10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
20456327cSAdam Nemet //
30456327cSAdam Nemet //                     The LLVM Compiler Infrastructure
40456327cSAdam Nemet //
50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source
60456327cSAdam Nemet // License. See LICENSE.TXT for details.
70456327cSAdam Nemet //
80456327cSAdam Nemet //===----------------------------------------------------------------------===//
90456327cSAdam Nemet //
100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally
110456327cSAdam Nemet // developed for the loop vectorizer.
120456327cSAdam Nemet //
130456327cSAdam Nemet //===----------------------------------------------------------------------===//
140456327cSAdam Nemet 
153bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAccessAnalysis.h"
16a3fe70d2SEugene Zelenko #include "llvm/ADT/APInt.h"
17a3fe70d2SEugene Zelenko #include "llvm/ADT/DenseMap.h"
18a3fe70d2SEugene Zelenko #include "llvm/ADT/DepthFirstIterator.h"
19a3fe70d2SEugene Zelenko #include "llvm/ADT/EquivalenceClasses.h"
20a3fe70d2SEugene Zelenko #include "llvm/ADT/PointerIntPair.h"
213bab7e1aSChandler Carruth #include "llvm/ADT/STLExtras.h"
22a3fe70d2SEugene Zelenko #include "llvm/ADT/SetVector.h"
23a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallPtrSet.h"
24a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallSet.h"
25a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallVector.h"
263bab7e1aSChandler Carruth #include "llvm/ADT/iterator_range.h"
27a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasAnalysis.h"
28a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasSetTracker.h"
293bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAnalysisManager.h"
300456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
31a3fe70d2SEugene Zelenko #include "llvm/Analysis/MemoryLocation.h"
325b3a5cf6SAdam Nemet #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
33a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolution.h"
347206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h"
35a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h"
370456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h"
38f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h"
39a3fe70d2SEugene Zelenko #include "llvm/IR/BasicBlock.h"
40a3fe70d2SEugene Zelenko #include "llvm/IR/Constants.h"
41a3fe70d2SEugene Zelenko #include "llvm/IR/DataLayout.h"
42a3fe70d2SEugene Zelenko #include "llvm/IR/DebugLoc.h"
43a3fe70d2SEugene Zelenko #include "llvm/IR/DerivedTypes.h"
44a3fe70d2SEugene Zelenko #include "llvm/IR/DiagnosticInfo.h"
450456327cSAdam Nemet #include "llvm/IR/Dominators.h"
46a3fe70d2SEugene Zelenko #include "llvm/IR/Function.h"
473bab7e1aSChandler Carruth #include "llvm/IR/IRBuilder.h"
48a3fe70d2SEugene Zelenko #include "llvm/IR/InstrTypes.h"
49a3fe70d2SEugene Zelenko #include "llvm/IR/Instruction.h"
50a3fe70d2SEugene Zelenko #include "llvm/IR/Instructions.h"
51a3fe70d2SEugene Zelenko #include "llvm/IR/Operator.h"
528a021317SXinliang David Li #include "llvm/IR/PassManager.h"
53a3fe70d2SEugene Zelenko #include "llvm/IR/Type.h"
54a3fe70d2SEugene Zelenko #include "llvm/IR/Value.h"
55a3fe70d2SEugene Zelenko #include "llvm/IR/ValueHandle.h"
56a3fe70d2SEugene Zelenko #include "llvm/Pass.h"
57a3fe70d2SEugene Zelenko #include "llvm/Support/Casting.h"
58a3fe70d2SEugene Zelenko #include "llvm/Support/CommandLine.h"
590456327cSAdam Nemet #include "llvm/Support/Debug.h"
60a3fe70d2SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
61799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h"
62a3fe70d2SEugene Zelenko #include <algorithm>
63a3fe70d2SEugene Zelenko #include <cassert>
64a3fe70d2SEugene Zelenko #include <cstdint>
65a3fe70d2SEugene Zelenko #include <cstdlib>
66a3fe70d2SEugene Zelenko #include <iterator>
67a3fe70d2SEugene Zelenko #include <utility>
68a3fe70d2SEugene Zelenko #include <vector>
69a3fe70d2SEugene Zelenko 
700456327cSAdam Nemet using namespace llvm;
710456327cSAdam Nemet 
72339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses"
730456327cSAdam Nemet 
74f219c647SAdam Nemet static cl::opt<unsigned, true>
75f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden,
76f219c647SAdam Nemet                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77f219c647SAdam Nemet                     cl::location(VectorizerParams::VectorizationFactor));
781d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor;
79f219c647SAdam Nemet 
80f219c647SAdam Nemet static cl::opt<unsigned, true>
81f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden,
82f219c647SAdam Nemet                         cl::desc("Sets the vectorization interleave count. "
83f219c647SAdam Nemet                                  "Zero is autoselect."),
84f219c647SAdam Nemet                         cl::location(
85f219c647SAdam Nemet                             VectorizerParams::VectorizationInterleave));
861d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave;
87f219c647SAdam Nemet 
881d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
891d862af7SAdam Nemet     "runtime-memory-check-threshold", cl::Hidden,
901d862af7SAdam Nemet     cl::desc("When performing memory disambiguation checks at runtime do not "
911d862af7SAdam Nemet              "generate more than this number of comparisons (default = 8)."),
921d862af7SAdam Nemet     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
931d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94f219c647SAdam Nemet 
951b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks
961b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold(
971b6b50a9SSilviu Baranga     "memory-check-merge-threshold", cl::Hidden,
981b6b50a9SSilviu Baranga     cl::desc("Maximum number of comparisons done when trying to merge "
991b6b50a9SSilviu Baranga              "runtime memory checks. (default = 100)"),
1001b6b50a9SSilviu Baranga     cl::init(100));
1011b6b50a9SSilviu Baranga 
102f219c647SAdam Nemet /// Maximum SIMD width.
103f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64;
104f219c647SAdam Nemet 
105a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold.
106a2df750fSAdam Nemet static cl::opt<unsigned>
107a2df750fSAdam Nemet     MaxDependences("max-dependences", cl::Hidden,
108a2df750fSAdam Nemet                    cl::desc("Maximum number of dependences collected by "
1099c926579SAdam Nemet                             "loop-access analysis (default = 100)"),
1109c926579SAdam Nemet                    cl::init(100));
1119c926579SAdam Nemet 
112a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory
113a9f09c62SAdam Nemet /// accesses in code like the following.
114a9f09c62SAdam Nemet ///   for (i = 0; i < N; ++i)
115a9f09c62SAdam Nemet ///     A[i * Stride1] += B[i * Stride2] ...
116a9f09c62SAdam Nemet ///
117a9f09c62SAdam Nemet /// Will be roughly translated to
118a9f09c62SAdam Nemet ///    if (Stride1 == 1 && Stride2 == 1) {
119a9f09c62SAdam Nemet ///      for (i = 0; i < N; i+=4)
120a9f09c62SAdam Nemet ///       A[i:i+3] += ...
121a9f09c62SAdam Nemet ///    } else
122a9f09c62SAdam Nemet ///      ...
123a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning(
124a9f09c62SAdam Nemet     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125a9f09c62SAdam Nemet     cl::desc("Enable symbolic stride memory access versioning"));
126a9f09c62SAdam Nemet 
12737ec5f91SMatthew Simpson /// \brief Enable store-to-load forwarding conflict detection. This option can
12837ec5f91SMatthew Simpson /// be disabled for correctness testing.
12937ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection(
13037ec5f91SMatthew Simpson     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131a250dc9fSMatthew Simpson     cl::desc("Enable conflict detection in loop-access analysis"),
132a250dc9fSMatthew Simpson     cl::init(true));
133a250dc9fSMatthew Simpson 
134f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() {
135f219c647SAdam Nemet   return ::VectorizationInterleave.getNumOccurrences() > 0;
136f219c647SAdam Nemet }
137f219c647SAdam Nemet 
1380456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) {
1398b401013SDavid Majnemer   if (auto *CI = dyn_cast<CastInst>(V))
1400456327cSAdam Nemet     if (CI->getOperand(0)->getType()->isIntegerTy())
1410456327cSAdam Nemet       return CI->getOperand(0);
1420456327cSAdam Nemet   return V;
1430456327cSAdam Nemet }
1440456327cSAdam Nemet 
1459cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
1468bc61df9SAdam Nemet                                             const ValueToValueMap &PtrToStride,
1470456327cSAdam Nemet                                             Value *Ptr, Value *OrigPtr) {
1489cd9a7e3SSilviu Baranga   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
1490456327cSAdam Nemet 
1500456327cSAdam Nemet   // If there is an entry in the map return the SCEV of the pointer with the
1510456327cSAdam Nemet   // symbolic stride replaced by one.
1528bc61df9SAdam Nemet   ValueToValueMap::const_iterator SI =
1538bc61df9SAdam Nemet       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1540456327cSAdam Nemet   if (SI != PtrToStride.end()) {
1550456327cSAdam Nemet     Value *StrideVal = SI->second;
1560456327cSAdam Nemet 
1570456327cSAdam Nemet     // Strip casts.
1580456327cSAdam Nemet     StrideVal = stripIntegerCast(StrideVal);
1590456327cSAdam Nemet 
1609cd9a7e3SSilviu Baranga     ScalarEvolution *SE = PSE.getSE();
161e3c0534bSSilviu Baranga     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
162e3c0534bSSilviu Baranga     const auto *CT =
163e3c0534bSSilviu Baranga         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
164e3c0534bSSilviu Baranga 
1659cd9a7e3SSilviu Baranga     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
1669cd9a7e3SSilviu Baranga     auto *Expr = PSE.getSCEV(Ptr);
167e3c0534bSSilviu Baranga 
1689cd9a7e3SSilviu Baranga     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
1690456327cSAdam Nemet                  << "\n");
1709cd9a7e3SSilviu Baranga     return Expr;
1710456327cSAdam Nemet   }
1720456327cSAdam Nemet 
1730456327cSAdam Nemet   // Otherwise, just return the SCEV of the original pointer.
174e3c0534bSSilviu Baranga   return OrigSCEV;
1750456327cSAdam Nemet }
1760456327cSAdam Nemet 
1773622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access.
1783622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop
1793622fbfcSElena Demikhovsky /// iteration. Then B is calculated as:
1803622fbfcSElena Demikhovsky ///   B = A + Step*N .
1813622fbfcSElena Demikhovsky /// Step value may be positive or negative.
1823622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count:
1833622fbfcSElena Demikhovsky ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
1843622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way:
1853622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
1863622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes.
1873622fbfcSElena Demikhovsky ///
1883622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint:
1893622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
1907cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
1917cdebac0SAdam Nemet                                     unsigned DepSetId, unsigned ASId,
192e3c0534bSSilviu Baranga                                     const ValueToValueMap &Strides,
1939cd9a7e3SSilviu Baranga                                     PredicatedScalarEvolution &PSE) {
1940456327cSAdam Nemet   // Get the stride replaced scev.
1959cd9a7e3SSilviu Baranga   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
196279784ffSAdam Nemet   ScalarEvolution *SE = PSE.getSE();
197279784ffSAdam Nemet 
198279784ffSAdam Nemet   const SCEV *ScStart;
199279784ffSAdam Nemet   const SCEV *ScEnd;
200279784ffSAdam Nemet 
20159a65504SAdam Nemet   if (SE->isLoopInvariant(Sc, Lp))
202279784ffSAdam Nemet     ScStart = ScEnd = Sc;
203279784ffSAdam Nemet   else {
2040456327cSAdam Nemet     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
2050456327cSAdam Nemet     assert(AR && "Invalid addrec expression");
2066f444dfdSSilviu Baranga     const SCEV *Ex = PSE.getBackedgeTakenCount();
2070e5804a6SSilviu Baranga 
208279784ffSAdam Nemet     ScStart = AR->getStart();
209279784ffSAdam Nemet     ScEnd = AR->evaluateAtIteration(Ex, *SE);
2100e5804a6SSilviu Baranga     const SCEV *Step = AR->getStepRecurrence(*SE);
2110e5804a6SSilviu Baranga 
2120e5804a6SSilviu Baranga     // For expressions with negative step, the upper bound is ScStart and the
2130e5804a6SSilviu Baranga     // lower bound is ScEnd.
2148b401013SDavid Majnemer     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
2150e5804a6SSilviu Baranga       if (CStep->getValue()->isNegative())
2160e5804a6SSilviu Baranga         std::swap(ScStart, ScEnd);
2170e5804a6SSilviu Baranga     } else {
2183622fbfcSElena Demikhovsky       // Fallback case: the step is not constant, but we can still
2190e5804a6SSilviu Baranga       // get the upper and lower bounds of the interval by using min/max
2200e5804a6SSilviu Baranga       // expressions.
2210e5804a6SSilviu Baranga       ScStart = SE->getUMinExpr(ScStart, ScEnd);
2220e5804a6SSilviu Baranga       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
2230e5804a6SSilviu Baranga     }
2243622fbfcSElena Demikhovsky     // Add the size of the pointed element to ScEnd.
2253622fbfcSElena Demikhovsky     unsigned EltSize =
2263622fbfcSElena Demikhovsky       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
2273622fbfcSElena Demikhovsky     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
2283622fbfcSElena Demikhovsky     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
229279784ffSAdam Nemet   }
2300e5804a6SSilviu Baranga 
2310e5804a6SSilviu Baranga   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
2321b6b50a9SSilviu Baranga }
2331b6b50a9SSilviu Baranga 
234bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4>
23538530887SAdam Nemet RuntimePointerChecking::generateChecks() const {
236bbe1f1deSAdam Nemet   SmallVector<PointerCheck, 4> Checks;
237bbe1f1deSAdam Nemet 
2387c52e052SAdam Nemet   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
2397c52e052SAdam Nemet     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
2407c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
2417c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
242bbe1f1deSAdam Nemet 
24338530887SAdam Nemet       if (needsChecking(CGI, CGJ))
244bbe1f1deSAdam Nemet         Checks.push_back(std::make_pair(&CGI, &CGJ));
245bbe1f1deSAdam Nemet     }
246bbe1f1deSAdam Nemet   }
247bbe1f1deSAdam Nemet   return Checks;
248bbe1f1deSAdam Nemet }
249bbe1f1deSAdam Nemet 
25015840393SAdam Nemet void RuntimePointerChecking::generateChecks(
25115840393SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
25215840393SAdam Nemet   assert(Checks.empty() && "Checks is not empty");
25315840393SAdam Nemet   groupChecks(DepCands, UseDependencies);
25415840393SAdam Nemet   Checks = generateChecks();
25515840393SAdam Nemet }
25615840393SAdam Nemet 
257651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
258651a5a24SAdam Nemet                                            const CheckingPtrGroup &N) const {
2591b6b50a9SSilviu Baranga   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
2601b6b50a9SSilviu Baranga     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
261651a5a24SAdam Nemet       if (needsChecking(M.Members[I], N.Members[J]))
2621b6b50a9SSilviu Baranga         return true;
2631b6b50a9SSilviu Baranga   return false;
2641b6b50a9SSilviu Baranga }
2651b6b50a9SSilviu Baranga 
2661b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum.
2671b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer.
2681b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
2691b6b50a9SSilviu Baranga                                    ScalarEvolution *SE) {
2701b6b50a9SSilviu Baranga   const SCEV *Diff = SE->getMinusSCEV(J, I);
2711b6b50a9SSilviu Baranga   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
2721b6b50a9SSilviu Baranga 
2731b6b50a9SSilviu Baranga   if (!C)
2741b6b50a9SSilviu Baranga     return nullptr;
2751b6b50a9SSilviu Baranga   if (C->getValue()->isNegative())
2761b6b50a9SSilviu Baranga     return J;
2771b6b50a9SSilviu Baranga   return I;
2781b6b50a9SSilviu Baranga }
2791b6b50a9SSilviu Baranga 
2807cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
2819f7dedc3SAdam Nemet   const SCEV *Start = RtCheck.Pointers[Index].Start;
2829f7dedc3SAdam Nemet   const SCEV *End = RtCheck.Pointers[Index].End;
2839f7dedc3SAdam Nemet 
2841b6b50a9SSilviu Baranga   // Compare the starts and ends with the known minimum and maximum
2851b6b50a9SSilviu Baranga   // of this set. We need to know how we compare against the min/max
2861b6b50a9SSilviu Baranga   // of the set in order to be able to emit memchecks.
