10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
20456327cSAdam Nemet //
30456327cSAdam Nemet //                     The LLVM Compiler Infrastructure
40456327cSAdam Nemet //
50456327cSAdam Nemet // This file is distributed under the University of Illinois Open Source
60456327cSAdam Nemet // License. See LICENSE.TXT for details.
70456327cSAdam Nemet //
80456327cSAdam Nemet //===----------------------------------------------------------------------===//
90456327cSAdam Nemet //
100456327cSAdam Nemet // The implementation for the loop memory dependence that was originally
110456327cSAdam Nemet // developed for the loop vectorizer.
120456327cSAdam Nemet //
130456327cSAdam Nemet //===----------------------------------------------------------------------===//
140456327cSAdam Nemet 
150456327cSAdam Nemet #include "llvm/Analysis/LoopAccessAnalysis.h"
160456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h"
178a021317SXinliang David Li #include "llvm/Analysis/LoopPassManager.h"
187206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h"
19799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h"
200456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h"
21f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h"
220456327cSAdam Nemet #include "llvm/IR/DiagnosticInfo.h"
230456327cSAdam Nemet #include "llvm/IR/Dominators.h"
247206d7a5SAdam Nemet #include "llvm/IR/IRBuilder.h"
258a021317SXinliang David Li #include "llvm/IR/PassManager.h"
260456327cSAdam Nemet #include "llvm/Support/Debug.h"
27799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h"
280456327cSAdam Nemet using namespace llvm;
290456327cSAdam Nemet 
30339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses"
310456327cSAdam Nemet 
32f219c647SAdam Nemet static cl::opt<unsigned, true>
33f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden,
34f219c647SAdam Nemet                     cl::desc("Sets the SIMD width. Zero is autoselect."),
35f219c647SAdam Nemet                     cl::location(VectorizerParams::VectorizationFactor));
361d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor;
37f219c647SAdam Nemet 
38f219c647SAdam Nemet static cl::opt<unsigned, true>
39f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden,
40f219c647SAdam Nemet                         cl::desc("Sets the vectorization interleave count. "
41f219c647SAdam Nemet                                  "Zero is autoselect."),
42f219c647SAdam Nemet                         cl::location(
43f219c647SAdam Nemet                             VectorizerParams::VectorizationInterleave));
441d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave;
45f219c647SAdam Nemet 
461d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
471d862af7SAdam Nemet     "runtime-memory-check-threshold", cl::Hidden,
481d862af7SAdam Nemet     cl::desc("When performing memory disambiguation checks at runtime do not "
491d862af7SAdam Nemet              "generate more than this number of comparisons (default = 8)."),
501d862af7SAdam Nemet     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
511d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
52f219c647SAdam Nemet 
531b6b50a9SSilviu Baranga /// \brief The maximum iterations used to merge memory checks
541b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold(
551b6b50a9SSilviu Baranga     "memory-check-merge-threshold", cl::Hidden,
561b6b50a9SSilviu Baranga     cl::desc("Maximum number of comparisons done when trying to merge "
571b6b50a9SSilviu Baranga              "runtime memory checks. (default = 100)"),
581b6b50a9SSilviu Baranga     cl::init(100));
591b6b50a9SSilviu Baranga 
60f219c647SAdam Nemet /// Maximum SIMD width.
61f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64;
62f219c647SAdam Nemet 
63a2df750fSAdam Nemet /// \brief We collect dependences up to this threshold.
64a2df750fSAdam Nemet static cl::opt<unsigned>
65a2df750fSAdam Nemet     MaxDependences("max-dependences", cl::Hidden,
66a2df750fSAdam Nemet                    cl::desc("Maximum number of dependences collected by "
679c926579SAdam Nemet                             "loop-access analysis (default = 100)"),
689c926579SAdam Nemet                    cl::init(100));
699c926579SAdam Nemet 
70a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory
71a9f09c62SAdam Nemet /// accesses in code like the following.
72a9f09c62SAdam Nemet ///   for (i = 0; i < N; ++i)
73a9f09c62SAdam Nemet ///     A[i * Stride1] += B[i * Stride2] ...
74a9f09c62SAdam Nemet ///
75a9f09c62SAdam Nemet /// Will be roughly translated to
76a9f09c62SAdam Nemet ///    if (Stride1 == 1 && Stride2 == 1) {
77a9f09c62SAdam Nemet ///      for (i = 0; i < N; i+=4)
78a9f09c62SAdam Nemet ///       A[i:i+3] += ...
79a9f09c62SAdam Nemet ///    } else
80a9f09c62SAdam Nemet ///      ...
81a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning(
82a9f09c62SAdam Nemet     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
83a9f09c62SAdam Nemet     cl::desc("Enable symbolic stride memory access versioning"));
84a9f09c62SAdam Nemet 
8537ec5f91SMatthew Simpson /// \brief Enable store-to-load forwarding conflict detection. This option can
8637ec5f91SMatthew Simpson /// be disabled for correctness testing.
8737ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection(
8837ec5f91SMatthew Simpson     "store-to-load-forwarding-conflict-detection", cl::Hidden,
89a250dc9fSMatthew Simpson     cl::desc("Enable conflict detection in loop-access analysis"),
90a250dc9fSMatthew Simpson     cl::init(true));
91a250dc9fSMatthew Simpson 
92f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() {
93f219c647SAdam Nemet   return ::VectorizationInterleave.getNumOccurrences() > 0;
94f219c647SAdam Nemet }
95f219c647SAdam Nemet 
962bd6e984SAdam Nemet void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
970456327cSAdam Nemet                                     const Function *TheFunction,
98339f42b3SAdam Nemet                                     const Loop *TheLoop,
99339f42b3SAdam Nemet                                     const char *PassName) {
1000456327cSAdam Nemet   DebugLoc DL = TheLoop->getStartLoc();
1013e87634fSAdam Nemet   if (const Instruction *I = Message.getInstr())
1020456327cSAdam Nemet     DL = I->getDebugLoc();
103339f42b3SAdam Nemet   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
1040456327cSAdam Nemet                                  *TheFunction, DL, Message.str());
1050456327cSAdam Nemet }
1060456327cSAdam Nemet 
1070456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) {
1080456327cSAdam Nemet   if (CastInst *CI = dyn_cast<CastInst>(V))
1090456327cSAdam Nemet     if (CI->getOperand(0)->getType()->isIntegerTy())
1100456327cSAdam Nemet       return CI->getOperand(0);
1110456327cSAdam Nemet   return V;
1120456327cSAdam Nemet }
1130456327cSAdam Nemet 
1149cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
1158bc61df9SAdam Nemet                                             const ValueToValueMap &PtrToStride,
1160456327cSAdam Nemet                                             Value *Ptr, Value *OrigPtr) {
1179cd9a7e3SSilviu Baranga   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
1180456327cSAdam Nemet 
1190456327cSAdam Nemet   // If there is an entry in the map return the SCEV of the pointer with the
1200456327cSAdam Nemet   // symbolic stride replaced by one.
1218bc61df9SAdam Nemet   ValueToValueMap::const_iterator SI =
1228bc61df9SAdam Nemet       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1230456327cSAdam Nemet   if (SI != PtrToStride.end()) {
1240456327cSAdam Nemet     Value *StrideVal = SI->second;
1250456327cSAdam Nemet 
1260456327cSAdam Nemet     // Strip casts.
1270456327cSAdam Nemet     StrideVal = stripIntegerCast(StrideVal);
1280456327cSAdam Nemet 
1290456327cSAdam Nemet     // Replace symbolic stride by one.
1300456327cSAdam Nemet     Value *One = ConstantInt::get(StrideVal->getType(), 1);
1310456327cSAdam Nemet     ValueToValueMap RewriteMap;
1320456327cSAdam Nemet     RewriteMap[StrideVal] = One;
1330456327cSAdam Nemet 
1349cd9a7e3SSilviu Baranga     ScalarEvolution *SE = PSE.getSE();
135e3c0534bSSilviu Baranga     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
136e3c0534bSSilviu Baranga     const auto *CT =
137e3c0534bSSilviu Baranga         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
138e3c0534bSSilviu Baranga 
1399cd9a7e3SSilviu Baranga     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
1409cd9a7e3SSilviu Baranga     auto *Expr = PSE.getSCEV(Ptr);
141e3c0534bSSilviu Baranga 
1429cd9a7e3SSilviu Baranga     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
1430456327cSAdam Nemet                  << "\n");
1449cd9a7e3SSilviu Baranga     return Expr;
1450456327cSAdam Nemet   }
1460456327cSAdam Nemet 
1470456327cSAdam Nemet   // Otherwise, just return the SCEV of the original pointer.
148e3c0534bSSilviu Baranga   return OrigSCEV;
1490456327cSAdam Nemet }
1500456327cSAdam Nemet 
1517cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
1527cdebac0SAdam Nemet                                     unsigned DepSetId, unsigned ASId,
153e3c0534bSSilviu Baranga                                     const ValueToValueMap &Strides,
1549cd9a7e3SSilviu Baranga                                     PredicatedScalarEvolution &PSE) {
1550456327cSAdam Nemet   // Get the stride replaced scev.
1569cd9a7e3SSilviu Baranga   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
157279784ffSAdam Nemet   ScalarEvolution *SE = PSE.getSE();
158279784ffSAdam Nemet 
159279784ffSAdam Nemet   const SCEV *ScStart;
160279784ffSAdam Nemet   const SCEV *ScEnd;
161279784ffSAdam Nemet 
16259a65504SAdam Nemet   if (SE->isLoopInvariant(Sc, Lp))
163279784ffSAdam Nemet     ScStart = ScEnd = Sc;
164279784ffSAdam Nemet   else {
1650456327cSAdam Nemet     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1660456327cSAdam Nemet     assert(AR && "Invalid addrec expression");
1676f444dfdSSilviu Baranga     const SCEV *Ex = PSE.getBackedgeTakenCount();
1680e5804a6SSilviu Baranga 
169279784ffSAdam Nemet     ScStart = AR->getStart();
170279784ffSAdam Nemet     ScEnd = AR->evaluateAtIteration(Ex, *SE);
1710e5804a6SSilviu Baranga     const SCEV *Step = AR->getStepRecurrence(*SE);
1720e5804a6SSilviu Baranga 
1730e5804a6SSilviu Baranga     // For expressions with negative step, the upper bound is ScStart and the
1740e5804a6SSilviu Baranga     // lower bound is ScEnd.
1750e5804a6SSilviu Baranga     if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
1760e5804a6SSilviu Baranga       if (CStep->getValue()->isNegative())
1770e5804a6SSilviu Baranga         std::swap(ScStart, ScEnd);
1780e5804a6SSilviu Baranga     } else {
1790e5804a6SSilviu Baranga       // Fallback case: the step is not constant, but the we can still
1800e5804a6SSilviu Baranga       // get the upper and lower bounds of the interval by using min/max
1810e5804a6SSilviu Baranga       // expressions.
1820e5804a6SSilviu Baranga       ScStart = SE->getUMinExpr(ScStart, ScEnd);
1830e5804a6SSilviu Baranga       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
1840e5804a6SSilviu Baranga     }
185279784ffSAdam Nemet   }
1860e5804a6SSilviu Baranga 
1870e5804a6SSilviu Baranga   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
1881b6b50a9SSilviu Baranga }
1891b6b50a9SSilviu Baranga 
190bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4>
19138530887SAdam Nemet RuntimePointerChecking::generateChecks() const {
192bbe1f1deSAdam Nemet   SmallVector<PointerCheck, 4> Checks;
193bbe1f1deSAdam Nemet 
1947c52e052SAdam Nemet   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
1957c52e052SAdam Nemet     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
1967c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
1977c52e052SAdam Nemet       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
198bbe1f1deSAdam Nemet 
19938530887SAdam Nemet       if (needsChecking(CGI, CGJ))
200bbe1f1deSAdam Nemet         Checks.push_back(std::make_pair(&CGI, &CGJ));
201bbe1f1deSAdam Nemet     }
202bbe1f1deSAdam Nemet   }
203bbe1f1deSAdam Nemet   return Checks;
204bbe1f1deSAdam Nemet }
205bbe1f1deSAdam Nemet 
20615840393SAdam Nemet void RuntimePointerChecking::generateChecks(
20715840393SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
20815840393SAdam Nemet   assert(Checks.empty() && "Checks is not empty");
20915840393SAdam Nemet   groupChecks(DepCands, UseDependencies);
21015840393SAdam Nemet   Checks = generateChecks();
21115840393SAdam Nemet }
21215840393SAdam Nemet 
213651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
214651a5a24SAdam Nemet                                            const CheckingPtrGroup &N) const {
2151b6b50a9SSilviu Baranga   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
2161b6b50a9SSilviu Baranga     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
217651a5a24SAdam Nemet       if (needsChecking(M.Members[I], N.Members[J]))
2181b6b50a9SSilviu Baranga         return true;
2191b6b50a9SSilviu Baranga   return false;
2201b6b50a9SSilviu Baranga }
2211b6b50a9SSilviu Baranga 
2221b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum.
2231b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer.
2241b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
2251b6b50a9SSilviu Baranga                                    ScalarEvolution *SE) {
2261b6b50a9SSilviu Baranga   const SCEV *Diff = SE->getMinusSCEV(J, I);
2271b6b50a9SSilviu Baranga   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
2281b6b50a9SSilviu Baranga 
2291b6b50a9SSilviu Baranga   if (!C)
2301b6b50a9SSilviu Baranga     return nullptr;
2311b6b50a9SSilviu Baranga   if (C->getValue()->isNegative())
2321b6b50a9SSilviu Baranga     return J;
2331b6b50a9SSilviu Baranga   return I;
2341b6b50a9SSilviu Baranga }
2351b6b50a9SSilviu Baranga 
2367cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
2379f7dedc3SAdam Nemet   const SCEV *Start = RtCheck.Pointers[Index].Start;
2389f7dedc3SAdam Nemet   const SCEV *End = RtCheck.Pointers[Index].End;
2399f7dedc3SAdam Nemet 
2401b6b50a9SSilviu Baranga   // Compare the starts and ends with the known minimum and maximum
2411b6b50a9SSilviu Baranga   // of this set. We need to know how we compare against the min/max
2421b6b50a9SSilviu Baranga   // of the set in order to be able to emit memchecks.
2439f7dedc3SAdam Nemet   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
2441b6b50a9SSilviu Baranga   if (!Min0)
2451b6b50a9SSilviu Baranga     return false;
2461b6b50a9SSilviu Baranga 
2479f7dedc3SAdam Nemet   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
2481b6b50a9SSilviu Baranga   if (!Min1)
2491b6b50a9SSilviu Baranga     return false;
2501b6b50a9SSilviu Baranga 
2511b6b50a9SSilviu Baranga   // Update the low bound  expression if we've found a new min value.
2529f7dedc3SAdam Nemet   if (Min0 == Start)
2539f7dedc3SAdam Nemet     Low = Start;
2541b6b50a9SSilviu Baranga 
2551b6b50a9SSilviu Baranga   // Update the high bound expression if we've found a new max value.
