10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
20456327cSAdam Nemet //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60456327cSAdam Nemet //
70456327cSAdam Nemet //===----------------------------------------------------------------------===//
80456327cSAdam Nemet //
90456327cSAdam Nemet // The implementation for the loop memory dependence that was originally
100456327cSAdam Nemet // developed for the loop vectorizer.
110456327cSAdam Nemet //
120456327cSAdam Nemet //===----------------------------------------------------------------------===//
130456327cSAdam Nemet 
143bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAccessAnalysis.h"
15a3fe70d2SEugene Zelenko #include "llvm/ADT/APInt.h"
16a3fe70d2SEugene Zelenko #include "llvm/ADT/DenseMap.h"
17a3fe70d2SEugene Zelenko #include "llvm/ADT/DepthFirstIterator.h"
18a3fe70d2SEugene Zelenko #include "llvm/ADT/EquivalenceClasses.h"
19a3fe70d2SEugene Zelenko #include "llvm/ADT/PointerIntPair.h"
203bab7e1aSChandler Carruth #include "llvm/ADT/STLExtras.h"
21a3fe70d2SEugene Zelenko #include "llvm/ADT/SetVector.h"
22a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallPtrSet.h"
23a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallSet.h"
24a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallVector.h"
253bab7e1aSChandler Carruth #include "llvm/ADT/iterator_range.h"
26a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasAnalysis.h"
27a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasSetTracker.h"
283bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAnalysisManager.h"
290456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
30a3fe70d2SEugene Zelenko #include "llvm/Analysis/MemoryLocation.h"
310965da20SAdam Nemet #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolution.h"
337206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h"
34a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h"
360456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h"
37f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h"
38a3fe70d2SEugene Zelenko #include "llvm/IR/BasicBlock.h"
39a3fe70d2SEugene Zelenko #include "llvm/IR/Constants.h"
40a3fe70d2SEugene Zelenko #include "llvm/IR/DataLayout.h"
41a3fe70d2SEugene Zelenko #include "llvm/IR/DebugLoc.h"
42a3fe70d2SEugene Zelenko #include "llvm/IR/DerivedTypes.h"
43a3fe70d2SEugene Zelenko #include "llvm/IR/DiagnosticInfo.h"
440456327cSAdam Nemet #include "llvm/IR/Dominators.h"
45a3fe70d2SEugene Zelenko #include "llvm/IR/Function.h"
463bab7e1aSChandler Carruth #include "llvm/IR/IRBuilder.h"
47a3fe70d2SEugene Zelenko #include "llvm/IR/InstrTypes.h"
48a3fe70d2SEugene Zelenko #include "llvm/IR/Instruction.h"
49a3fe70d2SEugene Zelenko #include "llvm/IR/Instructions.h"
50a3fe70d2SEugene Zelenko #include "llvm/IR/Operator.h"
518a021317SXinliang David Li #include "llvm/IR/PassManager.h"
52a3fe70d2SEugene Zelenko #include "llvm/IR/Type.h"
53a3fe70d2SEugene Zelenko #include "llvm/IR/Value.h"
54a3fe70d2SEugene Zelenko #include "llvm/IR/ValueHandle.h"
55a3fe70d2SEugene Zelenko #include "llvm/Pass.h"
56a3fe70d2SEugene Zelenko #include "llvm/Support/Casting.h"
57a3fe70d2SEugene Zelenko #include "llvm/Support/CommandLine.h"
580456327cSAdam Nemet #include "llvm/Support/Debug.h"
59a3fe70d2SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
60799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h"
61a3fe70d2SEugene Zelenko #include <algorithm>
62a3fe70d2SEugene Zelenko #include <cassert>
63a3fe70d2SEugene Zelenko #include <cstdint>
64a3fe70d2SEugene Zelenko #include <cstdlib>
65a3fe70d2SEugene Zelenko #include <iterator>
66a3fe70d2SEugene Zelenko #include <utility>
67a3fe70d2SEugene Zelenko #include <vector>
68a3fe70d2SEugene Zelenko 
690456327cSAdam Nemet using namespace llvm;
700456327cSAdam Nemet 
71339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses"
720456327cSAdam Nemet 
73f219c647SAdam Nemet static cl::opt<unsigned, true>
74f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden,
75f219c647SAdam Nemet                     cl::desc("Sets the SIMD width. Zero is autoselect."),
76f219c647SAdam Nemet                     cl::location(VectorizerParams::VectorizationFactor));
771d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor;
78f219c647SAdam Nemet 
79f219c647SAdam Nemet static cl::opt<unsigned, true>
80f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden,
81f219c647SAdam Nemet                         cl::desc("Sets the vectorization interleave count. "
82f219c647SAdam Nemet                                  "Zero is autoselect."),
83f219c647SAdam Nemet                         cl::location(
84f219c647SAdam Nemet                             VectorizerParams::VectorizationInterleave));
851d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave;
86f219c647SAdam Nemet 
871d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
881d862af7SAdam Nemet     "runtime-memory-check-threshold", cl::Hidden,
891d862af7SAdam Nemet     cl::desc("When performing memory disambiguation checks at runtime do not "
901d862af7SAdam Nemet              "generate more than this number of comparisons (default = 8)."),
911d862af7SAdam Nemet     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
921d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93f219c647SAdam Nemet 
945f8f34e4SAdrian Prantl /// The maximum iterations used to merge memory checks
951b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold(
961b6b50a9SSilviu Baranga     "memory-check-merge-threshold", cl::Hidden,
971b6b50a9SSilviu Baranga     cl::desc("Maximum number of comparisons done when trying to merge "
981b6b50a9SSilviu Baranga              "runtime memory checks. (default = 100)"),
991b6b50a9SSilviu Baranga     cl::init(100));
1001b6b50a9SSilviu Baranga 
101f219c647SAdam Nemet /// Maximum SIMD width.
102f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64;
103f219c647SAdam Nemet 
1045f8f34e4SAdrian Prantl /// We collect dependences up to this threshold.
105a2df750fSAdam Nemet static cl::opt<unsigned>
106a2df750fSAdam Nemet     MaxDependences("max-dependences", cl::Hidden,
107a2df750fSAdam Nemet                    cl::desc("Maximum number of dependences collected by "
1089c926579SAdam Nemet                             "loop-access analysis (default = 100)"),
1099c926579SAdam Nemet                    cl::init(100));
1109c926579SAdam Nemet 
111a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory
112a9f09c62SAdam Nemet /// accesses in code like the following.
113a9f09c62SAdam Nemet ///   for (i = 0; i < N; ++i)
114a9f09c62SAdam Nemet ///     A[i * Stride1] += B[i * Stride2] ...
115a9f09c62SAdam Nemet ///
116a9f09c62SAdam Nemet /// Will be roughly translated to
117a9f09c62SAdam Nemet ///    if (Stride1 == 1 && Stride2 == 1) {
118a9f09c62SAdam Nemet ///      for (i = 0; i < N; i+=4)
119a9f09c62SAdam Nemet ///       A[i:i+3] += ...
120a9f09c62SAdam Nemet ///    } else
121a9f09c62SAdam Nemet ///      ...
122a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning(
123a9f09c62SAdam Nemet     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124a9f09c62SAdam Nemet     cl::desc("Enable symbolic stride memory access versioning"));
125a9f09c62SAdam Nemet 
1265f8f34e4SAdrian Prantl /// Enable store-to-load forwarding conflict detection. This option can
12737ec5f91SMatthew Simpson /// be disabled for correctness testing.
12837ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection(
12937ec5f91SMatthew Simpson     "store-to-load-forwarding-conflict-detection", cl::Hidden,
130a250dc9fSMatthew Simpson     cl::desc("Enable conflict detection in loop-access analysis"),
131a250dc9fSMatthew Simpson     cl::init(true));
132a250dc9fSMatthew Simpson 
133f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() {
134f219c647SAdam Nemet   return ::VectorizationInterleave.getNumOccurrences() > 0;
135f219c647SAdam Nemet }
136f219c647SAdam Nemet 
1370456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) {
1388b401013SDavid Majnemer   if (auto *CI = dyn_cast<CastInst>(V))
1390456327cSAdam Nemet     if (CI->getOperand(0)->getType()->isIntegerTy())
1400456327cSAdam Nemet       return CI->getOperand(0);
1410456327cSAdam Nemet   return V;
1420456327cSAdam Nemet }
1430456327cSAdam Nemet 
1449cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
1458bc61df9SAdam Nemet                                             const ValueToValueMap &PtrToStride,
1460456327cSAdam Nemet                                             Value *Ptr, Value *OrigPtr) {
1479cd9a7e3SSilviu Baranga   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
1480456327cSAdam Nemet 
1490456327cSAdam Nemet   // If there is an entry in the map return the SCEV of the pointer with the
1500456327cSAdam Nemet   // symbolic stride replaced by one.
1518bc61df9SAdam Nemet   ValueToValueMap::const_iterator SI =
1528bc61df9SAdam Nemet       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1530456327cSAdam Nemet   if (SI != PtrToStride.end()) {
1540456327cSAdam Nemet     Value *StrideVal = SI->second;
1550456327cSAdam Nemet 
1560456327cSAdam Nemet     // Strip casts.
1570456327cSAdam Nemet     StrideVal = stripIntegerCast(StrideVal);
1580456327cSAdam Nemet 
1599cd9a7e3SSilviu Baranga     ScalarEvolution *SE = PSE.getSE();
160e3c0534bSSilviu Baranga     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
161e3c0534bSSilviu Baranga     const auto *CT =
162e3c0534bSSilviu Baranga         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
163e3c0534bSSilviu Baranga 
1649cd9a7e3SSilviu Baranga     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
1659cd9a7e3SSilviu Baranga     auto *Expr = PSE.getSCEV(Ptr);
166e3c0534bSSilviu Baranga 
167d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
168d34e60caSNicola Zaghen                       << " by: " << *Expr << "\n");
1699cd9a7e3SSilviu Baranga     return Expr;
1700456327cSAdam Nemet   }
1710456327cSAdam Nemet 
1720456327cSAdam Nemet   // Otherwise, just return the SCEV of the original pointer.
173e3c0534bSSilviu Baranga   return OrigSCEV;
1740456327cSAdam Nemet }
1750456327cSAdam Nemet 
1763622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access.
1773622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop
1783622fbfcSElena Demikhovsky /// iteration. Then B is calculated as:
1793622fbfcSElena Demikhovsky ///   B = A + Step*N .
1803622fbfcSElena Demikhovsky /// Step value may be positive or negative.
1813622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count:
1823622fbfcSElena Demikhovsky ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
1833622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way:
1843622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
1853622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes.
1863622fbfcSElena Demikhovsky ///
1873622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint:
1883622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
1897cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
1907cdebac0SAdam Nemet                                     unsigned DepSetId, unsigned ASId,
191e3c0534bSSilviu Baranga                                     const ValueToValueMap &Strides,
1929cd9a7e3SSilviu Baranga                                     PredicatedScalarEvolution &PSE) {
1930456327cSAdam Nemet   // Get the stride replaced scev.
1949cd9a7e3SSilviu Baranga   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
195279784ffSAdam Nemet   ScalarEvolution *SE = PSE.getSE();
196279784ffSAdam Nemet 
197279784ffSAdam Nemet   const SCEV *ScStart;
198279784ffSAdam Nemet   const SCEV *ScEnd;
199279784ffSAdam Nemet 
20059a65504SAdam Nemet   if (SE->isLoopInvariant(Sc, Lp))
201279784ffSAdam Nemet     ScStart = ScEnd = Sc;
202279784ffSAdam Nemet   else {
2030456327cSAdam Nemet     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
2040456327cSAdam Nemet     assert(AR && "Invalid addrec expression");
2056f444dfdSSilviu Baranga     const SCEV *Ex = PSE.getBackedgeTakenCount();
2060e5804a6SSilviu Baranga 
207279784ffSAdam Nemet     ScStart = AR->getStart();
208279784ffSAdam Nemet     ScEnd = AR->evaluateAtIteration(Ex, *SE);
2090e5804a6SSilviu Baranga     const SCEV *Step = AR->getStepRecurrence(*SE);
2100e5804a6SSilviu Baranga 
2110e5804a6SSilviu Baranga     // For expressions with negative step, the upper bound is ScStart and the
2120e5804a6SSilviu Baranga     // lower bound is ScEnd.
2138b401013SDavid Majnemer     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
2140e5804a6SSilviu Baranga       if (CStep->getValue()->isNegative())
2150e5804a6SSilviu Baranga         std::swap(ScStart, ScEnd);
2160e5804a6SSilviu Baranga     } else {
2173622fbfcSElena Demikhovsky       // Fallback case: the step is not constant, but we can still
2180e5804a6SSilviu Baranga       // get the upper and lower bounds of the interval by using min/max
2190e5804a6SSilviu Baranga       // expressions.
2200e5804a6SSilviu Baranga       ScStart = SE->getUMinExpr(ScStart, ScEnd);
2210e5804a6SSilviu Baranga       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
2220e5804a6SSilviu Baranga     }
2233622fbfcSElena Demikhovsky     // Add the size of the pointed element to ScEnd.
2243622fbfcSElena Demikhovsky     unsigned EltSize =
2253622fbfcSElena Demikhovsky       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
2263622fbfcSElena Demikhovsky     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
2273622fbfcSElena Demikhovsky     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
228279784ffSAdam Nemet   }
2290e5804a6SSilviu Baranga 
2300e5804a6SSilviu Baranga   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
2311b6b50a9SSilviu Baranga }
2321b6b50a9SSilviu Baranga 
233bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4>
23438530887SAdam Nemet RuntimePointerChecking::generateChecks() const {
235bbe1f1deSAdam Nemet   SmallVector<PointerCheck, 4> Checks;
236bbe1f1deSAdam Nemet 
2377c52e052SAdam Nemet   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
2387c52e052SAdam Nemet     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
2397c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
2407c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
241bbe1f1deSAdam Nemet 
24238530887SAdam Nemet       if (needsChecking(CGI, CGJ))
243bbe1f1deSAdam Nemet         Checks.push_back(std::make_pair(&CGI, &CGJ));
244bbe1f1deSAdam Nemet     }
245bbe1f1deSAdam Nemet   }
246bbe1f1deSAdam Nemet   return Checks;
247bbe1f1deSAdam Nemet }
248bbe1f1deSAdam Nemet 
24915840393SAdam Nemet void RuntimePointerChecking::generateChecks(
25015840393SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
25115840393SAdam Nemet   assert(Checks.empty() && "Checks is not empty");
25215840393SAdam Nemet   groupChecks(DepCands, UseDependencies);
25315840393SAdam Nemet   Checks = generateChecks();
25415840393SAdam Nemet }
25515840393SAdam Nemet 
256651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
257651a5a24SAdam Nemet                                            const CheckingPtrGroup &N) const {
2581b6b50a9SSilviu Baranga   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
2591b6b50a9SSilviu Baranga     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
260651a5a24SAdam Nemet       if (needsChecking(M.Members[I], N.Members[J]))
2611b6b50a9SSilviu Baranga         return true;
2621b6b50a9SSilviu Baranga   return false;
2631b6b50a9SSilviu Baranga }
2641b6b50a9SSilviu Baranga 
2651b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum.
2661b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer.
2671b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
2681b6b50a9SSilviu Baranga                                    ScalarEvolution *SE) {
2691b6b50a9SSilviu Baranga   const SCEV *Diff = SE->getMinusSCEV(J, I);
2701b6b50a9SSilviu Baranga   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
2711b6b50a9SSilviu Baranga 
2721b6b50a9SSilviu Baranga   if (!C)
2731b6b50a9SSilviu Baranga     return nullptr;
2741b6b50a9SSilviu Baranga   if (C->getValue()->isNegative())
2751b6b50a9SSilviu Baranga     return J;
2761b6b50a9SSilviu Baranga   return I;
2771b6b50a9SSilviu Baranga }
2781b6b50a9SSilviu Baranga 
2797cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
2809f7dedc3SAdam Nemet   const SCEV *Start = RtCheck.Pointers[Index].Start;
2819f7dedc3SAdam Nemet   const SCEV *End = RtCheck.Pointers[Index].End;
2829f7dedc3SAdam Nemet 
2831b6b50a9SSilviu Baranga   // Compare the starts and ends with the known minimum and maximum
2841b6b50a9SSilviu Baranga   // of this set. We need to know how we compare against the min/max
2851b6b50a9SSilviu Baranga   // of the set in order to be able to emit memchecks.
2869f7dedc3SAdam Nemet   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
2871b6b50a9SSilviu Baranga   if (!Min0)
2881b6b50a9SSilviu Baranga     return false;
2891b6b50a9SSilviu Baranga 
2909f7dedc3SAdam Nemet   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
2911b6b50a9SSilviu Baranga   if (!Min1)
2921b6b50a9SSilviu Baranga     return false;
2931b6b50a9SSilviu Baranga 
2941b6b50a9SSilviu Baranga   // Update the low bound  expression if we've found a new min value.
2959f7dedc3SAdam Nemet   if (Min0 == Start)
2969f7dedc3SAdam Nemet     Low = Start;
2971b6b50a9SSilviu Baranga 
2981b6b50a9SSilviu Baranga   // Update the high bound expression if we've found a new max value.
2999f7dedc3SAdam Nemet   if (Min1 != End)
3009f7dedc3SAdam Nemet     High = End;
3011b6b50a9SSilviu Baranga 
3021b6b50a9SSilviu Baranga   Members.push_back(Index);
3031b6b50a9SSilviu Baranga   return true;
3041b6b50a9SSilviu Baranga }
3051b6b50a9SSilviu Baranga 
3067cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks(
3077cdebac0SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
3081b6b50a9SSilviu Baranga   // We build the groups from dependency candidates equivalence classes
3091b6b50a9SSilviu Baranga   // because:
3101b6b50a9SSilviu Baranga   //    - We know that pointers in the same equivalence class share
3111b6b50a9SSilviu Baranga   //      the same underlying object and therefore there is a chance
3121b6b50a9SSilviu Baranga   //      that we can compare pointers
3131b6b50a9SSilviu Baranga   //    - We wouldn't be able to merge two pointers for which we need
3141b6b50a9SSilviu Baranga   //      to emit a memcheck. The classes in DepCands are already
3151b6b50a9SSilviu Baranga   //      conveniently built such that no two pointers in the same
3161b6b50a9SSilviu Baranga   //      class need checking against each other.
