSAdam Nemet 16579b3cf604SMichael Zolotukhin // If the function has an explicit vectorized counterpart, we can safely 16589b3cf604SMichael Zolotukhin // assume that it can be vectorized. 16599b3cf604SMichael Zolotukhin if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 16609b3cf604SMichael Zolotukhin TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 16619b3cf604SMichael Zolotukhin continue; 16629b3cf604SMichael Zolotukhin 16638b401013SDavid Majnemer auto *Ld = dyn_cast<LoadInst>(&I); 16640456327cSAdam Nemet if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1665877ccee8SAdam Nemet recordAnalysis("NonSimpleLoad", Ld) 1666877ccee8SAdam Nemet << "read with atomic ordering or volatile read"; 1667339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1668436018c3SAdam Nemet CanVecMem = false; 1669436018c3SAdam Nemet return; 16700456327cSAdam Nemet } 16710456327cSAdam Nemet NumLoads++; 16720456327cSAdam Nemet Loads.push_back(Ld); 1673ce030acbSXinliang David Li DepChecker->addAccess(Ld); 1674a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1675c953bb99SAdam Nemet collectStridedAccess(Ld); 16760456327cSAdam Nemet continue; 16770456327cSAdam Nemet } 16780456327cSAdam Nemet 16790456327cSAdam Nemet // Save 'store' instructions. Abort if other instructions write to memory. 16808b401013SDavid Majnemer if (I.mayWriteToMemory()) { 16818b401013SDavid Majnemer auto *St = dyn_cast<StoreInst>(&I); 16820456327cSAdam Nemet if (!St) { 1683877ccee8SAdam Nemet recordAnalysis("CantVectorizeInstruction", St) 1684877ccee8SAdam Nemet << "instruction cannot be vectorized"; 1685436018c3SAdam Nemet CanVecMem = false; 1686436018c3SAdam Nemet return; 16870456327cSAdam Nemet } 16880456327cSAdam Nemet if (!St->isSimple() && !IsAnnotatedParallel) { 1689877ccee8SAdam Nemet recordAnalysis("NonSimpleStore", St) 1690877ccee8SAdam Nemet << "write with atomic ordering or volatile write"; 1691339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1692436018c3SAdam Nemet CanVecMem = false; 1693436018c3SAdam Nemet return; 16940456327cSAdam Nemet } 16950456327cSAdam Nemet NumStores++; 16960456327cSAdam Nemet Stores.push_back(St); 1697ce030acbSXinliang David Li DepChecker->addAccess(St); 1698a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1699c953bb99SAdam Nemet collectStridedAccess(St); 17000456327cSAdam Nemet } 17010456327cSAdam Nemet } // Next instr. 17020456327cSAdam Nemet } // Next block. 17030456327cSAdam Nemet 17040456327cSAdam Nemet // Now we have two lists that hold the loads and the stores. 17050456327cSAdam Nemet // Next, we find the pointers that they use. 17060456327cSAdam Nemet 17070456327cSAdam Nemet // Check if we see any stores. If there are no stores, then we don't 17080456327cSAdam Nemet // care if the pointers are *restrict*. 17090456327cSAdam Nemet if (!Stores.size()) { 1710339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1711436018c3SAdam Nemet CanVecMem = true; 1712436018c3SAdam Nemet return; 17130456327cSAdam Nemet } 17140456327cSAdam Nemet 1715dee666bcSAdam Nemet MemoryDepChecker::DepCandidates DependentAccesses; 1716a28d91d8SMehdi Amini AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 171794734eefSXinliang David Li AA, LI, DependentAccesses, *PSE); 17180456327cSAdam Nemet 17190456327cSAdam Nemet // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 17200456327cSAdam Nemet // multiple times on the same object. If the ptr is accessed twice, once 17210456327cSAdam Nemet // for read and once for write, it will only appear once (on the write 17220456327cSAdam Nemet // list). This is okay, since we are going to check for conflicts between 17230456327cSAdam Nemet // writes and between reads and writes, but not between reads and reads. 17240456327cSAdam Nemet ValueSet Seen; 17250456327cSAdam Nemet 1726e3e3b994SMatthew Simpson for (StoreInst *ST : Stores) { 17270456327cSAdam Nemet Value *Ptr = ST->getPointerOperand(); 1728ce48250fSAdam Nemet // Check for store to loop invariant address. 