2569f7dedc3SAdam Nemet   if (Min1 != End)
2579f7dedc3SAdam Nemet     High = End;
2581b6b50a9SSilviu Baranga 
2591b6b50a9SSilviu Baranga   Members.push_back(Index);
2601b6b50a9SSilviu Baranga   return true;
2611b6b50a9SSilviu Baranga }
2621b6b50a9SSilviu Baranga 
2637cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks(
2647cdebac0SAdam Nemet     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
2651b6b50a9SSilviu Baranga   // We build the groups from dependency candidates equivalence classes
2661b6b50a9SSilviu Baranga   // because:
2671b6b50a9SSilviu Baranga   //    - We know that pointers in the same equivalence class share
2681b6b50a9SSilviu Baranga   //      the same underlying object and therefore there is a chance
2691b6b50a9SSilviu Baranga   //      that we can compare pointers
2701b6b50a9SSilviu Baranga   //    - We wouldn't be able to merge two pointers for which we need
2711b6b50a9SSilviu Baranga   //      to emit a memcheck. The classes in DepCands are already
2721b6b50a9SSilviu Baranga   //      conveniently built such that no two pointers in the same
2731b6b50a9SSilviu Baranga   //      class need checking against each other.
2741b6b50a9SSilviu Baranga 
2751b6b50a9SSilviu Baranga   // We use the following (greedy) algorithm to construct the groups
2761b6b50a9SSilviu Baranga   // For every pointer in the equivalence class:
2771b6b50a9SSilviu Baranga   //   For each existing group:
2781b6b50a9SSilviu Baranga   //   - if the difference between this pointer and the min/max bounds
2791b6b50a9SSilviu Baranga   //     of the group is a constant, then make the pointer part of the
2801b6b50a9SSilviu Baranga   //     group and update the min/max bounds of that group as required.
2811b6b50a9SSilviu Baranga 
2821b6b50a9SSilviu Baranga   CheckingGroups.clear();
2831b6b50a9SSilviu Baranga 
28448250600SSilviu Baranga   // If we need to check two pointers to the same underlying object
28548250600SSilviu Baranga   // with a non-constant difference, we shouldn't perform any pointer
28648250600SSilviu Baranga   // grouping with those pointers. This is because we can easily get
28748250600SSilviu Baranga   // into cases where the resulting check would return false, even when
28848250600SSilviu Baranga   // the accesses are safe.
28948250600SSilviu Baranga   //
29048250600SSilviu Baranga   // The following example shows this:
29148250600SSilviu Baranga   // for (i = 0; i < 1000; ++i)
29248250600SSilviu Baranga   //   a[5000 + i * m] = a[i] + a[i + 9000]
29348250600SSilviu Baranga   //
29448250600SSilviu Baranga   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
29548250600SSilviu Baranga   // (0, 10000) which is always false. However, if m is 1, there is no
29648250600SSilviu Baranga   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
29748250600SSilviu Baranga   // us to perform an accurate check in this case.
29848250600SSilviu Baranga   //
29948250600SSilviu Baranga   // The above case requires that we have an UnknownDependence between
30048250600SSilviu Baranga   // accesses to the same underlying object. This cannot happen unless
30148250600SSilviu Baranga   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
30248250600SSilviu Baranga   // is also false. In this case we will use the fallback path and create
30348250600SSilviu Baranga   // separate checking groups for all pointers.
30448250600SSilviu Baranga 
3051b6b50a9SSilviu Baranga   // If we don't have the dependency partitions, construct a new
30648250600SSilviu Baranga   // checking pointer group for each pointer. This is also required
30748250600SSilviu Baranga   // for correctness, because in this case we can have checking between
30848250600SSilviu Baranga   // pointers to the same underlying object.
3091b6b50a9SSilviu Baranga   if (!UseDependencies) {
3101b6b50a9SSilviu Baranga     for (unsigned I = 0; I < Pointers.size(); ++I)
3111b6b50a9SSilviu Baranga       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
3121b6b50a9SSilviu Baranga     return;
3131b6b50a9SSilviu Baranga   }
3141b6b50a9SSilviu Baranga 
3151b6b50a9SSilviu Baranga   unsigned TotalComparisons = 0;
3161b6b50a9SSilviu Baranga 
3171b6b50a9SSilviu Baranga   DenseMap<Value *, unsigned> PositionMap;
3189f7dedc3SAdam Nemet   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
3199f7dedc3SAdam Nemet     PositionMap[Pointers[Index].PointerValue] = Index;
3201b6b50a9SSilviu Baranga 
321ce3877fcSSilviu Baranga   // We need to keep track of what pointers we've already seen so we
322ce3877fcSSilviu Baranga   // don't process them twice.
323ce3877fcSSilviu Baranga   SmallSet<unsigned, 2> Seen;
324ce3877fcSSilviu Baranga 
325e4b9f507SSanjay Patel   // Go through all equivalence classes, get the "pointer check groups"
326ce3877fcSSilviu Baranga   // and add them to the overall solution. We use the order in which accesses
327ce3877fcSSilviu Baranga   // appear in 'Pointers' to enforce determinism.
328ce3877fcSSilviu Baranga   for (unsigned I = 0; I < Pointers.size(); ++I) {
329ce3877fcSSilviu Baranga     // We've seen this pointer before, and therefore already processed
330ce3877fcSSilviu Baranga     // its equivalence class.
331ce3877fcSSilviu Baranga     if (Seen.count(I))
3321b6b50a9SSilviu Baranga       continue;
3331b6b50a9SSilviu Baranga 
3349f7dedc3SAdam Nemet     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
3359f7dedc3SAdam Nemet                                            Pointers[I].IsWritePtr);
3361b6b50a9SSilviu Baranga 
337ce3877fcSSilviu Baranga     SmallVector<CheckingPtrGroup, 2> Groups;
338ce3877fcSSilviu Baranga     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
339ce3877fcSSilviu Baranga 
340a647c30fSSilviu Baranga     // Because DepCands is constructed by visiting accesses in the order in
341a647c30fSSilviu Baranga     // which they appear in alias sets (which is deterministic) and the
342a647c30fSSilviu Baranga     // iteration order within an equivalence class member is only dependent on
343a647c30fSSilviu Baranga     // the order in which unions and insertions are performed on the
344a647c30fSSilviu Baranga     // equivalence class, the iteration order is deterministic.
345ce3877fcSSilviu Baranga     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
3461b6b50a9SSilviu Baranga          MI != ME; ++MI) {
3471b6b50a9SSilviu Baranga       unsigned Pointer = PositionMap[MI->getPointer()];
3481b6b50a9SSilviu Baranga       bool Merged = false;
349ce3877fcSSilviu Baranga       // Mark this pointer as seen.
350ce3877fcSSilviu Baranga       Seen.insert(Pointer);
3511b6b50a9SSilviu Baranga 
3521b6b50a9SSilviu Baranga       // Go through all the existing sets and see if we can find one
3531b6b50a9SSilviu Baranga       // which can include this pointer.
3541b6b50a9SSilviu Baranga       for (CheckingPtrGroup &Group : Groups) {
3551b6b50a9SSilviu Baranga         // Don't perform more than a certain amount of comparisons.
3561b6b50a9SSilviu Baranga         // This should limit the cost of grouping the pointers to something
3571b6b50a9SSilviu Baranga         // reasonable.  If we do end up hitting this threshold, the algorithm
3581b6b50a9SSilviu Baranga         // will create separate groups for all remaining pointers.
3591b6b50a9SSilviu Baranga         if (TotalComparisons > MemoryCheckMergeThreshold)
3601b6b50a9SSilviu Baranga           break;
3611b6b50a9SSilviu Baranga 
3621b6b50a9SSilviu Baranga         TotalComparisons++;
3631b6b50a9SSilviu Baranga 
3641b6b50a9SSilviu Baranga         if (Group.addPointer(Pointer)) {
3651b6b50a9SSilviu Baranga           Merged = true;
3661b6b50a9SSilviu Baranga           break;
3671b6b50a9SSilviu Baranga         }
3681b6b50a9SSilviu Baranga       }
3691b6b50a9SSilviu Baranga 
3701b6b50a9SSilviu Baranga       if (!Merged)
3711b6b50a9SSilviu Baranga         // We couldn't add this pointer to any existing set or the threshold
3721b6b50a9SSilviu Baranga         // for the number of comparisons has been reached. Create a new group
3731b6b50a9SSilviu Baranga         // to hold the current pointer.
3741b6b50a9SSilviu Baranga         Groups.push_back(CheckingPtrGroup(Pointer, *this));
3751b6b50a9SSilviu Baranga     }
3761b6b50a9SSilviu Baranga 
3771b6b50a9SSilviu Baranga     // We've computed the grouped checks for this partition.
3781b6b50a9SSilviu Baranga     // Save the results and continue with the next one.
3791b6b50a9SSilviu Baranga     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
3801b6b50a9SSilviu Baranga   }
3810456327cSAdam Nemet }
3820456327cSAdam Nemet 
383041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition(
384041e6debSAdam Nemet     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
385041e6debSAdam Nemet     unsigned PtrIdx2) {
386041e6debSAdam Nemet   return (PtrToPartition[PtrIdx1] != -1 &&
387041e6debSAdam Nemet           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
388041e6debSAdam Nemet }
389041e6debSAdam Nemet 
390651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
3919f7dedc3SAdam Nemet   const PointerInfo &PointerI = Pointers[I];
3929f7dedc3SAdam Nemet   const PointerInfo &PointerJ = Pointers[J];
3939f7dedc3SAdam Nemet 
394a8945b77SAdam Nemet   // No need to check if two readonly pointers intersect.
3959f7dedc3SAdam Nemet   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
396a8945b77SAdam Nemet     return false;
397a8945b77SAdam Nemet 
398a8945b77SAdam Nemet   // Only need to check pointers between two different dependency sets.
3999f7dedc3SAdam Nemet   if (PointerI.DependencySetId == PointerJ.DependencySetId)
400a8945b77SAdam Nemet     return false;
401a8945b77SAdam Nemet 
402a8945b77SAdam Nemet   // Only need to check pointers in the same alias set.
4039f7dedc3SAdam Nemet   if (PointerI.AliasSetId != PointerJ.AliasSetId)
404a8945b77SAdam Nemet     return false;
405a8945b77SAdam Nemet 
406a8945b77SAdam Nemet   return true;
407a8945b77SAdam Nemet }
408a8945b77SAdam Nemet 
40954f0b83eSAdam Nemet void RuntimePointerChecking::printChecks(
41054f0b83eSAdam Nemet     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
41154f0b83eSAdam Nemet     unsigned Depth) const {
41254f0b83eSAdam Nemet   unsigned N = 0;
41354f0b83eSAdam Nemet   for (const auto &Check : Checks) {
41454f0b83eSAdam Nemet     const auto &First = Check.first->Members, &Second = Check.second->Members;
41554f0b83eSAdam Nemet 
41654f0b83eSAdam Nemet     OS.indent(Depth) << "Check " << N++ << ":\n";
41754f0b83eSAdam Nemet 
41854f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
41954f0b83eSAdam Nemet     for (unsigned K = 0; K < First.size(); ++K)
42054f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
42154f0b83eSAdam Nemet 
42254f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
42354f0b83eSAdam Nemet     for (unsigned K = 0; K < Second.size(); ++K)
42454f0b83eSAdam Nemet       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
42554f0b83eSAdam Nemet   }
42654f0b83eSAdam Nemet }
42754f0b83eSAdam Nemet 
4283a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
429e91cc6efSAdam Nemet 
430e91cc6efSAdam Nemet   OS.indent(Depth) << "Run-time memory checks:\n";
43115840393SAdam Nemet   printChecks(OS, Checks, Depth);
4321b6b50a9SSilviu Baranga 
4331b6b50a9SSilviu Baranga   OS.indent(Depth) << "Grouped accesses:\n";
4341b6b50a9SSilviu Baranga   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
43554f0b83eSAdam Nemet     const auto &CG = CheckingGroups[I];
43654f0b83eSAdam Nemet 
43754f0b83eSAdam Nemet     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
43854f0b83eSAdam Nemet     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
43954f0b83eSAdam Nemet                          << ")\n";
44054f0b83eSAdam Nemet     for (unsigned J = 0; J < CG.Members.size(); ++J) {
44154f0b83eSAdam Nemet       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
4421b6b50a9SSilviu Baranga                            << "\n";
4431b6b50a9SSilviu Baranga     }
444e91cc6efSAdam Nemet   }
445e91cc6efSAdam Nemet }
446e91cc6efSAdam Nemet 
4470456327cSAdam Nemet namespace {
4480456327cSAdam Nemet /// \brief Analyses memory accesses in a loop.
4490456327cSAdam Nemet ///
4500456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data
4510456327cSAdam Nemet /// dependence checking.
4520456327cSAdam Nemet class AccessAnalysis {
4530456327cSAdam Nemet public:
4540456327cSAdam Nemet   /// \brief Read or write access location.
4550456327cSAdam Nemet   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4560456327cSAdam Nemet   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4570456327cSAdam Nemet 
458e2b885c4SAdam Nemet   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
4599cd9a7e3SSilviu Baranga                  MemoryDepChecker::DepCandidates &DA,
4609cd9a7e3SSilviu Baranga                  PredicatedScalarEvolution &PSE)
461e3c0534bSSilviu Baranga       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
4629cd9a7e3SSilviu Baranga         PSE(PSE) {}
4630456327cSAdam Nemet 
4640456327cSAdam Nemet   /// \brief Register a load  and whether it is only read from.
465ac80dc75SChandler Carruth   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
4660456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
467ecbd1682SChandler Carruth     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
4680456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, false));
4690456327cSAdam Nemet     if (IsReadOnly)
4700456327cSAdam Nemet       ReadOnlyPtr.insert(Ptr);
4710456327cSAdam Nemet   }
4720456327cSAdam Nemet 
4730456327cSAdam Nemet   /// \brief Register a store.
474ac80dc75SChandler Carruth   void addStore(MemoryLocation &Loc) {
4750456327cSAdam Nemet     Value *Ptr = const_cast<Value*>(Loc.Ptr);
476ecbd1682SChandler Carruth     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
4770456327cSAdam Nemet     Accesses.insert(MemAccessInfo(Ptr, true));
4780456327cSAdam Nemet   }
4790456327cSAdam Nemet 
4800456327cSAdam Nemet   /// \brief Check whether we can check the pointers at runtime for
481ee61474aSAdam Nemet   /// non-intersection.
482ee61474aSAdam Nemet   ///
483ee61474aSAdam Nemet   /// Returns true if we need no check or if we do and we can generate them
484ee61474aSAdam Nemet   /// (i.e. the pointers have computable bounds).
4857cdebac0SAdam Nemet   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
4867cdebac0SAdam Nemet                        Loop *TheLoop, const ValueToValueMap &Strides,
4879f02c586SAndrey Turetskiy                        bool ShouldCheckWrap = false);
4880456327cSAdam Nemet 
4890456327cSAdam Nemet   /// \brief Goes over all memory accesses, checks whether a RT check is needed
4900456327cSAdam Nemet   /// and builds sets of dependent accesses.
4910456327cSAdam Nemet   void buildDependenceSets() {
4920456327cSAdam Nemet     processMemAccesses();
4930456327cSAdam Nemet   }
4940456327cSAdam Nemet 
4955dc3b2cfSAdam Nemet   /// \brief Initial processing of memory accesses determined that we need to
4965dc3b2cfSAdam Nemet   /// perform dependency checking.
4975dc3b2cfSAdam Nemet   ///
4985dc3b2cfSAdam Nemet   /// Note that this can later be cleared if we retry memcheck analysis without
4995dc3b2cfSAdam Nemet   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
5000456327cSAdam Nemet   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
501df3dc5b9SAdam Nemet 
502df3dc5b9SAdam Nemet   /// We decided that no dependence analysis would be used.  Reset the state.
