10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 20456327cSAdam Nemet // 30456327cSAdam Nemet // The LLVM Compiler Infrastructure 40456327cSAdam Nemet // 50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source 60456327cSAdam Nemet // License. See LICENSE.TXT for details. 70456327cSAdam Nemet // 80456327cSAdam Nemet //===----------------------------------------------------------------------===// 90456327cSAdam Nemet // 100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally 110456327cSAdam Nemet // developed for the loop vectorizer. 120456327cSAdam Nemet // 130456327cSAdam Nemet //===----------------------------------------------------------------------===// 140456327cSAdam Nemet 150456327cSAdam Nemet #include "llvm/Analysis/LoopAccessAnalysis.h" 160456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 178a021317SXinliang David Li #include "llvm/Analysis/LoopPassManager.h" 187206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h" 19799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h" 200456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h" 21f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h" 220456327cSAdam Nemet #include "llvm/IR/DiagnosticInfo.h" 230456327cSAdam Nemet #include "llvm/IR/Dominators.h" 247206d7a5SAdam Nemet #include "llvm/IR/IRBuilder.h" 258a021317SXinliang David Li #include "llvm/IR/PassManager.h" 260456327cSAdam Nemet #include "llvm/Support/Debug.h" 27799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h" 280456327cSAdam Nemet using namespace llvm; 290456327cSAdam Nemet 30339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses" 310456327cSAdam Nemet 32f219c647SAdam Nemet static cl::opt<unsigned, true> 33f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden, 34f219c647SAdam Nemet cl::desc("Sets the SIMD width. Zero is autoselect."), 35f219c647SAdam Nemet cl::location(VectorizerParams::VectorizationFactor)); 361d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor; 37f219c647SAdam Nemet 38f219c647SAdam Nemet static cl::opt<unsigned, true> 39f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden, 40f219c647SAdam Nemet cl::desc("Sets the vectorization interleave count. " 41f219c647SAdam Nemet "Zero is autoselect."), 42f219c647SAdam Nemet cl::location( 43f219c647SAdam Nemet VectorizerParams::VectorizationInterleave)); 441d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave; 45f219c647SAdam Nemet 461d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 471d862af7SAdam Nemet "runtime-memory-check-threshold", cl::Hidden, 481d862af7SAdam Nemet cl::desc("When performing memory disambiguation checks at runtime do not " 491d862af7SAdam Nemet "generate more than this number of comparisons (default = 8)."), 501d862af7SAdam Nemet cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 511d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 52f219c647SAdam Nemet 531b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks 541b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold( 551b6b50a9SSilviu Baranga "memory-check-merge-threshold", cl::Hidden, 561b6b50a9SSilviu Baranga cl::desc("Maximum number of comparisons done when trying to merge " 571b6b50a9SSilviu Baranga "runtime memory checks. (default = 100)"), 581b6b50a9SSilviu Baranga cl::init(100)); 591b6b50a9SSilviu Baranga 60f219c647SAdam Nemet /// Maximum SIMD width. 61f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64; 62f219c647SAdam Nemet 63a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold. 64a2df750fSAdam Nemet static cl::opt<unsigned> 65a2df750fSAdam Nemet MaxDependences("max-dependences", cl::Hidden, 66a2df750fSAdam Nemet cl::desc("Maximum number of dependences collected by " 679c926579SAdam Nemet "loop-access analysis (default = 100)"), 689c926579SAdam Nemet cl::init(100)); 699c926579SAdam Nemet 70a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory 71a9f09c62SAdam Nemet /// accesses in code like the following. 72a9f09c62SAdam Nemet /// for (i = 0; i < N; ++i) 73a9f09c62SAdam Nemet /// A[i * Stride1] += B[i * Stride2] ... 74a9f09c62SAdam Nemet /// 75a9f09c62SAdam Nemet /// Will be roughly translated to 76a9f09c62SAdam Nemet /// if (Stride1 == 1 && Stride2 == 1) { 77a9f09c62SAdam Nemet /// for (i = 0; i < N; i+=4) 78a9f09c62SAdam Nemet /// A[i:i+3] += ... 79a9f09c62SAdam Nemet /// } else 80a9f09c62SAdam Nemet /// ... 81a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning( 82a9f09c62SAdam Nemet "enable-mem-access-versioning", cl::init(true), cl::Hidden, 83a9f09c62SAdam Nemet cl::desc("Enable symbolic stride memory access versioning")); 84a9f09c62SAdam Nemet 8537ec5f91SMatthew Simpson /// \brief Enable store-to-load forwarding conflict detection. This option can 8637ec5f91SMatthew Simpson /// be disabled for correctness testing. 8737ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection( 8837ec5f91SMatthew Simpson "store-to-load-forwarding-conflict-detection", cl::Hidden, 89a250dc9fSMatthew Simpson cl::desc("Enable conflict detection in loop-access analysis"), 90a250dc9fSMatthew Simpson cl::init(true)); 91a250dc9fSMatthew Simpson 92f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() { 93f219c647SAdam Nemet return ::VectorizationInterleave.getNumOccurrences() > 0; 94f219c647SAdam Nemet } 95f219c647SAdam Nemet 962bd6e984SAdam Nemet void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 970456327cSAdam Nemet const Function *TheFunction, 98339f42b3SAdam Nemet const Loop *TheLoop, 99339f42b3SAdam Nemet const char *PassName) { 1000456327cSAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 1013e87634fSAdam Nemet if (const Instruction *I = Message.getInstr()) 1020456327cSAdam Nemet DL = I->getDebugLoc(); 103339f42b3SAdam Nemet emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 1040456327cSAdam Nemet *TheFunction, DL, Message.str()); 1050456327cSAdam Nemet } 1060456327cSAdam Nemet 1070456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) { 1080456327cSAdam Nemet if (CastInst *CI = dyn_cast<CastInst>(V)) 1090456327cSAdam Nemet if (CI->getOperand(0)->getType()->isIntegerTy()) 1100456327cSAdam Nemet return CI->getOperand(0); 1110456327cSAdam Nemet return V; 1120456327cSAdam Nemet } 1130456327cSAdam Nemet 1149cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 1158bc61df9SAdam Nemet const ValueToValueMap &PtrToStride, 1160456327cSAdam Nemet Value *Ptr, Value *OrigPtr) { 1179cd9a7e3SSilviu Baranga const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 1180456327cSAdam Nemet 1190456327cSAdam Nemet // If there is an entry in the map return the SCEV of the pointer with the 1200456327cSAdam Nemet // symbolic stride replaced by one. 1218bc61df9SAdam Nemet ValueToValueMap::const_iterator SI = 1228bc61df9SAdam Nemet PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1230456327cSAdam Nemet if (SI != PtrToStride.end()) { 1240456327cSAdam Nemet Value *StrideVal = SI->second; 1250456327cSAdam Nemet 1260456327cSAdam Nemet // Strip casts. 1270456327cSAdam Nemet StrideVal = stripIntegerCast(StrideVal); 1280456327cSAdam Nemet 1290456327cSAdam Nemet // Replace symbolic stride by one. 1300456327cSAdam Nemet Value *One = ConstantInt::get(StrideVal->getType(), 1); 1310456327cSAdam Nemet ValueToValueMap RewriteMap; 1320456327cSAdam Nemet RewriteMap[StrideVal] = One; 1330456327cSAdam Nemet 1349cd9a7e3SSilviu Baranga ScalarEvolution *SE = PSE.getSE(); 135e3c0534bSSilviu Baranga const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 136e3c0534bSSilviu Baranga const auto *CT = 137e3c0534bSSilviu Baranga static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 138e3c0534bSSilviu Baranga 1399cd9a7e3SSilviu Baranga PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 1409cd9a7e3SSilviu Baranga auto *Expr = PSE.getSCEV(Ptr); 141e3c0534bSSilviu Baranga 1429cd9a7e3SSilviu Baranga DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 1430456327cSAdam Nemet << "\n"); 1449cd9a7e3SSilviu Baranga return Expr; 1450456327cSAdam Nemet } 1460456327cSAdam Nemet 1470456327cSAdam Nemet // Otherwise, just return the SCEV of the original pointer. 148e3c0534bSSilviu Baranga return OrigSCEV; 1490456327cSAdam Nemet } 1500456327cSAdam Nemet 1517cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 1527cdebac0SAdam Nemet unsigned DepSetId, unsigned ASId, 153e3c0534bSSilviu Baranga const ValueToValueMap &Strides, 1549cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) { 1550456327cSAdam Nemet // Get the stride replaced scev. 1569cd9a7e3SSilviu Baranga const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 157279784ffSAdam Nemet ScalarEvolution *SE = PSE.getSE(); 158279784ffSAdam Nemet 159279784ffSAdam Nemet const SCEV *ScStart; 160279784ffSAdam Nemet const SCEV *ScEnd; 161279784ffSAdam Nemet 16259a65504SAdam Nemet if (SE->isLoopInvariant(Sc, Lp)) 163279784ffSAdam Nemet ScStart = ScEnd = Sc; 164279784ffSAdam Nemet else { 1650456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1660456327cSAdam Nemet assert(AR && "Invalid addrec expression"); 1676f444dfdSSilviu Baranga const SCEV *Ex = PSE.getBackedgeTakenCount(); 1680e5804a6SSilviu Baranga 169279784ffSAdam Nemet ScStart = AR->getStart(); 170279784ffSAdam Nemet ScEnd = AR->evaluateAtIteration(Ex, *SE); 1710e5804a6SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*SE); 1720e5804a6SSilviu Baranga 1730e5804a6SSilviu Baranga // For expressions with negative step, the upper bound is ScStart and the 1740e5804a6SSilviu Baranga // lower bound is ScEnd. 1750e5804a6SSilviu Baranga if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 1760e5804a6SSilviu Baranga if (CStep->getValue()->isNegative()) 1770e5804a6SSilviu Baranga std::swap(ScStart, ScEnd); 1780e5804a6SSilviu Baranga } else { 1790e5804a6SSilviu Baranga // Fallback case: the step is not constant, but the we can still 1800e5804a6SSilviu Baranga // get the upper and lower bounds of the interval by using min/max 1810e5804a6SSilviu Baranga // expressions. 1820e5804a6SSilviu Baranga ScStart = SE->getUMinExpr(ScStart, ScEnd); 1830e5804a6SSilviu Baranga ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 1840e5804a6SSilviu Baranga } 185279784ffSAdam Nemet } 1860e5804a6SSilviu Baranga 1870e5804a6SSilviu Baranga Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 1881b6b50a9SSilviu Baranga } 1891b6b50a9SSilviu Baranga 190bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4> 19138530887SAdam Nemet RuntimePointerChecking::generateChecks() const { 192bbe1f1deSAdam Nemet SmallVector<PointerCheck, 4> Checks; 193bbe1f1deSAdam Nemet 1947c52e052SAdam Nemet for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 1957c52e052SAdam Nemet for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 1967c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 1977c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 198bbe1f1deSAdam Nemet 19938530887SAdam Nemet if (needsChecking(CGI, CGJ)) 200bbe1f1deSAdam Nemet Checks.push_back(std::make_pair(&CGI, &CGJ)); 201bbe1f1deSAdam Nemet } 202bbe1f1deSAdam Nemet } 203bbe1f1deSAdam Nemet return Checks; 204bbe1f1deSAdam Nemet } 205bbe1f1deSAdam Nemet 20615840393SAdam Nemet void RuntimePointerChecking::generateChecks( 20715840393SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 20815840393SAdam Nemet assert(Checks.empty() && "Checks is not empty"); 20915840393SAdam Nemet groupChecks(DepCands, UseDependencies); 21015840393SAdam Nemet Checks = generateChecks(); 21115840393SAdam Nemet } 21215840393SAdam Nemet 213651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 214651a5a24SAdam Nemet const CheckingPtrGroup &N) const { 2151b6b50a9SSilviu Baranga for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 2161b6b50a9SSilviu Baranga for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 217651a5a24SAdam Nemet if (needsChecking(M.Members[I], N.Members[J])) 2181b6b50a9SSilviu Baranga return true; 2191b6b50a9SSilviu Baranga return false; 2201b6b50a9SSilviu Baranga } 2211b6b50a9SSilviu Baranga 2221b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum. 2231b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer. 2241b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 2251b6b50a9SSilviu Baranga ScalarEvolution *SE) { 2261b6b50a9SSilviu Baranga const SCEV *Diff = SE->getMinusSCEV(J, I); 2271b6b50a9SSilviu Baranga const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 2281b6b50a9SSilviu Baranga 2291b6b50a9SSilviu Baranga if (!C) 2301b6b50a9SSilviu Baranga return nullptr; 2311b6b50a9SSilviu Baranga if (C->getValue()->isNegative()) 2321b6b50a9SSilviu Baranga return J; 2331b6b50a9SSilviu Baranga return I; 2341b6b50a9SSilviu Baranga } 2351b6b50a9SSilviu Baranga 2367cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 2379f7dedc3SAdam Nemet const SCEV *Start = RtCheck.Pointers[Index].Start; 2389f7dedc3SAdam Nemet const SCEV *End = RtCheck.Pointers[Index].End; 2399f7dedc3SAdam Nemet 2401b6b50a9SSilviu Baranga // Compare the starts and ends with the known minimum and maximum 2411b6b50a9SSilviu Baranga // of this set. We need to know how we compare against the min/max 2421b6b50a9SSilviu Baranga // of the set in order to be able to emit memchecks. 2439f7dedc3SAdam Nemet const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 2441b6b50a9SSilviu Baranga if (!Min0) 2451b6b50a9SSilviu Baranga return false; 2461b6b50a9SSilviu Baranga 2479f7dedc3SAdam Nemet const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 2481b6b50a9SSilviu Baranga if (!Min1) 2491b6b50a9SSilviu Baranga return false; 2501b6b50a9SSilviu Baranga 2511b6b50a9SSilviu Baranga // Update the low bound expression if we've found a new min value. 2529f7dedc3SAdam Nemet if (Min0 == Start) 2539f7dedc3SAdam Nemet Low = Start; 2541b6b50a9SSilviu Baranga 2551b6b50a9SSilviu Baranga // Update the high bound expression if we've found a new max value. 