10456327cSAdam Nemet //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 20456327cSAdam Nemet // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60456327cSAdam Nemet // 70456327cSAdam Nemet //===----------------------------------------------------------------------===// 80456327cSAdam Nemet // 90456327cSAdam Nemet // The implementation for the loop memory dependence that was originally 100456327cSAdam Nemet // developed for the loop vectorizer. 110456327cSAdam Nemet // 120456327cSAdam Nemet //===----------------------------------------------------------------------===// 130456327cSAdam Nemet 143bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAccessAnalysis.h" 15a3fe70d2SEugene Zelenko #include "llvm/ADT/APInt.h" 16a3fe70d2SEugene Zelenko #include "llvm/ADT/DenseMap.h" 17a3fe70d2SEugene Zelenko #include "llvm/ADT/DepthFirstIterator.h" 18a3fe70d2SEugene Zelenko #include "llvm/ADT/EquivalenceClasses.h" 19a3fe70d2SEugene Zelenko #include "llvm/ADT/PointerIntPair.h" 203bab7e1aSChandler Carruth #include "llvm/ADT/STLExtras.h" 21a3fe70d2SEugene Zelenko #include "llvm/ADT/SetVector.h" 22a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallPtrSet.h" 23a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallSet.h" 24a3fe70d2SEugene Zelenko #include "llvm/ADT/SmallVector.h" 253bab7e1aSChandler Carruth #include "llvm/ADT/iterator_range.h" 26a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasAnalysis.h" 27a3fe70d2SEugene Zelenko #include "llvm/Analysis/AliasSetTracker.h" 283bab7e1aSChandler Carruth #include "llvm/Analysis/LoopAnalysisManager.h" 290456327cSAdam Nemet #include "llvm/Analysis/LoopInfo.h" 30a3fe70d2SEugene Zelenko #include "llvm/Analysis/MemoryLocation.h" 310965da20SAdam Nemet #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolution.h" 337206d7a5SAdam Nemet #include "llvm/Analysis/ScalarEvolutionExpander.h" 34a3fe70d2SEugene Zelenko #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35799003bfSBenjamin Kramer #include "llvm/Analysis/TargetLibraryInfo.h" 360456327cSAdam Nemet #include "llvm/Analysis/ValueTracking.h" 37f45594c9SAdam Nemet #include "llvm/Analysis/VectorUtils.h" 38a3fe70d2SEugene Zelenko #include "llvm/IR/BasicBlock.h" 39a3fe70d2SEugene Zelenko #include "llvm/IR/Constants.h" 40a3fe70d2SEugene Zelenko #include "llvm/IR/DataLayout.h" 41a3fe70d2SEugene Zelenko #include "llvm/IR/DebugLoc.h" 42a3fe70d2SEugene Zelenko #include "llvm/IR/DerivedTypes.h" 43a3fe70d2SEugene Zelenko #include "llvm/IR/DiagnosticInfo.h" 440456327cSAdam Nemet #include "llvm/IR/Dominators.h" 45a3fe70d2SEugene Zelenko #include "llvm/IR/Function.h" 463bab7e1aSChandler Carruth #include "llvm/IR/IRBuilder.h" 47a3fe70d2SEugene Zelenko #include "llvm/IR/InstrTypes.h" 48a3fe70d2SEugene Zelenko #include "llvm/IR/Instruction.h" 49a3fe70d2SEugene Zelenko #include "llvm/IR/Instructions.h" 50a3fe70d2SEugene Zelenko #include "llvm/IR/Operator.h" 518a021317SXinliang David Li #include "llvm/IR/PassManager.h" 52a3fe70d2SEugene Zelenko #include "llvm/IR/Type.h" 53a3fe70d2SEugene Zelenko #include "llvm/IR/Value.h" 54a3fe70d2SEugene Zelenko #include "llvm/IR/ValueHandle.h" 55a3fe70d2SEugene Zelenko #include "llvm/Pass.h" 56a3fe70d2SEugene Zelenko #include "llvm/Support/Casting.h" 57a3fe70d2SEugene Zelenko #include "llvm/Support/CommandLine.h" 580456327cSAdam Nemet #include "llvm/Support/Debug.h" 59a3fe70d2SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 60799003bfSBenjamin Kramer #include "llvm/Support/raw_ostream.h" 61a3fe70d2SEugene Zelenko #include <algorithm> 62a3fe70d2SEugene Zelenko #include <cassert> 63a3fe70d2SEugene Zelenko #include <cstdint> 64a3fe70d2SEugene Zelenko #include <cstdlib> 65a3fe70d2SEugene Zelenko #include <iterator> 66a3fe70d2SEugene Zelenko #include <utility> 67a3fe70d2SEugene Zelenko #include <vector> 68a3fe70d2SEugene Zelenko 690456327cSAdam Nemet using namespace llvm; 700456327cSAdam Nemet 71339f42b3SAdam Nemet #define DEBUG_TYPE "loop-accesses" 720456327cSAdam Nemet 73f219c647SAdam Nemet static cl::opt<unsigned, true> 74f219c647SAdam Nemet VectorizationFactor("force-vector-width", cl::Hidden, 75f219c647SAdam Nemet cl::desc("Sets the SIMD width. Zero is autoselect."), 76f219c647SAdam Nemet cl::location(VectorizerParams::VectorizationFactor)); 771d862af7SAdam Nemet unsigned VectorizerParams::VectorizationFactor; 78f219c647SAdam Nemet 79f219c647SAdam Nemet static cl::opt<unsigned, true> 80f219c647SAdam Nemet VectorizationInterleave("force-vector-interleave", cl::Hidden, 81f219c647SAdam Nemet cl::desc("Sets the vectorization interleave count. " 82f219c647SAdam Nemet "Zero is autoselect."), 83f219c647SAdam Nemet cl::location( 84f219c647SAdam Nemet VectorizerParams::VectorizationInterleave)); 851d862af7SAdam Nemet unsigned VectorizerParams::VectorizationInterleave; 86f219c647SAdam Nemet 871d862af7SAdam Nemet static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 881d862af7SAdam Nemet "runtime-memory-check-threshold", cl::Hidden, 891d862af7SAdam Nemet cl::desc("When performing memory disambiguation checks at runtime do not " 901d862af7SAdam Nemet "generate more than this number of comparisons (default = 8)."), 911d862af7SAdam Nemet cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 921d862af7SAdam Nemet unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93f219c647SAdam Nemet 945f8f34e4SAdrian Prantl /// The maximum iterations used to merge memory checks 951b6b50a9SSilviu Baranga static cl::opt<unsigned> MemoryCheckMergeThreshold( 961b6b50a9SSilviu Baranga "memory-check-merge-threshold", cl::Hidden, 971b6b50a9SSilviu Baranga cl::desc("Maximum number of comparisons done when trying to merge " 981b6b50a9SSilviu Baranga "runtime memory checks. (default = 100)"), 991b6b50a9SSilviu Baranga cl::init(100)); 1001b6b50a9SSilviu Baranga 101f219c647SAdam Nemet /// Maximum SIMD width. 102f219c647SAdam Nemet const unsigned VectorizerParams::MaxVectorWidth = 64; 103f219c647SAdam Nemet 1045f8f34e4SAdrian Prantl /// We collect dependences up to this threshold. 105a2df750fSAdam Nemet static cl::opt<unsigned> 106a2df750fSAdam Nemet MaxDependences("max-dependences", cl::Hidden, 107a2df750fSAdam Nemet cl::desc("Maximum number of dependences collected by " 1089c926579SAdam Nemet "loop-access analysis (default = 100)"), 1099c926579SAdam Nemet cl::init(100)); 1109c926579SAdam Nemet 111a9f09c62SAdam Nemet /// This enables versioning on the strides of symbolically striding memory 112a9f09c62SAdam Nemet /// accesses in code like the following. 113a9f09c62SAdam Nemet /// for (i = 0; i < N; ++i) 114a9f09c62SAdam Nemet /// A[i * Stride1] += B[i * Stride2] ... 115a9f09c62SAdam Nemet /// 116a9f09c62SAdam Nemet /// Will be roughly translated to 117a9f09c62SAdam Nemet /// if (Stride1 == 1 && Stride2 == 1) { 118a9f09c62SAdam Nemet /// for (i = 0; i < N; i+=4) 119a9f09c62SAdam Nemet /// A[i:i+3] += ... 120a9f09c62SAdam Nemet /// } else 121a9f09c62SAdam Nemet /// ... 122a9f09c62SAdam Nemet static cl::opt<bool> EnableMemAccessVersioning( 123a9f09c62SAdam Nemet "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124a9f09c62SAdam Nemet cl::desc("Enable symbolic stride memory access versioning")); 125a9f09c62SAdam Nemet 1265f8f34e4SAdrian Prantl /// Enable store-to-load forwarding conflict detection. This option can 12737ec5f91SMatthew Simpson /// be disabled for correctness testing. 12837ec5f91SMatthew Simpson static cl::opt<bool> EnableForwardingConflictDetection( 12937ec5f91SMatthew Simpson "store-to-load-forwarding-conflict-detection", cl::Hidden, 130a250dc9fSMatthew Simpson cl::desc("Enable conflict detection in loop-access analysis"), 131a250dc9fSMatthew Simpson cl::init(true)); 132a250dc9fSMatthew Simpson 133f219c647SAdam Nemet bool VectorizerParams::isInterleaveForced() { 134f219c647SAdam Nemet return ::VectorizationInterleave.getNumOccurrences() > 0; 135f219c647SAdam Nemet } 136f219c647SAdam Nemet 1370456327cSAdam Nemet Value *llvm::stripIntegerCast(Value *V) { 1388b401013SDavid Majnemer if (auto *CI = dyn_cast<CastInst>(V)) 1390456327cSAdam Nemet if (CI->getOperand(0)->getType()->isIntegerTy()) 1400456327cSAdam Nemet return CI->getOperand(0); 1410456327cSAdam Nemet return V; 1420456327cSAdam Nemet } 1430456327cSAdam Nemet 1449cd9a7e3SSilviu Baranga const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 1458bc61df9SAdam Nemet const ValueToValueMap &PtrToStride, 1460456327cSAdam Nemet Value *Ptr, Value *OrigPtr) { 1479cd9a7e3SSilviu Baranga const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 1480456327cSAdam Nemet 1490456327cSAdam Nemet // If there is an entry in the map return the SCEV of the pointer with the 1500456327cSAdam Nemet // symbolic stride replaced by one. 1518bc61df9SAdam Nemet ValueToValueMap::const_iterator SI = 1528bc61df9SAdam Nemet PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1530456327cSAdam Nemet if (SI != PtrToStride.end()) { 1540456327cSAdam Nemet Value *StrideVal = SI->second; 1550456327cSAdam Nemet 1560456327cSAdam Nemet // Strip casts. 1570456327cSAdam Nemet StrideVal = stripIntegerCast(StrideVal); 1580456327cSAdam Nemet 1599cd9a7e3SSilviu Baranga ScalarEvolution *SE = PSE.getSE(); 160e3c0534bSSilviu Baranga const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 161e3c0534bSSilviu Baranga const auto *CT = 162e3c0534bSSilviu Baranga static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 163e3c0534bSSilviu Baranga 1649cd9a7e3SSilviu Baranga PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 1659cd9a7e3SSilviu Baranga auto *Expr = PSE.getSCEV(Ptr); 166e3c0534bSSilviu Baranga 167d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 168d34e60caSNicola Zaghen << " by: " << *Expr << "\n"); 1699cd9a7e3SSilviu Baranga return Expr; 1700456327cSAdam Nemet } 1710456327cSAdam Nemet 1720456327cSAdam Nemet // Otherwise, just return the SCEV of the original pointer. 173e3c0534bSSilviu Baranga return OrigSCEV; 1740456327cSAdam Nemet } 1750456327cSAdam Nemet 1763622fbfcSElena Demikhovsky /// Calculate Start and End points of memory access. 1773622fbfcSElena Demikhovsky /// Let's assume A is the first access and B is a memory access on N-th loop 1783622fbfcSElena Demikhovsky /// iteration. Then B is calculated as: 1793622fbfcSElena Demikhovsky /// B = A + Step*N . 1803622fbfcSElena Demikhovsky /// Step value may be positive or negative. 1813622fbfcSElena Demikhovsky /// N is a calculated back-edge taken count: 1823622fbfcSElena Demikhovsky /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 1833622fbfcSElena Demikhovsky /// Start and End points are calculated in the following way: 1843622fbfcSElena Demikhovsky /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 1853622fbfcSElena Demikhovsky /// where SizeOfElt is the size of single memory access in bytes. 1863622fbfcSElena Demikhovsky /// 1873622fbfcSElena Demikhovsky /// There is no conflict when the intervals are disjoint: 1883622fbfcSElena Demikhovsky /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 1897cdebac0SAdam Nemet void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 1907cdebac0SAdam Nemet unsigned DepSetId, unsigned ASId, 191e3c0534bSSilviu Baranga const ValueToValueMap &Strides, 1929cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) { 1930456327cSAdam Nemet // Get the stride replaced scev. 1949cd9a7e3SSilviu Baranga const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 195279784ffSAdam Nemet ScalarEvolution *SE = PSE.getSE(); 196279784ffSAdam Nemet 197279784ffSAdam Nemet const SCEV *ScStart; 198279784ffSAdam Nemet const SCEV *ScEnd; 199279784ffSAdam Nemet 20059a65504SAdam Nemet if (SE->isLoopInvariant(Sc, Lp)) 201279784ffSAdam Nemet ScStart = ScEnd = Sc; 202279784ffSAdam Nemet else { 2030456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 2040456327cSAdam Nemet assert(AR && "Invalid addrec expression"); 2056f444dfdSSilviu Baranga const SCEV *Ex = PSE.getBackedgeTakenCount(); 2060e5804a6SSilviu Baranga 207279784ffSAdam Nemet ScStart = AR->getStart(); 208279784ffSAdam Nemet ScEnd = AR->evaluateAtIteration(Ex, *SE); 2090e5804a6SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*SE); 2100e5804a6SSilviu Baranga 2110e5804a6SSilviu Baranga // For expressions with negative step, the upper bound is ScStart and the 2120e5804a6SSilviu Baranga // lower bound is ScEnd. 2138b401013SDavid Majnemer if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 2140e5804a6SSilviu Baranga if (CStep->getValue()->isNegative()) 2150e5804a6SSilviu Baranga std::swap(ScStart, ScEnd); 2160e5804a6SSilviu Baranga } else { 2173622fbfcSElena Demikhovsky // Fallback case: the step is not constant, but we can still 2180e5804a6SSilviu Baranga // get the upper and lower bounds of the interval by using min/max 2190e5804a6SSilviu Baranga // expressions. 2200e5804a6SSilviu Baranga ScStart = SE->getUMinExpr(ScStart, ScEnd); 2210e5804a6SSilviu Baranga ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 2220e5804a6SSilviu Baranga } 2233622fbfcSElena Demikhovsky // Add the size of the pointed element to ScEnd. 2243622fbfcSElena Demikhovsky unsigned EltSize = 2253622fbfcSElena Demikhovsky Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 2263622fbfcSElena Demikhovsky const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 2273622fbfcSElena Demikhovsky ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 228279784ffSAdam Nemet } 2290e5804a6SSilviu Baranga 2300e5804a6SSilviu Baranga Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 2311b6b50a9SSilviu Baranga } 2321b6b50a9SSilviu Baranga 233bbe1f1deSAdam Nemet SmallVector<RuntimePointerChecking::PointerCheck, 4> 23438530887SAdam Nemet RuntimePointerChecking::generateChecks() const { 235bbe1f1deSAdam Nemet SmallVector<PointerCheck, 4> Checks; 236bbe1f1deSAdam Nemet 2377c52e052SAdam Nemet for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 2387c52e052SAdam Nemet for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 2397c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 2407c52e052SAdam Nemet const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 241bbe1f1deSAdam Nemet 24238530887SAdam Nemet if (needsChecking(CGI, CGJ)) 243bbe1f1deSAdam Nemet Checks.push_back(std::make_pair(&CGI, &CGJ)); 244bbe1f1deSAdam Nemet } 245bbe1f1deSAdam Nemet } 246bbe1f1deSAdam Nemet return Checks; 247bbe1f1deSAdam Nemet } 248bbe1f1deSAdam Nemet 24915840393SAdam Nemet void RuntimePointerChecking::generateChecks( 25015840393SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 25115840393SAdam Nemet assert(Checks.empty() && "Checks is not empty"); 25215840393SAdam Nemet groupChecks(DepCands, UseDependencies); 25315840393SAdam Nemet Checks = generateChecks(); 25415840393SAdam Nemet } 25515840393SAdam Nemet 256651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 257651a5a24SAdam Nemet const CheckingPtrGroup &N) const { 2581b6b50a9SSilviu Baranga for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 2591b6b50a9SSilviu Baranga for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 260651a5a24SAdam Nemet if (needsChecking(M.Members[I], N.Members[J])) 2611b6b50a9SSilviu Baranga return true; 2621b6b50a9SSilviu Baranga return false; 2631b6b50a9SSilviu Baranga } 2641b6b50a9SSilviu Baranga 2651b6b50a9SSilviu Baranga /// Compare \p I and \p J and return the minimum. 2661b6b50a9SSilviu Baranga /// Return nullptr in case we couldn't find an answer. 2671b6b50a9SSilviu Baranga static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 2681b6b50a9SSilviu Baranga ScalarEvolution *SE) { 2691b6b50a9SSilviu Baranga const SCEV *Diff = SE->getMinusSCEV(J, I); 2701b6b50a9SSilviu Baranga const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 2711b6b50a9SSilviu Baranga 2721b6b50a9SSilviu Baranga if (!C) 2731b6b50a9SSilviu Baranga return nullptr; 2741b6b50a9SSilviu Baranga if (C->getValue()->isNegative()) 2751b6b50a9SSilviu Baranga return J; 2761b6b50a9SSilviu Baranga return I; 2771b6b50a9SSilviu Baranga } 2781b6b50a9SSilviu Baranga 2797cdebac0SAdam Nemet bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 2809f7dedc3SAdam Nemet const SCEV *Start = RtCheck.Pointers[Index].Start; 2819f7dedc3SAdam Nemet const SCEV *End = RtCheck.Pointers[Index].End; 2829f7dedc3SAdam Nemet 2831b6b50a9SSilviu Baranga // Compare the starts and ends with the known minimum and maximum 2841b6b50a9SSilviu Baranga // of this set. We need to know how we compare against the min/max 2851b6b50a9SSilviu Baranga // of the set in order to be able to emit memchecks. 2869f7dedc3SAdam Nemet const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 2871b6b50a9SSilviu Baranga if (!Min0) 2881b6b50a9SSilviu Baranga return false; 2891b6b50a9SSilviu Baranga 2909f7dedc3SAdam Nemet const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 2911b6b50a9SSilviu Baranga if (!Min1) 2921b6b50a9SSilviu Baranga return false; 2931b6b50a9SSilviu Baranga 2941b6b50a9SSilviu Baranga // Update the low bound expression if we've found a new min value. 2959f7dedc3SAdam Nemet if (Min0 == Start) 2969f7dedc3SAdam Nemet Low = Start; 2971b6b50a9SSilviu Baranga 2981b6b50a9SSilviu Baranga // Update the high bound expression if we've found a new max value. 