2879f7dedc3SAdam Nemet   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
2881b6b50a9SSilviu Baranga   if (!Min0)
2891b6b50a9SSilviu Baranga     return false;
2901b6b50a9SSilviu Baranga 
2919f7dedc3SAdam Nemet   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
2921b6b50a9SSilviu Baranga   if (!Min1)
2931b6b50a9SSilviu Baranga     return false;
2941b6b50a9SSilviu Baranga 
2951b6b50a9SSilviu Baranga   // Update the low bound  expression if we've found a new min value.
2969f7dedc3SAdam Nemet   if (Min0 == Start)
2979f7dedc3SAdam Nemet     Low = Start;
2981b6b50a9SSilviu Baranga 
2991b6b50a9SSilviu Baranga   // Update the high bound expression if we've found a new max value.
3009f7dedc3SAdam Nemet   if (Min1 != End)
3019f7dedc3SAdam Nemet     High = End;
3021b6b50a9SSilviu Baranga 
3031b6b50a9SSilviu Baranga   Members.push_back(Index);
3041b6b50a9SSilviu Baranga   return true;
3051b6b50a9SSilviu Baranga }
3061b6b50a9SSilviu Baranga 
3077cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks(
3087cdebac0SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
3091b6b50a9SSilviu Baranga   // We build the groups from dependency candidates equivalence classes
3101b6b50a9SSilviu Baranga   // because:
3111b6b50a9SSilviu Baranga   //    - We know that pointers in the same equivalence class share
3121b6b50a9SSilviu Baranga   //      the same underlying object and therefore there is a chance
3131b6b50a9SSilviu Baranga   //      that we can compare pointers
3141b6b50a9SSilviu Baranga   //    - We wouldn't be able to merge two pointers for which we need
3151b6b50a9SSilviu Baranga   //      to emit a memcheck. The classes in DepCands are already
3161b6b50a9SSilviu Baranga   //      conveniently built such that no two pointers in the same
3171b6b50a9SSilviu Baranga   //      class need checking against each other.
3181b6b50a9SSilviu Baranga 
3191b6b50a9SSilviu Baranga   // We use the following (greedy) algorithm to construct the groups
3201b6b50a9SSilviu Baranga   // For every pointer in the equivalence class:
3211b6b50a9SSilviu Baranga   //   For each existing group:
3221b6b50a9SSilviu Baranga   //   - if the difference between this pointer and the min/max bounds
3231b6b50a9SSilviu Baranga   //     of the group is a constant, then make the pointer part of the
3241b6b50a9SSilviu Baranga   //     group and update the min/max bounds of that group as required.
3251b6b50a9SSilviu Baranga 
3261b6b50a9SSilviu Baranga   CheckingGroups.clear();
3271b6b50a9SSilviu Baranga 
32848250600SSilviu Baranga   // If we need to check two pointers to the same underlying object
32948250600SSilviu Baranga   // with a non-constant difference, we shouldn't perform any pointer
33048250600SSilviu Baranga   // grouping with those pointers. This is because we can easily get
33148250600SSilviu Baranga   // into cases where the resulting check would return false, even when
33248250600SSilviu Baranga   // the accesses are safe.
33348250600SSilviu Baranga   //
33448250600SSilviu Baranga   // The following example shows this:
33548250600SSilviu Baranga   // for (i = 0; i < 1000; ++i)
33648250600SSilviu Baranga   //   a[5000 + i * m] = a[i] + a[i + 9000]
33748250600SSilviu Baranga   //
33848250600SSilviu Baranga   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
33948250600SSilviu Baranga   // (0, 10000) which is always false. However, if m is 1, there is no
34048250600SSilviu Baranga   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
34148250600SSilviu Baranga   // us to perform an accurate check in this case.
34248250600SSilviu Baranga   //
34348250600SSilviu Baranga   // The above case requires that we have an UnknownDependence between
34448250600SSilviu Baranga   // accesses to the same underlying object. This cannot happen unless
34548250600SSilviu Baranga   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
34648250600SSilviu Baranga   // is also false. In this case we will use the fallback path and create
34748250600SSilviu Baranga   // separate checking groups for all pointers.
34848250600SSilviu Baranga 
3491b6b50a9SSilviu Baranga   // If we don't have the dependency partitions, construct a new
35048250600SSilviu Baranga   // checking pointer group for each pointer. This is also required
35148250600SSilviu Baranga   // for correctness, because in this case we can have checking between
35248250600SSilviu Baranga   // pointers to the same underlying object.
3531b6b50a9SSilviu Baranga   if (!UseDependencies) {
3541b6b50a9SSilviu Baranga     for (unsigned I = 0; I < Pointers.size(); ++I)
3551b6b50a9SSilviu Baranga       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
3561b6b50a9SSilviu Baranga     return;
3571b6b50a9SSilviu Baranga   }
3581b6b50a9SSilviu Baranga 
3591b6b50a9SSilviu Baranga   unsigned TotalComparisons = 0;
3601b6b50a9SSilviu Baranga 
3611b6b50a9SSilviu Baranga   DenseMap<Value *, unsigned> PositionMap;
3629f7dedc3SAdam Nemet   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
3639f7dedc3SAdam Nemet     PositionMap[Pointers[Index].PointerValue] = Index;
3641b6b50a9SSilviu Baranga 
365ce3877fcSSilviu Baranga   // We need to keep track of what pointers we've already seen so we
366ce3877fcSSilviu Baranga   // don't process them twice.
367ce3877fcSSilviu Baranga   SmallSet<unsigned, 2> Seen;
368ce3877fcSSilviu Baranga 
369e4b9f507SSanjay Patel   // Go through all equivalence classes, get the "pointer check groups"
370ce3877fcSSilviu Baranga   // and add them to the overall solution. We use the order in which accesses
371ce3877fcSSilviu Baranga   // appear in 'Pointers' to enforce determinism.
372ce3877fcSSilviu Baranga   for (unsigned I = 0; I < Pointers.size(); ++I) {
373ce3877fcSSilviu Baranga     // We've seen this pointer before, and therefore already processed
374ce3877fcSSilviu Baranga     // its equivalence class.
375ce3877fcSSilviu Baranga     if (Seen.count(I))
3761b6b50a9SSilviu Baranga       continue;
3771b6b50a9SSilviu Baranga 
3789f7dedc3SAdam Nemet     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
3799f7dedc3SAdam Nemet                                            Pointers[I].IsWritePtr);
3801b6b50a9SSilviu Baranga 
381ce3877fcSSilviu Baranga     SmallVector<CheckingPtrGroup, 2> Groups;
382ce3877fcSSilviu Baranga     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
383ce3877fcSSilviu Baranga 
384a647c30fSSilviu Baranga     // Because DepCands is constructed by visiting accesses in the order in
385a647c30fSSilviu Baranga     // which they appear in alias sets (which is deterministic) and the
386a647c30fSSilviu Baranga     // iteration order within an equivalence class member is only dependent on
387a647c30fSSilviu Baranga     // the order in which unions and insertions are performed on the
388a647c30fSSilviu Baranga     // equivalence class, the iteration order is deterministic.
389ce3877fcSSilviu Baranga     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
3901b6b50a9SSilviu Baranga          MI != ME; ++MI) {
3911b6b50a9SSilviu Baranga       unsigned Pointer = PositionMap[MI->getPointer()];
3921b6b50a9SSilviu Baranga       bool Merged = false;
393ce3877fcSSilviu Baranga       // Mark this pointer as seen.
394ce3877fcSSilviu Baranga       Seen.insert(Pointer);
3951b6b50a9SSilviu Baranga 
3961b6b50a9SSilviu Baranga       // Go through all the existing sets and see if we can find one
3971b6b50a9SSilviu Baranga       // which can include this pointer.
3981b6b50a9SSilviu Baranga       for (CheckingPtrGroup &Group : Groups) {
3991b6b50a9SSilviu Baranga         // Don't perform more than a certain amount of comparisons.
4001b6b50a9SSilviu Baranga         // This should limit the cost of grouping the pointers to something
4011b6b50a9SSilviu Baranga         // reasonable.  If we do end up hitting this threshold, the algorithm
4021b6b50a9SSilviu Baranga         // will create separate groups for all remaining pointers.
4031b6b50a9SSilviu Baranga         if (TotalComparisons > MemoryCheckMergeThreshold)
4041b6b50a9SSilviu Baranga           break;
4051b6b50a9SSilviu Baranga 
4061b6b50a9SSilviu Baranga         TotalComparisons++;
4071b6b50a9SSilviu Baranga 
4081b6b50a9SSilviu Baranga         if (Group.addPointer(Pointer)) {
4091b6b50a9SSilviu Baranga           Merged = true;
4101b6b50a9SSilviu Baranga           break;
4111b6b50a9SSilviu Baranga         }
4121b6b50a9SSilviu Baranga       }
4131b6b50a9SSilviu Baranga 
4141b6b50a9SSilviu Baranga       if (!Merged)
4151b6b50a9SSilviu Baranga         // We couldn't add this pointer to any existing set or the threshold
4161b6b50a9SSilviu Baranga         // for the number of comparisons has been reached. Create a new group
4171b6b50a9SSilviu Baranga         // to hold the current pointer.
4181b6b50a9SSilviu Baranga         Groups.push_back(CheckingPtrGroup(Pointer, *this));
4191b6b50a9SSilviu Baranga     }
4201b6b50a9SSilviu Baranga 
4211b6b50a9SSilviu Baranga     // We've computed the grouped checks for this partition.
4221b6b50a9SSilviu Baranga     // Save the results and continue with the next one.
4231b6b50a9SSilviu Baranga     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
4241b6b50a9SSilviu Baranga   }
4250456327cSAdam Nemet }
4260456327cSAdam Nemet 
427041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition(
428041e6debSAdam Nemet     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
429041e6debSAdam Nemet     unsigned PtrIdx2) {
430041e6debSAdam Nemet   return (PtrToPartition[PtrIdx1] != -1 &&
431041e6debSAdam Nemet           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
432041e6debSAdam Nemet }
433041e6debSAdam Nemet 
434651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
4359f7dedc3SAdam Nemet   const PointerInfo &PointerI = Pointers[I];
4369f7dedc3SAdam Nemet   const PointerInfo &PointerJ = Pointers[J];
4379f7dedc3SAdam Nemet 
438a8945b77SAdam Nemet   // No need to check if two readonly pointers intersect.
4399f7dedc3SAdam Nemet   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
440a8945b77SAdam Nemet     return false;
441a8945b77SAdam Nemet 
442a8945b77SAdam Nemet   // Only need to check pointers between two different dependency sets.
4439f7dedc3SAdam Nemet   if (PointerI.DependencySetId == PointerJ.DependencySetId)
444a8945b77SAdam Nemet     return false;
445a8945b77SAdam Nemet 
446a8945b77SAdam Nemet   // Only need to check pointers in the same alias set.
4479f7dedc3SAdam Nemet   if (PointerI.AliasSetId != PointerJ.AliasSetId)
448a8945b77SAdam Nemet     return false;
449a8945b77SAdam Nemet 
450a8945b77SAdam Nemet   return true;
451a8945b77SAdam Nemet }
452a8945b77SAdam Nemet 
45354f0b83eSAdam Nemet void RuntimePointerChecking::printChecks(
45454f0b83eSAdam Nemet     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
45554f0b83eSAdam Nemet     unsigned Depth) const {
45654f0b83eSAdam Nemet   unsigned N = 0;
45754f0b83eSAdam Nemet   for (const auto &Check : Checks) {
45854f0b83eSAdam Nemet     const auto &First = Check.first->Members, &Second = Check.second->Members;
45954f0b83eSAdam Nemet 
46054f0b83eSAdam Nemet     OS.indent(Depth) << "Check " << N++ << ":\n";
46154f0b83eSAdam Nemet 
46254f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
46354f0b83eSAdam Nemet     for (unsigned K = 0; K < First.size(); ++K)
46454f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
46554f0b83eSAdam Nemet 
46654f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
46754f0b83eSAdam Nemet     for (unsigned K = 0; K < Second.size(); ++K)
46854f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
46954f0b83eSAdam Nemet   }
47054f0b83eSAdam Nemet }
47154f0b83eSAdam Nemet 
4723a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
473e91cc6efSAdam Nemet 
474e91cc6efSAdam Nemet   OS.indent(Depth) << "Run-time memory checks:\n";
47515840393SAdam Nemet   printChecks(OS, Checks, Depth);
4761b6b50a9SSilviu Baranga 
4771b6b50a9SSilviu Baranga   OS.indent(Depth) << "Grouped accesses:\n";
4781b6b50a9SSilviu Baranga   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
47954f0b83eSAdam Nemet     const auto &CG = CheckingGroups[I];
48054f0b83eSAdam Nemet 
48154f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
48254f0b83eSAdam Nemet     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
48354f0b83eSAdam Nemet                          << ")\n";
48454f0b83eSAdam Nemet     for (unsigned J = 0; J < CG.Members.size(); ++J) {
48554f0b83eSAdam Nemet       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
4861b6b50a9SSilviu Baranga                            << "\n";
4871b6b50a9SSilviu Baranga     }
488e91cc6efSAdam Nemet   }
489e91cc6efSAdam Nemet }
490e91cc6efSAdam Nemet 
4910456327cSAdam Nemet namespace {
492a3fe70d2SEugene Zelenko 
4930456327cSAdam Nemet /// \brief Analyses memory accesses in a loop.
4940456327cSAdam Nemet ///
4950456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data
4960456327cSAdam Nemet /// dependence checking.
4970456327cSAdam Nemet class AccessAnalysis {
4980456327cSAdam Nemet public:
4990456327cSAdam Nemet   /// \brief Read or write access location.
5000456327cSAdam Nemet   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
5015448e989SAmjad Aboud   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
5020456327cSAdam Nemet 
503e2b885c4SAdam Nemet   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
5049cd9a7e3SSilviu Baranga                  MemoryDepChecker::DepCandidates &DA,
5059cd9a7e3SSilviu Baranga                  PredicatedScalarEvolution &PSE)
506e3c0534bSSilviu Baranga       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
5079cd9a7e3SSilviu Baranga         PSE(PSE) {}
5080456327cSAdam Nemet 
5090456327cSAdam Nemet   /// \brief Register a load  and whether it is only read from.
510ac80dc75SChandler Carruth   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
5110456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
512ecbd1682SChandler Carruth     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
5130456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, false));
5140456327cSAdam Nemet     if (IsReadOnly)
5150456327cSAdam Nemet       ReadOnlyPtr.insert(Ptr);
5160456327cSAdam Nemet   }
5170456327cSAdam Nemet 
5180456327cSAdam Nemet   /// \brief Register a store.
519ac80dc75SChandler Carruth   void addStore(MemoryLocation &Loc) {
5200456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
521ecbd1682SChandler Carruth     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
5220456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, true));
5230456327cSAdam Nemet   }
5240456327cSAdam Nemet 
5250456327cSAdam Nemet   /// \brief Check whether we can check the pointers at runtime for
526ee61474aSAdam Nemet   /// non-intersection.
527ee61474aSAdam Nemet   ///
528ee61474aSAdam Nemet   /// Returns true if we need no check or if we do and we can generate them
529ee61474aSAdam Nemet   /// (i.e. the pointers have computable bounds).
5307cdebac0SAdam Nemet   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
5317cdebac0SAdam Nemet                        Loop *TheLoop, const ValueToValueMap &Strides,
5329f02c586SAndrey Turetskiy                        bool ShouldCheckWrap = false);
5330456327cSAdam Nemet 
5340456327cSAdam Nemet   /// \brief Goes over all memory accesses, checks whether a RT check is needed
5350456327cSAdam Nemet   /// and builds sets of dependent accesses.
5360456327cSAdam Nemet   void buildDependenceSets() {
5370456327cSAdam Nemet     processMemAccesses();
5380456327cSAdam Nemet   }
5390456327cSAdam Nemet 
5405dc3b2cfSAdam Nemet   /// \brief Initial processing of memory accesses determined that we need to
5415dc3b2cfSAdam Nemet   /// perform dependency checking.