2569f7dedc3SAdam Nemet if (Min1 != End) 2579f7dedc3SAdam Nemet High = End; 2581b6b50a9SSilviu Baranga 2591b6b50a9SSilviu Baranga Members.push_back(Index); 2601b6b50a9SSilviu Baranga return true; 2611b6b50a9SSilviu Baranga } 2621b6b50a9SSilviu Baranga 2637cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks( 2647cdebac0SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 2651b6b50a9SSilviu Baranga // We build the groups from dependency candidates equivalence classes 2661b6b50a9SSilviu Baranga // because: 2671b6b50a9SSilviu Baranga // - We know that pointers in the same equivalence class share 2681b6b50a9SSilviu Baranga // the same underlying object and therefore there is a chance 2691b6b50a9SSilviu Baranga // that we can compare pointers 2701b6b50a9SSilviu Baranga // - We wouldn't be able to merge two pointers for which we need 2711b6b50a9SSilviu Baranga // to emit a memcheck. The classes in DepCands are already 2721b6b50a9SSilviu Baranga // conveniently built such that no two pointers in the same 2731b6b50a9SSilviu Baranga // class need checking against each other. 2741b6b50a9SSilviu Baranga 2751b6b50a9SSilviu Baranga // We use the following (greedy) algorithm to construct the groups 2761b6b50a9SSilviu Baranga // For every pointer in the equivalence class: 2771b6b50a9SSilviu Baranga // For each existing group: 2781b6b50a9SSilviu Baranga // - if the difference between this pointer and the min/max bounds 2791b6b50a9SSilviu Baranga // of the group is a constant, then make the pointer part of the 2801b6b50a9SSilviu Baranga // group and update the min/max bounds of that group as required. 2811b6b50a9SSilviu Baranga 2821b6b50a9SSilviu Baranga CheckingGroups.clear(); 2831b6b50a9SSilviu Baranga 28448250600SSilviu Baranga // If we need to check two pointers to the same underlying object 28548250600SSilviu Baranga // with a non-constant difference, we shouldn't perform any pointer 28648250600SSilviu Baranga // grouping with those pointers. This is because we can easily get 28748250600SSilviu Baranga // into cases where the resulting check would return false, even when 28848250600SSilviu Baranga // the accesses are safe. 28948250600SSilviu Baranga // 29048250600SSilviu Baranga // The following example shows this: 29148250600SSilviu Baranga // for (i = 0; i < 1000; ++i) 29248250600SSilviu Baranga // a[5000 + i * m] = a[i] + a[i + 9000] 29348250600SSilviu Baranga // 29448250600SSilviu Baranga // Here grouping gives a check of (5000, 5000 + 1000 * m) against 29548250600SSilviu Baranga // (0, 10000) which is always false. However, if m is 1, there is no 29648250600SSilviu Baranga // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 29748250600SSilviu Baranga // us to perform an accurate check in this case. 29848250600SSilviu Baranga // 29948250600SSilviu Baranga // The above case requires that we have an UnknownDependence between 30048250600SSilviu Baranga // accesses to the same underlying object. This cannot happen unless 30148250600SSilviu Baranga // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 30248250600SSilviu Baranga // is also false. In this case we will use the fallback path and create 30348250600SSilviu Baranga // separate checking groups for all pointers. 30448250600SSilviu Baranga 3051b6b50a9SSilviu Baranga // If we don't have the dependency partitions, construct a new 30648250600SSilviu Baranga // checking pointer group for each pointer. This is also required 30748250600SSilviu Baranga // for correctness, because in this case we can have checking between 30848250600SSilviu Baranga // pointers to the same underlying object. 3091b6b50a9SSilviu Baranga if (!UseDependencies) { 3101b6b50a9SSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) 3111b6b50a9SSilviu Baranga CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 3121b6b50a9SSilviu Baranga return; 3131b6b50a9SSilviu Baranga } 3141b6b50a9SSilviu Baranga 3151b6b50a9SSilviu Baranga unsigned TotalComparisons = 0; 3161b6b50a9SSilviu Baranga 3171b6b50a9SSilviu Baranga DenseMap<Value *, unsigned> PositionMap; 3189f7dedc3SAdam Nemet for (unsigned Index = 0; Index < Pointers.size(); ++Index) 3199f7dedc3SAdam Nemet PositionMap[Pointers[Index].PointerValue] = Index; 3201b6b50a9SSilviu Baranga 321ce3877fcSSilviu Baranga // We need to keep track of what pointers we've already seen so we 322ce3877fcSSilviu Baranga // don't process them twice. 323ce3877fcSSilviu Baranga SmallSet<unsigned, 2> Seen; 324ce3877fcSSilviu Baranga 325e4b9f507SSanjay Patel // Go through all equivalence classes, get the "pointer check groups" 326ce3877fcSSilviu Baranga // and add them to the overall solution. We use the order in which accesses 327ce3877fcSSilviu Baranga // appear in 'Pointers' to enforce determinism. 328ce3877fcSSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) { 329ce3877fcSSilviu Baranga // We've seen this pointer before, and therefore already processed 330ce3877fcSSilviu Baranga // its equivalence class. 331ce3877fcSSilviu Baranga if (Seen.count(I)) 3321b6b50a9SSilviu Baranga continue; 3331b6b50a9SSilviu Baranga 3349f7dedc3SAdam Nemet MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 3359f7dedc3SAdam Nemet Pointers[I].IsWritePtr); 3361b6b50a9SSilviu Baranga 337ce3877fcSSilviu Baranga SmallVector<CheckingPtrGroup, 2> Groups; 338ce3877fcSSilviu Baranga auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 339ce3877fcSSilviu Baranga 340a647c30fSSilviu Baranga // Because DepCands is constructed by visiting accesses in the order in 341a647c30fSSilviu Baranga // which they appear in alias sets (which is deterministic) and the 342a647c30fSSilviu Baranga // iteration order within an equivalence class member is only dependent on 343a647c30fSSilviu Baranga // the order in which unions and insertions are performed on the 344a647c30fSSilviu Baranga // equivalence class, the iteration order is deterministic. 345ce3877fcSSilviu Baranga for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 3461b6b50a9SSilviu Baranga MI != ME; ++MI) { 3471b6b50a9SSilviu Baranga unsigned Pointer = PositionMap[MI->getPointer()]; 3481b6b50a9SSilviu Baranga bool Merged = false; 349ce3877fcSSilviu Baranga // Mark this pointer as seen. 350ce3877fcSSilviu Baranga Seen.insert(Pointer); 3511b6b50a9SSilviu Baranga 3521b6b50a9SSilviu Baranga // Go through all the existing sets and see if we can find one 3531b6b50a9SSilviu Baranga // which can include this pointer. 3541b6b50a9SSilviu Baranga for (CheckingPtrGroup &Group : Groups) { 3551b6b50a9SSilviu Baranga // Don't perform more than a certain amount of comparisons. 3561b6b50a9SSilviu Baranga // This should limit the cost of grouping the pointers to something 3571b6b50a9SSilviu Baranga // reasonable. If we do end up hitting this threshold, the algorithm 3581b6b50a9SSilviu Baranga // will create separate groups for all remaining pointers. 3591b6b50a9SSilviu Baranga if (TotalComparisons > MemoryCheckMergeThreshold) 3601b6b50a9SSilviu Baranga break; 3611b6b50a9SSilviu Baranga 3621b6b50a9SSilviu Baranga TotalComparisons++; 3631b6b50a9SSilviu Baranga 3641b6b50a9SSilviu Baranga if (Group.addPointer(Pointer)) { 3651b6b50a9SSilviu Baranga Merged = true; 3661b6b50a9SSilviu Baranga break; 3671b6b50a9SSilviu Baranga } 3681b6b50a9SSilviu Baranga } 3691b6b50a9SSilviu Baranga 3701b6b50a9SSilviu Baranga if (!Merged) 3711b6b50a9SSilviu Baranga // We couldn't add this pointer to any existing set or the threshold 3721b6b50a9SSilviu Baranga // for the number of comparisons has been reached. Create a new group 3731b6b50a9SSilviu Baranga // to hold the current pointer. 3741b6b50a9SSilviu Baranga Groups.push_back(CheckingPtrGroup(Pointer, *this)); 3751b6b50a9SSilviu Baranga } 3761b6b50a9SSilviu Baranga 3771b6b50a9SSilviu Baranga // We've computed the grouped checks for this partition. 3781b6b50a9SSilviu Baranga // Save the results and continue with the next one. 3791b6b50a9SSilviu Baranga std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 3801b6b50a9SSilviu Baranga } 3810456327cSAdam Nemet } 3820456327cSAdam Nemet 383041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition( 384041e6debSAdam Nemet const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 385041e6debSAdam Nemet unsigned PtrIdx2) { 386041e6debSAdam Nemet return (PtrToPartition[PtrIdx1] != -1 && 387041e6debSAdam Nemet PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 388041e6debSAdam Nemet } 389041e6debSAdam Nemet 390651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 3919f7dedc3SAdam Nemet const PointerInfo &PointerI = Pointers[I]; 3929f7dedc3SAdam Nemet const PointerInfo &PointerJ = Pointers[J]; 3939f7dedc3SAdam Nemet 394a8945b77SAdam Nemet // No need to check if two readonly pointers intersect. 3959f7dedc3SAdam Nemet if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 396a8945b77SAdam Nemet return false; 397a8945b77SAdam Nemet 398a8945b77SAdam Nemet // Only need to check pointers between two different dependency sets. 3999f7dedc3SAdam Nemet if (PointerI.DependencySetId == PointerJ.DependencySetId) 400a8945b77SAdam Nemet return false; 401a8945b77SAdam Nemet 402a8945b77SAdam Nemet // Only need to check pointers in the same alias set. 4039f7dedc3SAdam Nemet if (PointerI.AliasSetId != PointerJ.AliasSetId) 404a8945b77SAdam Nemet return false; 405a8945b77SAdam Nemet 406a8945b77SAdam Nemet return true; 407a8945b77SAdam Nemet } 408a8945b77SAdam Nemet 40954f0b83eSAdam Nemet void RuntimePointerChecking::printChecks( 41054f0b83eSAdam Nemet raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 41154f0b83eSAdam Nemet unsigned Depth) const { 41254f0b83eSAdam Nemet unsigned N = 0; 41354f0b83eSAdam Nemet for (const auto &Check : Checks) { 41454f0b83eSAdam Nemet const auto &First = Check.first->Members, &Second = Check.second->Members; 41554f0b83eSAdam Nemet 41654f0b83eSAdam Nemet OS.indent(Depth) << "Check " << N++ << ":\n"; 41754f0b83eSAdam Nemet 41854f0b83eSAdam Nemet OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 41954f0b83eSAdam Nemet for (unsigned K = 0; K < First.size(); ++K) 42054f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 42154f0b83eSAdam Nemet 42254f0b83eSAdam Nemet OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 42354f0b83eSAdam Nemet for (unsigned K = 0; K < Second.size(); ++K) 42454f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 42554f0b83eSAdam Nemet } 42654f0b83eSAdam Nemet } 42754f0b83eSAdam Nemet 4283a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 429e91cc6efSAdam Nemet 430e91cc6efSAdam Nemet OS.indent(Depth) << "Run-time memory checks:\n"; 43115840393SAdam Nemet printChecks(OS, Checks, Depth); 4321b6b50a9SSilviu Baranga 4331b6b50a9SSilviu Baranga OS.indent(Depth) << "Grouped accesses:\n"; 4341b6b50a9SSilviu Baranga for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 43554f0b83eSAdam Nemet const auto &CG = CheckingGroups[I]; 43654f0b83eSAdam Nemet 43754f0b83eSAdam Nemet OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 43854f0b83eSAdam Nemet OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 43954f0b83eSAdam Nemet << ")\n"; 44054f0b83eSAdam Nemet for (unsigned J = 0; J < CG.Members.size(); ++J) { 44154f0b83eSAdam Nemet OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 4421b6b50a9SSilviu Baranga << "\n"; 4431b6b50a9SSilviu Baranga } 444e91cc6efSAdam Nemet } 445e91cc6efSAdam Nemet } 446e91cc6efSAdam Nemet 4470456327cSAdam Nemet namespace { 4480456327cSAdam Nemet /// \brief Analyses memory accesses in a loop. 4490456327cSAdam Nemet /// 4500456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data 4510456327cSAdam Nemet /// dependence checking. 4520456327cSAdam Nemet class AccessAnalysis { 4530456327cSAdam Nemet public: 4540456327cSAdam Nemet /// \brief Read or write access location. 4550456327cSAdam Nemet typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4560456327cSAdam Nemet typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4570456327cSAdam Nemet 458e2b885c4SAdam Nemet AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 4599cd9a7e3SSilviu Baranga MemoryDepChecker::DepCandidates &DA, 4609cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) 461e3c0534bSSilviu Baranga : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 4629cd9a7e3SSilviu Baranga PSE(PSE) {} 4630456327cSAdam Nemet 4640456327cSAdam Nemet /// \brief Register a load and whether it is only read from. 465ac80dc75SChandler Carruth void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 4660456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 467ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4680456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, false)); 4690456327cSAdam Nemet if (IsReadOnly) 4700456327cSAdam Nemet ReadOnlyPtr.insert(Ptr); 4710456327cSAdam Nemet } 4720456327cSAdam Nemet 4730456327cSAdam Nemet /// \brief Register a store. 474ac80dc75SChandler Carruth void addStore(MemoryLocation &Loc) { 4750456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 476ecbd1682SChandler Carruth AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 4770456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, true)); 4780456327cSAdam Nemet } 4790456327cSAdam Nemet 4800456327cSAdam Nemet /// \brief Check whether we can check the pointers at runtime for 481ee61474aSAdam Nemet /// non-intersection. 482ee61474aSAdam Nemet /// 483ee61474aSAdam Nemet /// Returns true if we need no check or if we do and we can generate them 484ee61474aSAdam Nemet /// (i.e. the pointers have computable bounds). 4857cdebac0SAdam Nemet bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 4867cdebac0SAdam Nemet Loop *TheLoop, const ValueToValueMap &Strides, 4879f02c586SAndrey Turetskiy bool ShouldCheckWrap = false); 4880456327cSAdam Nemet 4890456327cSAdam Nemet /// \brief Goes over all memory accesses, checks whether a RT check is needed 4900456327cSAdam Nemet /// and builds sets of dependent accesses. 4910456327cSAdam Nemet void buildDependenceSets() { 4920456327cSAdam Nemet processMemAccesses(); 4930456327cSAdam Nemet } 4940456327cSAdam Nemet 4955dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we need to 4965dc3b2cfSAdam Nemet /// perform dependency checking. 4975dc3b2cfSAdam Nemet /// 4985dc3b2cfSAdam Nemet /// Note that this can later be cleared if we retry memcheck analysis without 4995dc3b2cfSAdam Nemet /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 5000456327cSAdam Nemet bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 501df3dc5b9SAdam Nemet 502df3dc5b9SAdam Nemet /// We decided that no dependence analysis would be used. Reset the state. 