2999f7dedc3SAdam Nemet if (Min1 != End) 3009f7dedc3SAdam Nemet High = End; 3011b6b50a9SSilviu Baranga 3021b6b50a9SSilviu Baranga Members.push_back(Index); 3031b6b50a9SSilviu Baranga return true; 3041b6b50a9SSilviu Baranga } 3051b6b50a9SSilviu Baranga 3067cdebac0SAdam Nemet void RuntimePointerChecking::groupChecks( 3077cdebac0SAdam Nemet MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 3081b6b50a9SSilviu Baranga // We build the groups from dependency candidates equivalence classes 3091b6b50a9SSilviu Baranga // because: 3101b6b50a9SSilviu Baranga // - We know that pointers in the same equivalence class share 3111b6b50a9SSilviu Baranga // the same underlying object and therefore there is a chance 3121b6b50a9SSilviu Baranga // that we can compare pointers 3131b6b50a9SSilviu Baranga // - We wouldn't be able to merge two pointers for which we need 3141b6b50a9SSilviu Baranga // to emit a memcheck. The classes in DepCands are already 3151b6b50a9SSilviu Baranga // conveniently built such that no two pointers in the same 3161b6b50a9SSilviu Baranga // class need checking against each other. 3171b6b50a9SSilviu Baranga 3181b6b50a9SSilviu Baranga // We use the following (greedy) algorithm to construct the groups 3191b6b50a9SSilviu Baranga // For every pointer in the equivalence class: 3201b6b50a9SSilviu Baranga // For each existing group: 3211b6b50a9SSilviu Baranga // - if the difference between this pointer and the min/max bounds 3221b6b50a9SSilviu Baranga // of the group is a constant, then make the pointer part of the 3231b6b50a9SSilviu Baranga // group and update the min/max bounds of that group as required. 3241b6b50a9SSilviu Baranga 3251b6b50a9SSilviu Baranga CheckingGroups.clear(); 3261b6b50a9SSilviu Baranga 32748250600SSilviu Baranga // If we need to check two pointers to the same underlying object 32848250600SSilviu Baranga // with a non-constant difference, we shouldn't perform any pointer 32948250600SSilviu Baranga // grouping with those pointers. This is because we can easily get 33048250600SSilviu Baranga // into cases where the resulting check would return false, even when 33148250600SSilviu Baranga // the accesses are safe. 33248250600SSilviu Baranga // 33348250600SSilviu Baranga // The following example shows this: 33448250600SSilviu Baranga // for (i = 0; i < 1000; ++i) 33548250600SSilviu Baranga // a[5000 + i * m] = a[i] + a[i + 9000] 33648250600SSilviu Baranga // 33748250600SSilviu Baranga // Here grouping gives a check of (5000, 5000 + 1000 * m) against 33848250600SSilviu Baranga // (0, 10000) which is always false. However, if m is 1, there is no 33948250600SSilviu Baranga // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 34048250600SSilviu Baranga // us to perform an accurate check in this case. 34148250600SSilviu Baranga // 34248250600SSilviu Baranga // The above case requires that we have an UnknownDependence between 34348250600SSilviu Baranga // accesses to the same underlying object. This cannot happen unless 344ef307b8cSFlorian Hahn // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 34548250600SSilviu Baranga // is also false. In this case we will use the fallback path and create 34648250600SSilviu Baranga // separate checking groups for all pointers. 34748250600SSilviu Baranga 3481b6b50a9SSilviu Baranga // If we don't have the dependency partitions, construct a new 34948250600SSilviu Baranga // checking pointer group for each pointer. This is also required 35048250600SSilviu Baranga // for correctness, because in this case we can have checking between 35148250600SSilviu Baranga // pointers to the same underlying object. 3521b6b50a9SSilviu Baranga if (!UseDependencies) { 3531b6b50a9SSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) 3541b6b50a9SSilviu Baranga CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 3551b6b50a9SSilviu Baranga return; 3561b6b50a9SSilviu Baranga } 3571b6b50a9SSilviu Baranga 3581b6b50a9SSilviu Baranga unsigned TotalComparisons = 0; 3591b6b50a9SSilviu Baranga 3601b6b50a9SSilviu Baranga DenseMap<Value *, unsigned> PositionMap; 3619f7dedc3SAdam Nemet for (unsigned Index = 0; Index < Pointers.size(); ++Index) 3629f7dedc3SAdam Nemet PositionMap[Pointers[Index].PointerValue] = Index; 3631b6b50a9SSilviu Baranga 364ce3877fcSSilviu Baranga // We need to keep track of what pointers we've already seen so we 365ce3877fcSSilviu Baranga // don't process them twice. 366ce3877fcSSilviu Baranga SmallSet<unsigned, 2> Seen; 367ce3877fcSSilviu Baranga 368e4b9f507SSanjay Patel // Go through all equivalence classes, get the "pointer check groups" 369ce3877fcSSilviu Baranga // and add them to the overall solution. We use the order in which accesses 370ce3877fcSSilviu Baranga // appear in 'Pointers' to enforce determinism. 371ce3877fcSSilviu Baranga for (unsigned I = 0; I < Pointers.size(); ++I) { 372ce3877fcSSilviu Baranga // We've seen this pointer before, and therefore already processed 373ce3877fcSSilviu Baranga // its equivalence class. 374ce3877fcSSilviu Baranga if (Seen.count(I)) 3751b6b50a9SSilviu Baranga continue; 3761b6b50a9SSilviu Baranga 3779f7dedc3SAdam Nemet MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 3789f7dedc3SAdam Nemet Pointers[I].IsWritePtr); 3791b6b50a9SSilviu Baranga 380ce3877fcSSilviu Baranga SmallVector<CheckingPtrGroup, 2> Groups; 381ce3877fcSSilviu Baranga auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 382ce3877fcSSilviu Baranga 383a647c30fSSilviu Baranga // Because DepCands is constructed by visiting accesses in the order in 384a647c30fSSilviu Baranga // which they appear in alias sets (which is deterministic) and the 385a647c30fSSilviu Baranga // iteration order within an equivalence class member is only dependent on 386a647c30fSSilviu Baranga // the order in which unions and insertions are performed on the 387a647c30fSSilviu Baranga // equivalence class, the iteration order is deterministic. 388ce3877fcSSilviu Baranga for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 3891b6b50a9SSilviu Baranga MI != ME; ++MI) { 3901b6b50a9SSilviu Baranga unsigned Pointer = PositionMap[MI->getPointer()]; 3911b6b50a9SSilviu Baranga bool Merged = false; 392ce3877fcSSilviu Baranga // Mark this pointer as seen. 393ce3877fcSSilviu Baranga Seen.insert(Pointer); 3941b6b50a9SSilviu Baranga 3951b6b50a9SSilviu Baranga // Go through all the existing sets and see if we can find one 3961b6b50a9SSilviu Baranga // which can include this pointer. 3971b6b50a9SSilviu Baranga for (CheckingPtrGroup &Group : Groups) { 3981b6b50a9SSilviu Baranga // Don't perform more than a certain amount of comparisons. 3991b6b50a9SSilviu Baranga // This should limit the cost of grouping the pointers to something 4001b6b50a9SSilviu Baranga // reasonable. If we do end up hitting this threshold, the algorithm 4011b6b50a9SSilviu Baranga // will create separate groups for all remaining pointers. 4021b6b50a9SSilviu Baranga if (TotalComparisons > MemoryCheckMergeThreshold) 4031b6b50a9SSilviu Baranga break; 4041b6b50a9SSilviu Baranga 4051b6b50a9SSilviu Baranga TotalComparisons++; 4061b6b50a9SSilviu Baranga 4071b6b50a9SSilviu Baranga if (Group.addPointer(Pointer)) { 4081b6b50a9SSilviu Baranga Merged = true; 4091b6b50a9SSilviu Baranga break; 4101b6b50a9SSilviu Baranga } 4111b6b50a9SSilviu Baranga } 4121b6b50a9SSilviu Baranga 4131b6b50a9SSilviu Baranga if (!Merged) 4141b6b50a9SSilviu Baranga // We couldn't add this pointer to any existing set or the threshold 4151b6b50a9SSilviu Baranga // for the number of comparisons has been reached. Create a new group 4161b6b50a9SSilviu Baranga // to hold the current pointer. 4171b6b50a9SSilviu Baranga Groups.push_back(CheckingPtrGroup(Pointer, *this)); 4181b6b50a9SSilviu Baranga } 4191b6b50a9SSilviu Baranga 4201b6b50a9SSilviu Baranga // We've computed the grouped checks for this partition. 4211b6b50a9SSilviu Baranga // Save the results and continue with the next one. 42275709329SFangrui Song llvm::copy(Groups, std::back_inserter(CheckingGroups)); 4231b6b50a9SSilviu Baranga } 4240456327cSAdam Nemet } 4250456327cSAdam Nemet 426041e6debSAdam Nemet bool RuntimePointerChecking::arePointersInSamePartition( 427041e6debSAdam Nemet const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 428041e6debSAdam Nemet unsigned PtrIdx2) { 429041e6debSAdam Nemet return (PtrToPartition[PtrIdx1] != -1 && 430041e6debSAdam Nemet PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 431041e6debSAdam Nemet } 432041e6debSAdam Nemet 433651a5a24SAdam Nemet bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 4349f7dedc3SAdam Nemet const PointerInfo &PointerI = Pointers[I]; 4359f7dedc3SAdam Nemet const PointerInfo &PointerJ = Pointers[J]; 4369f7dedc3SAdam Nemet 437a8945b77SAdam Nemet // No need to check if two readonly pointers intersect. 4389f7dedc3SAdam Nemet if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 439a8945b77SAdam Nemet return false; 440a8945b77SAdam Nemet 441a8945b77SAdam Nemet // Only need to check pointers between two different dependency sets. 4429f7dedc3SAdam Nemet if (PointerI.DependencySetId == PointerJ.DependencySetId) 443a8945b77SAdam Nemet return false; 444a8945b77SAdam Nemet 445a8945b77SAdam Nemet // Only need to check pointers in the same alias set. 4469f7dedc3SAdam Nemet if (PointerI.AliasSetId != PointerJ.AliasSetId) 447a8945b77SAdam Nemet return false; 448a8945b77SAdam Nemet 449a8945b77SAdam Nemet return true; 450a8945b77SAdam Nemet } 451a8945b77SAdam Nemet 45254f0b83eSAdam Nemet void RuntimePointerChecking::printChecks( 45354f0b83eSAdam Nemet raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 45454f0b83eSAdam Nemet unsigned Depth) const { 45554f0b83eSAdam Nemet unsigned N = 0; 45654f0b83eSAdam Nemet for (const auto &Check : Checks) { 45754f0b83eSAdam Nemet const auto &First = Check.first->Members, &Second = Check.second->Members; 45854f0b83eSAdam Nemet 45954f0b83eSAdam Nemet OS.indent(Depth) << "Check " << N++ << ":\n"; 46054f0b83eSAdam Nemet 46154f0b83eSAdam Nemet OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 46254f0b83eSAdam Nemet for (unsigned K = 0; K < First.size(); ++K) 46354f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 46454f0b83eSAdam Nemet 46554f0b83eSAdam Nemet OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 46654f0b83eSAdam Nemet for (unsigned K = 0; K < Second.size(); ++K) 46754f0b83eSAdam Nemet OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 46854f0b83eSAdam Nemet } 46954f0b83eSAdam Nemet } 47054f0b83eSAdam Nemet 4713a91e947SAdam Nemet void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 472e91cc6efSAdam Nemet 473e91cc6efSAdam Nemet OS.indent(Depth) << "Run-time memory checks:\n"; 47415840393SAdam Nemet printChecks(OS, Checks, Depth); 4751b6b50a9SSilviu Baranga 4761b6b50a9SSilviu Baranga OS.indent(Depth) << "Grouped accesses:\n"; 4771b6b50a9SSilviu Baranga for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 47854f0b83eSAdam Nemet const auto &CG = CheckingGroups[I]; 47954f0b83eSAdam Nemet 48054f0b83eSAdam Nemet OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 48154f0b83eSAdam Nemet OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 48254f0b83eSAdam Nemet << ")\n"; 48354f0b83eSAdam Nemet for (unsigned J = 0; J < CG.Members.size(); ++J) { 48454f0b83eSAdam Nemet OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 4851b6b50a9SSilviu Baranga << "\n"; 4861b6b50a9SSilviu Baranga } 487e91cc6efSAdam Nemet } 488e91cc6efSAdam Nemet } 489e91cc6efSAdam Nemet 4900456327cSAdam Nemet namespace { 491a3fe70d2SEugene Zelenko 4925f8f34e4SAdrian Prantl /// Analyses memory accesses in a loop. 4930456327cSAdam Nemet /// 4940456327cSAdam Nemet /// Checks whether run time pointer checks are needed and builds sets for data 4950456327cSAdam Nemet /// dependence checking. 4960456327cSAdam Nemet class AccessAnalysis { 4970456327cSAdam Nemet public: 4985f8f34e4SAdrian Prantl /// Read or write access location. 4990456327cSAdam Nemet typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 5005448e989SAmjad Aboud typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 5010456327cSAdam Nemet 50277eeac3dSManoj Gupta AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, 50377eeac3dSManoj Gupta LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, 5049cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE) 50577eeac3dSManoj Gupta : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 50677eeac3dSManoj Gupta IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 5070456327cSAdam Nemet 5085f8f34e4SAdrian Prantl /// Register a load and whether it is only read from. 509ac80dc75SChandler Carruth void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 5100456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 5116ef8002cSGeorge Burgess IV AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 5120456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, false)); 5130456327cSAdam Nemet if (IsReadOnly) 5140456327cSAdam Nemet ReadOnlyPtr.insert(Ptr); 5150456327cSAdam Nemet } 5160456327cSAdam Nemet 5175f8f34e4SAdrian Prantl /// Register a store. 518ac80dc75SChandler Carruth void addStore(MemoryLocation &Loc) { 5190456327cSAdam Nemet Value *Ptr = const_cast<Value*>(Loc.Ptr); 5206ef8002cSGeorge Burgess IV AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 5210456327cSAdam Nemet Accesses.insert(MemAccessInfo(Ptr, true)); 5220456327cSAdam Nemet } 5230456327cSAdam Nemet 5245f8f34e4SAdrian Prantl /// Check if we can emit a run-time no-alias check for \p Access. 525ac920f77SSilviu Baranga /// 526ac920f77SSilviu Baranga /// Returns true if we can emit a run-time no alias check for \p Access. 527ac920f77SSilviu Baranga /// If we can check this access, this also adds it to a dependence set and 528ac920f77SSilviu Baranga /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 529ac920f77SSilviu Baranga /// we will attempt to use additional run-time checks in order to get 530ac920f77SSilviu Baranga /// the bounds of the pointer. 531ac920f77SSilviu Baranga bool createCheckForAccess(RuntimePointerChecking &RtCheck, 532ac920f77SSilviu Baranga MemAccessInfo Access, 533ac920f77SSilviu Baranga const ValueToValueMap &Strides, 534ac920f77SSilviu Baranga DenseMap<Value *, unsigned> &DepSetId, 535ac920f77SSilviu Baranga Loop *TheLoop, unsigned &RunningDepId, 536ac920f77SSilviu Baranga unsigned ASId, bool ShouldCheckStride, 537ac920f77SSilviu Baranga bool Assume); 538ac920f77SSilviu Baranga 5395f8f34e4SAdrian Prantl /// Check whether we can check the pointers at runtime for 540ee61474aSAdam Nemet /// non-intersection. 541ee61474aSAdam Nemet /// 542ee61474aSAdam Nemet /// Returns true if we need no check or if we do and we can generate them 543ee61474aSAdam Nemet /// (i.e. the pointers have computable bounds). 5447cdebac0SAdam Nemet bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 5457cdebac0SAdam Nemet Loop *TheLoop, const ValueToValueMap &Strides, 5469f02c586SAndrey Turetskiy bool ShouldCheckWrap = false); 5470456327cSAdam Nemet 5485f8f34e4SAdrian Prantl /// Goes over all memory accesses, checks whether a RT check is needed 5490456327cSAdam Nemet /// and builds sets of dependent accesses. 5500456327cSAdam Nemet void buildDependenceSets() { 5510456327cSAdam Nemet processMemAccesses(); 5520456327cSAdam Nemet } 5530456327cSAdam Nemet 5545f8f34e4SAdrian Prantl /// Initial processing of memory accesses determined that we need to 5555dc3b2cfSAdam Nemet /// perform dependency checking. 5565dc3b2cfSAdam Nemet /// 5575dc3b2cfSAdam Nemet /// Note that this can later be cleared if we retry memcheck analysis without 558ef307b8cSFlorian Hahn /// dependency checking (i.e. FoundNonConstantDistanceDependence). 5590456327cSAdam Nemet bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 560df3dc5b9SAdam Nemet 561df3dc5b9SAdam Nemet /// We decided that no dependence analysis would be used. Reset the state. 562df3dc5b9SAdam Nemet void resetDepChecks(MemoryDepChecker &DepChecker) { 563df3dc5b9SAdam Nemet CheckDeps.clear(); 564a2df750fSAdam Nemet DepChecker.clearDependences(); 565df3dc5b9SAdam Nemet } 5660456327cSAdam Nemet 5675448e989SAmjad Aboud MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 5680456327cSAdam Nemet 5690456327cSAdam Nemet private: 5700456327cSAdam Nemet typedef SetVector<MemAccessInfo> PtrAccessSet; 5710456327cSAdam Nemet 5725f8f34e4SAdrian Prantl /// Go over all memory access and check whether runtime pointer checks 573b41d2d3fSAdam Nemet /// are needed and build sets of dependency check candidates. 5740456327cSAdam Nemet void processMemAccesses(); 5750456327cSAdam Nemet 5760456327cSAdam Nemet /// Set of all accesses. 5770456327cSAdam Nemet PtrAccessSet Accesses; 5780456327cSAdam Nemet 579a28d91d8SMehdi Amini const DataLayout &DL; 580a28d91d8SMehdi Amini 58177eeac3dSManoj Gupta /// The loop being checked. 58277eeac3dSManoj Gupta const Loop *TheLoop; 58377eeac3dSManoj Gupta 5845448e989SAmjad Aboud /// List of accesses that need a further dependence check. 5855448e989SAmjad Aboud MemAccessInfoList CheckDeps; 5860456327cSAdam Nemet 5870456327cSAdam Nemet /// Set of pointers that are read only. 5880456327cSAdam Nemet SmallPtrSet<Value*, 16> ReadOnlyPtr; 5890456327cSAdam Nemet 5900456327cSAdam Nemet /// An alias set tracker to partition the access set by underlying object and 5910456327cSAdam Nemet //intrinsic property (such as TBAA metadata). 