503df3dc5b9SAdam Nemet   void resetDepChecks(MemoryDepChecker &DepChecker) {
504df3dc5b9SAdam Nemet     CheckDeps.clear();
505a2df750fSAdam Nemet     DepChecker.clearDependences();
506df3dc5b9SAdam Nemet   }
5070456327cSAdam Nemet 
5080456327cSAdam Nemet   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
5090456327cSAdam Nemet 
5100456327cSAdam Nemet private:
5110456327cSAdam Nemet   typedef SetVector<MemAccessInfo> PtrAccessSet;
5120456327cSAdam Nemet 
5130456327cSAdam Nemet   /// \brief Go over all memory access and check whether runtime pointer checks
514b41d2d3fSAdam Nemet   /// are needed and build sets of dependency check candidates.
5150456327cSAdam Nemet   void processMemAccesses();
5160456327cSAdam Nemet 
5170456327cSAdam Nemet   /// Set of all accesses.
5180456327cSAdam Nemet   PtrAccessSet Accesses;
5190456327cSAdam Nemet 
520a28d91d8SMehdi Amini   const DataLayout &DL;
521a28d91d8SMehdi Amini 
5220456327cSAdam Nemet   /// Set of accesses that need a further dependence check.
5230456327cSAdam Nemet   MemAccessInfoSet CheckDeps;
5240456327cSAdam Nemet 
5250456327cSAdam Nemet   /// Set of pointers that are read only.
5260456327cSAdam Nemet   SmallPtrSet<Value*, 16> ReadOnlyPtr;
5270456327cSAdam Nemet 
5280456327cSAdam Nemet   /// An alias set tracker to partition the access set by underlying object and
5290456327cSAdam Nemet   //intrinsic property (such as TBAA metadata).
5300456327cSAdam Nemet   AliasSetTracker AST;
5310456327cSAdam Nemet 
532e2b885c4SAdam Nemet   LoopInfo *LI;
533e2b885c4SAdam Nemet 
5340456327cSAdam Nemet   /// Sets of potentially dependent accesses - members of one set share an
5350456327cSAdam Nemet   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
5360456327cSAdam Nemet   /// dependence check.
537dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates &DepCands;
5380456327cSAdam Nemet 
5395dc3b2cfSAdam Nemet   /// \brief Initial processing of memory accesses determined that we may need
5405dc3b2cfSAdam Nemet   /// to add memchecks.  Perform the analysis to determine the necessary checks.
5415dc3b2cfSAdam Nemet   ///
5425dc3b2cfSAdam Nemet   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
5435dc3b2cfSAdam Nemet   /// memcheck analysis without dependency checking
5445dc3b2cfSAdam Nemet   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
5455dc3b2cfSAdam Nemet   /// while this remains set if we have potentially dependent accesses.
5465dc3b2cfSAdam Nemet   bool IsRTCheckAnalysisNeeded;
547e3c0534bSSilviu Baranga 
548e3c0534bSSilviu Baranga   /// The SCEV predicate containing all the SCEV-related assumptions.
5499cd9a7e3SSilviu Baranga   PredicatedScalarEvolution &PSE;
5500456327cSAdam Nemet };
5510456327cSAdam Nemet 
5520456327cSAdam Nemet } // end anonymous namespace
5530456327cSAdam Nemet 
5540456327cSAdam Nemet /// \brief Check whether a pointer can participate in a runtime bounds check.
5559cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
556e3c0534bSSilviu Baranga                                 const ValueToValueMap &Strides, Value *Ptr,
5579cd9a7e3SSilviu Baranga                                 Loop *L) {
5589cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
559279784ffSAdam Nemet 
560279784ffSAdam Nemet   // The bounds for loop-invariant pointer is trivial.
561279784ffSAdam Nemet   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
562279784ffSAdam Nemet     return true;
563279784ffSAdam Nemet 
5640456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
5650456327cSAdam Nemet   if (!AR)
5660456327cSAdam Nemet     return false;
5670456327cSAdam Nemet 
5680456327cSAdam Nemet   return AR->isAffine();
5690456327cSAdam Nemet }
5700456327cSAdam Nemet 
5719f02c586SAndrey Turetskiy /// \brief Check whether a pointer address cannot wrap.
5729f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE,
5739f02c586SAndrey Turetskiy                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
5749f02c586SAndrey Turetskiy   const SCEV *PtrScev = PSE.getSCEV(Ptr);
5759f02c586SAndrey Turetskiy   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
5769f02c586SAndrey Turetskiy     return true;
5779f02c586SAndrey Turetskiy 
5787afb46d3SDavid Majnemer   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
5799f02c586SAndrey Turetskiy   return Stride == 1;
5809f02c586SAndrey Turetskiy }
5819f02c586SAndrey Turetskiy 
5827cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
5837cdebac0SAdam Nemet                                      ScalarEvolution *SE, Loop *TheLoop,
5847cdebac0SAdam Nemet                                      const ValueToValueMap &StridesMap,
5859f02c586SAndrey Turetskiy                                      bool ShouldCheckWrap) {
5860456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
5870456327cSAdam Nemet   // to place a runtime bound check.
5880456327cSAdam Nemet   bool CanDoRT = true;
5890456327cSAdam Nemet 
590ee61474aSAdam Nemet   bool NeedRTCheck = false;
5915dc3b2cfSAdam Nemet   if (!IsRTCheckAnalysisNeeded) return true;
59298a13719SSilviu Baranga 
5930456327cSAdam Nemet   bool IsDepCheckNeeded = isDependencyCheckNeeded();
5940456327cSAdam Nemet 
5950456327cSAdam Nemet   // We assign a consecutive id to access from different alias sets.
5960456327cSAdam Nemet   // Accesses between different groups doesn't need to be checked.
5970456327cSAdam Nemet   unsigned ASId = 1;
5980456327cSAdam Nemet   for (auto &AS : AST) {
599424edc6cSAdam Nemet     int NumReadPtrChecks = 0;
600424edc6cSAdam Nemet     int NumWritePtrChecks = 0;
601424edc6cSAdam Nemet 
6020456327cSAdam Nemet     // We assign consecutive id to access from different dependence sets.
6030456327cSAdam Nemet     // Accesses within the same set don't need a runtime check.
6040456327cSAdam Nemet     unsigned RunningDepId = 1;
6050456327cSAdam Nemet     DenseMap<Value *, unsigned> DepSetId;
6060456327cSAdam Nemet 
6070456327cSAdam Nemet     for (auto A : AS) {
6080456327cSAdam Nemet       Value *Ptr = A.getValue();
6090456327cSAdam Nemet       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
6100456327cSAdam Nemet       MemAccessInfo Access(Ptr, IsWrite);
6110456327cSAdam Nemet 
612424edc6cSAdam Nemet       if (IsWrite)
613424edc6cSAdam Nemet         ++NumWritePtrChecks;
614424edc6cSAdam Nemet       else
615424edc6cSAdam Nemet         ++NumReadPtrChecks;
616424edc6cSAdam Nemet 
6179cd9a7e3SSilviu Baranga       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
618a28d91d8SMehdi Amini           // When we run after a failing dependency check we have to make sure
619a28d91d8SMehdi Amini           // we don't have wrapping pointers.
6209f02c586SAndrey Turetskiy           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
6210456327cSAdam Nemet         // The id of the dependence set.
6220456327cSAdam Nemet         unsigned DepId;
6230456327cSAdam Nemet 
6240456327cSAdam Nemet         if (IsDepCheckNeeded) {
6250456327cSAdam Nemet           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
6260456327cSAdam Nemet           unsigned &LeaderId = DepSetId[Leader];
6270456327cSAdam Nemet           if (!LeaderId)
6280456327cSAdam Nemet             LeaderId = RunningDepId++;
6290456327cSAdam Nemet           DepId = LeaderId;
6300456327cSAdam Nemet         } else
6310456327cSAdam Nemet           // Each access has its own dependence set.
6320456327cSAdam Nemet           DepId = RunningDepId++;
6330456327cSAdam Nemet 
6349cd9a7e3SSilviu Baranga         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
6350456327cSAdam Nemet 
636339f42b3SAdam Nemet         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
6370456327cSAdam Nemet       } else {
638f10ca278SAdam Nemet         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
6390456327cSAdam Nemet         CanDoRT = false;
6400456327cSAdam Nemet       }
6410456327cSAdam Nemet     }
6420456327cSAdam Nemet 
643424edc6cSAdam Nemet     // If we have at least two writes or one write and a read then we need to
644424edc6cSAdam Nemet     // check them.  But there is no need to checks if there is only one
645424edc6cSAdam Nemet     // dependence set for this alias set.
646424edc6cSAdam Nemet     //
647424edc6cSAdam Nemet     // Note that this function computes CanDoRT and NeedRTCheck independently.
648424edc6cSAdam Nemet     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
649424edc6cSAdam Nemet     // for which we couldn't find the bounds but we don't actually need to emit
650424edc6cSAdam Nemet     // any checks so it does not matter.
651424edc6cSAdam Nemet     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
652424edc6cSAdam Nemet       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
653424edc6cSAdam Nemet                                                  NumWritePtrChecks >= 1));
654424edc6cSAdam Nemet 
6550456327cSAdam Nemet     ++ASId;
6560456327cSAdam Nemet   }
6570456327cSAdam Nemet 
6580456327cSAdam Nemet   // If the pointers that we would use for the bounds comparison have different
6590456327cSAdam Nemet   // address spaces, assume the values aren't directly comparable, so we can't
6600456327cSAdam Nemet   // use them for the runtime check. We also have to assume they could
6610456327cSAdam Nemet   // overlap. In the future there should be metadata for whether address spaces
6620456327cSAdam Nemet   // are disjoint.
6630456327cSAdam Nemet   unsigned NumPointers = RtCheck.Pointers.size();
6640456327cSAdam Nemet   for (unsigned i = 0; i < NumPointers; ++i) {
6650456327cSAdam Nemet     for (unsigned j = i + 1; j < NumPointers; ++j) {
6660456327cSAdam Nemet       // Only need to check pointers between two different dependency sets.
6679f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].DependencySetId ==
6689f7dedc3SAdam Nemet           RtCheck.Pointers[j].DependencySetId)
6690456327cSAdam Nemet        continue;
6700456327cSAdam Nemet       // Only need to check pointers in the same alias set.
6719f7dedc3SAdam Nemet       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
6720456327cSAdam Nemet         continue;
6730456327cSAdam Nemet 
6749f7dedc3SAdam Nemet       Value *PtrI = RtCheck.Pointers[i].PointerValue;
6759f7dedc3SAdam Nemet       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
6760456327cSAdam Nemet 
6770456327cSAdam Nemet       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
6780456327cSAdam Nemet       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
6790456327cSAdam Nemet       if (ASi != ASj) {
680339f42b3SAdam Nemet         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
6810456327cSAdam Nemet                        " different address spaces\n");
6820456327cSAdam Nemet         return false;
6830456327cSAdam Nemet       }
6840456327cSAdam Nemet     }
6850456327cSAdam Nemet   }
6860456327cSAdam Nemet 
6871b6b50a9SSilviu Baranga   if (NeedRTCheck && CanDoRT)
68815840393SAdam Nemet     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
6891b6b50a9SSilviu Baranga 
690155e8741SAdam Nemet   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
691ee61474aSAdam Nemet                << " pointer comparisons.\n");
692ee61474aSAdam Nemet 
693ee61474aSAdam Nemet   RtCheck.Need = NeedRTCheck;
694ee61474aSAdam Nemet 
695ee61474aSAdam Nemet   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
696ee61474aSAdam Nemet   if (!CanDoRTIfNeeded)
697ee61474aSAdam Nemet     RtCheck.reset();
698ee61474aSAdam Nemet   return CanDoRTIfNeeded;
6990456327cSAdam Nemet }
7000456327cSAdam Nemet 
7010456327cSAdam Nemet void AccessAnalysis::processMemAccesses() {
7020456327cSAdam Nemet   // We process the set twice: first we process read-write pointers, last we
7030456327cSAdam Nemet   // process read-only pointers. This allows us to skip dependence tests for
7040456327cSAdam Nemet   // read-only pointers.
7050456327cSAdam Nemet 
706339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
7070456327cSAdam Nemet   DEBUG(dbgs() << "  AST: "; AST.dump());
7089c926579SAdam Nemet   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
7090456327cSAdam Nemet   DEBUG({
7100456327cSAdam Nemet     for (auto A : Accesses)
7110456327cSAdam Nemet       dbgs() << "\t" << *A.getPointer() << " (" <<
7120456327cSAdam Nemet                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
7130456327cSAdam Nemet                                          "read-only" : "read")) << ")\n";
7140456327cSAdam Nemet   });
7150456327cSAdam Nemet 
7160456327cSAdam Nemet   // The AliasSetTracker has nicely partitioned our pointers by metadata
7170456327cSAdam Nemet   // compatibility and potential for underlying-object overlap. As a result, we
7180456327cSAdam Nemet   // only need to check for potential pointer dependencies within each alias
7190456327cSAdam Nemet   // set.
7200456327cSAdam Nemet   for (auto &AS : AST) {
7210456327cSAdam Nemet     // Note that both the alias-set tracker and the alias sets themselves used
7220456327cSAdam Nemet     // linked lists internally and so the iteration order here is deterministic
7230456327cSAdam Nemet     // (matching the original instruction order within each set).
7240456327cSAdam Nemet 
7250456327cSAdam Nemet     bool SetHasWrite = false;
7260456327cSAdam Nemet 
7270456327cSAdam Nemet     // Map of pointers to last access encountered.
7280456327cSAdam Nemet     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
7290456327cSAdam Nemet     UnderlyingObjToAccessMap ObjToLastAccess;
7300456327cSAdam Nemet 
7310456327cSAdam Nemet     // Set of access to check after all writes have been processed.
7320456327cSAdam Nemet     PtrAccessSet DeferredAccesses;
7330456327cSAdam Nemet 
7340456327cSAdam Nemet     // Iterate over each alias set twice, once to process read/write pointers,
7350456327cSAdam Nemet     // and then to process read-only pointers.
7360456327cSAdam Nemet     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
7370456327cSAdam Nemet       bool UseDeferred = SetIteration > 0;
7380456327cSAdam Nemet       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
7390456327cSAdam Nemet 
7400456327cSAdam Nemet       for (auto AV : AS) {
7410456327cSAdam Nemet         Value *Ptr = AV.getValue();
7420456327cSAdam Nemet 
7430456327cSAdam Nemet         // For a single memory access in AliasSetTracker, Accesses may contain
7440456327cSAdam Nemet         // both read and write, and they both need to be handled for CheckDeps.
7450456327cSAdam Nemet         for (auto AC : S) {
7460456327cSAdam Nemet           if (AC.getPointer() != Ptr)
7470456327cSAdam Nemet             continue;
7480456327cSAdam Nemet 
7490456327cSAdam Nemet           bool IsWrite = AC.getInt();
7500456327cSAdam Nemet 
7510456327cSAdam Nemet           // If we're using the deferred access set, then it contains only
7520456327cSAdam Nemet           // reads.
7530456327cSAdam Nemet           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
7540456327cSAdam Nemet           if (UseDeferred && !IsReadOnlyPtr)
7550456327cSAdam Nemet             continue;
7560456327cSAdam Nemet           // Otherwise, the pointer must be in the PtrAccessSet, either as a
7570456327cSAdam Nemet           // read or a write.