503df3dc5b9SAdam Nemet void resetDepChecks(MemoryDepChecker &DepChecker) { 504df3dc5b9SAdam Nemet CheckDeps.clear(); 505a2df750fSAdam Nemet DepChecker.clearDependences(); 506df3dc5b9SAdam Nemet } 5070456327cSAdam Nemet 5080456327cSAdam Nemet MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 5090456327cSAdam Nemet 5100456327cSAdam Nemet private: 5110456327cSAdam Nemet typedef SetVector<MemAccessInfo> PtrAccessSet; 5120456327cSAdam Nemet 5130456327cSAdam Nemet /// \brief Go over all memory access and check whether runtime pointer checks 514b41d2d3fSAdam Nemet /// are needed and build sets of dependency check candidates. 5150456327cSAdam Nemet void processMemAccesses(); 5160456327cSAdam Nemet 5170456327cSAdam Nemet /// Set of all accesses. 5180456327cSAdam Nemet PtrAccessSet Accesses; 5190456327cSAdam Nemet 520a28d91d8SMehdi Amini const DataLayout &DL; 521a28d91d8SMehdi Amini 5220456327cSAdam Nemet /// Set of accesses that need a further dependence check. 5230456327cSAdam Nemet MemAccessInfoSet CheckDeps; 5240456327cSAdam Nemet 5250456327cSAdam Nemet /// Set of pointers that are read only. 5260456327cSAdam Nemet SmallPtrSet<Value*, 16> ReadOnlyPtr; 5270456327cSAdam Nemet 5280456327cSAdam Nemet /// An alias set tracker to partition the access set by underlying object and 5290456327cSAdam Nemet //intrinsic property (such as TBAA metadata). 5300456327cSAdam Nemet AliasSetTracker AST; 5310456327cSAdam Nemet 532e2b885c4SAdam Nemet LoopInfo *LI; 533e2b885c4SAdam Nemet 5340456327cSAdam Nemet /// Sets of potentially dependent accesses - members of one set share an 5350456327cSAdam Nemet /// underlying pointer. The set "CheckDeps" identfies which sets really need a 5360456327cSAdam Nemet /// dependence check. 537dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DepCands; 5380456327cSAdam Nemet 5395dc3b2cfSAdam Nemet /// \brief Initial processing of memory accesses determined that we may need 5405dc3b2cfSAdam Nemet /// to add memchecks. Perform the analysis to determine the necessary checks. 5415dc3b2cfSAdam Nemet /// 5425dc3b2cfSAdam Nemet /// Note that, this is different from isDependencyCheckNeeded. When we retry 5435dc3b2cfSAdam Nemet /// memcheck analysis without dependency checking 5445dc3b2cfSAdam Nemet /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 5455dc3b2cfSAdam Nemet /// while this remains set if we have potentially dependent accesses. 5465dc3b2cfSAdam Nemet bool IsRTCheckAnalysisNeeded; 547e3c0534bSSilviu Baranga 548e3c0534bSSilviu Baranga /// The SCEV predicate containing all the SCEV-related assumptions. 5499cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE; 5500456327cSAdam Nemet }; 5510456327cSAdam Nemet 5520456327cSAdam Nemet } // end anonymous namespace 5530456327cSAdam Nemet 5540456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check. 5559cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 556e3c0534bSSilviu Baranga const ValueToValueMap &Strides, Value *Ptr, 5579cd9a7e3SSilviu Baranga Loop *L) { 5589cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 559279784ffSAdam Nemet 560279784ffSAdam Nemet // The bounds for loop-invariant pointer is trivial. 561279784ffSAdam Nemet if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 562279784ffSAdam Nemet return true; 563279784ffSAdam Nemet 5640456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 5650456327cSAdam Nemet if (!AR) 5660456327cSAdam Nemet return false; 5670456327cSAdam Nemet 5680456327cSAdam Nemet return AR->isAffine(); 5690456327cSAdam Nemet } 5700456327cSAdam Nemet 5719f02c586SAndrey Turetskiy /// \brief Check whether a pointer address cannot wrap. 5729f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE, 5739f02c586SAndrey Turetskiy const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 5749f02c586SAndrey Turetskiy const SCEV *PtrScev = PSE.getSCEV(Ptr); 5759f02c586SAndrey Turetskiy if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 5769f02c586SAndrey Turetskiy return true; 5779f02c586SAndrey Turetskiy 5787afb46d3SDavid Majnemer int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 5799f02c586SAndrey Turetskiy return Stride == 1; 5809f02c586SAndrey Turetskiy } 5819f02c586SAndrey Turetskiy 5827cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 5837cdebac0SAdam Nemet ScalarEvolution *SE, Loop *TheLoop, 5847cdebac0SAdam Nemet const ValueToValueMap &StridesMap, 5859f02c586SAndrey Turetskiy bool ShouldCheckWrap) { 5860456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 5870456327cSAdam Nemet // to place a runtime bound check. 5880456327cSAdam Nemet bool CanDoRT = true; 5890456327cSAdam Nemet 590ee61474aSAdam Nemet bool NeedRTCheck = false; 5915dc3b2cfSAdam Nemet if (!IsRTCheckAnalysisNeeded) return true; 59298a13719SSilviu Baranga 5930456327cSAdam Nemet bool IsDepCheckNeeded = isDependencyCheckNeeded(); 5940456327cSAdam Nemet 5950456327cSAdam Nemet // We assign a consecutive id to access from different alias sets. 5960456327cSAdam Nemet // Accesses between different groups doesn't need to be checked. 5970456327cSAdam Nemet unsigned ASId = 1; 5980456327cSAdam Nemet for (auto &AS : AST) { 599424edc6cSAdam Nemet int NumReadPtrChecks = 0; 600424edc6cSAdam Nemet int NumWritePtrChecks = 0; 601424edc6cSAdam Nemet 6020456327cSAdam Nemet // We assign consecutive id to access from different dependence sets. 6030456327cSAdam Nemet // Accesses within the same set don't need a runtime check. 6040456327cSAdam Nemet unsigned RunningDepId = 1; 6050456327cSAdam Nemet DenseMap<Value *, unsigned> DepSetId; 6060456327cSAdam Nemet 6070456327cSAdam Nemet for (auto A : AS) { 6080456327cSAdam Nemet Value *Ptr = A.getValue(); 6090456327cSAdam Nemet bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 6100456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 6110456327cSAdam Nemet 612424edc6cSAdam Nemet if (IsWrite) 613424edc6cSAdam Nemet ++NumWritePtrChecks; 614424edc6cSAdam Nemet else 615424edc6cSAdam Nemet ++NumReadPtrChecks; 616424edc6cSAdam Nemet 6179cd9a7e3SSilviu Baranga if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 618a28d91d8SMehdi Amini // When we run after a failing dependency check we have to make sure 619a28d91d8SMehdi Amini // we don't have wrapping pointers. 6209f02c586SAndrey Turetskiy (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 6210456327cSAdam Nemet // The id of the dependence set. 6220456327cSAdam Nemet unsigned DepId; 6230456327cSAdam Nemet 6240456327cSAdam Nemet if (IsDepCheckNeeded) { 6250456327cSAdam Nemet Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 6260456327cSAdam Nemet unsigned &LeaderId = DepSetId[Leader]; 6270456327cSAdam Nemet if (!LeaderId) 6280456327cSAdam Nemet LeaderId = RunningDepId++; 6290456327cSAdam Nemet DepId = LeaderId; 6300456327cSAdam Nemet } else 6310456327cSAdam Nemet // Each access has its own dependence set. 6320456327cSAdam Nemet DepId = RunningDepId++; 6330456327cSAdam Nemet 6349cd9a7e3SSilviu Baranga RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 6350456327cSAdam Nemet 636339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 6370456327cSAdam Nemet } else { 638f10ca278SAdam Nemet DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 6390456327cSAdam Nemet CanDoRT = false; 6400456327cSAdam Nemet } 6410456327cSAdam Nemet } 6420456327cSAdam Nemet 643424edc6cSAdam Nemet // If we have at least two writes or one write and a read then we need to 644424edc6cSAdam Nemet // check them. But there is no need to checks if there is only one 645424edc6cSAdam Nemet // dependence set for this alias set. 646424edc6cSAdam Nemet // 647424edc6cSAdam Nemet // Note that this function computes CanDoRT and NeedRTCheck independently. 648424edc6cSAdam Nemet // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 649424edc6cSAdam Nemet // for which we couldn't find the bounds but we don't actually need to emit 650424edc6cSAdam Nemet // any checks so it does not matter. 651424edc6cSAdam Nemet if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 652424edc6cSAdam Nemet NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 653424edc6cSAdam Nemet NumWritePtrChecks >= 1)); 654424edc6cSAdam Nemet 6550456327cSAdam Nemet ++ASId; 6560456327cSAdam Nemet } 6570456327cSAdam Nemet 6580456327cSAdam Nemet // If the pointers that we would use for the bounds comparison have different 6590456327cSAdam Nemet // address spaces, assume the values aren't directly comparable, so we can't 6600456327cSAdam Nemet // use them for the runtime check. We also have to assume they could 6610456327cSAdam Nemet // overlap. In the future there should be metadata for whether address spaces 6620456327cSAdam Nemet // are disjoint. 6630456327cSAdam Nemet unsigned NumPointers = RtCheck.Pointers.size(); 6640456327cSAdam Nemet for (unsigned i = 0; i < NumPointers; ++i) { 6650456327cSAdam Nemet for (unsigned j = i + 1; j < NumPointers; ++j) { 6660456327cSAdam Nemet // Only need to check pointers between two different dependency sets. 6679f7dedc3SAdam Nemet if (RtCheck.Pointers[i].DependencySetId == 6689f7dedc3SAdam Nemet RtCheck.Pointers[j].DependencySetId) 6690456327cSAdam Nemet continue; 6700456327cSAdam Nemet // Only need to check pointers in the same alias set. 6719f7dedc3SAdam Nemet if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 6720456327cSAdam Nemet continue; 6730456327cSAdam Nemet 6749f7dedc3SAdam Nemet Value *PtrI = RtCheck.Pointers[i].PointerValue; 6759f7dedc3SAdam Nemet Value *PtrJ = RtCheck.Pointers[j].PointerValue; 6760456327cSAdam Nemet 6770456327cSAdam Nemet unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 6780456327cSAdam Nemet unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 6790456327cSAdam Nemet if (ASi != ASj) { 680339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 6810456327cSAdam Nemet " different address spaces\n"); 6820456327cSAdam Nemet return false; 6830456327cSAdam Nemet } 6840456327cSAdam Nemet } 6850456327cSAdam Nemet } 6860456327cSAdam Nemet 6871b6b50a9SSilviu Baranga if (NeedRTCheck && CanDoRT) 68815840393SAdam Nemet RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 6891b6b50a9SSilviu Baranga 690155e8741SAdam Nemet DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 691ee61474aSAdam Nemet << " pointer comparisons.\n"); 692ee61474aSAdam Nemet 693ee61474aSAdam Nemet RtCheck.Need = NeedRTCheck; 694ee61474aSAdam Nemet 695ee61474aSAdam Nemet bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 696ee61474aSAdam Nemet if (!CanDoRTIfNeeded) 697ee61474aSAdam Nemet RtCheck.reset(); 698ee61474aSAdam Nemet return CanDoRTIfNeeded; 6990456327cSAdam Nemet } 7000456327cSAdam Nemet 7010456327cSAdam Nemet void AccessAnalysis::processMemAccesses() { 7020456327cSAdam Nemet // We process the set twice: first we process read-write pointers, last we 7030456327cSAdam Nemet // process read-only pointers. This allows us to skip dependence tests for 7040456327cSAdam Nemet // read-only pointers. 7050456327cSAdam Nemet 706339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 7070456327cSAdam Nemet DEBUG(dbgs() << " AST: "; AST.dump()); 7089c926579SAdam Nemet DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 7090456327cSAdam Nemet DEBUG({ 7100456327cSAdam Nemet for (auto A : Accesses) 7110456327cSAdam Nemet dbgs() << "\t" << *A.getPointer() << " (" << 7120456327cSAdam Nemet (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 7130456327cSAdam Nemet "read-only" : "read")) << ")\n"; 7140456327cSAdam Nemet }); 7150456327cSAdam Nemet 7160456327cSAdam Nemet // The AliasSetTracker has nicely partitioned our pointers by metadata 7170456327cSAdam Nemet // compatibility and potential for underlying-object overlap. As a result, we 7180456327cSAdam Nemet // only need to check for potential pointer dependencies within each alias 7190456327cSAdam Nemet // set. 7200456327cSAdam Nemet for (auto &AS : AST) { 7210456327cSAdam Nemet // Note that both the alias-set tracker and the alias sets themselves used 7220456327cSAdam Nemet // linked lists internally and so the iteration order here is deterministic 7230456327cSAdam Nemet // (matching the original instruction order within each set). 7240456327cSAdam Nemet 7250456327cSAdam Nemet bool SetHasWrite = false; 7260456327cSAdam Nemet 7270456327cSAdam Nemet // Map of pointers to last access encountered. 7280456327cSAdam Nemet typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 7290456327cSAdam Nemet UnderlyingObjToAccessMap ObjToLastAccess; 7300456327cSAdam Nemet 7310456327cSAdam Nemet // Set of access to check after all writes have been processed. 7320456327cSAdam Nemet PtrAccessSet DeferredAccesses; 7330456327cSAdam Nemet 7340456327cSAdam Nemet // Iterate over each alias set twice, once to process read/write pointers, 7350456327cSAdam Nemet // and then to process read-only pointers. 7360456327cSAdam Nemet for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 7370456327cSAdam Nemet bool UseDeferred = SetIteration > 0; 7380456327cSAdam Nemet PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 7390456327cSAdam Nemet 7400456327cSAdam Nemet for (auto AV : AS) { 7410456327cSAdam Nemet Value *Ptr = AV.getValue(); 7420456327cSAdam Nemet 7430456327cSAdam Nemet // For a single memory access in AliasSetTracker, Accesses may contain 7440456327cSAdam Nemet // both read and write, and they both need to be handled for CheckDeps. 7450456327cSAdam Nemet for (auto AC : S) { 7460456327cSAdam Nemet if (AC.getPointer() != Ptr) 7470456327cSAdam Nemet continue; 7480456327cSAdam Nemet 7490456327cSAdam Nemet bool IsWrite = AC.getInt(); 7500456327cSAdam Nemet 7510456327cSAdam Nemet // If we're using the deferred access set, then it contains only 7520456327cSAdam Nemet // reads. 7530456327cSAdam Nemet bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 7540456327cSAdam Nemet if (UseDeferred && !IsReadOnlyPtr) 7550456327cSAdam Nemet continue; 7560456327cSAdam Nemet // Otherwise, the pointer must be in the PtrAccessSet, either as a 7570456327cSAdam Nemet // read or a write. 