5425dc3b2cfSAdam Nemet   ///
5435dc3b2cfSAdam Nemet   /// Note that this can later be cleared if we retry memcheck analysis without
5445dc3b2cfSAdam Nemet   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
5450456327cSAdam Nemet   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
546df3dc5b9SAdam Nemet 
547df3dc5b9SAdam Nemet   /// We decided that no dependence analysis would be used.  Reset the state.
548df3dc5b9SAdam Nemet   void resetDepChecks(MemoryDepChecker &DepChecker) {
549df3dc5b9SAdam Nemet     CheckDeps.clear();
550a2df750fSAdam Nemet     DepChecker.clearDependences();
551df3dc5b9SAdam Nemet   }
5520456327cSAdam Nemet 
5535448e989SAmjad Aboud   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
5540456327cSAdam Nemet 
5550456327cSAdam Nemet private:
5560456327cSAdam Nemet   typedef SetVector<MemAccessInfo> PtrAccessSet;
5570456327cSAdam Nemet 
5580456327cSAdam Nemet   /// \brief Go over all memory access and check whether runtime pointer checks
559b41d2d3fSAdam Nemet   /// are needed and build sets of dependency check candidates.
5600456327cSAdam Nemet   void processMemAccesses();
5610456327cSAdam Nemet 
5620456327cSAdam Nemet   /// Set of all accesses.
5630456327cSAdam Nemet   PtrAccessSet Accesses;
5640456327cSAdam Nemet 
565a28d91d8SMehdi Amini   const DataLayout &DL;
566a28d91d8SMehdi Amini 
5675448e989SAmjad Aboud   /// List of accesses that need a further dependence check.
5685448e989SAmjad Aboud   MemAccessInfoList CheckDeps;
5690456327cSAdam Nemet 
5700456327cSAdam Nemet   /// Set of pointers that are read only.
5710456327cSAdam Nemet   SmallPtrSet<Value*, 16> ReadOnlyPtr;
5720456327cSAdam Nemet 
5730456327cSAdam Nemet   /// An alias set tracker to partition the access set by underlying object and
5740456327cSAdam Nemet   //intrinsic property (such as TBAA metadata).
5750456327cSAdam Nemet   AliasSetTracker AST;
5760456327cSAdam Nemet 
577e2b885c4SAdam Nemet   LoopInfo *LI;
578e2b885c4SAdam Nemet 
5790456327cSAdam Nemet   /// Sets of potentially dependent accesses - members of one set share an
5800456327cSAdam Nemet   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
5810456327cSAdam Nemet   /// dependence check.
582dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates &DepCands;
5830456327cSAdam Nemet 
5845dc3b2cfSAdam Nemet   /// \brief Initial processing of memory accesses determined that we may need
5855dc3b2cfSAdam Nemet   /// to add memchecks.  Perform the analysis to determine the necessary checks.
5865dc3b2cfSAdam Nemet   ///
5875dc3b2cfSAdam Nemet   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
5885dc3b2cfSAdam Nemet   /// memcheck analysis without dependency checking
5895dc3b2cfSAdam Nemet   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
5905dc3b2cfSAdam Nemet   /// while this remains set if we have potentially dependent accesses.
5915dc3b2cfSAdam Nemet   bool IsRTCheckAnalysisNeeded;
592e3c0534bSSilviu Baranga 
593e3c0534bSSilviu Baranga   /// The SCEV predicate containing all the SCEV-related assumptions.
5949cd9a7e3SSilviu Baranga   PredicatedScalarEvolution &PSE;
5950456327cSAdam Nemet };
5960456327cSAdam Nemet 
5970456327cSAdam Nemet } // end anonymous namespace
5980456327cSAdam Nemet 
5990456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check.
6009cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
601e3c0534bSSilviu Baranga                                 const ValueToValueMap &Strides, Value *Ptr,
6029cd9a7e3SSilviu Baranga                                 Loop *L) {
6039cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
604279784ffSAdam Nemet 
605279784ffSAdam Nemet   // The bounds for loop-invariant pointer is trivial.
606279784ffSAdam Nemet   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
607279784ffSAdam Nemet     return true;
608279784ffSAdam Nemet 
6090456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
6100456327cSAdam Nemet   if (!AR)
6110456327cSAdam Nemet     return false;
6120456327cSAdam Nemet 
6130456327cSAdam Nemet   return AR->isAffine();
6140456327cSAdam Nemet }
6150456327cSAdam Nemet 
6169f02c586SAndrey Turetskiy /// \brief Check whether a pointer address cannot wrap.
6179f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE,
6189f02c586SAndrey Turetskiy                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
6199f02c586SAndrey Turetskiy   const SCEV *PtrScev = PSE.getSCEV(Ptr);
6209f02c586SAndrey Turetskiy   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
6219f02c586SAndrey Turetskiy     return true;
6229f02c586SAndrey Turetskiy 
6237afb46d3SDavid Majnemer   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
6249f02c586SAndrey Turetskiy   return Stride == 1;
6259f02c586SAndrey Turetskiy }
6269f02c586SAndrey Turetskiy 
6277cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
6287cdebac0SAdam Nemet                                      ScalarEvolution *SE, Loop *TheLoop,
6297cdebac0SAdam Nemet                                      const ValueToValueMap &StridesMap,
6309f02c586SAndrey Turetskiy                                      bool ShouldCheckWrap) {
6310456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
6320456327cSAdam Nemet   // to place a runtime bound check.
6330456327cSAdam Nemet   bool CanDoRT = true;
6340456327cSAdam Nemet 
635ee61474aSAdam Nemet   bool NeedRTCheck = false;
6365dc3b2cfSAdam Nemet   if (!IsRTCheckAnalysisNeeded) return true;
63798a13719SSilviu Baranga 
6380456327cSAdam Nemet   bool IsDepCheckNeeded = isDependencyCheckNeeded();
6390456327cSAdam Nemet 
6400456327cSAdam Nemet   // We assign a consecutive id to access from different alias sets.
6410456327cSAdam Nemet   // Accesses between different groups doesn't need to be checked.
6420456327cSAdam Nemet   unsigned ASId = 1;
6430456327cSAdam Nemet   for (auto &AS : AST) {
644424edc6cSAdam Nemet     int NumReadPtrChecks = 0;
645424edc6cSAdam Nemet     int NumWritePtrChecks = 0;
646424edc6cSAdam Nemet 
6470456327cSAdam Nemet     // We assign consecutive id to access from different dependence sets.
6480456327cSAdam Nemet     // Accesses within the same set don't need a runtime check.
6490456327cSAdam Nemet     unsigned RunningDepId = 1;
6500456327cSAdam Nemet     DenseMap<Value *, unsigned> DepSetId;
6510456327cSAdam Nemet 
6520456327cSAdam Nemet     for (auto A : AS) {
6530456327cSAdam Nemet       Value *Ptr = A.getValue();
6540456327cSAdam Nemet       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
6550456327cSAdam Nemet       MemAccessInfo Access(Ptr, IsWrite);
6560456327cSAdam Nemet 
657424edc6cSAdam Nemet       if (IsWrite)
658424edc6cSAdam Nemet         ++NumWritePtrChecks;
659424edc6cSAdam Nemet       else
660424edc6cSAdam Nemet         ++NumReadPtrChecks;
661424edc6cSAdam Nemet 
6629cd9a7e3SSilviu Baranga       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
663a28d91d8SMehdi Amini           // When we run after a failing dependency check we have to make sure
664a28d91d8SMehdi Amini           // we don't have wrapping pointers.
6659f02c586SAndrey Turetskiy           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
6660456327cSAdam Nemet         // The id of the dependence set.
6670456327cSAdam Nemet         unsigned DepId;
6680456327cSAdam Nemet 
6690456327cSAdam Nemet         if (IsDepCheckNeeded) {
6700456327cSAdam Nemet           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
6710456327cSAdam Nemet           unsigned &LeaderId = DepSetId[Leader];
6720456327cSAdam Nemet           if (!LeaderId)
6730456327cSAdam Nemet             LeaderId = RunningDepId++;
6740456327cSAdam Nemet           DepId = LeaderId;
6750456327cSAdam Nemet         } else
6760456327cSAdam Nemet           // Each access has its own dependence set.
6770456327cSAdam Nemet           DepId = RunningDepId++;
6780456327cSAdam Nemet 
6799cd9a7e3SSilviu Baranga         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
6800456327cSAdam Nemet 
681339f42b3SAdam Nemet         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
6820456327cSAdam Nemet       } else {
683f10ca278SAdam Nemet         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
6840456327cSAdam Nemet         CanDoRT = false;
6850456327cSAdam Nemet       }
6860456327cSAdam Nemet     }
6870456327cSAdam Nemet 
688424edc6cSAdam Nemet     // If we have at least two writes or one write and a read then we need to
689424edc6cSAdam Nemet     // check them.  But there is no need to checks if there is only one
690424edc6cSAdam Nemet     // dependence set for this alias set.
691424edc6cSAdam Nemet     //
692424edc6cSAdam Nemet     // Note that this function computes CanDoRT and NeedRTCheck independently.
693424edc6cSAdam Nemet     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
694424edc6cSAdam Nemet     // for which we couldn't find the bounds but we don't actually need to emit
695424edc6cSAdam Nemet     // any checks so it does not matter.
696424edc6cSAdam Nemet     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
697424edc6cSAdam Nemet       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
698424edc6cSAdam Nemet                                                  NumWritePtrChecks >= 1));
699424edc6cSAdam Nemet 
7000456327cSAdam Nemet     ++ASId;
7010456327cSAdam Nemet   }
7020456327cSAdam Nemet 
7030456327cSAdam Nemet   // If the pointers that we would use for the bounds comparison have different
7040456327cSAdam Nemet   // address spaces, assume the values aren't directly comparable, so we can't
7050456327cSAdam Nemet   // use them for the runtime check. We also have to assume they could
7060456327cSAdam Nemet   // overlap. In the future there should be metadata for whether address spaces
7070456327cSAdam Nemet   // are disjoint.
7080456327cSAdam Nemet   unsigned NumPointers = RtCheck.Pointers.size();
7090456327cSAdam Nemet   for (unsigned i = 0; i < NumPointers; ++i) {
7100456327cSAdam Nemet     for (unsigned j = i + 1; j < NumPointers; ++j) {
7110456327cSAdam Nemet       // Only need to check pointers between two different dependency sets.
7129f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].DependencySetId ==
7139f7dedc3SAdam Nemet           RtCheck.Pointers[j].DependencySetId)
7140456327cSAdam Nemet        continue;
7150456327cSAdam Nemet       // Only need to check pointers in the same alias set.
7169f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
7170456327cSAdam Nemet         continue;
7180456327cSAdam Nemet 
7199f7dedc3SAdam Nemet       Value *PtrI = RtCheck.Pointers[i].PointerValue;
7209f7dedc3SAdam Nemet       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
7210456327cSAdam Nemet 
7220456327cSAdam Nemet       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
7230456327cSAdam Nemet       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
7240456327cSAdam Nemet       if (ASi != ASj) {
725339f42b3SAdam Nemet         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
7260456327cSAdam Nemet                        " different address spaces\n");
7270456327cSAdam Nemet         return false;
7280456327cSAdam Nemet       }
7290456327cSAdam Nemet     }
7300456327cSAdam Nemet   }
7310456327cSAdam Nemet 
7321b6b50a9SSilviu Baranga   if (NeedRTCheck && CanDoRT)
73315840393SAdam Nemet     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
7341b6b50a9SSilviu Baranga 
735155e8741SAdam Nemet   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
736ee61474aSAdam Nemet                << " pointer comparisons.\n");
737ee61474aSAdam Nemet 
738ee61474aSAdam Nemet   RtCheck.Need = NeedRTCheck;
739ee61474aSAdam Nemet 
740ee61474aSAdam Nemet   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
741ee61474aSAdam Nemet   if (!CanDoRTIfNeeded)
742ee61474aSAdam Nemet     RtCheck.reset();
743ee61474aSAdam Nemet   return CanDoRTIfNeeded;
7440456327cSAdam Nemet }
7450456327cSAdam Nemet 
7460456327cSAdam Nemet void AccessAnalysis::processMemAccesses() {
7470456327cSAdam Nemet   // We process the set twice: first we process read-write pointers, last we
7480456327cSAdam Nemet   // process read-only pointers. This allows us to skip dependence tests for
7490456327cSAdam Nemet   // read-only pointers.
7500456327cSAdam Nemet 
751339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
7520456327cSAdam Nemet   DEBUG(dbgs() << "  AST: "; AST.dump());
7539c926579SAdam Nemet   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
7540456327cSAdam Nemet   DEBUG({
7550456327cSAdam Nemet     for (auto A : Accesses)
7560456327cSAdam Nemet       dbgs() << "\t" << *A.getPointer() << " (" <<
7570456327cSAdam Nemet                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
7580456327cSAdam Nemet                                          "read-only" : "read")) << ")\n";
7590456327cSAdam Nemet   });
7600456327cSAdam Nemet 
7610456327cSAdam Nemet   // The AliasSetTracker has nicely partitioned our pointers by metadata
7620456327cSAdam Nemet   // compatibility and potential for underlying-object overlap. As a result, we
7630456327cSAdam Nemet   // only need to check for potential pointer dependencies within each alias
7640456327cSAdam Nemet   // set.
7650456327cSAdam Nemet   for (auto &AS : AST) {
7660456327cSAdam Nemet     // Note that both the alias-set tracker and the alias sets themselves used
7670456327cSAdam Nemet     // linked lists internally and so the iteration order here is deterministic
7680456327cSAdam Nemet     // (matching the original instruction order within each set).
7690456327cSAdam Nemet 
7700456327cSAdam Nemet     bool SetHasWrite = false;
7710456327cSAdam Nemet 
7720456327cSAdam Nemet     // Map of pointers to last access encountered.
7730456327cSAdam Nemet     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
7740456327cSAdam Nemet     UnderlyingObjToAccessMap ObjToLastAccess;
7750456327cSAdam Nemet 
7760456327cSAdam Nemet     // Set of access to check after all writes have been processed.
7770456327cSAdam Nemet     PtrAccessSet DeferredAccesses;
7780456327cSAdam Nemet 
7790456327cSAdam Nemet     // Iterate over each alias set twice, once to process read/write pointers,
7800456327cSAdam Nemet     // and then to process read-only pointers.
7810456327cSAdam Nemet     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
7820456327cSAdam Nemet       bool UseDeferred = SetIteration > 0;
7830456327cSAdam Nemet       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
7840456327cSAdam Nemet 
7850456327cSAdam Nemet       for (auto AV : AS) {
7860456327cSAdam Nemet         Value *Ptr = AV.getValue();
7870456327cSAdam Nemet 
7880456327cSAdam Nemet         // For a single memory access in AliasSetTracker, Accesses may contain
7890456327cSAdam Nemet         // both read and write, and they both need to be handled for CheckDeps.
7900456327cSAdam Nemet         for (auto AC : S) {
7910456327cSAdam Nemet           if (AC.getPointer() != Ptr)
7920456327cSAdam Nemet             continue;
7930456327cSAdam Nemet 
7940456327cSAdam Nemet           bool IsWrite = AC.getInt();
7950456327cSAdam Nemet 
7960456327cSAdam Nemet           // If we're using the deferred access set, then it contains only
7970456327cSAdam Nemet           // reads.
7980456327cSAdam Nemet           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
7990456327cSAdam Nemet           if (UseDeferred && !IsReadOnlyPtr)
8000456327cSAdam Nemet             continue;
8010456327cSAdam Nemet           // Otherwise, the pointer must be in the PtrAccessSet, either as a
8020456327cSAdam Nemet           // read or a write.