1729ce48250fSAdam Nemet StoreToLoopInvariantAddress |= isUniform(Ptr); 17300456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the read-write 17310456327cSAdam Nemet // list. At this phase it is only a 'write' list. 17320456327cSAdam Nemet if (Seen.insert(Ptr).second) { 17330456327cSAdam Nemet ++NumReadWrites; 17340456327cSAdam Nemet 1735ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(ST); 17360456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 17370456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 17380456327cSAdam Nemet // need runtime pointer checks. 173901abb2c3SAdam Nemet if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 17400456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 17410456327cSAdam Nemet 17420456327cSAdam Nemet Accesses.addStore(Loc); 17430456327cSAdam Nemet } 17440456327cSAdam Nemet } 17450456327cSAdam Nemet 17460456327cSAdam Nemet if (IsAnnotatedParallel) { 174704d4163eSAdam Nemet DEBUG(dbgs() 1748339f42b3SAdam Nemet << "LAA: A loop annotated parallel, ignore memory dependency " 17490456327cSAdam Nemet << "checks.\n"); 1750436018c3SAdam Nemet CanVecMem = true; 1751436018c3SAdam Nemet return; 17520456327cSAdam Nemet } 17530456327cSAdam Nemet 1754e3e3b994SMatthew Simpson for (LoadInst *LD : Loads) { 17550456327cSAdam Nemet Value *Ptr = LD->getPointerOperand(); 17560456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the 17570456327cSAdam Nemet // read list. If we *did* see it before, then it is already in 17580456327cSAdam Nemet // the read-write list. This allows us to vectorize expressions 17590456327cSAdam Nemet // such as A[i] += x; Because the address of A[i] is a read-write 17600456327cSAdam Nemet // pointer. This only works if the index of A[i] is consecutive. 17610456327cSAdam Nemet // If the address of i is unknown (for example A[B[i]]) then we may 17620456327cSAdam Nemet // read a few words, modify, and write a few words, and some of the 17630456327cSAdam Nemet // words may be written to the same address. 17640456327cSAdam Nemet bool IsReadOnlyPtr = false; 1765139ffba3SAdam Nemet if (Seen.insert(Ptr).second || 176694734eefSXinliang David Li !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 17670456327cSAdam Nemet ++NumReads; 17680456327cSAdam Nemet IsReadOnlyPtr = true; 17690456327cSAdam Nemet } 17700456327cSAdam Nemet 1771ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(LD); 17720456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 17730456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 17740456327cSAdam Nemet // need runtime pointer checks. 177501abb2c3SAdam Nemet if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 17760456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 17770456327cSAdam Nemet 17780456327cSAdam Nemet Accesses.addLoad(Loc, IsReadOnlyPtr); 17790456327cSAdam Nemet } 17800456327cSAdam Nemet 17810456327cSAdam Nemet // If we write (or read-write) to a single destination and there are no 17820456327cSAdam Nemet // other reads in this loop then is it safe to vectorize. 17830456327cSAdam Nemet if (NumReadWrites == 1 && NumReads == 0) { 1784339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1785436018c3SAdam Nemet CanVecMem = true; 1786436018c3SAdam Nemet return; 17870456327cSAdam Nemet } 17880456327cSAdam Nemet 17890456327cSAdam Nemet // Build dependence sets and check whether we need a runtime pointer bounds 17900456327cSAdam Nemet // check. 17910456327cSAdam Nemet Accesses.buildDependenceSets(); 17920456327cSAdam Nemet 17930456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 17940456327cSAdam Nemet // to place a runtime bound check. 179594734eefSXinliang David Li bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1796139ffba3SAdam Nemet TheLoop, SymbolicStrides); 1797ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1798877ccee8SAdam Nemet recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1799ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1800ee61474aSAdam Nemet << "the array bounds.