5920456327cSAdam Nemet AliasSetTracker AST; 5930456327cSAdam Nemet 594e2b885c4SAdam Nemet LoopInfo *LI; 595e2b885c4SAdam Nemet 5960456327cSAdam Nemet /// Sets of potentially dependent accesses - members of one set share an 5970456327cSAdam Nemet /// underlying pointer. The set "CheckDeps" identfies which sets really need a 5980456327cSAdam Nemet /// dependence check. 599dee666bcSAdam Nemet MemoryDepChecker::DepCandidates &DepCands; 6000456327cSAdam Nemet 6015f8f34e4SAdrian Prantl /// Initial processing of memory accesses determined that we may need 6025dc3b2cfSAdam Nemet /// to add memchecks. Perform the analysis to determine the necessary checks. 6035dc3b2cfSAdam Nemet /// 6045dc3b2cfSAdam Nemet /// Note that, this is different from isDependencyCheckNeeded. When we retry 6055dc3b2cfSAdam Nemet /// memcheck analysis without dependency checking 606ef307b8cSFlorian Hahn /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 607ef307b8cSFlorian Hahn /// cleared while this remains set if we have potentially dependent accesses. 6085dc3b2cfSAdam Nemet bool IsRTCheckAnalysisNeeded; 609e3c0534bSSilviu Baranga 610e3c0534bSSilviu Baranga /// The SCEV predicate containing all the SCEV-related assumptions. 6119cd9a7e3SSilviu Baranga PredicatedScalarEvolution &PSE; 6120456327cSAdam Nemet }; 6130456327cSAdam Nemet 6140456327cSAdam Nemet } // end anonymous namespace 6150456327cSAdam Nemet 6165f8f34e4SAdrian Prantl /// Check whether a pointer can participate in a runtime bounds check. 617ac920f77SSilviu Baranga /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 618ac920f77SSilviu Baranga /// by adding run-time checks (overflow checks) if necessary. 6199cd9a7e3SSilviu Baranga static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 620e3c0534bSSilviu Baranga const ValueToValueMap &Strides, Value *Ptr, 621ac920f77SSilviu Baranga Loop *L, bool Assume) { 6229cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 623279784ffSAdam Nemet 624279784ffSAdam Nemet // The bounds for loop-invariant pointer is trivial. 625279784ffSAdam Nemet if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 626279784ffSAdam Nemet return true; 627279784ffSAdam Nemet 6280456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 629ac920f77SSilviu Baranga 630ac920f77SSilviu Baranga if (!AR && Assume) 631ac920f77SSilviu Baranga AR = PSE.getAsAddRec(Ptr); 632ac920f77SSilviu Baranga 6330456327cSAdam Nemet if (!AR) 6340456327cSAdam Nemet return false; 6350456327cSAdam Nemet 6360456327cSAdam Nemet return AR->isAffine(); 6370456327cSAdam Nemet } 6380456327cSAdam Nemet 6395f8f34e4SAdrian Prantl /// Check whether a pointer address cannot wrap. 6409f02c586SAndrey Turetskiy static bool isNoWrap(PredicatedScalarEvolution &PSE, 6419f02c586SAndrey Turetskiy const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 6429f02c586SAndrey Turetskiy const SCEV *PtrScev = PSE.getSCEV(Ptr); 6439f02c586SAndrey Turetskiy if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 6449f02c586SAndrey Turetskiy return true; 6459f02c586SAndrey Turetskiy 6467afb46d3SDavid Majnemer int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 647ac920f77SSilviu Baranga if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 648ac920f77SSilviu Baranga return true; 649ac920f77SSilviu Baranga 650ac920f77SSilviu Baranga return false; 651ac920f77SSilviu Baranga } 652ac920f77SSilviu Baranga 653ac920f77SSilviu Baranga bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 654ac920f77SSilviu Baranga MemAccessInfo Access, 655ac920f77SSilviu Baranga const ValueToValueMap &StridesMap, 656ac920f77SSilviu Baranga DenseMap<Value *, unsigned> &DepSetId, 657ac920f77SSilviu Baranga Loop *TheLoop, unsigned &RunningDepId, 658ac920f77SSilviu Baranga unsigned ASId, bool ShouldCheckWrap, 659ac920f77SSilviu Baranga bool Assume) { 660ac920f77SSilviu Baranga Value *Ptr = Access.getPointer(); 661ac920f77SSilviu Baranga 662ac920f77SSilviu Baranga if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 663ac920f77SSilviu Baranga return false; 664ac920f77SSilviu Baranga 665ac920f77SSilviu Baranga // When we run after a failing dependency check we have to make sure 666ac920f77SSilviu Baranga // we don't have wrapping pointers. 667ac920f77SSilviu Baranga if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 668ac920f77SSilviu Baranga auto *Expr = PSE.getSCEV(Ptr); 669ac920f77SSilviu Baranga if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 670ac920f77SSilviu Baranga return false; 671ac920f77SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 672ac920f77SSilviu Baranga } 673ac920f77SSilviu Baranga 674ac920f77SSilviu Baranga // The id of the dependence set. 675ac920f77SSilviu Baranga unsigned DepId; 676ac920f77SSilviu Baranga 677ac920f77SSilviu Baranga if (isDependencyCheckNeeded()) { 678ac920f77SSilviu Baranga Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 679ac920f77SSilviu Baranga unsigned &LeaderId = DepSetId[Leader]; 680ac920f77SSilviu Baranga if (!LeaderId) 681ac920f77SSilviu Baranga LeaderId = RunningDepId++; 682ac920f77SSilviu Baranga DepId = LeaderId; 683ac920f77SSilviu Baranga } else 684ac920f77SSilviu Baranga // Each access has its own dependence set. 685ac920f77SSilviu Baranga DepId = RunningDepId++; 686ac920f77SSilviu Baranga 687ac920f77SSilviu Baranga bool IsWrite = Access.getInt(); 688ac920f77SSilviu Baranga RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 689d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 690ac920f77SSilviu Baranga 691ac920f77SSilviu Baranga return true; 6929f02c586SAndrey Turetskiy } 6939f02c586SAndrey Turetskiy 6947cdebac0SAdam Nemet bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 6957cdebac0SAdam Nemet ScalarEvolution *SE, Loop *TheLoop, 6967cdebac0SAdam Nemet const ValueToValueMap &StridesMap, 6979f02c586SAndrey Turetskiy bool ShouldCheckWrap) { 6980456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 6990456327cSAdam Nemet // to place a runtime bound check. 7000456327cSAdam Nemet bool CanDoRT = true; 7010456327cSAdam Nemet 702ee61474aSAdam Nemet bool NeedRTCheck = false; 7035dc3b2cfSAdam Nemet if (!IsRTCheckAnalysisNeeded) return true; 70498a13719SSilviu Baranga 7050456327cSAdam Nemet bool IsDepCheckNeeded = isDependencyCheckNeeded(); 7060456327cSAdam Nemet 7070456327cSAdam Nemet // We assign a consecutive id to access from different alias sets. 7080456327cSAdam Nemet // Accesses between different groups doesn't need to be checked. 7090456327cSAdam Nemet unsigned ASId = 1; 7100456327cSAdam Nemet for (auto &AS : AST) { 711424edc6cSAdam Nemet int NumReadPtrChecks = 0; 712424edc6cSAdam Nemet int NumWritePtrChecks = 0; 713ac920f77SSilviu Baranga bool CanDoAliasSetRT = true; 714424edc6cSAdam Nemet 7150456327cSAdam Nemet // We assign consecutive id to access from different dependence sets. 7160456327cSAdam Nemet // Accesses within the same set don't need a runtime check. 7170456327cSAdam Nemet unsigned RunningDepId = 1; 7180456327cSAdam Nemet DenseMap<Value *, unsigned> DepSetId; 7190456327cSAdam Nemet 720ac920f77SSilviu Baranga SmallVector<MemAccessInfo, 4> Retries; 721ac920f77SSilviu Baranga 7220456327cSAdam Nemet for (auto A : AS) { 7230456327cSAdam Nemet Value *Ptr = A.getValue(); 7240456327cSAdam Nemet bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 7250456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 7260456327cSAdam Nemet 727424edc6cSAdam Nemet if (IsWrite) 728424edc6cSAdam Nemet ++NumWritePtrChecks; 729424edc6cSAdam Nemet else 730424edc6cSAdam Nemet ++NumReadPtrChecks; 731424edc6cSAdam Nemet 732ac920f77SSilviu Baranga if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 733ac920f77SSilviu Baranga RunningDepId, ASId, ShouldCheckWrap, false)) { 734d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 735ac920f77SSilviu Baranga Retries.push_back(Access); 736ac920f77SSilviu Baranga CanDoAliasSetRT = false; 7370456327cSAdam Nemet } 7380456327cSAdam Nemet } 7390456327cSAdam Nemet 740424edc6cSAdam Nemet // If we have at least two writes or one write and a read then we need to 741424edc6cSAdam Nemet // check them. But there is no need to checks if there is only one 742424edc6cSAdam Nemet // dependence set for this alias set. 743424edc6cSAdam Nemet // 744424edc6cSAdam Nemet // Note that this function computes CanDoRT and NeedRTCheck independently. 745424edc6cSAdam Nemet // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 746424edc6cSAdam Nemet // for which we couldn't find the bounds but we don't actually need to emit 747424edc6cSAdam Nemet // any checks so it does not matter. 748ac920f77SSilviu Baranga bool NeedsAliasSetRTCheck = false; 749ac920f77SSilviu Baranga if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 750ac920f77SSilviu Baranga NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 751ac920f77SSilviu Baranga (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 752424edc6cSAdam Nemet 753ac920f77SSilviu Baranga // We need to perform run-time alias checks, but some pointers had bounds 754ac920f77SSilviu Baranga // that couldn't be checked. 755ac920f77SSilviu Baranga if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 756ac920f77SSilviu Baranga // Reset the CanDoSetRt flag and retry all accesses that have failed. 757ac920f77SSilviu Baranga // We know that we need these checks, so we can now be more aggressive 758ac920f77SSilviu Baranga // and add further checks if required (overflow checks). 759ac920f77SSilviu Baranga CanDoAliasSetRT = true; 760ac920f77SSilviu Baranga for (auto Access : Retries) 761ac920f77SSilviu Baranga if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 762ac920f77SSilviu Baranga TheLoop, RunningDepId, ASId, 763ac920f77SSilviu Baranga ShouldCheckWrap, /*Assume=*/true)) { 764ac920f77SSilviu Baranga CanDoAliasSetRT = false; 765ac920f77SSilviu Baranga break; 766ac920f77SSilviu Baranga } 767ac920f77SSilviu Baranga } 768ac920f77SSilviu Baranga 769ac920f77SSilviu Baranga CanDoRT &= CanDoAliasSetRT; 770ac920f77SSilviu Baranga NeedRTCheck |= NeedsAliasSetRTCheck; 7710456327cSAdam Nemet ++ASId; 7720456327cSAdam Nemet } 7730456327cSAdam Nemet 7740456327cSAdam Nemet // If the pointers that we would use for the bounds comparison have different 7750456327cSAdam Nemet // address spaces, assume the values aren't directly comparable, so we can't 7760456327cSAdam Nemet // use them for the runtime check. We also have to assume they could 7770456327cSAdam Nemet // overlap. In the future there should be metadata for whether address spaces 7780456327cSAdam Nemet // are disjoint. 7790456327cSAdam Nemet unsigned NumPointers = RtCheck.Pointers.size(); 7800456327cSAdam Nemet for (unsigned i = 0; i < NumPointers; ++i) { 7810456327cSAdam Nemet for (unsigned j = i + 1; j < NumPointers; ++j) { 7820456327cSAdam Nemet // Only need to check pointers between two different dependency sets. 7839f7dedc3SAdam Nemet if (RtCheck.Pointers[i].DependencySetId == 7849f7dedc3SAdam Nemet RtCheck.Pointers[j].DependencySetId) 7850456327cSAdam Nemet continue; 7860456327cSAdam Nemet // Only need to check pointers in the same alias set. 7879f7dedc3SAdam Nemet if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 7880456327cSAdam Nemet continue; 7890456327cSAdam Nemet 7909f7dedc3SAdam Nemet Value *PtrI = RtCheck.Pointers[i].PointerValue; 7919f7dedc3SAdam Nemet Value *PtrJ = RtCheck.Pointers[j].PointerValue; 7920456327cSAdam Nemet 7930456327cSAdam Nemet unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 7940456327cSAdam Nemet unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 7950456327cSAdam Nemet if (ASi != ASj) { 796d34e60caSNicola Zaghen LLVM_DEBUG( 797d34e60caSNicola Zaghen dbgs() << "LAA: Runtime check would require comparison between" 7980456327cSAdam Nemet " different address spaces\n"); 7990456327cSAdam Nemet return false; 8000456327cSAdam Nemet } 8010456327cSAdam Nemet } 8020456327cSAdam Nemet } 8030456327cSAdam Nemet 8041b6b50a9SSilviu Baranga if (NeedRTCheck && CanDoRT) 80515840393SAdam Nemet RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 8061b6b50a9SSilviu Baranga 807d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 808ee61474aSAdam Nemet << " pointer comparisons.\n"); 809ee61474aSAdam Nemet 810ee61474aSAdam Nemet RtCheck.Need = NeedRTCheck; 811ee61474aSAdam Nemet 812ee61474aSAdam Nemet bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 813ee61474aSAdam Nemet if (!CanDoRTIfNeeded) 814ee61474aSAdam Nemet RtCheck.reset(); 815ee61474aSAdam Nemet return CanDoRTIfNeeded; 8160456327cSAdam Nemet } 8170456327cSAdam Nemet 8180456327cSAdam Nemet void AccessAnalysis::processMemAccesses() { 8190456327cSAdam Nemet // We process the set twice: first we process read-write pointers, last we 8200456327cSAdam Nemet // process read-only pointers. This allows us to skip dependence tests for 8210456327cSAdam Nemet // read-only pointers. 8220456327cSAdam Nemet 823d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 824d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 825d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 826d34e60caSNicola Zaghen LLVM_DEBUG({ 8270456327cSAdam Nemet for (auto A : Accesses) 8280456327cSAdam Nemet dbgs() << "\t" << *A.getPointer() << " (" << 8290456327cSAdam Nemet (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 8300456327cSAdam Nemet "read-only" : "read")) << ")\n"; 8310456327cSAdam Nemet }); 8320456327cSAdam Nemet 8330456327cSAdam Nemet // The AliasSetTracker has nicely partitioned our pointers by metadata 8340456327cSAdam Nemet // compatibility and potential for underlying-object overlap. As a result, we 8350456327cSAdam Nemet // only need to check for potential pointer dependencies within each alias 8360456327cSAdam Nemet // set. 8370456327cSAdam Nemet for (auto &AS : AST) { 8380456327cSAdam Nemet // Note that both the alias-set tracker and the alias sets themselves used 8390456327cSAdam Nemet // linked lists internally and so the iteration order here is deterministic 8400456327cSAdam Nemet // (matching the original instruction order within each set). 8410456327cSAdam Nemet 8420456327cSAdam Nemet bool SetHasWrite = false; 8430456327cSAdam Nemet 8440456327cSAdam Nemet // Map of pointers to last access encountered. 8450456327cSAdam Nemet typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 8460456327cSAdam Nemet UnderlyingObjToAccessMap ObjToLastAccess; 8470456327cSAdam Nemet 8480456327cSAdam Nemet // Set of access to check after all writes have been processed. 8490456327cSAdam Nemet PtrAccessSet DeferredAccesses; 8500456327cSAdam Nemet 8510456327cSAdam Nemet // Iterate over each alias set twice, once to process read/write pointers, 8520456327cSAdam Nemet // and then to process read-only pointers. 8530456327cSAdam Nemet for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 8540456327cSAdam Nemet bool UseDeferred = SetIteration > 0; 8550456327cSAdam Nemet PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 8560456327cSAdam Nemet 8570456327cSAdam Nemet for (auto AV : AS) { 8580456327cSAdam Nemet Value *Ptr = AV.getValue(); 8590456327cSAdam Nemet 8600456327cSAdam Nemet // For a single memory access in AliasSetTracker, Accesses may contain 8610456327cSAdam Nemet // both read and write, and they both need to be handled for CheckDeps. 8620456327cSAdam Nemet for (auto AC : S) { 8630456327cSAdam Nemet if (AC.getPointer() != Ptr) 8640456327cSAdam Nemet continue; 8650456327cSAdam Nemet 8660456327cSAdam Nemet bool IsWrite = AC.getInt(); 8670456327cSAdam Nemet 8680456327cSAdam Nemet // If we're using the deferred access set, then it contains only 8690456327cSAdam Nemet // reads. 8700456327cSAdam Nemet bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 8710456327cSAdam Nemet if (UseDeferred && !IsReadOnlyPtr) 8720456327cSAdam Nemet continue; 8730456327cSAdam Nemet // Otherwise, the pointer must be in the PtrAccessSet, either as a 8740456327cSAdam Nemet // read or a write. 8750456327cSAdam Nemet assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 8760456327cSAdam Nemet S.count(MemAccessInfo(Ptr, false))) && 8770456327cSAdam Nemet "Alias-set pointer not in the access set?"); 8780456327cSAdam Nemet 8790456327cSAdam Nemet MemAccessInfo Access(Ptr, IsWrite); 8800456327cSAdam Nemet DepCands.insert(Access); 8810456327cSAdam Nemet 8820456327cSAdam Nemet // Memorize read-only pointers for later processing and skip them in 8830456327cSAdam Nemet // the first round (they need to be checked after we have seen all 8840456327cSAdam Nemet // write pointers). Note: we also mark pointer that are not 8850456327cSAdam Nemet // consecutive as "read-only" pointers (so that we check 8860456327cSAdam Nemet // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 8870456327cSAdam Nemet if (!UseDeferred && IsReadOnlyPtr) { 8880456327cSAdam Nemet DeferredAccesses.insert(Access); 8890456327cSAdam Nemet continue; 8900456327cSAdam Nemet } 8910456327cSAdam Nemet 8920456327cSAdam Nemet // If this is a write - check other reads and writes for conflicts. If 8930456327cSAdam Nemet // this is a read only check other writes for conflicts (but only if 8940456327cSAdam Nemet // there is no other write to the ptr - this is an optimization to 8950456327cSAdam Nemet // catch "a[i] = a[i] + " without having to do a dependence check). 