8030456327cSAdam Nemet           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
8040456327cSAdam Nemet                   S.count(MemAccessInfo(Ptr, false))) &&
8050456327cSAdam Nemet                  "Alias-set pointer not in the access set?");
8060456327cSAdam Nemet 
8070456327cSAdam Nemet           MemAccessInfo Access(Ptr, IsWrite);
8080456327cSAdam Nemet           DepCands.insert(Access);
8090456327cSAdam Nemet 
8100456327cSAdam Nemet           // Memorize read-only pointers for later processing and skip them in
8110456327cSAdam Nemet           // the first round (they need to be checked after we have seen all
8120456327cSAdam Nemet           // write pointers). Note: we also mark pointer that are not
8130456327cSAdam Nemet           // consecutive as "read-only" pointers (so that we check
8140456327cSAdam Nemet           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
8150456327cSAdam Nemet           if (!UseDeferred && IsReadOnlyPtr) {
8160456327cSAdam Nemet             DeferredAccesses.insert(Access);
8170456327cSAdam Nemet             continue;
8180456327cSAdam Nemet           }
8190456327cSAdam Nemet 
8200456327cSAdam Nemet           // If this is a write - check other reads and writes for conflicts. If
8210456327cSAdam Nemet           // this is a read only check other writes for conflicts (but only if
8220456327cSAdam Nemet           // there is no other write to the ptr - this is an optimization to
8230456327cSAdam Nemet           // catch "a[i] = a[i] + " without having to do a dependence check).
8240456327cSAdam Nemet           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
8255448e989SAmjad Aboud             CheckDeps.push_back(Access);
8265dc3b2cfSAdam Nemet             IsRTCheckAnalysisNeeded = true;
8270456327cSAdam Nemet           }
8280456327cSAdam Nemet 
8290456327cSAdam Nemet           if (IsWrite)
8300456327cSAdam Nemet             SetHasWrite = true;
8310456327cSAdam Nemet 
8320456327cSAdam Nemet           // Create sets of pointers connected by a shared alias set and
8330456327cSAdam Nemet           // underlying object.
8340456327cSAdam Nemet           typedef SmallVector<Value *, 16> ValueVector;
8350456327cSAdam Nemet           ValueVector TempObjects;
836e2b885c4SAdam Nemet 
837e2b885c4SAdam Nemet           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
838e2b885c4SAdam Nemet           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
8390456327cSAdam Nemet           for (Value *UnderlyingObj : TempObjects) {
840afd13519SMehdi Amini             // nullptr never alias, don't join sets for pointer that have "null"
841afd13519SMehdi Amini             // in their UnderlyingObjects list.
842afd13519SMehdi Amini             if (isa<ConstantPointerNull>(UnderlyingObj))
843afd13519SMehdi Amini               continue;
844afd13519SMehdi Amini 
8450456327cSAdam Nemet             UnderlyingObjToAccessMap::iterator Prev =
8460456327cSAdam Nemet                 ObjToLastAccess.find(UnderlyingObj);
8470456327cSAdam Nemet             if (Prev != ObjToLastAccess.end())
8480456327cSAdam Nemet               DepCands.unionSets(Access, Prev->second);
8490456327cSAdam Nemet 
8500456327cSAdam Nemet             ObjToLastAccess[UnderlyingObj] = Access;
851e2b885c4SAdam Nemet             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
8520456327cSAdam Nemet           }
8530456327cSAdam Nemet         }
8540456327cSAdam Nemet       }
8550456327cSAdam Nemet     }
8560456327cSAdam Nemet   }
8570456327cSAdam Nemet }
8580456327cSAdam Nemet 
8590456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) {
8600456327cSAdam Nemet   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
8610456327cSAdam Nemet     return GEP->isInBounds();
8620456327cSAdam Nemet   return false;
8630456327cSAdam Nemet }
8640456327cSAdam Nemet 
865c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
866c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing.
867c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
868ea63a7f5SSilviu Baranga                            PredicatedScalarEvolution &PSE, const Loop *L) {
869c4866d29SAdam Nemet   // FIXME: This should probably only return true for NUW.
870c4866d29SAdam Nemet   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
871c4866d29SAdam Nemet     return true;
872c4866d29SAdam Nemet 
873c4866d29SAdam Nemet   // Scalar evolution does not propagate the non-wrapping flags to values that
874c4866d29SAdam Nemet   // are derived from a non-wrapping induction variable because non-wrapping
875c4866d29SAdam Nemet   // could be flow-sensitive.
876c4866d29SAdam Nemet   //
877c4866d29SAdam Nemet   // Look through the potentially overflowing instruction to try to prove
878c4866d29SAdam Nemet   // non-wrapping for the *specific* value of Ptr.
879c4866d29SAdam Nemet 
880c4866d29SAdam Nemet   // The arithmetic implied by an inbounds GEP can't overflow.
881c4866d29SAdam Nemet   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
882c4866d29SAdam Nemet   if (!GEP || !GEP->isInBounds())
883c4866d29SAdam Nemet     return false;
884c4866d29SAdam Nemet 
885c4866d29SAdam Nemet   // Make sure there is only one non-const index and analyze that.
886c4866d29SAdam Nemet   Value *NonConstIndex = nullptr;
8878b401013SDavid Majnemer   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
8888b401013SDavid Majnemer     if (!isa<ConstantInt>(Index)) {
889c4866d29SAdam Nemet       if (NonConstIndex)
890c4866d29SAdam Nemet         return false;
8918b401013SDavid Majnemer       NonConstIndex = Index;
892c4866d29SAdam Nemet     }
893c4866d29SAdam Nemet   if (!NonConstIndex)
894c4866d29SAdam Nemet     // The recurrence is on the pointer, ignore for now.
895c4866d29SAdam Nemet     return false;
896c4866d29SAdam Nemet 
897c4866d29SAdam Nemet   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
898c4866d29SAdam Nemet   // AddRec using a NSW operation.
899c4866d29SAdam Nemet   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
900c4866d29SAdam Nemet     if (OBO->hasNoSignedWrap() &&
901c4866d29SAdam Nemet         // Assume constant for other the operand so that the AddRec can be
902c4866d29SAdam Nemet         // easily found.
903c4866d29SAdam Nemet         isa<ConstantInt>(OBO->getOperand(1))) {
904ea63a7f5SSilviu Baranga       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
905c4866d29SAdam Nemet 
906c4866d29SAdam Nemet       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
907c4866d29SAdam Nemet         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
908c4866d29SAdam Nemet     }
909c4866d29SAdam Nemet 
910c4866d29SAdam Nemet   return false;
911c4866d29SAdam Nemet }
912c4866d29SAdam Nemet 
9130456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride.
9147afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
915ea63a7f5SSilviu Baranga                            const Loop *Lp, const ValueToValueMap &StridesMap,
9165f8cc0c3SElena Demikhovsky                            bool Assume, bool ShouldCheckWrap) {
917e3dcce97SCraig Topper   Type *Ty = Ptr->getType();
9180456327cSAdam Nemet   assert(Ty->isPointerTy() && "Unexpected non-ptr");
9190456327cSAdam Nemet 
9200456327cSAdam Nemet   // Make sure that the pointer does not point to aggregate types.
921e3dcce97SCraig Topper   auto *PtrTy = cast<PointerType>(Ty);
9220456327cSAdam Nemet   if (PtrTy->getElementType()->isAggregateType()) {
923ea63a7f5SSilviu Baranga     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
924ea63a7f5SSilviu Baranga                  << "\n");
9250456327cSAdam Nemet     return 0;
9260456327cSAdam Nemet   }
9270456327cSAdam Nemet 
9289cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
9290456327cSAdam Nemet 
9300456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
931ea63a7f5SSilviu Baranga   if (Assume && !AR)
932d68ed854SSilviu Baranga     AR = PSE.getAsAddRec(Ptr);
933ea63a7f5SSilviu Baranga 
9340456327cSAdam Nemet   if (!AR) {
935ea63a7f5SSilviu Baranga     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
936ea63a7f5SSilviu Baranga                  << " SCEV: " << *PtrScev << "\n");
9370456327cSAdam Nemet     return 0;
9380456327cSAdam Nemet   }
9390456327cSAdam Nemet 
9400456327cSAdam Nemet   // The accesss function must stride over the innermost loop.
9410456327cSAdam Nemet   if (Lp != AR->getLoop()) {
942339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
943ea63a7f5SSilviu Baranga           *Ptr << " SCEV: " << *AR << "\n");
944a02ce98bSKyle Butt     return 0;
9450456327cSAdam Nemet   }
9460456327cSAdam Nemet 
9470456327cSAdam Nemet   // The address calculation must not wrap. Otherwise, a dependence could be
9480456327cSAdam Nemet   // inverted.
9490456327cSAdam Nemet   // An inbounds getelementptr that is a AddRec with a unit stride
9500456327cSAdam Nemet   // cannot wrap per definition. The unit stride requirement is checked later.
9510456327cSAdam Nemet   // An getelementptr without an inbounds attribute and unit stride would have
9520456327cSAdam Nemet   // to access the pointer value "0" which is undefined behavior in address
9530456327cSAdam Nemet   // space 0, therefore we can also vectorize this case.
9540456327cSAdam Nemet   bool IsInBoundsGEP = isInBoundsGep(Ptr);
9555f8cc0c3SElena Demikhovsky   bool IsNoWrapAddRec = !ShouldCheckWrap ||
956ea63a7f5SSilviu Baranga     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
957ea63a7f5SSilviu Baranga     isNoWrapAddRec(Ptr, AR, PSE, Lp);
9580456327cSAdam Nemet   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
9590456327cSAdam Nemet   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
960ea63a7f5SSilviu Baranga     if (Assume) {
961ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
962ea63a7f5SSilviu Baranga       IsNoWrapAddRec = true;
963ea63a7f5SSilviu Baranga       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
964ea63a7f5SSilviu Baranga                    << "LAA:   Pointer: " << *Ptr << "\n"
965ea63a7f5SSilviu Baranga                    << "LAA:   SCEV: " << *AR << "\n"
966ea63a7f5SSilviu Baranga                    << "LAA:   Added an overflow assumption\n");
967ea63a7f5SSilviu Baranga     } else {
968339f42b3SAdam Nemet       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
969ea63a7f5SSilviu Baranga                    << *Ptr << " SCEV: " << *AR << "\n");
9700456327cSAdam Nemet       return 0;
9710456327cSAdam Nemet     }
972ea63a7f5SSilviu Baranga   }
9730456327cSAdam Nemet 
9740456327cSAdam Nemet   // Check the step is constant.
9759cd9a7e3SSilviu Baranga   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
9760456327cSAdam Nemet 
977943befedSAdam Nemet   // Calculate the pointer stride and check if it is constant.
9780456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
9790456327cSAdam Nemet   if (!C) {
980339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
981ea63a7f5SSilviu Baranga           " SCEV: " << *AR << "\n");
9820456327cSAdam Nemet     return 0;
9830456327cSAdam Nemet   }
9840456327cSAdam Nemet 
985a28d91d8SMehdi Amini   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
986a28d91d8SMehdi Amini   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
9870de2feceSSanjoy Das   const APInt &APStepVal = C->getAPInt();
9880456327cSAdam Nemet 
9890456327cSAdam Nemet   // Huge step value - give up.
9900456327cSAdam Nemet   if (APStepVal.getBitWidth() > 64)
9910456327cSAdam Nemet     return 0;
9920456327cSAdam Nemet 
9930456327cSAdam Nemet   int64_t StepVal = APStepVal.getSExtValue();
9940456327cSAdam Nemet 
9950456327cSAdam Nemet   // Strided access.
9960456327cSAdam Nemet   int64_t Stride = StepVal / Size;
9970456327cSAdam Nemet   int64_t Rem = StepVal % Size;
9980456327cSAdam Nemet   if (Rem)
9990456327cSAdam Nemet     return 0;
10000456327cSAdam Nemet 
10010456327cSAdam Nemet   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
10020456327cSAdam Nemet   // know we can't "wrap around the address space". In case of address space
10030456327cSAdam Nemet   // zero we know that this won't happen without triggering undefined behavior.
10040456327cSAdam Nemet   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
1005ea63a7f5SSilviu Baranga       Stride != 1 && Stride != -1) {
1006ea63a7f5SSilviu Baranga     if (Assume) {
1007ea63a7f5SSilviu Baranga       // We can avoid this case by adding a run-time check.
1008ea63a7f5SSilviu Baranga       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1009ea63a7f5SSilviu Baranga                    << "inbouds or in address space 0 may wrap:\n"
1010ea63a7f5SSilviu Baranga                    << "LAA:   Pointer: " << *Ptr << "\n"
1011ea63a7f5SSilviu Baranga                    << "LAA:   SCEV: " << *AR << "\n"
1012ea63a7f5SSilviu Baranga                    << "LAA:   Added an overflow assumption\n");
1013ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1014ea63a7f5SSilviu Baranga     } else
10150456327cSAdam Nemet       return 0;
1016ea63a7f5SSilviu Baranga   }
10170456327cSAdam Nemet 
10180456327cSAdam Nemet   return Stride;
10190456327cSAdam Nemet }
10200456327cSAdam Nemet 
1021f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction.
1022f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction.
1023f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) {
10248b401013SDavid Majnemer   if (auto *LI = dyn_cast<LoadInst>(I))
1025f1c00a22SHaicheng Wu     return LI->getPointerOperand();
10268b401013SDavid Majnemer   if (auto *SI = dyn_cast<StoreInst>(I))
1027f1c00a22SHaicheng Wu     return SI->getPointerOperand();
1028f1c00a22SHaicheng Wu   return nullptr;
1029f1c00a22SHaicheng Wu }
1030f1c00a22SHaicheng Wu 
1031f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction.
1032f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction.
1033f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) {
1034f1c00a22SHaicheng Wu   if (LoadInst *L = dyn_cast<LoadInst>(I))
1035f1c00a22SHaicheng Wu     return L->getPointerAddressSpace();
1036f1c00a22SHaicheng Wu   if (StoreInst *S = dyn_cast<StoreInst>(I))
1037f1c00a22SHaicheng Wu     return S->getPointerAddressSpace();
1038f1c00a22SHaicheng Wu   return -1;
1039f1c00a22SHaicheng Wu }
1040f1c00a22SHaicheng Wu 
1041f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive.
1042f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1043f1c00a22SHaicheng Wu                                ScalarEvolution &SE, bool CheckType) {
1044f1c00a22SHaicheng Wu   Value *PtrA = getPointerOperand(A);
1045f1c00a22SHaicheng Wu   Value *PtrB = getPointerOperand(B);
1046f1c00a22SHaicheng Wu   unsigned ASA = getAddressSpaceOperand(A);
1047f1c00a22SHaicheng Wu   unsigned ASB = getAddressSpaceOperand(B);
1048f1c00a22SHaicheng Wu 
1049f1c00a22SHaicheng Wu   // Check that the address spaces match and that the pointers are valid.
1050f1c00a22SHaicheng Wu   if (!PtrA || !PtrB || (ASA != ASB))
1051f1c00a22SHaicheng Wu     return false;
1052f1c00a22SHaicheng Wu 
1053f1c00a22SHaicheng Wu   // Make sure that A and B are different pointers.
1054f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1055f1c00a22SHaicheng Wu     return false;
1056f1c00a22SHaicheng Wu 
1057f1c00a22SHaicheng Wu   // Make sure that A and B have the same type if required.
1058f1c00a22SHaicheng Wu   if (CheckType && PtrA->getType() != PtrB->getType())
1059f1c00a22SHaicheng Wu     return false;
1060f1c00a22SHaicheng Wu 
1061f1c00a22SHaicheng Wu   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1062f1c00a22SHaicheng Wu   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1063f1c00a22SHaicheng Wu   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1064f1c00a22SHaicheng Wu 
1065f1c00a22SHaicheng Wu   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1066f1c00a22SHaicheng Wu   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1067f1c00a22SHaicheng Wu   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1068f1c00a22SHaicheng Wu 
1069f1c00a22SHaicheng Wu   //  OffsetDelta = OffsetB - OffsetA;
1070f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1071f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1072f1c00a22SHaicheng Wu   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1073f1c00a22SHaicheng Wu   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1074f1c00a22SHaicheng Wu   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1075f1c00a22SHaicheng Wu   // Check if they are based on the same pointer. That makes the offsets
1076f1c00a22SHaicheng Wu   // sufficient.