\n"); 1801436018c3SAdam Nemet CanVecMem = false; 1802436018c3SAdam Nemet return; 18030456327cSAdam Nemet } 18040456327cSAdam Nemet 1805ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 18060456327cSAdam Nemet 1807436018c3SAdam Nemet CanVecMem = true; 18080456327cSAdam Nemet if (Accesses.isDependencyCheckNeeded()) { 1809339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1810ce030acbSXinliang David Li CanVecMem = DepChecker->areDepsSafe( 1811139ffba3SAdam Nemet DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1812ce030acbSXinliang David Li MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 18130456327cSAdam Nemet 1814ce030acbSXinliang David Li if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1815339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 18160456327cSAdam Nemet 18170456327cSAdam Nemet // Clear the dependency checks. We assume they are not needed. 1818ce030acbSXinliang David Li Accesses.resetDepChecks(*DepChecker); 18190456327cSAdam Nemet 1820ce030acbSXinliang David Li PtrRtChecking->reset(); 1821ce030acbSXinliang David Li PtrRtChecking->Need = true; 18220456327cSAdam Nemet 182394734eefSXinliang David Li auto *SE = PSE->getSE(); 1824ce030acbSXinliang David Li CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1825139ffba3SAdam Nemet SymbolicStrides, true); 182698a13719SSilviu Baranga 1827949e91a6SAdam Nemet // Check that we found the bounds for the pointer. 1828ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1829877ccee8SAdam Nemet recordAnalysis("CantCheckMemDepsAtRunTime") 1830877ccee8SAdam Nemet << "cannot check memory dependencies at runtime"; 1831b6dc76ffSAdam Nemet DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1832b6dc76ffSAdam Nemet CanVecMem = false; 1833b6dc76ffSAdam Nemet return; 1834b6dc76ffSAdam Nemet } 1835b6dc76ffSAdam Nemet 18360456327cSAdam Nemet CanVecMem = true; 18370456327cSAdam Nemet } 18380456327cSAdam Nemet } 18390456327cSAdam Nemet 18404bb90a71SAdam Nemet if (CanVecMem) 18414bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1842ce030acbSXinliang David Li << (PtrRtChecking->Need ? "" : " don't") 18430f67c6c1SAdam Nemet << " need runtime memory checks.\n"); 18444bb90a71SAdam Nemet else { 1845877ccee8SAdam Nemet recordAnalysis("UnsafeMemDep") 18460a77dfadSAdam Nemet << "unsafe dependent memory operations in loop. Use " 18470a77dfadSAdam Nemet "#pragma loop distribute(enable) to allow loop distribution " 18480a77dfadSAdam Nemet "to attempt to isolate the offending operations into a separate " 1849877ccee8SAdam Nemet "loop"; 18504bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 18514bb90a71SAdam Nemet } 18520456327cSAdam Nemet } 18530456327cSAdam Nemet 185401abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 185501abb2c3SAdam Nemet DominatorTree *DT) { 18560456327cSAdam Nemet assert(TheLoop->contains(BB) && "Unknown block used"); 18570456327cSAdam Nemet 18580456327cSAdam Nemet // Blocks that do not dominate the latch need predication. 18590456327cSAdam Nemet BasicBlock* Latch = TheLoop->getLoopLatch(); 18600456327cSAdam Nemet return !DT->dominates(BB, Latch); 18610456327cSAdam Nemet } 18620456327cSAdam Nemet 1863877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 1864877ccee8SAdam Nemet Instruction *I) { 1865c922853bSAdam Nemet assert(!Report && "Multiple reports generated"); 1866877ccee8SAdam Nemet 1867877ccee8SAdam Nemet Value *CodeRegion = TheLoop->getHeader(); 1868877ccee8SAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 1869877ccee8SAdam Nemet 1870877ccee8SAdam Nemet if (I) { 1871877ccee8SAdam Nemet CodeRegion = I->getParent(); 1872877ccee8SAdam Nemet // If there is no debug location attached to the instruction, revert back to 1873877ccee8SAdam Nemet // using the loop's. 1874877ccee8SAdam Nemet if (I->getDebugLoc()) 1875877ccee8SAdam Nemet DL = I->getDebugLoc(); 1876877ccee8SAdam Nemet } 1877877ccee8SAdam Nemet 1878877ccee8SAdam Nemet Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 1879877ccee8SAdam Nemet CodeRegion); 1880877ccee8SAdam Nemet return *Report; 18810456327cSAdam Nemet } 18820456327cSAdam Nemet 188357ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const { 18843ceac2bbSMichael Kuperstein auto *SE = PSE->getSE(); 18853ceac2bbSMichael Kuperstein // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 18863ceac2bbSMichael Kuperstein // never considered uniform. 18873ceac2bbSMichael Kuperstein // TODO: Is this really what we want? Even without FP SCEV, we may want some 18883ceac2bbSMichael Kuperstein // trivially loop-invariant FP values to be considered uniform. 