3171b6b50a9SSilviu Baranga 
3181b6b50a9SSilviu Baranga   // We use the following (greedy) algorithm to construct the groups
3191b6b50a9SSilviu Baranga   // For every pointer in the equivalence class:
3201b6b50a9SSilviu Baranga   //   For each existing group:
3211b6b50a9SSilviu Baranga   //   - if the difference between this pointer and the min/max bounds
3221b6b50a9SSilviu Baranga   //     of the group is a constant, then make the pointer part of the
3231b6b50a9SSilviu Baranga   //     group and update the min/max bounds of that group as required.
3241b6b50a9SSilviu Baranga 
3251b6b50a9SSilviu Baranga   CheckingGroups.clear();
3261b6b50a9SSilviu Baranga 
32748250600SSilviu Baranga   // If we need to check two pointers to the same underlying object
32848250600SSilviu Baranga   // with a non-constant difference, we shouldn't perform any pointer
32948250600SSilviu Baranga   // grouping with those pointers. This is because we can easily get
33048250600SSilviu Baranga   // into cases where the resulting check would return false, even when
33148250600SSilviu Baranga   // the accesses are safe.
33248250600SSilviu Baranga   //
33348250600SSilviu Baranga   // The following example shows this:
33448250600SSilviu Baranga   // for (i = 0; i < 1000; ++i)
33548250600SSilviu Baranga   //   a[5000 + i * m] = a[i] + a[i + 9000]
33648250600SSilviu Baranga   //
33748250600SSilviu Baranga   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
33848250600SSilviu Baranga   // (0, 10000) which is always false. However, if m is 1, there is no
33948250600SSilviu Baranga   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
34048250600SSilviu Baranga   // us to perform an accurate check in this case.
34148250600SSilviu Baranga   //
34248250600SSilviu Baranga   // The above case requires that we have an UnknownDependence between
34348250600SSilviu Baranga   // accesses to the same underlying object. This cannot happen unless
344ef307b8cSFlorian Hahn   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
34548250600SSilviu Baranga   // is also false. In this case we will use the fallback path and create
34648250600SSilviu Baranga   // separate checking groups for all pointers.
34748250600SSilviu Baranga 
3481b6b50a9SSilviu Baranga   // If we don't have the dependency partitions, construct a new
34948250600SSilviu Baranga   // checking pointer group for each pointer. This is also required
35048250600SSilviu Baranga   // for correctness, because in this case we can have checking between
35148250600SSilviu Baranga   // pointers to the same underlying object.
3521b6b50a9SSilviu Baranga   if (!UseDependencies) {
3531b6b50a9SSilviu Baranga     for (unsigned I = 0; I < Pointers.size(); ++I)
3541b6b50a9SSilviu Baranga       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
3551b6b50a9SSilviu Baranga     return;
3561b6b50a9SSilviu Baranga   }
3571b6b50a9SSilviu Baranga 
3581b6b50a9SSilviu Baranga   unsigned TotalComparisons = 0;
3591b6b50a9SSilviu Baranga 
3601b6b50a9SSilviu Baranga   DenseMap<Value *, unsigned> PositionMap;
3619f7dedc3SAdam Nemet   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
3629f7dedc3SAdam Nemet     PositionMap[Pointers[Index].PointerValue] = Index;
3631b6b50a9SSilviu Baranga 
364ce3877fcSSilviu Baranga   // We need to keep track of what pointers we've already seen so we
365ce3877fcSSilviu Baranga   // don't process them twice.
366ce3877fcSSilviu Baranga   SmallSet<unsigned, 2> Seen;
367ce3877fcSSilviu Baranga 
368e4b9f507SSanjay Patel   // Go through all equivalence classes, get the "pointer check groups"
369ce3877fcSSilviu Baranga   // and add them to the overall solution. We use the order in which accesses
370ce3877fcSSilviu Baranga   // appear in 'Pointers' to enforce determinism.
371ce3877fcSSilviu Baranga   for (unsigned I = 0; I < Pointers.size(); ++I) {
372ce3877fcSSilviu Baranga     // We've seen this pointer before, and therefore already processed
373ce3877fcSSilviu Baranga     // its equivalence class.
374ce3877fcSSilviu Baranga     if (Seen.count(I))
3751b6b50a9SSilviu Baranga       continue;
3761b6b50a9SSilviu Baranga 
3779f7dedc3SAdam Nemet     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
3789f7dedc3SAdam Nemet                                            Pointers[I].IsWritePtr);
3791b6b50a9SSilviu Baranga 
380ce3877fcSSilviu Baranga     SmallVector<CheckingPtrGroup, 2> Groups;
381ce3877fcSSilviu Baranga     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
382ce3877fcSSilviu Baranga 
383a647c30fSSilviu Baranga     // Because DepCands is constructed by visiting accesses in the order in
384a647c30fSSilviu Baranga     // which they appear in alias sets (which is deterministic) and the
385a647c30fSSilviu Baranga     // iteration order within an equivalence class member is only dependent on
386a647c30fSSilviu Baranga     // the order in which unions and insertions are performed on the
387a647c30fSSilviu Baranga     // equivalence class, the iteration order is deterministic.
388ce3877fcSSilviu Baranga     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
3891b6b50a9SSilviu Baranga          MI != ME; ++MI) {
3901b6b50a9SSilviu Baranga       unsigned Pointer = PositionMap[MI->getPointer()];
3911b6b50a9SSilviu Baranga       bool Merged = false;
392ce3877fcSSilviu Baranga       // Mark this pointer as seen.
393ce3877fcSSilviu Baranga       Seen.insert(Pointer);
3941b6b50a9SSilviu Baranga 
3951b6b50a9SSilviu Baranga       // Go through all the existing sets and see if we can find one
3961b6b50a9SSilviu Baranga       // which can include this pointer.
3971b6b50a9SSilviu Baranga       for (CheckingPtrGroup &Group : Groups) {
3981b6b50a9SSilviu Baranga         // Don't perform more than a certain amount of comparisons.
3991b6b50a9SSilviu Baranga         // This should limit the cost of grouping the pointers to something
4001b6b50a9SSilviu Baranga         // reasonable.  If we do end up hitting this threshold, the algorithm
4011b6b50a9SSilviu Baranga         // will create separate groups for all remaining pointers.
4021b6b50a9SSilviu Baranga         if (TotalComparisons > MemoryCheckMergeThreshold)
4031b6b50a9SSilviu Baranga           break;
4041b6b50a9SSilviu Baranga 
4051b6b50a9SSilviu Baranga         TotalComparisons++;
4061b6b50a9SSilviu Baranga 
4071b6b50a9SSilviu Baranga         if (Group.addPointer(Pointer)) {
4081b6b50a9SSilviu Baranga           Merged = true;
4091b6b50a9SSilviu Baranga           break;
4101b6b50a9SSilviu Baranga         }
4111b6b50a9SSilviu Baranga       }
4121b6b50a9SSilviu Baranga 
4131b6b50a9SSilviu Baranga       if (!Merged)
4141b6b50a9SSilviu Baranga         // We couldn't add this pointer to any existing set or the threshold
4151b6b50a9SSilviu Baranga         // for the number of comparisons has been reached. Create a new group
4161b6b50a9SSilviu Baranga         // to hold the current pointer.
4171b6b50a9SSilviu Baranga         Groups.push_back(CheckingPtrGroup(Pointer, *this));
4181b6b50a9SSilviu Baranga     }
4191b6b50a9SSilviu Baranga 
4201b6b50a9SSilviu Baranga     // We've computed the grouped checks for this partition.
4211b6b50a9SSilviu Baranga     // Save the results and continue with the next one.
42275709329SFangrui Song     llvm::copy(Groups, std::back_inserter(CheckingGroups));
4231b6b50a9SSilviu Baranga   }
4240456327cSAdam Nemet }
4250456327cSAdam Nemet 
426041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition(
427041e6debSAdam Nemet     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
428041e6debSAdam Nemet     unsigned PtrIdx2) {
429041e6debSAdam Nemet   return (PtrToPartition[PtrIdx1] != -1 &&
430041e6debSAdam Nemet           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
431041e6debSAdam Nemet }
432041e6debSAdam Nemet 
433651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
4349f7dedc3SAdam Nemet   const PointerInfo &PointerI = Pointers[I];
4359f7dedc3SAdam Nemet   const PointerInfo &PointerJ = Pointers[J];
4369f7dedc3SAdam Nemet 
437a8945b77SAdam Nemet   // No need to check if two readonly pointers intersect.
4389f7dedc3SAdam Nemet   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
439a8945b77SAdam Nemet     return false;
440a8945b77SAdam Nemet 
441a8945b77SAdam Nemet   // Only need to check pointers between two different dependency sets.
4429f7dedc3SAdam Nemet   if (PointerI.DependencySetId == PointerJ.DependencySetId)
443a8945b77SAdam Nemet     return false;
444a8945b77SAdam Nemet 
445a8945b77SAdam Nemet   // Only need to check pointers in the same alias set.
4469f7dedc3SAdam Nemet   if (PointerI.AliasSetId != PointerJ.AliasSetId)
447a8945b77SAdam Nemet     return false;
448a8945b77SAdam Nemet 
449a8945b77SAdam Nemet   return true;
450a8945b77SAdam Nemet }
451a8945b77SAdam Nemet 
45254f0b83eSAdam Nemet void RuntimePointerChecking::printChecks(
45354f0b83eSAdam Nemet     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
45454f0b83eSAdam Nemet     unsigned Depth) const {
45554f0b83eSAdam Nemet   unsigned N = 0;
45654f0b83eSAdam Nemet   for (const auto &Check : Checks) {
45754f0b83eSAdam Nemet     const auto &First = Check.first->Members, &Second = Check.second->Members;
45854f0b83eSAdam Nemet 
45954f0b83eSAdam Nemet     OS.indent(Depth) << "Check " << N++ << ":\n";
46054f0b83eSAdam Nemet 
46154f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
46254f0b83eSAdam Nemet     for (unsigned K = 0; K < First.size(); ++K)
46354f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
46454f0b83eSAdam Nemet 
46554f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
46654f0b83eSAdam Nemet     for (unsigned K = 0; K < Second.size(); ++K)
46754f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
46854f0b83eSAdam Nemet   }
46954f0b83eSAdam Nemet }
47054f0b83eSAdam Nemet 
4713a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
472e91cc6efSAdam Nemet 
473e91cc6efSAdam Nemet   OS.indent(Depth) << "Run-time memory checks:\n";
47415840393SAdam Nemet   printChecks(OS, Checks, Depth);
4751b6b50a9SSilviu Baranga 
4761b6b50a9SSilviu Baranga   OS.indent(Depth) << "Grouped accesses:\n";
4771b6b50a9SSilviu Baranga   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
47854f0b83eSAdam Nemet     const auto &CG = CheckingGroups[I];
47954f0b83eSAdam Nemet 
48054f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
48154f0b83eSAdam Nemet     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
48254f0b83eSAdam Nemet                          << ")\n";
48354f0b83eSAdam Nemet     for (unsigned J = 0; J < CG.Members.size(); ++J) {
48454f0b83eSAdam Nemet       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
4851b6b50a9SSilviu Baranga                            << "\n";
4861b6b50a9SSilviu Baranga     }
487e91cc6efSAdam Nemet   }
488e91cc6efSAdam Nemet }
489e91cc6efSAdam Nemet 
4900456327cSAdam Nemet namespace {
491a3fe70d2SEugene Zelenko 
4925f8f34e4SAdrian Prantl /// Analyses memory accesses in a loop.
4930456327cSAdam Nemet ///
4940456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data
4950456327cSAdam Nemet /// dependence checking.
4960456327cSAdam Nemet class AccessAnalysis {
4970456327cSAdam Nemet public:
4985f8f34e4SAdrian Prantl   /// Read or write access location.
4990456327cSAdam Nemet   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
5005448e989SAmjad Aboud   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
5010456327cSAdam Nemet 
50277eeac3dSManoj Gupta   AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
50377eeac3dSManoj Gupta                  LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
5049cd9a7e3SSilviu Baranga                  PredicatedScalarEvolution &PSE)
50577eeac3dSManoj Gupta       : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
50677eeac3dSManoj Gupta         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
5070456327cSAdam Nemet 
5085f8f34e4SAdrian Prantl   /// Register a load  and whether it is only read from.
509ac80dc75SChandler Carruth   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
5100456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
5116ef8002cSGeorge Burgess IV     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
5120456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, false));
5130456327cSAdam Nemet     if (IsReadOnly)
5140456327cSAdam Nemet       ReadOnlyPtr.insert(Ptr);
5150456327cSAdam Nemet   }
5160456327cSAdam Nemet 
5175f8f34e4SAdrian Prantl   /// Register a store.
518ac80dc75SChandler Carruth   void addStore(MemoryLocation &Loc) {
5190456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
5206ef8002cSGeorge Burgess IV     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
5210456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, true));
5220456327cSAdam Nemet   }
5230456327cSAdam Nemet 
5245f8f34e4SAdrian Prantl   /// Check if we can emit a run-time no-alias check for \p Access.
525ac920f77SSilviu Baranga   ///
526ac920f77SSilviu Baranga   /// Returns true if we can emit a run-time no alias check for \p Access.
527ac920f77SSilviu Baranga   /// If we can check this access, this also adds it to a dependence set and
528ac920f77SSilviu Baranga   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
529ac920f77SSilviu Baranga   /// we will attempt to use additional run-time checks in order to get
530ac920f77SSilviu Baranga   /// the bounds of the pointer.
531ac920f77SSilviu Baranga   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
532ac920f77SSilviu Baranga                             MemAccessInfo Access,
533ac920f77SSilviu Baranga                             const ValueToValueMap &Strides,
534ac920f77SSilviu Baranga                             DenseMap<Value *, unsigned> &DepSetId,
535ac920f77SSilviu Baranga                             Loop *TheLoop, unsigned &RunningDepId,
536ac920f77SSilviu Baranga                             unsigned ASId, bool ShouldCheckStride,
537ac920f77SSilviu Baranga                             bool Assume);
538ac920f77SSilviu Baranga 
5395f8f34e4SAdrian Prantl   /// Check whether we can check the pointers at runtime for
540ee61474aSAdam Nemet   /// non-intersection.
541ee61474aSAdam Nemet   ///
542ee61474aSAdam Nemet   /// Returns true if we need no check or if we do and we can generate them
543ee61474aSAdam Nemet   /// (i.e. the pointers have computable bounds).
5447cdebac0SAdam Nemet   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
5457cdebac0SAdam Nemet                        Loop *TheLoop, const ValueToValueMap &Strides,
5469f02c586SAndrey Turetskiy                        bool ShouldCheckWrap = false);
5470456327cSAdam Nemet 
5485f8f34e4SAdrian Prantl   /// Goes over all memory accesses, checks whether a RT check is needed
5490456327cSAdam Nemet   /// and builds sets of dependent accesses.
5500456327cSAdam Nemet   void buildDependenceSets() {
5510456327cSAdam Nemet     processMemAccesses();
5520456327cSAdam Nemet   }
5530456327cSAdam Nemet 
5545f8f34e4SAdrian Prantl   /// Initial processing of memory accesses determined that we need to
5555dc3b2cfSAdam Nemet   /// perform dependency checking.
5565dc3b2cfSAdam Nemet   ///
5575dc3b2cfSAdam Nemet   /// Note that this can later be cleared if we retry memcheck analysis without
558ef307b8cSFlorian Hahn   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
5590456327cSAdam Nemet   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
560df3dc5b9SAdam Nemet 
561df3dc5b9SAdam Nemet   /// We decided that no dependence analysis would be used.  Reset the state.
562df3dc5b9SAdam Nemet   void resetDepChecks(MemoryDepChecker &DepChecker) {
563df3dc5b9SAdam Nemet     CheckDeps.clear();
564a2df750fSAdam Nemet     DepChecker.clearDependences();
565df3dc5b9SAdam Nemet   }
5660456327cSAdam Nemet 
5675448e989SAmjad Aboud   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
5680456327cSAdam Nemet 
5690456327cSAdam Nemet private:
5700456327cSAdam Nemet   typedef SetVector<MemAccessInfo> PtrAccessSet;
5710456327cSAdam Nemet 
5725f8f34e4SAdrian Prantl   /// Go over all memory access and check whether runtime pointer checks
573b41d2d3fSAdam Nemet   /// are needed and build sets of dependency check candidates.
5740456327cSAdam Nemet   void processMemAccesses();
5750456327cSAdam Nemet 
5760456327cSAdam Nemet   /// Set of all accesses.
5770456327cSAdam Nemet   PtrAccessSet Accesses;
5780456327cSAdam Nemet 
579a28d91d8SMehdi Amini   const DataLayout &DL;
580a28d91d8SMehdi Amini 
58177eeac3dSManoj Gupta   /// The loop being checked.
58277eeac3dSManoj Gupta   const Loop *TheLoop;
58377eeac3dSManoj Gupta 
5845448e989SAmjad Aboud   /// List of accesses that need a further dependence check.
5855448e989SAmjad Aboud   MemAccessInfoList CheckDeps;
5860456327cSAdam Nemet 
5870456327cSAdam Nemet   /// Set of pointers that are read only.
5880456327cSAdam Nemet   SmallPtrSet<Value*, 16> ReadOnlyPtr;
5890456327cSAdam Nemet 
5900456327cSAdam Nemet   /// An alias set tracker to partition the access set by underlying object and
5910456327cSAdam Nemet   //intrinsic property (such as TBAA metadata).
5920456327cSAdam Nemet   AliasSetTracker AST;
5930456327cSAdam Nemet 
594e2b885c4SAdam Nemet   LoopInfo *LI;
595e2b885c4SAdam Nemet 
5960456327cSAdam Nemet   /// Sets of potentially dependent accesses - members of one set share an
5970456327cSAdam Nemet   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
5980456327cSAdam Nemet   /// dependence check.
599dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates &DepCands;
6000456327cSAdam Nemet 
6015f8f34e4SAdrian Prantl   /// Initial processing of memory accesses determined that we may need
6025dc3b2cfSAdam Nemet   /// to add memchecks.  Perform the analysis to determine the necessary checks.
6035dc3b2cfSAdam Nemet   ///
6045dc3b2cfSAdam Nemet   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
6055dc3b2cfSAdam Nemet   /// memcheck analysis without dependency checking
606ef307b8cSFlorian Hahn   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
607ef307b8cSFlorian Hahn   /// cleared while this remains set if we have potentially dependent accesses.
6085dc3b2cfSAdam Nemet   bool IsRTCheckAnalysisNeeded;
609e3c0534bSSilviu Baranga 
610e3c0534bSSilviu Baranga   /// The SCEV predicate containing all the SCEV-related assumptions.