8960456327cSAdam Nemet if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 8975448e989SAmjad Aboud CheckDeps.push_back(Access); 8985dc3b2cfSAdam Nemet IsRTCheckAnalysisNeeded = true; 8990456327cSAdam Nemet } 9000456327cSAdam Nemet 9010456327cSAdam Nemet if (IsWrite) 9020456327cSAdam Nemet SetHasWrite = true; 9030456327cSAdam Nemet 9040456327cSAdam Nemet // Create sets of pointers connected by a shared alias set and 9050456327cSAdam Nemet // underlying object. 9060456327cSAdam Nemet typedef SmallVector<Value *, 16> ValueVector; 9070456327cSAdam Nemet ValueVector TempObjects; 908e2b885c4SAdam Nemet 909e2b885c4SAdam Nemet GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 910d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() 911d34e60caSNicola Zaghen << "Underlying objects for pointer " << *Ptr << "\n"); 9120456327cSAdam Nemet for (Value *UnderlyingObj : TempObjects) { 913afd13519SMehdi Amini // nullptr never alias, don't join sets for pointer that have "null" 914afd13519SMehdi Amini // in their UnderlyingObjects list. 91577eeac3dSManoj Gupta if (isa<ConstantPointerNull>(UnderlyingObj) && 91677eeac3dSManoj Gupta !NullPointerIsDefined( 91777eeac3dSManoj Gupta TheLoop->getHeader()->getParent(), 91877eeac3dSManoj Gupta UnderlyingObj->getType()->getPointerAddressSpace())) 919afd13519SMehdi Amini continue; 920afd13519SMehdi Amini 9210456327cSAdam Nemet UnderlyingObjToAccessMap::iterator Prev = 9220456327cSAdam Nemet ObjToLastAccess.find(UnderlyingObj); 9230456327cSAdam Nemet if (Prev != ObjToLastAccess.end()) 9240456327cSAdam Nemet DepCands.unionSets(Access, Prev->second); 9250456327cSAdam Nemet 9260456327cSAdam Nemet ObjToLastAccess[UnderlyingObj] = Access; 927d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 9280456327cSAdam Nemet } 9290456327cSAdam Nemet } 9300456327cSAdam Nemet } 9310456327cSAdam Nemet } 9320456327cSAdam Nemet } 9330456327cSAdam Nemet } 9340456327cSAdam Nemet 9350456327cSAdam Nemet static bool isInBoundsGep(Value *Ptr) { 9360456327cSAdam Nemet if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 9370456327cSAdam Nemet return GEP->isInBounds(); 9380456327cSAdam Nemet return false; 9390456327cSAdam Nemet } 9400456327cSAdam Nemet 9415f8f34e4SAdrian Prantl /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 942c4866d29SAdam Nemet /// i.e. monotonically increasing/decreasing. 943c4866d29SAdam Nemet static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 944ea63a7f5SSilviu Baranga PredicatedScalarEvolution &PSE, const Loop *L) { 945c4866d29SAdam Nemet // FIXME: This should probably only return true for NUW. 946c4866d29SAdam Nemet if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 947c4866d29SAdam Nemet return true; 948c4866d29SAdam Nemet 949c4866d29SAdam Nemet // Scalar evolution does not propagate the non-wrapping flags to values that 950c4866d29SAdam Nemet // are derived from a non-wrapping induction variable because non-wrapping 951c4866d29SAdam Nemet // could be flow-sensitive. 952c4866d29SAdam Nemet // 953c4866d29SAdam Nemet // Look through the potentially overflowing instruction to try to prove 954c4866d29SAdam Nemet // non-wrapping for the *specific* value of Ptr. 955c4866d29SAdam Nemet 956c4866d29SAdam Nemet // The arithmetic implied by an inbounds GEP can't overflow. 957c4866d29SAdam Nemet auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 958c4866d29SAdam Nemet if (!GEP || !GEP->isInBounds()) 959c4866d29SAdam Nemet return false; 960c4866d29SAdam Nemet 961c4866d29SAdam Nemet // Make sure there is only one non-const index and analyze that. 962c4866d29SAdam Nemet Value *NonConstIndex = nullptr; 9638b401013SDavid Majnemer for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 9648b401013SDavid Majnemer if (!isa<ConstantInt>(Index)) { 965c4866d29SAdam Nemet if (NonConstIndex) 966c4866d29SAdam Nemet return false; 9678b401013SDavid Majnemer NonConstIndex = Index; 968c4866d29SAdam Nemet } 969c4866d29SAdam Nemet if (!NonConstIndex) 970c4866d29SAdam Nemet // The recurrence is on the pointer, ignore for now. 971c4866d29SAdam Nemet return false; 972c4866d29SAdam Nemet 973c4866d29SAdam Nemet // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 974c4866d29SAdam Nemet // AddRec using a NSW operation. 975c4866d29SAdam Nemet if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 976c4866d29SAdam Nemet if (OBO->hasNoSignedWrap() && 977c4866d29SAdam Nemet // Assume constant for other the operand so that the AddRec can be 978c4866d29SAdam Nemet // easily found. 979c4866d29SAdam Nemet isa<ConstantInt>(OBO->getOperand(1))) { 980ea63a7f5SSilviu Baranga auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 981c4866d29SAdam Nemet 982c4866d29SAdam Nemet if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 983c4866d29SAdam Nemet return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 984c4866d29SAdam Nemet } 985c4866d29SAdam Nemet 986c4866d29SAdam Nemet return false; 987c4866d29SAdam Nemet } 988c4866d29SAdam Nemet 9895f8f34e4SAdrian Prantl /// Check whether the access through \p Ptr has a constant stride. 9907afb46d3SDavid Majnemer int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 991ea63a7f5SSilviu Baranga const Loop *Lp, const ValueToValueMap &StridesMap, 9925f8cc0c3SElena Demikhovsky bool Assume, bool ShouldCheckWrap) { 993e3dcce97SCraig Topper Type *Ty = Ptr->getType(); 9940456327cSAdam Nemet assert(Ty->isPointerTy() && "Unexpected non-ptr"); 9950456327cSAdam Nemet 9960456327cSAdam Nemet // Make sure that the pointer does not point to aggregate types. 997e3dcce97SCraig Topper auto *PtrTy = cast<PointerType>(Ty); 9980456327cSAdam Nemet if (PtrTy->getElementType()->isAggregateType()) { 999d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1000d34e60caSNicola Zaghen << *Ptr << "\n"); 10010456327cSAdam Nemet return 0; 10020456327cSAdam Nemet } 10030456327cSAdam Nemet 10049cd9a7e3SSilviu Baranga const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 10050456327cSAdam Nemet 10060456327cSAdam Nemet const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1007ea63a7f5SSilviu Baranga if (Assume && !AR) 1008d68ed854SSilviu Baranga AR = PSE.getAsAddRec(Ptr); 1009ea63a7f5SSilviu Baranga 10100456327cSAdam Nemet if (!AR) { 1011d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1012ea63a7f5SSilviu Baranga << " SCEV: " << *PtrScev << "\n"); 10130456327cSAdam Nemet return 0; 10140456327cSAdam Nemet } 10150456327cSAdam Nemet 1016c437f310SHiroshi Inoue // The access function must stride over the innermost loop. 10170456327cSAdam Nemet if (Lp != AR->getLoop()) { 1018d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1019d34e60caSNicola Zaghen << *Ptr << " SCEV: " << *AR << "\n"); 1020a02ce98bSKyle Butt return 0; 10210456327cSAdam Nemet } 10220456327cSAdam Nemet 10230456327cSAdam Nemet // The address calculation must not wrap. Otherwise, a dependence could be 10240456327cSAdam Nemet // inverted. 10250456327cSAdam Nemet // An inbounds getelementptr that is a AddRec with a unit stride 10260456327cSAdam Nemet // cannot wrap per definition. The unit stride requirement is checked later. 10270456327cSAdam Nemet // An getelementptr without an inbounds attribute and unit stride would have 10280456327cSAdam Nemet // to access the pointer value "0" which is undefined behavior in address 10290456327cSAdam Nemet // space 0, therefore we can also vectorize this case. 10300456327cSAdam Nemet bool IsInBoundsGEP = isInBoundsGep(Ptr); 10315f8cc0c3SElena Demikhovsky bool IsNoWrapAddRec = !ShouldCheckWrap || 1032ea63a7f5SSilviu Baranga PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1033ea63a7f5SSilviu Baranga isNoWrapAddRec(Ptr, AR, PSE, Lp); 103477eeac3dSManoj Gupta if (!IsNoWrapAddRec && !IsInBoundsGEP && 103577eeac3dSManoj Gupta NullPointerIsDefined(Lp->getHeader()->getParent(), 103677eeac3dSManoj Gupta PtrTy->getAddressSpace())) { 1037ea63a7f5SSilviu Baranga if (Assume) { 1038ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1039ea63a7f5SSilviu Baranga IsNoWrapAddRec = true; 1040d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1041ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 1042ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 1043ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 1044ea63a7f5SSilviu Baranga } else { 1045d34e60caSNicola Zaghen LLVM_DEBUG( 1046d34e60caSNicola Zaghen dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1047ea63a7f5SSilviu Baranga << *Ptr << " SCEV: " << *AR << "\n"); 10480456327cSAdam Nemet return 0; 10490456327cSAdam Nemet } 1050ea63a7f5SSilviu Baranga } 10510456327cSAdam Nemet 10520456327cSAdam Nemet // Check the step is constant. 10539cd9a7e3SSilviu Baranga const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 10540456327cSAdam Nemet 1055943befedSAdam Nemet // Calculate the pointer stride and check if it is constant. 10560456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 10570456327cSAdam Nemet if (!C) { 1058d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1059d34e60caSNicola Zaghen << " SCEV: " << *AR << "\n"); 10600456327cSAdam Nemet return 0; 10610456327cSAdam Nemet } 10620456327cSAdam Nemet 1063a28d91d8SMehdi Amini auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1064a28d91d8SMehdi Amini int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 10650de2feceSSanjoy Das const APInt &APStepVal = C->getAPInt(); 10660456327cSAdam Nemet 10670456327cSAdam Nemet // Huge step value - give up. 10680456327cSAdam Nemet if (APStepVal.getBitWidth() > 64) 10690456327cSAdam Nemet return 0; 10700456327cSAdam Nemet 10710456327cSAdam Nemet int64_t StepVal = APStepVal.getSExtValue(); 10720456327cSAdam Nemet 10730456327cSAdam Nemet // Strided access. 10740456327cSAdam Nemet int64_t Stride = StepVal / Size; 10750456327cSAdam Nemet int64_t Rem = StepVal % Size; 10760456327cSAdam Nemet if (Rem) 10770456327cSAdam Nemet return 0; 10780456327cSAdam Nemet 10790456327cSAdam Nemet // If the SCEV could wrap but we have an inbounds gep with a unit stride we 10800456327cSAdam Nemet // know we can't "wrap around the address space". In case of address space 10810456327cSAdam Nemet // zero we know that this won't happen without triggering undefined behavior. 108277eeac3dSManoj Gupta if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 108377eeac3dSManoj Gupta (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 108477eeac3dSManoj Gupta PtrTy->getAddressSpace()))) { 1085ea63a7f5SSilviu Baranga if (Assume) { 1086ea63a7f5SSilviu Baranga // We can avoid this case by adding a run-time check. 1087d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1088c437f310SHiroshi Inoue << "inbounds or in address space 0 may wrap:\n" 1089ea63a7f5SSilviu Baranga << "LAA: Pointer: " << *Ptr << "\n" 1090ea63a7f5SSilviu Baranga << "LAA: SCEV: " << *AR << "\n" 1091ea63a7f5SSilviu Baranga << "LAA: Added an overflow assumption\n"); 1092ea63a7f5SSilviu Baranga PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1093ea63a7f5SSilviu Baranga } else 10940456327cSAdam Nemet return 0; 1095ea63a7f5SSilviu Baranga } 10960456327cSAdam Nemet 10970456327cSAdam Nemet return Stride; 10980456327cSAdam Nemet } 10990456327cSAdam Nemet 1100428e9d9dSAlexey Bataev bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1101428e9d9dSAlexey Bataev ScalarEvolution &SE, 1102428e9d9dSAlexey Bataev SmallVectorImpl<unsigned> &SortedIndices) { 1103428e9d9dSAlexey Bataev assert(llvm::all_of( 1104428e9d9dSAlexey Bataev VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1105428e9d9dSAlexey Bataev "Expected list of pointer operands."); 1106428e9d9dSAlexey Bataev SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1107428e9d9dSAlexey Bataev OffValPairs.reserve(VL.size()); 1108428e9d9dSAlexey Bataev 1109428e9d9dSAlexey Bataev // Walk over the pointers, and map each of them to an offset relative to 1110428e9d9dSAlexey Bataev // first pointer in the array. 1111428e9d9dSAlexey Bataev Value *Ptr0 = VL[0]; 1112428e9d9dSAlexey Bataev const SCEV *Scev0 = SE.getSCEV(Ptr0); 1113428e9d9dSAlexey Bataev Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1114428e9d9dSAlexey Bataev 1115428e9d9dSAlexey Bataev llvm::SmallSet<int64_t, 4> Offsets; 1116428e9d9dSAlexey Bataev for (auto *Ptr : VL) { 1117428e9d9dSAlexey Bataev // TODO: Outline this code as a special, more time consuming, version of 1118428e9d9dSAlexey Bataev // computeConstantDifference() function. 1119428e9d9dSAlexey Bataev if (Ptr->getType()->getPointerAddressSpace() != 1120428e9d9dSAlexey Bataev Ptr0->getType()->getPointerAddressSpace()) 1121428e9d9dSAlexey Bataev return false; 1122428e9d9dSAlexey Bataev // If a pointer refers to a different underlying object, bail - the 1123428e9d9dSAlexey Bataev // pointers are by definition incomparable. 1124428e9d9dSAlexey Bataev Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1125428e9d9dSAlexey Bataev if (CurrObj != Obj0) 1126428e9d9dSAlexey Bataev return false; 1127428e9d9dSAlexey Bataev 1128428e9d9dSAlexey Bataev const SCEV *Scev = SE.getSCEV(Ptr); 1129428e9d9dSAlexey Bataev const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1130428e9d9dSAlexey Bataev // The pointers may not have a constant offset from each other, or SCEV 1131428e9d9dSAlexey Bataev // may just not be smart enough to figure out they do. Regardless, 1132428e9d9dSAlexey Bataev // there's nothing we can do. 1133428e9d9dSAlexey Bataev if (!Diff) 1134428e9d9dSAlexey Bataev return false; 1135428e9d9dSAlexey Bataev 1136428e9d9dSAlexey Bataev // Check if the pointer with the same offset is found. 1137428e9d9dSAlexey Bataev int64_t Offset = Diff->getAPInt().getSExtValue(); 1138428e9d9dSAlexey Bataev if (!Offsets.insert(Offset).second) 1139428e9d9dSAlexey Bataev return false; 1140428e9d9dSAlexey Bataev OffValPairs.emplace_back(Offset, Ptr); 1141428e9d9dSAlexey Bataev } 1142428e9d9dSAlexey Bataev SortedIndices.clear(); 1143428e9d9dSAlexey Bataev SortedIndices.resize(VL.size()); 1144428e9d9dSAlexey Bataev std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1145428e9d9dSAlexey Bataev 1146428e9d9dSAlexey Bataev // Sort the memory accesses and keep the order of their uses in UseOrder. 1147428e9d9dSAlexey Bataev std::stable_sort(SortedIndices.begin(), SortedIndices.end(), 1148428e9d9dSAlexey Bataev [&OffValPairs](unsigned Left, unsigned Right) { 1149428e9d9dSAlexey Bataev return OffValPairs[Left].first < OffValPairs[Right].first; 1150428e9d9dSAlexey Bataev }); 1151428e9d9dSAlexey Bataev 1152428e9d9dSAlexey Bataev // Check if the order is consecutive already. 1153428e9d9dSAlexey Bataev if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1154428e9d9dSAlexey Bataev return I == SortedIndices[I]; 1155428e9d9dSAlexey Bataev })) 1156428e9d9dSAlexey Bataev SortedIndices.clear(); 1157428e9d9dSAlexey Bataev 1158428e9d9dSAlexey Bataev return true; 1159428e9d9dSAlexey Bataev } 1160428e9d9dSAlexey Bataev 1161f1c00a22SHaicheng Wu /// Take the address space operand from the Load/Store instruction. 1162f1c00a22SHaicheng Wu /// Returns -1 if this is not a valid Load/Store instruction. 1163f1c00a22SHaicheng Wu static unsigned getAddressSpaceOperand(Value *I) { 1164f1c00a22SHaicheng Wu if (LoadInst *L = dyn_cast<LoadInst>(I)) 1165f1c00a22SHaicheng Wu return L->getPointerAddressSpace(); 1166f1c00a22SHaicheng Wu if (StoreInst *S = dyn_cast<StoreInst>(I)) 1167f1c00a22SHaicheng Wu return S->getPointerAddressSpace(); 1168f1c00a22SHaicheng Wu return -1; 1169f1c00a22SHaicheng Wu } 1170f1c00a22SHaicheng Wu 1171f1c00a22SHaicheng Wu /// Returns true if the memory operations \p A and \p B are consecutive. 1172f1c00a22SHaicheng Wu bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1173f1c00a22SHaicheng Wu ScalarEvolution &SE, bool CheckType) { 1174038ede2aSRenato Golin Value *PtrA = getLoadStorePointerOperand(A); 1175038ede2aSRenato Golin Value *PtrB = getLoadStorePointerOperand(B); 1176f1c00a22SHaicheng Wu unsigned ASA = getAddressSpaceOperand(A); 1177f1c00a22SHaicheng Wu unsigned ASB = getAddressSpaceOperand(B); 1178f1c00a22SHaicheng Wu 1179f1c00a22SHaicheng Wu // Check that the address spaces match and that the pointers are valid. 1180f1c00a22SHaicheng Wu if (!PtrA || !PtrB || (ASA != ASB)) 1181f1c00a22SHaicheng Wu return false; 1182f1c00a22SHaicheng Wu 1183f1c00a22SHaicheng Wu // Make sure that A and B are different pointers. 1184f1c00a22SHaicheng Wu if (PtrA == PtrB) 1185f1c00a22SHaicheng Wu return false; 1186f1c00a22SHaicheng Wu 1187f1c00a22SHaicheng Wu // Make sure that A and B have the same type if required. 