18893ceac2bbSMichael Kuperstein if (!SE->isSCEVable(V->getType())) 18903ceac2bbSMichael Kuperstein return false; 18913ceac2bbSMichael Kuperstein return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 18920456327cSAdam Nemet } 18937206d7a5SAdam Nemet 18947206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in 18957206d7a5SAdam Nemet // LoopVectorize.cpp. 18967206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 18977206d7a5SAdam Nemet Instruction *Loc) { 18987206d7a5SAdam Nemet if (FirstInst) 18997206d7a5SAdam Nemet return FirstInst; 19007206d7a5SAdam Nemet if (Instruction *I = dyn_cast<Instruction>(V)) 19017206d7a5SAdam Nemet return I->getParent() == Loc->getParent() ? I : nullptr; 19027206d7a5SAdam Nemet return nullptr; 19037206d7a5SAdam Nemet } 19047206d7a5SAdam Nemet 1905039b1042SBenjamin Kramer namespace { 1906a3fe70d2SEugene Zelenko 19074e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 19084e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously 19094e533ef7SAdam Nemet /// expanded values. Thus expansion of a pointer can invalidate the bounds for 19104e533ef7SAdam Nemet /// a previous one. 19111da7df37SAdam Nemet struct PointerBounds { 19124e533ef7SAdam Nemet TrackingVH<Value> Start; 19134e533ef7SAdam Nemet TrackingVH<Value> End; 19141da7df37SAdam Nemet }; 1915a3fe70d2SEugene Zelenko 1916039b1042SBenjamin Kramer } // end anonymous namespace 19177206d7a5SAdam Nemet 19181da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG 19191da7df37SAdam Nemet /// in \p TheLoop. \return the values for the bounds. 19201da7df37SAdam Nemet static PointerBounds 19211da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 19221da7df37SAdam Nemet Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 19231da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 19241da7df37SAdam Nemet Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 19257206d7a5SAdam Nemet const SCEV *Sc = SE->getSCEV(Ptr); 19267206d7a5SAdam Nemet 19277206d7a5SAdam Nemet unsigned AS = Ptr->getType()->getPointerAddressSpace(); 19281da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 19297206d7a5SAdam Nemet 19307206d7a5SAdam Nemet // Use this type for pointer arithmetic. 19317206d7a5SAdam Nemet Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 19327206d7a5SAdam Nemet 193392f377bdSKeno Fischer if (SE->isLoopInvariant(Sc, TheLoop)) { 193492f377bdSKeno Fischer DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 193592f377bdSKeno Fischer << "\n"); 193692f377bdSKeno Fischer // Ptr could be in the loop body. If so, expand a new one at the correct 193792f377bdSKeno Fischer // location. 193892f377bdSKeno Fischer Instruction *Inst = dyn_cast<Instruction>(Ptr); 193992f377bdSKeno Fischer Value *NewPtr = (Inst && TheLoop->contains(Inst)) 194092f377bdSKeno Fischer ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 194192f377bdSKeno Fischer : Ptr; 1942*37dd4d7aSJames Molloy // We must return a half-open range, which means incrementing Sc. 1943*37dd4d7aSJames Molloy const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 1944*37dd4d7aSJames Molloy Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 1945*37dd4d7aSJames Molloy return {NewPtr, NewPtrPlusOne}; 194692f377bdSKeno Fischer } else { 194792f377bdSKeno Fischer Value *Start = nullptr, *End = nullptr; 19481b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 19491da7df37SAdam Nemet Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 19501da7df37SAdam Nemet End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 19511da7df37SAdam Nemet DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 19521da7df37SAdam Nemet return {Start, End}; 19537206d7a5SAdam Nemet } 19547206d7a5SAdam Nemet } 19557206d7a5SAdam Nemet 19561da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and 19571da7df37SAdam Nemet /// lower bounds for both pointers in the check. 