6119cd9a7e3SSilviu Baranga   PredicatedScalarEvolution &PSE;
6120456327cSAdam Nemet };
6130456327cSAdam Nemet 
6140456327cSAdam Nemet } // end anonymous namespace
6150456327cSAdam Nemet 
6165f8f34e4SAdrian Prantl /// Check whether a pointer can participate in a runtime bounds check.
617ac920f77SSilviu Baranga /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
618ac920f77SSilviu Baranga /// by adding run-time checks (overflow checks) if necessary.
6199cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
620e3c0534bSSilviu Baranga                                 const ValueToValueMap &Strides, Value *Ptr,
621ac920f77SSilviu Baranga                                 Loop *L, bool Assume) {
6229cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
623279784ffSAdam Nemet 
624279784ffSAdam Nemet   // The bounds for loop-invariant pointer is trivial.
625279784ffSAdam Nemet   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
626279784ffSAdam Nemet     return true;
627279784ffSAdam Nemet 
6280456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
629ac920f77SSilviu Baranga 
630ac920f77SSilviu Baranga   if (!AR && Assume)
631ac920f77SSilviu Baranga     AR = PSE.getAsAddRec(Ptr);
632ac920f77SSilviu Baranga 
6330456327cSAdam Nemet   if (!AR)
6340456327cSAdam Nemet     return false;
6350456327cSAdam Nemet 
6360456327cSAdam Nemet   return AR->isAffine();
6370456327cSAdam Nemet }
6380456327cSAdam Nemet 
6395f8f34e4SAdrian Prantl /// Check whether a pointer address cannot wrap.
6409f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE,
6419f02c586SAndrey Turetskiy                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
6429f02c586SAndrey Turetskiy   const SCEV *PtrScev = PSE.getSCEV(Ptr);
6439f02c586SAndrey Turetskiy   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
6449f02c586SAndrey Turetskiy     return true;
6459f02c586SAndrey Turetskiy 
6467afb46d3SDavid Majnemer   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
647ac920f77SSilviu Baranga   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
648ac920f77SSilviu Baranga     return true;
649ac920f77SSilviu Baranga 
650ac920f77SSilviu Baranga   return false;
651ac920f77SSilviu Baranga }
652ac920f77SSilviu Baranga 
653ac920f77SSilviu Baranga bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
654ac920f77SSilviu Baranga                                           MemAccessInfo Access,
655ac920f77SSilviu Baranga                                           const ValueToValueMap &StridesMap,
656ac920f77SSilviu Baranga                                           DenseMap<Value *, unsigned> &DepSetId,
657ac920f77SSilviu Baranga                                           Loop *TheLoop, unsigned &RunningDepId,
658ac920f77SSilviu Baranga                                           unsigned ASId, bool ShouldCheckWrap,
659ac920f77SSilviu Baranga                                           bool Assume) {
660ac920f77SSilviu Baranga   Value *Ptr = Access.getPointer();
661ac920f77SSilviu Baranga 
662ac920f77SSilviu Baranga   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
663ac920f77SSilviu Baranga     return false;
664ac920f77SSilviu Baranga 
665ac920f77SSilviu Baranga   // When we run after a failing dependency check we have to make sure
666ac920f77SSilviu Baranga   // we don't have wrapping pointers.
667ac920f77SSilviu Baranga   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
668ac920f77SSilviu Baranga     auto *Expr = PSE.getSCEV(Ptr);
669ac920f77SSilviu Baranga     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
670ac920f77SSilviu Baranga       return false;
671ac920f77SSilviu Baranga     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
672ac920f77SSilviu Baranga   }
673ac920f77SSilviu Baranga 
674ac920f77SSilviu Baranga   // The id of the dependence set.
675ac920f77SSilviu Baranga   unsigned DepId;
676ac920f77SSilviu Baranga 
677ac920f77SSilviu Baranga   if (isDependencyCheckNeeded()) {
678ac920f77SSilviu Baranga     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
679ac920f77SSilviu Baranga     unsigned &LeaderId = DepSetId[Leader];
680ac920f77SSilviu Baranga     if (!LeaderId)
681ac920f77SSilviu Baranga       LeaderId = RunningDepId++;
682ac920f77SSilviu Baranga     DepId = LeaderId;
683ac920f77SSilviu Baranga   } else
684ac920f77SSilviu Baranga     // Each access has its own dependence set.
685ac920f77SSilviu Baranga     DepId = RunningDepId++;
686ac920f77SSilviu Baranga 
687ac920f77SSilviu Baranga   bool IsWrite = Access.getInt();
688ac920f77SSilviu Baranga   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
689d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
690ac920f77SSilviu Baranga 
691ac920f77SSilviu Baranga   return true;
6929f02c586SAndrey Turetskiy  }
6939f02c586SAndrey Turetskiy 
6947cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
6957cdebac0SAdam Nemet                                      ScalarEvolution *SE, Loop *TheLoop,
6967cdebac0SAdam Nemet                                      const ValueToValueMap &StridesMap,
6979f02c586SAndrey Turetskiy                                      bool ShouldCheckWrap) {
6980456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
6990456327cSAdam Nemet   // to place a runtime bound check.
7000456327cSAdam Nemet   bool CanDoRT = true;
7010456327cSAdam Nemet 
702ee61474aSAdam Nemet   bool NeedRTCheck = false;
7035dc3b2cfSAdam Nemet   if (!IsRTCheckAnalysisNeeded) return true;
70498a13719SSilviu Baranga 
7050456327cSAdam Nemet   bool IsDepCheckNeeded = isDependencyCheckNeeded();
7060456327cSAdam Nemet 
7070456327cSAdam Nemet   // We assign a consecutive id to access from different alias sets.
7080456327cSAdam Nemet   // Accesses between different groups doesn't need to be checked.
7090456327cSAdam Nemet   unsigned ASId = 1;
7100456327cSAdam Nemet   for (auto &AS : AST) {
711424edc6cSAdam Nemet     int NumReadPtrChecks = 0;
712424edc6cSAdam Nemet     int NumWritePtrChecks = 0;
713ac920f77SSilviu Baranga     bool CanDoAliasSetRT = true;
714424edc6cSAdam Nemet 
7150456327cSAdam Nemet     // We assign consecutive id to access from different dependence sets.
7160456327cSAdam Nemet     // Accesses within the same set don't need a runtime check.
7170456327cSAdam Nemet     unsigned RunningDepId = 1;
7180456327cSAdam Nemet     DenseMap<Value *, unsigned> DepSetId;
7190456327cSAdam Nemet 
720ac920f77SSilviu Baranga     SmallVector<MemAccessInfo, 4> Retries;
721ac920f77SSilviu Baranga 
7220456327cSAdam Nemet     for (auto A : AS) {
7230456327cSAdam Nemet       Value *Ptr = A.getValue();
7240456327cSAdam Nemet       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
7250456327cSAdam Nemet       MemAccessInfo Access(Ptr, IsWrite);
7260456327cSAdam Nemet 
727424edc6cSAdam Nemet       if (IsWrite)
728424edc6cSAdam Nemet         ++NumWritePtrChecks;
729424edc6cSAdam Nemet       else
730424edc6cSAdam Nemet         ++NumReadPtrChecks;
731424edc6cSAdam Nemet 
732ac920f77SSilviu Baranga       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
733ac920f77SSilviu Baranga                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
734d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
735ac920f77SSilviu Baranga         Retries.push_back(Access);
736ac920f77SSilviu Baranga         CanDoAliasSetRT = false;
7370456327cSAdam Nemet       }
7380456327cSAdam Nemet     }
7390456327cSAdam Nemet 
740424edc6cSAdam Nemet     // If we have at least two writes or one write and a read then we need to
741424edc6cSAdam Nemet     // check them.  But there is no need to checks if there is only one
742424edc6cSAdam Nemet     // dependence set for this alias set.
743424edc6cSAdam Nemet     //
744424edc6cSAdam Nemet     // Note that this function computes CanDoRT and NeedRTCheck independently.
745424edc6cSAdam Nemet     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
746424edc6cSAdam Nemet     // for which we couldn't find the bounds but we don't actually need to emit
747424edc6cSAdam Nemet     // any checks so it does not matter.
748ac920f77SSilviu Baranga     bool NeedsAliasSetRTCheck = false;
749ac920f77SSilviu Baranga     if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
750ac920f77SSilviu Baranga       NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
751ac920f77SSilviu Baranga                              (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
752424edc6cSAdam Nemet 
753ac920f77SSilviu Baranga     // We need to perform run-time alias checks, but some pointers had bounds
754ac920f77SSilviu Baranga     // that couldn't be checked.
755ac920f77SSilviu Baranga     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
756ac920f77SSilviu Baranga       // Reset the CanDoSetRt flag and retry all accesses that have failed.
757ac920f77SSilviu Baranga       // We know that we need these checks, so we can now be more aggressive
758ac920f77SSilviu Baranga       // and add further checks if required (overflow checks).
759ac920f77SSilviu Baranga       CanDoAliasSetRT = true;
760ac920f77SSilviu Baranga       for (auto Access : Retries)
761ac920f77SSilviu Baranga         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
762ac920f77SSilviu Baranga                                   TheLoop, RunningDepId, ASId,
763ac920f77SSilviu Baranga                                   ShouldCheckWrap, /*Assume=*/true)) {
764ac920f77SSilviu Baranga           CanDoAliasSetRT = false;
765ac920f77SSilviu Baranga           break;
766ac920f77SSilviu Baranga         }
767ac920f77SSilviu Baranga     }
768ac920f77SSilviu Baranga 
769ac920f77SSilviu Baranga     CanDoRT &= CanDoAliasSetRT;
770ac920f77SSilviu Baranga     NeedRTCheck |= NeedsAliasSetRTCheck;
7710456327cSAdam Nemet     ++ASId;
7720456327cSAdam Nemet   }
7730456327cSAdam Nemet 
7740456327cSAdam Nemet   // If the pointers that we would use for the bounds comparison have different
7750456327cSAdam Nemet   // address spaces, assume the values aren't directly comparable, so we can't
7760456327cSAdam Nemet   // use them for the runtime check. We also have to assume they could
7770456327cSAdam Nemet   // overlap. In the future there should be metadata for whether address spaces
7780456327cSAdam Nemet   // are disjoint.
7790456327cSAdam Nemet   unsigned NumPointers = RtCheck.Pointers.size();
7800456327cSAdam Nemet   for (unsigned i = 0; i < NumPointers; ++i) {
7810456327cSAdam Nemet     for (unsigned j = i + 1; j < NumPointers; ++j) {
7820456327cSAdam Nemet       // Only need to check pointers between two different dependency sets.
7839f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].DependencySetId ==
7849f7dedc3SAdam Nemet           RtCheck.Pointers[j].DependencySetId)
7850456327cSAdam Nemet        continue;
7860456327cSAdam Nemet       // Only need to check pointers in the same alias set.
7879f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
7880456327cSAdam Nemet         continue;
7890456327cSAdam Nemet 
7909f7dedc3SAdam Nemet       Value *PtrI = RtCheck.Pointers[i].PointerValue;
7919f7dedc3SAdam Nemet       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
7920456327cSAdam Nemet 
7930456327cSAdam Nemet       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
7940456327cSAdam Nemet       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
7950456327cSAdam Nemet       if (ASi != ASj) {
796d34e60caSNicola Zaghen         LLVM_DEBUG(
797d34e60caSNicola Zaghen             dbgs() << "LAA: Runtime check would require comparison between"
7980456327cSAdam Nemet                       " different address spaces\n");
7990456327cSAdam Nemet         return false;
8000456327cSAdam Nemet       }
8010456327cSAdam Nemet     }
8020456327cSAdam Nemet   }
8030456327cSAdam Nemet 
8041b6b50a9SSilviu Baranga   if (NeedRTCheck && CanDoRT)
80515840393SAdam Nemet     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
8061b6b50a9SSilviu Baranga 
807d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
808ee61474aSAdam Nemet                     << " pointer comparisons.\n");
809ee61474aSAdam Nemet 
810ee61474aSAdam Nemet   RtCheck.Need = NeedRTCheck;
811ee61474aSAdam Nemet 
812ee61474aSAdam Nemet   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
813ee61474aSAdam Nemet   if (!CanDoRTIfNeeded)
814ee61474aSAdam Nemet     RtCheck.reset();
815ee61474aSAdam Nemet   return CanDoRTIfNeeded;
8160456327cSAdam Nemet }
8170456327cSAdam Nemet 
8180456327cSAdam Nemet void AccessAnalysis::processMemAccesses() {
8190456327cSAdam Nemet   // We process the set twice: first we process read-write pointers, last we
8200456327cSAdam Nemet   // process read-only pointers. This allows us to skip dependence tests for
8210456327cSAdam Nemet   // read-only pointers.
8220456327cSAdam Nemet 
823d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
824d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
825d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
826d34e60caSNicola Zaghen   LLVM_DEBUG({
8270456327cSAdam Nemet     for (auto A : Accesses)
8280456327cSAdam Nemet       dbgs() << "\t" << *A.getPointer() << " (" <<
8290456327cSAdam Nemet                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
8300456327cSAdam Nemet                                          "read-only" : "read")) << ")\n";
8310456327cSAdam Nemet   });
8320456327cSAdam Nemet 
8330456327cSAdam Nemet   // The AliasSetTracker has nicely partitioned our pointers by metadata
8340456327cSAdam Nemet   // compatibility and potential for underlying-object overlap. As a result, we
8350456327cSAdam Nemet   // only need to check for potential pointer dependencies within each alias
8360456327cSAdam Nemet   // set.
8370456327cSAdam Nemet   for (auto &AS : AST) {
8380456327cSAdam Nemet     // Note that both the alias-set tracker and the alias sets themselves used
8390456327cSAdam Nemet     // linked lists internally and so the iteration order here is deterministic
8400456327cSAdam Nemet     // (matching the original instruction order within each set).
8410456327cSAdam Nemet 
8420456327cSAdam Nemet     bool SetHasWrite = false;
8430456327cSAdam Nemet 
8440456327cSAdam Nemet     // Map of pointers to last access encountered.
84571e8c6f2SBjorn Pettersson     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
8460456327cSAdam Nemet     UnderlyingObjToAccessMap ObjToLastAccess;
8470456327cSAdam Nemet 
8480456327cSAdam Nemet     // Set of access to check after all writes have been processed.
8490456327cSAdam Nemet     PtrAccessSet DeferredAccesses;
8500456327cSAdam Nemet 
8510456327cSAdam Nemet     // Iterate over each alias set twice, once to process read/write pointers,
8520456327cSAdam Nemet     // and then to process read-only pointers.
8530456327cSAdam Nemet     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
8540456327cSAdam Nemet       bool UseDeferred = SetIteration > 0;
8550456327cSAdam Nemet       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
8560456327cSAdam Nemet 
8570456327cSAdam Nemet       for (auto AV : AS) {
8580456327cSAdam Nemet         Value *Ptr = AV.getValue();
8590456327cSAdam Nemet 
8600456327cSAdam Nemet         // For a single memory access in AliasSetTracker, Accesses may contain
8610456327cSAdam Nemet         // both read and write, and they both need to be handled for CheckDeps.
8620456327cSAdam Nemet         for (auto AC : S) {
8630456327cSAdam Nemet           if (AC.getPointer() != Ptr)
8640456327cSAdam Nemet             continue;
8650456327cSAdam Nemet 
8660456327cSAdam Nemet           bool IsWrite = AC.getInt();
8670456327cSAdam Nemet 
8680456327cSAdam Nemet           // If we're using the deferred access set, then it contains only
8690456327cSAdam Nemet           // reads.
8700456327cSAdam Nemet           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
8710456327cSAdam Nemet           if (UseDeferred && !IsReadOnlyPtr)
8720456327cSAdam Nemet             continue;
8730456327cSAdam Nemet           // Otherwise, the pointer must be in the PtrAccessSet, either as a
8740456327cSAdam Nemet           // read or a write.
8750456327cSAdam Nemet           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
8760456327cSAdam Nemet                   S.count(MemAccessInfo(Ptr, false))) &&
8770456327cSAdam Nemet                  "Alias-set pointer not in the access set?");
8780456327cSAdam Nemet 
8790456327cSAdam Nemet           MemAccessInfo Access(Ptr, IsWrite);
8800456327cSAdam Nemet           DepCands.insert(Access);
8810456327cSAdam Nemet 
8820456327cSAdam Nemet           // Memorize read-only pointers for later processing and skip them in
8830456327cSAdam Nemet           // the first round (they need to be checked after we have seen all
8840456327cSAdam Nemet           // write pointers). Note: we also mark pointer that are not
8850456327cSAdam Nemet           // consecutive as "read-only" pointers (so that we check
8860456327cSAdam Nemet           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
8870456327cSAdam Nemet           if (!UseDeferred && IsReadOnlyPtr) {
8880456327cSAdam Nemet             DeferredAccesses.insert(Access);
8890456327cSAdam Nemet             continue;
8900456327cSAdam Nemet           }
8910456327cSAdam Nemet 
8920456327cSAdam Nemet           // If this is a write - check other reads and writes for conflicts. If
8930456327cSAdam Nemet           // this is a read only check other writes for conflicts (but only if
8940456327cSAdam Nemet           // there is no other write to the ptr - this is an optimization to
8950456327cSAdam Nemet           // catch "a[i] = a[i] + " without having to do a dependence check).
8960456327cSAdam Nemet           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
8975448e989SAmjad Aboud             CheckDeps.push_back(Access);
8985dc3b2cfSAdam Nemet             IsRTCheckAnalysisNeeded = true;
8990456327cSAdam Nemet           }
9000456327cSAdam Nemet 
9010456327cSAdam Nemet           if (IsWrite)
9020456327cSAdam Nemet             SetHasWrite = true;
9030456327cSAdam Nemet 
9040456327cSAdam Nemet           // Create sets of pointers connected by a shared alias set and
9050456327cSAdam Nemet           // underlying object.
90671e8c6f2SBjorn Pettersson           typedef SmallVector<const Value *, 16> ValueVector;
9070456327cSAdam Nemet           ValueVector TempObjects;
908e2b885c4SAdam Nemet 
909e2b885c4SAdam Nemet           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
910d34e60caSNicola Zaghen           LLVM_DEBUG(dbgs()
911d34e60caSNicola Zaghen                      << "Underlying objects for pointer " << *Ptr << "\n");
91271e8c6f2SBjorn Pettersson           for (const Value *UnderlyingObj : TempObjects) {
913afd13519SMehdi Amini             // nullptr never alias, don't join sets for pointer that have "null"
914afd13519SMehdi Amini             // in their UnderlyingObjects list.