1077f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1078f1c00a22SHaicheng Wu     return OffsetDelta == Size;
1079f1c00a22SHaicheng Wu 
1080f1c00a22SHaicheng Wu   // Compute the necessary base pointer delta to have the necessary final delta
1081f1c00a22SHaicheng Wu   // equal to the size.
1082f1c00a22SHaicheng Wu   // BaseDelta = Size - OffsetDelta;
1083f1c00a22SHaicheng Wu   const SCEV *SizeSCEV = SE.getConstant(Size);
1084f1c00a22SHaicheng Wu   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1085f1c00a22SHaicheng Wu 
1086f1c00a22SHaicheng Wu   // Otherwise compute the distance with SCEV between the base pointers.
1087f1c00a22SHaicheng Wu   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1088f1c00a22SHaicheng Wu   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1089f1c00a22SHaicheng Wu   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1090f1c00a22SHaicheng Wu   return X == PtrSCEVB;
1091f1c00a22SHaicheng Wu }
1092f1c00a22SHaicheng Wu 
10939c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
10949c926579SAdam Nemet   switch (Type) {
10959c926579SAdam Nemet   case NoDep:
10969c926579SAdam Nemet   case Forward:
10979c926579SAdam Nemet   case BackwardVectorizable:
10989c926579SAdam Nemet     return true;
10999c926579SAdam Nemet 
11009c926579SAdam Nemet   case Unknown:
11019c926579SAdam Nemet   case ForwardButPreventsForwarding:
11029c926579SAdam Nemet   case Backward:
11039c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
11049c926579SAdam Nemet     return false;
11059c926579SAdam Nemet   }
1106d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
11079c926579SAdam Nemet }
11089c926579SAdam Nemet 
1109397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const {
11109c926579SAdam Nemet   switch (Type) {
11119c926579SAdam Nemet   case NoDep:
11129c926579SAdam Nemet   case Forward:
11139c926579SAdam Nemet   case ForwardButPreventsForwarding:
1114397f5829SAdam Nemet   case Unknown:
11159c926579SAdam Nemet     return false;
11169c926579SAdam Nemet 
11179c926579SAdam Nemet   case BackwardVectorizable:
11189c926579SAdam Nemet   case Backward:
11199c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
11209c926579SAdam Nemet     return true;
11219c926579SAdam Nemet   }
1122d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
11239c926579SAdam Nemet }
11249c926579SAdam Nemet 
1125397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1126397f5829SAdam Nemet   return isBackward() || Type == Unknown;
1127397f5829SAdam Nemet }
1128397f5829SAdam Nemet 
1129397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const {
1130397f5829SAdam Nemet   switch (Type) {
1131397f5829SAdam Nemet   case Forward:
1132397f5829SAdam Nemet   case ForwardButPreventsForwarding:
1133397f5829SAdam Nemet     return true;
1134397f5829SAdam Nemet 
1135397f5829SAdam Nemet   case NoDep:
1136397f5829SAdam Nemet   case Unknown:
1137397f5829SAdam Nemet   case BackwardVectorizable:
1138397f5829SAdam Nemet   case Backward:
1139397f5829SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
1140397f5829SAdam Nemet     return false;
1141397f5829SAdam Nemet   }
1142397f5829SAdam Nemet   llvm_unreachable("unexpected DepType!");
1143397f5829SAdam Nemet }
1144397f5829SAdam Nemet 
11457afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
11467afb46d3SDavid Majnemer                                                     uint64_t TypeByteSize) {
11470456327cSAdam Nemet   // If loads occur at a distance that is not a multiple of a feasible vector
11480456327cSAdam Nemet   // factor store-load forwarding does not take place.
11490456327cSAdam Nemet   // Positive dependences might cause troubles because vectorizing them might
11500456327cSAdam Nemet   // prevent store-load forwarding making vectorized code run a lot slower.
11510456327cSAdam Nemet   //   a[i] = a[i-3] ^ a[i-8];
11520456327cSAdam Nemet   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
11530456327cSAdam Nemet   //   hence on your typical architecture store-load forwarding does not take
11540456327cSAdam Nemet   //   place. Vectorizing in such cases does not make sense.
11550456327cSAdam Nemet   // Store-load forwarding distance.
1156884d313bSAdam Nemet 
1157884d313bSAdam Nemet   // After this many iterations store-to-load forwarding conflicts should not
1158884d313bSAdam Nemet   // cause any slowdowns.
11597afb46d3SDavid Majnemer   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
11600456327cSAdam Nemet   // Maximum vector factor.
11617afb46d3SDavid Majnemer   uint64_t MaxVFWithoutSLForwardIssues = std::min(
11622c34ab51SAdam Nemet       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
11630456327cSAdam Nemet 
1164884d313bSAdam Nemet   // Compute the smallest VF at which the store and load would be misaligned.
11657afb46d3SDavid Majnemer   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
11669b5852aeSAdam Nemet        VF *= 2) {
1167884d313bSAdam Nemet     // If the number of vector iteration between the store and the load are
1168884d313bSAdam Nemet     // small we could incur conflicts.
1169884d313bSAdam Nemet     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
11709b5852aeSAdam Nemet       MaxVFWithoutSLForwardIssues = (VF >>= 1);
11710456327cSAdam Nemet       break;
11720456327cSAdam Nemet     }
11730456327cSAdam Nemet   }
11740456327cSAdam Nemet 
11750456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
11769b5852aeSAdam Nemet     DEBUG(dbgs() << "LAA: Distance " << Distance
11779b5852aeSAdam Nemet                  << " that could cause a store-load forwarding conflict\n");
11780456327cSAdam Nemet     return true;
11790456327cSAdam Nemet   }
11800456327cSAdam Nemet 
11810456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1182f219c647SAdam Nemet       MaxVFWithoutSLForwardIssues !=
1183f219c647SAdam Nemet           VectorizerParams::MaxVectorWidth * TypeByteSize)
11840456327cSAdam Nemet     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
11850456327cSAdam Nemet   return false;
11860456327cSAdam Nemet }
11870456327cSAdam Nemet 
1188eac89d73SDorit Nuzman /// Given a non-constant (unknown) dependence-distance \p Dist between two
1189eac89d73SDorit Nuzman /// memory accesses, that have the same stride whose absolute value is given
1190eac89d73SDorit Nuzman /// in \p Stride, and that have the same type size \p TypeByteSize,
1191eac89d73SDorit Nuzman /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1192eac89d73SDorit Nuzman /// possible to prove statically that the dependence distance is larger
1193eac89d73SDorit Nuzman /// than the range that the accesses will travel through the execution of
1194eac89d73SDorit Nuzman /// the loop. If so, return true; false otherwise. This is useful for
1195eac89d73SDorit Nuzman /// example in loops such as the following (PR31098):
1196eac89d73SDorit Nuzman ///     for (i = 0; i < D; ++i) {
1197eac89d73SDorit Nuzman ///                = out[i];
1198eac89d73SDorit Nuzman ///       out[i+D] =
1199eac89d73SDorit Nuzman ///     }
1200eac89d73SDorit Nuzman static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1201eac89d73SDorit Nuzman                                      const SCEV &BackedgeTakenCount,
1202eac89d73SDorit Nuzman                                      const SCEV &Dist, uint64_t Stride,
1203eac89d73SDorit Nuzman                                      uint64_t TypeByteSize) {
1204eac89d73SDorit Nuzman 
1205eac89d73SDorit Nuzman   // If we can prove that
1206eac89d73SDorit Nuzman   //      (**) |Dist| > BackedgeTakenCount * Step
1207eac89d73SDorit Nuzman   // where Step is the absolute stride of the memory accesses in bytes,
1208eac89d73SDorit Nuzman   // then there is no dependence.
1209eac89d73SDorit Nuzman   //
1210eac89d73SDorit Nuzman   // Ratioanle:
1211eac89d73SDorit Nuzman   // We basically want to check if the absolute distance (|Dist/Step|)
1212eac89d73SDorit Nuzman   // is >= the loop iteration count (or > BackedgeTakenCount).
1213eac89d73SDorit Nuzman   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1214eac89d73SDorit Nuzman   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1215eac89d73SDorit Nuzman   // that the dependence distance is >= VF; This is checked elsewhere.
1216eac89d73SDorit Nuzman   // But in some cases we can prune unknown dependence distances early, and
1217eac89d73SDorit Nuzman   // even before selecting the VF, and without a runtime test, by comparing
1218eac89d73SDorit Nuzman   // the distance against the loop iteration count. Since the vectorized code
1219eac89d73SDorit Nuzman   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1220eac89d73SDorit Nuzman   // also guarantees that distance >= VF.
1221eac89d73SDorit Nuzman   //
1222eac89d73SDorit Nuzman   const uint64_t ByteStride = Stride * TypeByteSize;
1223eac89d73SDorit Nuzman   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1224eac89d73SDorit Nuzman   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1225eac89d73SDorit Nuzman 
1226eac89d73SDorit Nuzman   const SCEV *CastedDist = &Dist;
1227eac89d73SDorit Nuzman   const SCEV *CastedProduct = Product;
1228eac89d73SDorit Nuzman   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1229eac89d73SDorit Nuzman   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1230eac89d73SDorit Nuzman 
1231eac89d73SDorit Nuzman   // The dependence distance can be positive/negative, so we sign extend Dist;
1232eac89d73SDorit Nuzman   // The multiplication of the absolute stride in bytes and the
1233eac89d73SDorit Nuzman   // backdgeTakenCount is non-negative, so we zero extend Product.
1234eac89d73SDorit Nuzman   if (DistTypeSize > ProductTypeSize)
1235eac89d73SDorit Nuzman     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1236eac89d73SDorit Nuzman   else
1237eac89d73SDorit Nuzman     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1238eac89d73SDorit Nuzman 
1239eac89d73SDorit Nuzman   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1240eac89d73SDorit Nuzman   // (If so, then we have proven (**) because |Dist| >= Dist)
1241eac89d73SDorit Nuzman   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1242eac89d73SDorit Nuzman   if (SE.isKnownPositive(Minus))
1243eac89d73SDorit Nuzman     return true;
1244eac89d73SDorit Nuzman 
1245eac89d73SDorit Nuzman   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1246eac89d73SDorit Nuzman   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1247eac89d73SDorit Nuzman   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1248eac89d73SDorit Nuzman   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1249eac89d73SDorit Nuzman   if (SE.isKnownPositive(Minus))
1250eac89d73SDorit Nuzman     return true;
1251eac89d73SDorit Nuzman 
1252eac89d73SDorit Nuzman   return false;
1253eac89d73SDorit Nuzman }
1254eac89d73SDorit Nuzman 
1255751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride.
1256751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in
1257751004a6SHao Liu /// bytes.
1258751004a6SHao Liu ///
1259751004a6SHao Liu /// \returns true if they are independent.
12607afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
12617afb46d3SDavid Majnemer                                           uint64_t TypeByteSize) {
1262751004a6SHao Liu   assert(Stride > 1 && "The stride must be greater than 1");
1263751004a6SHao Liu   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1264751004a6SHao Liu   assert(Distance > 0 && "The distance must be non-zero");
1265751004a6SHao Liu 
1266751004a6SHao Liu   // Skip if the distance is not multiple of type byte size.
1267751004a6SHao Liu   if (Distance % TypeByteSize)
1268751004a6SHao Liu     return false;
1269751004a6SHao Liu 
12707afb46d3SDavid Majnemer   uint64_t ScaledDist = Distance / TypeByteSize;
1271751004a6SHao Liu 
1272751004a6SHao Liu   // No dependence if the scaled distance is not multiple of the stride.
1273751004a6SHao Liu   // E.g.
1274751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 4)
1275751004a6SHao Liu   //        A[i+2] = A[i] + 1;
1276751004a6SHao Liu   //
1277751004a6SHao Liu   // Two accesses in memory (scaled distance is 2, stride is 4):
1278751004a6SHao Liu   //     | A[0] |      |      |      | A[4] |      |      |      |
1279751004a6SHao Liu   //     |      |      | A[2] |      |      |      | A[6] |      |
1280751004a6SHao Liu   //
1281751004a6SHao Liu   // E.g.
1282751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 3)
1283751004a6SHao Liu   //        A[i+4] = A[i] + 1;
1284751004a6SHao Liu   //
1285751004a6SHao Liu   // Two accesses in memory (scaled distance is 4, stride is 3):
1286751004a6SHao Liu   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1287751004a6SHao Liu   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1288751004a6SHao Liu   return ScaledDist % Stride;
1289751004a6SHao Liu }
1290751004a6SHao Liu 
12919c926579SAdam Nemet MemoryDepChecker::Dependence::DepType
12929c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
12930456327cSAdam Nemet                               const MemAccessInfo &B, unsigned BIdx,
12948bc61df9SAdam Nemet                               const ValueToValueMap &Strides) {
12950456327cSAdam Nemet   assert (AIdx < BIdx && "Must pass arguments in program order");
12960456327cSAdam Nemet 
12970456327cSAdam Nemet   Value *APtr = A.getPointer();
12980456327cSAdam Nemet   Value *BPtr = B.getPointer();
12990456327cSAdam Nemet   bool AIsWrite = A.getInt();
13000456327cSAdam Nemet   bool BIsWrite = B.getInt();
13010456327cSAdam Nemet 
13020456327cSAdam Nemet   // Two reads are independent.
13030456327cSAdam Nemet   if (!AIsWrite && !BIsWrite)
13049c926579SAdam Nemet     return Dependence::NoDep;
13050456327cSAdam Nemet 
13060456327cSAdam Nemet   // We cannot check pointers in different address spaces.
13070456327cSAdam Nemet   if (APtr->getType()->getPointerAddressSpace() !=
13080456327cSAdam Nemet       BPtr->getType()->getPointerAddressSpace())
13099c926579SAdam Nemet     return Dependence::Unknown;
13100456327cSAdam Nemet 
13117afb46d3SDavid Majnemer   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
13127afb46d3SDavid Majnemer   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
13130456327cSAdam Nemet 
1314adf4b739SSilviu Baranga   const SCEV *Src = PSE.getSCEV(APtr);
1315adf4b739SSilviu Baranga   const SCEV *Sink = PSE.getSCEV(BPtr);
13160456327cSAdam Nemet 
13170456327cSAdam Nemet   // If the induction step is negative we have to invert source and sink of the
13180456327cSAdam Nemet   // dependence.
13190456327cSAdam Nemet   if (StrideAPtr < 0) {
13200456327cSAdam Nemet     std::swap(APtr, BPtr);
13210456327cSAdam Nemet     std::swap(Src, Sink);
13220456327cSAdam Nemet     std::swap(AIsWrite, BIsWrite);
13230456327cSAdam Nemet     std::swap(AIdx, BIdx);
13240456327cSAdam Nemet     std::swap(StrideAPtr, StrideBPtr);
13250456327cSAdam Nemet   }
13260456327cSAdam Nemet 
13279cd9a7e3SSilviu Baranga   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
13280456327cSAdam Nemet 
1329339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
13300456327cSAdam Nemet                << "(Induction step: " << StrideAPtr << ")\n");
1331339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
13320456327cSAdam Nemet                << *InstMap[BIdx] << ": " << *Dist << "\n");
13330456327cSAdam Nemet 
1334943befedSAdam Nemet   // Need accesses with constant stride. We don't want to vectorize
13350456327cSAdam Nemet   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
13360456327cSAdam Nemet   // the address space.
13370456327cSAdam Nemet   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1338943befedSAdam Nemet     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
13399c926579SAdam Nemet     return Dependence::Unknown;
13400456327cSAdam Nemet   }
13410456327cSAdam Nemet 
1342eac89d73SDorit Nuzman   Type *ATy = APtr->getType()->getPointerElementType();
1343eac89d73SDorit Nuzman   Type *BTy = BPtr->getType()->getPointerElementType();
1344eac89d73SDorit Nuzman   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1345eac89d73SDorit Nuzman   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1346eac89d73SDorit Nuzman   uint64_t Stride = std::abs(StrideAPtr);
13470456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
13480456327cSAdam Nemet   if (!C) {
1349eac89d73SDorit Nuzman     if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1350eac89d73SDorit Nuzman         isSafeDependenceDistance(DL, *(PSE.getSE()),
1351eac89d73SDorit Nuzman                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1352eac89d73SDorit Nuzman                                  TypeByteSize))
1353eac89d73SDorit Nuzman       return Dependence::NoDep;
1354eac89d73SDorit Nuzman 
1355339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
13560456327cSAdam Nemet     ShouldRetryWithRuntimeCheck = true;
13579c926579SAdam Nemet     return Dependence::Unknown;
13580456327cSAdam Nemet   }
13590456327cSAdam Nemet 
13600de2feceSSanjoy Das   const APInt &Val = C->getAPInt();
13616feebe98SMatthew Simpson   int64_t Distance = Val.getSExtValue();
13626feebe98SMatthew Simpson 
13636feebe98SMatthew Simpson   // Attempt to prove strided accesses independent.