7580456327cSAdam Nemet assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 7590456327cSAdam Nemet S.count(MemAccessInfo(Ptr, false))) && 7600456327cSAdam Nemet "Alias-set pointer not in the access set?"); 7610456327cSAdam Nemet 7620456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 7630456327cSAdam Nemet DepCands.insert(Access); 7640456327cSAdam Nemet 7650456327cSAdam Nemet // Memorize read-only pointers for later processing and skip them in 7660456327cSAdam Nemet // the first round (they need to be checked after we have seen all 7670456327cSAdam Nemet // write pointers). Note: we also mark pointer that are not 7680456327cSAdam Nemet // consecutive as "read-only" pointers (so that we check 7690456327cSAdam Nemet // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 7700456327cSAdam Nemet if (!UseDeferred && IsReadOnlyPtr) { 7710456327cSAdam Nemet DeferredAccesses.insert(Access); 7720456327cSAdam Nemet continue; 7730456327cSAdam Nemet } 7740456327cSAdam Nemet 7750456327cSAdam Nemet // If this is a write - check other reads and writes for conflicts. If 7760456327cSAdam Nemet // this is a read only check other writes for conflicts (but only if 7770456327cSAdam Nemet // there is no other write to the ptr - this is an optimization to 7780456327cSAdam Nemet // catch "a[i] = a[i] + " without having to do a dependence check). 7790456327cSAdam Nemet if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 7800456327cSAdam Nemet CheckDeps.insert(Access); 7815dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded = true; 7820456327cSAdam Nemet } 7830456327cSAdam Nemet 7840456327cSAdam Nemet if (IsWrite) 7850456327cSAdam Nemet SetHasWrite = true; 7860456327cSAdam Nemet 7870456327cSAdam Nemet // Create sets of pointers connected by a shared alias set and 7880456327cSAdam Nemet // underlying object. 7890456327cSAdam Nemet typedef SmallVector<Value *, 16> ValueVector; 7900456327cSAdam Nemet ValueVector TempObjects; 791e2b885c4SAdam Nemet 792e2b885c4SAdam Nemet GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 793e2b885c4SAdam Nemet DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 7940456327cSAdam Nemet for (Value *UnderlyingObj : TempObjects) { 795afd13519SMehdi Amini // nullptr never alias, don't join sets for pointer that have "null" 796afd13519SMehdi Amini // in their UnderlyingObjects list. 797afd13519SMehdi Amini if (isa<ConstantPointerNull>(UnderlyingObj)) 798afd13519SMehdi Amini continue; 799afd13519SMehdi Amini 8000456327cSAdam Nemet UnderlyingObjToAccessMap::iterator Prev = 8010456327cSAdam Nemet ObjToLastAccess.find(UnderlyingObj); 8020456327cSAdam Nemet if (Prev != ObjToLastAccess.end()) 8030456327cSAdam Nemet DepCands.unionSets(Access, Prev->second); 8040456327cSAdam Nemet 8050456327cSAdam Nemet ObjToLastAccess[UnderlyingObj] = Access; 806e2b885c4SAdam Nemet DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 8070456327cSAdam Nemet } 8080456327cSAdam Nemet } 8090456327cSAdam Nemet } 8100456327cSAdam Nemet } 8110456327cSAdam Nemet } 8120456327cSAdam Nemet } 8130456327cSAdam Nemet 8140456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) { 8150456327cSAdam Nemet if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 8160456327cSAdam Nemet return GEP->isInBounds(); 8170456327cSAdam Nemet return false; 8180456327cSAdam Nemet } 8190456327cSAdam Nemet 820c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 821c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing. 822c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 823ea63a7f5SSilviu Baranga PredicatedScalarEvolution &PSE, const Loop *L) { 824c4866d29SAdam Nemet // FIXME: This should probably only return true for NUW. 825c4866d29SAdam Nemet if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 826c4866d29SAdam Nemet return true; 827c4866d29SAdam Nemet 828c4866d29SAdam Nemet // Scalar evolution does not propagate the non-wrapping flags to values that 829c4866d29SAdam Nemet // are derived from a non-wrapping induction variable because non-wrapping 830c4866d29SAdam Nemet // could be flow-sensitive. 831c4866d29SAdam Nemet // 832c4866d29SAdam Nemet // Look through the potentially overflowing instruction to try to prove 833c4866d29SAdam Nemet // non-wrapping for the *specific* value of Ptr. 834c4866d29SAdam Nemet 835c4866d29SAdam Nemet // The arithmetic implied by an inbounds GEP can't overflow. 836c4866d29SAdam Nemet auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 837c4866d29SAdam Nemet if (!GEP || !GEP->isInBounds()) 838c4866d29SAdam Nemet return false; 839c4866d29SAdam Nemet 840c4866d29SAdam Nemet // Make sure there is only one non-const index and analyze that. 841c4866d29SAdam Nemet Value *NonConstIndex = nullptr; 842c4866d29SAdam Nemet for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 843c4866d29SAdam Nemet if (!isa<ConstantInt>(*Index)) { 844c4866d29SAdam Nemet if (NonConstIndex) 845c4866d29SAdam Nemet return false; 846c4866d29SAdam Nemet NonConstIndex = *Index; 847c4866d29SAdam Nemet } 848c4866d29SAdam Nemet if (!NonConstIndex) 849c4866d29SAdam Nemet // The recurrence is on the pointer, ignore for now. 850c4866d29SAdam Nemet return false; 851c4866d29SAdam Nemet 852c4866d29SAdam Nemet // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 853c4866d29SAdam Nemet // AddRec using a NSW operation. 854c4866d29SAdam Nemet if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 855c4866d29SAdam Nemet if (OBO->hasNoSignedWrap() && 856c4866d29SAdam Nemet // Assume constant for other the operand so that the AddRec can be 857c4866d29SAdam Nemet // easily found. 858c4866d29SAdam Nemet isa<ConstantInt>(OBO->getOperand(1))) { 859ea63a7f5SSilviu Baranga auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 860c4866d29SAdam Nemet 861c4866d29SAdam Nemet if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 862c4866d29SAdam Nemet return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 863c4866d29SAdam Nemet } 864c4866d29SAdam Nemet 865c4866d29SAdam Nemet return false; 866c4866d29SAdam Nemet } 867c4866d29SAdam Nemet 8680456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride. 8697afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 870ea63a7f5SSilviu Baranga const Loop *Lp, const ValueToValueMap &StridesMap, 8715e21c94fSElena Demikhovsky bool Assume) { 872e3dcce97SCraig Topper Type *Ty = Ptr->getType(); 8730456327cSAdam Nemet assert(Ty->isPointerTy() && "Unexpected non-ptr"); 8740456327cSAdam Nemet 8750456327cSAdam Nemet // Make sure that the pointer does not point to aggregate types. 876e3dcce97SCraig Topper auto *PtrTy = cast<PointerType>(Ty); 8770456327cSAdam Nemet if (PtrTy->getElementType()->isAggregateType()) { 878ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 879ea63a7f5SSilviu Baranga << "\n"); 8800456327cSAdam Nemet return 0; 8810456327cSAdam Nemet } 8820456327cSAdam Nemet 8839cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 8840456327cSAdam Nemet 8850456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 886ea63a7f5SSilviu Baranga if (Assume && !AR) 887d68ed854SSilviu Baranga AR = PSE.getAsAddRec(Ptr); 888ea63a7f5SSilviu Baranga 8890456327cSAdam Nemet if (!AR) { 890ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 891ea63a7f5SSilviu Baranga << " SCEV: " << *PtrScev << "\n"); 8920456327cSAdam Nemet return 0; 8930456327cSAdam Nemet } 8940456327cSAdam Nemet 8950456327cSAdam Nemet // The accesss function must stride over the innermost loop. 8960456327cSAdam Nemet if (Lp != AR->getLoop()) { 897339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 898ea63a7f5SSilviu Baranga *Ptr << " SCEV: " << *AR << "\n"); 899a02ce98bSKyle Butt return 0; 9000456327cSAdam Nemet } 9010456327cSAdam Nemet 9020456327cSAdam Nemet // The address calculation must not wrap. Otherwise, a dependence could be 9030456327cSAdam Nemet // inverted. 9040456327cSAdam Nemet // An inbounds getelementptr that is a AddRec with a unit stride 9050456327cSAdam Nemet // cannot wrap per definition. The unit stride requirement is checked later. 9060456327cSAdam Nemet // An getelementptr without an inbounds attribute and unit stride would have 9070456327cSAdam Nemet // to access the pointer value "0" which is undefined behavior in address 9080456327cSAdam Nemet // space 0, therefore we can also vectorize this case. 9090456327cSAdam Nemet bool IsInBoundsGEP = isInBoundsGep(Ptr); 9105e21c94fSElena Demikhovsky bool IsNoWrapAddRec = 911ea63a7f5SSilviu Baranga PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 912ea63a7f5SSilviu Baranga isNoWrapAddRec(Ptr, AR, PSE, Lp); 9130456327cSAdam Nemet bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 9140456327cSAdam Nemet if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 915ea63a7f5SSilviu Baranga if (Assume) { 916ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 917ea63a7f5SSilviu Baranga IsNoWrapAddRec = true; 918ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 919ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 920ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 921ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 922ea63a7f5SSilviu Baranga } else { 923339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 924ea63a7f5SSilviu Baranga << *Ptr << " SCEV: " << *AR << "\n"); 9250456327cSAdam Nemet return 0; 9260456327cSAdam Nemet } 927ea63a7f5SSilviu Baranga } 9280456327cSAdam Nemet 9290456327cSAdam Nemet // Check the step is constant. 9309cd9a7e3SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 9310456327cSAdam Nemet 932943befedSAdam Nemet // Calculate the pointer stride and check if it is constant. 9330456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 9340456327cSAdam Nemet if (!C) { 935339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 936ea63a7f5SSilviu Baranga " SCEV: " << *AR << "\n"); 9370456327cSAdam Nemet return 0; 9380456327cSAdam Nemet } 9390456327cSAdam Nemet 940a28d91d8SMehdi Amini auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 941a28d91d8SMehdi Amini int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 9420de2feceSSanjoy Das const APInt &APStepVal = C->getAPInt(); 9430456327cSAdam Nemet 9440456327cSAdam Nemet // Huge step value - give up. 9450456327cSAdam Nemet if (APStepVal.getBitWidth() > 64) 9460456327cSAdam Nemet return 0; 9470456327cSAdam Nemet 9480456327cSAdam Nemet int64_t StepVal = APStepVal.getSExtValue(); 9490456327cSAdam Nemet 9500456327cSAdam Nemet // Strided access. 9510456327cSAdam Nemet int64_t Stride = StepVal / Size; 9520456327cSAdam Nemet int64_t Rem = StepVal % Size; 9530456327cSAdam Nemet if (Rem) 9540456327cSAdam Nemet return 0; 9550456327cSAdam Nemet 9560456327cSAdam Nemet // If the SCEV could wrap but we have an inbounds gep with a unit stride we 9570456327cSAdam Nemet // know we can't "wrap around the address space". In case of address space 9580456327cSAdam Nemet // zero we know that this won't happen without triggering undefined behavior. 9590456327cSAdam Nemet if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 960ea63a7f5SSilviu Baranga Stride != 1 && Stride != -1) { 961ea63a7f5SSilviu Baranga if (Assume) { 962ea63a7f5SSilviu Baranga // We can avoid this case by adding a run-time check. 963ea63a7f5SSilviu Baranga DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 964ea63a7f5SSilviu Baranga << "inbouds or in address space 0 may wrap:\n" 965ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 966ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 967ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 968ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 969ea63a7f5SSilviu Baranga } else 9700456327cSAdam Nemet return 0; 971ea63a7f5SSilviu Baranga } 9720456327cSAdam Nemet 9730456327cSAdam Nemet return Stride; 9740456327cSAdam Nemet } 9750456327cSAdam Nemet 976f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction. 977f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction. 978f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) { 979f1c00a22SHaicheng Wu if (LoadInst *LI = dyn_cast<LoadInst>(I)) 980f1c00a22SHaicheng Wu return LI->getPointerOperand(); 981f1c00a22SHaicheng Wu if (StoreInst *SI = dyn_cast<StoreInst>(I)) 982f1c00a22SHaicheng Wu return SI->getPointerOperand(); 983f1c00a22SHaicheng Wu return nullptr; 984f1c00a22SHaicheng Wu } 985f1c00a22SHaicheng Wu 986f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction. 987f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction. 988f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) { 989f1c00a22SHaicheng Wu if (LoadInst *L = dyn_cast<LoadInst>(I)) 990f1c00a22SHaicheng Wu return L->getPointerAddressSpace(); 991f1c00a22SHaicheng Wu if (StoreInst *S = dyn_cast<StoreInst>(I)) 992f1c00a22SHaicheng Wu return S->getPointerAddressSpace(); 993f1c00a22SHaicheng Wu return -1; 994f1c00a22SHaicheng Wu } 995f1c00a22SHaicheng Wu 996f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive. 997f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 998f1c00a22SHaicheng Wu ScalarEvolution &SE, bool CheckType) { 999f1c00a22SHaicheng Wu Value *PtrA = getPointerOperand(A); 1000f1c00a22SHaicheng Wu Value *PtrB = getPointerOperand(B); 1001f1c00a22SHaicheng Wu unsigned ASA = getAddressSpaceOperand(A); 1002f1c00a22SHaicheng Wu unsigned ASB = getAddressSpaceOperand(B); 1003f1c00a22SHaicheng Wu 1004f1c00a22SHaicheng Wu // Check that the address spaces match and that the pointers are valid. 1005f1c00a22SHaicheng Wu if (!PtrA || !PtrB || (ASA != ASB)) 1006f1c00a22SHaicheng Wu return false; 1007f1c00a22SHaicheng Wu 1008f1c00a22SHaicheng Wu // Make sure that A and B are different pointers. 1009f1c00a22SHaicheng Wu if (PtrA == PtrB) 1010f1c00a22SHaicheng Wu return false; 1011f1c00a22SHaicheng Wu 1012f1c00a22SHaicheng Wu // Make sure that A and B have the same type if required. 1013f1c00a22SHaicheng Wu if(CheckType && PtrA->getType() != PtrB->getType()) 1014f1c00a22SHaicheng Wu return false; 1015f1c00a22SHaicheng Wu 1016f1c00a22SHaicheng Wu unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1017f1c00a22SHaicheng Wu Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1018f1c00a22SHaicheng Wu APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1019f1c00a22SHaicheng Wu 1020f1c00a22SHaicheng Wu APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1021f1c00a22SHaicheng Wu PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1022f1c00a22SHaicheng Wu PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1023f1c00a22SHaicheng Wu 1024f1c00a22SHaicheng Wu // OffsetDelta = OffsetB - OffsetA; 1025f1c00a22SHaicheng Wu const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1026f1c00a22SHaicheng Wu const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1027f1c00a22SHaicheng Wu const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1028f1c00a22SHaicheng Wu const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1029f1c00a22SHaicheng Wu const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1030f1c00a22SHaicheng Wu // Check if they are based on the same pointer. That makes the offsets 1031f1c00a22SHaicheng Wu // sufficient. 