91577eeac3dSManoj Gupta             if (isa<ConstantPointerNull>(UnderlyingObj) &&
91677eeac3dSManoj Gupta                 !NullPointerIsDefined(
91777eeac3dSManoj Gupta                     TheLoop->getHeader()->getParent(),
91877eeac3dSManoj Gupta                     UnderlyingObj->getType()->getPointerAddressSpace()))
919afd13519SMehdi Amini               continue;
920afd13519SMehdi Amini 
9210456327cSAdam Nemet             UnderlyingObjToAccessMap::iterator Prev =
9220456327cSAdam Nemet                 ObjToLastAccess.find(UnderlyingObj);
9230456327cSAdam Nemet             if (Prev != ObjToLastAccess.end())
9240456327cSAdam Nemet               DepCands.unionSets(Access, Prev->second);
9250456327cSAdam Nemet 
9260456327cSAdam Nemet             ObjToLastAccess[UnderlyingObj] = Access;
927d34e60caSNicola Zaghen             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
9280456327cSAdam Nemet           }
9290456327cSAdam Nemet         }
9300456327cSAdam Nemet       }
9310456327cSAdam Nemet     }
9320456327cSAdam Nemet   }
9330456327cSAdam Nemet }
9340456327cSAdam Nemet 
9350456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) {
9360456327cSAdam Nemet   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
9370456327cSAdam Nemet     return GEP->isInBounds();
9380456327cSAdam Nemet   return false;
9390456327cSAdam Nemet }
9400456327cSAdam Nemet 
9415f8f34e4SAdrian Prantl /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
942c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing.
943c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
944ea63a7f5SSilviu Baranga                            PredicatedScalarEvolution &PSE, const Loop *L) {
945c4866d29SAdam Nemet   // FIXME: This should probably only return true for NUW.
946c4866d29SAdam Nemet   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
947c4866d29SAdam Nemet     return true;
948c4866d29SAdam Nemet 
949c4866d29SAdam Nemet   // Scalar evolution does not propagate the non-wrapping flags to values that
950c4866d29SAdam Nemet   // are derived from a non-wrapping induction variable because non-wrapping
951c4866d29SAdam Nemet   // could be flow-sensitive.
952c4866d29SAdam Nemet   //
953c4866d29SAdam Nemet   // Look through the potentially overflowing instruction to try to prove
954c4866d29SAdam Nemet   // non-wrapping for the *specific* value of Ptr.
955c4866d29SAdam Nemet 
956c4866d29SAdam Nemet   // The arithmetic implied by an inbounds GEP can't overflow.
957c4866d29SAdam Nemet   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
958c4866d29SAdam Nemet   if (!GEP || !GEP->isInBounds())
959c4866d29SAdam Nemet     return false;
960c4866d29SAdam Nemet 
961c4866d29SAdam Nemet   // Make sure there is only one non-const index and analyze that.
962c4866d29SAdam Nemet   Value *NonConstIndex = nullptr;
9638b401013SDavid Majnemer   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
9648b401013SDavid Majnemer     if (!isa<ConstantInt>(Index)) {
965c4866d29SAdam Nemet       if (NonConstIndex)
966c4866d29SAdam Nemet         return false;
9678b401013SDavid Majnemer       NonConstIndex = Index;
968c4866d29SAdam Nemet     }
969c4866d29SAdam Nemet   if (!NonConstIndex)
970c4866d29SAdam Nemet     // The recurrence is on the pointer, ignore for now.
971c4866d29SAdam Nemet     return false;
972c4866d29SAdam Nemet 
973c4866d29SAdam Nemet   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
974c4866d29SAdam Nemet   // AddRec using a NSW operation.
975c4866d29SAdam Nemet   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
976c4866d29SAdam Nemet     if (OBO->hasNoSignedWrap() &&
977c4866d29SAdam Nemet         // Assume constant for other the operand so that the AddRec can be
978c4866d29SAdam Nemet         // easily found.
979c4866d29SAdam Nemet         isa<ConstantInt>(OBO->getOperand(1))) {
980ea63a7f5SSilviu Baranga       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
981c4866d29SAdam Nemet 
982c4866d29SAdam Nemet       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
983c4866d29SAdam Nemet         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
984c4866d29SAdam Nemet     }
985c4866d29SAdam Nemet 
986c4866d29SAdam Nemet   return false;
987c4866d29SAdam Nemet }
988c4866d29SAdam Nemet 
9895f8f34e4SAdrian Prantl /// Check whether the access through \p Ptr has a constant stride.
9907afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
991ea63a7f5SSilviu Baranga                            const Loop *Lp, const ValueToValueMap &StridesMap,
9925f8cc0c3SElena Demikhovsky                            bool Assume, bool ShouldCheckWrap) {
993e3dcce97SCraig Topper   Type *Ty = Ptr->getType();
9940456327cSAdam Nemet   assert(Ty->isPointerTy() && "Unexpected non-ptr");
9950456327cSAdam Nemet 
9960456327cSAdam Nemet   // Make sure that the pointer does not point to aggregate types.
997e3dcce97SCraig Topper   auto *PtrTy = cast<PointerType>(Ty);
9980456327cSAdam Nemet   if (PtrTy->getElementType()->isAggregateType()) {
999d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1000d34e60caSNicola Zaghen                       << *Ptr << "\n");
10010456327cSAdam Nemet     return 0;
10020456327cSAdam Nemet   }
10030456327cSAdam Nemet 
10049cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
10050456327cSAdam Nemet 
10060456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1007ea63a7f5SSilviu Baranga   if (Assume && !AR)
1008d68ed854SSilviu Baranga     AR = PSE.getAsAddRec(Ptr);
1009ea63a7f5SSilviu Baranga 
10100456327cSAdam Nemet   if (!AR) {
1011d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1012ea63a7f5SSilviu Baranga                       << " SCEV: " << *PtrScev << "\n");
10130456327cSAdam Nemet     return 0;
10140456327cSAdam Nemet   }
10150456327cSAdam Nemet 
1016c437f310SHiroshi Inoue   // The access function must stride over the innermost loop.
10170456327cSAdam Nemet   if (Lp != AR->getLoop()) {
1018d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1019d34e60caSNicola Zaghen                       << *Ptr << " SCEV: " << *AR << "\n");
1020a02ce98bSKyle Butt     return 0;
10210456327cSAdam Nemet   }
10220456327cSAdam Nemet 
10230456327cSAdam Nemet   // The address calculation must not wrap. Otherwise, a dependence could be
10240456327cSAdam Nemet   // inverted.
10250456327cSAdam Nemet   // An inbounds getelementptr that is a AddRec with a unit stride
10260456327cSAdam Nemet   // cannot wrap per definition. The unit stride requirement is checked later.
10270456327cSAdam Nemet   // An getelementptr without an inbounds attribute and unit stride would have
10280456327cSAdam Nemet   // to access the pointer value "0" which is undefined behavior in address
10290456327cSAdam Nemet   // space 0, therefore we can also vectorize this case.
10300456327cSAdam Nemet   bool IsInBoundsGEP = isInBoundsGep(Ptr);
10315f8cc0c3SElena Demikhovsky   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1032ea63a7f5SSilviu Baranga     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1033ea63a7f5SSilviu Baranga     isNoWrapAddRec(Ptr, AR, PSE, Lp);
103477eeac3dSManoj Gupta   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
103577eeac3dSManoj Gupta       NullPointerIsDefined(Lp->getHeader()->getParent(),
103677eeac3dSManoj Gupta                            PtrTy->getAddressSpace())) {
1037ea63a7f5SSilviu Baranga     if (Assume) {
1038ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1039ea63a7f5SSilviu Baranga       IsNoWrapAddRec = true;
1040d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1041ea63a7f5SSilviu Baranga                         << "LAA:   Pointer: " << *Ptr << "\n"
1042ea63a7f5SSilviu Baranga                         << "LAA:   SCEV: " << *AR << "\n"
1043ea63a7f5SSilviu Baranga                         << "LAA:   Added an overflow assumption\n");
1044ea63a7f5SSilviu Baranga     } else {
1045d34e60caSNicola Zaghen       LLVM_DEBUG(
1046d34e60caSNicola Zaghen           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1047ea63a7f5SSilviu Baranga                  << *Ptr << " SCEV: " << *AR << "\n");
10480456327cSAdam Nemet       return 0;
10490456327cSAdam Nemet     }
1050ea63a7f5SSilviu Baranga   }
10510456327cSAdam Nemet 
10520456327cSAdam Nemet   // Check the step is constant.
10539cd9a7e3SSilviu Baranga   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
10540456327cSAdam Nemet 
1055943befedSAdam Nemet   // Calculate the pointer stride and check if it is constant.
10560456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
10570456327cSAdam Nemet   if (!C) {
1058d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1059d34e60caSNicola Zaghen                       << " SCEV: " << *AR << "\n");
10600456327cSAdam Nemet     return 0;
10610456327cSAdam Nemet   }
10620456327cSAdam Nemet 
1063a28d91d8SMehdi Amini   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1064a28d91d8SMehdi Amini   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
10650de2feceSSanjoy Das   const APInt &APStepVal = C->getAPInt();
10660456327cSAdam Nemet 
10670456327cSAdam Nemet   // Huge step value - give up.
10680456327cSAdam Nemet   if (APStepVal.getBitWidth() > 64)
10690456327cSAdam Nemet     return 0;
10700456327cSAdam Nemet 
10710456327cSAdam Nemet   int64_t StepVal = APStepVal.getSExtValue();
10720456327cSAdam Nemet 
10730456327cSAdam Nemet   // Strided access.
10740456327cSAdam Nemet   int64_t Stride = StepVal / Size;
10750456327cSAdam Nemet   int64_t Rem = StepVal % Size;
10760456327cSAdam Nemet   if (Rem)
10770456327cSAdam Nemet     return 0;
10780456327cSAdam Nemet 
10790456327cSAdam Nemet   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
10800456327cSAdam Nemet   // know we can't "wrap around the address space". In case of address space
10810456327cSAdam Nemet   // zero we know that this won't happen without triggering undefined behavior.
108277eeac3dSManoj Gupta   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
108377eeac3dSManoj Gupta       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
108477eeac3dSManoj Gupta                                               PtrTy->getAddressSpace()))) {
1085ea63a7f5SSilviu Baranga     if (Assume) {
1086ea63a7f5SSilviu Baranga       // We can avoid this case by adding a run-time check.
1087d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1088c437f310SHiroshi Inoue                         << "inbounds or in address space 0 may wrap:\n"
1089ea63a7f5SSilviu Baranga                         << "LAA:   Pointer: " << *Ptr << "\n"
1090ea63a7f5SSilviu Baranga                         << "LAA:   SCEV: " << *AR << "\n"
1091ea63a7f5SSilviu Baranga                         << "LAA:   Added an overflow assumption\n");
1092ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1093ea63a7f5SSilviu Baranga     } else
10940456327cSAdam Nemet       return 0;
1095ea63a7f5SSilviu Baranga   }
10960456327cSAdam Nemet 
10970456327cSAdam Nemet   return Stride;
10980456327cSAdam Nemet }
10990456327cSAdam Nemet 
1100428e9d9dSAlexey Bataev bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1101428e9d9dSAlexey Bataev                            ScalarEvolution &SE,
1102428e9d9dSAlexey Bataev                            SmallVectorImpl<unsigned> &SortedIndices) {
1103428e9d9dSAlexey Bataev   assert(llvm::all_of(
1104428e9d9dSAlexey Bataev              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1105428e9d9dSAlexey Bataev          "Expected list of pointer operands.");
1106428e9d9dSAlexey Bataev   SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1107428e9d9dSAlexey Bataev   OffValPairs.reserve(VL.size());
1108428e9d9dSAlexey Bataev 
1109428e9d9dSAlexey Bataev   // Walk over the pointers, and map each of them to an offset relative to
1110428e9d9dSAlexey Bataev   // first pointer in the array.
1111428e9d9dSAlexey Bataev   Value *Ptr0 = VL[0];
1112428e9d9dSAlexey Bataev   const SCEV *Scev0 = SE.getSCEV(Ptr0);
1113428e9d9dSAlexey Bataev   Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1114428e9d9dSAlexey Bataev 
1115428e9d9dSAlexey Bataev   llvm::SmallSet<int64_t, 4> Offsets;
1116428e9d9dSAlexey Bataev   for (auto *Ptr : VL) {
1117428e9d9dSAlexey Bataev     // TODO: Outline this code as a special, more time consuming, version of
1118428e9d9dSAlexey Bataev     // computeConstantDifference() function.
1119428e9d9dSAlexey Bataev     if (Ptr->getType()->getPointerAddressSpace() !=
1120428e9d9dSAlexey Bataev         Ptr0->getType()->getPointerAddressSpace())
1121428e9d9dSAlexey Bataev       return false;
1122428e9d9dSAlexey Bataev     // If a pointer refers to a different underlying object, bail - the
1123428e9d9dSAlexey Bataev     // pointers are by definition incomparable.
1124428e9d9dSAlexey Bataev     Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1125428e9d9dSAlexey Bataev     if (CurrObj != Obj0)
1126428e9d9dSAlexey Bataev       return false;
1127428e9d9dSAlexey Bataev 
1128428e9d9dSAlexey Bataev     const SCEV *Scev = SE.getSCEV(Ptr);
1129428e9d9dSAlexey Bataev     const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1130428e9d9dSAlexey Bataev     // The pointers may not have a constant offset from each other, or SCEV
1131428e9d9dSAlexey Bataev     // may just not be smart enough to figure out they do. Regardless,
1132428e9d9dSAlexey Bataev     // there's nothing we can do.
1133428e9d9dSAlexey Bataev     if (!Diff)
1134428e9d9dSAlexey Bataev       return false;
1135428e9d9dSAlexey Bataev 
1136428e9d9dSAlexey Bataev     // Check if the pointer with the same offset is found.
1137428e9d9dSAlexey Bataev     int64_t Offset = Diff->getAPInt().getSExtValue();
1138428e9d9dSAlexey Bataev     if (!Offsets.insert(Offset).second)
1139428e9d9dSAlexey Bataev       return false;
1140428e9d9dSAlexey Bataev     OffValPairs.emplace_back(Offset, Ptr);
1141428e9d9dSAlexey Bataev   }
1142428e9d9dSAlexey Bataev   SortedIndices.clear();
1143428e9d9dSAlexey Bataev   SortedIndices.resize(VL.size());
1144428e9d9dSAlexey Bataev   std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1145428e9d9dSAlexey Bataev 
1146428e9d9dSAlexey Bataev   // Sort the memory accesses and keep the order of their uses in UseOrder.
1147efd94c56SFangrui Song   llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
1148428e9d9dSAlexey Bataev     return OffValPairs[Left].first < OffValPairs[Right].first;
1149428e9d9dSAlexey Bataev   });
1150428e9d9dSAlexey Bataev 
1151428e9d9dSAlexey Bataev   // Check if the order is consecutive already.
1152428e9d9dSAlexey Bataev   if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1153428e9d9dSAlexey Bataev         return I == SortedIndices[I];
1154428e9d9dSAlexey Bataev       }))
1155428e9d9dSAlexey Bataev     SortedIndices.clear();
1156428e9d9dSAlexey Bataev 
1157428e9d9dSAlexey Bataev   return true;
1158428e9d9dSAlexey Bataev }
1159428e9d9dSAlexey Bataev 
1160f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction.
1161f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction.
1162f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) {
1163f1c00a22SHaicheng Wu   if (LoadInst *L = dyn_cast<LoadInst>(I))
1164f1c00a22SHaicheng Wu     return L->getPointerAddressSpace();
1165f1c00a22SHaicheng Wu   if (StoreInst *S = dyn_cast<StoreInst>(I))
1166f1c00a22SHaicheng Wu     return S->getPointerAddressSpace();
1167f1c00a22SHaicheng Wu   return -1;
1168f1c00a22SHaicheng Wu }
1169f1c00a22SHaicheng Wu 
1170f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive.
1171f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1172f1c00a22SHaicheng Wu                                ScalarEvolution &SE, bool CheckType) {
1173038ede2aSRenato Golin   Value *PtrA = getLoadStorePointerOperand(A);
1174038ede2aSRenato Golin   Value *PtrB = getLoadStorePointerOperand(B);
1175f1c00a22SHaicheng Wu   unsigned ASA = getAddressSpaceOperand(A);
1176f1c00a22SHaicheng Wu   unsigned ASB = getAddressSpaceOperand(B);
1177f1c00a22SHaicheng Wu 
1178f1c00a22SHaicheng Wu   // Check that the address spaces match and that the pointers are valid.
1179f1c00a22SHaicheng Wu   if (!PtrA || !PtrB || (ASA != ASB))
1180f1c00a22SHaicheng Wu     return false;
1181f1c00a22SHaicheng Wu 
1182f1c00a22SHaicheng Wu   // Make sure that A and B are different pointers.
1183f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1184f1c00a22SHaicheng Wu     return false;
1185f1c00a22SHaicheng Wu 
1186f1c00a22SHaicheng Wu   // Make sure that A and B have the same type if required.
1187f1c00a22SHaicheng Wu   if (CheckType && PtrA->getType() != PtrB->getType())
1188f1c00a22SHaicheng Wu     return false;
1189f1c00a22SHaicheng Wu 
1190945b7e5aSElena Demikhovsky   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1191f1c00a22SHaicheng Wu   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1192f1c00a22SHaicheng Wu 
1193945b7e5aSElena Demikhovsky   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1194f1c00a22SHaicheng Wu   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1195f1c00a22SHaicheng Wu   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1196f1c00a22SHaicheng Wu 
119717a8a927SMichael Liao   // Retrieve the address space again as pointer stripping now tracks through
119817a8a927SMichael Liao   // `addrspacecast`.
119917a8a927SMichael Liao   ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
120017a8a927SMichael Liao   ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
120117a8a927SMichael Liao   // Check that the address spaces match and that the pointers are valid.
120217a8a927SMichael Liao   if (ASA != ASB)
120317a8a927SMichael Liao     return false;
120417a8a927SMichael Liao 
120517a8a927SMichael Liao   IdxWidth = DL.getIndexSizeInBits(ASA);
120617a8a927SMichael Liao   OffsetA = OffsetA.sextOrTrunc(IdxWidth);
120717a8a927SMichael Liao   OffsetB = OffsetB.sextOrTrunc(IdxWidth);
120817a8a927SMichael Liao 
120917a8a927SMichael Liao   APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
121017a8a927SMichael Liao 
1211f1c00a22SHaicheng Wu   //  OffsetDelta = OffsetB - OffsetA;
1212f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1213f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1214f1c00a22SHaicheng Wu   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1215f1c00a22SHaicheng Wu   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1216f1c00a22SHaicheng Wu   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1217f1c00a22SHaicheng Wu   // Check if they are based on the same pointer. That makes the offsets
1218f1c00a22SHaicheng Wu   // sufficient.