13646feebe98SMatthew Simpson   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
13656feebe98SMatthew Simpson       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
13666feebe98SMatthew Simpson     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
13676feebe98SMatthew Simpson     return Dependence::NoDep;
13686feebe98SMatthew Simpson   }
13696feebe98SMatthew Simpson 
13706feebe98SMatthew Simpson   // Negative distances are not plausible dependencies.
13710456327cSAdam Nemet   if (Val.isNegative()) {
13720456327cSAdam Nemet     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
137337ec5f91SMatthew Simpson     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
13740456327cSAdam Nemet         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1375b8486e5aSAdam Nemet          ATy != BTy)) {
1376b8486e5aSAdam Nemet       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
13779c926579SAdam Nemet       return Dependence::ForwardButPreventsForwarding;
1378b8486e5aSAdam Nemet     }
13790456327cSAdam Nemet 
1380724ab223SAdam Nemet     DEBUG(dbgs() << "LAA: Dependence is negative\n");
13819c926579SAdam Nemet     return Dependence::Forward;
13820456327cSAdam Nemet   }
13830456327cSAdam Nemet 
13840456327cSAdam Nemet   // Write to the same location with the same size.
13850456327cSAdam Nemet   // Could be improved to assert type sizes are the same (i32 == float, etc).
13860456327cSAdam Nemet   if (Val == 0) {
13870456327cSAdam Nemet     if (ATy == BTy)
1388d7037c56SAdam Nemet       return Dependence::Forward;
1389339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
13909c926579SAdam Nemet     return Dependence::Unknown;
13910456327cSAdam Nemet   }
13920456327cSAdam Nemet 
13930456327cSAdam Nemet   assert(Val.isStrictlyPositive() && "Expect a positive value");
13940456327cSAdam Nemet 
13950456327cSAdam Nemet   if (ATy != BTy) {
139604d4163eSAdam Nemet     DEBUG(dbgs() <<
1397339f42b3SAdam Nemet           "LAA: ReadWrite-Write positive dependency with different types\n");
13989c926579SAdam Nemet     return Dependence::Unknown;
13990456327cSAdam Nemet   }
14000456327cSAdam Nemet 
14010456327cSAdam Nemet   // Bail out early if passed-in parameters make vectorization not feasible.
1402f219c647SAdam Nemet   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1403f219c647SAdam Nemet                            VectorizerParams::VectorizationFactor : 1);
1404f219c647SAdam Nemet   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1405f219c647SAdam Nemet                            VectorizerParams::VectorizationInterleave : 1);
1406751004a6SHao Liu   // The minimum number of iterations for a vectorized/unrolled version.
1407751004a6SHao Liu   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
14080456327cSAdam Nemet 
1409751004a6SHao Liu   // It's not vectorizable if the distance is smaller than the minimum distance
1410751004a6SHao Liu   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1411751004a6SHao Liu   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1412751004a6SHao Liu   // TypeByteSize (No need to plus the last gap distance).
1413751004a6SHao Liu   //
1414751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1415751004a6SHao Liu   //      foo(int *A) {
1416751004a6SHao Liu   //        int *B = (int *)((char *)A + 14);
1417751004a6SHao Liu   //        for (i = 0 ; i < 1024 ; i += 2)
1418751004a6SHao Liu   //          B[i] = A[i] + 1;
1419751004a6SHao Liu   //      }
1420751004a6SHao Liu   //
1421751004a6SHao Liu   // Two accesses in memory (stride is 2):
1422751004a6SHao Liu   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1423751004a6SHao Liu   //                              | B[0] |      | B[2] |      | B[4] |
1424751004a6SHao Liu   //
1425751004a6SHao Liu   // Distance needs for vectorizing iterations except the last iteration:
1426751004a6SHao Liu   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1427751004a6SHao Liu   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1428751004a6SHao Liu   //
1429751004a6SHao Liu   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1430751004a6SHao Liu   // 12, which is less than distance.
1431751004a6SHao Liu   //
1432751004a6SHao Liu   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1433751004a6SHao Liu   // the minimum distance needed is 28, which is greater than distance. It is
1434751004a6SHao Liu   // not safe to do vectorization.
14357afb46d3SDavid Majnemer   uint64_t MinDistanceNeeded =
1436751004a6SHao Liu       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
14377afb46d3SDavid Majnemer   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1438751004a6SHao Liu     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1439751004a6SHao Liu                  << '\n');
1440751004a6SHao Liu     return Dependence::Backward;
1441751004a6SHao Liu   }
1442751004a6SHao Liu 
1443751004a6SHao Liu   // Unsafe if the minimum distance needed is greater than max safe distance.
1444751004a6SHao Liu   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1445751004a6SHao Liu     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1446751004a6SHao Liu                  << MinDistanceNeeded << " size in bytes");
14479c926579SAdam Nemet     return Dependence::Backward;
14480456327cSAdam Nemet   }
14490456327cSAdam Nemet 
14509cc0c399SAdam Nemet   // Positive distance bigger than max vectorization factor.
1451751004a6SHao Liu   // FIXME: Should use max factor instead of max distance in bytes, which could
1452751004a6SHao Liu   // not handle different types.
1453751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1454751004a6SHao Liu   //      void foo (int *A, char *B) {
1455751004a6SHao Liu   //        for (unsigned i = 0; i < 1024; i++) {
1456751004a6SHao Liu   //          A[i+2] = A[i] + 1;
1457751004a6SHao Liu   //          B[i+2] = B[i] + 1;
1458751004a6SHao Liu   //        }
1459751004a6SHao Liu   //      }
1460751004a6SHao Liu   //
1461751004a6SHao Liu   // This case is currently unsafe according to the max safe distance. If we
1462751004a6SHao Liu   // analyze the two accesses on array B, the max safe dependence distance
1463751004a6SHao Liu   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1464751004a6SHao Liu   // is 8, which is less than 2 and forbidden vectorization, But actually
1465751004a6SHao Liu   // both A and B could be vectorized by 2 iterations.
1466751004a6SHao Liu   MaxSafeDepDistBytes =
14677afb46d3SDavid Majnemer       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
14680456327cSAdam Nemet 
14690456327cSAdam Nemet   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
147037ec5f91SMatthew Simpson   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
14710456327cSAdam Nemet       couldPreventStoreLoadForward(Distance, TypeByteSize))
14729c926579SAdam Nemet     return Dependence::BackwardVectorizableButPreventsForwarding;
14730456327cSAdam Nemet 
1474751004a6SHao Liu   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1475751004a6SHao Liu                << " with max VF = "
1476751004a6SHao Liu                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
14770456327cSAdam Nemet 
14789c926579SAdam Nemet   return Dependence::BackwardVectorizable;
14790456327cSAdam Nemet }
14800456327cSAdam Nemet 
1481dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
14825448e989SAmjad Aboud                                    MemAccessInfoList &CheckDeps,
14838bc61df9SAdam Nemet                                    const ValueToValueMap &Strides) {
14840456327cSAdam Nemet 
14857afb46d3SDavid Majnemer   MaxSafeDepDistBytes = -1;
14865448e989SAmjad Aboud   SmallPtrSet<MemAccessInfo, 8> Visited;
14875448e989SAmjad Aboud   for (MemAccessInfo CurAccess : CheckDeps) {
14885448e989SAmjad Aboud     if (Visited.count(CurAccess))
14895448e989SAmjad Aboud       continue;
14900456327cSAdam Nemet 
14910456327cSAdam Nemet     // Get the relevant memory access set.
14920456327cSAdam Nemet     EquivalenceClasses<MemAccessInfo>::iterator I =
14930456327cSAdam Nemet       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
14940456327cSAdam Nemet 
14950456327cSAdam Nemet     // Check accesses within this set.
14967a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
14977a083814SRichard Trieu         AccessSets.member_begin(I);
14987a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
14997a083814SRichard Trieu         AccessSets.member_end();
15000456327cSAdam Nemet 
15010456327cSAdam Nemet     // Check every access pair.
15020456327cSAdam Nemet     while (AI != AE) {
15035448e989SAmjad Aboud       Visited.insert(*AI);
15040456327cSAdam Nemet       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
15050456327cSAdam Nemet       while (OI != AE) {
15060456327cSAdam Nemet         // Check every accessing instruction pair in program order.
15070456327cSAdam Nemet         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
15080456327cSAdam Nemet              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
15090456327cSAdam Nemet           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
15100456327cSAdam Nemet                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
15119c926579SAdam Nemet             auto A = std::make_pair(&*AI, *I1);
15129c926579SAdam Nemet             auto B = std::make_pair(&*OI, *I2);
15139c926579SAdam Nemet 
15149c926579SAdam Nemet             assert(*I1 != *I2);
15159c926579SAdam Nemet             if (*I1 > *I2)
15169c926579SAdam Nemet               std::swap(A, B);
15179c926579SAdam Nemet 
15189c926579SAdam Nemet             Dependence::DepType Type =
15199c926579SAdam Nemet                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
15209c926579SAdam Nemet             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
15219c926579SAdam Nemet 
1522a2df750fSAdam Nemet             // Gather dependences unless we accumulated MaxDependences
15239c926579SAdam Nemet             // dependences.  In that case return as soon as we find the first
15249c926579SAdam Nemet             // unsafe dependence.  This puts a limit on this quadratic
15259c926579SAdam Nemet             // algorithm.
1526a2df750fSAdam Nemet             if (RecordDependences) {
1527a2df750fSAdam Nemet               if (Type != Dependence::NoDep)
1528a2df750fSAdam Nemet                 Dependences.push_back(Dependence(A.second, B.second, Type));
15299c926579SAdam Nemet 
1530a2df750fSAdam Nemet               if (Dependences.size() >= MaxDependences) {
1531a2df750fSAdam Nemet                 RecordDependences = false;
1532a2df750fSAdam Nemet                 Dependences.clear();
15339c926579SAdam Nemet                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
15349c926579SAdam Nemet               }
15359c926579SAdam Nemet             }
1536a2df750fSAdam Nemet             if (!RecordDependences && !SafeForVectorization)
15370456327cSAdam Nemet               return false;
15380456327cSAdam Nemet           }
15390456327cSAdam Nemet         ++OI;
15400456327cSAdam Nemet       }
15410456327cSAdam Nemet       AI++;
15420456327cSAdam Nemet     }
15430456327cSAdam Nemet   }
15449c926579SAdam Nemet 
1545a2df750fSAdam Nemet   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
15469c926579SAdam Nemet   return SafeForVectorization;
15470456327cSAdam Nemet }
15480456327cSAdam Nemet 
1549ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4>
1550ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1551ec1e2bb6SAdam Nemet   MemAccessInfo Access(Ptr, isWrite);
1552ec1e2bb6SAdam Nemet   auto &IndexVector = Accesses.find(Access)->second;
1553ec1e2bb6SAdam Nemet 
1554ec1e2bb6SAdam Nemet   SmallVector<Instruction *, 4> Insts;
15552d006e76SDavid Majnemer   transform(IndexVector,
1556ec1e2bb6SAdam Nemet                  std::back_inserter(Insts),
1557ec1e2bb6SAdam Nemet                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1558ec1e2bb6SAdam Nemet   return Insts;
1559ec1e2bb6SAdam Nemet }
1560ec1e2bb6SAdam Nemet 
156158913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = {
156258913d65SAdam Nemet     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
156358913d65SAdam Nemet     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
156458913d65SAdam Nemet 
156558913d65SAdam Nemet void MemoryDepChecker::Dependence::print(
156658913d65SAdam Nemet     raw_ostream &OS, unsigned Depth,
156758913d65SAdam Nemet     const SmallVectorImpl<Instruction *> &Instrs) const {
156858913d65SAdam Nemet   OS.indent(Depth) << DepName[Type] << ":\n";
156958913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
157058913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
157158913d65SAdam Nemet }
157258913d65SAdam Nemet 
1573929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() {
15748dcb3b6aSAdam Nemet   // We need to have a loop header.
1575d8968f09SAdam Nemet   DEBUG(dbgs() << "LAA: Found a loop in "
1576d8968f09SAdam Nemet                << TheLoop->getHeader()->getParent()->getName() << ": "
1577d8968f09SAdam Nemet                << TheLoop->getHeader()->getName() << '\n');
15788dcb3b6aSAdam Nemet 
1579929c38e8SAdam Nemet   // We can only analyze innermost loops.
1580929c38e8SAdam Nemet   if (!TheLoop->empty()) {
15818dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1582877ccee8SAdam Nemet     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1583929c38e8SAdam Nemet     return false;
1584929c38e8SAdam Nemet   }
1585929c38e8SAdam Nemet 
1586929c38e8SAdam Nemet   // We must have a single backedge.
1587929c38e8SAdam Nemet   if (TheLoop->getNumBackEdges() != 1) {
15888dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1589877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1590877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1591929c38e8SAdam Nemet     return false;
1592929c38e8SAdam Nemet   }
1593929c38e8SAdam Nemet 
1594929c38e8SAdam Nemet   // We must have a single exiting block.
1595929c38e8SAdam Nemet   if (!TheLoop->getExitingBlock()) {
15968dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1597877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1598877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1599929c38e8SAdam Nemet     return false;
1600929c38e8SAdam Nemet   }
1601929c38e8SAdam Nemet 
1602929c38e8SAdam Nemet   // We only handle bottom-tested loops, i.e. loop in which the condition is
1603929c38e8SAdam Nemet   // checked at the end of each iteration. With that we can assume that all
1604929c38e8SAdam Nemet   // instructions in the loop are executed the same number of times.
1605929c38e8SAdam Nemet   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
16068dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1607877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1608877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1609929c38e8SAdam Nemet     return false;
1610929c38e8SAdam Nemet   }
1611929c38e8SAdam Nemet 
1612929c38e8SAdam Nemet   // ScalarEvolution needs to be able to find the exit count.
161394734eefSXinliang David Li   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
161494734eefSXinliang David Li   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1615877ccee8SAdam Nemet     recordAnalysis("CantComputeNumberOfIterations")
1616877ccee8SAdam Nemet         << "could not determine number of loop iterations";
1617929c38e8SAdam Nemet     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1618929c38e8SAdam Nemet     return false;
1619929c38e8SAdam Nemet   }
1620929c38e8SAdam Nemet 
1621929c38e8SAdam Nemet   return true;
1622929c38e8SAdam Nemet }
1623929c38e8SAdam Nemet 
1624b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
16257da74abfSAdam Nemet                                  const TargetLibraryInfo *TLI,
16267da74abfSAdam Nemet                                  DominatorTree *DT) {
16270456327cSAdam Nemet   typedef SmallPtrSet<Value*, 16> ValueSet;
16280456327cSAdam Nemet 
1629e3e3b994SMatthew Simpson   // Holds the Load and Store instructions.
1630e3e3b994SMatthew Simpson   SmallVector<LoadInst *, 16> Loads;
1631e3e3b994SMatthew Simpson   SmallVector<StoreInst *, 16> Stores;
16320456327cSAdam Nemet 
16330456327cSAdam Nemet   // Holds all the different accesses in the loop.
16340456327cSAdam Nemet   unsigned NumReads = 0;
16350456327cSAdam Nemet   unsigned NumReadWrites = 0;
16360456327cSAdam Nemet 
1637ce030acbSXinliang David Li   PtrRtChecking->Pointers.clear();
1638ce030acbSXinliang David Li   PtrRtChecking->Need = false;
16390456327cSAdam Nemet 
16400456327cSAdam Nemet   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
16410456327cSAdam Nemet 
16420456327cSAdam Nemet   // For each block.