7580456327cSAdam Nemet           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
7590456327cSAdam Nemet                   S.count(MemAccessInfo(Ptr, false))) &&
7600456327cSAdam Nemet                  "Alias-set pointer not in the access set?");
7610456327cSAdam Nemet 
7620456327cSAdam Nemet           MemAccessInfo Access(Ptr, IsWrite);
7630456327cSAdam Nemet           DepCands.insert(Access);
7640456327cSAdam Nemet 
7650456327cSAdam Nemet           // Memorize read-only pointers for later processing and skip them in
7660456327cSAdam Nemet           // the first round (they need to be checked after we have seen all
7670456327cSAdam Nemet           // write pointers). Note: we also mark pointer that are not
7680456327cSAdam Nemet           // consecutive as "read-only" pointers (so that we check
7690456327cSAdam Nemet           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
7700456327cSAdam Nemet           if (!UseDeferred && IsReadOnlyPtr) {
7710456327cSAdam Nemet             DeferredAccesses.insert(Access);
7720456327cSAdam Nemet             continue;
7730456327cSAdam Nemet           }
7740456327cSAdam Nemet 
7750456327cSAdam Nemet           // If this is a write - check other reads and writes for conflicts. If
7760456327cSAdam Nemet           // this is a read only check other writes for conflicts (but only if
7770456327cSAdam Nemet           // there is no other write to the ptr - this is an optimization to
7780456327cSAdam Nemet           // catch "a[i] = a[i] + " without having to do a dependence check).
7790456327cSAdam Nemet           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
7800456327cSAdam Nemet             CheckDeps.insert(Access);
7815dc3b2cfSAdam Nemet             IsRTCheckAnalysisNeeded = true;
7820456327cSAdam Nemet           }
7830456327cSAdam Nemet 
7840456327cSAdam Nemet           if (IsWrite)
7850456327cSAdam Nemet             SetHasWrite = true;
7860456327cSAdam Nemet 
7870456327cSAdam Nemet           // Create sets of pointers connected by a shared alias set and
7880456327cSAdam Nemet           // underlying object.
7890456327cSAdam Nemet           typedef SmallVector<Value *, 16> ValueVector;
7900456327cSAdam Nemet           ValueVector TempObjects;
791e2b885c4SAdam Nemet 
792e2b885c4SAdam Nemet           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
793e2b885c4SAdam Nemet           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
7940456327cSAdam Nemet           for (Value *UnderlyingObj : TempObjects) {
795afd13519SMehdi Amini             // nullptr never alias, don't join sets for pointer that have "null"
796afd13519SMehdi Amini             // in their UnderlyingObjects list.
797afd13519SMehdi Amini             if (isa<ConstantPointerNull>(UnderlyingObj))
798afd13519SMehdi Amini               continue;
799afd13519SMehdi Amini 
8000456327cSAdam Nemet             UnderlyingObjToAccessMap::iterator Prev =
8010456327cSAdam Nemet                 ObjToLastAccess.find(UnderlyingObj);
8020456327cSAdam Nemet             if (Prev != ObjToLastAccess.end())
8030456327cSAdam Nemet               DepCands.unionSets(Access, Prev->second);
8040456327cSAdam Nemet 
8050456327cSAdam Nemet             ObjToLastAccess[UnderlyingObj] = Access;
806e2b885c4SAdam Nemet             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
8070456327cSAdam Nemet           }
8080456327cSAdam Nemet         }
8090456327cSAdam Nemet       }
8100456327cSAdam Nemet     }
8110456327cSAdam Nemet   }
8120456327cSAdam Nemet }
8130456327cSAdam Nemet 
8140456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) {
8150456327cSAdam Nemet   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
8160456327cSAdam Nemet     return GEP->isInBounds();
8170456327cSAdam Nemet   return false;
8180456327cSAdam Nemet }
8190456327cSAdam Nemet 
820c4866d29SAdam Nemet /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
821c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing.
822c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
823ea63a7f5SSilviu Baranga                            PredicatedScalarEvolution &PSE, const Loop *L) {
824c4866d29SAdam Nemet   // FIXME: This should probably only return true for NUW.
825c4866d29SAdam Nemet   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
826c4866d29SAdam Nemet     return true;
827c4866d29SAdam Nemet 
828c4866d29SAdam Nemet   // Scalar evolution does not propagate the non-wrapping flags to values that
829c4866d29SAdam Nemet   // are derived from a non-wrapping induction variable because non-wrapping
830c4866d29SAdam Nemet   // could be flow-sensitive.
831c4866d29SAdam Nemet   //
832c4866d29SAdam Nemet   // Look through the potentially overflowing instruction to try to prove
833c4866d29SAdam Nemet   // non-wrapping for the *specific* value of Ptr.
834c4866d29SAdam Nemet 
835c4866d29SAdam Nemet   // The arithmetic implied by an inbounds GEP can't overflow.
836c4866d29SAdam Nemet   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
837c4866d29SAdam Nemet   if (!GEP || !GEP->isInBounds())
838c4866d29SAdam Nemet     return false;
839c4866d29SAdam Nemet 
840c4866d29SAdam Nemet   // Make sure there is only one non-const index and analyze that.
841c4866d29SAdam Nemet   Value *NonConstIndex = nullptr;
842c4866d29SAdam Nemet   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
843c4866d29SAdam Nemet     if (!isa<ConstantInt>(*Index)) {
844c4866d29SAdam Nemet       if (NonConstIndex)
845c4866d29SAdam Nemet         return false;
846c4866d29SAdam Nemet       NonConstIndex = *Index;
847c4866d29SAdam Nemet     }
848c4866d29SAdam Nemet   if (!NonConstIndex)
849c4866d29SAdam Nemet     // The recurrence is on the pointer, ignore for now.
850c4866d29SAdam Nemet     return false;
851c4866d29SAdam Nemet 
852c4866d29SAdam Nemet   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
853c4866d29SAdam Nemet   // AddRec using a NSW operation.
854c4866d29SAdam Nemet   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
855c4866d29SAdam Nemet     if (OBO->hasNoSignedWrap() &&
856c4866d29SAdam Nemet         // Assume constant for other the operand so that the AddRec can be
857c4866d29SAdam Nemet         // easily found.
858c4866d29SAdam Nemet         isa<ConstantInt>(OBO->getOperand(1))) {
859ea63a7f5SSilviu Baranga       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
860c4866d29SAdam Nemet 
861c4866d29SAdam Nemet       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
862c4866d29SAdam Nemet         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
863c4866d29SAdam Nemet     }
864c4866d29SAdam Nemet 
865c4866d29SAdam Nemet   return false;
866c4866d29SAdam Nemet }
867c4866d29SAdam Nemet 
8680456327cSAdam Nemet /// \brief Check whether the access through \p Ptr has a constant stride.
8697afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
870ea63a7f5SSilviu Baranga                            const Loop *Lp, const ValueToValueMap &StridesMap,
8715e21c94fSElena Demikhovsky                            bool Assume) {
872e3dcce97SCraig Topper   Type *Ty = Ptr->getType();
8730456327cSAdam Nemet   assert(Ty->isPointerTy() && "Unexpected non-ptr");
8740456327cSAdam Nemet 
8750456327cSAdam Nemet   // Make sure that the pointer does not point to aggregate types.
876e3dcce97SCraig Topper   auto *PtrTy = cast<PointerType>(Ty);
8770456327cSAdam Nemet   if (PtrTy->getElementType()->isAggregateType()) {
878ea63a7f5SSilviu Baranga     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
879ea63a7f5SSilviu Baranga                  << "\n");
8800456327cSAdam Nemet     return 0;
8810456327cSAdam Nemet   }
8820456327cSAdam Nemet 
8839cd9a7e3SSilviu Baranga   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
8840456327cSAdam Nemet 
8850456327cSAdam Nemet   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
886ea63a7f5SSilviu Baranga   if (Assume && !AR)
887d68ed854SSilviu Baranga     AR = PSE.getAsAddRec(Ptr);
888ea63a7f5SSilviu Baranga 
8890456327cSAdam Nemet   if (!AR) {
890ea63a7f5SSilviu Baranga     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
891ea63a7f5SSilviu Baranga                  << " SCEV: " << *PtrScev << "\n");
8920456327cSAdam Nemet     return 0;
8930456327cSAdam Nemet   }
8940456327cSAdam Nemet 
8950456327cSAdam Nemet   // The accesss function must stride over the innermost loop.
8960456327cSAdam Nemet   if (Lp != AR->getLoop()) {
897339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
898ea63a7f5SSilviu Baranga           *Ptr << " SCEV: " << *AR << "\n");
899a02ce98bSKyle Butt     return 0;
9000456327cSAdam Nemet   }
9010456327cSAdam Nemet 
9020456327cSAdam Nemet   // The address calculation must not wrap. Otherwise, a dependence could be
9030456327cSAdam Nemet   // inverted.
9040456327cSAdam Nemet   // An inbounds getelementptr that is a AddRec with a unit stride
9050456327cSAdam Nemet   // cannot wrap per definition. The unit stride requirement is checked later.
9060456327cSAdam Nemet   // An getelementptr without an inbounds attribute and unit stride would have
9070456327cSAdam Nemet   // to access the pointer value "0" which is undefined behavior in address
9080456327cSAdam Nemet   // space 0, therefore we can also vectorize this case.
9090456327cSAdam Nemet   bool IsInBoundsGEP = isInBoundsGep(Ptr);
9105e21c94fSElena Demikhovsky   bool IsNoWrapAddRec =
911ea63a7f5SSilviu Baranga       PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
912ea63a7f5SSilviu Baranga       isNoWrapAddRec(Ptr, AR, PSE, Lp);
9130456327cSAdam Nemet   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
9140456327cSAdam Nemet   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
915ea63a7f5SSilviu Baranga     if (Assume) {
916ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
917ea63a7f5SSilviu Baranga       IsNoWrapAddRec = true;
918ea63a7f5SSilviu Baranga       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
919ea63a7f5SSilviu Baranga                    << "LAA:   Pointer: " << *Ptr << "\n"
920ea63a7f5SSilviu Baranga                    << "LAA:   SCEV: " << *AR << "\n"
921ea63a7f5SSilviu Baranga                    << "LAA:   Added an overflow assumption\n");
922ea63a7f5SSilviu Baranga     } else {
923339f42b3SAdam Nemet       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
924ea63a7f5SSilviu Baranga                    << *Ptr << " SCEV: " << *AR << "\n");
9250456327cSAdam Nemet       return 0;
9260456327cSAdam Nemet     }
927ea63a7f5SSilviu Baranga   }
9280456327cSAdam Nemet 
9290456327cSAdam Nemet   // Check the step is constant.
9309cd9a7e3SSilviu Baranga   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
9310456327cSAdam Nemet 
932943befedSAdam Nemet   // Calculate the pointer stride and check if it is constant.
9330456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
9340456327cSAdam Nemet   if (!C) {
935339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
936ea63a7f5SSilviu Baranga           " SCEV: " << *AR << "\n");
9370456327cSAdam Nemet     return 0;
9380456327cSAdam Nemet   }
9390456327cSAdam Nemet 
940a28d91d8SMehdi Amini   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
941a28d91d8SMehdi Amini   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
9420de2feceSSanjoy Das   const APInt &APStepVal = C->getAPInt();
9430456327cSAdam Nemet 
9440456327cSAdam Nemet   // Huge step value - give up.
9450456327cSAdam Nemet   if (APStepVal.getBitWidth() > 64)
9460456327cSAdam Nemet     return 0;
9470456327cSAdam Nemet 
9480456327cSAdam Nemet   int64_t StepVal = APStepVal.getSExtValue();
9490456327cSAdam Nemet 
9500456327cSAdam Nemet   // Strided access.
9510456327cSAdam Nemet   int64_t Stride = StepVal / Size;
9520456327cSAdam Nemet   int64_t Rem = StepVal % Size;
9530456327cSAdam Nemet   if (Rem)
9540456327cSAdam Nemet     return 0;
9550456327cSAdam Nemet 
9560456327cSAdam Nemet   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
9570456327cSAdam Nemet   // know we can't "wrap around the address space". In case of address space
9580456327cSAdam Nemet   // zero we know that this won't happen without triggering undefined behavior.
9590456327cSAdam Nemet   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
960ea63a7f5SSilviu Baranga       Stride != 1 && Stride != -1) {
961ea63a7f5SSilviu Baranga     if (Assume) {
962ea63a7f5SSilviu Baranga       // We can avoid this case by adding a run-time check.
963ea63a7f5SSilviu Baranga       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
964ea63a7f5SSilviu Baranga                    << "inbouds or in address space 0 may wrap:\n"
965ea63a7f5SSilviu Baranga                    << "LAA:   Pointer: " << *Ptr << "\n"
966ea63a7f5SSilviu Baranga                    << "LAA:   SCEV: " << *AR << "\n"
967ea63a7f5SSilviu Baranga                    << "LAA:   Added an overflow assumption\n");
968ea63a7f5SSilviu Baranga       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
969ea63a7f5SSilviu Baranga     } else
9700456327cSAdam Nemet       return 0;
971ea63a7f5SSilviu Baranga   }
9720456327cSAdam Nemet 
9730456327cSAdam Nemet   return Stride;
9740456327cSAdam Nemet }
9750456327cSAdam Nemet 
976f1c00a22SHaicheng Wu /// Take the pointer operand from the Load/Store instruction.
977f1c00a22SHaicheng Wu /// Returns NULL if this is not a valid Load/Store instruction.
978f1c00a22SHaicheng Wu static Value *getPointerOperand(Value *I) {
979f1c00a22SHaicheng Wu   if (LoadInst *LI = dyn_cast<LoadInst>(I))
980f1c00a22SHaicheng Wu     return LI->getPointerOperand();
981f1c00a22SHaicheng Wu   if (StoreInst *SI = dyn_cast<StoreInst>(I))
982f1c00a22SHaicheng Wu     return SI->getPointerOperand();
983f1c00a22SHaicheng Wu   return nullptr;
984f1c00a22SHaicheng Wu }
985f1c00a22SHaicheng Wu 
986f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction.
987f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction.
988f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) {
989f1c00a22SHaicheng Wu   if (LoadInst *L = dyn_cast<LoadInst>(I))
990f1c00a22SHaicheng Wu     return L->getPointerAddressSpace();
991f1c00a22SHaicheng Wu   if (StoreInst *S = dyn_cast<StoreInst>(I))
992f1c00a22SHaicheng Wu     return S->getPointerAddressSpace();
993f1c00a22SHaicheng Wu   return -1;
994f1c00a22SHaicheng Wu }
995f1c00a22SHaicheng Wu 
996f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive.
997f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
998f1c00a22SHaicheng Wu                                ScalarEvolution &SE, bool CheckType) {
999f1c00a22SHaicheng Wu   Value *PtrA = getPointerOperand(A);
1000f1c00a22SHaicheng Wu   Value *PtrB = getPointerOperand(B);
1001f1c00a22SHaicheng Wu   unsigned ASA = getAddressSpaceOperand(A);
1002f1c00a22SHaicheng Wu   unsigned ASB = getAddressSpaceOperand(B);
1003f1c00a22SHaicheng Wu 
1004f1c00a22SHaicheng Wu   // Check that the address spaces match and that the pointers are valid.
1005f1c00a22SHaicheng Wu   if (!PtrA || !PtrB || (ASA != ASB))
1006f1c00a22SHaicheng Wu     return false;
1007f1c00a22SHaicheng Wu 
1008f1c00a22SHaicheng Wu   // Make sure that A and B are different pointers.
1009f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1010f1c00a22SHaicheng Wu     return false;
1011f1c00a22SHaicheng Wu 
1012f1c00a22SHaicheng Wu   // Make sure that A and B have the same type if required.