1219f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1220f1c00a22SHaicheng Wu     return OffsetDelta == Size;
1221f1c00a22SHaicheng Wu 
1222f1c00a22SHaicheng Wu   // Compute the necessary base pointer delta to have the necessary final delta
1223f1c00a22SHaicheng Wu   // equal to the size.
1224f1c00a22SHaicheng Wu   // BaseDelta = Size - OffsetDelta;
1225f1c00a22SHaicheng Wu   const SCEV *SizeSCEV = SE.getConstant(Size);
1226f1c00a22SHaicheng Wu   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1227f1c00a22SHaicheng Wu 
1228f1c00a22SHaicheng Wu   // Otherwise compute the distance with SCEV between the base pointers.
1229f1c00a22SHaicheng Wu   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1230f1c00a22SHaicheng Wu   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1231f1c00a22SHaicheng Wu   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1232f1c00a22SHaicheng Wu   return X == PtrSCEVB;
1233f1c00a22SHaicheng Wu }
1234f1c00a22SHaicheng Wu 
1235485f2826SFlorian Hahn MemoryDepChecker::VectorizationSafetyStatus
1236485f2826SFlorian Hahn MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
12379c926579SAdam Nemet   switch (Type) {
12389c926579SAdam Nemet   case NoDep:
12399c926579SAdam Nemet   case Forward:
12409c926579SAdam Nemet   case BackwardVectorizable:
1241485f2826SFlorian Hahn     return VectorizationSafetyStatus::Safe;
12429c926579SAdam Nemet 
12439c926579SAdam Nemet   case Unknown:
1244ef307b8cSFlorian Hahn     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
12459c926579SAdam Nemet   case ForwardButPreventsForwarding:
12469c926579SAdam Nemet   case Backward:
12479c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
1248485f2826SFlorian Hahn     return VectorizationSafetyStatus::Unsafe;
12499c926579SAdam Nemet   }
1250d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
12519c926579SAdam Nemet }
12529c926579SAdam Nemet 
1253397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const {
12549c926579SAdam Nemet   switch (Type) {
12559c926579SAdam Nemet   case NoDep:
12569c926579SAdam Nemet   case Forward:
12579c926579SAdam Nemet   case ForwardButPreventsForwarding:
1258397f5829SAdam Nemet   case Unknown:
12599c926579SAdam Nemet     return false;
12609c926579SAdam Nemet 
12619c926579SAdam Nemet   case BackwardVectorizable:
12629c926579SAdam Nemet   case Backward:
12639c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
12649c926579SAdam Nemet     return true;
12659c926579SAdam Nemet   }
1266d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
12679c926579SAdam Nemet }
12689c926579SAdam Nemet 
1269397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1270397f5829SAdam Nemet   return isBackward() || Type == Unknown;
1271397f5829SAdam Nemet }
1272397f5829SAdam Nemet 
1273397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const {
1274397f5829SAdam Nemet   switch (Type) {
1275397f5829SAdam Nemet   case Forward:
1276397f5829SAdam Nemet   case ForwardButPreventsForwarding:
1277397f5829SAdam Nemet     return true;
1278397f5829SAdam Nemet 
1279397f5829SAdam Nemet   case NoDep:
1280397f5829SAdam Nemet   case Unknown:
1281397f5829SAdam Nemet   case BackwardVectorizable:
1282397f5829SAdam Nemet   case Backward:
1283397f5829SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
1284397f5829SAdam Nemet     return false;
1285397f5829SAdam Nemet   }
1286397f5829SAdam Nemet   llvm_unreachable("unexpected DepType!");
1287397f5829SAdam Nemet }
1288397f5829SAdam Nemet 
12897afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
12907afb46d3SDavid Majnemer                                                     uint64_t TypeByteSize) {
12910456327cSAdam Nemet   // If loads occur at a distance that is not a multiple of a feasible vector
12920456327cSAdam Nemet   // factor store-load forwarding does not take place.
12930456327cSAdam Nemet   // Positive dependences might cause troubles because vectorizing them might
12940456327cSAdam Nemet   // prevent store-load forwarding making vectorized code run a lot slower.
12950456327cSAdam Nemet   //   a[i] = a[i-3] ^ a[i-8];
12960456327cSAdam Nemet   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
12970456327cSAdam Nemet   //   hence on your typical architecture store-load forwarding does not take
12980456327cSAdam Nemet   //   place. Vectorizing in such cases does not make sense.
12990456327cSAdam Nemet   // Store-load forwarding distance.
1300884d313bSAdam Nemet 
1301884d313bSAdam Nemet   // After this many iterations store-to-load forwarding conflicts should not
1302884d313bSAdam Nemet   // cause any slowdowns.
13037afb46d3SDavid Majnemer   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
13040456327cSAdam Nemet   // Maximum vector factor.
13057afb46d3SDavid Majnemer   uint64_t MaxVFWithoutSLForwardIssues = std::min(
13062c34ab51SAdam Nemet       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
13070456327cSAdam Nemet 
1308884d313bSAdam Nemet   // Compute the smallest VF at which the store and load would be misaligned.
13097afb46d3SDavid Majnemer   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
13109b5852aeSAdam Nemet        VF *= 2) {
1311884d313bSAdam Nemet     // If the number of vector iteration between the store and the load are
1312884d313bSAdam Nemet     // small we could incur conflicts.
1313884d313bSAdam Nemet     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
13149b5852aeSAdam Nemet       MaxVFWithoutSLForwardIssues = (VF >>= 1);
13150456327cSAdam Nemet       break;
13160456327cSAdam Nemet     }
13170456327cSAdam Nemet   }
13180456327cSAdam Nemet 
13190456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1320d34e60caSNicola Zaghen     LLVM_DEBUG(
1321d34e60caSNicola Zaghen         dbgs() << "LAA: Distance " << Distance
13229b5852aeSAdam Nemet                << " that could cause a store-load forwarding conflict\n");
13230456327cSAdam Nemet     return true;
13240456327cSAdam Nemet   }
13250456327cSAdam Nemet 
13260456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1327f219c647SAdam Nemet       MaxVFWithoutSLForwardIssues !=
1328f219c647SAdam Nemet           VectorizerParams::MaxVectorWidth * TypeByteSize)
13290456327cSAdam Nemet     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
13300456327cSAdam Nemet   return false;
13310456327cSAdam Nemet }
13320456327cSAdam Nemet 
1333485f2826SFlorian Hahn void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1334485f2826SFlorian Hahn   if (Status < S)
1335485f2826SFlorian Hahn     Status = S;
1336485f2826SFlorian Hahn }
1337485f2826SFlorian Hahn 
1338eac89d73SDorit Nuzman /// Given a non-constant (unknown) dependence-distance \p Dist between two
1339eac89d73SDorit Nuzman /// memory accesses, that have the same stride whose absolute value is given
1340eac89d73SDorit Nuzman /// in \p Stride, and that have the same type size \p TypeByteSize,
1341eac89d73SDorit Nuzman /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1342eac89d73SDorit Nuzman /// possible to prove statically that the dependence distance is larger
1343eac89d73SDorit Nuzman /// than the range that the accesses will travel through the execution of
1344eac89d73SDorit Nuzman /// the loop. If so, return true; false otherwise. This is useful for
1345eac89d73SDorit Nuzman /// example in loops such as the following (PR31098):
1346eac89d73SDorit Nuzman ///     for (i = 0; i < D; ++i) {
1347eac89d73SDorit Nuzman ///                = out[i];
1348eac89d73SDorit Nuzman ///       out[i+D] =
1349eac89d73SDorit Nuzman ///     }
1350eac89d73SDorit Nuzman static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1351eac89d73SDorit Nuzman                                      const SCEV &BackedgeTakenCount,
1352eac89d73SDorit Nuzman                                      const SCEV &Dist, uint64_t Stride,
1353eac89d73SDorit Nuzman                                      uint64_t TypeByteSize) {
1354eac89d73SDorit Nuzman 
1355eac89d73SDorit Nuzman   // If we can prove that
1356eac89d73SDorit Nuzman   //      (**) |Dist| > BackedgeTakenCount * Step
1357eac89d73SDorit Nuzman   // where Step is the absolute stride of the memory accesses in bytes,
1358eac89d73SDorit Nuzman   // then there is no dependence.
1359eac89d73SDorit Nuzman   //
1360c437f310SHiroshi Inoue   // Rationale:
1361eac89d73SDorit Nuzman   // We basically want to check if the absolute distance (|Dist/Step|)
1362eac89d73SDorit Nuzman   // is >= the loop iteration count (or > BackedgeTakenCount).
1363eac89d73SDorit Nuzman   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1364eac89d73SDorit Nuzman   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1365eac89d73SDorit Nuzman   // that the dependence distance is >= VF; This is checked elsewhere.
1366eac89d73SDorit Nuzman   // But in some cases we can prune unknown dependence distances early, and
1367eac89d73SDorit Nuzman   // even before selecting the VF, and without a runtime test, by comparing
1368eac89d73SDorit Nuzman   // the distance against the loop iteration count. Since the vectorized code
1369eac89d73SDorit Nuzman   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1370eac89d73SDorit Nuzman   // also guarantees that distance >= VF.
1371eac89d73SDorit Nuzman   //
1372eac89d73SDorit Nuzman   const uint64_t ByteStride = Stride * TypeByteSize;
1373eac89d73SDorit Nuzman   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1374eac89d73SDorit Nuzman   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1375eac89d73SDorit Nuzman 
1376eac89d73SDorit Nuzman   const SCEV *CastedDist = &Dist;
1377eac89d73SDorit Nuzman   const SCEV *CastedProduct = Product;
1378eac89d73SDorit Nuzman   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1379eac89d73SDorit Nuzman   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1380eac89d73SDorit Nuzman 
1381eac89d73SDorit Nuzman   // The dependence distance can be positive/negative, so we sign extend Dist;
1382eac89d73SDorit Nuzman   // The multiplication of the absolute stride in bytes and the
1383c437f310SHiroshi Inoue   // backedgeTakenCount is non-negative, so we zero extend Product.
1384eac89d73SDorit Nuzman   if (DistTypeSize > ProductTypeSize)
1385eac89d73SDorit Nuzman     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1386eac89d73SDorit Nuzman   else
1387eac89d73SDorit Nuzman     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1388eac89d73SDorit Nuzman 
1389eac89d73SDorit Nuzman   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1390eac89d73SDorit Nuzman   // (If so, then we have proven (**) because |Dist| >= Dist)
1391eac89d73SDorit Nuzman   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1392eac89d73SDorit Nuzman   if (SE.isKnownPositive(Minus))
1393eac89d73SDorit Nuzman     return true;
1394eac89d73SDorit Nuzman 
1395eac89d73SDorit Nuzman   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1396eac89d73SDorit Nuzman   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1397eac89d73SDorit Nuzman   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1398eac89d73SDorit Nuzman   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1399eac89d73SDorit Nuzman   if (SE.isKnownPositive(Minus))
1400eac89d73SDorit Nuzman     return true;
1401eac89d73SDorit Nuzman 
1402eac89d73SDorit Nuzman   return false;
1403eac89d73SDorit Nuzman }
1404eac89d73SDorit Nuzman 
14055f8f34e4SAdrian Prantl /// Check the dependence for two accesses with the same stride \p Stride.
1406751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in
1407751004a6SHao Liu /// bytes.
1408751004a6SHao Liu ///
1409751004a6SHao Liu /// \returns true if they are independent.
14107afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
14117afb46d3SDavid Majnemer                                           uint64_t TypeByteSize) {
1412751004a6SHao Liu   assert(Stride > 1 && "The stride must be greater than 1");
1413751004a6SHao Liu   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1414751004a6SHao Liu   assert(Distance > 0 && "The distance must be non-zero");
1415751004a6SHao Liu 
1416751004a6SHao Liu   // Skip if the distance is not multiple of type byte size.
1417751004a6SHao Liu   if (Distance % TypeByteSize)
1418751004a6SHao Liu     return false;
1419751004a6SHao Liu 
14207afb46d3SDavid Majnemer   uint64_t ScaledDist = Distance / TypeByteSize;
1421751004a6SHao Liu 
1422751004a6SHao Liu   // No dependence if the scaled distance is not multiple of the stride.
1423751004a6SHao Liu   // E.g.
1424751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 4)
1425751004a6SHao Liu   //        A[i+2] = A[i] + 1;
1426751004a6SHao Liu   //
1427751004a6SHao Liu   // Two accesses in memory (scaled distance is 2, stride is 4):
1428751004a6SHao Liu   //     | A[0] |      |      |      | A[4] |      |      |      |
1429751004a6SHao Liu   //     |      |      | A[2] |      |      |      | A[6] |      |
1430751004a6SHao Liu   //
1431751004a6SHao Liu   // E.g.
1432751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 3)
1433751004a6SHao Liu   //        A[i+4] = A[i] + 1;
1434751004a6SHao Liu   //
1435751004a6SHao Liu   // Two accesses in memory (scaled distance is 4, stride is 3):
1436751004a6SHao Liu   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1437751004a6SHao Liu   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1438751004a6SHao Liu   return ScaledDist % Stride;
1439751004a6SHao Liu }
1440751004a6SHao Liu 
14419c926579SAdam Nemet MemoryDepChecker::Dependence::DepType
14429c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
14430456327cSAdam Nemet                               const MemAccessInfo &B, unsigned BIdx,
14448bc61df9SAdam Nemet                               const ValueToValueMap &Strides) {
14450456327cSAdam Nemet   assert (AIdx < BIdx && "Must pass arguments in program order");
14460456327cSAdam Nemet 
14470456327cSAdam Nemet   Value *APtr = A.getPointer();
14480456327cSAdam Nemet   Value *BPtr = B.getPointer();
14490456327cSAdam Nemet   bool AIsWrite = A.getInt();
14500456327cSAdam Nemet   bool BIsWrite = B.getInt();
14510456327cSAdam Nemet 
14520456327cSAdam Nemet   // Two reads are independent.
14530456327cSAdam Nemet   if (!AIsWrite && !BIsWrite)
14549c926579SAdam Nemet     return Dependence::NoDep;
14550456327cSAdam Nemet 
14560456327cSAdam Nemet   // We cannot check pointers in different address spaces.
14570456327cSAdam Nemet   if (APtr->getType()->getPointerAddressSpace() !=
14580456327cSAdam Nemet       BPtr->getType()->getPointerAddressSpace())
14599c926579SAdam Nemet     return Dependence::Unknown;
14600456327cSAdam Nemet 
14617afb46d3SDavid Majnemer   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
14627afb46d3SDavid Majnemer   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
14630456327cSAdam Nemet 
1464adf4b739SSilviu Baranga   const SCEV *Src = PSE.getSCEV(APtr);
1465adf4b739SSilviu Baranga   const SCEV *Sink = PSE.getSCEV(BPtr);
14660456327cSAdam Nemet 
14670456327cSAdam Nemet   // If the induction step is negative we have to invert source and sink of the
14680456327cSAdam Nemet   // dependence.
14690456327cSAdam Nemet   if (StrideAPtr < 0) {
14700456327cSAdam Nemet     std::swap(APtr, BPtr);
14710456327cSAdam Nemet     std::swap(Src, Sink);
14720456327cSAdam Nemet     std::swap(AIsWrite, BIsWrite);
14730456327cSAdam Nemet     std::swap(AIdx, BIdx);
14740456327cSAdam Nemet     std::swap(StrideAPtr, StrideBPtr);
14750456327cSAdam Nemet   }
14760456327cSAdam Nemet 
14779cd9a7e3SSilviu Baranga   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
14780456327cSAdam Nemet 
1479d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
14800456327cSAdam Nemet                     << "(Induction step: " << StrideAPtr << ")\n");
1481d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
14820456327cSAdam Nemet                     << *InstMap[BIdx] << ": " << *Dist << "\n");
14830456327cSAdam Nemet 
1484943befedSAdam Nemet   // Need accesses with constant stride. We don't want to vectorize
14850456327cSAdam Nemet   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
14860456327cSAdam Nemet   // the address space.
14870456327cSAdam Nemet   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1488d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
14899c926579SAdam Nemet     return Dependence::Unknown;
14900456327cSAdam Nemet   }
14910456327cSAdam Nemet 
1492eac89d73SDorit Nuzman   Type *ATy = APtr->getType()->getPointerElementType();
1493eac89d73SDorit Nuzman   Type *BTy = BPtr->getType()->getPointerElementType();
1494eac89d73SDorit Nuzman   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1495eac89d73SDorit Nuzman   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1496eac89d73SDorit Nuzman   uint64_t Stride = std::abs(StrideAPtr);
14970456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
14980456327cSAdam Nemet   if (!C) {
1499eac89d73SDorit Nuzman     if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1500eac89d73SDorit Nuzman         isSafeDependenceDistance(DL, *(PSE.getSE()),
1501eac89d73SDorit Nuzman                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1502eac89d73SDorit Nuzman                                  TypeByteSize))
1503eac89d73SDorit Nuzman       return Dependence::NoDep;
1504eac89d73SDorit Nuzman 
1505d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1506ef307b8cSFlorian Hahn     FoundNonConstantDistanceDependence = true;
15079c926579SAdam Nemet     return Dependence::Unknown;
15080456327cSAdam Nemet   }
15090456327cSAdam Nemet 
15100de2feceSSanjoy Das   const APInt &Val = C->getAPInt();
15116feebe98SMatthew Simpson   int64_t Distance = Val.getSExtValue();
15126feebe98SMatthew Simpson 
15136feebe98SMatthew Simpson   // Attempt to prove strided accesses independent.
15146feebe98SMatthew Simpson   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
15156feebe98SMatthew Simpson       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1516d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
15176feebe98SMatthew Simpson     return Dependence::NoDep;
15186feebe98SMatthew Simpson   }
15196feebe98SMatthew Simpson 
15206feebe98SMatthew Simpson   // Negative distances are not plausible dependencies.