19581da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 19591da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 19601da7df37SAdam Nemet Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 19611da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 19621da7df37SAdam Nemet SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 19631da7df37SAdam Nemet 19641da7df37SAdam Nemet // Here we're relying on the SCEV Expander's cache to only emit code for the 19651da7df37SAdam Nemet // same bounds once. 19662d006e76SDavid Majnemer transform( 19672d006e76SDavid Majnemer PointerChecks, std::back_inserter(ChecksWithBounds), 19681da7df37SAdam Nemet [&](const RuntimePointerChecking::PointerCheck &Check) { 196994abbbd6SNAKAMURA Takumi PointerBounds 197094abbbd6SNAKAMURA Takumi First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 197194abbbd6SNAKAMURA Takumi Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 197294abbbd6SNAKAMURA Takumi return std::make_pair(First, Second); 19731da7df37SAdam Nemet }); 19741da7df37SAdam Nemet 19751da7df37SAdam Nemet return ChecksWithBounds; 19761da7df37SAdam Nemet } 19771da7df37SAdam Nemet 19785b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 19791da7df37SAdam Nemet Instruction *Loc, 19801da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 19811da7df37SAdam Nemet const { 19821824e411SAdam Nemet const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 198394734eefSXinliang David Li auto *SE = PSE->getSE(); 19841824e411SAdam Nemet SCEVExpander Exp(*SE, DL, "induction"); 19851da7df37SAdam Nemet auto ExpandedChecks = 1986ce030acbSXinliang David Li expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 19871da7df37SAdam Nemet 19881da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 19891da7df37SAdam Nemet Instruction *FirstInst = nullptr; 19907206d7a5SAdam Nemet IRBuilder<> ChkBuilder(Loc); 19917206d7a5SAdam Nemet // Our instructions might fold to a constant. 19927206d7a5SAdam Nemet Value *MemoryRuntimeCheck = nullptr; 19931b6b50a9SSilviu Baranga 19941da7df37SAdam Nemet for (const auto &Check : ExpandedChecks) { 19951da7df37SAdam Nemet const PointerBounds &A = Check.first, &B = Check.second; 1996cdb791cdSAdam Nemet // Check if two pointers (A and B) conflict where conflict is computed as: 1997cdb791cdSAdam Nemet // start(A) <= end(B) && start(B) <= end(A) 19981da7df37SAdam Nemet unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 19991da7df37SAdam Nemet unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 20007206d7a5SAdam Nemet 20011da7df37SAdam Nemet assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 20021da7df37SAdam Nemet (AS1 == A.End->getType()->getPointerAddressSpace()) && 20037206d7a5SAdam Nemet "Trying to bounds check pointers with different address spaces"); 20047206d7a5SAdam Nemet 20057206d7a5SAdam Nemet Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 20067206d7a5SAdam Nemet Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 20077206d7a5SAdam Nemet 20081da7df37SAdam Nemet Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 20091da7df37SAdam Nemet Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 20101da7df37SAdam Nemet Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 20111da7df37SAdam Nemet Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 20127206d7a5SAdam Nemet 20133622fbfcSElena Demikhovsky // [A|B].Start points to the first accessed byte under base [A|B]. 20143622fbfcSElena Demikhovsky // [A|B].End points to the last accessed byte, plus one. 20153622fbfcSElena Demikhovsky // There is no conflict when the intervals are disjoint: 20163622fbfcSElena Demikhovsky // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 20173622fbfcSElena Demikhovsky // 20183622fbfcSElena Demikhovsky // bound0 = (B.Start < A.End) 20193622fbfcSElena Demikhovsky // bound1 = (A.Start < B.End) 20203622fbfcSElena Demikhovsky // IsConflict = bound0 & bound1 20213622fbfcSElena Demikhovsky Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 20227206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 20233622fbfcSElena Demikhovsky Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 20247206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 20257206d7a5SAdam Nemet Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 20267206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 20277206d7a5SAdam Nemet if (MemoryRuntimeCheck) { 20281da7df37SAdam Nemet IsConflict = 20291da7df37SAdam Nemet ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 20307206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 20317206d7a5SAdam Nemet } 20327206d7a5SAdam Nemet MemoryRuntimeCheck = IsConflict; 20337206d7a5SAdam Nemet } 20347206d7a5SAdam Nemet 203590fec840SAdam Nemet if (!MemoryRuntimeCheck) 203690fec840SAdam Nemet return std::make_pair(nullptr, nullptr); 203790fec840SAdam Nemet 20387206d7a5SAdam Nemet // We have to do this trickery because the IRBuilder might fold the check to a 20397206d7a5SAdam Nemet // constant expression in which case there is no Instruction anchored in a 20407206d7a5SAdam Nemet // the block. 