1188f1c00a22SHaicheng Wu if (CheckType && PtrA->getType() != PtrB->getType()) 1189f1c00a22SHaicheng Wu return false; 1190f1c00a22SHaicheng Wu 1191945b7e5aSElena Demikhovsky unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1192f1c00a22SHaicheng Wu Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1193945b7e5aSElena Demikhovsky APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1194f1c00a22SHaicheng Wu 1195945b7e5aSElena Demikhovsky APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1196f1c00a22SHaicheng Wu PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1197f1c00a22SHaicheng Wu PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1198f1c00a22SHaicheng Wu 1199f1c00a22SHaicheng Wu // OffsetDelta = OffsetB - OffsetA; 1200f1c00a22SHaicheng Wu const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1201f1c00a22SHaicheng Wu const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1202f1c00a22SHaicheng Wu const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1203f1c00a22SHaicheng Wu const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1204f1c00a22SHaicheng Wu const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1205f1c00a22SHaicheng Wu // Check if they are based on the same pointer. That makes the offsets 1206f1c00a22SHaicheng Wu // sufficient. 1207f1c00a22SHaicheng Wu if (PtrA == PtrB) 1208f1c00a22SHaicheng Wu return OffsetDelta == Size; 1209f1c00a22SHaicheng Wu 1210f1c00a22SHaicheng Wu // Compute the necessary base pointer delta to have the necessary final delta 1211f1c00a22SHaicheng Wu // equal to the size. 1212f1c00a22SHaicheng Wu // BaseDelta = Size - OffsetDelta; 1213f1c00a22SHaicheng Wu const SCEV *SizeSCEV = SE.getConstant(Size); 1214f1c00a22SHaicheng Wu const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1215f1c00a22SHaicheng Wu 1216f1c00a22SHaicheng Wu // Otherwise compute the distance with SCEV between the base pointers. 1217f1c00a22SHaicheng Wu const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1218f1c00a22SHaicheng Wu const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1219f1c00a22SHaicheng Wu const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1220f1c00a22SHaicheng Wu return X == PtrSCEVB; 1221f1c00a22SHaicheng Wu } 1222f1c00a22SHaicheng Wu 1223485f2826SFlorian Hahn MemoryDepChecker::VectorizationSafetyStatus 1224485f2826SFlorian Hahn MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 12259c926579SAdam Nemet switch (Type) { 12269c926579SAdam Nemet case NoDep: 12279c926579SAdam Nemet case Forward: 12289c926579SAdam Nemet case BackwardVectorizable: 1229485f2826SFlorian Hahn return VectorizationSafetyStatus::Safe; 12309c926579SAdam Nemet 12319c926579SAdam Nemet case Unknown: 1232ef307b8cSFlorian Hahn return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 12339c926579SAdam Nemet case ForwardButPreventsForwarding: 12349c926579SAdam Nemet case Backward: 12359c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 1236485f2826SFlorian Hahn return VectorizationSafetyStatus::Unsafe; 12379c926579SAdam Nemet } 1238d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 12399c926579SAdam Nemet } 12409c926579SAdam Nemet 1241397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isBackward() const { 12429c926579SAdam Nemet switch (Type) { 12439c926579SAdam Nemet case NoDep: 12449c926579SAdam Nemet case Forward: 12459c926579SAdam Nemet case ForwardButPreventsForwarding: 1246397f5829SAdam Nemet case Unknown: 12479c926579SAdam Nemet return false; 12489c926579SAdam Nemet 12499c926579SAdam Nemet case BackwardVectorizable: 12509c926579SAdam Nemet case Backward: 12519c926579SAdam Nemet case BackwardVectorizableButPreventsForwarding: 12529c926579SAdam Nemet return true; 12539c926579SAdam Nemet } 1254d388e930SDavid Majnemer llvm_unreachable("unexpected DepType!"); 12559c926579SAdam Nemet } 12569c926579SAdam Nemet 1257397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1258397f5829SAdam Nemet return isBackward() || Type == Unknown; 1259397f5829SAdam Nemet } 1260397f5829SAdam Nemet 1261397f5829SAdam Nemet bool MemoryDepChecker::Dependence::isForward() const { 1262397f5829SAdam Nemet switch (Type) { 1263397f5829SAdam Nemet case Forward: 1264397f5829SAdam Nemet case ForwardButPreventsForwarding: 1265397f5829SAdam Nemet return true; 1266397f5829SAdam Nemet 1267397f5829SAdam Nemet case NoDep: 1268397f5829SAdam Nemet case Unknown: 1269397f5829SAdam Nemet case BackwardVectorizable: 1270397f5829SAdam Nemet case Backward: 1271397f5829SAdam Nemet case BackwardVectorizableButPreventsForwarding: 1272397f5829SAdam Nemet return false; 1273397f5829SAdam Nemet } 1274397f5829SAdam Nemet llvm_unreachable("unexpected DepType!"); 1275397f5829SAdam Nemet } 1276397f5829SAdam Nemet 12777afb46d3SDavid Majnemer bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 12787afb46d3SDavid Majnemer uint64_t TypeByteSize) { 12790456327cSAdam Nemet // If loads occur at a distance that is not a multiple of a feasible vector 12800456327cSAdam Nemet // factor store-load forwarding does not take place. 12810456327cSAdam Nemet // Positive dependences might cause troubles because vectorizing them might 12820456327cSAdam Nemet // prevent store-load forwarding making vectorized code run a lot slower. 12830456327cSAdam Nemet // a[i] = a[i-3] ^ a[i-8]; 12840456327cSAdam Nemet // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 12850456327cSAdam Nemet // hence on your typical architecture store-load forwarding does not take 12860456327cSAdam Nemet // place. Vectorizing in such cases does not make sense. 12870456327cSAdam Nemet // Store-load forwarding distance. 1288884d313bSAdam Nemet 1289884d313bSAdam Nemet // After this many iterations store-to-load forwarding conflicts should not 1290884d313bSAdam Nemet // cause any slowdowns. 12917afb46d3SDavid Majnemer const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 12920456327cSAdam Nemet // Maximum vector factor. 12937afb46d3SDavid Majnemer uint64_t MaxVFWithoutSLForwardIssues = std::min( 12942c34ab51SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 12950456327cSAdam Nemet 1296884d313bSAdam Nemet // Compute the smallest VF at which the store and load would be misaligned. 12977afb46d3SDavid Majnemer for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 12989b5852aeSAdam Nemet VF *= 2) { 1299884d313bSAdam Nemet // If the number of vector iteration between the store and the load are 1300884d313bSAdam Nemet // small we could incur conflicts. 1301884d313bSAdam Nemet if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 13029b5852aeSAdam Nemet MaxVFWithoutSLForwardIssues = (VF >>= 1); 13030456327cSAdam Nemet break; 13040456327cSAdam Nemet } 13050456327cSAdam Nemet } 13060456327cSAdam Nemet 13070456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1308d34e60caSNicola Zaghen LLVM_DEBUG( 1309d34e60caSNicola Zaghen dbgs() << "LAA: Distance " << Distance 13109b5852aeSAdam Nemet << " that could cause a store-load forwarding conflict\n"); 13110456327cSAdam Nemet return true; 13120456327cSAdam Nemet } 13130456327cSAdam Nemet 13140456327cSAdam Nemet if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1315f219c647SAdam Nemet MaxVFWithoutSLForwardIssues != 1316f219c647SAdam Nemet VectorizerParams::MaxVectorWidth * TypeByteSize) 13170456327cSAdam Nemet MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 13180456327cSAdam Nemet return false; 13190456327cSAdam Nemet } 13200456327cSAdam Nemet 1321485f2826SFlorian Hahn void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1322485f2826SFlorian Hahn if (Status < S) 1323485f2826SFlorian Hahn Status = S; 1324485f2826SFlorian Hahn } 1325485f2826SFlorian Hahn 1326eac89d73SDorit Nuzman /// Given a non-constant (unknown) dependence-distance \p Dist between two 1327eac89d73SDorit Nuzman /// memory accesses, that have the same stride whose absolute value is given 1328eac89d73SDorit Nuzman /// in \p Stride, and that have the same type size \p TypeByteSize, 1329eac89d73SDorit Nuzman /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1330eac89d73SDorit Nuzman /// possible to prove statically that the dependence distance is larger 1331eac89d73SDorit Nuzman /// than the range that the accesses will travel through the execution of 1332eac89d73SDorit Nuzman /// the loop. If so, return true; false otherwise. This is useful for 1333eac89d73SDorit Nuzman /// example in loops such as the following (PR31098): 1334eac89d73SDorit Nuzman /// for (i = 0; i < D; ++i) { 1335eac89d73SDorit Nuzman /// = out[i]; 1336eac89d73SDorit Nuzman /// out[i+D] = 1337eac89d73SDorit Nuzman /// } 1338eac89d73SDorit Nuzman static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1339eac89d73SDorit Nuzman const SCEV &BackedgeTakenCount, 1340eac89d73SDorit Nuzman const SCEV &Dist, uint64_t Stride, 1341eac89d73SDorit Nuzman uint64_t TypeByteSize) { 1342eac89d73SDorit Nuzman 1343eac89d73SDorit Nuzman // If we can prove that 1344eac89d73SDorit Nuzman // (**) |Dist| > BackedgeTakenCount * Step 1345eac89d73SDorit Nuzman // where Step is the absolute stride of the memory accesses in bytes, 1346eac89d73SDorit Nuzman // then there is no dependence. 1347eac89d73SDorit Nuzman // 1348c437f310SHiroshi Inoue // Rationale: 1349eac89d73SDorit Nuzman // We basically want to check if the absolute distance (|Dist/Step|) 1350eac89d73SDorit Nuzman // is >= the loop iteration count (or > BackedgeTakenCount). 1351eac89d73SDorit Nuzman // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1352eac89d73SDorit Nuzman // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1353eac89d73SDorit Nuzman // that the dependence distance is >= VF; This is checked elsewhere. 1354eac89d73SDorit Nuzman // But in some cases we can prune unknown dependence distances early, and 1355eac89d73SDorit Nuzman // even before selecting the VF, and without a runtime test, by comparing 1356eac89d73SDorit Nuzman // the distance against the loop iteration count. Since the vectorized code 1357eac89d73SDorit Nuzman // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1358eac89d73SDorit Nuzman // also guarantees that distance >= VF. 1359eac89d73SDorit Nuzman // 1360eac89d73SDorit Nuzman const uint64_t ByteStride = Stride * TypeByteSize; 1361eac89d73SDorit Nuzman const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1362eac89d73SDorit Nuzman const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1363eac89d73SDorit Nuzman 1364eac89d73SDorit Nuzman const SCEV *CastedDist = &Dist; 1365eac89d73SDorit Nuzman const SCEV *CastedProduct = Product; 1366eac89d73SDorit Nuzman uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1367eac89d73SDorit Nuzman uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1368eac89d73SDorit Nuzman 1369eac89d73SDorit Nuzman // The dependence distance can be positive/negative, so we sign extend Dist; 1370eac89d73SDorit Nuzman // The multiplication of the absolute stride in bytes and the 1371c437f310SHiroshi Inoue // backedgeTakenCount is non-negative, so we zero extend Product. 1372eac89d73SDorit Nuzman if (DistTypeSize > ProductTypeSize) 1373eac89d73SDorit Nuzman CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1374eac89d73SDorit Nuzman else 1375eac89d73SDorit Nuzman CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1376eac89d73SDorit Nuzman 1377eac89d73SDorit Nuzman // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1378eac89d73SDorit Nuzman // (If so, then we have proven (**) because |Dist| >= Dist) 1379eac89d73SDorit Nuzman const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1380eac89d73SDorit Nuzman if (SE.isKnownPositive(Minus)) 1381eac89d73SDorit Nuzman return true; 1382eac89d73SDorit Nuzman 1383eac89d73SDorit Nuzman // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1384eac89d73SDorit Nuzman // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1385eac89d73SDorit Nuzman const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1386eac89d73SDorit Nuzman Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1387eac89d73SDorit Nuzman if (SE.isKnownPositive(Minus)) 1388eac89d73SDorit Nuzman return true; 1389eac89d73SDorit Nuzman 1390eac89d73SDorit Nuzman return false; 1391eac89d73SDorit Nuzman } 1392eac89d73SDorit Nuzman 13935f8f34e4SAdrian Prantl /// Check the dependence for two accesses with the same stride \p Stride. 1394751004a6SHao Liu /// \p Distance is the positive distance and \p TypeByteSize is type size in 1395751004a6SHao Liu /// bytes. 1396751004a6SHao Liu /// 1397751004a6SHao Liu /// \returns true if they are independent. 13987afb46d3SDavid Majnemer static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 13997afb46d3SDavid Majnemer uint64_t TypeByteSize) { 1400751004a6SHao Liu assert(Stride > 1 && "The stride must be greater than 1"); 1401751004a6SHao Liu assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1402751004a6SHao Liu assert(Distance > 0 && "The distance must be non-zero"); 1403751004a6SHao Liu 1404751004a6SHao Liu // Skip if the distance is not multiple of type byte size. 1405751004a6SHao Liu if (Distance % TypeByteSize) 1406751004a6SHao Liu return false; 1407751004a6SHao Liu 14087afb46d3SDavid Majnemer uint64_t ScaledDist = Distance / TypeByteSize; 1409751004a6SHao Liu 1410751004a6SHao Liu // No dependence if the scaled distance is not multiple of the stride. 1411751004a6SHao Liu // E.g. 1412751004a6SHao Liu // for (i = 0; i < 1024 ; i += 4) 1413751004a6SHao Liu // A[i+2] = A[i] + 1; 1414751004a6SHao Liu // 1415751004a6SHao Liu // Two accesses in memory (scaled distance is 2, stride is 4): 1416751004a6SHao Liu // | A[0] | | | | A[4] | | | | 1417751004a6SHao Liu // | | | A[2] | | | | A[6] | | 1418751004a6SHao Liu // 1419751004a6SHao Liu // E.g. 1420751004a6SHao Liu // for (i = 0; i < 1024 ; i += 3) 1421751004a6SHao Liu // A[i+4] = A[i] + 1; 1422751004a6SHao Liu // 1423751004a6SHao Liu // Two accesses in memory (scaled distance is 4, stride is 3): 1424751004a6SHao Liu // | A[0] | | | A[3] | | | A[6] | | | 1425751004a6SHao Liu // | | | | | A[4] | | | A[7] | | 1426751004a6SHao Liu return ScaledDist % Stride; 1427751004a6SHao Liu } 1428751004a6SHao Liu 14299c926579SAdam Nemet MemoryDepChecker::Dependence::DepType 14309c926579SAdam Nemet MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 14310456327cSAdam Nemet const MemAccessInfo &B, unsigned BIdx, 14328bc61df9SAdam Nemet const ValueToValueMap &Strides) { 14330456327cSAdam Nemet assert (AIdx < BIdx && "Must pass arguments in program order"); 14340456327cSAdam Nemet 14350456327cSAdam Nemet Value *APtr = A.getPointer(); 14360456327cSAdam Nemet Value *BPtr = B.getPointer(); 14370456327cSAdam Nemet bool AIsWrite = A.getInt(); 14380456327cSAdam Nemet bool BIsWrite = B.getInt(); 14390456327cSAdam Nemet 14400456327cSAdam Nemet // Two reads are independent. 14410456327cSAdam Nemet if (!AIsWrite && !BIsWrite) 14429c926579SAdam Nemet return Dependence::NoDep; 14430456327cSAdam Nemet 14440456327cSAdam Nemet // We cannot check pointers in different address spaces. 14450456327cSAdam Nemet if (APtr->getType()->getPointerAddressSpace() != 14460456327cSAdam Nemet BPtr->getType()->getPointerAddressSpace()) 14479c926579SAdam Nemet return Dependence::Unknown; 14480456327cSAdam Nemet 14497afb46d3SDavid Majnemer int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 14507afb46d3SDavid Majnemer int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 14510456327cSAdam Nemet 1452adf4b739SSilviu Baranga const SCEV *Src = PSE.getSCEV(APtr); 1453adf4b739SSilviu Baranga const SCEV *Sink = PSE.getSCEV(BPtr); 14540456327cSAdam Nemet 14550456327cSAdam Nemet // If the induction step is negative we have to invert source and sink of the 14560456327cSAdam Nemet // dependence. 14570456327cSAdam Nemet if (StrideAPtr < 0) { 14580456327cSAdam Nemet std::swap(APtr, BPtr); 14590456327cSAdam Nemet std::swap(Src, Sink); 14600456327cSAdam Nemet std::swap(AIsWrite, BIsWrite); 14610456327cSAdam Nemet std::swap(AIdx, BIdx); 14620456327cSAdam Nemet std::swap(StrideAPtr, StrideBPtr); 14630456327cSAdam Nemet } 14640456327cSAdam Nemet 14659cd9a7e3SSilviu Baranga const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 14660456327cSAdam Nemet 1467d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 14680456327cSAdam Nemet << "(Induction step: " << StrideAPtr << ")\n"); 1469d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 14700456327cSAdam Nemet << *InstMap[BIdx] << ": " << *Dist << "\n"); 14710456327cSAdam Nemet 1472943befedSAdam Nemet // Need accesses with constant stride. We don't want to vectorize 14730456327cSAdam Nemet // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 14740456327cSAdam Nemet // the address space. 14750456327cSAdam Nemet if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1476d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 14779c926579SAdam Nemet return Dependence::Unknown; 14780456327cSAdam Nemet } 14790456327cSAdam Nemet 1480eac89d73SDorit Nuzman Type *ATy = APtr->getType()->getPointerElementType(); 1481eac89d73SDorit Nuzman Type *BTy = BPtr->getType()->getPointerElementType(); 1482eac89d73SDorit Nuzman auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1483eac89d73SDorit Nuzman uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1484eac89d73SDorit Nuzman uint64_t Stride = std::abs(StrideAPtr); 14850456327cSAdam Nemet const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 14860456327cSAdam Nemet if (!C) { 1487eac89d73SDorit Nuzman if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1488eac89d73SDorit Nuzman isSafeDependenceDistance(DL, *(PSE.getSE()), 1489eac89d73SDorit Nuzman *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1490eac89d73SDorit Nuzman TypeByteSize)) 1491eac89d73SDorit Nuzman return Dependence::NoDep; 1492eac89d73SDorit Nuzman 1493d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1494ef307b8cSFlorian Hahn FoundNonConstantDistanceDependence = true; 14959c926579SAdam Nemet return Dependence::Unknown; 14960456327cSAdam Nemet } 14970456327cSAdam Nemet 14980de2feceSSanjoy Das const APInt &Val = C->getAPInt(); 14996feebe98SMatthew Simpson int64_t Distance = Val.getSExtValue(); 15006feebe98SMatthew Simpson 15016feebe98SMatthew Simpson // Attempt to prove strided accesses independent. 