1013f1c00a22SHaicheng Wu   if(CheckType && PtrA->getType() != PtrB->getType())
1014f1c00a22SHaicheng Wu       return false;
1015f1c00a22SHaicheng Wu 
1016f1c00a22SHaicheng Wu   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1017f1c00a22SHaicheng Wu   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1018f1c00a22SHaicheng Wu   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1019f1c00a22SHaicheng Wu 
1020f1c00a22SHaicheng Wu   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1021f1c00a22SHaicheng Wu   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1022f1c00a22SHaicheng Wu   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1023f1c00a22SHaicheng Wu 
1024f1c00a22SHaicheng Wu   //  OffsetDelta = OffsetB - OffsetA;
1025f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1026f1c00a22SHaicheng Wu   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1027f1c00a22SHaicheng Wu   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1028f1c00a22SHaicheng Wu   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1029f1c00a22SHaicheng Wu   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1030f1c00a22SHaicheng Wu   // Check if they are based on the same pointer. That makes the offsets
1031f1c00a22SHaicheng Wu   // sufficient.
1032f1c00a22SHaicheng Wu   if (PtrA == PtrB)
1033f1c00a22SHaicheng Wu     return OffsetDelta == Size;
1034f1c00a22SHaicheng Wu 
1035f1c00a22SHaicheng Wu   // Compute the necessary base pointer delta to have the necessary final delta
1036f1c00a22SHaicheng Wu   // equal to the size.
1037f1c00a22SHaicheng Wu   // BaseDelta = Size - OffsetDelta;
1038f1c00a22SHaicheng Wu   const SCEV *SizeSCEV = SE.getConstant(Size);
1039f1c00a22SHaicheng Wu   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1040f1c00a22SHaicheng Wu 
1041f1c00a22SHaicheng Wu   // Otherwise compute the distance with SCEV between the base pointers.
1042f1c00a22SHaicheng Wu   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1043f1c00a22SHaicheng Wu   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1044f1c00a22SHaicheng Wu   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1045f1c00a22SHaicheng Wu   return X == PtrSCEVB;
1046f1c00a22SHaicheng Wu }
1047f1c00a22SHaicheng Wu 
10489c926579SAdam Nemet bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
10499c926579SAdam Nemet   switch (Type) {
10509c926579SAdam Nemet   case NoDep:
10519c926579SAdam Nemet   case Forward:
10529c926579SAdam Nemet   case BackwardVectorizable:
10539c926579SAdam Nemet     return true;
10549c926579SAdam Nemet 
10559c926579SAdam Nemet   case Unknown:
10569c926579SAdam Nemet   case ForwardButPreventsForwarding:
10579c926579SAdam Nemet   case Backward:
10589c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
10599c926579SAdam Nemet     return false;
10609c926579SAdam Nemet   }
1061d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
10629c926579SAdam Nemet }
10639c926579SAdam Nemet 
1064397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const {
10659c926579SAdam Nemet   switch (Type) {
10669c926579SAdam Nemet   case NoDep:
10679c926579SAdam Nemet   case Forward:
10689c926579SAdam Nemet   case ForwardButPreventsForwarding:
1069397f5829SAdam Nemet   case Unknown:
10709c926579SAdam Nemet     return false;
10719c926579SAdam Nemet 
10729c926579SAdam Nemet   case BackwardVectorizable:
10739c926579SAdam Nemet   case Backward:
10749c926579SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
10759c926579SAdam Nemet     return true;
10769c926579SAdam Nemet   }
1077d388e930SDavid Majnemer   llvm_unreachable("unexpected DepType!");
10789c926579SAdam Nemet }
10799c926579SAdam Nemet 
1080397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1081397f5829SAdam Nemet   return isBackward() || Type == Unknown;
1082397f5829SAdam Nemet }
1083397f5829SAdam Nemet 
1084397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const {
1085397f5829SAdam Nemet   switch (Type) {
1086397f5829SAdam Nemet   case Forward:
1087397f5829SAdam Nemet   case ForwardButPreventsForwarding:
1088397f5829SAdam Nemet     return true;
1089397f5829SAdam Nemet 
1090397f5829SAdam Nemet   case NoDep:
1091397f5829SAdam Nemet   case Unknown:
1092397f5829SAdam Nemet   case BackwardVectorizable:
1093397f5829SAdam Nemet   case Backward:
1094397f5829SAdam Nemet   case BackwardVectorizableButPreventsForwarding:
1095397f5829SAdam Nemet     return false;
1096397f5829SAdam Nemet   }
1097397f5829SAdam Nemet   llvm_unreachable("unexpected DepType!");
1098397f5829SAdam Nemet }
1099397f5829SAdam Nemet 
11007afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
11017afb46d3SDavid Majnemer                                                     uint64_t TypeByteSize) {
11020456327cSAdam Nemet   // If loads occur at a distance that is not a multiple of a feasible vector
11030456327cSAdam Nemet   // factor store-load forwarding does not take place.
11040456327cSAdam Nemet   // Positive dependences might cause troubles because vectorizing them might
11050456327cSAdam Nemet   // prevent store-load forwarding making vectorized code run a lot slower.
11060456327cSAdam Nemet   //   a[i] = a[i-3] ^ a[i-8];
11070456327cSAdam Nemet   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
11080456327cSAdam Nemet   //   hence on your typical architecture store-load forwarding does not take
11090456327cSAdam Nemet   //   place. Vectorizing in such cases does not make sense.
11100456327cSAdam Nemet   // Store-load forwarding distance.
1111884d313bSAdam Nemet 
1112884d313bSAdam Nemet   // After this many iterations store-to-load forwarding conflicts should not
1113884d313bSAdam Nemet   // cause any slowdowns.
11147afb46d3SDavid Majnemer   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
11150456327cSAdam Nemet   // Maximum vector factor.
11167afb46d3SDavid Majnemer   uint64_t MaxVFWithoutSLForwardIssues = std::min(
11172c34ab51SAdam Nemet       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
11180456327cSAdam Nemet 
1119884d313bSAdam Nemet   // Compute the smallest VF at which the store and load would be misaligned.
11207afb46d3SDavid Majnemer   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
11219b5852aeSAdam Nemet        VF *= 2) {
1122884d313bSAdam Nemet     // If the number of vector iteration between the store and the load are
1123884d313bSAdam Nemet     // small we could incur conflicts.
1124884d313bSAdam Nemet     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
11259b5852aeSAdam Nemet       MaxVFWithoutSLForwardIssues = (VF >>= 1);
11260456327cSAdam Nemet       break;
11270456327cSAdam Nemet     }
11280456327cSAdam Nemet   }
11290456327cSAdam Nemet 
11300456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
11319b5852aeSAdam Nemet     DEBUG(dbgs() << "LAA: Distance " << Distance
11329b5852aeSAdam Nemet                  << " that could cause a store-load forwarding conflict\n");
11330456327cSAdam Nemet     return true;
11340456327cSAdam Nemet   }
11350456327cSAdam Nemet 
11360456327cSAdam Nemet   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1137f219c647SAdam Nemet       MaxVFWithoutSLForwardIssues !=
1138f219c647SAdam Nemet           VectorizerParams::MaxVectorWidth * TypeByteSize)
11390456327cSAdam Nemet     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
11400456327cSAdam Nemet   return false;
11410456327cSAdam Nemet }
11420456327cSAdam Nemet 
1143751004a6SHao Liu /// \brief Check the dependence for two accesses with the same stride \p Stride.
1144751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in
1145751004a6SHao Liu /// bytes.
1146751004a6SHao Liu ///
1147751004a6SHao Liu /// \returns true if they are independent.
11487afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
11497afb46d3SDavid Majnemer                                           uint64_t TypeByteSize) {
1150751004a6SHao Liu   assert(Stride > 1 && "The stride must be greater than 1");
1151751004a6SHao Liu   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1152751004a6SHao Liu   assert(Distance > 0 && "The distance must be non-zero");
1153751004a6SHao Liu 
1154751004a6SHao Liu   // Skip if the distance is not multiple of type byte size.
1155751004a6SHao Liu   if (Distance % TypeByteSize)
1156751004a6SHao Liu     return false;
1157751004a6SHao Liu 
11587afb46d3SDavid Majnemer   uint64_t ScaledDist = Distance / TypeByteSize;
1159751004a6SHao Liu 
1160751004a6SHao Liu   // No dependence if the scaled distance is not multiple of the stride.
1161751004a6SHao Liu   // E.g.
1162751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 4)
1163751004a6SHao Liu   //        A[i+2] = A[i] + 1;
1164751004a6SHao Liu   //
1165751004a6SHao Liu   // Two accesses in memory (scaled distance is 2, stride is 4):
1166751004a6SHao Liu   //     | A[0] |      |      |      | A[4] |      |      |      |
1167751004a6SHao Liu   //     |      |      | A[2] |      |      |      | A[6] |      |
1168751004a6SHao Liu   //
1169751004a6SHao Liu   // E.g.
1170751004a6SHao Liu   //      for (i = 0; i < 1024 ; i += 3)
1171751004a6SHao Liu   //        A[i+4] = A[i] + 1;
1172751004a6SHao Liu   //
1173751004a6SHao Liu   // Two accesses in memory (scaled distance is 4, stride is 3):
1174751004a6SHao Liu   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1175751004a6SHao Liu   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1176751004a6SHao Liu   return ScaledDist % Stride;
1177751004a6SHao Liu }
1178751004a6SHao Liu 
11799c926579SAdam Nemet MemoryDepChecker::Dependence::DepType
11809c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
11810456327cSAdam Nemet                               const MemAccessInfo &B, unsigned BIdx,
11828bc61df9SAdam Nemet                               const ValueToValueMap &Strides) {
11830456327cSAdam Nemet   assert (AIdx < BIdx && "Must pass arguments in program order");
11840456327cSAdam Nemet 
11850456327cSAdam Nemet   Value *APtr = A.getPointer();
11860456327cSAdam Nemet   Value *BPtr = B.getPointer();
11870456327cSAdam Nemet   bool AIsWrite = A.getInt();
11880456327cSAdam Nemet   bool BIsWrite = B.getInt();
11890456327cSAdam Nemet 
11900456327cSAdam Nemet   // Two reads are independent.
11910456327cSAdam Nemet   if (!AIsWrite && !BIsWrite)
11929c926579SAdam Nemet     return Dependence::NoDep;
11930456327cSAdam Nemet 
11940456327cSAdam Nemet   // We cannot check pointers in different address spaces.
11950456327cSAdam Nemet   if (APtr->getType()->getPointerAddressSpace() !=
11960456327cSAdam Nemet       BPtr->getType()->getPointerAddressSpace())
11979c926579SAdam Nemet     return Dependence::Unknown;
11980456327cSAdam Nemet 
11997afb46d3SDavid Majnemer   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
12007afb46d3SDavid Majnemer   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
12010456327cSAdam Nemet 
1202adf4b739SSilviu Baranga   const SCEV *Src = PSE.getSCEV(APtr);
1203adf4b739SSilviu Baranga   const SCEV *Sink = PSE.getSCEV(BPtr);
12040456327cSAdam Nemet 
12050456327cSAdam Nemet   // If the induction step is negative we have to invert source and sink of the
12060456327cSAdam Nemet   // dependence.
12070456327cSAdam Nemet   if (StrideAPtr < 0) {
12080456327cSAdam Nemet     std::swap(APtr, BPtr);
12090456327cSAdam Nemet     std::swap(Src, Sink);
12100456327cSAdam Nemet     std::swap(AIsWrite, BIsWrite);
12110456327cSAdam Nemet     std::swap(AIdx, BIdx);
12120456327cSAdam Nemet     std::swap(StrideAPtr, StrideBPtr);
12130456327cSAdam Nemet   }
12140456327cSAdam Nemet 
12159cd9a7e3SSilviu Baranga   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
12160456327cSAdam Nemet 
1217339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
12180456327cSAdam Nemet                << "(Induction step: " << StrideAPtr << ")\n");
1219339f42b3SAdam Nemet   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
12200456327cSAdam Nemet                << *InstMap[BIdx] << ": " << *Dist << "\n");
12210456327cSAdam Nemet 
1222943befedSAdam Nemet   // Need accesses with constant stride. We don't want to vectorize
12230456327cSAdam Nemet   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
12240456327cSAdam Nemet   // the address space.
12250456327cSAdam Nemet   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1226943befedSAdam Nemet     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
12279c926579SAdam Nemet     return Dependence::Unknown;
12280456327cSAdam Nemet   }
12290456327cSAdam Nemet 
12300456327cSAdam Nemet   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
12310456327cSAdam Nemet   if (!C) {
1232339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
12330456327cSAdam Nemet     ShouldRetryWithRuntimeCheck = true;
12349c926579SAdam Nemet     return Dependence::Unknown;
12350456327cSAdam Nemet   }
12360456327cSAdam Nemet 
12370456327cSAdam Nemet   Type *ATy = APtr->getType()->getPointerElementType();
12380456327cSAdam Nemet   Type *BTy = BPtr->getType()->getPointerElementType();
1239a28d91d8SMehdi Amini   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
12407afb46d3SDavid Majnemer   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
12410456327cSAdam Nemet 
12420de2feceSSanjoy Das   const APInt &Val = C->getAPInt();
12436feebe98SMatthew Simpson   int64_t Distance = Val.getSExtValue();
12447afb46d3SDavid Majnemer   uint64_t Stride = std::abs(StrideAPtr);
12456feebe98SMatthew Simpson 
12466feebe98SMatthew Simpson   // Attempt to prove strided accesses independent.
12476feebe98SMatthew Simpson   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
12486feebe98SMatthew Simpson       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
12496feebe98SMatthew Simpson     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
12506feebe98SMatthew Simpson     return Dependence::NoDep;
12516feebe98SMatthew Simpson   }
12526feebe98SMatthew Simpson 
12536feebe98SMatthew Simpson   // Negative distances are not plausible dependencies.
12540456327cSAdam Nemet   if (Val.isNegative()) {
12550456327cSAdam Nemet     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
125637ec5f91SMatthew Simpson     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
12570456327cSAdam Nemet         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1258b8486e5aSAdam Nemet          ATy != BTy)) {
1259b8486e5aSAdam Nemet       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
12609c926579SAdam Nemet       return Dependence::ForwardButPreventsForwarding;
1261b8486e5aSAdam Nemet     }
12620456327cSAdam Nemet 
1263724ab223SAdam Nemet     DEBUG(dbgs() << "LAA: Dependence is negative\n");
12649c926579SAdam Nemet     return Dependence::Forward;
12650456327cSAdam Nemet   }
12660456327cSAdam Nemet 
12670456327cSAdam Nemet   // Write to the same location with the same size.
12680456327cSAdam Nemet   // Could be improved to assert type sizes are the same (i32 == float, etc).
12690456327cSAdam Nemet   if (Val == 0) {
12700456327cSAdam Nemet     if (ATy == BTy)
1271d7037c56SAdam Nemet       return Dependence::Forward;
1272339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
12739c926579SAdam Nemet     return Dependence::Unknown;
12740456327cSAdam Nemet   }
12750456327cSAdam Nemet 
12760456327cSAdam Nemet   assert(Val.isStrictlyPositive() && "Expect a positive value");
12770456327cSAdam Nemet 
12780456327cSAdam Nemet   if (ATy != BTy) {
127904d4163eSAdam Nemet     DEBUG(dbgs() <<
1280339f42b3SAdam Nemet           "LAA: ReadWrite-Write positive dependency with different types\n");
12819c926579SAdam Nemet     return Dependence::Unknown;
12820456327cSAdam Nemet   }
12830456327cSAdam Nemet 
12840456327cSAdam Nemet   // Bail out early if passed-in parameters make vectorization not feasible.