16438b401013SDavid Majnemer   for (BasicBlock *BB : TheLoop->blocks()) {
16440456327cSAdam Nemet     // Scan the BB and collect legal loads and stores.
16458b401013SDavid Majnemer     for (Instruction &I : *BB) {
16460456327cSAdam Nemet       // If this is a load, save it. If this instruction can read from memory
16470456327cSAdam Nemet       // but is not a load, then we quit. Notice that we don't handle function
16480456327cSAdam Nemet       // calls that read or write.
16498b401013SDavid Majnemer       if (I.mayReadFromMemory()) {
16500456327cSAdam Nemet         // Many math library functions read the rounding mode. We will only
16510456327cSAdam Nemet         // vectorize a loop if it contains known function calls that don't set
16520456327cSAdam Nemet         // the flag. Therefore, it is safe to ignore this read from memory.
16538b401013SDavid Majnemer         auto *Call = dyn_cast<CallInst>(&I);
1654b4b27230SDavid Majnemer         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
16550456327cSAdam Nemet           continue;
16560456327cSAdam Nemet 
16579b3cf604SMichael Zolotukhin         // If the function has an explicit vectorized counterpart, we can safely
16589b3cf604SMichael Zolotukhin         // assume that it can be vectorized.
16599b3cf604SMichael Zolotukhin         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
16609b3cf604SMichael Zolotukhin             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
16619b3cf604SMichael Zolotukhin           continue;
16629b3cf604SMichael Zolotukhin 
16638b401013SDavid Majnemer         auto *Ld = dyn_cast<LoadInst>(&I);
16640456327cSAdam Nemet         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1665877ccee8SAdam Nemet           recordAnalysis("NonSimpleLoad", Ld)
1666877ccee8SAdam Nemet               << "read with atomic ordering or volatile read";
1667339f42b3SAdam Nemet           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1668436018c3SAdam Nemet           CanVecMem = false;
1669436018c3SAdam Nemet           return;
16700456327cSAdam Nemet         }
16710456327cSAdam Nemet         NumLoads++;
16720456327cSAdam Nemet         Loads.push_back(Ld);
1673ce030acbSXinliang David Li         DepChecker->addAccess(Ld);
1674a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1675c953bb99SAdam Nemet           collectStridedAccess(Ld);
16760456327cSAdam Nemet         continue;
16770456327cSAdam Nemet       }
16780456327cSAdam Nemet 
16790456327cSAdam Nemet       // Save 'store' instructions. Abort if other instructions write to memory.
16808b401013SDavid Majnemer       if (I.mayWriteToMemory()) {
16818b401013SDavid Majnemer         auto *St = dyn_cast<StoreInst>(&I);
16820456327cSAdam Nemet         if (!St) {
1683877ccee8SAdam Nemet           recordAnalysis("CantVectorizeInstruction", St)
1684877ccee8SAdam Nemet               << "instruction cannot be vectorized";
1685436018c3SAdam Nemet           CanVecMem = false;
1686436018c3SAdam Nemet           return;
16870456327cSAdam Nemet         }
16880456327cSAdam Nemet         if (!St->isSimple() && !IsAnnotatedParallel) {
1689877ccee8SAdam Nemet           recordAnalysis("NonSimpleStore", St)
1690877ccee8SAdam Nemet               << "write with atomic ordering or volatile write";
1691339f42b3SAdam Nemet           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1692436018c3SAdam Nemet           CanVecMem = false;
1693436018c3SAdam Nemet           return;
16940456327cSAdam Nemet         }
16950456327cSAdam Nemet         NumStores++;
16960456327cSAdam Nemet         Stores.push_back(St);
1697ce030acbSXinliang David Li         DepChecker->addAccess(St);
1698a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1699c953bb99SAdam Nemet           collectStridedAccess(St);
17000456327cSAdam Nemet       }
17010456327cSAdam Nemet     } // Next instr.
17020456327cSAdam Nemet   } // Next block.
17030456327cSAdam Nemet 
17040456327cSAdam Nemet   // Now we have two lists that hold the loads and the stores.
17050456327cSAdam Nemet   // Next, we find the pointers that they use.
17060456327cSAdam Nemet 
17070456327cSAdam Nemet   // Check if we see any stores. If there are no stores, then we don't
17080456327cSAdam Nemet   // care if the pointers are *restrict*.
17090456327cSAdam Nemet   if (!Stores.size()) {
1710339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1711436018c3SAdam Nemet     CanVecMem = true;
1712436018c3SAdam Nemet     return;
17130456327cSAdam Nemet   }
17140456327cSAdam Nemet 
1715dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates DependentAccesses;
1716a28d91d8SMehdi Amini   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
171794734eefSXinliang David Li                           AA, LI, DependentAccesses, *PSE);
17180456327cSAdam Nemet 
17190456327cSAdam Nemet   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
17200456327cSAdam Nemet   // multiple times on the same object. If the ptr is accessed twice, once
17210456327cSAdam Nemet   // for read and once for write, it will only appear once (on the write
17220456327cSAdam Nemet   // list). This is okay, since we are going to check for conflicts between
17230456327cSAdam Nemet   // writes and between reads and writes, but not between reads and reads.
17240456327cSAdam Nemet   ValueSet Seen;
17250456327cSAdam Nemet 
1726e3e3b994SMatthew Simpson   for (StoreInst *ST : Stores) {
17270456327cSAdam Nemet     Value *Ptr = ST->getPointerOperand();
1728ce48250fSAdam Nemet     // Check for store to loop invariant address.
1729ce48250fSAdam Nemet     StoreToLoopInvariantAddress |= isUniform(Ptr);
17300456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to  the read-write
17310456327cSAdam Nemet     // list. At this phase it is only a 'write' list.
17320456327cSAdam Nemet     if (Seen.insert(Ptr).second) {
17330456327cSAdam Nemet       ++NumReadWrites;
17340456327cSAdam Nemet 
1735ac80dc75SChandler Carruth       MemoryLocation Loc = MemoryLocation::get(ST);
17360456327cSAdam Nemet       // The TBAA metadata could have a control dependency on the predication
17370456327cSAdam Nemet       // condition, so we cannot rely on it when determining whether or not we
17380456327cSAdam Nemet       // need runtime pointer checks.
173901abb2c3SAdam Nemet       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
17400456327cSAdam Nemet         Loc.AATags.TBAA = nullptr;
17410456327cSAdam Nemet 
17420456327cSAdam Nemet       Accesses.addStore(Loc);
17430456327cSAdam Nemet     }
17440456327cSAdam Nemet   }
17450456327cSAdam Nemet 
17460456327cSAdam Nemet   if (IsAnnotatedParallel) {
174704d4163eSAdam Nemet     DEBUG(dbgs()
1748339f42b3SAdam Nemet           << "LAA: A loop annotated parallel, ignore memory dependency "
17490456327cSAdam Nemet           << "checks.\n");
1750436018c3SAdam Nemet     CanVecMem = true;
1751436018c3SAdam Nemet     return;
17520456327cSAdam Nemet   }
17530456327cSAdam Nemet 
1754e3e3b994SMatthew Simpson   for (LoadInst *LD : Loads) {
17550456327cSAdam Nemet     Value *Ptr = LD->getPointerOperand();
17560456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to the
17570456327cSAdam Nemet     // read list. If we *did* see it before, then it is already in
17580456327cSAdam Nemet     // the read-write list. This allows us to vectorize expressions
17590456327cSAdam Nemet     // such as A[i] += x;  Because the address of A[i] is a read-write
17600456327cSAdam Nemet     // pointer. This only works if the index of A[i] is consecutive.
17610456327cSAdam Nemet     // If the address of i is unknown (for example A[B[i]]) then we may
17620456327cSAdam Nemet     // read a few words, modify, and write a few words, and some of the
17630456327cSAdam Nemet     // words may be written to the same address.
17640456327cSAdam Nemet     bool IsReadOnlyPtr = false;
1765139ffba3SAdam Nemet     if (Seen.insert(Ptr).second ||
176694734eefSXinliang David Li         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
17670456327cSAdam Nemet       ++NumReads;
17680456327cSAdam Nemet       IsReadOnlyPtr = true;
17690456327cSAdam Nemet     }
17700456327cSAdam Nemet 
1771ac80dc75SChandler Carruth     MemoryLocation Loc = MemoryLocation::get(LD);
17720456327cSAdam Nemet     // The TBAA metadata could have a control dependency on the predication
17730456327cSAdam Nemet     // condition, so we cannot rely on it when determining whether or not we
17740456327cSAdam Nemet     // need runtime pointer checks.
177501abb2c3SAdam Nemet     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
17760456327cSAdam Nemet       Loc.AATags.TBAA = nullptr;
17770456327cSAdam Nemet 
17780456327cSAdam Nemet     Accesses.addLoad(Loc, IsReadOnlyPtr);
17790456327cSAdam Nemet   }
17800456327cSAdam Nemet 
17810456327cSAdam Nemet   // If we write (or read-write) to a single destination and there are no
17820456327cSAdam Nemet   // other reads in this loop then is it safe to vectorize.
17830456327cSAdam Nemet   if (NumReadWrites == 1 && NumReads == 0) {
1784339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1785436018c3SAdam Nemet     CanVecMem = true;
1786436018c3SAdam Nemet     return;
17870456327cSAdam Nemet   }
17880456327cSAdam Nemet 
17890456327cSAdam Nemet   // Build dependence sets and check whether we need a runtime pointer bounds
17900456327cSAdam Nemet   // check.
17910456327cSAdam Nemet   Accesses.buildDependenceSets();
17920456327cSAdam Nemet 
17930456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
17940456327cSAdam Nemet   // to place a runtime bound check.
179594734eefSXinliang David Li   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1796139ffba3SAdam Nemet                                                   TheLoop, SymbolicStrides);
1797ee61474aSAdam Nemet   if (!CanDoRTIfNeeded) {
1798877ccee8SAdam Nemet     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1799ee61474aSAdam Nemet     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1800ee61474aSAdam Nemet                  << "the array bounds.\n");
1801436018c3SAdam Nemet     CanVecMem = false;
1802436018c3SAdam Nemet     return;
18030456327cSAdam Nemet   }
18040456327cSAdam Nemet 
1805ee61474aSAdam Nemet   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
18060456327cSAdam Nemet 
1807436018c3SAdam Nemet   CanVecMem = true;
18080456327cSAdam Nemet   if (Accesses.isDependencyCheckNeeded()) {
1809339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1810ce030acbSXinliang David Li     CanVecMem = DepChecker->areDepsSafe(
1811139ffba3SAdam Nemet         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1812ce030acbSXinliang David Li     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
18130456327cSAdam Nemet 
1814ce030acbSXinliang David Li     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
1815339f42b3SAdam Nemet       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
18160456327cSAdam Nemet 
18170456327cSAdam Nemet       // Clear the dependency checks. We assume they are not needed.
1818ce030acbSXinliang David Li       Accesses.resetDepChecks(*DepChecker);
18190456327cSAdam Nemet 
1820ce030acbSXinliang David Li       PtrRtChecking->reset();
1821ce030acbSXinliang David Li       PtrRtChecking->Need = true;
18220456327cSAdam Nemet 
182394734eefSXinliang David Li       auto *SE = PSE->getSE();
1824ce030acbSXinliang David Li       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
1825139ffba3SAdam Nemet                                                  SymbolicStrides, true);
182698a13719SSilviu Baranga 
1827949e91a6SAdam Nemet       // Check that we found the bounds for the pointer.
1828ee61474aSAdam Nemet       if (!CanDoRTIfNeeded) {
1829877ccee8SAdam Nemet         recordAnalysis("CantCheckMemDepsAtRunTime")
1830877ccee8SAdam Nemet             << "cannot check memory dependencies at runtime";
1831b6dc76ffSAdam Nemet         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1832b6dc76ffSAdam Nemet         CanVecMem = false;
1833b6dc76ffSAdam Nemet         return;
1834b6dc76ffSAdam Nemet       }
1835b6dc76ffSAdam Nemet 
18360456327cSAdam Nemet       CanVecMem = true;
18370456327cSAdam Nemet     }
18380456327cSAdam Nemet   }
18390456327cSAdam Nemet 
18404bb90a71SAdam Nemet   if (CanVecMem)
18414bb90a71SAdam Nemet     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1842ce030acbSXinliang David Li                  << (PtrRtChecking->Need ? "" : " don't")
18430f67c6c1SAdam Nemet                  << " need runtime memory checks.\n");
18444bb90a71SAdam Nemet   else {
1845877ccee8SAdam Nemet     recordAnalysis("UnsafeMemDep")
18460a77dfadSAdam Nemet         << "unsafe dependent memory operations in loop. Use "
18470a77dfadSAdam Nemet            "#pragma loop distribute(enable) to allow loop distribution "
18480a77dfadSAdam Nemet            "to attempt to isolate the offending operations into a separate "
1849877ccee8SAdam Nemet            "loop";
18504bb90a71SAdam Nemet     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
18514bb90a71SAdam Nemet   }
18520456327cSAdam Nemet }
18530456327cSAdam Nemet 
185401abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
185501abb2c3SAdam Nemet                                            DominatorTree *DT)  {
18560456327cSAdam Nemet   assert(TheLoop->contains(BB) && "Unknown block used");
18570456327cSAdam Nemet 
18580456327cSAdam Nemet   // Blocks that do not dominate the latch need predication.
18590456327cSAdam Nemet   BasicBlock* Latch = TheLoop->getLoopLatch();
18600456327cSAdam Nemet   return !DT->dominates(BB, Latch);
18610456327cSAdam Nemet }
18620456327cSAdam Nemet 
1863877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1864877ccee8SAdam Nemet                                                            Instruction *I) {
1865c922853bSAdam Nemet   assert(!Report && "Multiple reports generated");
1866877ccee8SAdam Nemet 
1867877ccee8SAdam Nemet   Value *CodeRegion = TheLoop->getHeader();
1868877ccee8SAdam Nemet   DebugLoc DL = TheLoop->getStartLoc();
1869877ccee8SAdam Nemet 
1870877ccee8SAdam Nemet   if (I) {
1871877ccee8SAdam Nemet     CodeRegion = I->getParent();
1872877ccee8SAdam Nemet     // If there is no debug location attached to the instruction, revert back to
1873877ccee8SAdam Nemet     // using the loop's.
1874877ccee8SAdam Nemet     if (I->getDebugLoc())
1875877ccee8SAdam Nemet       DL = I->getDebugLoc();
1876877ccee8SAdam Nemet   }
1877877ccee8SAdam Nemet 
1878877ccee8SAdam Nemet   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1879877ccee8SAdam Nemet                                                    CodeRegion);
1880877ccee8SAdam Nemet   return *Report;
18810456327cSAdam Nemet }
18820456327cSAdam Nemet 
188357ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const {
18843ceac2bbSMichael Kuperstein   auto *SE = PSE->getSE();
18853ceac2bbSMichael Kuperstein   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
18863ceac2bbSMichael Kuperstein   // never considered uniform.
18873ceac2bbSMichael Kuperstein   // TODO: Is this really what we want? Even without FP SCEV, we may want some
18883ceac2bbSMichael Kuperstein   // trivially loop-invariant FP values to be considered uniform.
18893ceac2bbSMichael Kuperstein   if (!SE->isSCEVable(V->getType()))
18903ceac2bbSMichael Kuperstein     return false;
18913ceac2bbSMichael Kuperstein   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
18920456327cSAdam Nemet }
18937206d7a5SAdam Nemet 
18947206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in
18957206d7a5SAdam Nemet // LoopVectorize.cpp.
18967206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
18977206d7a5SAdam Nemet                                  Instruction *Loc) {
18987206d7a5SAdam Nemet   if (FirstInst)
18997206d7a5SAdam Nemet     return FirstInst;
19007206d7a5SAdam Nemet   if (Instruction *I = dyn_cast<Instruction>(V))
19017206d7a5SAdam Nemet     return I->getParent() == Loc->getParent() ? I : nullptr;
19027206d7a5SAdam Nemet   return nullptr;
19037206d7a5SAdam Nemet }
19047206d7a5SAdam Nemet 
1905039b1042SBenjamin Kramer namespace {
1906a3fe70d2SEugene Zelenko 
19074e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
19084e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously
19094e533ef7SAdam Nemet /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
19104e533ef7SAdam Nemet /// a previous one.