15210456327cSAdam Nemet   if (Val.isNegative()) {
15220456327cSAdam Nemet     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
152337ec5f91SMatthew Simpson     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
15240456327cSAdam Nemet         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1525b8486e5aSAdam Nemet          ATy != BTy)) {
1526d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
15279c926579SAdam Nemet       return Dependence::ForwardButPreventsForwarding;
1528b8486e5aSAdam Nemet     }
15290456327cSAdam Nemet 
1530d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
15319c926579SAdam Nemet     return Dependence::Forward;
15320456327cSAdam Nemet   }
15330456327cSAdam Nemet 
15340456327cSAdam Nemet   // Write to the same location with the same size.
15350456327cSAdam Nemet   // Could be improved to assert type sizes are the same (i32 == float, etc).
15360456327cSAdam Nemet   if (Val == 0) {
15370456327cSAdam Nemet     if (ATy == BTy)
1538d7037c56SAdam Nemet       return Dependence::Forward;
1539d34e60caSNicola Zaghen     LLVM_DEBUG(
1540d34e60caSNicola Zaghen         dbgs() << "LAA: Zero dependence difference but different types\n");
15419c926579SAdam Nemet     return Dependence::Unknown;
15420456327cSAdam Nemet   }
15430456327cSAdam Nemet 
15440456327cSAdam Nemet   assert(Val.isStrictlyPositive() && "Expect a positive value");
15450456327cSAdam Nemet 
15460456327cSAdam Nemet   if (ATy != BTy) {
1547d34e60caSNicola Zaghen     LLVM_DEBUG(
1548d34e60caSNicola Zaghen         dbgs()
1549d34e60caSNicola Zaghen         << "LAA: ReadWrite-Write positive dependency with different types\n");
15509c926579SAdam Nemet     return Dependence::Unknown;
15510456327cSAdam Nemet   }
15520456327cSAdam Nemet 
15530456327cSAdam Nemet   // Bail out early if passed-in parameters make vectorization not feasible.
1554f219c647SAdam Nemet   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1555f219c647SAdam Nemet                            VectorizerParams::VectorizationFactor : 1);
1556f219c647SAdam Nemet   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1557f219c647SAdam Nemet                            VectorizerParams::VectorizationInterleave : 1);
1558751004a6SHao Liu   // The minimum number of iterations for a vectorized/unrolled version.
1559751004a6SHao Liu   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
15600456327cSAdam Nemet 
1561751004a6SHao Liu   // It's not vectorizable if the distance is smaller than the minimum distance
1562751004a6SHao Liu   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1563751004a6SHao Liu   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1564751004a6SHao Liu   // TypeByteSize (No need to plus the last gap distance).
1565751004a6SHao Liu   //
1566751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1567751004a6SHao Liu   //      foo(int *A) {
1568751004a6SHao Liu   //        int *B = (int *)((char *)A + 14);
1569751004a6SHao Liu   //        for (i = 0 ; i < 1024 ; i += 2)
1570751004a6SHao Liu   //          B[i] = A[i] + 1;
1571751004a6SHao Liu   //      }
1572751004a6SHao Liu   //
1573751004a6SHao Liu   // Two accesses in memory (stride is 2):
1574751004a6SHao Liu   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1575751004a6SHao Liu   //                              | B[0] |      | B[2] |      | B[4] |
1576751004a6SHao Liu   //
1577751004a6SHao Liu   // Distance needs for vectorizing iterations except the last iteration:
1578751004a6SHao Liu   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1579751004a6SHao Liu   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1580751004a6SHao Liu   //
1581751004a6SHao Liu   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1582751004a6SHao Liu   // 12, which is less than distance.
1583751004a6SHao Liu   //
1584751004a6SHao Liu   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1585751004a6SHao Liu   // the minimum distance needed is 28, which is greater than distance. It is
1586751004a6SHao Liu   // not safe to do vectorization.
15877afb46d3SDavid Majnemer   uint64_t MinDistanceNeeded =
1588751004a6SHao Liu       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
15897afb46d3SDavid Majnemer   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1590d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1591d34e60caSNicola Zaghen                       << Distance << '\n');
1592751004a6SHao Liu     return Dependence::Backward;
1593751004a6SHao Liu   }
1594751004a6SHao Liu 
1595751004a6SHao Liu   // Unsafe if the minimum distance needed is greater than max safe distance.
1596751004a6SHao Liu   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1597d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1598751004a6SHao Liu                       << MinDistanceNeeded << " size in bytes");
15999c926579SAdam Nemet     return Dependence::Backward;
16000456327cSAdam Nemet   }
16010456327cSAdam Nemet 
16029cc0c399SAdam Nemet   // Positive distance bigger than max vectorization factor.
1603751004a6SHao Liu   // FIXME: Should use max factor instead of max distance in bytes, which could
1604751004a6SHao Liu   // not handle different types.
1605751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1606751004a6SHao Liu   //      void foo (int *A, char *B) {
1607751004a6SHao Liu   //        for (unsigned i = 0; i < 1024; i++) {
1608751004a6SHao Liu   //          A[i+2] = A[i] + 1;
1609751004a6SHao Liu   //          B[i+2] = B[i] + 1;
1610751004a6SHao Liu   //        }
1611751004a6SHao Liu   //      }
1612751004a6SHao Liu   //
1613751004a6SHao Liu   // This case is currently unsafe according to the max safe distance. If we
1614751004a6SHao Liu   // analyze the two accesses on array B, the max safe dependence distance
1615751004a6SHao Liu   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1616751004a6SHao Liu   // is 8, which is less than 2 and forbidden vectorization, But actually
1617751004a6SHao Liu   // both A and B could be vectorized by 2 iterations.
1618751004a6SHao Liu   MaxSafeDepDistBytes =
16197afb46d3SDavid Majnemer       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
16200456327cSAdam Nemet 
16210456327cSAdam Nemet   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
162237ec5f91SMatthew Simpson   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
16230456327cSAdam Nemet       couldPreventStoreLoadForward(Distance, TypeByteSize))
16249c926579SAdam Nemet     return Dependence::BackwardVectorizableButPreventsForwarding;
16250456327cSAdam Nemet 
1626682cfc1dSAlon Kom   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1627d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1628682cfc1dSAlon Kom                     << " with max VF = " << MaxVF << '\n');
1629682cfc1dSAlon Kom   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1630682cfc1dSAlon Kom   MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
16319c926579SAdam Nemet   return Dependence::BackwardVectorizable;
16320456327cSAdam Nemet }
16330456327cSAdam Nemet 
1634dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
16355448e989SAmjad Aboud                                    MemAccessInfoList &CheckDeps,
16368bc61df9SAdam Nemet                                    const ValueToValueMap &Strides) {
16370456327cSAdam Nemet 
16387afb46d3SDavid Majnemer   MaxSafeDepDistBytes = -1;
16395448e989SAmjad Aboud   SmallPtrSet<MemAccessInfo, 8> Visited;
16405448e989SAmjad Aboud   for (MemAccessInfo CurAccess : CheckDeps) {
16415448e989SAmjad Aboud     if (Visited.count(CurAccess))
16425448e989SAmjad Aboud       continue;
16430456327cSAdam Nemet 
16440456327cSAdam Nemet     // Get the relevant memory access set.
16450456327cSAdam Nemet     EquivalenceClasses<MemAccessInfo>::iterator I =
16460456327cSAdam Nemet       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
16470456327cSAdam Nemet 
16480456327cSAdam Nemet     // Check accesses within this set.
16497a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
16507a083814SRichard Trieu         AccessSets.member_begin(I);
16517a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
16527a083814SRichard Trieu         AccessSets.member_end();
16530456327cSAdam Nemet 
16540456327cSAdam Nemet     // Check every access pair.
16550456327cSAdam Nemet     while (AI != AE) {
16565448e989SAmjad Aboud       Visited.insert(*AI);
165709fac245SHideki Saito       bool AIIsWrite = AI->getInt();
165809fac245SHideki Saito       // Check loads only against next equivalent class, but stores also against
165909fac245SHideki Saito       // other stores in the same equivalence class - to the same address.
166009fac245SHideki Saito       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
166109fac245SHideki Saito           (AIIsWrite ? AI : std::next(AI));
16620456327cSAdam Nemet       while (OI != AE) {
16630456327cSAdam Nemet         // Check every accessing instruction pair in program order.
16640456327cSAdam Nemet         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
16650456327cSAdam Nemet              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
166609fac245SHideki Saito           // Scan all accesses of another equivalence class, but only the next
166709fac245SHideki Saito           // accesses of the same equivalent class.
166809fac245SHideki Saito           for (std::vector<unsigned>::iterator
166909fac245SHideki Saito                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
167009fac245SHideki Saito                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
167109fac245SHideki Saito                I2 != I2E; ++I2) {
16729c926579SAdam Nemet             auto A = std::make_pair(&*AI, *I1);
16739c926579SAdam Nemet             auto B = std::make_pair(&*OI, *I2);
16749c926579SAdam Nemet 
16759c926579SAdam Nemet             assert(*I1 != *I2);
16769c926579SAdam Nemet             if (*I1 > *I2)
16779c926579SAdam Nemet               std::swap(A, B);
16789c926579SAdam Nemet 
16799c926579SAdam Nemet             Dependence::DepType Type =
16809c926579SAdam Nemet                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1681485f2826SFlorian Hahn             mergeInStatus(Dependence::isSafeForVectorization(Type));
16829c926579SAdam Nemet 
1683a2df750fSAdam Nemet             // Gather dependences unless we accumulated MaxDependences
16849c926579SAdam Nemet             // dependences.  In that case return as soon as we find the first
16859c926579SAdam Nemet             // unsafe dependence.  This puts a limit on this quadratic
16869c926579SAdam Nemet             // algorithm.
1687a2df750fSAdam Nemet             if (RecordDependences) {
1688a2df750fSAdam Nemet               if (Type != Dependence::NoDep)
1689a2df750fSAdam Nemet                 Dependences.push_back(Dependence(A.second, B.second, Type));
16909c926579SAdam Nemet 
1691a2df750fSAdam Nemet               if (Dependences.size() >= MaxDependences) {
1692a2df750fSAdam Nemet                 RecordDependences = false;
1693a2df750fSAdam Nemet                 Dependences.clear();
1694d34e60caSNicola Zaghen                 LLVM_DEBUG(dbgs()
1695d34e60caSNicola Zaghen                            << "Too many dependences, stopped recording\n");
16969c926579SAdam Nemet               }
16979c926579SAdam Nemet             }
1698485f2826SFlorian Hahn             if (!RecordDependences && !isSafeForVectorization())
16990456327cSAdam Nemet               return false;
17000456327cSAdam Nemet           }
17010456327cSAdam Nemet         ++OI;
17020456327cSAdam Nemet       }
17030456327cSAdam Nemet       AI++;
17040456327cSAdam Nemet     }
17050456327cSAdam Nemet   }
17069c926579SAdam Nemet 
1707d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1708485f2826SFlorian Hahn   return isSafeForVectorization();
17090456327cSAdam Nemet }
17100456327cSAdam Nemet 
1711ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4>
1712ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1713ec1e2bb6SAdam Nemet   MemAccessInfo Access(Ptr, isWrite);
1714ec1e2bb6SAdam Nemet   auto &IndexVector = Accesses.find(Access)->second;
1715ec1e2bb6SAdam Nemet 
1716ec1e2bb6SAdam Nemet   SmallVector<Instruction *, 4> Insts;
17172d006e76SDavid Majnemer   transform(IndexVector,
1718ec1e2bb6SAdam Nemet                  std::back_inserter(Insts),
1719ec1e2bb6SAdam Nemet                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1720ec1e2bb6SAdam Nemet   return Insts;
1721ec1e2bb6SAdam Nemet }
1722ec1e2bb6SAdam Nemet 
172358913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = {
172458913d65SAdam Nemet     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
172558913d65SAdam Nemet     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
172658913d65SAdam Nemet 
172758913d65SAdam Nemet void MemoryDepChecker::Dependence::print(
172858913d65SAdam Nemet     raw_ostream &OS, unsigned Depth,
172958913d65SAdam Nemet     const SmallVectorImpl<Instruction *> &Instrs) const {
173058913d65SAdam Nemet   OS.indent(Depth) << DepName[Type] << ":\n";
173158913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
173258913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
173358913d65SAdam Nemet }
173458913d65SAdam Nemet 
1735929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() {
17368dcb3b6aSAdam Nemet   // We need to have a loop header.
1737d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1738d8968f09SAdam Nemet                     << TheLoop->getHeader()->getParent()->getName() << ": "
1739d8968f09SAdam Nemet                     << TheLoop->getHeader()->getName() << '\n');
17408dcb3b6aSAdam Nemet 
1741929c38e8SAdam Nemet   // We can only analyze innermost loops.
1742929c38e8SAdam Nemet   if (!TheLoop->empty()) {
1743d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1744877ccee8SAdam Nemet     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1745929c38e8SAdam Nemet     return false;
1746929c38e8SAdam Nemet   }
1747929c38e8SAdam Nemet 
1748929c38e8SAdam Nemet   // We must have a single backedge.
1749929c38e8SAdam Nemet   if (TheLoop->getNumBackEdges() != 1) {
1750d34e60caSNicola Zaghen     LLVM_DEBUG(
1751d34e60caSNicola Zaghen         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1752877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1753877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1754929c38e8SAdam Nemet     return false;
1755929c38e8SAdam Nemet   }
1756929c38e8SAdam Nemet 
1757929c38e8SAdam Nemet   // We must have a single exiting block.
1758929c38e8SAdam Nemet   if (!TheLoop->getExitingBlock()) {
1759d34e60caSNicola Zaghen     LLVM_DEBUG(
1760d34e60caSNicola Zaghen         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1761877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1762877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1763929c38e8SAdam Nemet     return false;
1764929c38e8SAdam Nemet   }
1765929c38e8SAdam Nemet 
1766929c38e8SAdam Nemet   // We only handle bottom-tested loops, i.e. loop in which the condition is
1767929c38e8SAdam Nemet   // checked at the end of each iteration. With that we can assume that all
1768929c38e8SAdam Nemet   // instructions in the loop are executed the same number of times.
1769929c38e8SAdam Nemet   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1770d34e60caSNicola Zaghen     LLVM_DEBUG(
1771d34e60caSNicola Zaghen         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1772877ccee8SAdam Nemet     recordAnalysis("CFGNotUnderstood")
1773877ccee8SAdam Nemet         << "loop control flow is not understood by analyzer";
1774929c38e8SAdam Nemet     return false;
1775929c38e8SAdam Nemet   }
1776929c38e8SAdam Nemet 
1777929c38e8SAdam Nemet   // ScalarEvolution needs to be able to find the exit count.
177894734eefSXinliang David Li   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
177994734eefSXinliang David Li   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1780877ccee8SAdam Nemet     recordAnalysis("CantComputeNumberOfIterations")
1781877ccee8SAdam Nemet         << "could not determine number of loop iterations";
1782d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1783929c38e8SAdam Nemet     return false;
1784929c38e8SAdam Nemet   }
1785929c38e8SAdam Nemet 
1786929c38e8SAdam Nemet   return true;
1787929c38e8SAdam Nemet }
1788929c38e8SAdam Nemet 
1789b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
17907da74abfSAdam Nemet                                  const TargetLibraryInfo *TLI,
17917da74abfSAdam Nemet                                  DominatorTree *DT) {
17920456327cSAdam Nemet   typedef SmallPtrSet<Value*, 16> ValueSet;
17930456327cSAdam Nemet 
1794e3e3b994SMatthew Simpson   // Holds the Load and Store instructions.
1795e3e3b994SMatthew Simpson   SmallVector<LoadInst *, 16> Loads;
1796e3e3b994SMatthew Simpson   SmallVector<StoreInst *, 16> Stores;
17970456327cSAdam Nemet 
17980456327cSAdam Nemet   // Holds all the different accesses in the loop.
17990456327cSAdam Nemet   unsigned NumReads = 0;
18000456327cSAdam Nemet   unsigned NumReadWrites = 0;
18010456327cSAdam Nemet 
18022466ba97SMatt Arsenault   bool HasComplexMemInst = false;
18032466ba97SMatt Arsenault 
18042466ba97SMatt Arsenault   // A runtime check is only legal to insert if there are no convergent calls.
18052466ba97SMatt Arsenault   HasConvergentOp = false;
18062466ba97SMatt Arsenault 
1807ce030acbSXinliang David Li   PtrRtChecking->Pointers.clear();
1808ce030acbSXinliang David Li   PtrRtChecking->Need = false;
18090456327cSAdam Nemet 
18100456327cSAdam Nemet   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
18110456327cSAdam Nemet 
18120456327cSAdam Nemet   // For each block.
18138b401013SDavid Majnemer   for (BasicBlock *BB : TheLoop->blocks()) {
18142466ba97SMatt Arsenault     // Scan the BB and collect legal loads and stores. Also detect any
18152466ba97SMatt Arsenault     // convergent instructions.
18168b401013SDavid Majnemer     for (Instruction &I : *BB) {
18172466ba97SMatt Arsenault       if (auto *Call = dyn_cast<CallBase>(&I)) {
18182466ba97SMatt Arsenault         if (Call->isConvergent())
18192466ba97SMatt Arsenault           HasConvergentOp = true;
18202466ba97SMatt Arsenault       }
18212466ba97SMatt Arsenault 
18222466ba97SMatt Arsenault       // With both a non-vectorizable memory instruction and a convergent
18232466ba97SMatt Arsenault       // operation, found in this loop, no reason to continue the search.
18242466ba97SMatt Arsenault       if (HasComplexMemInst && HasConvergentOp) {
18252466ba97SMatt Arsenault         CanVecMem = false;
18262466ba97SMatt Arsenault         return;
18272466ba97SMatt Arsenault       }
18282466ba97SMatt Arsenault 
18292466ba97SMatt Arsenault       // Avoid hitting recordAnalysis multiple times.
18302466ba97SMatt Arsenault       if (HasComplexMemInst)
18312466ba97SMatt Arsenault         continue;
18322466ba97SMatt Arsenault 
18330456327cSAdam Nemet       // If this is a load, save it. If this instruction can read from memory
18340456327cSAdam Nemet       // but is not a load, then we quit. Notice that we don't handle function
18350456327cSAdam Nemet       // calls that read or write.
18368b401013SDavid Majnemer       if (I.mayReadFromMemory()) {
18370456327cSAdam Nemet         // Many math library functions read the rounding mode. We will only
18380456327cSAdam Nemet         // vectorize a loop if it contains known function calls that don't set
18390456327cSAdam Nemet         // the flag. Therefore, it is safe to ignore this read from memory.