15026feebe98SMatthew Simpson if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 15036feebe98SMatthew Simpson areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1504d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 15056feebe98SMatthew Simpson return Dependence::NoDep; 15066feebe98SMatthew Simpson } 15076feebe98SMatthew Simpson 15086feebe98SMatthew Simpson // Negative distances are not plausible dependencies. 15090456327cSAdam Nemet if (Val.isNegative()) { 15100456327cSAdam Nemet bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 151137ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 15120456327cSAdam Nemet (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1513b8486e5aSAdam Nemet ATy != BTy)) { 1514d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 15159c926579SAdam Nemet return Dependence::ForwardButPreventsForwarding; 1516b8486e5aSAdam Nemet } 15170456327cSAdam Nemet 1518d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 15199c926579SAdam Nemet return Dependence::Forward; 15200456327cSAdam Nemet } 15210456327cSAdam Nemet 15220456327cSAdam Nemet // Write to the same location with the same size. 15230456327cSAdam Nemet // Could be improved to assert type sizes are the same (i32 == float, etc). 15240456327cSAdam Nemet if (Val == 0) { 15250456327cSAdam Nemet if (ATy == BTy) 1526d7037c56SAdam Nemet return Dependence::Forward; 1527d34e60caSNicola Zaghen LLVM_DEBUG( 1528d34e60caSNicola Zaghen dbgs() << "LAA: Zero dependence difference but different types\n"); 15299c926579SAdam Nemet return Dependence::Unknown; 15300456327cSAdam Nemet } 15310456327cSAdam Nemet 15320456327cSAdam Nemet assert(Val.isStrictlyPositive() && "Expect a positive value"); 15330456327cSAdam Nemet 15340456327cSAdam Nemet if (ATy != BTy) { 1535d34e60caSNicola Zaghen LLVM_DEBUG( 1536d34e60caSNicola Zaghen dbgs() 1537d34e60caSNicola Zaghen << "LAA: ReadWrite-Write positive dependency with different types\n"); 15389c926579SAdam Nemet return Dependence::Unknown; 15390456327cSAdam Nemet } 15400456327cSAdam Nemet 15410456327cSAdam Nemet // Bail out early if passed-in parameters make vectorization not feasible. 1542f219c647SAdam Nemet unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1543f219c647SAdam Nemet VectorizerParams::VectorizationFactor : 1); 1544f219c647SAdam Nemet unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1545f219c647SAdam Nemet VectorizerParams::VectorizationInterleave : 1); 1546751004a6SHao Liu // The minimum number of iterations for a vectorized/unrolled version. 1547751004a6SHao Liu unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 15480456327cSAdam Nemet 1549751004a6SHao Liu // It's not vectorizable if the distance is smaller than the minimum distance 1550751004a6SHao Liu // needed for a vectroized/unrolled version. Vectorizing one iteration in 1551751004a6SHao Liu // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1552751004a6SHao Liu // TypeByteSize (No need to plus the last gap distance). 1553751004a6SHao Liu // 1554751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1555751004a6SHao Liu // foo(int *A) { 1556751004a6SHao Liu // int *B = (int *)((char *)A + 14); 1557751004a6SHao Liu // for (i = 0 ; i < 1024 ; i += 2) 1558751004a6SHao Liu // B[i] = A[i] + 1; 1559751004a6SHao Liu // } 1560751004a6SHao Liu // 1561751004a6SHao Liu // Two accesses in memory (stride is 2): 1562751004a6SHao Liu // | A[0] | | A[2] | | A[4] | | A[6] | | 1563751004a6SHao Liu // | B[0] | | B[2] | | B[4] | 1564751004a6SHao Liu // 1565751004a6SHao Liu // Distance needs for vectorizing iterations except the last iteration: 1566751004a6SHao Liu // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1567751004a6SHao Liu // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1568751004a6SHao Liu // 1569751004a6SHao Liu // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1570751004a6SHao Liu // 12, which is less than distance. 1571751004a6SHao Liu // 1572751004a6SHao Liu // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1573751004a6SHao Liu // the minimum distance needed is 28, which is greater than distance. It is 1574751004a6SHao Liu // not safe to do vectorization. 15757afb46d3SDavid Majnemer uint64_t MinDistanceNeeded = 1576751004a6SHao Liu TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 15777afb46d3SDavid Majnemer if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1578d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1579d34e60caSNicola Zaghen << Distance << '\n'); 1580751004a6SHao Liu return Dependence::Backward; 1581751004a6SHao Liu } 1582751004a6SHao Liu 1583751004a6SHao Liu // Unsafe if the minimum distance needed is greater than max safe distance. 1584751004a6SHao Liu if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1585d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1586751004a6SHao Liu << MinDistanceNeeded << " size in bytes"); 15879c926579SAdam Nemet return Dependence::Backward; 15880456327cSAdam Nemet } 15890456327cSAdam Nemet 15909cc0c399SAdam Nemet // Positive distance bigger than max vectorization factor. 1591751004a6SHao Liu // FIXME: Should use max factor instead of max distance in bytes, which could 1592751004a6SHao Liu // not handle different types. 1593751004a6SHao Liu // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1594751004a6SHao Liu // void foo (int *A, char *B) { 1595751004a6SHao Liu // for (unsigned i = 0; i < 1024; i++) { 1596751004a6SHao Liu // A[i+2] = A[i] + 1; 1597751004a6SHao Liu // B[i+2] = B[i] + 1; 1598751004a6SHao Liu // } 1599751004a6SHao Liu // } 1600751004a6SHao Liu // 1601751004a6SHao Liu // This case is currently unsafe according to the max safe distance. If we 1602751004a6SHao Liu // analyze the two accesses on array B, the max safe dependence distance 1603751004a6SHao Liu // is 2. Then we analyze the accesses on array A, the minimum distance needed 1604751004a6SHao Liu // is 8, which is less than 2 and forbidden vectorization, But actually 1605751004a6SHao Liu // both A and B could be vectorized by 2 iterations. 1606751004a6SHao Liu MaxSafeDepDistBytes = 16077afb46d3SDavid Majnemer std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 16080456327cSAdam Nemet 16090456327cSAdam Nemet bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 161037ec5f91SMatthew Simpson if (IsTrueDataDependence && EnableForwardingConflictDetection && 16110456327cSAdam Nemet couldPreventStoreLoadForward(Distance, TypeByteSize)) 16129c926579SAdam Nemet return Dependence::BackwardVectorizableButPreventsForwarding; 16130456327cSAdam Nemet 1614682cfc1dSAlon Kom uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1615d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1616682cfc1dSAlon Kom << " with max VF = " << MaxVF << '\n'); 1617682cfc1dSAlon Kom uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1618682cfc1dSAlon Kom MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 16199c926579SAdam Nemet return Dependence::BackwardVectorizable; 16200456327cSAdam Nemet } 16210456327cSAdam Nemet 1622dee666bcSAdam Nemet bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 16235448e989SAmjad Aboud MemAccessInfoList &CheckDeps, 16248bc61df9SAdam Nemet const ValueToValueMap &Strides) { 16250456327cSAdam Nemet 16267afb46d3SDavid Majnemer MaxSafeDepDistBytes = -1; 16275448e989SAmjad Aboud SmallPtrSet<MemAccessInfo, 8> Visited; 16285448e989SAmjad Aboud for (MemAccessInfo CurAccess : CheckDeps) { 16295448e989SAmjad Aboud if (Visited.count(CurAccess)) 16305448e989SAmjad Aboud continue; 16310456327cSAdam Nemet 16320456327cSAdam Nemet // Get the relevant memory access set. 16330456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::iterator I = 16340456327cSAdam Nemet AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 16350456327cSAdam Nemet 16360456327cSAdam Nemet // Check accesses within this set. 16377a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AI = 16387a083814SRichard Trieu AccessSets.member_begin(I); 16397a083814SRichard Trieu EquivalenceClasses<MemAccessInfo>::member_iterator AE = 16407a083814SRichard Trieu AccessSets.member_end(); 16410456327cSAdam Nemet 16420456327cSAdam Nemet // Check every access pair. 16430456327cSAdam Nemet while (AI != AE) { 16445448e989SAmjad Aboud Visited.insert(*AI); 16450456327cSAdam Nemet EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 16460456327cSAdam Nemet while (OI != AE) { 16470456327cSAdam Nemet // Check every accessing instruction pair in program order. 16480456327cSAdam Nemet for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 16490456327cSAdam Nemet I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 16500456327cSAdam Nemet for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 16510456327cSAdam Nemet I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 16529c926579SAdam Nemet auto A = std::make_pair(&*AI, *I1); 16539c926579SAdam Nemet auto B = std::make_pair(&*OI, *I2); 16549c926579SAdam Nemet 16559c926579SAdam Nemet assert(*I1 != *I2); 16569c926579SAdam Nemet if (*I1 > *I2) 16579c926579SAdam Nemet std::swap(A, B); 16589c926579SAdam Nemet 16599c926579SAdam Nemet Dependence::DepType Type = 16609c926579SAdam Nemet isDependent(*A.first, A.second, *B.first, B.second, Strides); 1661485f2826SFlorian Hahn mergeInStatus(Dependence::isSafeForVectorization(Type)); 16629c926579SAdam Nemet 1663a2df750fSAdam Nemet // Gather dependences unless we accumulated MaxDependences 16649c926579SAdam Nemet // dependences. In that case return as soon as we find the first 16659c926579SAdam Nemet // unsafe dependence. This puts a limit on this quadratic 16669c926579SAdam Nemet // algorithm. 1667a2df750fSAdam Nemet if (RecordDependences) { 1668a2df750fSAdam Nemet if (Type != Dependence::NoDep) 1669a2df750fSAdam Nemet Dependences.push_back(Dependence(A.second, B.second, Type)); 16709c926579SAdam Nemet 1671a2df750fSAdam Nemet if (Dependences.size() >= MaxDependences) { 1672a2df750fSAdam Nemet RecordDependences = false; 1673a2df750fSAdam Nemet Dependences.clear(); 1674d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() 1675d34e60caSNicola Zaghen << "Too many dependences, stopped recording\n"); 16769c926579SAdam Nemet } 16779c926579SAdam Nemet } 1678485f2826SFlorian Hahn if (!RecordDependences && !isSafeForVectorization()) 16790456327cSAdam Nemet return false; 16800456327cSAdam Nemet } 16810456327cSAdam Nemet ++OI; 16820456327cSAdam Nemet } 16830456327cSAdam Nemet AI++; 16840456327cSAdam Nemet } 16850456327cSAdam Nemet } 16869c926579SAdam Nemet 1687d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1688485f2826SFlorian Hahn return isSafeForVectorization(); 16890456327cSAdam Nemet } 16900456327cSAdam Nemet 1691ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> 1692ec1e2bb6SAdam Nemet MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1693ec1e2bb6SAdam Nemet MemAccessInfo Access(Ptr, isWrite); 1694ec1e2bb6SAdam Nemet auto &IndexVector = Accesses.find(Access)->second; 1695ec1e2bb6SAdam Nemet 1696ec1e2bb6SAdam Nemet SmallVector<Instruction *, 4> Insts; 16972d006e76SDavid Majnemer transform(IndexVector, 1698ec1e2bb6SAdam Nemet std::back_inserter(Insts), 1699ec1e2bb6SAdam Nemet [&](unsigned Idx) { return this->InstMap[Idx]; }); 1700ec1e2bb6SAdam Nemet return Insts; 1701ec1e2bb6SAdam Nemet } 1702ec1e2bb6SAdam Nemet 170358913d65SAdam Nemet const char *MemoryDepChecker::Dependence::DepName[] = { 170458913d65SAdam Nemet "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 170558913d65SAdam Nemet "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 170658913d65SAdam Nemet 170758913d65SAdam Nemet void MemoryDepChecker::Dependence::print( 170858913d65SAdam Nemet raw_ostream &OS, unsigned Depth, 170958913d65SAdam Nemet const SmallVectorImpl<Instruction *> &Instrs) const { 171058913d65SAdam Nemet OS.indent(Depth) << DepName[Type] << ":\n"; 171158913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 171258913d65SAdam Nemet OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 171358913d65SAdam Nemet } 171458913d65SAdam Nemet 1715929c38e8SAdam Nemet bool LoopAccessInfo::canAnalyzeLoop() { 17168dcb3b6aSAdam Nemet // We need to have a loop header. 1717d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1718d8968f09SAdam Nemet << TheLoop->getHeader()->getParent()->getName() << ": " 1719d8968f09SAdam Nemet << TheLoop->getHeader()->getName() << '\n'); 17208dcb3b6aSAdam Nemet 1721929c38e8SAdam Nemet // We can only analyze innermost loops. 1722929c38e8SAdam Nemet if (!TheLoop->empty()) { 1723d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1724877ccee8SAdam Nemet recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1725929c38e8SAdam Nemet return false; 1726929c38e8SAdam Nemet } 1727929c38e8SAdam Nemet 1728929c38e8SAdam Nemet // We must have a single backedge. 1729929c38e8SAdam Nemet if (TheLoop->getNumBackEdges() != 1) { 1730d34e60caSNicola Zaghen LLVM_DEBUG( 1731d34e60caSNicola Zaghen dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1732877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1733877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1734929c38e8SAdam Nemet return false; 1735929c38e8SAdam Nemet } 1736929c38e8SAdam Nemet 1737929c38e8SAdam Nemet // We must have a single exiting block. 1738929c38e8SAdam Nemet if (!TheLoop->getExitingBlock()) { 1739d34e60caSNicola Zaghen LLVM_DEBUG( 1740d34e60caSNicola Zaghen dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1741877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1742877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1743929c38e8SAdam Nemet return false; 1744929c38e8SAdam Nemet } 1745929c38e8SAdam Nemet 1746929c38e8SAdam Nemet // We only handle bottom-tested loops, i.e. loop in which the condition is 1747929c38e8SAdam Nemet // checked at the end of each iteration. With that we can assume that all 1748929c38e8SAdam Nemet // instructions in the loop are executed the same number of times. 1749929c38e8SAdam Nemet if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1750d34e60caSNicola Zaghen LLVM_DEBUG( 1751d34e60caSNicola Zaghen dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1752877ccee8SAdam Nemet recordAnalysis("CFGNotUnderstood") 1753877ccee8SAdam Nemet << "loop control flow is not understood by analyzer"; 1754929c38e8SAdam Nemet return false; 1755929c38e8SAdam Nemet } 1756929c38e8SAdam Nemet 1757929c38e8SAdam Nemet // ScalarEvolution needs to be able to find the exit count. 175894734eefSXinliang David Li const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 175994734eefSXinliang David Li if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1760877ccee8SAdam Nemet recordAnalysis("CantComputeNumberOfIterations") 1761877ccee8SAdam Nemet << "could not determine number of loop iterations"; 1762d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1763929c38e8SAdam Nemet return false; 1764929c38e8SAdam Nemet } 1765929c38e8SAdam Nemet 1766929c38e8SAdam Nemet return true; 1767929c38e8SAdam Nemet } 1768929c38e8SAdam Nemet 1769b49d9a56SAdam Nemet void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 17707da74abfSAdam Nemet const TargetLibraryInfo *TLI, 17717da74abfSAdam Nemet DominatorTree *DT) { 17720456327cSAdam Nemet typedef SmallPtrSet<Value*, 16> ValueSet; 17730456327cSAdam Nemet 1774e3e3b994SMatthew Simpson // Holds the Load and Store instructions. 1775e3e3b994SMatthew Simpson SmallVector<LoadInst *, 16> Loads; 1776e3e3b994SMatthew Simpson SmallVector<StoreInst *, 16> Stores; 17770456327cSAdam Nemet 17780456327cSAdam Nemet // Holds all the different accesses in the loop. 17790456327cSAdam Nemet unsigned NumReads = 0; 17800456327cSAdam Nemet unsigned NumReadWrites = 0; 17810456327cSAdam Nemet 1782ce030acbSXinliang David Li PtrRtChecking->Pointers.clear(); 1783ce030acbSXinliang David Li PtrRtChecking->Need = false; 17840456327cSAdam Nemet 17850456327cSAdam Nemet const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 17860456327cSAdam Nemet 17870456327cSAdam Nemet // For each block. 17888b401013SDavid Majnemer for (BasicBlock *BB : TheLoop->blocks()) { 17890456327cSAdam Nemet // Scan the BB and collect legal loads and stores. 17908b401013SDavid Majnemer for (Instruction &I : *BB) { 17910456327cSAdam Nemet // If this is a load, save it. If this instruction can read from memory 17920456327cSAdam Nemet // but is not a load, then we quit. Notice that we don't handle function 17930456327cSAdam Nemet // calls that read or write. 17948b401013SDavid Majnemer if (I.mayReadFromMemory()) { 17950456327cSAdam Nemet // Many math library functions read the rounding mode. We will only 17960456327cSAdam Nemet // vectorize a loop if it contains known function calls that don't set 17970456327cSAdam Nemet // the flag. Therefore, it is safe to ignore this read from memory. 