1285f219c647SAdam Nemet   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1286f219c647SAdam Nemet                            VectorizerParams::VectorizationFactor : 1);
1287f219c647SAdam Nemet   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1288f219c647SAdam Nemet                            VectorizerParams::VectorizationInterleave : 1);
1289751004a6SHao Liu   // The minimum number of iterations for a vectorized/unrolled version.
1290751004a6SHao Liu   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
12910456327cSAdam Nemet 
1292751004a6SHao Liu   // It's not vectorizable if the distance is smaller than the minimum distance
1293751004a6SHao Liu   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1294751004a6SHao Liu   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1295751004a6SHao Liu   // TypeByteSize (No need to plus the last gap distance).
1296751004a6SHao Liu   //
1297751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1298751004a6SHao Liu   //      foo(int *A) {
1299751004a6SHao Liu   //        int *B = (int *)((char *)A + 14);
1300751004a6SHao Liu   //        for (i = 0 ; i < 1024 ; i += 2)
1301751004a6SHao Liu   //          B[i] = A[i] + 1;
1302751004a6SHao Liu   //      }
1303751004a6SHao Liu   //
1304751004a6SHao Liu   // Two accesses in memory (stride is 2):
1305751004a6SHao Liu   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1306751004a6SHao Liu   //                              | B[0] |      | B[2] |      | B[4] |
1307751004a6SHao Liu   //
1308751004a6SHao Liu   // Distance needs for vectorizing iterations except the last iteration:
1309751004a6SHao Liu   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1310751004a6SHao Liu   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1311751004a6SHao Liu   //
1312751004a6SHao Liu   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1313751004a6SHao Liu   // 12, which is less than distance.
1314751004a6SHao Liu   //
1315751004a6SHao Liu   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1316751004a6SHao Liu   // the minimum distance needed is 28, which is greater than distance. It is
1317751004a6SHao Liu   // not safe to do vectorization.
13187afb46d3SDavid Majnemer   uint64_t MinDistanceNeeded =
1319751004a6SHao Liu       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
13207afb46d3SDavid Majnemer   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1321751004a6SHao Liu     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1322751004a6SHao Liu                  << '\n');
1323751004a6SHao Liu     return Dependence::Backward;
1324751004a6SHao Liu   }
1325751004a6SHao Liu 
1326751004a6SHao Liu   // Unsafe if the minimum distance needed is greater than max safe distance.
1327751004a6SHao Liu   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1328751004a6SHao Liu     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1329751004a6SHao Liu                  << MinDistanceNeeded << " size in bytes");
13309c926579SAdam Nemet     return Dependence::Backward;
13310456327cSAdam Nemet   }
13320456327cSAdam Nemet 
13339cc0c399SAdam Nemet   // Positive distance bigger than max vectorization factor.
1334751004a6SHao Liu   // FIXME: Should use max factor instead of max distance in bytes, which could
1335751004a6SHao Liu   // not handle different types.
1336751004a6SHao Liu   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1337751004a6SHao Liu   //      void foo (int *A, char *B) {
1338751004a6SHao Liu   //        for (unsigned i = 0; i < 1024; i++) {
1339751004a6SHao Liu   //          A[i+2] = A[i] + 1;
1340751004a6SHao Liu   //          B[i+2] = B[i] + 1;
1341751004a6SHao Liu   //        }
1342751004a6SHao Liu   //      }
1343751004a6SHao Liu   //
1344751004a6SHao Liu   // This case is currently unsafe according to the max safe distance. If we
1345751004a6SHao Liu   // analyze the two accesses on array B, the max safe dependence distance
1346751004a6SHao Liu   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1347751004a6SHao Liu   // is 8, which is less than 2 and forbidden vectorization, But actually
1348751004a6SHao Liu   // both A and B could be vectorized by 2 iterations.
1349751004a6SHao Liu   MaxSafeDepDistBytes =
13507afb46d3SDavid Majnemer       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
13510456327cSAdam Nemet 
13520456327cSAdam Nemet   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
135337ec5f91SMatthew Simpson   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
13540456327cSAdam Nemet       couldPreventStoreLoadForward(Distance, TypeByteSize))
13559c926579SAdam Nemet     return Dependence::BackwardVectorizableButPreventsForwarding;
13560456327cSAdam Nemet 
1357751004a6SHao Liu   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1358751004a6SHao Liu                << " with max VF = "
1359751004a6SHao Liu                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
13600456327cSAdam Nemet 
13619c926579SAdam Nemet   return Dependence::BackwardVectorizable;
13620456327cSAdam Nemet }
13630456327cSAdam Nemet 
1364dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
13650456327cSAdam Nemet                                    MemAccessInfoSet &CheckDeps,
13668bc61df9SAdam Nemet                                    const ValueToValueMap &Strides) {
13670456327cSAdam Nemet 
13687afb46d3SDavid Majnemer   MaxSafeDepDistBytes = -1;
13690456327cSAdam Nemet   while (!CheckDeps.empty()) {
13700456327cSAdam Nemet     MemAccessInfo CurAccess = *CheckDeps.begin();
13710456327cSAdam Nemet 
13720456327cSAdam Nemet     // Get the relevant memory access set.
13730456327cSAdam Nemet     EquivalenceClasses<MemAccessInfo>::iterator I =
13740456327cSAdam Nemet       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
13750456327cSAdam Nemet 
13760456327cSAdam Nemet     // Check accesses within this set.
13777a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
13787a083814SRichard Trieu         AccessSets.member_begin(I);
13797a083814SRichard Trieu     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
13807a083814SRichard Trieu         AccessSets.member_end();
13810456327cSAdam Nemet 
13820456327cSAdam Nemet     // Check every access pair.
13830456327cSAdam Nemet     while (AI != AE) {
13840456327cSAdam Nemet       CheckDeps.erase(*AI);
13850456327cSAdam Nemet       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
13860456327cSAdam Nemet       while (OI != AE) {
13870456327cSAdam Nemet         // Check every accessing instruction pair in program order.
13880456327cSAdam Nemet         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
13890456327cSAdam Nemet              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
13900456327cSAdam Nemet           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
13910456327cSAdam Nemet                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
13929c926579SAdam Nemet             auto A = std::make_pair(&*AI, *I1);
13939c926579SAdam Nemet             auto B = std::make_pair(&*OI, *I2);
13949c926579SAdam Nemet 
13959c926579SAdam Nemet             assert(*I1 != *I2);
13969c926579SAdam Nemet             if (*I1 > *I2)
13979c926579SAdam Nemet               std::swap(A, B);
13989c926579SAdam Nemet 
13999c926579SAdam Nemet             Dependence::DepType Type =
14009c926579SAdam Nemet                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
14019c926579SAdam Nemet             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
14029c926579SAdam Nemet 
1403a2df750fSAdam Nemet             // Gather dependences unless we accumulated MaxDependences
14049c926579SAdam Nemet             // dependences.  In that case return as soon as we find the first
14059c926579SAdam Nemet             // unsafe dependence.  This puts a limit on this quadratic
14069c926579SAdam Nemet             // algorithm.
1407a2df750fSAdam Nemet             if (RecordDependences) {
1408a2df750fSAdam Nemet               if (Type != Dependence::NoDep)
1409a2df750fSAdam Nemet                 Dependences.push_back(Dependence(A.second, B.second, Type));
14109c926579SAdam Nemet 
1411a2df750fSAdam Nemet               if (Dependences.size() >= MaxDependences) {
1412a2df750fSAdam Nemet                 RecordDependences = false;
1413a2df750fSAdam Nemet                 Dependences.clear();
14149c926579SAdam Nemet                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
14159c926579SAdam Nemet               }
14169c926579SAdam Nemet             }
1417a2df750fSAdam Nemet             if (!RecordDependences && !SafeForVectorization)
14180456327cSAdam Nemet               return false;
14190456327cSAdam Nemet           }
14200456327cSAdam Nemet         ++OI;
14210456327cSAdam Nemet       }
14220456327cSAdam Nemet       AI++;
14230456327cSAdam Nemet     }
14240456327cSAdam Nemet   }
14259c926579SAdam Nemet 
1426a2df750fSAdam Nemet   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
14279c926579SAdam Nemet   return SafeForVectorization;
14280456327cSAdam Nemet }
14290456327cSAdam Nemet 
1430ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4>
1431ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1432ec1e2bb6SAdam Nemet   MemAccessInfo Access(Ptr, isWrite);
1433ec1e2bb6SAdam Nemet   auto &IndexVector = Accesses.find(Access)->second;
1434ec1e2bb6SAdam Nemet 
1435ec1e2bb6SAdam Nemet   SmallVector<Instruction *, 4> Insts;
1436ec1e2bb6SAdam Nemet   std::transform(IndexVector.begin(), IndexVector.end(),
1437ec1e2bb6SAdam Nemet                  std::back_inserter(Insts),
1438ec1e2bb6SAdam Nemet                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1439ec1e2bb6SAdam Nemet   return Insts;
1440ec1e2bb6SAdam Nemet }
1441ec1e2bb6SAdam Nemet 
144258913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = {
144358913d65SAdam Nemet     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
144458913d65SAdam Nemet     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
144558913d65SAdam Nemet 
144658913d65SAdam Nemet void MemoryDepChecker::Dependence::print(
144758913d65SAdam Nemet     raw_ostream &OS, unsigned Depth,
144858913d65SAdam Nemet     const SmallVectorImpl<Instruction *> &Instrs) const {
144958913d65SAdam Nemet   OS.indent(Depth) << DepName[Type] << ":\n";
145058913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
145158913d65SAdam Nemet   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
145258913d65SAdam Nemet }
145358913d65SAdam Nemet 
1454929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() {
14558dcb3b6aSAdam Nemet   // We need to have a loop header.
1456d8968f09SAdam Nemet   DEBUG(dbgs() << "LAA: Found a loop in "
1457d8968f09SAdam Nemet                << TheLoop->getHeader()->getParent()->getName() << ": "
1458d8968f09SAdam Nemet                << TheLoop->getHeader()->getName() << '\n');
14598dcb3b6aSAdam Nemet 
1460929c38e8SAdam Nemet   // We can only analyze innermost loops.
1461929c38e8SAdam Nemet   if (!TheLoop->empty()) {
14628dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
14632bd6e984SAdam Nemet     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1464929c38e8SAdam Nemet     return false;
1465929c38e8SAdam Nemet   }
1466929c38e8SAdam Nemet 
1467929c38e8SAdam Nemet   // We must have a single backedge.
1468929c38e8SAdam Nemet   if (TheLoop->getNumBackEdges() != 1) {
14698dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1470929c38e8SAdam Nemet     emitAnalysis(
14712bd6e984SAdam Nemet         LoopAccessReport() <<
1472929c38e8SAdam Nemet         "loop control flow is not understood by analyzer");
1473929c38e8SAdam Nemet     return false;
1474929c38e8SAdam Nemet   }
1475929c38e8SAdam Nemet 
1476929c38e8SAdam Nemet   // We must have a single exiting block.
1477929c38e8SAdam Nemet   if (!TheLoop->getExitingBlock()) {
14788dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1479929c38e8SAdam Nemet     emitAnalysis(
14802bd6e984SAdam Nemet         LoopAccessReport() <<
1481929c38e8SAdam Nemet         "loop control flow is not understood by analyzer");
1482929c38e8SAdam Nemet     return false;
1483929c38e8SAdam Nemet   }
1484929c38e8SAdam Nemet 
1485929c38e8SAdam Nemet   // We only handle bottom-tested loops, i.e. loop in which the condition is
1486929c38e8SAdam Nemet   // checked at the end of each iteration. With that we can assume that all
1487929c38e8SAdam Nemet   // instructions in the loop are executed the same number of times.
1488929c38e8SAdam Nemet   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
14898dcb3b6aSAdam Nemet     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1490929c38e8SAdam Nemet     emitAnalysis(
14912bd6e984SAdam Nemet         LoopAccessReport() <<
1492929c38e8SAdam Nemet         "loop control flow is not understood by analyzer");
1493929c38e8SAdam Nemet     return false;
1494929c38e8SAdam Nemet   }
1495929c38e8SAdam Nemet 
1496929c38e8SAdam Nemet   // ScalarEvolution needs to be able to find the exit count.
149794734eefSXinliang David Li   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
149894734eefSXinliang David Li   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
14999cd9a7e3SSilviu Baranga     emitAnalysis(LoopAccessReport()
15009cd9a7e3SSilviu Baranga                  << "could not determine number of loop iterations");
1501929c38e8SAdam Nemet     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1502929c38e8SAdam Nemet     return false;
1503929c38e8SAdam Nemet   }
1504929c38e8SAdam Nemet 
1505929c38e8SAdam Nemet   return true;
1506929c38e8SAdam Nemet }
1507929c38e8SAdam Nemet 
1508c953bb99SAdam Nemet void LoopAccessInfo::analyzeLoop() {
15090456327cSAdam Nemet   typedef SmallPtrSet<Value*, 16> ValueSet;
15100456327cSAdam Nemet 
1511e3e3b994SMatthew Simpson   // Holds the Load and Store instructions.
1512e3e3b994SMatthew Simpson   SmallVector<LoadInst *, 16> Loads;
1513e3e3b994SMatthew Simpson   SmallVector<StoreInst *, 16> Stores;
15140456327cSAdam Nemet 
15150456327cSAdam Nemet   // Holds all the different accesses in the loop.
15160456327cSAdam Nemet   unsigned NumReads = 0;
15170456327cSAdam Nemet   unsigned NumReadWrites = 0;
15180456327cSAdam Nemet 
1519ce030acbSXinliang David Li   PtrRtChecking->Pointers.clear();
1520ce030acbSXinliang David Li   PtrRtChecking->Need = false;
15210456327cSAdam Nemet 
15220456327cSAdam Nemet   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
15230456327cSAdam Nemet 
15240456327cSAdam Nemet   // For each block.
15250456327cSAdam Nemet   for (Loop::block_iterator bb = TheLoop->block_begin(),
15260456327cSAdam Nemet        be = TheLoop->block_end(); bb != be; ++bb) {
15270456327cSAdam Nemet 
15280456327cSAdam Nemet     // Scan the BB and collect legal loads and stores.
15290456327cSAdam Nemet     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
15300456327cSAdam Nemet          ++it) {
15310456327cSAdam Nemet 
15320456327cSAdam Nemet       // If this is a load, save it. If this instruction can read from memory
15330456327cSAdam Nemet       // but is not a load, then we quit. Notice that we don't handle function
15340456327cSAdam Nemet       // calls that read or write.
15350456327cSAdam Nemet       if (it->mayReadFromMemory()) {
15360456327cSAdam Nemet         // Many math library functions read the rounding mode. We will only
15370456327cSAdam Nemet         // vectorize a loop if it contains known function calls that don't set
15380456327cSAdam Nemet         // the flag. Therefore, it is safe to ignore this read from memory.
15390456327cSAdam Nemet         CallInst *Call = dyn_cast<CallInst>(it);
1540b4b27230SDavid Majnemer         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
15410456327cSAdam Nemet           continue;
15420456327cSAdam Nemet 
15439b3cf604SMichael Zolotukhin         // If the function has an explicit vectorized counterpart, we can safely
15449b3cf604SMichael Zolotukhin         // assume that it can be vectorized.