18408b401013SDavid Majnemer         auto *Call = dyn_cast<CallInst>(&I);
1841b4b27230SDavid Majnemer         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
18420456327cSAdam Nemet           continue;
18430456327cSAdam Nemet 
18449b3cf604SMichael Zolotukhin         // If the function has an explicit vectorized counterpart, we can safely
18459b3cf604SMichael Zolotukhin         // assume that it can be vectorized.
18469b3cf604SMichael Zolotukhin         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
18479b3cf604SMichael Zolotukhin             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
18489b3cf604SMichael Zolotukhin           continue;
18499b3cf604SMichael Zolotukhin 
18508b401013SDavid Majnemer         auto *Ld = dyn_cast<LoadInst>(&I);
18512466ba97SMatt Arsenault         if (!Ld) {
18522466ba97SMatt Arsenault           recordAnalysis("CantVectorizeInstruction", Ld)
18532466ba97SMatt Arsenault             << "instruction cannot be vectorized";
18542466ba97SMatt Arsenault           HasComplexMemInst = true;
18552466ba97SMatt Arsenault           continue;
18562466ba97SMatt Arsenault         }
18572466ba97SMatt Arsenault         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1858877ccee8SAdam Nemet           recordAnalysis("NonSimpleLoad", Ld)
1859877ccee8SAdam Nemet               << "read with atomic ordering or volatile read";
1860d34e60caSNicola Zaghen           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
18612466ba97SMatt Arsenault           HasComplexMemInst = true;
18622466ba97SMatt Arsenault           continue;
18630456327cSAdam Nemet         }
18640456327cSAdam Nemet         NumLoads++;
18650456327cSAdam Nemet         Loads.push_back(Ld);
1866ce030acbSXinliang David Li         DepChecker->addAccess(Ld);
1867a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1868c953bb99SAdam Nemet           collectStridedAccess(Ld);
18690456327cSAdam Nemet         continue;
18700456327cSAdam Nemet       }
18710456327cSAdam Nemet 
18720456327cSAdam Nemet       // Save 'store' instructions. Abort if other instructions write to memory.
18738b401013SDavid Majnemer       if (I.mayWriteToMemory()) {
18748b401013SDavid Majnemer         auto *St = dyn_cast<StoreInst>(&I);
18750456327cSAdam Nemet         if (!St) {
1876877ccee8SAdam Nemet           recordAnalysis("CantVectorizeInstruction", St)
1877877ccee8SAdam Nemet               << "instruction cannot be vectorized";
18782466ba97SMatt Arsenault           HasComplexMemInst = true;
18792466ba97SMatt Arsenault           continue;
18800456327cSAdam Nemet         }
18810456327cSAdam Nemet         if (!St->isSimple() && !IsAnnotatedParallel) {
1882877ccee8SAdam Nemet           recordAnalysis("NonSimpleStore", St)
1883877ccee8SAdam Nemet               << "write with atomic ordering or volatile write";
1884d34e60caSNicola Zaghen           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
18852466ba97SMatt Arsenault           HasComplexMemInst = true;
18862466ba97SMatt Arsenault           continue;
18870456327cSAdam Nemet         }
18880456327cSAdam Nemet         NumStores++;
18890456327cSAdam Nemet         Stores.push_back(St);
1890ce030acbSXinliang David Li         DepChecker->addAccess(St);
1891a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1892c953bb99SAdam Nemet           collectStridedAccess(St);
18930456327cSAdam Nemet       }
18940456327cSAdam Nemet     } // Next instr.
18950456327cSAdam Nemet   } // Next block.
18960456327cSAdam Nemet 
18972466ba97SMatt Arsenault   if (HasComplexMemInst) {
18982466ba97SMatt Arsenault     CanVecMem = false;
18992466ba97SMatt Arsenault     return;
19002466ba97SMatt Arsenault   }
19012466ba97SMatt Arsenault 
19020456327cSAdam Nemet   // Now we have two lists that hold the loads and the stores.
19030456327cSAdam Nemet   // Next, we find the pointers that they use.
19040456327cSAdam Nemet 
19050456327cSAdam Nemet   // Check if we see any stores. If there are no stores, then we don't
19060456327cSAdam Nemet   // care if the pointers are *restrict*.
19070456327cSAdam Nemet   if (!Stores.size()) {
1908d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1909436018c3SAdam Nemet     CanVecMem = true;
1910436018c3SAdam Nemet     return;
19110456327cSAdam Nemet   }
19120456327cSAdam Nemet 
1913dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates DependentAccesses;
1914a28d91d8SMehdi Amini   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
191577eeac3dSManoj Gupta                           TheLoop, AA, LI, DependentAccesses, *PSE);
19160456327cSAdam Nemet 
19170456327cSAdam Nemet   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
19180456327cSAdam Nemet   // multiple times on the same object. If the ptr is accessed twice, once
19190456327cSAdam Nemet   // for read and once for write, it will only appear once (on the write
19200456327cSAdam Nemet   // list). This is okay, since we are going to check for conflicts between
19210456327cSAdam Nemet   // writes and between reads and writes, but not between reads and reads.
19220456327cSAdam Nemet   ValueSet Seen;
19230456327cSAdam Nemet 
1924b1e3d453SAnna Thomas   // Record uniform store addresses to identify if we have multiple stores
1925b1e3d453SAnna Thomas   // to the same address.
1926b1e3d453SAnna Thomas   ValueSet UniformStores;
1927b1e3d453SAnna Thomas 
1928e3e3b994SMatthew Simpson   for (StoreInst *ST : Stores) {
19290456327cSAdam Nemet     Value *Ptr = ST->getPointerOperand();
1930b1e3d453SAnna Thomas 
19316f732bfbSAnna Thomas     if (isUniform(Ptr))
19325e9215f0SAnna Thomas       HasDependenceInvolvingLoopInvariantAddress |=
19336f732bfbSAnna Thomas           !UniformStores.insert(Ptr).second;
1934b1e3d453SAnna Thomas 
19350456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to  the read-write
19360456327cSAdam Nemet     // list. At this phase it is only a 'write' list.
19370456327cSAdam Nemet     if (Seen.insert(Ptr).second) {
19380456327cSAdam Nemet       ++NumReadWrites;
19390456327cSAdam Nemet 
1940ac80dc75SChandler Carruth       MemoryLocation Loc = MemoryLocation::get(ST);
19410456327cSAdam Nemet       // The TBAA metadata could have a control dependency on the predication
19420456327cSAdam Nemet       // condition, so we cannot rely on it when determining whether or not we
19430456327cSAdam Nemet       // need runtime pointer checks.
194401abb2c3SAdam Nemet       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
19450456327cSAdam Nemet         Loc.AATags.TBAA = nullptr;
19460456327cSAdam Nemet 
19470456327cSAdam Nemet       Accesses.addStore(Loc);
19480456327cSAdam Nemet     }
19490456327cSAdam Nemet   }
19500456327cSAdam Nemet 
19510456327cSAdam Nemet   if (IsAnnotatedParallel) {
1952d34e60caSNicola Zaghen     LLVM_DEBUG(
1953d34e60caSNicola Zaghen         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
19540456327cSAdam Nemet                << "checks.\n");
1955436018c3SAdam Nemet     CanVecMem = true;
1956436018c3SAdam Nemet     return;
19570456327cSAdam Nemet   }
19580456327cSAdam Nemet 
1959e3e3b994SMatthew Simpson   for (LoadInst *LD : Loads) {
19600456327cSAdam Nemet     Value *Ptr = LD->getPointerOperand();
19610456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to the
19620456327cSAdam Nemet     // read list. If we *did* see it before, then it is already in
19630456327cSAdam Nemet     // the read-write list. This allows us to vectorize expressions
19640456327cSAdam Nemet     // such as A[i] += x;  Because the address of A[i] is a read-write
19650456327cSAdam Nemet     // pointer. This only works if the index of A[i] is consecutive.
19660456327cSAdam Nemet     // If the address of i is unknown (for example A[B[i]]) then we may
19670456327cSAdam Nemet     // read a few words, modify, and write a few words, and some of the
19680456327cSAdam Nemet     // words may be written to the same address.
19690456327cSAdam Nemet     bool IsReadOnlyPtr = false;
1970139ffba3SAdam Nemet     if (Seen.insert(Ptr).second ||
197194734eefSXinliang David Li         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
19720456327cSAdam Nemet       ++NumReads;
19730456327cSAdam Nemet       IsReadOnlyPtr = true;
19740456327cSAdam Nemet     }
19750456327cSAdam Nemet 
19765e9215f0SAnna Thomas     // See if there is an unsafe dependency between a load to a uniform address and
19775e9215f0SAnna Thomas     // store to the same uniform address.
19785e9215f0SAnna Thomas     if (UniformStores.count(Ptr)) {
19795e9215f0SAnna Thomas       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
19805e9215f0SAnna Thomas                            "load and uniform store to the same address!\n");
19815e9215f0SAnna Thomas       HasDependenceInvolvingLoopInvariantAddress = true;
19825e9215f0SAnna Thomas     }
19835e9215f0SAnna Thomas 
1984ac80dc75SChandler Carruth     MemoryLocation Loc = MemoryLocation::get(LD);
19850456327cSAdam Nemet     // The TBAA metadata could have a control dependency on the predication
19860456327cSAdam Nemet     // condition, so we cannot rely on it when determining whether or not we
19870456327cSAdam Nemet     // need runtime pointer checks.
198801abb2c3SAdam Nemet     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
19890456327cSAdam Nemet       Loc.AATags.TBAA = nullptr;
19900456327cSAdam Nemet 
19910456327cSAdam Nemet     Accesses.addLoad(Loc, IsReadOnlyPtr);
19920456327cSAdam Nemet   }
19930456327cSAdam Nemet 
19940456327cSAdam Nemet   // If we write (or read-write) to a single destination and there are no
19950456327cSAdam Nemet   // other reads in this loop then is it safe to vectorize.
19960456327cSAdam Nemet   if (NumReadWrites == 1 && NumReads == 0) {
1997d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1998436018c3SAdam Nemet     CanVecMem = true;
1999436018c3SAdam Nemet     return;
20000456327cSAdam Nemet   }
20010456327cSAdam Nemet 
20020456327cSAdam Nemet   // Build dependence sets and check whether we need a runtime pointer bounds
20030456327cSAdam Nemet   // check.
20040456327cSAdam Nemet   Accesses.buildDependenceSets();
20050456327cSAdam Nemet 
20060456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
20070456327cSAdam Nemet   // to place a runtime bound check.
200894734eefSXinliang David Li   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2009139ffba3SAdam Nemet                                                   TheLoop, SymbolicStrides);
2010ee61474aSAdam Nemet   if (!CanDoRTIfNeeded) {
2011877ccee8SAdam Nemet     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2012d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2013ee61474aSAdam Nemet                       << "the array bounds.\n");
2014436018c3SAdam Nemet     CanVecMem = false;
2015436018c3SAdam Nemet     return;
20160456327cSAdam Nemet   }
20170456327cSAdam Nemet 
2018d34e60caSNicola Zaghen   LLVM_DEBUG(
20192466ba97SMatt Arsenault     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
20200456327cSAdam Nemet 
2021436018c3SAdam Nemet   CanVecMem = true;
20220456327cSAdam Nemet   if (Accesses.isDependencyCheckNeeded()) {
2023d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2024ce030acbSXinliang David Li     CanVecMem = DepChecker->areDepsSafe(
2025139ffba3SAdam Nemet         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2026ce030acbSXinliang David Li     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
20270456327cSAdam Nemet 
2028ce030acbSXinliang David Li     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2029d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
20300456327cSAdam Nemet 
20310456327cSAdam Nemet       // Clear the dependency checks. We assume they are not needed.
2032ce030acbSXinliang David Li       Accesses.resetDepChecks(*DepChecker);
20330456327cSAdam Nemet 
2034ce030acbSXinliang David Li       PtrRtChecking->reset();
2035ce030acbSXinliang David Li       PtrRtChecking->Need = true;
20360456327cSAdam Nemet 
203794734eefSXinliang David Li       auto *SE = PSE->getSE();
2038ce030acbSXinliang David Li       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2039139ffba3SAdam Nemet                                                  SymbolicStrides, true);
204098a13719SSilviu Baranga 
2041949e91a6SAdam Nemet       // Check that we found the bounds for the pointer.
2042ee61474aSAdam Nemet       if (!CanDoRTIfNeeded) {
2043877ccee8SAdam Nemet         recordAnalysis("CantCheckMemDepsAtRunTime")
2044877ccee8SAdam Nemet             << "cannot check memory dependencies at runtime";
2045d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2046b6dc76ffSAdam Nemet         CanVecMem = false;
2047b6dc76ffSAdam Nemet         return;
2048b6dc76ffSAdam Nemet       }
2049b6dc76ffSAdam Nemet 
20500456327cSAdam Nemet       CanVecMem = true;
20510456327cSAdam Nemet     }
20520456327cSAdam Nemet   }
20530456327cSAdam Nemet 
20542466ba97SMatt Arsenault   if (HasConvergentOp) {
20552466ba97SMatt Arsenault     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
20562466ba97SMatt Arsenault       << "cannot add control dependency to convergent operation";
20572466ba97SMatt Arsenault     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
20582466ba97SMatt Arsenault                          "would be needed with a convergent operation\n");
20592466ba97SMatt Arsenault     CanVecMem = false;
20602466ba97SMatt Arsenault     return;
20612466ba97SMatt Arsenault   }
20622466ba97SMatt Arsenault 
20634bb90a71SAdam Nemet   if (CanVecMem)
2064d34e60caSNicola Zaghen     LLVM_DEBUG(
2065d34e60caSNicola Zaghen         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2066ce030acbSXinliang David Li                << (PtrRtChecking->Need ? "" : " don't")
20670f67c6c1SAdam Nemet                << " need runtime memory checks.\n");
20684bb90a71SAdam Nemet   else {
2069877ccee8SAdam Nemet     recordAnalysis("UnsafeMemDep")
20700a77dfadSAdam Nemet         << "unsafe dependent memory operations in loop. Use "
20710a77dfadSAdam Nemet            "#pragma loop distribute(enable) to allow loop distribution "
20720a77dfadSAdam Nemet            "to attempt to isolate the offending operations into a separate "
2073877ccee8SAdam Nemet            "loop";
2074d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
20754bb90a71SAdam Nemet   }
20760456327cSAdam Nemet }
20770456327cSAdam Nemet 
207801abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
207901abb2c3SAdam Nemet                                            DominatorTree *DT)  {
20800456327cSAdam Nemet   assert(TheLoop->contains(BB) && "Unknown block used");
20810456327cSAdam Nemet 
20820456327cSAdam Nemet   // Blocks that do not dominate the latch need predication.
20830456327cSAdam Nemet   BasicBlock* Latch = TheLoop->getLoopLatch();
20840456327cSAdam Nemet   return !DT->dominates(BB, Latch);
20850456327cSAdam Nemet }
20860456327cSAdam Nemet 
2087877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2088877ccee8SAdam Nemet                                                            Instruction *I) {
2089c922853bSAdam Nemet   assert(!Report && "Multiple reports generated");
2090877ccee8SAdam Nemet 
2091877ccee8SAdam Nemet   Value *CodeRegion = TheLoop->getHeader();
2092877ccee8SAdam Nemet   DebugLoc DL = TheLoop->getStartLoc();
2093877ccee8SAdam Nemet 
2094877ccee8SAdam Nemet   if (I) {
2095877ccee8SAdam Nemet     CodeRegion = I->getParent();
2096877ccee8SAdam Nemet     // If there is no debug location attached to the instruction, revert back to
2097877ccee8SAdam Nemet     // using the loop's.
2098877ccee8SAdam Nemet     if (I->getDebugLoc())
2099877ccee8SAdam Nemet       DL = I->getDebugLoc();
2100877ccee8SAdam Nemet   }
2101877ccee8SAdam Nemet 
2102*0eaee545SJonas Devlieghere   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2103877ccee8SAdam Nemet                                                    CodeRegion);
2104877ccee8SAdam Nemet   return *Report;
21050456327cSAdam Nemet }
21060456327cSAdam Nemet 
210757ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const {
21083ceac2bbSMichael Kuperstein   auto *SE = PSE->getSE();
21093ceac2bbSMichael Kuperstein   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
21103ceac2bbSMichael Kuperstein   // never considered uniform.
21113ceac2bbSMichael Kuperstein   // TODO: Is this really what we want? Even without FP SCEV, we may want some
21123ceac2bbSMichael Kuperstein   // trivially loop-invariant FP values to be considered uniform.
21133ceac2bbSMichael Kuperstein   if (!SE->isSCEVable(V->getType()))
21143ceac2bbSMichael Kuperstein     return false;
21153ceac2bbSMichael Kuperstein   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
21160456327cSAdam Nemet }
21177206d7a5SAdam Nemet 
21187206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in
21197206d7a5SAdam Nemet // LoopVectorize.cpp.
21207206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
21217206d7a5SAdam Nemet                                  Instruction *Loc) {
21227206d7a5SAdam Nemet   if (FirstInst)
21237206d7a5SAdam Nemet     return FirstInst;
21247206d7a5SAdam Nemet   if (Instruction *I = dyn_cast<Instruction>(V))
21257206d7a5SAdam Nemet     return I->getParent() == Loc->getParent() ? I : nullptr;
21267206d7a5SAdam Nemet   return nullptr;
21277206d7a5SAdam Nemet }
21287206d7a5SAdam Nemet 
2129039b1042SBenjamin Kramer namespace {
2130a3fe70d2SEugene Zelenko 
21315f8f34e4SAdrian Prantl /// IR Values for the lower and upper bounds of a pointer evolution.  We
21324e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously
21334e533ef7SAdam Nemet /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
21344e533ef7SAdam Nemet /// a previous one.
21351da7df37SAdam Nemet struct PointerBounds {
21364e533ef7SAdam Nemet   TrackingVH<Value> Start;
21374e533ef7SAdam Nemet   TrackingVH<Value> End;
21381da7df37SAdam Nemet };
2139a3fe70d2SEugene Zelenko 
2140039b1042SBenjamin Kramer } // end anonymous namespace
21417206d7a5SAdam Nemet 
21425f8f34e4SAdrian Prantl /// Expand code for the lower and upper bound of the pointer group \p CG
21431da7df37SAdam Nemet /// in \p TheLoop.  \return the values for the bounds.