17988b401013SDavid Majnemer auto *Call = dyn_cast<CallInst>(&I); 1799b4b27230SDavid Majnemer if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 18000456327cSAdam Nemet continue; 18010456327cSAdam Nemet 18029b3cf604SMichael Zolotukhin // If the function has an explicit vectorized counterpart, we can safely 18039b3cf604SMichael Zolotukhin // assume that it can be vectorized. 18049b3cf604SMichael Zolotukhin if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 18059b3cf604SMichael Zolotukhin TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 18069b3cf604SMichael Zolotukhin continue; 18079b3cf604SMichael Zolotukhin 18088b401013SDavid Majnemer auto *Ld = dyn_cast<LoadInst>(&I); 18090456327cSAdam Nemet if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1810877ccee8SAdam Nemet recordAnalysis("NonSimpleLoad", Ld) 1811877ccee8SAdam Nemet << "read with atomic ordering or volatile read"; 1812d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1813436018c3SAdam Nemet CanVecMem = false; 1814436018c3SAdam Nemet return; 18150456327cSAdam Nemet } 18160456327cSAdam Nemet NumLoads++; 18170456327cSAdam Nemet Loads.push_back(Ld); 1818ce030acbSXinliang David Li DepChecker->addAccess(Ld); 1819a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1820c953bb99SAdam Nemet collectStridedAccess(Ld); 18210456327cSAdam Nemet continue; 18220456327cSAdam Nemet } 18230456327cSAdam Nemet 18240456327cSAdam Nemet // Save 'store' instructions. Abort if other instructions write to memory. 18258b401013SDavid Majnemer if (I.mayWriteToMemory()) { 18268b401013SDavid Majnemer auto *St = dyn_cast<StoreInst>(&I); 18270456327cSAdam Nemet if (!St) { 1828877ccee8SAdam Nemet recordAnalysis("CantVectorizeInstruction", St) 1829877ccee8SAdam Nemet << "instruction cannot be vectorized"; 1830436018c3SAdam Nemet CanVecMem = false; 1831436018c3SAdam Nemet return; 18320456327cSAdam Nemet } 18330456327cSAdam Nemet if (!St->isSimple() && !IsAnnotatedParallel) { 1834877ccee8SAdam Nemet recordAnalysis("NonSimpleStore", St) 1835877ccee8SAdam Nemet << "write with atomic ordering or volatile write"; 1836d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1837436018c3SAdam Nemet CanVecMem = false; 1838436018c3SAdam Nemet return; 18390456327cSAdam Nemet } 18400456327cSAdam Nemet NumStores++; 18410456327cSAdam Nemet Stores.push_back(St); 1842ce030acbSXinliang David Li DepChecker->addAccess(St); 1843a9f09c62SAdam Nemet if (EnableMemAccessVersioning) 1844c953bb99SAdam Nemet collectStridedAccess(St); 18450456327cSAdam Nemet } 18460456327cSAdam Nemet } // Next instr. 18470456327cSAdam Nemet } // Next block. 18480456327cSAdam Nemet 18490456327cSAdam Nemet // Now we have two lists that hold the loads and the stores. 18500456327cSAdam Nemet // Next, we find the pointers that they use. 18510456327cSAdam Nemet 18520456327cSAdam Nemet // Check if we see any stores. If there are no stores, then we don't 18530456327cSAdam Nemet // care if the pointers are *restrict*. 18540456327cSAdam Nemet if (!Stores.size()) { 1855d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1856436018c3SAdam Nemet CanVecMem = true; 1857436018c3SAdam Nemet return; 18580456327cSAdam Nemet } 18590456327cSAdam Nemet 1860dee666bcSAdam Nemet MemoryDepChecker::DepCandidates DependentAccesses; 1861a28d91d8SMehdi Amini AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 186277eeac3dSManoj Gupta TheLoop, AA, LI, DependentAccesses, *PSE); 18630456327cSAdam Nemet 18640456327cSAdam Nemet // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 18650456327cSAdam Nemet // multiple times on the same object. If the ptr is accessed twice, once 18660456327cSAdam Nemet // for read and once for write, it will only appear once (on the write 18670456327cSAdam Nemet // list). This is okay, since we are going to check for conflicts between 18680456327cSAdam Nemet // writes and between reads and writes, but not between reads and reads. 18690456327cSAdam Nemet ValueSet Seen; 18700456327cSAdam Nemet 1871b1e3d453SAnna Thomas // Record uniform store addresses to identify if we have multiple stores 1872b1e3d453SAnna Thomas // to the same address. 1873b1e3d453SAnna Thomas ValueSet UniformStores; 1874b1e3d453SAnna Thomas 1875e3e3b994SMatthew Simpson for (StoreInst *ST : Stores) { 18760456327cSAdam Nemet Value *Ptr = ST->getPointerOperand(); 1877b1e3d453SAnna Thomas 18786f732bfbSAnna Thomas if (isUniform(Ptr)) 18795e9215f0SAnna Thomas HasDependenceInvolvingLoopInvariantAddress |= 18806f732bfbSAnna Thomas !UniformStores.insert(Ptr).second; 1881b1e3d453SAnna Thomas 18820456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the read-write 18830456327cSAdam Nemet // list. At this phase it is only a 'write' list. 18840456327cSAdam Nemet if (Seen.insert(Ptr).second) { 18850456327cSAdam Nemet ++NumReadWrites; 18860456327cSAdam Nemet 1887ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(ST); 18880456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 18890456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 18900456327cSAdam Nemet // need runtime pointer checks. 189101abb2c3SAdam Nemet if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 18920456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 18930456327cSAdam Nemet 18940456327cSAdam Nemet Accesses.addStore(Loc); 18950456327cSAdam Nemet } 18960456327cSAdam Nemet } 18970456327cSAdam Nemet 18980456327cSAdam Nemet if (IsAnnotatedParallel) { 1899d34e60caSNicola Zaghen LLVM_DEBUG( 1900d34e60caSNicola Zaghen dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 19010456327cSAdam Nemet << "checks.\n"); 1902436018c3SAdam Nemet CanVecMem = true; 1903436018c3SAdam Nemet return; 19040456327cSAdam Nemet } 19050456327cSAdam Nemet 1906e3e3b994SMatthew Simpson for (LoadInst *LD : Loads) { 19070456327cSAdam Nemet Value *Ptr = LD->getPointerOperand(); 19080456327cSAdam Nemet // If we did *not* see this pointer before, insert it to the 19090456327cSAdam Nemet // read list. If we *did* see it before, then it is already in 19100456327cSAdam Nemet // the read-write list. This allows us to vectorize expressions 19110456327cSAdam Nemet // such as A[i] += x; Because the address of A[i] is a read-write 19120456327cSAdam Nemet // pointer. This only works if the index of A[i] is consecutive. 19130456327cSAdam Nemet // If the address of i is unknown (for example A[B[i]]) then we may 19140456327cSAdam Nemet // read a few words, modify, and write a few words, and some of the 19150456327cSAdam Nemet // words may be written to the same address. 19160456327cSAdam Nemet bool IsReadOnlyPtr = false; 1917139ffba3SAdam Nemet if (Seen.insert(Ptr).second || 191894734eefSXinliang David Li !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 19190456327cSAdam Nemet ++NumReads; 19200456327cSAdam Nemet IsReadOnlyPtr = true; 19210456327cSAdam Nemet } 19220456327cSAdam Nemet 19235e9215f0SAnna Thomas // See if there is an unsafe dependency between a load to a uniform address and 19245e9215f0SAnna Thomas // store to the same uniform address. 19255e9215f0SAnna Thomas if (UniformStores.count(Ptr)) { 19265e9215f0SAnna Thomas LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 19275e9215f0SAnna Thomas "load and uniform store to the same address!\n"); 19285e9215f0SAnna Thomas HasDependenceInvolvingLoopInvariantAddress = true; 19295e9215f0SAnna Thomas } 19305e9215f0SAnna Thomas 1931ac80dc75SChandler Carruth MemoryLocation Loc = MemoryLocation::get(LD); 19320456327cSAdam Nemet // The TBAA metadata could have a control dependency on the predication 19330456327cSAdam Nemet // condition, so we cannot rely on it when determining whether or not we 19340456327cSAdam Nemet // need runtime pointer checks. 193501abb2c3SAdam Nemet if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 19360456327cSAdam Nemet Loc.AATags.TBAA = nullptr; 19370456327cSAdam Nemet 19380456327cSAdam Nemet Accesses.addLoad(Loc, IsReadOnlyPtr); 19390456327cSAdam Nemet } 19400456327cSAdam Nemet 19410456327cSAdam Nemet // If we write (or read-write) to a single destination and there are no 19420456327cSAdam Nemet // other reads in this loop then is it safe to vectorize. 19430456327cSAdam Nemet if (NumReadWrites == 1 && NumReads == 0) { 1944d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1945436018c3SAdam Nemet CanVecMem = true; 1946436018c3SAdam Nemet return; 19470456327cSAdam Nemet } 19480456327cSAdam Nemet 19490456327cSAdam Nemet // Build dependence sets and check whether we need a runtime pointer bounds 19500456327cSAdam Nemet // check. 19510456327cSAdam Nemet Accesses.buildDependenceSets(); 19520456327cSAdam Nemet 19530456327cSAdam Nemet // Find pointers with computable bounds. We are going to use this information 19540456327cSAdam Nemet // to place a runtime bound check. 195594734eefSXinliang David Li bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1956139ffba3SAdam Nemet TheLoop, SymbolicStrides); 1957ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1958877ccee8SAdam Nemet recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1959d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1960ee61474aSAdam Nemet << "the array bounds.\n"); 1961436018c3SAdam Nemet CanVecMem = false; 1962436018c3SAdam Nemet return; 19630456327cSAdam Nemet } 19640456327cSAdam Nemet 1965d34e60caSNicola Zaghen LLVM_DEBUG( 1966d34e60caSNicola Zaghen dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 19670456327cSAdam Nemet 1968436018c3SAdam Nemet CanVecMem = true; 19690456327cSAdam Nemet if (Accesses.isDependencyCheckNeeded()) { 1970d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1971ce030acbSXinliang David Li CanVecMem = DepChecker->areDepsSafe( 1972139ffba3SAdam Nemet DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1973ce030acbSXinliang David Li MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 19740456327cSAdam Nemet 1975ce030acbSXinliang David Li if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1976d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 19770456327cSAdam Nemet 19780456327cSAdam Nemet // Clear the dependency checks. We assume they are not needed. 1979ce030acbSXinliang David Li Accesses.resetDepChecks(*DepChecker); 19800456327cSAdam Nemet 1981ce030acbSXinliang David Li PtrRtChecking->reset(); 1982ce030acbSXinliang David Li PtrRtChecking->Need = true; 19830456327cSAdam Nemet 198494734eefSXinliang David Li auto *SE = PSE->getSE(); 1985ce030acbSXinliang David Li CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1986139ffba3SAdam Nemet SymbolicStrides, true); 198798a13719SSilviu Baranga 1988949e91a6SAdam Nemet // Check that we found the bounds for the pointer. 1989ee61474aSAdam Nemet if (!CanDoRTIfNeeded) { 1990877ccee8SAdam Nemet recordAnalysis("CantCheckMemDepsAtRunTime") 1991877ccee8SAdam Nemet << "cannot check memory dependencies at runtime"; 1992d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1993b6dc76ffSAdam Nemet CanVecMem = false; 1994b6dc76ffSAdam Nemet return; 1995b6dc76ffSAdam Nemet } 1996b6dc76ffSAdam Nemet 19970456327cSAdam Nemet CanVecMem = true; 19980456327cSAdam Nemet } 19990456327cSAdam Nemet } 20000456327cSAdam Nemet 20014bb90a71SAdam Nemet if (CanVecMem) 2002d34e60caSNicola Zaghen LLVM_DEBUG( 2003d34e60caSNicola Zaghen dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2004ce030acbSXinliang David Li << (PtrRtChecking->Need ? "" : " don't") 20050f67c6c1SAdam Nemet << " need runtime memory checks.\n"); 20064bb90a71SAdam Nemet else { 2007877ccee8SAdam Nemet recordAnalysis("UnsafeMemDep") 20080a77dfadSAdam Nemet << "unsafe dependent memory operations in loop. Use " 20090a77dfadSAdam Nemet "#pragma loop distribute(enable) to allow loop distribution " 20100a77dfadSAdam Nemet "to attempt to isolate the offending operations into a separate " 2011877ccee8SAdam Nemet "loop"; 2012d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 20134bb90a71SAdam Nemet } 20140456327cSAdam Nemet } 20150456327cSAdam Nemet 201601abb2c3SAdam Nemet bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 201701abb2c3SAdam Nemet DominatorTree *DT) { 20180456327cSAdam Nemet assert(TheLoop->contains(BB) && "Unknown block used"); 20190456327cSAdam Nemet 20200456327cSAdam Nemet // Blocks that do not dominate the latch need predication. 20210456327cSAdam Nemet BasicBlock* Latch = TheLoop->getLoopLatch(); 20220456327cSAdam Nemet return !DT->dominates(BB, Latch); 20230456327cSAdam Nemet } 20240456327cSAdam Nemet 2025877ccee8SAdam Nemet OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2026877ccee8SAdam Nemet Instruction *I) { 2027c922853bSAdam Nemet assert(!Report && "Multiple reports generated"); 2028877ccee8SAdam Nemet 2029877ccee8SAdam Nemet Value *CodeRegion = TheLoop->getHeader(); 2030877ccee8SAdam Nemet DebugLoc DL = TheLoop->getStartLoc(); 2031877ccee8SAdam Nemet 2032877ccee8SAdam Nemet if (I) { 2033877ccee8SAdam Nemet CodeRegion = I->getParent(); 2034877ccee8SAdam Nemet // If there is no debug location attached to the instruction, revert back to 2035877ccee8SAdam Nemet // using the loop's. 2036877ccee8SAdam Nemet if (I->getDebugLoc()) 2037877ccee8SAdam Nemet DL = I->getDebugLoc(); 2038877ccee8SAdam Nemet } 2039877ccee8SAdam Nemet 2040877ccee8SAdam Nemet Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2041877ccee8SAdam Nemet CodeRegion); 2042877ccee8SAdam Nemet return *Report; 20430456327cSAdam Nemet } 20440456327cSAdam Nemet 204557ac766eSAdam Nemet bool LoopAccessInfo::isUniform(Value *V) const { 20463ceac2bbSMichael Kuperstein auto *SE = PSE->getSE(); 20473ceac2bbSMichael Kuperstein // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 20483ceac2bbSMichael Kuperstein // never considered uniform. 20493ceac2bbSMichael Kuperstein // TODO: Is this really what we want? Even without FP SCEV, we may want some 20503ceac2bbSMichael Kuperstein // trivially loop-invariant FP values to be considered uniform. 20513ceac2bbSMichael Kuperstein if (!SE->isSCEVable(V->getType())) 20523ceac2bbSMichael Kuperstein return false; 20533ceac2bbSMichael Kuperstein return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 20540456327cSAdam Nemet } 20557206d7a5SAdam Nemet 20567206d7a5SAdam Nemet // FIXME: this function is currently a duplicate of the one in 20577206d7a5SAdam Nemet // LoopVectorize.cpp. 20587206d7a5SAdam Nemet static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 20597206d7a5SAdam Nemet Instruction *Loc) { 20607206d7a5SAdam Nemet if (FirstInst) 20617206d7a5SAdam Nemet return FirstInst; 20627206d7a5SAdam Nemet if (Instruction *I = dyn_cast<Instruction>(V)) 20637206d7a5SAdam Nemet return I->getParent() == Loc->getParent() ? I : nullptr; 20647206d7a5SAdam Nemet return nullptr; 20657206d7a5SAdam Nemet } 20667206d7a5SAdam Nemet 2067039b1042SBenjamin Kramer namespace { 2068a3fe70d2SEugene Zelenko 20695f8f34e4SAdrian Prantl /// IR Values for the lower and upper bounds of a pointer evolution. We 20704e533ef7SAdam Nemet /// need to use value-handles because SCEV expansion can invalidate previously 20714e533ef7SAdam Nemet /// expanded values. Thus expansion of a pointer can invalidate the bounds for 20724e533ef7SAdam Nemet /// a previous one. 20731da7df37SAdam Nemet struct PointerBounds { 20744e533ef7SAdam Nemet TrackingVH<Value> Start; 20754e533ef7SAdam Nemet TrackingVH<Value> End; 20761da7df37SAdam Nemet }; 2077a3fe70d2SEugene Zelenko 2078039b1042SBenjamin Kramer } // end anonymous namespace 20797206d7a5SAdam Nemet 20805f8f34e4SAdrian Prantl /// Expand code for the lower and upper bound of the pointer group \p CG 20811da7df37SAdam Nemet /// in \p TheLoop. \return the values for the bounds. 20821da7df37SAdam Nemet static PointerBounds 20831da7df37SAdam Nemet expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 20841da7df37SAdam Nemet Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 20851da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 20861da7df37SAdam Nemet Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 20877206d7a5SAdam Nemet const SCEV *Sc = SE->getSCEV(Ptr); 20887206d7a5SAdam Nemet 20897206d7a5SAdam Nemet unsigned AS = Ptr->getType()->getPointerAddressSpace(); 20901da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 20917206d7a5SAdam Nemet 20927206d7a5SAdam Nemet // Use this type for pointer arithmetic. 20937206d7a5SAdam Nemet Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 20947206d7a5SAdam Nemet 209592f377bdSKeno Fischer if (SE->isLoopInvariant(Sc, TheLoop)) { 2096d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 2097d34e60caSNicola Zaghen << *Ptr << "\n"); 209892f377bdSKeno Fischer // Ptr could be in the loop body. If so, expand a new one at the correct 209992f377bdSKeno Fischer // location. 