20417206d7a5SAdam Nemet Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 20427206d7a5SAdam Nemet ConstantInt::getTrue(Ctx)); 20437206d7a5SAdam Nemet ChkBuilder.Insert(Check, "memcheck.conflict"); 20447206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Check, Loc); 20457206d7a5SAdam Nemet return std::make_pair(FirstInst, Check); 20467206d7a5SAdam Nemet } 20473bfd93d7SAdam Nemet 20485b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> 20495b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2050ce030acbSXinliang David Li if (!PtrRtChecking->Need) 20511da7df37SAdam Nemet return std::make_pair(nullptr, nullptr); 20521da7df37SAdam Nemet 2053ce030acbSXinliang David Li return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 20541da7df37SAdam Nemet } 20551da7df37SAdam Nemet 2056c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2057c953bb99SAdam Nemet Value *Ptr = nullptr; 2058c953bb99SAdam Nemet if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2059c953bb99SAdam Nemet Ptr = LI->getPointerOperand(); 2060c953bb99SAdam Nemet else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2061c953bb99SAdam Nemet Ptr = SI->getPointerOperand(); 2062c953bb99SAdam Nemet else 2063c953bb99SAdam Nemet return; 2064c953bb99SAdam Nemet 206594734eefSXinliang David Li Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2066c953bb99SAdam Nemet if (!Stride) 2067c953bb99SAdam Nemet return; 2068c953bb99SAdam Nemet 2069c953bb99SAdam Nemet DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 2070c953bb99SAdam Nemet DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2071c953bb99SAdam Nemet SymbolicStrides[Ptr] = Stride; 2072c953bb99SAdam Nemet StrideSet.insert(Stride); 2073c953bb99SAdam Nemet } 2074c953bb99SAdam Nemet 20753bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 20763bfd93d7SAdam Nemet const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2077a9f09c62SAdam Nemet DominatorTree *DT, LoopInfo *LI) 207894734eefSXinliang David Li : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2079ce030acbSXinliang David Li PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 208094734eefSXinliang David Li DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 20817da74abfSAdam Nemet NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 20827da74abfSAdam Nemet StoreToLoopInvariantAddress(false) { 2083929c38e8SAdam Nemet if (canAnalyzeLoop()) 20847da74abfSAdam Nemet analyzeLoop(AA, LI, TLI, DT); 20853bfd93d7SAdam Nemet } 20863bfd93d7SAdam Nemet 2087e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2088e91cc6efSAdam Nemet if (CanVecMem) { 20894ad38b63SAdam Nemet OS.indent(Depth) << "Memory dependences are safe"; 20907afb46d3SDavid Majnemer if (MaxSafeDepDistBytes != -1ULL) 2091c62e554eSAdam Nemet OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2092c62e554eSAdam Nemet << " bytes"; 2093ce030acbSXinliang David Li if (PtrRtChecking->Need) 20944ad38b63SAdam Nemet OS << " with run-time checks"; 20954ad38b63SAdam Nemet OS << "\n"; 2096e91cc6efSAdam Nemet } 2097e91cc6efSAdam Nemet 2098e91cc6efSAdam Nemet if (Report) 2099877ccee8SAdam Nemet OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2100e91cc6efSAdam Nemet 2101ce030acbSXinliang David Li if (auto *Dependences = DepChecker->getDependences()) { 2102a2df750fSAdam Nemet OS.indent(Depth) << "Dependences:\n"; 2103a2df750fSAdam Nemet for (auto &Dep : *Dependences) { 2104ce030acbSXinliang David Li Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 210558913d65SAdam Nemet OS << "\n"; 210658913d65SAdam Nemet } 210758913d65SAdam Nemet } else 2108a2df750fSAdam Nemet OS.indent(Depth) << "Too many dependences, not recorded\n"; 2109e91cc6efSAdam Nemet 2110e91cc6efSAdam Nemet // List the pair of accesses need run-time checks to prove independence. 