19111da7df37SAdam Nemet struct PointerBounds {
19124e533ef7SAdam Nemet   TrackingVH<Value> Start;
19134e533ef7SAdam Nemet   TrackingVH<Value> End;
19141da7df37SAdam Nemet };
1915a3fe70d2SEugene Zelenko 
1916039b1042SBenjamin Kramer } // end anonymous namespace
19177206d7a5SAdam Nemet 
19181da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG
19191da7df37SAdam Nemet /// in \p TheLoop.  \return the values for the bounds.
19201da7df37SAdam Nemet static PointerBounds
19211da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
19221da7df37SAdam Nemet              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
19231da7df37SAdam Nemet              const RuntimePointerChecking &PtrRtChecking) {
19241da7df37SAdam Nemet   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
19257206d7a5SAdam Nemet   const SCEV *Sc = SE->getSCEV(Ptr);
19267206d7a5SAdam Nemet 
19277206d7a5SAdam Nemet   unsigned AS = Ptr->getType()->getPointerAddressSpace();
19281da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
19297206d7a5SAdam Nemet 
19307206d7a5SAdam Nemet   // Use this type for pointer arithmetic.
19317206d7a5SAdam Nemet   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
19327206d7a5SAdam Nemet 
193392f377bdSKeno Fischer   if (SE->isLoopInvariant(Sc, TheLoop)) {
193492f377bdSKeno Fischer     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
193592f377bdSKeno Fischer                  << "\n");
193692f377bdSKeno Fischer     // Ptr could be in the loop body. If so, expand a new one at the correct
193792f377bdSKeno Fischer     // location.
193892f377bdSKeno Fischer     Instruction *Inst = dyn_cast<Instruction>(Ptr);
193992f377bdSKeno Fischer     Value *NewPtr = (Inst && TheLoop->contains(Inst))
194092f377bdSKeno Fischer                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
194192f377bdSKeno Fischer                         : Ptr;
1942*37dd4d7aSJames Molloy     // We must return a half-open range, which means incrementing Sc.
1943*37dd4d7aSJames Molloy     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1944*37dd4d7aSJames Molloy     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1945*37dd4d7aSJames Molloy     return {NewPtr, NewPtrPlusOne};
194692f377bdSKeno Fischer   } else {
194792f377bdSKeno Fischer     Value *Start = nullptr, *End = nullptr;
19481b6b50a9SSilviu Baranga     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
19491da7df37SAdam Nemet     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
19501da7df37SAdam Nemet     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
19511da7df37SAdam Nemet     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
19521da7df37SAdam Nemet     return {Start, End};
19537206d7a5SAdam Nemet   }
19547206d7a5SAdam Nemet }
19557206d7a5SAdam Nemet 
19561da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and
19571da7df37SAdam Nemet /// lower bounds for both pointers in the check.
19581da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
19591da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
19601da7df37SAdam Nemet     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
19611da7df37SAdam Nemet     const RuntimePointerChecking &PtrRtChecking) {
19621da7df37SAdam Nemet   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
19631da7df37SAdam Nemet 
19641da7df37SAdam Nemet   // Here we're relying on the SCEV Expander's cache to only emit code for the
19651da7df37SAdam Nemet   // same bounds once.
19662d006e76SDavid Majnemer   transform(
19672d006e76SDavid Majnemer       PointerChecks, std::back_inserter(ChecksWithBounds),
19681da7df37SAdam Nemet       [&](const RuntimePointerChecking::PointerCheck &Check) {
196994abbbd6SNAKAMURA Takumi         PointerBounds
197094abbbd6SNAKAMURA Takumi           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
197194abbbd6SNAKAMURA Takumi           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
197294abbbd6SNAKAMURA Takumi         return std::make_pair(First, Second);
19731da7df37SAdam Nemet       });
19741da7df37SAdam Nemet 
19751da7df37SAdam Nemet   return ChecksWithBounds;
19761da7df37SAdam Nemet }
19771da7df37SAdam Nemet 
19785b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
19791da7df37SAdam Nemet     Instruction *Loc,
19801da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
19811da7df37SAdam Nemet     const {
19821824e411SAdam Nemet   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
198394734eefSXinliang David Li   auto *SE = PSE->getSE();
19841824e411SAdam Nemet   SCEVExpander Exp(*SE, DL, "induction");
19851da7df37SAdam Nemet   auto ExpandedChecks =
1986ce030acbSXinliang David Li       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
19871da7df37SAdam Nemet 
19881da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
19891da7df37SAdam Nemet   Instruction *FirstInst = nullptr;
19907206d7a5SAdam Nemet   IRBuilder<> ChkBuilder(Loc);
19917206d7a5SAdam Nemet   // Our instructions might fold to a constant.
19927206d7a5SAdam Nemet   Value *MemoryRuntimeCheck = nullptr;
19931b6b50a9SSilviu Baranga 
19941da7df37SAdam Nemet   for (const auto &Check : ExpandedChecks) {
19951da7df37SAdam Nemet     const PointerBounds &A = Check.first, &B = Check.second;
1996cdb791cdSAdam Nemet     // Check if two pointers (A and B) conflict where conflict is computed as:
1997cdb791cdSAdam Nemet     // start(A) <= end(B) && start(B) <= end(A)
19981da7df37SAdam Nemet     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
19991da7df37SAdam Nemet     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
20007206d7a5SAdam Nemet 
20011da7df37SAdam Nemet     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
20021da7df37SAdam Nemet            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
20037206d7a5SAdam Nemet            "Trying to bounds check pointers with different address spaces");
20047206d7a5SAdam Nemet 
20057206d7a5SAdam Nemet     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
20067206d7a5SAdam Nemet     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
20077206d7a5SAdam Nemet 
20081da7df37SAdam Nemet     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
20091da7df37SAdam Nemet     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
20101da7df37SAdam Nemet     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
20111da7df37SAdam Nemet     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
20127206d7a5SAdam Nemet 
20133622fbfcSElena Demikhovsky     // [A|B].Start points to the first accessed byte under base [A|B].
20143622fbfcSElena Demikhovsky     // [A|B].End points to the last accessed byte, plus one.
20153622fbfcSElena Demikhovsky     // There is no conflict when the intervals are disjoint:
20163622fbfcSElena Demikhovsky     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
20173622fbfcSElena Demikhovsky     //
20183622fbfcSElena Demikhovsky     // bound0 = (B.Start < A.End)
20193622fbfcSElena Demikhovsky     // bound1 = (A.Start < B.End)
20203622fbfcSElena Demikhovsky     //  IsConflict = bound0 & bound1
20213622fbfcSElena Demikhovsky     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
20227206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
20233622fbfcSElena Demikhovsky     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
20247206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
20257206d7a5SAdam Nemet     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
20267206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
20277206d7a5SAdam Nemet     if (MemoryRuntimeCheck) {
20281da7df37SAdam Nemet       IsConflict =
20291da7df37SAdam Nemet           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
20307206d7a5SAdam Nemet       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
20317206d7a5SAdam Nemet     }
20327206d7a5SAdam Nemet     MemoryRuntimeCheck = IsConflict;
20337206d7a5SAdam Nemet   }
20347206d7a5SAdam Nemet 
203590fec840SAdam Nemet   if (!MemoryRuntimeCheck)
203690fec840SAdam Nemet     return std::make_pair(nullptr, nullptr);
203790fec840SAdam Nemet 
20387206d7a5SAdam Nemet   // We have to do this trickery because the IRBuilder might fold the check to a
20397206d7a5SAdam Nemet   // constant expression in which case there is no Instruction anchored in a
20407206d7a5SAdam Nemet   // the block.
20417206d7a5SAdam Nemet   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
20427206d7a5SAdam Nemet                                                  ConstantInt::getTrue(Ctx));
20437206d7a5SAdam Nemet   ChkBuilder.Insert(Check, "memcheck.conflict");
20447206d7a5SAdam Nemet   FirstInst = getFirstInst(FirstInst, Check, Loc);
20457206d7a5SAdam Nemet   return std::make_pair(FirstInst, Check);
20467206d7a5SAdam Nemet }
20473bfd93d7SAdam Nemet 
20485b0a4795SAdam Nemet std::pair<Instruction *, Instruction *>
20495b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2050ce030acbSXinliang David Li   if (!PtrRtChecking->Need)
20511da7df37SAdam Nemet     return std::make_pair(nullptr, nullptr);
20521da7df37SAdam Nemet 
2053ce030acbSXinliang David Li   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
20541da7df37SAdam Nemet }
20551da7df37SAdam Nemet 
2056c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2057c953bb99SAdam Nemet   Value *Ptr = nullptr;
2058c953bb99SAdam Nemet   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2059c953bb99SAdam Nemet     Ptr = LI->getPointerOperand();
2060c953bb99SAdam Nemet   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2061c953bb99SAdam Nemet     Ptr = SI->getPointerOperand();
2062c953bb99SAdam Nemet   else
2063c953bb99SAdam Nemet     return;
2064c953bb99SAdam Nemet 
206594734eefSXinliang David Li   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2066c953bb99SAdam Nemet   if (!Stride)
2067c953bb99SAdam Nemet     return;
2068c953bb99SAdam Nemet 
2069c953bb99SAdam Nemet   DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2070c953bb99SAdam Nemet   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2071c953bb99SAdam Nemet   SymbolicStrides[Ptr] = Stride;
2072c953bb99SAdam Nemet   StrideSet.insert(Stride);
2073c953bb99SAdam Nemet }
2074c953bb99SAdam Nemet 
20753bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
20763bfd93d7SAdam Nemet                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2077a9f09c62SAdam Nemet                                DominatorTree *DT, LoopInfo *LI)
207894734eefSXinliang David Li     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2079ce030acbSXinliang David Li       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
208094734eefSXinliang David Li       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
20817da74abfSAdam Nemet       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
20827da74abfSAdam Nemet       StoreToLoopInvariantAddress(false) {
2083929c38e8SAdam Nemet   if (canAnalyzeLoop())
20847da74abfSAdam Nemet     analyzeLoop(AA, LI, TLI, DT);
20853bfd93d7SAdam Nemet }
20863bfd93d7SAdam Nemet 
2087e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2088e91cc6efSAdam Nemet   if (CanVecMem) {
20894ad38b63SAdam Nemet     OS.indent(Depth) << "Memory dependences are safe";
20907afb46d3SDavid Majnemer     if (MaxSafeDepDistBytes != -1ULL)
2091c62e554eSAdam Nemet       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2092c62e554eSAdam Nemet          << " bytes";
2093ce030acbSXinliang David Li     if (PtrRtChecking->Need)
20944ad38b63SAdam Nemet       OS << " with run-time checks";
20954ad38b63SAdam Nemet     OS << "\n";
2096e91cc6efSAdam Nemet   }
2097e91cc6efSAdam Nemet 
2098e91cc6efSAdam Nemet   if (Report)
2099877ccee8SAdam Nemet     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2100e91cc6efSAdam Nemet 
2101ce030acbSXinliang David Li   if (auto *Dependences = DepChecker->getDependences()) {
2102a2df750fSAdam Nemet     OS.indent(Depth) << "Dependences:\n";
2103a2df750fSAdam Nemet     for (auto &Dep : *Dependences) {
2104ce030acbSXinliang David Li       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
210558913d65SAdam Nemet       OS << "\n";
210658913d65SAdam Nemet     }
210758913d65SAdam Nemet   } else
2108a2df750fSAdam Nemet     OS.indent(Depth) << "Too many dependences, not recorded\n";
2109e91cc6efSAdam Nemet 
2110e91cc6efSAdam Nemet   // List the pair of accesses need run-time checks to prove independence.
2111ce030acbSXinliang David Li   PtrRtChecking->print(OS, Depth);
2112e91cc6efSAdam Nemet   OS << "\n";
2113c3384320SAdam Nemet 
2114c3384320SAdam Nemet   OS.indent(Depth) << "Store to invariant address was "
2115c3384320SAdam Nemet                    << (StoreToLoopInvariantAddress ? "" : "not ")
2116c3384320SAdam Nemet                    << "found in loop.\n";
2117e3c0534bSSilviu Baranga 
2118e3c0534bSSilviu Baranga   OS.indent(Depth) << "SCEV assumptions:\n";
211994734eefSXinliang David Li   PSE->getUnionPredicate().print(OS, Depth);
2120b77365b5SSilviu Baranga 
2121b77365b5SSilviu Baranga   OS << "\n";
2122b77365b5SSilviu Baranga 
2123b77365b5SSilviu Baranga   OS.indent(Depth) << "Expressions re-written:\n";
212494734eefSXinliang David Li   PSE->print(OS, Depth);
2125e91cc6efSAdam Nemet }
2126e91cc6efSAdam Nemet 
21277853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
21283bfd93d7SAdam Nemet   auto &LAI = LoopAccessInfoMap[L];
21293bfd93d7SAdam Nemet 
21301824e411SAdam Nemet   if (!LAI)
21311824e411SAdam Nemet     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
21321824e411SAdam Nemet 
21333bfd93d7SAdam Nemet   return *LAI.get();
21343bfd93d7SAdam Nemet }
21353bfd93d7SAdam Nemet 
21367853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
21377853c1ddSXinliang David Li   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2138ecde1c7fSXinliang David Li 
2139e91cc6efSAdam Nemet   for (Loop *TopLevelLoop : *LI)
2140e91cc6efSAdam Nemet     for (Loop *L : depth_first(TopLevelLoop)) {
2141e91cc6efSAdam Nemet       OS.indent(2) << L->getHeader()->getName() << ":\n";
2142bdbc5227SAdam Nemet       auto &LAI = LAA.getInfo(L);
2143e91cc6efSAdam Nemet       LAI.print(OS, 4);
2144e91cc6efSAdam Nemet     }
2145e91cc6efSAdam Nemet }
2146e91cc6efSAdam Nemet 
21477853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2148ecde1c7fSXinliang David Li   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
21493bfd93d7SAdam Nemet   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2150ecde1c7fSXinliang David Li   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2151ecde1c7fSXinliang David Li   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2152ecde1c7fSXinliang David Li   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2153ecde1c7fSXinliang David Li   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
21543bfd93d7SAdam Nemet 
21553bfd93d7SAdam Nemet   return false;
21563bfd93d7SAdam Nemet }
21573bfd93d7SAdam Nemet 
21587853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
21592f1fd165SChandler Carruth     AU.addRequired<ScalarEvolutionWrapperPass>();
21607b560d40SChandler Carruth     AU.addRequired<AAResultsWrapperPass>();
21613bfd93d7SAdam Nemet     AU.addRequired<DominatorTreeWrapperPass>();
2162e91cc6efSAdam Nemet     AU.addRequired<LoopInfoWrapperPass>();
21633bfd93d7SAdam Nemet 
21643bfd93d7SAdam Nemet     AU.setPreservesAll();
21653bfd93d7SAdam Nemet }
21663bfd93d7SAdam Nemet 
21677853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0;
21683bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis";
21693bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses"
21703bfd93d7SAdam Nemet 
21717853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
21727b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
21732f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
21743bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2175e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
21767853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
21773bfd93d7SAdam Nemet 
2178dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key;
21798a021317SXinliang David Li 
2180410eaeb0SChandler Carruth LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2181410eaeb0SChandler Carruth                                        LoopStandardAnalysisResults &AR) {
2182410eaeb0SChandler Carruth   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
21838a021317SXinliang David Li }
21848a021317SXinliang David Li 
21853bfd93d7SAdam Nemet namespace llvm {
2186a3fe70d2SEugene Zelenko 
21873bfd93d7SAdam Nemet   Pass *createLAAPass() {
21887853c1ddSXinliang David Li     return new LoopAccessLegacyAnalysis();
21893bfd93d7SAdam Nemet   }
2190a3fe70d2SEugene Zelenko 
2191a3fe70d2SEugene Zelenko } // end namespace llvm
2192