15459b3cf604SMichael Zolotukhin         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
15469b3cf604SMichael Zolotukhin             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
15479b3cf604SMichael Zolotukhin           continue;
15489b3cf604SMichael Zolotukhin 
15490456327cSAdam Nemet         LoadInst *Ld = dyn_cast<LoadInst>(it);
15500456327cSAdam Nemet         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
15512bd6e984SAdam Nemet           emitAnalysis(LoopAccessReport(Ld)
15520456327cSAdam Nemet                        << "read with atomic ordering or volatile read");
1553339f42b3SAdam Nemet           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1554436018c3SAdam Nemet           CanVecMem = false;
1555436018c3SAdam Nemet           return;
15560456327cSAdam Nemet         }
15570456327cSAdam Nemet         NumLoads++;
15580456327cSAdam Nemet         Loads.push_back(Ld);
1559ce030acbSXinliang David Li         DepChecker->addAccess(Ld);
1560a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1561c953bb99SAdam Nemet           collectStridedAccess(Ld);
15620456327cSAdam Nemet         continue;
15630456327cSAdam Nemet       }
15640456327cSAdam Nemet 
15650456327cSAdam Nemet       // Save 'store' instructions. Abort if other instructions write to memory.
15660456327cSAdam Nemet       if (it->mayWriteToMemory()) {
15670456327cSAdam Nemet         StoreInst *St = dyn_cast<StoreInst>(it);
15680456327cSAdam Nemet         if (!St) {
15695a82c916SDuncan P. N. Exon Smith           emitAnalysis(LoopAccessReport(&*it) <<
157004d4163eSAdam Nemet                        "instruction cannot be vectorized");
1571436018c3SAdam Nemet           CanVecMem = false;
1572436018c3SAdam Nemet           return;
15730456327cSAdam Nemet         }
15740456327cSAdam Nemet         if (!St->isSimple() && !IsAnnotatedParallel) {
15752bd6e984SAdam Nemet           emitAnalysis(LoopAccessReport(St)
15760456327cSAdam Nemet                        << "write with atomic ordering or volatile write");
1577339f42b3SAdam Nemet           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1578436018c3SAdam Nemet           CanVecMem = false;
1579436018c3SAdam Nemet           return;
15800456327cSAdam Nemet         }
15810456327cSAdam Nemet         NumStores++;
15820456327cSAdam Nemet         Stores.push_back(St);
1583ce030acbSXinliang David Li         DepChecker->addAccess(St);
1584a9f09c62SAdam Nemet         if (EnableMemAccessVersioning)
1585c953bb99SAdam Nemet           collectStridedAccess(St);
15860456327cSAdam Nemet       }
15870456327cSAdam Nemet     } // Next instr.
15880456327cSAdam Nemet   } // Next block.
15890456327cSAdam Nemet 
15900456327cSAdam Nemet   // Now we have two lists that hold the loads and the stores.
15910456327cSAdam Nemet   // Next, we find the pointers that they use.
15920456327cSAdam Nemet 
15930456327cSAdam Nemet   // Check if we see any stores. If there are no stores, then we don't
15940456327cSAdam Nemet   // care if the pointers are *restrict*.
15950456327cSAdam Nemet   if (!Stores.size()) {
1596339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1597436018c3SAdam Nemet     CanVecMem = true;
1598436018c3SAdam Nemet     return;
15990456327cSAdam Nemet   }
16000456327cSAdam Nemet 
1601dee666bcSAdam Nemet   MemoryDepChecker::DepCandidates DependentAccesses;
1602a28d91d8SMehdi Amini   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
160394734eefSXinliang David Li                           AA, LI, DependentAccesses, *PSE);
16040456327cSAdam Nemet 
16050456327cSAdam Nemet   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
16060456327cSAdam Nemet   // multiple times on the same object. If the ptr is accessed twice, once
16070456327cSAdam Nemet   // for read and once for write, it will only appear once (on the write
16080456327cSAdam Nemet   // list). This is okay, since we are going to check for conflicts between
16090456327cSAdam Nemet   // writes and between reads and writes, but not between reads and reads.
16100456327cSAdam Nemet   ValueSet Seen;
16110456327cSAdam Nemet 
1612e3e3b994SMatthew Simpson   for (StoreInst *ST : Stores) {
16130456327cSAdam Nemet     Value *Ptr = ST->getPointerOperand();
1614ce48250fSAdam Nemet     // Check for store to loop invariant address.
1615ce48250fSAdam Nemet     StoreToLoopInvariantAddress |= isUniform(Ptr);
16160456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to  the read-write
16170456327cSAdam Nemet     // list. At this phase it is only a 'write' list.
16180456327cSAdam Nemet     if (Seen.insert(Ptr).second) {
16190456327cSAdam Nemet       ++NumReadWrites;
16200456327cSAdam Nemet 
1621ac80dc75SChandler Carruth       MemoryLocation Loc = MemoryLocation::get(ST);
16220456327cSAdam Nemet       // The TBAA metadata could have a control dependency on the predication
16230456327cSAdam Nemet       // condition, so we cannot rely on it when determining whether or not we
16240456327cSAdam Nemet       // need runtime pointer checks.
162501abb2c3SAdam Nemet       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
16260456327cSAdam Nemet         Loc.AATags.TBAA = nullptr;
16270456327cSAdam Nemet 
16280456327cSAdam Nemet       Accesses.addStore(Loc);
16290456327cSAdam Nemet     }
16300456327cSAdam Nemet   }
16310456327cSAdam Nemet 
16320456327cSAdam Nemet   if (IsAnnotatedParallel) {
163304d4163eSAdam Nemet     DEBUG(dbgs()
1634339f42b3SAdam Nemet           << "LAA: A loop annotated parallel, ignore memory dependency "
16350456327cSAdam Nemet           << "checks.\n");
1636436018c3SAdam Nemet     CanVecMem = true;
1637436018c3SAdam Nemet     return;
16380456327cSAdam Nemet   }
16390456327cSAdam Nemet 
1640e3e3b994SMatthew Simpson   for (LoadInst *LD : Loads) {
16410456327cSAdam Nemet     Value *Ptr = LD->getPointerOperand();
16420456327cSAdam Nemet     // If we did *not* see this pointer before, insert it to the
16430456327cSAdam Nemet     // read list. If we *did* see it before, then it is already in
16440456327cSAdam Nemet     // the read-write list. This allows us to vectorize expressions
16450456327cSAdam Nemet     // such as A[i] += x;  Because the address of A[i] is a read-write
16460456327cSAdam Nemet     // pointer. This only works if the index of A[i] is consecutive.
16470456327cSAdam Nemet     // If the address of i is unknown (for example A[B[i]]) then we may
16480456327cSAdam Nemet     // read a few words, modify, and write a few words, and some of the
16490456327cSAdam Nemet     // words may be written to the same address.
16500456327cSAdam Nemet     bool IsReadOnlyPtr = false;
1651139ffba3SAdam Nemet     if (Seen.insert(Ptr).second ||
165294734eefSXinliang David Li         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
16530456327cSAdam Nemet       ++NumReads;
16540456327cSAdam Nemet       IsReadOnlyPtr = true;
16550456327cSAdam Nemet     }
16560456327cSAdam Nemet 
1657ac80dc75SChandler Carruth     MemoryLocation Loc = MemoryLocation::get(LD);
16580456327cSAdam Nemet     // The TBAA metadata could have a control dependency on the predication
16590456327cSAdam Nemet     // condition, so we cannot rely on it when determining whether or not we
16600456327cSAdam Nemet     // need runtime pointer checks.
166101abb2c3SAdam Nemet     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
16620456327cSAdam Nemet       Loc.AATags.TBAA = nullptr;
16630456327cSAdam Nemet 
16640456327cSAdam Nemet     Accesses.addLoad(Loc, IsReadOnlyPtr);
16650456327cSAdam Nemet   }
16660456327cSAdam Nemet 
16670456327cSAdam Nemet   // If we write (or read-write) to a single destination and there are no
16680456327cSAdam Nemet   // other reads in this loop then is it safe to vectorize.
16690456327cSAdam Nemet   if (NumReadWrites == 1 && NumReads == 0) {
1670339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1671436018c3SAdam Nemet     CanVecMem = true;
1672436018c3SAdam Nemet     return;
16730456327cSAdam Nemet   }
16740456327cSAdam Nemet 
16750456327cSAdam Nemet   // Build dependence sets and check whether we need a runtime pointer bounds
16760456327cSAdam Nemet   // check.
16770456327cSAdam Nemet   Accesses.buildDependenceSets();
16780456327cSAdam Nemet 
16790456327cSAdam Nemet   // Find pointers with computable bounds. We are going to use this information
16800456327cSAdam Nemet   // to place a runtime bound check.
168194734eefSXinliang David Li   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1682139ffba3SAdam Nemet                                                   TheLoop, SymbolicStrides);
1683ee61474aSAdam Nemet   if (!CanDoRTIfNeeded) {
16842bd6e984SAdam Nemet     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1685ee61474aSAdam Nemet     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1686ee61474aSAdam Nemet                  << "the array bounds.\n");
1687436018c3SAdam Nemet     CanVecMem = false;
1688436018c3SAdam Nemet     return;
16890456327cSAdam Nemet   }
16900456327cSAdam Nemet 
1691ee61474aSAdam Nemet   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
16920456327cSAdam Nemet 
1693436018c3SAdam Nemet   CanVecMem = true;
16940456327cSAdam Nemet   if (Accesses.isDependencyCheckNeeded()) {
1695339f42b3SAdam Nemet     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1696ce030acbSXinliang David Li     CanVecMem = DepChecker->areDepsSafe(
1697139ffba3SAdam Nemet         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1698ce030acbSXinliang David Li     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
16990456327cSAdam Nemet 
1700ce030acbSXinliang David Li     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
1701339f42b3SAdam Nemet       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
17020456327cSAdam Nemet 
17030456327cSAdam Nemet       // Clear the dependency checks. We assume they are not needed.
1704ce030acbSXinliang David Li       Accesses.resetDepChecks(*DepChecker);
17050456327cSAdam Nemet 
1706ce030acbSXinliang David Li       PtrRtChecking->reset();
1707ce030acbSXinliang David Li       PtrRtChecking->Need = true;
17080456327cSAdam Nemet 
170994734eefSXinliang David Li       auto *SE = PSE->getSE();
1710ce030acbSXinliang David Li       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
1711139ffba3SAdam Nemet                                                  SymbolicStrides, true);
171298a13719SSilviu Baranga 
1713949e91a6SAdam Nemet       // Check that we found the bounds for the pointer.
1714ee61474aSAdam Nemet       if (!CanDoRTIfNeeded) {
17152bd6e984SAdam Nemet         emitAnalysis(LoopAccessReport()
17160456327cSAdam Nemet                      << "cannot check memory dependencies at runtime");
1717b6dc76ffSAdam Nemet         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1718b6dc76ffSAdam Nemet         CanVecMem = false;
1719b6dc76ffSAdam Nemet         return;
1720b6dc76ffSAdam Nemet       }
1721b6dc76ffSAdam Nemet 
17220456327cSAdam Nemet       CanVecMem = true;
17230456327cSAdam Nemet     }
17240456327cSAdam Nemet   }
17250456327cSAdam Nemet 
17264bb90a71SAdam Nemet   if (CanVecMem)
17274bb90a71SAdam Nemet     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1728ce030acbSXinliang David Li                  << (PtrRtChecking->Need ? "" : " don't")
17290f67c6c1SAdam Nemet                  << " need runtime memory checks.\n");
17304bb90a71SAdam Nemet   else {
17310a77dfadSAdam Nemet     emitAnalysis(
17320a77dfadSAdam Nemet         LoopAccessReport()
17330a77dfadSAdam Nemet         << "unsafe dependent memory operations in loop. Use "
17340a77dfadSAdam Nemet            "#pragma loop distribute(enable) to allow loop distribution "
17350a77dfadSAdam Nemet            "to attempt to isolate the offending operations into a separate "
17360a77dfadSAdam Nemet            "loop");
17374bb90a71SAdam Nemet     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
17384bb90a71SAdam Nemet   }
17390456327cSAdam Nemet }
17400456327cSAdam Nemet 
174101abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
174201abb2c3SAdam Nemet                                            DominatorTree *DT)  {
17430456327cSAdam Nemet   assert(TheLoop->contains(BB) && "Unknown block used");
17440456327cSAdam Nemet 
17450456327cSAdam Nemet   // Blocks that do not dominate the latch need predication.
17460456327cSAdam Nemet   BasicBlock* Latch = TheLoop->getLoopLatch();
17470456327cSAdam Nemet   return !DT->dominates(BB, Latch);
17480456327cSAdam Nemet }
17490456327cSAdam Nemet 
17502bd6e984SAdam Nemet void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1751c922853bSAdam Nemet   assert(!Report && "Multiple reports generated");
1752c922853bSAdam Nemet   Report = Message;
17530456327cSAdam Nemet }
17540456327cSAdam Nemet 
175557ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const {
175694734eefSXinliang David Li   return (PSE->getSE()->isLoopInvariant(PSE->getSE()->getSCEV(V), TheLoop));
17570456327cSAdam Nemet }
17587206d7a5SAdam Nemet 
17597206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in
17607206d7a5SAdam Nemet // LoopVectorize.cpp.
17617206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
17627206d7a5SAdam Nemet                                  Instruction *Loc) {
17637206d7a5SAdam Nemet   if (FirstInst)
17647206d7a5SAdam Nemet     return FirstInst;
17657206d7a5SAdam Nemet   if (Instruction *I = dyn_cast<Instruction>(V))
17667206d7a5SAdam Nemet     return I->getParent() == Loc->getParent() ? I : nullptr;
17677206d7a5SAdam Nemet   return nullptr;
17687206d7a5SAdam Nemet }
17697206d7a5SAdam Nemet 
1770039b1042SBenjamin Kramer namespace {
17714e533ef7SAdam Nemet /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
17724e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously
17734e533ef7SAdam Nemet /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
17744e533ef7SAdam Nemet /// a previous one.
17751da7df37SAdam Nemet struct PointerBounds {
17764e533ef7SAdam Nemet   TrackingVH<Value> Start;
17774e533ef7SAdam Nemet   TrackingVH<Value> End;
17781da7df37SAdam Nemet };
1779039b1042SBenjamin Kramer } // end anonymous namespace
17807206d7a5SAdam Nemet 
17811da7df37SAdam Nemet /// \brief Expand code for the lower and upper bound of the pointer group \p CG
17821da7df37SAdam Nemet /// in \p TheLoop.  \return the values for the bounds.
17831da7df37SAdam Nemet static PointerBounds
17841da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
17851da7df37SAdam Nemet              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
17861da7df37SAdam Nemet              const RuntimePointerChecking &PtrRtChecking) {
17871da7df37SAdam Nemet   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
17887206d7a5SAdam Nemet   const SCEV *Sc = SE->getSCEV(Ptr);
17897206d7a5SAdam Nemet 
17907206d7a5SAdam Nemet   if (SE->isLoopInvariant(Sc, TheLoop)) {
17911b6b50a9SSilviu Baranga     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
17921b6b50a9SSilviu Baranga                  << "\n");
17931da7df37SAdam Nemet     return {Ptr, Ptr};
17947206d7a5SAdam Nemet   } else {
17957206d7a5SAdam Nemet     unsigned AS = Ptr->getType()->getPointerAddressSpace();
17961da7df37SAdam Nemet     LLVMContext &Ctx = Loc->getContext();
17977206d7a5SAdam Nemet 
17987206d7a5SAdam Nemet     // Use this type for pointer arithmetic.