1032f1c00a22SHaicheng Wu if (PtrA == PtrB) 1033f1c00a22SHaicheng Wu return OffsetDelta == Size; 1034f1c00a22SHaicheng Wu 1035f1c00a22SHaicheng Wu // Compute the necessary base pointer delta to have the necessary final delta 1036f1c00a22SHaicheng Wu // equal to the size. 1037f1c00a22SHaicheng Wu // BaseDelta = Size - OffsetDelta; 1038f1c00a22SHaicheng Wu const SCEV *SizeSCEV = SE.getConstant(Size); 1039f1c00a22SHaicheng Wu const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1040f1c00a22SHaicheng Wu 1041f1c00a22SHaicheng Wu // Otherwise compute the distance with SCEV between the base pointers. 1042f1c00a22SHaicheng Wu const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1043f1c00a22SHaicheng Wu const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1044f1c00a22SHaicheng Wu const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1045f1c00a22SHaicheng Wu return X == PtrSCEVB; 1046f1c00a22SHaicheng Wu } 1047f1c00a22SHaicheng Wu 10489c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 10499c926579SAdam Nemet switch (Type) { 10509c926579SAdam Nemet case NoDep: 10519c926579SAdam Nemet case Forward: 10529c926579SAdam Nemet case BackwardVectorizable: 10539c926579SAdam Nemet return true; 10549c926579SAdam Nemet 10559c926579SAdam Nemet case Unknown: 10569c926579SAdam Nemet case ForwardButPreventsForwarding: 10579c926579SAdam Nemet case Backward: 10589c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 10599c926579SAdam Nemet return false; 10609c926579SAdam Nemet } 1061d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 10629c926579SAdam Nemet } 10639c926579SAdam Nemet 1064397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const { 10659c926579SAdam Nemet switch (Type) { 10669c926579SAdam Nemet case NoDep: 10679c926579SAdam Nemet case Forward: 10689c926579SAdam Nemet case ForwardButPreventsForwarding: 1069397f5829SAdam Nemet case Unknown: 10709c926579SAdam Nemet return false; 10719c926579SAdam Nemet 10729c926579SAdam Nemet case BackwardVectorizable: 10739c926579SAdam Nemet case Backward: 10749c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 10759c926579SAdam Nemet return true; 10769c926579SAdam Nemet } 1077d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 10789c926579SAdam Nemet } 10799c926579SAdam Nemet 1080397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1081397f5829SAdam Nemet return isBackward() || Type == Unknown; 1082397f5829SAdam Nemet } 1083397f5829SAdam Nemet 1084397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const { 1085397f5829SAdam Nemet switch (Type) { 1086397f5829SAdam Nemet case Forward: 1087397f5829SAdam Nemet case ForwardButPreventsForwarding: 1088397f5829SAdam Nemet return true; 1089397f5829SAdam Nemet 1090397f5829SAdam Nemet case NoDep: 1091397f5829SAdam Nemet case Unknown: 1092397f5829SAdam Nemet case BackwardVectorizable: 1093397f5829SAdam Nemet case Backward: 1094397f5829SAdam Nemet case BackwardVectorizableButPreventsForwarding: 1095397f5829SAdam Nemet return false; 1096397f5829SAdam Nemet } 1097397f5829SAdam Nemet llvm_unreachable("unexpected DepType!"); 1098397f5829SAdam Nemet } 1099397f5829SAdam Nemet 11007afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 11017afb46d3SDavid Majnemer uint64_t TypeByteSize) { 11020456327cSAdam Nemet // If loads occur at a distance that is not a multiple of a feasible vector 11030456327cSAdam Nemet // factor store-load forwarding does not take place. 11040456327cSAdam Nemet // Positive dependences might cause troubles because vectorizing them might 11050456327cSAdam Nemet // prevent store-load forwarding making vectorized code run a lot slower. 11060456327cSAdam Nemet // a[i] = a[i-3] ^ a[i-8]; 11070456327cSAdam Nemet // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 11080456327cSAdam Nemet // hence on your typical architecture store-load forwarding does not take 11090456327cSAdam Nemet // place. Vectorizing in such cases does not make sense. 11100456327cSAdam Nemet // Store-load forwarding distance. 1111884d313bSAdam Nemet 1112884d313bSAdam Nemet // After this many iterations store-to-load forwarding conflicts should not 1113884d313bSAdam Nemet // cause any slowdowns. 11147afb46d3SDavid Majnemer const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 11150456327cSAdam Nemet // Maximum vector factor. 11167afb46d3SDavid Majnemer uint64_t MaxVFWithoutSLForwardIssues = std::min( 11172c34ab51SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 11180456327cSAdam Nemet 1119884d313bSAdam Nemet // Compute the smallest VF at which the store and load would be misaligned. 11207afb46d3SDavid Majnemer for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 11219b5852aeSAdam Nemet VF *= 2) { 1122884d313bSAdam Nemet // If the number of vector iteration between the store and the load are 1123884d313bSAdam Nemet // small we could incur conflicts. 1124884d313bSAdam Nemet if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 11259b5852aeSAdam Nemet MaxVFWithoutSLForwardIssues = (VF >>= 1); 11260456327cSAdam Nemet break; 11270456327cSAdam Nemet } 11280456327cSAdam Nemet } 11290456327cSAdam Nemet 11300456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 11319b5852aeSAdam Nemet DEBUG(dbgs() << "LAA: Distance " << Distance 11329b5852aeSAdam Nemet << " that could cause a store-load forwarding conflict\n"); 11330456327cSAdam Nemet return true; 11340456327cSAdam Nemet } 11350456327cSAdam Nemet 11360456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1137f219c647SAdam Nemet MaxVFWithoutSLForwardIssues != 1138f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize) 11390456327cSAdam Nemet MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 11400456327cSAdam Nemet return false; 11410456327cSAdam Nemet } 11420456327cSAdam Nemet 1143751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride. 1144751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in 1145751004a6SHao Liu /// bytes. 1146751004a6SHao Liu /// 1147751004a6SHao Liu /// \returns true if they are independent. 11487afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 11497afb46d3SDavid Majnemer uint64_t TypeByteSize) { 1150751004a6SHao Liu assert(Stride > 1 && "The stride must be greater than 1"); 1151751004a6SHao Liu assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1152751004a6SHao Liu assert(Distance > 0 && "The distance must be non-zero"); 1153751004a6SHao Liu 1154751004a6SHao Liu // Skip if the distance is not multiple of type byte size. 1155751004a6SHao Liu if (Distance % TypeByteSize) 1156751004a6SHao Liu return false; 1157751004a6SHao Liu 11587afb46d3SDavid Majnemer uint64_t ScaledDist = Distance / TypeByteSize; 1159751004a6SHao Liu 1160751004a6SHao Liu // No dependence if the scaled distance is not multiple of the stride. 1161751004a6SHao Liu // E.g. 1162751004a6SHao Liu // for (i = 0; i < 1024 ; i += 4) 1163751004a6SHao Liu // A[i+2] = A[i] + 1; 1164751004a6SHao Liu // 1165751004a6SHao Liu // Two accesses in memory (scaled distance is 2, stride is 4): 1166751004a6SHao Liu // | A[0] | | | | A[4] | | | | 1167751004a6SHao Liu // | | | A[2] | | | | A[6] | | 1168751004a6SHao Liu // 1169751004a6SHao Liu // E.g. 1170751004a6SHao Liu // for (i = 0; i < 1024 ; i += 3) 1171751004a6SHao Liu // A[i+4] = A[i] + 1; 1172751004a6SHao Liu // 1173751004a6SHao Liu // Two accesses in memory (scaled distance is 4, stride is 3): 1174751004a6SHao Liu // | A[0] | | | A[3] | | | A[6] | | | 1175751004a6SHao Liu // | | | | | A[4] | | | A[7] | | 1176751004a6SHao Liu return ScaledDist % Stride; 1177751004a6SHao Liu } 1178751004a6SHao Liu 11799c926579SAdam Nemet MemoryDepChecker::Dependence::DepType 11809c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 11810456327cSAdam Nemet const MemAccessInfo &B, unsigned BIdx, 11828bc61df9SAdam Nemet const ValueToValueMap &Strides) { 11830456327cSAdam Nemet assert (AIdx < BIdx && "Must pass arguments in program order"); 11840456327cSAdam Nemet 11850456327cSAdam Nemet Value *APtr = A.getPointer(); 11860456327cSAdam Nemet Value *BPtr = B.getPointer(); 11870456327cSAdam Nemet bool AIsWrite = A.getInt(); 11880456327cSAdam Nemet bool BIsWrite = B.getInt(); 11890456327cSAdam Nemet 11900456327cSAdam Nemet // Two reads are independent. 11910456327cSAdam Nemet if (!AIsWrite && !BIsWrite) 11929c926579SAdam Nemet return Dependence::NoDep; 11930456327cSAdam Nemet 11940456327cSAdam Nemet // We cannot check pointers in different address spaces. 11950456327cSAdam Nemet if (APtr->getType()->getPointerAddressSpace() != 11960456327cSAdam Nemet BPtr->getType()->getPointerAddressSpace()) 11979c926579SAdam Nemet return Dependence::Unknown; 11980456327cSAdam Nemet 11997afb46d3SDavid Majnemer int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 12007afb46d3SDavid Majnemer int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 12010456327cSAdam Nemet 1202adf4b739SSilviu Baranga const SCEV *Src = PSE.getSCEV(APtr); 1203adf4b739SSilviu Baranga const SCEV *Sink = PSE.getSCEV(BPtr); 12040456327cSAdam Nemet 12050456327cSAdam Nemet // If the induction step is negative we have to invert source and sink of the 12060456327cSAdam Nemet // dependence. 12070456327cSAdam Nemet if (StrideAPtr < 0) { 12080456327cSAdam Nemet std::swap(APtr, BPtr); 12090456327cSAdam Nemet std::swap(Src, Sink); 12100456327cSAdam Nemet std::swap(AIsWrite, BIsWrite); 12110456327cSAdam Nemet std::swap(AIdx, BIdx); 12120456327cSAdam Nemet std::swap(StrideAPtr, StrideBPtr); 12130456327cSAdam Nemet } 12140456327cSAdam Nemet 12159cd9a7e3SSilviu Baranga const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 12160456327cSAdam Nemet 1217339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 12180456327cSAdam Nemet << "(Induction step: " << StrideAPtr << ")\n"); 1219339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 12200456327cSAdam Nemet << *InstMap[BIdx] << ": " << *Dist << "\n"); 12210456327cSAdam Nemet 1222943befedSAdam Nemet // Need accesses with constant stride. We don't want to vectorize 12230456327cSAdam Nemet // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 12240456327cSAdam Nemet // the address space. 12250456327cSAdam Nemet if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1226943befedSAdam Nemet DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 12279c926579SAdam Nemet return Dependence::Unknown; 12280456327cSAdam Nemet } 12290456327cSAdam Nemet 12300456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 12310456327cSAdam Nemet if (!C) { 1232339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 12330456327cSAdam Nemet ShouldRetryWithRuntimeCheck = true; 12349c926579SAdam Nemet return Dependence::Unknown; 12350456327cSAdam Nemet } 12360456327cSAdam Nemet 12370456327cSAdam Nemet Type *ATy = APtr->getType()->getPointerElementType(); 12380456327cSAdam Nemet Type *BTy = BPtr->getType()->getPointerElementType(); 1239a28d91d8SMehdi Amini auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 12407afb46d3SDavid Majnemer uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 12410456327cSAdam Nemet 12420de2feceSSanjoy Das const APInt &Val = C->getAPInt(); 12436feebe98SMatthew Simpson int64_t Distance = Val.getSExtValue(); 12447afb46d3SDavid Majnemer uint64_t Stride = std::abs(StrideAPtr); 12456feebe98SMatthew Simpson 12466feebe98SMatthew Simpson // Attempt to prove strided accesses independent. 12476feebe98SMatthew Simpson if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 12486feebe98SMatthew Simpson areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 12496feebe98SMatthew Simpson DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 12506feebe98SMatthew Simpson return Dependence::NoDep; 12516feebe98SMatthew Simpson } 12526feebe98SMatthew Simpson 12536feebe98SMatthew Simpson // Negative distances are not plausible dependencies. 12540456327cSAdam Nemet if (Val.isNegative()) { 12550456327cSAdam Nemet bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 125637ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 12570456327cSAdam Nemet (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1258b8486e5aSAdam Nemet ATy != BTy)) { 1259b8486e5aSAdam Nemet DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 12609c926579SAdam Nemet return Dependence::ForwardButPreventsForwarding; 1261b8486e5aSAdam Nemet } 12620456327cSAdam Nemet 1263724ab223SAdam Nemet DEBUG(dbgs() << "LAA: Dependence is negative\n"); 12649c926579SAdam Nemet return Dependence::Forward; 12650456327cSAdam Nemet } 12660456327cSAdam Nemet 12670456327cSAdam Nemet // Write to the same location with the same size. 12680456327cSAdam Nemet // Could be improved to assert type sizes are the same (i32 == float, etc). 12690456327cSAdam Nemet if (Val == 0) { 12700456327cSAdam Nemet if (ATy == BTy) 1271d7037c56SAdam Nemet return Dependence::Forward; 1272339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 12739c926579SAdam Nemet return Dependence::Unknown; 12740456327cSAdam Nemet } 12750456327cSAdam Nemet 12760456327cSAdam Nemet assert(Val.isStrictlyPositive() && "Expect a positive value"); 12770456327cSAdam Nemet 12780456327cSAdam Nemet if (ATy != BTy) { 127904d4163eSAdam Nemet DEBUG(dbgs() << 1280339f42b3SAdam Nemet "LAA: ReadWrite-Write positive dependency with different types\n"); 12819c926579SAdam Nemet return Dependence::Unknown; 12820456327cSAdam Nemet } 12830456327cSAdam Nemet 12840456327cSAdam Nemet // Bail out early if passed-in parameters make vectorization not feasible. 1285f219c647SAdam Nemet unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1286f219c647SAdam Nemet VectorizerParams::VectorizationFactor : 1); 1287f219c647SAdam Nemet unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1288f219c647SAdam Nemet VectorizerParams::VectorizationInterleave : 1); 1289751004a6SHao Liu // The minimum number of iterations for a vectorized/unrolled version. 