21441da7df37SAdam Nemet static PointerBounds
21451da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
21461da7df37SAdam Nemet              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
21471da7df37SAdam Nemet              const RuntimePointerChecking &PtrRtChecking) {
21481da7df37SAdam Nemet   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
21497206d7a5SAdam Nemet   const SCEV *Sc = SE->getSCEV(Ptr);
21507206d7a5SAdam Nemet 
21517206d7a5SAdam Nemet   unsigned AS = Ptr->getType()->getPointerAddressSpace();
21521da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
21537206d7a5SAdam Nemet 
21547206d7a5SAdam Nemet   // Use this type for pointer arithmetic.
21557206d7a5SAdam Nemet   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
21567206d7a5SAdam Nemet 
215792f377bdSKeno Fischer   if (SE->isLoopInvariant(Sc, TheLoop)) {
2158d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2159d34e60caSNicola Zaghen                       << *Ptr << "\n");
216092f377bdSKeno Fischer     // Ptr could be in the loop body. If so, expand a new one at the correct
216192f377bdSKeno Fischer     // location.
216292f377bdSKeno Fischer     Instruction *Inst = dyn_cast<Instruction>(Ptr);
216392f377bdSKeno Fischer     Value *NewPtr = (Inst && TheLoop->contains(Inst))
216492f377bdSKeno Fischer                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
216592f377bdSKeno Fischer                         : Ptr;
216637dd4d7aSJames Molloy     // We must return a half-open range, which means incrementing Sc.
216737dd4d7aSJames Molloy     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
216837dd4d7aSJames Molloy     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
216937dd4d7aSJames Molloy     return {NewPtr, NewPtrPlusOne};
217092f377bdSKeno Fischer   } else {
217192f377bdSKeno Fischer     Value *Start = nullptr, *End = nullptr;
2172d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
21731da7df37SAdam Nemet     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
21741da7df37SAdam Nemet     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
2175d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
2176d34e60caSNicola Zaghen                       << "\n");
21771da7df37SAdam Nemet     return {Start, End};
21787206d7a5SAdam Nemet   }
21797206d7a5SAdam Nemet }
21807206d7a5SAdam Nemet 
21815f8f34e4SAdrian Prantl /// Turns a collection of checks into a collection of expanded upper and
21821da7df37SAdam Nemet /// lower bounds for both pointers in the check.
21831da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
21841da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
21851da7df37SAdam Nemet     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
21861da7df37SAdam Nemet     const RuntimePointerChecking &PtrRtChecking) {
21871da7df37SAdam Nemet   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
21881da7df37SAdam Nemet 
21891da7df37SAdam Nemet   // Here we're relying on the SCEV Expander's cache to only emit code for the
21901da7df37SAdam Nemet   // same bounds once.
21912d006e76SDavid Majnemer   transform(
21922d006e76SDavid Majnemer       PointerChecks, std::back_inserter(ChecksWithBounds),
21931da7df37SAdam Nemet       [&](const RuntimePointerChecking::PointerCheck &Check) {
219494abbbd6SNAKAMURA Takumi         PointerBounds
219594abbbd6SNAKAMURA Takumi           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
219694abbbd6SNAKAMURA Takumi           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
219794abbbd6SNAKAMURA Takumi         return std::make_pair(First, Second);
21981da7df37SAdam Nemet       });
21991da7df37SAdam Nemet 
22001da7df37SAdam Nemet   return ChecksWithBounds;
22011da7df37SAdam Nemet }
22021da7df37SAdam Nemet 
22035b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
22041da7df37SAdam Nemet     Instruction *Loc,
22051da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
22061da7df37SAdam Nemet     const {
22071824e411SAdam Nemet   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
220894734eefSXinliang David Li   auto *SE = PSE->getSE();
22091824e411SAdam Nemet   SCEVExpander Exp(*SE, DL, "induction");
22101da7df37SAdam Nemet   auto ExpandedChecks =
2211ce030acbSXinliang David Li       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
22121da7df37SAdam Nemet 
22131da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
22141da7df37SAdam Nemet   Instruction *FirstInst = nullptr;
22157206d7a5SAdam Nemet   IRBuilder<> ChkBuilder(Loc);
22167206d7a5SAdam Nemet   // Our instructions might fold to a constant.
22177206d7a5SAdam Nemet   Value *MemoryRuntimeCheck = nullptr;
22181b6b50a9SSilviu Baranga 
22191da7df37SAdam Nemet   for (const auto &Check : ExpandedChecks) {
22201da7df37SAdam Nemet     const PointerBounds &A = Check.first, &B = Check.second;
2221cdb791cdSAdam Nemet     // Check if two pointers (A and B) conflict where conflict is computed as:
2222cdb791cdSAdam Nemet     // start(A) <= end(B) && start(B) <= end(A)
22231da7df37SAdam Nemet     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
22241da7df37SAdam Nemet     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
22257206d7a5SAdam Nemet 
22261da7df37SAdam Nemet     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
22271da7df37SAdam Nemet            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
22287206d7a5SAdam Nemet            "Trying to bounds check pointers with different address spaces");
22297206d7a5SAdam Nemet 
22307206d7a5SAdam Nemet     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
22317206d7a5SAdam Nemet     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
22327206d7a5SAdam Nemet 
22331da7df37SAdam Nemet     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
22341da7df37SAdam Nemet     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
22351da7df37SAdam Nemet     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
22361da7df37SAdam Nemet     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
22377206d7a5SAdam Nemet 
22383622fbfcSElena Demikhovsky     // [A|B].Start points to the first accessed byte under base [A|B].
22393622fbfcSElena Demikhovsky     // [A|B].End points to the last accessed byte, plus one.
22403622fbfcSElena Demikhovsky     // There is no conflict when the intervals are disjoint:
22413622fbfcSElena Demikhovsky     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
22423622fbfcSElena Demikhovsky     //
22433622fbfcSElena Demikhovsky     // bound0 = (B.Start < A.End)
22443622fbfcSElena Demikhovsky     // bound1 = (A.Start < B.End)
22453622fbfcSElena Demikhovsky     //  IsConflict = bound0 & bound1
22463622fbfcSElena Demikhovsky     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
22477206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
22483622fbfcSElena Demikhovsky     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
22497206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
22507206d7a5SAdam Nemet     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
22517206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
22527206d7a5SAdam Nemet     if (MemoryRuntimeCheck) {
22531da7df37SAdam Nemet       IsConflict =
22541da7df37SAdam Nemet           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
22557206d7a5SAdam Nemet       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
22567206d7a5SAdam Nemet     }
22577206d7a5SAdam Nemet     MemoryRuntimeCheck = IsConflict;
22587206d7a5SAdam Nemet   }
22597206d7a5SAdam Nemet 
226090fec840SAdam Nemet   if (!MemoryRuntimeCheck)
226190fec840SAdam Nemet     return std::make_pair(nullptr, nullptr);
226290fec840SAdam Nemet 
22637206d7a5SAdam Nemet   // We have to do this trickery because the IRBuilder might fold the check to a
22647206d7a5SAdam Nemet   // constant expression in which case there is no Instruction anchored in a
22657206d7a5SAdam Nemet   // the block.
22667206d7a5SAdam Nemet   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
22677206d7a5SAdam Nemet                                                  ConstantInt::getTrue(Ctx));
22687206d7a5SAdam Nemet   ChkBuilder.Insert(Check, "memcheck.conflict");
22697206d7a5SAdam Nemet   FirstInst = getFirstInst(FirstInst, Check, Loc);
22707206d7a5SAdam Nemet   return std::make_pair(FirstInst, Check);
22717206d7a5SAdam Nemet }
22723bfd93d7SAdam Nemet 
22735b0a4795SAdam Nemet std::pair<Instruction *, Instruction *>
22745b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2275ce030acbSXinliang David Li   if (!PtrRtChecking->Need)
22761da7df37SAdam Nemet     return std::make_pair(nullptr, nullptr);
22771da7df37SAdam Nemet 
2278ce030acbSXinliang David Li   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
22791da7df37SAdam Nemet }
22801da7df37SAdam Nemet 
2281c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2282c953bb99SAdam Nemet   Value *Ptr = nullptr;
2283c953bb99SAdam Nemet   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2284c953bb99SAdam Nemet     Ptr = LI->getPointerOperand();
2285c953bb99SAdam Nemet   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2286c953bb99SAdam Nemet     Ptr = SI->getPointerOperand();
2287c953bb99SAdam Nemet   else
2288c953bb99SAdam Nemet     return;
2289c953bb99SAdam Nemet 
229094734eefSXinliang David Li   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2291c953bb99SAdam Nemet   if (!Stride)
2292c953bb99SAdam Nemet     return;
2293c953bb99SAdam Nemet 
2294d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2295eb13dd3eSDorit Nuzman                        "versioning:");
2296d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2297eb13dd3eSDorit Nuzman 
2298eb13dd3eSDorit Nuzman   // Avoid adding the "Stride == 1" predicate when we know that
2299eb13dd3eSDorit Nuzman   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2300eb13dd3eSDorit Nuzman   // or zero iteration loop, as Trip-Count <= Stride == 1.
2301eb13dd3eSDorit Nuzman   //
2302eb13dd3eSDorit Nuzman   // TODO: We are currently not making a very informed decision on when it is
2303eb13dd3eSDorit Nuzman   // beneficial to apply stride versioning. It might make more sense that the
2304eb13dd3eSDorit Nuzman   // users of this analysis (such as the vectorizer) will trigger it, based on
2305eb13dd3eSDorit Nuzman   // their specific cost considerations; For example, in cases where stride
2306eb13dd3eSDorit Nuzman   // versioning does  not help resolving memory accesses/dependences, the
2307eb13dd3eSDorit Nuzman   // vectorizer should evaluate the cost of the runtime test, and the benefit
2308eb13dd3eSDorit Nuzman   // of various possible stride specializations, considering the alternatives
2309eb13dd3eSDorit Nuzman   // of using gather/scatters (if available).
2310eb13dd3eSDorit Nuzman 
2311eb13dd3eSDorit Nuzman   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2312eb13dd3eSDorit Nuzman   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2313eb13dd3eSDorit Nuzman 
2314eb13dd3eSDorit Nuzman   // Match the types so we can compare the stride and the BETakenCount.
2315eb13dd3eSDorit Nuzman   // The Stride can be positive/negative, so we sign extend Stride;
231602a2bb2fSHiroshi Inoue   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2317eb13dd3eSDorit Nuzman   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2318eb13dd3eSDorit Nuzman   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2319eb13dd3eSDorit Nuzman   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2320eb13dd3eSDorit Nuzman   const SCEV *CastedStride = StrideExpr;
2321eb13dd3eSDorit Nuzman   const SCEV *CastedBECount = BETakenCount;
2322eb13dd3eSDorit Nuzman   ScalarEvolution *SE = PSE->getSE();
2323eb13dd3eSDorit Nuzman   if (BETypeSize >= StrideTypeSize)
2324eb13dd3eSDorit Nuzman     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2325eb13dd3eSDorit Nuzman   else
2326eb13dd3eSDorit Nuzman     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2327eb13dd3eSDorit Nuzman   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2328eb13dd3eSDorit Nuzman   // Since TripCount == BackEdgeTakenCount + 1, checking:
2329eb13dd3eSDorit Nuzman   // "Stride >= TripCount" is equivalent to checking:
2330eb13dd3eSDorit Nuzman   // Stride - BETakenCount > 0
2331eb13dd3eSDorit Nuzman   if (SE->isKnownPositive(StrideMinusBETaken)) {
2332d34e60caSNicola Zaghen     LLVM_DEBUG(
2333d34e60caSNicola Zaghen         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2334eb13dd3eSDorit Nuzman                   "Stride==1 predicate will imply that the loop executes "
2335eb13dd3eSDorit Nuzman                   "at most once.\n");
2336eb13dd3eSDorit Nuzman     return;
2337eb13dd3eSDorit Nuzman   }
2338d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2339eb13dd3eSDorit Nuzman 
2340c953bb99SAdam Nemet   SymbolicStrides[Ptr] = Stride;
2341c953bb99SAdam Nemet   StrideSet.insert(Stride);
2342c953bb99SAdam Nemet }
2343c953bb99SAdam Nemet 
23443bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
23453bfd93d7SAdam Nemet                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2346a9f09c62SAdam Nemet                                DominatorTree *DT, LoopInfo *LI)
2347*0eaee545SJonas Devlieghere     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2348*0eaee545SJonas Devlieghere       PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2349*0eaee545SJonas Devlieghere       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
23507da74abfSAdam Nemet       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
23512466ba97SMatt Arsenault       HasConvergentOp(false),
23525e9215f0SAnna Thomas       HasDependenceInvolvingLoopInvariantAddress(false) {
2353929c38e8SAdam Nemet   if (canAnalyzeLoop())
23547da74abfSAdam Nemet     analyzeLoop(AA, LI, TLI, DT);
23553bfd93d7SAdam Nemet }
23563bfd93d7SAdam Nemet 
2357e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2358e91cc6efSAdam Nemet   if (CanVecMem) {
23594ad38b63SAdam Nemet     OS.indent(Depth) << "Memory dependences are safe";
23607afb46d3SDavid Majnemer     if (MaxSafeDepDistBytes != -1ULL)
2361c62e554eSAdam Nemet       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2362c62e554eSAdam Nemet          << " bytes";
2363ce030acbSXinliang David Li     if (PtrRtChecking->Need)
23644ad38b63SAdam Nemet       OS << " with run-time checks";
23654ad38b63SAdam Nemet     OS << "\n";
2366e91cc6efSAdam Nemet   }
2367e91cc6efSAdam Nemet 
23682466ba97SMatt Arsenault   if (HasConvergentOp)
23692466ba97SMatt Arsenault     OS.indent(Depth) << "Has convergent operation in loop\n";
23702466ba97SMatt Arsenault 
2371e91cc6efSAdam Nemet   if (Report)
2372877ccee8SAdam Nemet     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2373e91cc6efSAdam Nemet 
2374ce030acbSXinliang David Li   if (auto *Dependences = DepChecker->getDependences()) {
2375a2df750fSAdam Nemet     OS.indent(Depth) << "Dependences:\n";
2376a2df750fSAdam Nemet     for (auto &Dep : *Dependences) {
2377ce030acbSXinliang David Li       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
237858913d65SAdam Nemet       OS << "\n";
237958913d65SAdam Nemet     }
238058913d65SAdam Nemet   } else
2381a2df750fSAdam Nemet     OS.indent(Depth) << "Too many dependences, not recorded\n";
2382e91cc6efSAdam Nemet 
2383e91cc6efSAdam Nemet   // List the pair of accesses need run-time checks to prove independence.
2384ce030acbSXinliang David Li   PtrRtChecking->print(OS, Depth);
2385e91cc6efSAdam Nemet   OS << "\n";
2386c3384320SAdam Nemet 
23875e9215f0SAnna Thomas   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
23885e9215f0SAnna Thomas                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2389c3384320SAdam Nemet                    << "found in loop.\n";
2390e3c0534bSSilviu Baranga 
2391e3c0534bSSilviu Baranga   OS.indent(Depth) << "SCEV assumptions:\n";
239294734eefSXinliang David Li   PSE->getUnionPredicate().print(OS, Depth);
2393b77365b5SSilviu Baranga 
2394b77365b5SSilviu Baranga   OS << "\n";
2395b77365b5SSilviu Baranga 
2396b77365b5SSilviu Baranga   OS.indent(Depth) << "Expressions re-written:\n";
239794734eefSXinliang David Li   PSE->print(OS, Depth);
2398e91cc6efSAdam Nemet }
2399e91cc6efSAdam Nemet 
24007853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
24013bfd93d7SAdam Nemet   auto &LAI = LoopAccessInfoMap[L];
24023bfd93d7SAdam Nemet 
24031824e411SAdam Nemet   if (!LAI)
2404*0eaee545SJonas Devlieghere     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
24051824e411SAdam Nemet 
24063bfd93d7SAdam Nemet   return *LAI.get();
24073bfd93d7SAdam Nemet }
24083bfd93d7SAdam Nemet 
24097853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
24107853c1ddSXinliang David Li   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2411ecde1c7fSXinliang David Li 
2412e91cc6efSAdam Nemet   for (Loop *TopLevelLoop : *LI)
2413e91cc6efSAdam Nemet     for (Loop *L : depth_first(TopLevelLoop)) {
2414e91cc6efSAdam Nemet       OS.indent(2) << L->getHeader()->getName() << ":\n";
2415bdbc5227SAdam Nemet       auto &LAI = LAA.getInfo(L);
2416e91cc6efSAdam Nemet       LAI.print(OS, 4);
2417e91cc6efSAdam Nemet     }
2418e91cc6efSAdam Nemet }
2419e91cc6efSAdam Nemet 
24207853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2421ecde1c7fSXinliang David Li   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
24223bfd93d7SAdam Nemet   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2423ecde1c7fSXinliang David Li   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2424ecde1c7fSXinliang David Li   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2425ecde1c7fSXinliang David Li   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2426ecde1c7fSXinliang David Li   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
24273bfd93d7SAdam Nemet 
24283bfd93d7SAdam Nemet   return false;
24293bfd93d7SAdam Nemet }
24303bfd93d7SAdam Nemet 
24317853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
24322f1fd165SChandler Carruth     AU.addRequired<ScalarEvolutionWrapperPass>();
24337b560d40SChandler Carruth     AU.addRequired<AAResultsWrapperPass>();
24343bfd93d7SAdam Nemet     AU.addRequired<DominatorTreeWrapperPass>();
2435e91cc6efSAdam Nemet     AU.addRequired<LoopInfoWrapperPass>();
24363bfd93d7SAdam Nemet 
24373bfd93d7SAdam Nemet     AU.setPreservesAll();
24383bfd93d7SAdam Nemet }
24393bfd93d7SAdam Nemet 
24407853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0;
24413bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis";
24423bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses"
24433bfd93d7SAdam Nemet 
24447853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
24457b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
24462f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
24473bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2448e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
24497853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
24503bfd93d7SAdam Nemet 
2451dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key;
24528a021317SXinliang David Li 
2453410eaeb0SChandler Carruth LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2454410eaeb0SChandler Carruth                                        LoopStandardAnalysisResults &AR) {
2455410eaeb0SChandler Carruth   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
24568a021317SXinliang David Li }
24578a021317SXinliang David Li 
24583bfd93d7SAdam Nemet namespace llvm {
2459a3fe70d2SEugene Zelenko 
24603bfd93d7SAdam Nemet   Pass *createLAAPass() {
24617853c1ddSXinliang David Li     return new LoopAccessLegacyAnalysis();
24623bfd93d7SAdam Nemet   }
2463a3fe70d2SEugene Zelenko 
2464a3fe70d2SEugene Zelenko } // end namespace llvm
2465