210092f377bdSKeno Fischer Instruction *Inst = dyn_cast<Instruction>(Ptr); 210192f377bdSKeno Fischer Value *NewPtr = (Inst && TheLoop->contains(Inst)) 210292f377bdSKeno Fischer ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 210392f377bdSKeno Fischer : Ptr; 210437dd4d7aSJames Molloy // We must return a half-open range, which means incrementing Sc. 210537dd4d7aSJames Molloy const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 210637dd4d7aSJames Molloy Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 210737dd4d7aSJames Molloy return {NewPtr, NewPtrPlusOne}; 210892f377bdSKeno Fischer } else { 210992f377bdSKeno Fischer Value *Start = nullptr, *End = nullptr; 2110d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 21111da7df37SAdam Nemet Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 21121da7df37SAdam Nemet End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2113d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 2114d34e60caSNicola Zaghen << "\n"); 21151da7df37SAdam Nemet return {Start, End}; 21167206d7a5SAdam Nemet } 21177206d7a5SAdam Nemet } 21187206d7a5SAdam Nemet 21195f8f34e4SAdrian Prantl /// Turns a collection of checks into a collection of expanded upper and 21201da7df37SAdam Nemet /// lower bounds for both pointers in the check. 21211da7df37SAdam Nemet static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 21221da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 21231da7df37SAdam Nemet Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 21241da7df37SAdam Nemet const RuntimePointerChecking &PtrRtChecking) { 21251da7df37SAdam Nemet SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 21261da7df37SAdam Nemet 21271da7df37SAdam Nemet // Here we're relying on the SCEV Expander's cache to only emit code for the 21281da7df37SAdam Nemet // same bounds once. 21292d006e76SDavid Majnemer transform( 21302d006e76SDavid Majnemer PointerChecks, std::back_inserter(ChecksWithBounds), 21311da7df37SAdam Nemet [&](const RuntimePointerChecking::PointerCheck &Check) { 213294abbbd6SNAKAMURA Takumi PointerBounds 213394abbbd6SNAKAMURA Takumi First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 213494abbbd6SNAKAMURA Takumi Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 213594abbbd6SNAKAMURA Takumi return std::make_pair(First, Second); 21361da7df37SAdam Nemet }); 21371da7df37SAdam Nemet 21381da7df37SAdam Nemet return ChecksWithBounds; 21391da7df37SAdam Nemet } 21401da7df37SAdam Nemet 21415b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 21421da7df37SAdam Nemet Instruction *Loc, 21431da7df37SAdam Nemet const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 21441da7df37SAdam Nemet const { 21451824e411SAdam Nemet const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 214694734eefSXinliang David Li auto *SE = PSE->getSE(); 21471824e411SAdam Nemet SCEVExpander Exp(*SE, DL, "induction"); 21481da7df37SAdam Nemet auto ExpandedChecks = 2149ce030acbSXinliang David Li expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 21501da7df37SAdam Nemet 21511da7df37SAdam Nemet LLVMContext &Ctx = Loc->getContext(); 21521da7df37SAdam Nemet Instruction *FirstInst = nullptr; 21537206d7a5SAdam Nemet IRBuilder<> ChkBuilder(Loc); 21547206d7a5SAdam Nemet // Our instructions might fold to a constant. 21557206d7a5SAdam Nemet Value *MemoryRuntimeCheck = nullptr; 21561b6b50a9SSilviu Baranga 21571da7df37SAdam Nemet for (const auto &Check : ExpandedChecks) { 21581da7df37SAdam Nemet const PointerBounds &A = Check.first, &B = Check.second; 2159cdb791cdSAdam Nemet // Check if two pointers (A and B) conflict where conflict is computed as: 2160cdb791cdSAdam Nemet // start(A) <= end(B) && start(B) <= end(A) 21611da7df37SAdam Nemet unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 21621da7df37SAdam Nemet unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 21637206d7a5SAdam Nemet 21641da7df37SAdam Nemet assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 21651da7df37SAdam Nemet (AS1 == A.End->getType()->getPointerAddressSpace()) && 21667206d7a5SAdam Nemet "Trying to bounds check pointers with different address spaces"); 21677206d7a5SAdam Nemet 21687206d7a5SAdam Nemet Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 21697206d7a5SAdam Nemet Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 21707206d7a5SAdam Nemet 21711da7df37SAdam Nemet Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 21721da7df37SAdam Nemet Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 21731da7df37SAdam Nemet Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 21741da7df37SAdam Nemet Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 21757206d7a5SAdam Nemet 21763622fbfcSElena Demikhovsky // [A|B].Start points to the first accessed byte under base [A|B]. 21773622fbfcSElena Demikhovsky // [A|B].End points to the last accessed byte, plus one. 21783622fbfcSElena Demikhovsky // There is no conflict when the intervals are disjoint: 21793622fbfcSElena Demikhovsky // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 21803622fbfcSElena Demikhovsky // 21813622fbfcSElena Demikhovsky // bound0 = (B.Start < A.End) 21823622fbfcSElena Demikhovsky // bound1 = (A.Start < B.End) 21833622fbfcSElena Demikhovsky // IsConflict = bound0 & bound1 21843622fbfcSElena Demikhovsky Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 21857206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 21863622fbfcSElena Demikhovsky Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 21877206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 21887206d7a5SAdam Nemet Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 21897206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 21907206d7a5SAdam Nemet if (MemoryRuntimeCheck) { 21911da7df37SAdam Nemet IsConflict = 21921da7df37SAdam Nemet ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 21937206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 21947206d7a5SAdam Nemet } 21957206d7a5SAdam Nemet MemoryRuntimeCheck = IsConflict; 21967206d7a5SAdam Nemet } 21977206d7a5SAdam Nemet 219890fec840SAdam Nemet if (!MemoryRuntimeCheck) 219990fec840SAdam Nemet return std::make_pair(nullptr, nullptr); 220090fec840SAdam Nemet 22017206d7a5SAdam Nemet // We have to do this trickery because the IRBuilder might fold the check to a 22027206d7a5SAdam Nemet // constant expression in which case there is no Instruction anchored in a 22037206d7a5SAdam Nemet // the block. 22047206d7a5SAdam Nemet Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 22057206d7a5SAdam Nemet ConstantInt::getTrue(Ctx)); 22067206d7a5SAdam Nemet ChkBuilder.Insert(Check, "memcheck.conflict"); 22077206d7a5SAdam Nemet FirstInst = getFirstInst(FirstInst, Check, Loc); 22087206d7a5SAdam Nemet return std::make_pair(FirstInst, Check); 22097206d7a5SAdam Nemet } 22103bfd93d7SAdam Nemet 22115b0a4795SAdam Nemet std::pair<Instruction *, Instruction *> 22125b0a4795SAdam Nemet LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2213ce030acbSXinliang David Li if (!PtrRtChecking->Need) 22141da7df37SAdam Nemet return std::make_pair(nullptr, nullptr); 22151da7df37SAdam Nemet 2216ce030acbSXinliang David Li return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 22171da7df37SAdam Nemet } 22181da7df37SAdam Nemet 2219c953bb99SAdam Nemet void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2220c953bb99SAdam Nemet Value *Ptr = nullptr; 2221c953bb99SAdam Nemet if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2222c953bb99SAdam Nemet Ptr = LI->getPointerOperand(); 2223c953bb99SAdam Nemet else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2224c953bb99SAdam Nemet Ptr = SI->getPointerOperand(); 2225c953bb99SAdam Nemet else 2226c953bb99SAdam Nemet return; 2227c953bb99SAdam Nemet 222894734eefSXinliang David Li Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2229c953bb99SAdam Nemet if (!Stride) 2230c953bb99SAdam Nemet return; 2231c953bb99SAdam Nemet 2232d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2233eb13dd3eSDorit Nuzman "versioning:"); 2234d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2235eb13dd3eSDorit Nuzman 2236eb13dd3eSDorit Nuzman // Avoid adding the "Stride == 1" predicate when we know that 2237eb13dd3eSDorit Nuzman // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2238eb13dd3eSDorit Nuzman // or zero iteration loop, as Trip-Count <= Stride == 1. 2239eb13dd3eSDorit Nuzman // 2240eb13dd3eSDorit Nuzman // TODO: We are currently not making a very informed decision on when it is 2241eb13dd3eSDorit Nuzman // beneficial to apply stride versioning. It might make more sense that the 2242eb13dd3eSDorit Nuzman // users of this analysis (such as the vectorizer) will trigger it, based on 2243eb13dd3eSDorit Nuzman // their specific cost considerations; For example, in cases where stride 2244eb13dd3eSDorit Nuzman // versioning does not help resolving memory accesses/dependences, the 2245eb13dd3eSDorit Nuzman // vectorizer should evaluate the cost of the runtime test, and the benefit 2246eb13dd3eSDorit Nuzman // of various possible stride specializations, considering the alternatives 2247eb13dd3eSDorit Nuzman // of using gather/scatters (if available). 2248eb13dd3eSDorit Nuzman 2249eb13dd3eSDorit Nuzman const SCEV *StrideExpr = PSE->getSCEV(Stride); 2250eb13dd3eSDorit Nuzman const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2251eb13dd3eSDorit Nuzman 2252eb13dd3eSDorit Nuzman // Match the types so we can compare the stride and the BETakenCount. 2253eb13dd3eSDorit Nuzman // The Stride can be positive/negative, so we sign extend Stride; 2254*02a2bb2fSHiroshi Inoue // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2255eb13dd3eSDorit Nuzman const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2256eb13dd3eSDorit Nuzman uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2257eb13dd3eSDorit Nuzman uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2258eb13dd3eSDorit Nuzman const SCEV *CastedStride = StrideExpr; 2259eb13dd3eSDorit Nuzman const SCEV *CastedBECount = BETakenCount; 2260eb13dd3eSDorit Nuzman ScalarEvolution *SE = PSE->getSE(); 2261eb13dd3eSDorit Nuzman if (BETypeSize >= StrideTypeSize) 2262eb13dd3eSDorit Nuzman CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2263eb13dd3eSDorit Nuzman else 2264eb13dd3eSDorit Nuzman CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2265eb13dd3eSDorit Nuzman const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2266eb13dd3eSDorit Nuzman // Since TripCount == BackEdgeTakenCount + 1, checking: 2267eb13dd3eSDorit Nuzman // "Stride >= TripCount" is equivalent to checking: 2268eb13dd3eSDorit Nuzman // Stride - BETakenCount > 0 2269eb13dd3eSDorit Nuzman if (SE->isKnownPositive(StrideMinusBETaken)) { 2270d34e60caSNicola Zaghen LLVM_DEBUG( 2271d34e60caSNicola Zaghen dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2272eb13dd3eSDorit Nuzman "Stride==1 predicate will imply that the loop executes " 2273eb13dd3eSDorit Nuzman "at most once.\n"); 2274eb13dd3eSDorit Nuzman return; 2275eb13dd3eSDorit Nuzman } 2276d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2277eb13dd3eSDorit Nuzman 2278c953bb99SAdam Nemet SymbolicStrides[Ptr] = Stride; 2279c953bb99SAdam Nemet StrideSet.insert(Stride); 2280c953bb99SAdam Nemet } 2281c953bb99SAdam Nemet 22823bfd93d7SAdam Nemet LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 22833bfd93d7SAdam Nemet const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2284a9f09c62SAdam Nemet DominatorTree *DT, LoopInfo *LI) 228594734eefSXinliang David Li : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2286ce030acbSXinliang David Li PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 228794734eefSXinliang David Li DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 22887da74abfSAdam Nemet NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 22895e9215f0SAnna Thomas HasDependenceInvolvingLoopInvariantAddress(false) { 2290929c38e8SAdam Nemet if (canAnalyzeLoop()) 22917da74abfSAdam Nemet analyzeLoop(AA, LI, TLI, DT); 22923bfd93d7SAdam Nemet } 22933bfd93d7SAdam Nemet 2294e91cc6efSAdam Nemet void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2295e91cc6efSAdam Nemet if (CanVecMem) { 22964ad38b63SAdam Nemet OS.indent(Depth) << "Memory dependences are safe"; 22977afb46d3SDavid Majnemer if (MaxSafeDepDistBytes != -1ULL) 2298c62e554eSAdam Nemet OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2299c62e554eSAdam Nemet << " bytes"; 2300ce030acbSXinliang David Li if (PtrRtChecking->Need) 23014ad38b63SAdam Nemet OS << " with run-time checks"; 23024ad38b63SAdam Nemet OS << "\n"; 2303e91cc6efSAdam Nemet } 2304e91cc6efSAdam Nemet 2305e91cc6efSAdam Nemet if (Report) 2306877ccee8SAdam Nemet OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2307e91cc6efSAdam Nemet 2308ce030acbSXinliang David Li if (auto *Dependences = DepChecker->getDependences()) { 2309a2df750fSAdam Nemet OS.indent(Depth) << "Dependences:\n"; 2310a2df750fSAdam Nemet for (auto &Dep : *Dependences) { 2311ce030acbSXinliang David Li Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 231258913d65SAdam Nemet OS << "\n"; 231358913d65SAdam Nemet } 231458913d65SAdam Nemet } else 2315a2df750fSAdam Nemet OS.indent(Depth) << "Too many dependences, not recorded\n"; 2316e91cc6efSAdam Nemet 2317e91cc6efSAdam Nemet // List the pair of accesses need run-time checks to prove independence. 2318ce030acbSXinliang David Li PtrRtChecking->print(OS, Depth); 2319e91cc6efSAdam Nemet OS << "\n"; 2320c3384320SAdam Nemet 23215e9215f0SAnna Thomas OS.indent(Depth) << "Non vectorizable stores to invariant address were " 23225e9215f0SAnna Thomas << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2323c3384320SAdam Nemet << "found in loop.\n"; 2324e3c0534bSSilviu Baranga 2325e3c0534bSSilviu Baranga OS.indent(Depth) << "SCEV assumptions:\n"; 232694734eefSXinliang David Li PSE->getUnionPredicate().print(OS, Depth); 2327b77365b5SSilviu Baranga 2328b77365b5SSilviu Baranga OS << "\n"; 2329b77365b5SSilviu Baranga 2330b77365b5SSilviu Baranga OS.indent(Depth) << "Expressions re-written:\n"; 233194734eefSXinliang David Li PSE->print(OS, Depth); 2332e91cc6efSAdam Nemet } 2333e91cc6efSAdam Nemet 23347853c1ddSXinliang David Li const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 23353bfd93d7SAdam Nemet auto &LAI = LoopAccessInfoMap[L]; 23363bfd93d7SAdam Nemet 23371824e411SAdam Nemet if (!LAI) 23381824e411SAdam Nemet LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 23391824e411SAdam Nemet 23403bfd93d7SAdam Nemet return *LAI.get(); 23413bfd93d7SAdam Nemet } 23423bfd93d7SAdam Nemet 23437853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 23447853c1ddSXinliang David Li LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2345ecde1c7fSXinliang David Li 2346e91cc6efSAdam Nemet for (Loop *TopLevelLoop : *LI) 2347e91cc6efSAdam Nemet for (Loop *L : depth_first(TopLevelLoop)) { 2348e91cc6efSAdam Nemet OS.indent(2) << L->getHeader()->getName() << ":\n"; 2349bdbc5227SAdam Nemet auto &LAI = LAA.getInfo(L); 2350e91cc6efSAdam Nemet LAI.print(OS, 4); 2351e91cc6efSAdam Nemet } 2352e91cc6efSAdam Nemet } 2353e91cc6efSAdam Nemet 23547853c1ddSXinliang David Li bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2355ecde1c7fSXinliang David Li SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 23563bfd93d7SAdam Nemet auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2357ecde1c7fSXinliang David Li TLI = TLIP ? &TLIP->getTLI() : nullptr; 2358ecde1c7fSXinliang David Li AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2359ecde1c7fSXinliang David Li DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2360ecde1c7fSXinliang David Li LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 23613bfd93d7SAdam Nemet 23623bfd93d7SAdam Nemet return false; 23633bfd93d7SAdam Nemet } 23643bfd93d7SAdam Nemet 23657853c1ddSXinliang David Li void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 23662f1fd165SChandler Carruth AU.addRequired<ScalarEvolutionWrapperPass>(); 23677b560d40SChandler Carruth AU.addRequired<AAResultsWrapperPass>(); 23683bfd93d7SAdam Nemet AU.addRequired<DominatorTreeWrapperPass>(); 2369e91cc6efSAdam Nemet AU.addRequired<LoopInfoWrapperPass>(); 23703bfd93d7SAdam Nemet 23713bfd93d7SAdam Nemet AU.setPreservesAll(); 23723bfd93d7SAdam Nemet } 23733bfd93d7SAdam Nemet 23747853c1ddSXinliang David Li char LoopAccessLegacyAnalysis::ID = 0; 23753bfd93d7SAdam Nemet static const char laa_name[] = "Loop Access Analysis"; 23763bfd93d7SAdam Nemet #define LAA_NAME "loop-accesses" 23773bfd93d7SAdam Nemet 23787853c1ddSXinliang David Li INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 23797b560d40SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 23802f1fd165SChandler Carruth INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 23813bfd93d7SAdam Nemet INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2382e91cc6efSAdam Nemet INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 23837853c1ddSXinliang David Li INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 23843bfd93d7SAdam Nemet 2385dab4eae2SChandler Carruth AnalysisKey LoopAccessAnalysis::Key; 23868a021317SXinliang David Li 2387410eaeb0SChandler Carruth LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2388410eaeb0SChandler Carruth LoopStandardAnalysisResults &AR) { 2389410eaeb0SChandler Carruth return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 23908a021317SXinliang David Li } 23918a021317SXinliang David Li 23923bfd93d7SAdam Nemet namespace llvm { 2393a3fe70d2SEugene Zelenko 23943bfd93d7SAdam Nemet Pass *createLAAPass() { 23957853c1ddSXinliang David Li return new LoopAccessLegacyAnalysis(); 23963bfd93d7SAdam Nemet } 2397a3fe70d2SEugene Zelenko 2398a3fe70d2SEugene Zelenko } // end namespace llvm 2399