1290751004a6SHao Liu unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 12910456327cSAdam Nemet 1292751004a6SHao Liu // It's not vectorizable if the distance is smaller than the minimum distance 1293751004a6SHao Liu // needed for a vectroized/unrolled version. Vectorizing one iteration in 1294751004a6SHao Liu // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1295751004a6SHao Liu // TypeByteSize (No need to plus the last gap distance). 1296751004a6SHao Liu // 1297751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1298751004a6SHao Liu // foo(int *A) { 1299751004a6SHao Liu // int *B = (int *)((char *)A + 14); 1300751004a6SHao Liu // for (i = 0 ; i < 1024 ; i += 2) 1301751004a6SHao Liu // B[i] = A[i] + 1; 1302751004a6SHao Liu // } 1303751004a6SHao Liu // 1304751004a6SHao Liu // Two accesses in memory (stride is 2): 1305751004a6SHao Liu // | A[0] | | A[2] | | A[4] | | A[6] | | 1306751004a6SHao Liu // | B[0] | | B[2] | | B[4] | 1307751004a6SHao Liu // 1308751004a6SHao Liu // Distance needs for vectorizing iterations except the last iteration: 1309751004a6SHao Liu // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1310751004a6SHao Liu // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1311751004a6SHao Liu // 1312751004a6SHao Liu // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1313751004a6SHao Liu // 12, which is less than distance. 1314751004a6SHao Liu // 1315751004a6SHao Liu // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1316751004a6SHao Liu // the minimum distance needed is 28, which is greater than distance. It is 1317751004a6SHao Liu // not safe to do vectorization. 13187afb46d3SDavid Majnemer uint64_t MinDistanceNeeded = 1319751004a6SHao Liu TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 13207afb46d3SDavid Majnemer if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1321751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1322751004a6SHao Liu << '\n'); 1323751004a6SHao Liu return Dependence::Backward; 1324751004a6SHao Liu } 1325751004a6SHao Liu 1326751004a6SHao Liu // Unsafe if the minimum distance needed is greater than max safe distance. 1327751004a6SHao Liu if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1328751004a6SHao Liu DEBUG(dbgs() << "LAA: Failure because it needs at least " 1329751004a6SHao Liu << MinDistanceNeeded << " size in bytes"); 13309c926579SAdam Nemet return Dependence::Backward; 13310456327cSAdam Nemet } 13320456327cSAdam Nemet 13339cc0c399SAdam Nemet // Positive distance bigger than max vectorization factor. 1334751004a6SHao Liu // FIXME: Should use max factor instead of max distance in bytes, which could 1335751004a6SHao Liu // not handle different types. 1336751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1337751004a6SHao Liu // void foo (int *A, char *B) { 1338751004a6SHao Liu // for (unsigned i = 0; i < 1024; i++) { 1339751004a6SHao Liu // A[i+2] = A[i] + 1; 1340751004a6SHao Liu // B[i+2] = B[i] + 1; 1341751004a6SHao Liu // } 1342751004a6SHao Liu // } 1343751004a6SHao Liu // 1344751004a6SHao Liu // This case is currently unsafe according to the max safe distance. If we 1345751004a6SHao Liu // analyze the two accesses on array B, the max safe dependence distance 1346751004a6SHao Liu // is 2. Then we analyze the accesses on array A, the minimum distance needed 1347751004a6SHao Liu // is 8, which is less than 2 and forbidden vectorization, But actually 1348751004a6SHao Liu // both A and B could be vectorized by 2 iterations. 1349751004a6SHao Liu MaxSafeDepDistBytes = 13507afb46d3SDavid Majnemer std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 13510456327cSAdam Nemet 13520456327cSAdam Nemet bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 135337ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 13540456327cSAdam Nemet couldPreventStoreLoadForward(Distance, TypeByteSize)) 13559c926579SAdam Nemet return Dependence::BackwardVectorizableButPreventsForwarding; 13560456327cSAdam Nemet 1357751004a6SHao Liu DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1358751004a6SHao Liu << " with max VF = " 1359751004a6SHao Liu << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 13600456327cSAdam Nemet 13619c926579SAdam Nemet return Dependence::BackwardVectorizable; 13620456327cSAdam Nemet } 13630456327cSAdam Nemet 1364dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 13650456327cSAdam Nemet MemAccessInfoSet &CheckDeps, 13668bc61df9SAdam Nemet const ValueToValueMap &Strides) { 13670456327cSAdam Nemet 13687afb46d3SDavid Majnemer MaxSafeDepDistBytes = -1; 13690456327cSAdam Nemet while (!CheckDeps.empty()) { 13700456327cSAdam Nemet MemAccessInfo CurAccess = *CheckDeps.begin(); 13710456327cSAdam Nemet 13720456327cSAdam Nemet // Get the relevant memory access set. 13730456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::iterator I = 13740456327cSAdam Nemet AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 13750456327cSAdam Nemet 13760456327cSAdam Nemet // Check accesses within this set. 13777a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AI = 13787a083814SRichard Trieu AccessSets.member_begin(I); 13797a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AE = 13807a083814SRichard Trieu AccessSets.member_end(); 13810456327cSAdam Nemet 13820456327cSAdam Nemet // Check every access pair. 13830456327cSAdam Nemet while (AI != AE) { 13840456327cSAdam Nemet CheckDeps.erase(*AI); 13850456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 13860456327cSAdam Nemet while (OI != AE) { 13870456327cSAdam Nemet // Check every accessing instruction pair in program order. 13880456327cSAdam Nemet for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 13890456327cSAdam Nemet I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 13900456327cSAdam Nemet for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 13910456327cSAdam Nemet I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 13929c926579SAdam Nemet auto A = std::make_pair(&*AI, *I1); 13939c926579SAdam Nemet auto B = std::make_pair(&*OI, *I2); 13949c926579SAdam Nemet 13959c926579SAdam Nemet assert(*I1 != *I2); 13969c926579SAdam Nemet if (*I1 > *I2) 13979c926579SAdam Nemet std::swap(A, B); 13989c926579SAdam Nemet 13999c926579SAdam Nemet Dependence::DepType Type = 14009c926579SAdam Nemet isDependent(*A.first, A.second, *B.first, B.second, Strides); 14019c926579SAdam Nemet SafeForVectorization &= Dependence::isSafeForVectorization(Type); 14029c926579SAdam Nemet 1403a2df750fSAdam Nemet // Gather dependences unless we accumulated MaxDependences 14049c926579SAdam Nemet // dependences. In that case return as soon as we find the first 14059c926579SAdam Nemet // unsafe dependence. This puts a limit on this quadratic 14069c926579SAdam Nemet // algorithm. 1407a2df750fSAdam Nemet if (RecordDependences) { 1408a2df750fSAdam Nemet if (Type != Dependence::NoDep) 1409a2df750fSAdam Nemet Dependences.push_back(Dependence(A.second, B.second, Type)); 14109c926579SAdam Nemet 1411a2df750fSAdam Nemet if (Dependences.size() >= MaxDependences) { 1412a2df750fSAdam Nemet RecordDependences = false; 1413a2df750fSAdam Nemet Dependences.clear(); 14149c926579SAdam Nemet DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 14159c926579SAdam Nemet } 14169c926579SAdam Nemet } 1417a2df750fSAdam Nemet if (!RecordDependences && !SafeForVectorization) 14180456327cSAdam Nemet return false; 14190456327cSAdam Nemet } 14200456327cSAdam Nemet ++OI; 14210456327cSAdam Nemet } 14220456327cSAdam Nemet AI++; 14230456327cSAdam Nemet } 14240456327cSAdam Nemet } 14259c926579SAdam Nemet 1426a2df750fSAdam Nemet DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 14279c926579SAdam Nemet return SafeForVectorization; 14280456327cSAdam Nemet } 14290456327cSAdam Nemet 1430ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> 1431ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1432ec1e2bb6SAdam Nemet MemAccessInfo Access(Ptr, isWrite); 1433ec1e2bb6SAdam Nemet auto &IndexVector = Accesses.find(Access)->second; 1434ec1e2bb6SAdam Nemet 1435ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> Insts; 1436ec1e2bb6SAdam Nemet std::transform(IndexVector.begin(), IndexVector.end(), 1437ec1e2bb6SAdam Nemet std::back_inserter(Insts), 1438ec1e2bb6SAdam Nemet [&](unsigned Idx) { return this->InstMap[Idx]; }); 1439ec1e2bb6SAdam Nemet return Insts; 1440ec1e2bb6SAdam Nemet } 1441ec1e2bb6SAdam Nemet 144258913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = { 144358913d65SAdam Nemet "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 144458913d65SAdam Nemet "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 144558913d65SAdam Nemet 144658913d65SAdam Nemet void MemoryDepChecker::Dependence::print( 144758913d65SAdam Nemet raw_ostream &OS, unsigned Depth, 144858913d65SAdam Nemet const SmallVectorImpl<Instruction *> &Instrs) const { 144958913d65SAdam Nemet OS.indent(Depth) << DepName[Type] << ":\n"; 145058913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 145158913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 145258913d65SAdam Nemet } 145358913d65SAdam Nemet 1454929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() { 14558dcb3b6aSAdam Nemet // We need to have a loop header. 1456d8968f09SAdam Nemet DEBUG(dbgs() << "LAA: Found a loop in " 1457d8968f09SAdam Nemet << TheLoop->getHeader()->getParent()->getName() << ": " 1458d8968f09SAdam Nemet << TheLoop->getHeader()->getName() << '\n'); 14598dcb3b6aSAdam Nemet 1460929c38e8SAdam Nemet // We can only analyze innermost loops. 1461929c38e8SAdam Nemet if (!TheLoop->empty()) { 14628dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 14632bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1464929c38e8SAdam Nemet return false; 1465929c38e8SAdam Nemet } 1466929c38e8SAdam Nemet 1467929c38e8SAdam Nemet // We must have a single backedge. 1468929c38e8SAdam Nemet if (TheLoop->getNumBackEdges() != 1) { 14698dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1470929c38e8SAdam Nemet emitAnalysis( 14712bd6e984SAdam Nemet LoopAccessReport() << 1472929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1473929c38e8SAdam Nemet return false; 1474929c38e8SAdam Nemet } 1475929c38e8SAdam Nemet 1476929c38e8SAdam Nemet // We must have a single exiting block. 1477929c38e8SAdam Nemet if (!TheLoop->getExitingBlock()) { 14788dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1479929c38e8SAdam Nemet emitAnalysis( 14802bd6e984SAdam Nemet LoopAccessReport() << 1481929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1482929c38e8SAdam Nemet return false; 1483929c38e8SAdam Nemet } 1484929c38e8SAdam Nemet 1485929c38e8SAdam Nemet // We only handle bottom-tested loops, i.e. loop in which the condition is 1486929c38e8SAdam Nemet // checked at the end of each iteration. With that we can assume that all 1487929c38e8SAdam Nemet // instructions in the loop are executed the same number of times. 1488929c38e8SAdam Nemet if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 14898dcb3b6aSAdam Nemet DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1490929c38e8SAdam Nemet emitAnalysis( 14912bd6e984SAdam Nemet LoopAccessReport() << 1492929c38e8SAdam Nemet "loop control flow is not understood by analyzer"); 1493929c38e8SAdam Nemet return false; 1494929c38e8SAdam Nemet } 1495929c38e8SAdam Nemet 1496929c38e8SAdam Nemet // ScalarEvolution needs to be able to find the exit count. 149794734eefSXinliang David Li const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 149894734eefSXinliang David Li if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 14999cd9a7e3SSilviu Baranga emitAnalysis(LoopAccessReport() 15009cd9a7e3SSilviu Baranga << "could not determine number of loop iterations"); 1501929c38e8SAdam Nemet DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1502929c38e8SAdam Nemet return false; 1503929c38e8SAdam Nemet } 1504929c38e8SAdam Nemet 1505929c38e8SAdam Nemet return true; 1506929c38e8SAdam Nemet } 1507929c38e8SAdam Nemet 1508c953bb99SAdam Nemet void LoopAccessInfo::analyzeLoop() { 15090456327cSAdam Nemet typedef SmallPtrSet<Value*, 16> ValueSet; 15100456327cSAdam Nemet 1511e3e3b994SMatthew Simpson // Holds the Load and Store instructions. 1512e3e3b994SMatthew Simpson SmallVector<LoadInst *, 16> Loads; 1513e3e3b994SMatthew Simpson SmallVector<StoreInst *, 16> Stores; 15140456327cSAdam Nemet 15150456327cSAdam Nemet // Holds all the different accesses in the loop. 15160456327cSAdam Nemet unsigned NumReads = 0; 15170456327cSAdam Nemet unsigned NumReadWrites = 0; 15180456327cSAdam Nemet 1519ce030acbSXinliang David Li PtrRtChecking->Pointers.clear(); 1520ce030acbSXinliang David Li PtrRtChecking->Need = false; 15210456327cSAdam Nemet 15220456327cSAdam Nemet const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 15230456327cSAdam Nemet 15240456327cSAdam Nemet // For each block. 15250456327cSAdam Nemet for (Loop::block_iterator bb = TheLoop->block_begin(), 15260456327cSAdam Nemet be = TheLoop->block_end(); bb != be; ++bb) { 15270456327cSAdam Nemet 15280456327cSAdam Nemet // Scan the BB and collect legal loads and stores. 15290456327cSAdam Nemet for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 15300456327cSAdam Nemet ++it) { 15310456327cSAdam Nemet 15320456327cSAdam Nemet // If this is a load, save it. If this instruction can read from memory 15330456327cSAdam Nemet // but is not a load, then we quit. Notice that we don't handle function 15340456327cSAdam Nemet // calls that read or write. 15350456327cSAdam Nemet if (it->mayReadFromMemory()) { 15360456327cSAdam Nemet // Many math library functions read the rounding mode. We will only 15370456327cSAdam Nemet // vectorize a loop if it contains known function calls that don't set 15380456327cSAdam Nemet // the flag. Therefore, it is safe to ignore this read from memory. 15390456327cSAdam Nemet CallInst *Call = dyn_cast<CallInst>(it); 1540b4b27230SDavid Majnemer if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 15410456327cSAdam Nemet continue; 15420456327cSAdam Nemet 15439b3cf604SMichael Zolotukhin // If the function has an explicit vectorized counterpart, we can safely 15449b3cf604SMichael Zolotukhin // assume that it can be vectorized. 