2111ce030acbSXinliang David Li PtrRtChecking->print(OS, Depth); 2112e91cc6efSAdam Nemet OS << "\n"; 2113c3384320SAdam Nemet 2114c3384320SAdam Nemet OS.indent(Depth) << "Store to invariant address was " 2115c3384320SAdam Nemet << (StoreToLoopInvariantAddress ? "" : "not ") 2116c3384320SAdam Nemet << "found in loop.\n"; 2117e3c0534bSSilviu Baranga 2118e3c0534bSSilviu Baranga OS.indent(Depth) << "SCEV assumptions:\n"; 211994734eefSXinliang David Li PSE->getUnionPredicate().print(OS, Depth); 2120b77365b5SSilviu Baranga 2121b77365b5SSilviu Baranga OS << "\n"; 2122b77365b5SSilviu Baranga 2123b77365b5SSilviu Baranga OS.indent(Depth) << "Expressions re-written:\n"; 212494734eefSXinliang David Li PSE->print(OS, Depth); 2125e91cc6efSAdam Nemet } 2126e91cc6efSAdam Nemet 21277853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 21283bfd93d7SAdam Nemet auto &LAI = LoopAccessInfoMap[L]; 21293bfd93d7SAdam Nemet 21301824e411SAdam Nemet if (!LAI) 21311824e411SAdam Nemet LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 21321824e411SAdam Nemet 21333bfd93d7SAdam Nemet return *LAI.get(); 21343bfd93d7SAdam Nemet } 21353bfd93d7SAdam Nemet 21367853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 21377853c1ddSXinliang David Li LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2138ecde1c7fSXinliang David Li 2139e91cc6efSAdam Nemet for (Loop *TopLevelLoop : *LI) 2140e91cc6efSAdam Nemet for (Loop *L : depth_first(TopLevelLoop)) { 2141e91cc6efSAdam Nemet OS.indent(2) << L->getHeader()->getName() << ":\n"; 2142bdbc5227SAdam Nemet auto &LAI = LAA.getInfo(L); 2143e91cc6efSAdam Nemet LAI.print(OS, 4); 2144e91cc6efSAdam Nemet } 2145e91cc6efSAdam Nemet } 2146e91cc6efSAdam Nemet 21477853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2148ecde1c7fSXinliang David Li SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 21493bfd93d7SAdam Nemet auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2150ecde1c7fSXinliang David Li TLI = TLIP ? &TLIP->getTLI() : nullptr; 2151ecde1c7fSXinliang David Li AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2152ecde1c7fSXinliang David Li DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2153ecde1c7fSXinliang David Li LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 21543bfd93d7SAdam Nemet 21553bfd93d7SAdam Nemet return false; 21563bfd93d7SAdam Nemet } 21573bfd93d7SAdam Nemet 21587853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 21592f1fd165SChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 21607b560d40SChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 21613bfd93d7SAdam Nemet AU.addRequired<DominatorTreeWrapperPass>(); 2162e91cc6efSAdam Nemet AU.addRequired<LoopInfoWrapperPass>(); 21633bfd93d7SAdam Nemet 21643bfd93d7SAdam Nemet AU.setPreservesAll(); 21653bfd93d7SAdam Nemet } 21663bfd93d7SAdam Nemet 21677853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0; 21683bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis"; 21693bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses" 21703bfd93d7SAdam Nemet 21717853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 21727b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 21732f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 21743bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2175e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 21767853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 21773bfd93d7SAdam Nemet 2178dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key; 21798a021317SXinliang David Li 2180410eaeb0SChandler Carruth LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2181410eaeb0SChandler Carruth LoopStandardAnalysisResults &AR) { 2182410eaeb0SChandler Carruth return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 21838a021317SXinliang David Li } 21848a021317SXinliang David Li 21853bfd93d7SAdam Nemet namespace llvm { 2186a3fe70d2SEugene Zelenko 21873bfd93d7SAdam Nemet Pass *createLAAPass() { 21887853c1ddSXinliang David Li return new LoopAccessLegacyAnalysis(); 21893bfd93d7SAdam Nemet } 2190a3fe70d2SEugene Zelenko 2191a3fe70d2SEugene Zelenko } // end namespace llvm 2192