17997206d7a5SAdam Nemet     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
18001b6b50a9SSilviu Baranga     Value *Start = nullptr, *End = nullptr;
18017206d7a5SAdam Nemet 
18021b6b50a9SSilviu Baranga     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
18031da7df37SAdam Nemet     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
18041da7df37SAdam Nemet     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
18051da7df37SAdam Nemet     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
18061da7df37SAdam Nemet     return {Start, End};
18077206d7a5SAdam Nemet   }
18087206d7a5SAdam Nemet }
18097206d7a5SAdam Nemet 
18101da7df37SAdam Nemet /// \brief Turns a collection of checks into a collection of expanded upper and
18111da7df37SAdam Nemet /// lower bounds for both pointers in the check.
18121da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
18131da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
18141da7df37SAdam Nemet     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
18151da7df37SAdam Nemet     const RuntimePointerChecking &PtrRtChecking) {
18161da7df37SAdam Nemet   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
18171da7df37SAdam Nemet 
18181da7df37SAdam Nemet   // Here we're relying on the SCEV Expander's cache to only emit code for the
18191da7df37SAdam Nemet   // same bounds once.
18201da7df37SAdam Nemet   std::transform(
18211da7df37SAdam Nemet       PointerChecks.begin(), PointerChecks.end(),
18221da7df37SAdam Nemet       std::back_inserter(ChecksWithBounds),
18231da7df37SAdam Nemet       [&](const RuntimePointerChecking::PointerCheck &Check) {
182494abbbd6SNAKAMURA Takumi         PointerBounds
182594abbbd6SNAKAMURA Takumi           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
182694abbbd6SNAKAMURA Takumi           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
182794abbbd6SNAKAMURA Takumi         return std::make_pair(First, Second);
18281da7df37SAdam Nemet       });
18291da7df37SAdam Nemet 
18301da7df37SAdam Nemet   return ChecksWithBounds;
18311da7df37SAdam Nemet }
18321da7df37SAdam Nemet 
18335b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
18341da7df37SAdam Nemet     Instruction *Loc,
18351da7df37SAdam Nemet     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
18361da7df37SAdam Nemet     const {
183794734eefSXinliang David Li   auto *SE = PSE->getSE();
183894734eefSXinliang David Li   SCEVExpander Exp(*SE, *DL, "induction");
18391da7df37SAdam Nemet   auto ExpandedChecks =
1840ce030acbSXinliang David Li       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
18411da7df37SAdam Nemet 
18421da7df37SAdam Nemet   LLVMContext &Ctx = Loc->getContext();
18431da7df37SAdam Nemet   Instruction *FirstInst = nullptr;
18447206d7a5SAdam Nemet   IRBuilder<> ChkBuilder(Loc);
18457206d7a5SAdam Nemet   // Our instructions might fold to a constant.
18467206d7a5SAdam Nemet   Value *MemoryRuntimeCheck = nullptr;
18471b6b50a9SSilviu Baranga 
18481da7df37SAdam Nemet   for (const auto &Check : ExpandedChecks) {
18491da7df37SAdam Nemet     const PointerBounds &A = Check.first, &B = Check.second;
1850cdb791cdSAdam Nemet     // Check if two pointers (A and B) conflict where conflict is computed as:
1851cdb791cdSAdam Nemet     // start(A) <= end(B) && start(B) <= end(A)
18521da7df37SAdam Nemet     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
18531da7df37SAdam Nemet     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
18547206d7a5SAdam Nemet 
18551da7df37SAdam Nemet     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
18561da7df37SAdam Nemet            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
18577206d7a5SAdam Nemet            "Trying to bounds check pointers with different address spaces");
18587206d7a5SAdam Nemet 
18597206d7a5SAdam Nemet     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
18607206d7a5SAdam Nemet     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
18617206d7a5SAdam Nemet 
18621da7df37SAdam Nemet     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
18631da7df37SAdam Nemet     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
18641da7df37SAdam Nemet     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
18651da7df37SAdam Nemet     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
18667206d7a5SAdam Nemet 
18677206d7a5SAdam Nemet     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
18687206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
18697206d7a5SAdam Nemet     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
18707206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
18717206d7a5SAdam Nemet     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
18727206d7a5SAdam Nemet     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
18737206d7a5SAdam Nemet     if (MemoryRuntimeCheck) {
18741da7df37SAdam Nemet       IsConflict =
18751da7df37SAdam Nemet           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
18767206d7a5SAdam Nemet       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
18777206d7a5SAdam Nemet     }
18787206d7a5SAdam Nemet     MemoryRuntimeCheck = IsConflict;
18797206d7a5SAdam Nemet   }
18807206d7a5SAdam Nemet 
188190fec840SAdam Nemet   if (!MemoryRuntimeCheck)
188290fec840SAdam Nemet     return std::make_pair(nullptr, nullptr);
188390fec840SAdam Nemet 
18847206d7a5SAdam Nemet   // We have to do this trickery because the IRBuilder might fold the check to a
18857206d7a5SAdam Nemet   // constant expression in which case there is no Instruction anchored in a
18867206d7a5SAdam Nemet   // the block.
18877206d7a5SAdam Nemet   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
18887206d7a5SAdam Nemet                                                  ConstantInt::getTrue(Ctx));
18897206d7a5SAdam Nemet   ChkBuilder.Insert(Check, "memcheck.conflict");
18907206d7a5SAdam Nemet   FirstInst = getFirstInst(FirstInst, Check, Loc);
18917206d7a5SAdam Nemet   return std::make_pair(FirstInst, Check);
18927206d7a5SAdam Nemet }
18933bfd93d7SAdam Nemet 
18945b0a4795SAdam Nemet std::pair<Instruction *, Instruction *>
18955b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1896ce030acbSXinliang David Li   if (!PtrRtChecking->Need)
18971da7df37SAdam Nemet     return std::make_pair(nullptr, nullptr);
18981da7df37SAdam Nemet 
1899ce030acbSXinliang David Li   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
19001da7df37SAdam Nemet }
19011da7df37SAdam Nemet 
1902c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
1903c953bb99SAdam Nemet   Value *Ptr = nullptr;
1904c953bb99SAdam Nemet   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
1905c953bb99SAdam Nemet     Ptr = LI->getPointerOperand();
1906c953bb99SAdam Nemet   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
1907c953bb99SAdam Nemet     Ptr = SI->getPointerOperand();
1908c953bb99SAdam Nemet   else
1909c953bb99SAdam Nemet     return;
1910c953bb99SAdam Nemet 
191194734eefSXinliang David Li   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
1912c953bb99SAdam Nemet   if (!Stride)
1913c953bb99SAdam Nemet     return;
1914c953bb99SAdam Nemet 
1915c953bb99SAdam Nemet   DEBUG(dbgs() << "LAA: Found a strided access that we can version");
1916c953bb99SAdam Nemet   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
1917c953bb99SAdam Nemet   SymbolicStrides[Ptr] = Stride;
1918c953bb99SAdam Nemet   StrideSet.insert(Stride);
1919c953bb99SAdam Nemet }
1920c953bb99SAdam Nemet 
19213bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1922a28d91d8SMehdi Amini                                const DataLayout &DL,
19233bfd93d7SAdam Nemet                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1924a9f09c62SAdam Nemet                                DominatorTree *DT, LoopInfo *LI)
192594734eefSXinliang David Li     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
1926ce030acbSXinliang David Li       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
192794734eefSXinliang David Li       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
192894734eefSXinliang David Li       DL(&DL), TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
19297afb46d3SDavid Majnemer       MaxSafeDepDistBytes(-1), CanVecMem(false),
1930ce48250fSAdam Nemet       StoreToLoopInvariantAddress(false) {
1931929c38e8SAdam Nemet   if (canAnalyzeLoop())
1932c953bb99SAdam Nemet     analyzeLoop();
19333bfd93d7SAdam Nemet }
19343bfd93d7SAdam Nemet 
1935e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1936e91cc6efSAdam Nemet   if (CanVecMem) {
19374ad38b63SAdam Nemet     OS.indent(Depth) << "Memory dependences are safe";
19387afb46d3SDavid Majnemer     if (MaxSafeDepDistBytes != -1ULL)
1939c62e554eSAdam Nemet       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1940c62e554eSAdam Nemet          << " bytes";
1941ce030acbSXinliang David Li     if (PtrRtChecking->Need)
19424ad38b63SAdam Nemet       OS << " with run-time checks";
19434ad38b63SAdam Nemet     OS << "\n";
1944e91cc6efSAdam Nemet   }
1945e91cc6efSAdam Nemet 
1946e91cc6efSAdam Nemet   if (Report)
1947e91cc6efSAdam Nemet     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1948e91cc6efSAdam Nemet 
1949ce030acbSXinliang David Li   if (auto *Dependences = DepChecker->getDependences()) {
1950a2df750fSAdam Nemet     OS.indent(Depth) << "Dependences:\n";
1951a2df750fSAdam Nemet     for (auto &Dep : *Dependences) {
1952ce030acbSXinliang David Li       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
195358913d65SAdam Nemet       OS << "\n";
195458913d65SAdam Nemet     }
195558913d65SAdam Nemet   } else
1956a2df750fSAdam Nemet     OS.indent(Depth) << "Too many dependences, not recorded\n";
1957e91cc6efSAdam Nemet 
1958e91cc6efSAdam Nemet   // List the pair of accesses need run-time checks to prove independence.
1959ce030acbSXinliang David Li   PtrRtChecking->print(OS, Depth);
1960e91cc6efSAdam Nemet   OS << "\n";
1961c3384320SAdam Nemet 
1962c3384320SAdam Nemet   OS.indent(Depth) << "Store to invariant address was "
1963c3384320SAdam Nemet                    << (StoreToLoopInvariantAddress ? "" : "not ")
1964c3384320SAdam Nemet                    << "found in loop.\n";
1965e3c0534bSSilviu Baranga 
1966e3c0534bSSilviu Baranga   OS.indent(Depth) << "SCEV assumptions:\n";
196794734eefSXinliang David Li   PSE->getUnionPredicate().print(OS, Depth);
1968b77365b5SSilviu Baranga 
1969b77365b5SSilviu Baranga   OS << "\n";
1970b77365b5SSilviu Baranga 
1971b77365b5SSilviu Baranga   OS.indent(Depth) << "Expressions re-written:\n";
197294734eefSXinliang David Li   PSE->print(OS, Depth);
1973e91cc6efSAdam Nemet }
1974e91cc6efSAdam Nemet 
19757853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
19763bfd93d7SAdam Nemet   auto &LAI = LoopAccessInfoMap[L];
19773bfd93d7SAdam Nemet 
19783bfd93d7SAdam Nemet   if (!LAI) {
1979a28d91d8SMehdi Amini     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1980a9f09c62SAdam Nemet     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI);
19813bfd93d7SAdam Nemet   }
19823bfd93d7SAdam Nemet   return *LAI.get();
19833bfd93d7SAdam Nemet }
19843bfd93d7SAdam Nemet 
19857853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
19867853c1ddSXinliang David Li   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
1987ecde1c7fSXinliang David Li 
1988e91cc6efSAdam Nemet   for (Loop *TopLevelLoop : *LI)
1989e91cc6efSAdam Nemet     for (Loop *L : depth_first(TopLevelLoop)) {
1990e91cc6efSAdam Nemet       OS.indent(2) << L->getHeader()->getName() << ":\n";
1991bdbc5227SAdam Nemet       auto &LAI = LAA.getInfo(L);
1992e91cc6efSAdam Nemet       LAI.print(OS, 4);
1993e91cc6efSAdam Nemet     }
1994e91cc6efSAdam Nemet }
1995e91cc6efSAdam Nemet 
19967853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
1997ecde1c7fSXinliang David Li   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
19983bfd93d7SAdam Nemet   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1999ecde1c7fSXinliang David Li   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2000ecde1c7fSXinliang David Li   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2001ecde1c7fSXinliang David Li   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2002ecde1c7fSXinliang David Li   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
20033bfd93d7SAdam Nemet 
20043bfd93d7SAdam Nemet   return false;
20053bfd93d7SAdam Nemet }
20063bfd93d7SAdam Nemet 
20077853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
20082f1fd165SChandler Carruth     AU.addRequired<ScalarEvolutionWrapperPass>();
20097b560d40SChandler Carruth     AU.addRequired<AAResultsWrapperPass>();
20103bfd93d7SAdam Nemet     AU.addRequired<DominatorTreeWrapperPass>();
2011e91cc6efSAdam Nemet     AU.addRequired<LoopInfoWrapperPass>();
20123bfd93d7SAdam Nemet 
20133bfd93d7SAdam Nemet     AU.setPreservesAll();
20143bfd93d7SAdam Nemet }
20153bfd93d7SAdam Nemet 
20167853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0;
20173bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis";
20183bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses"
20193bfd93d7SAdam Nemet 
20207853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
20217b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
20222f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
20233bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2024e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
20257853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
20263bfd93d7SAdam Nemet 
2027*07e08fa3SXinliang David Li char LoopAccessAnalysis::PassID;
20288a021317SXinliang David Li 
2029*07e08fa3SXinliang David Li LoopAccessInfo LoopAccessAnalysis::run(Loop &L, AnalysisManager<Loop> &AM) {
2030284b0324SSean Silva   const AnalysisManager<Function> &FAM =
2031284b0324SSean Silva       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
20328a021317SXinliang David Li   Function &F = *L.getHeader()->getParent();
2033284b0324SSean Silva   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F);
20348a021317SXinliang David Li   auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F);
2035284b0324SSean Silva   auto *AA = FAM.getCachedResult<AAManager>(F);
2036284b0324SSean Silva   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2037284b0324SSean Silva   auto *LI = FAM.getCachedResult<LoopAnalysis>(F);
2038284b0324SSean Silva   if (!SE)
2039284b0324SSean Silva     report_fatal_error(
2040284b0324SSean Silva         "ScalarEvolution must have been cached at a higher level");
2041284b0324SSean Silva   if (!AA)
2042284b0324SSean Silva     report_fatal_error("AliasAnalysis must have been cached at a higher level");
2043284b0324SSean Silva   if (!DT)
2044284b0324SSean Silva     report_fatal_error("DominatorTree must have been cached at a higher level");
2045284b0324SSean Silva   if (!LI)
2046284b0324SSean Silva     report_fatal_error("LoopInfo must have been cached at a higher level");
20478a021317SXinliang David Li   const DataLayout &DL = F.getParent()->getDataLayout();
20488a021317SXinliang David Li   return LoopAccessInfo(&L, SE, DL, TLI, AA, DT, LI);
20498a021317SXinliang David Li }
20508a021317SXinliang David Li 
20518a021317SXinliang David Li PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L,
20528a021317SXinliang David Li                                                  AnalysisManager<Loop> &AM) {
20538a021317SXinliang David Li   Function &F = *L.getHeader()->getParent();
2054*07e08fa3SXinliang David Li   auto &LAI = AM.getResult<LoopAccessAnalysis>(L);
20558a021317SXinliang David Li   OS << "Loop access info in function '" << F.getName() << "':\n";
20568a021317SXinliang David Li   OS.indent(2) << L.getHeader()->getName() << ":\n";
20578a021317SXinliang David Li   LAI.print(OS, 4);
20588a021317SXinliang David Li   return PreservedAnalyses::all();
20598a021317SXinliang David Li }
20608a021317SXinliang David Li 
20613bfd93d7SAdam Nemet namespace llvm {
20623bfd93d7SAdam Nemet   Pass *createLAAPass() {
20637853c1ddSXinliang David Li     return new LoopAccessLegacyAnalysis();
20643bfd93d7SAdam Nemet   }
20653bfd93d7SAdam Nemet }
2066