15459b3cf604SMichael Zolotukhin if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 15469b3cf604SMichael Zolotukhin TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 15479b3cf604SMichael Zolotukhin continue; 15489b3cf604SMichael Zolotukhin 15490456327cSAdam Nemet LoadInst *Ld = dyn_cast<LoadInst>(it); 15500456327cSAdam Nemet if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 15512bd6e984SAdam Nemet emitAnalysis(LoopAccessReport(Ld) 15520456327cSAdam Nemet << "read with atomic ordering or volatile read"); 1553339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1554436018c3SAdam Nemet CanVecMem = false; 1555436018c3SAdam Nemet return; 15560456327cSAdam Nemet } 15570456327cSAdam Nemet NumLoads++; 15580456327cSAdam Nemet Loads.push_back(Ld); 1559ce030acbSXinliang David Li DepChecker->addAccess(Ld); 1560a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1561c953bb99SAdam Nemet collectStridedAccess(Ld); 15620456327cSAdam Nemet continue; 15630456327cSAdam Nemet } 15640456327cSAdam Nemet 15650456327cSAdam Nemet // Save 'store' instructions. Abort if other instructions write to memory. 15660456327cSAdam Nemet if (it->mayWriteToMemory()) { 15670456327cSAdam Nemet StoreInst *St = dyn_cast<StoreInst>(it); 15680456327cSAdam Nemet if (!St) { 15695a82c916SDuncan P. N. Exon Smith emitAnalysis(LoopAccessReport(&*it) << 157004d4163eSAdam Nemet "instruction cannot be vectorized"); 1571436018c3SAdam Nemet CanVecMem = false; 1572436018c3SAdam Nemet return; 15730456327cSAdam Nemet } 15740456327cSAdam Nemet if (!St->isSimple() && !IsAnnotatedParallel) { 15752bd6e984SAdam Nemet emitAnalysis(LoopAccessReport(St) 15760456327cSAdam Nemet << "write with atomic ordering or volatile write"); 1577339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1578436018c3SAdam Nemet CanVecMem = false; 1579436018c3SAdam Nemet return; 15800456327cSAdam Nemet } 15810456327cSAdam Nemet NumStores++; 15820456327cSAdam Nemet Stores.push_back(St); 1583ce030acbSXinliang David Li DepChecker->addAccess(St); 1584a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1585c953bb99SAdam Nemet collectStridedAccess(St); 15860456327cSAdam Nemet } 15870456327cSAdam Nemet } // Next instr. 15880456327cSAdam Nemet } // Next block. 15890456327cSAdam Nemet 15900456327cSAdam Nemet // Now we have two lists that hold the loads and the stores. 15910456327cSAdam Nemet // Next, we find the pointers that they use. 15920456327cSAdam Nemet 15930456327cSAdam Nemet // Check if we see any stores. If there are no stores, then we don't 15940456327cSAdam Nemet // care if the pointers are *restrict*. 15950456327cSAdam Nemet if (!Stores.size()) { 1596339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1597436018c3SAdam Nemet CanVecMem = true; 1598436018c3SAdam Nemet return; 15990456327cSAdam Nemet } 16000456327cSAdam Nemet 1601dee666bcSAdam Nemet MemoryDepChecker::DepCandidates DependentAccesses; 1602a28d91d8SMehdi Amini AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 160394734eefSXinliang David Li AA, LI, DependentAccesses, *PSE); 16040456327cSAdam Nemet 16050456327cSAdam Nemet // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 16060456327cSAdam Nemet // multiple times on the same object. If the ptr is accessed twice, once 16070456327cSAdam Nemet // for read and once for write, it will only appear once (on the write 16080456327cSAdam Nemet // list). This is okay, since we are going to check for conflicts between 16090456327cSAdam Nemet // writes and between reads and writes, but not between reads and reads. 16100456327cSAdam Nemet ValueSet Seen; 16110456327cSAdam Nemet 1612e3e3b994SMatthew Simpson for (StoreInst *ST : Stores) { 16130456327cSAdam Nemet Value *Ptr = ST->getPointerOperand(); 1614ce48250fSAdam Nemet // Check for store to loop invariant address. 1615ce48250fSAdam Nemet StoreToLoopInvariantAddress |= isUniform(Ptr); 16160456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the read-write 16170456327cSAdam Nemet // list. At this phase it is only a 'write' list. 16180456327cSAdam Nemet if (Seen.insert(Ptr).second) { 16190456327cSAdam Nemet ++NumReadWrites; 16200456327cSAdam Nemet 1621ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(ST); 16220456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 16230456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 16240456327cSAdam Nemet // need runtime pointer checks. 162501abb2c3SAdam Nemet if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 16260456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 16270456327cSAdam Nemet 16280456327cSAdam Nemet Accesses.addStore(Loc); 16290456327cSAdam Nemet } 16300456327cSAdam Nemet } 16310456327cSAdam Nemet 16320456327cSAdam Nemet if (IsAnnotatedParallel) { 163304d4163eSAdam Nemet DEBUG(dbgs() 1634339f42b3SAdam Nemet << "LAA: A loop annotated parallel, ignore memory dependency " 16350456327cSAdam Nemet << "checks.\n"); 1636436018c3SAdam Nemet CanVecMem = true; 1637436018c3SAdam Nemet return; 16380456327cSAdam Nemet } 16390456327cSAdam Nemet 1640e3e3b994SMatthew Simpson for (LoadInst *LD : Loads) { 16410456327cSAdam Nemet Value *Ptr = LD->getPointerOperand(); 16420456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the 16430456327cSAdam Nemet // read list. If we *did* see it before, then it is already in 16440456327cSAdam Nemet // the read-write list. This allows us to vectorize expressions 16450456327cSAdam Nemet // such as A[i] += x; Because the address of A[i] is a read-write 16460456327cSAdam Nemet // pointer. This only works if the index of A[i] is consecutive. 16470456327cSAdam Nemet // If the address of i is unknown (for example A[B[i]]) then we may 16480456327cSAdam Nemet // read a few words, modify, and write a few words, and some of the 16490456327cSAdam Nemet // words may be written to the same address. 16500456327cSAdam Nemet bool IsReadOnlyPtr = false; 1651139ffba3SAdam Nemet if (Seen.insert(Ptr).second || 165294734eefSXinliang David Li !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 16530456327cSAdam Nemet ++NumReads; 16540456327cSAdam Nemet IsReadOnlyPtr = true; 16550456327cSAdam Nemet } 16560456327cSAdam Nemet 1657ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(LD); 16580456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 16590456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 16600456327cSAdam Nemet // need runtime pointer checks. 166101abb2c3SAdam Nemet if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 16620456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 16630456327cSAdam Nemet 16640456327cSAdam Nemet Accesses.addLoad(Loc, IsReadOnlyPtr); 16650456327cSAdam Nemet } 16660456327cSAdam Nemet 16670456327cSAdam Nemet // If we write (or read-write) to a single destination and there are no 16680456327cSAdam Nemet // other reads in this loop then is it safe to vectorize. 16690456327cSAdam Nemet if (NumReadWrites == 1 && NumReads == 0) { 1670339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1671436018c3SAdam Nemet CanVecMem = true; 1672436018c3SAdam Nemet return; 16730456327cSAdam Nemet } 16740456327cSAdam Nemet 16750456327cSAdam Nemet // Build dependence sets and check whether we need a runtime pointer bounds 16760456327cSAdam Nemet // check. 16770456327cSAdam Nemet Accesses.buildDependenceSets(); 16780456327cSAdam Nemet 16790456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 16800456327cSAdam Nemet // to place a runtime bound check. 168194734eefSXinliang David Li bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1682139ffba3SAdam Nemet TheLoop, SymbolicStrides); 1683ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 16842bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1685ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1686ee61474aSAdam Nemet << "the array bounds.\n"); 1687436018c3SAdam Nemet CanVecMem = false; 1688436018c3SAdam Nemet return; 16890456327cSAdam Nemet } 16900456327cSAdam Nemet 1691ee61474aSAdam Nemet DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 16920456327cSAdam Nemet 1693436018c3SAdam Nemet CanVecMem = true; 16940456327cSAdam Nemet if (Accesses.isDependencyCheckNeeded()) { 1695339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1696ce030acbSXinliang David Li CanVecMem = DepChecker->areDepsSafe( 1697139ffba3SAdam Nemet DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1698ce030acbSXinliang David Li MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 16990456327cSAdam Nemet 1700ce030acbSXinliang David Li if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1701339f42b3SAdam Nemet DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 17020456327cSAdam Nemet 17030456327cSAdam Nemet // Clear the dependency checks. We assume they are not needed. 1704ce030acbSXinliang David Li Accesses.resetDepChecks(*DepChecker); 17050456327cSAdam Nemet 1706ce030acbSXinliang David Li PtrRtChecking->reset(); 1707ce030acbSXinliang David Li PtrRtChecking->Need = true; 17080456327cSAdam Nemet 170994734eefSXinliang David Li auto *SE = PSE->getSE(); 1710ce030acbSXinliang David Li CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1711139ffba3SAdam Nemet SymbolicStrides, true); 171298a13719SSilviu Baranga 1713949e91a6SAdam Nemet // Check that we found the bounds for the pointer. 1714ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 17152bd6e984SAdam Nemet emitAnalysis(LoopAccessReport() 17160456327cSAdam Nemet << "cannot check memory dependencies at runtime"); 1717b6dc76ffSAdam Nemet DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1718b6dc76ffSAdam Nemet CanVecMem = false; 1719b6dc76ffSAdam Nemet return; 1720b6dc76ffSAdam Nemet } 1721b6dc76ffSAdam Nemet 17220456327cSAdam Nemet CanVecMem = true; 17230456327cSAdam Nemet } 17240456327cSAdam Nemet } 17250456327cSAdam Nemet 17264bb90a71SAdam Nemet if (CanVecMem) 17274bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1728ce030acbSXinliang David Li << (PtrRtChecking->Need ? "" : " don't") 17290f67c6c1SAdam Nemet << " need runtime memory checks.\n"); 17304bb90a71SAdam Nemet else { 17310a77dfadSAdam Nemet emitAnalysis( 17320a77dfadSAdam Nemet LoopAccessReport() 17330a77dfadSAdam Nemet << "unsafe dependent memory operations in loop. Use " 17340a77dfadSAdam Nemet "#pragma loop distribute(enable) to allow loop distribution " 17350a77dfadSAdam Nemet "to attempt to isolate the offending operations into a separate " 17360a77dfadSAdam Nemet "loop"); 17374bb90a71SAdam Nemet DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 17384bb90a71SAdam Nemet } 17390456327cSAdam Nemet } 17400456327cSAdam Nemet 174101abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 174201abb2c3SAdam Nemet DominatorTree *DT) { 17430456327cSAdam Nemet assert(TheLoop->contains(BB) && "Unknown block used"); 17440456327cSAdam Nemet 17450456327cSAdam Nemet // Blocks that do not dominate the latch need predication. 17460456327cSAdam Nemet BasicBlock* Latch = TheLoop->getLoopLatch(); 17470456327cSAdam Nemet return !DT->dominates(BB, Latch); 17480456327cSAdam Nemet } 17490456327cSAdam Nemet 17502bd6e984SAdam Nemet void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1751c922853bSAdam Nemet assert(!Report && "Multiple reports generated"); 1752c922853bSAdam Nemet Report = Message; 17530456327cSAdam Nemet } 17540456327cSAdam Nemet 175557ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const { 175694734eefSXinliang David Li return (PSE->getSE()->isLoopInvariant(PSE->getSE()->getSCEV(V), TheLoop)); 17570456327cSAdam Nemet } 17587206d7a5SAdam Nemet 17597206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in 17607206d7a5SAdam Nemet // LoopVectorize.cpp. 17617206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 17627206d7a5SAdam Nemet Instruction *Loc) { 17637206d7a5SAdam Nemet if (FirstInst) 17647206d7a5SAdam Nemet return FirstInst; 17657206d7a5SAdam Nemet if (Instruction *I = dyn_cast<Instruction>(V)) 17667206d7a5SAdam Nemet return I->getParent() == Loc->getParent() ? I : nullptr; 17677206d7a5SAdam Nemet return nullptr; 17687206d7a5SAdam Nemet } 17697206d7a5SAdam Nemet 1770039b1042SBenjamin Kramer namespace { 17714e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 17724e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously 17734e533ef7SAdam Nemet /// expanded values. Thus expansion of a pointer can invalidate the bounds for 17744e533ef7SAdam Nemet /// a previous one. 17751da7df37SAdam Nemet struct PointerBounds { 17764e533ef7SAdam Nemet TrackingVH<Value> Start; 17774e533ef7SAdam Nemet TrackingVH<Value> End; 17781da7df37SAdam Nemet }; 1779039b1042SBenjamin Kramer } // end anonymous namespace 17807206d7a5SAdam Nemet 17811da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG 17821da7df37SAdam Nemet /// in \p TheLoop. \return the values for the bounds. 17831da7df37SAdam Nemet static PointerBounds 17841da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 17851da7df37SAdam Nemet Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 17861da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 17871da7df37SAdam Nemet Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 17887206d7a5SAdam Nemet const SCEV *Sc = SE->getSCEV(Ptr); 17897206d7a5SAdam Nemet 17907206d7a5SAdam Nemet if (SE->isLoopInvariant(Sc, TheLoop)) { 17911b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 17921b6b50a9SSilviu Baranga << "\n"); 17931da7df37SAdam Nemet return {Ptr, Ptr}; 17947206d7a5SAdam Nemet } else { 17957206d7a5SAdam Nemet unsigned AS = Ptr->getType()->getPointerAddressSpace(); 17961da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 17977206d7a5SAdam Nemet 17987206d7a5SAdam Nemet // Use this type for pointer arithmetic. 17997206d7a5SAdam Nemet Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 18001b6b50a9SSilviu Baranga Value *Start = nullptr, *End = nullptr; 18017206d7a5SAdam Nemet 18021b6b50a9SSilviu Baranga DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 18031da7df37SAdam Nemet Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 18041da7df37SAdam Nemet End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 18051da7df37SAdam Nemet DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 18061da7df37SAdam Nemet return {Start, End}; 18077206d7a5SAdam Nemet } 18087206d7a5SAdam Nemet } 18097206d7a5SAdam Nemet 18101da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and 18111da7df37SAdam Nemet /// lower bounds for both pointers in the check. 18121da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 18131da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 18141da7df37SAdam Nemet Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 18151da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 18161da7df37SAdam Nemet SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 18171da7df37SAdam Nemet 18181da7df37SAdam Nemet // Here we're relying on the SCEV Expander's cache to only emit code for the 18191da7df37SAdam Nemet // same bounds once. 18201da7df37SAdam Nemet std::transform( 18211da7df37SAdam Nemet PointerChecks.begin(), PointerChecks.end(), 18221da7df37SAdam Nemet std::back_inserter(ChecksWithBounds), 18231da7df37SAdam Nemet [&](const RuntimePointerChecking::PointerCheck &Check) { 182494abbbd6SNAKAMURA Takumi PointerBounds 182594abbbd6SNAKAMURA Takumi First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 182694abbbd6SNAKAMURA Takumi Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 182794abbbd6SNAKAMURA Takumi return std::make_pair(First, Second); 18281da7df37SAdam Nemet }); 18291da7df37SAdam Nemet 18301da7df37SAdam Nemet return ChecksWithBounds; 18311da7df37SAdam Nemet } 18321da7df37SAdam Nemet 18335b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 18341da7df37SAdam Nemet Instruction *Loc, 18351da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 18361da7df37SAdam Nemet const { 183794734eefSXinliang David Li auto *SE = PSE->getSE(); 183894734eefSXinliang David Li SCEVExpander Exp(*SE, *DL, "induction"); 18391da7df37SAdam Nemet auto ExpandedChecks = 1840ce030acbSXinliang David Li expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 18411da7df37SAdam Nemet 18421da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 18431da7df37SAdam Nemet Instruction *FirstInst = nullptr; 18447206d7a5SAdam Nemet IRBuilder<> ChkBuilder(Loc); 18457206d7a5SAdam Nemet // Our instructions might fold to a constant. 18467206d7a5SAdam Nemet Value *MemoryRuntimeCheck = nullptr; 18471b6b50a9SSilviu Baranga 18481da7df37SAdam Nemet for (const auto &Check : ExpandedChecks) { 18491da7df37SAdam Nemet const PointerBounds &A = Check.first, &B = Check.second; 1850cdb791cdSAdam Nemet // Check if two pointers (A and B) conflict where conflict is computed as: 1851cdb791cdSAdam Nemet // start(A) <= end(B) && start(B) <= end(A) 18521da7df37SAdam Nemet unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 18531da7df37SAdam Nemet unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 18547206d7a5SAdam Nemet 18551da7df37SAdam Nemet assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 18561da7df37SAdam Nemet (AS1 == A.End->getType()->getPointerAddressSpace()) && 18577206d7a5SAdam Nemet "Trying to bounds check pointers with different address spaces"); 18587206d7a5SAdam Nemet 18597206d7a5SAdam Nemet Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 18607206d7a5SAdam Nemet Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 18617206d7a5SAdam Nemet 18621da7df37SAdam Nemet Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 18631da7df37SAdam Nemet Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 18641da7df37SAdam Nemet Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 18651da7df37SAdam Nemet Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 18667206d7a5SAdam Nemet 18677206d7a5SAdam Nemet Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 18687206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 18697206d7a5SAdam Nemet Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 18707206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 18717206d7a5SAdam Nemet Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 18727206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 18737206d7a5SAdam Nemet if (MemoryRuntimeCheck) { 18741da7df37SAdam Nemet IsConflict = 18751da7df37SAdam Nemet ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 18767206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 18777206d7a5SAdam Nemet } 18787206d7a5SAdam Nemet MemoryRuntimeCheck = IsConflict; 18797206d7a5SAdam Nemet } 18807206d7a5SAdam Nemet 188190fec840SAdam Nemet if (!MemoryRuntimeCheck) 188290fec840SAdam Nemet return std::make_pair(nullptr, nullptr); 188390fec840SAdam Nemet 18847206d7a5SAdam Nemet // We have to do this trickery because the IRBuilder might fold the check to a 18857206d7a5SAdam Nemet // constant expression in which case there is no Instruction anchored in a 18867206d7a5SAdam Nemet // the block. 18877206d7a5SAdam Nemet Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 18887206d7a5SAdam Nemet ConstantInt::getTrue(Ctx)); 18897206d7a5SAdam Nemet ChkBuilder.Insert(Check, "memcheck.conflict"); 18907206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Check, Loc); 18917206d7a5SAdam Nemet return std::make_pair(FirstInst, Check); 18927206d7a5SAdam Nemet } 18933bfd93d7SAdam Nemet 18945b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> 18955b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1896ce030acbSXinliang David Li if (!PtrRtChecking->Need) 18971da7df37SAdam Nemet return std::make_pair(nullptr, nullptr); 18981da7df37SAdam Nemet 1899ce030acbSXinliang David Li return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 19001da7df37SAdam Nemet } 19011da7df37SAdam Nemet 1902c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 1903c953bb99SAdam Nemet Value *Ptr = nullptr; 1904c953bb99SAdam Nemet if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 1905c953bb99SAdam Nemet Ptr = LI->getPointerOperand(); 1906c953bb99SAdam Nemet else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 1907c953bb99SAdam Nemet Ptr = SI->getPointerOperand(); 1908c953bb99SAdam Nemet else 1909c953bb99SAdam Nemet return; 1910c953bb99SAdam Nemet 191194734eefSXinliang David Li Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 1912c953bb99SAdam Nemet if (!Stride) 1913c953bb99SAdam Nemet return; 1914c953bb99SAdam Nemet 1915c953bb99SAdam Nemet DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 1916c953bb99SAdam Nemet DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 1917c953bb99SAdam Nemet SymbolicStrides[Ptr] = Stride; 1918c953bb99SAdam Nemet StrideSet.insert(Stride); 1919c953bb99SAdam Nemet } 1920c953bb99SAdam Nemet 19213bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1922a28d91d8SMehdi Amini const DataLayout &DL, 19233bfd93d7SAdam Nemet const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1924a9f09c62SAdam Nemet DominatorTree *DT, LoopInfo *LI) 192594734eefSXinliang David Li : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 1926ce030acbSXinliang David Li PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 192794734eefSXinliang David Li DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 192894734eefSXinliang David Li DL(&DL), TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 19297afb46d3SDavid Majnemer MaxSafeDepDistBytes(-1), CanVecMem(false), 1930ce48250fSAdam Nemet StoreToLoopInvariantAddress(false) { 1931929c38e8SAdam Nemet if (canAnalyzeLoop()) 1932c953bb99SAdam Nemet analyzeLoop(); 19333bfd93d7SAdam Nemet } 19343bfd93d7SAdam Nemet 1935e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1936e91cc6efSAdam Nemet if (CanVecMem) { 19374ad38b63SAdam Nemet OS.indent(Depth) << "Memory dependences are safe"; 19387afb46d3SDavid Majnemer if (MaxSafeDepDistBytes != -1ULL) 1939c62e554eSAdam Nemet OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 1940c62e554eSAdam Nemet << " bytes"; 1941ce030acbSXinliang David Li if (PtrRtChecking->Need) 19424ad38b63SAdam Nemet OS << " with run-time checks"; 19434ad38b63SAdam Nemet OS << "\n"; 1944e91cc6efSAdam Nemet } 1945e91cc6efSAdam Nemet 1946e91cc6efSAdam Nemet if (Report) 1947e91cc6efSAdam Nemet OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1948e91cc6efSAdam Nemet 1949ce030acbSXinliang David Li if (auto *Dependences = DepChecker->getDependences()) { 1950a2df750fSAdam Nemet OS.indent(Depth) << "Dependences:\n"; 1951a2df750fSAdam Nemet for (auto &Dep : *Dependences) { 1952ce030acbSXinliang David Li Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 195358913d65SAdam Nemet OS << "\n"; 195458913d65SAdam Nemet } 195558913d65SAdam Nemet } else 1956a2df750fSAdam Nemet OS.indent(Depth) << "Too many dependences, not recorded\n"; 1957e91cc6efSAdam Nemet 1958e91cc6efSAdam Nemet // List the pair of accesses need run-time checks to prove independence. 1959ce030acbSXinliang David Li PtrRtChecking->print(OS, Depth); 1960e91cc6efSAdam Nemet OS << "\n"; 1961c3384320SAdam Nemet 1962c3384320SAdam Nemet OS.indent(Depth) << "Store to invariant address was " 1963c3384320SAdam Nemet << (StoreToLoopInvariantAddress ? "" : "not ") 1964c3384320SAdam Nemet << "found in loop.\n"; 1965e3c0534bSSilviu Baranga 1966e3c0534bSSilviu Baranga OS.indent(Depth) << "SCEV assumptions:\n"; 196794734eefSXinliang David Li PSE->getUnionPredicate().print(OS, Depth); 1968b77365b5SSilviu Baranga 1969b77365b5SSilviu Baranga OS << "\n"; 1970b77365b5SSilviu Baranga 1971b77365b5SSilviu Baranga OS.indent(Depth) << "Expressions re-written:\n"; 197294734eefSXinliang David Li PSE->print(OS, Depth); 1973e91cc6efSAdam Nemet } 1974e91cc6efSAdam Nemet 19757853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 19763bfd93d7SAdam Nemet auto &LAI = LoopAccessInfoMap[L]; 19773bfd93d7SAdam Nemet 19783bfd93d7SAdam Nemet if (!LAI) { 1979a28d91d8SMehdi Amini const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1980a9f09c62SAdam Nemet LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI); 19813bfd93d7SAdam Nemet } 19823bfd93d7SAdam Nemet return *LAI.get(); 19833bfd93d7SAdam Nemet } 19843bfd93d7SAdam Nemet 19857853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 19867853c1ddSXinliang David Li LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 1987ecde1c7fSXinliang David Li 1988e91cc6efSAdam Nemet for (Loop *TopLevelLoop : *LI) 1989e91cc6efSAdam Nemet for (Loop *L : depth_first(TopLevelLoop)) { 1990e91cc6efSAdam Nemet OS.indent(2) << L->getHeader()->getName() << ":\n"; 1991bdbc5227SAdam Nemet auto &LAI = LAA.getInfo(L); 1992e91cc6efSAdam Nemet LAI.print(OS, 4); 1993e91cc6efSAdam Nemet } 1994e91cc6efSAdam Nemet } 1995e91cc6efSAdam Nemet 19967853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 1997ecde1c7fSXinliang David Li SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 19983bfd93d7SAdam Nemet auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1999ecde1c7fSXinliang David Li TLI = TLIP ? &TLIP->getTLI() : nullptr; 2000ecde1c7fSXinliang David Li AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2001ecde1c7fSXinliang David Li DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2002ecde1c7fSXinliang David Li LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 20033bfd93d7SAdam Nemet 20043bfd93d7SAdam Nemet return false; 20053bfd93d7SAdam Nemet } 20063bfd93d7SAdam Nemet 20077853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 20082f1fd165SChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 20097b560d40SChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 20103bfd93d7SAdam Nemet AU.addRequired<DominatorTreeWrapperPass>(); 2011e91cc6efSAdam Nemet AU.addRequired<LoopInfoWrapperPass>(); 20123bfd93d7SAdam Nemet 20133bfd93d7SAdam Nemet AU.setPreservesAll(); 20143bfd93d7SAdam Nemet } 20153bfd93d7SAdam Nemet 20167853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0; 20173bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis"; 20183bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses" 20193bfd93d7SAdam Nemet 20207853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 20217b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 20222f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 20233bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2024e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 20257853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 20263bfd93d7SAdam Nemet 2027*07e08fa3SXinliang David Li char LoopAccessAnalysis::PassID; 20288a021317SXinliang David Li 2029*07e08fa3SXinliang David Li LoopAccessInfo LoopAccessAnalysis::run(Loop &L, AnalysisManager<Loop> &AM) { 2030284b0324SSean Silva const AnalysisManager<Function> &FAM = 2031284b0324SSean Silva AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 20328a021317SXinliang David Li Function &F = *L.getHeader()->getParent(); 2033284b0324SSean Silva auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F); 20348a021317SXinliang David Li auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F); 2035284b0324SSean Silva auto *AA = FAM.getCachedResult<AAManager>(F); 2036284b0324SSean Silva auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2037284b0324SSean Silva auto *LI = FAM.getCachedResult<LoopAnalysis>(F); 2038284b0324SSean Silva if (!SE) 2039284b0324SSean Silva report_fatal_error( 2040284b0324SSean Silva "ScalarEvolution must have been cached at a higher level"); 2041284b0324SSean Silva if (!AA) 2042284b0324SSean Silva report_fatal_error("AliasAnalysis must have been cached at a higher level"); 2043284b0324SSean Silva if (!DT) 2044284b0324SSean Silva report_fatal_error("DominatorTree must have been cached at a higher level"); 2045284b0324SSean Silva if (!LI) 2046284b0324SSean Silva report_fatal_error("LoopInfo must have been cached at a higher level"); 20478a021317SXinliang David Li const DataLayout &DL = F.getParent()->getDataLayout(); 20488a021317SXinliang David Li return LoopAccessInfo(&L, SE, DL, TLI, AA, DT, LI); 20498a021317SXinliang David Li } 20508a021317SXinliang David Li 20518a021317SXinliang David Li PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L, 20528a021317SXinliang David Li AnalysisManager<Loop> &AM) { 20538a021317SXinliang David Li Function &F = *L.getHeader()->getParent(); 2054*07e08fa3SXinliang David Li auto &LAI = AM.getResult<LoopAccessAnalysis>(L); 20558a021317SXinliang David Li OS << "Loop access info in function '" << F.getName() << "':\n"; 20568a021317SXinliang David Li OS.indent(2) << L.getHeader()->getName() << ":\n"; 20578a021317SXinliang David Li LAI.print(OS, 4); 20588a021317SXinliang David Li return PreservedAnalyses::all(); 20598a021317SXinliang David Li } 20608a021317SXinliang David Li 20613bfd93d7SAdam Nemet namespace llvm { 20623bfd93d7SAdam Nemet Pass *createLAAPass() { 20637853c1ddSXinliang David Li return new LoopAccessLegacyAnalysis(); 20643bfd93d7SAdam Nemet } 20653bfd93d7SAdam Nemet } 2066