1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass statically checks for common and easily-identified constructs 10 // which produce undefined or likely unintended behavior in LLVM IR. 11 // 12 // It is not a guarantee of correctness, in two ways. First, it isn't 13 // comprehensive. There are checks which could be done statically which are 14 // not yet implemented. Some of these are indicated by TODO comments, but 15 // those aren't comprehensive either. Second, many conditions cannot be 16 // checked statically. This pass does no dynamic instrumentation, so it 17 // can't check for all possible problems. 18 // 19 // Another limitation is that it assumes all code will be executed. A store 20 // through a null pointer in a basic block which is never reached is harmless, 21 // but this pass will warn about it anyway. This is the main reason why most 22 // of these checks live here instead of in the Verifier pass. 23 // 24 // Optimization passes may make conditions that this pass checks for more or 25 // less obvious. If an optimization pass appears to be introducing a warning, 26 // it may be that the optimization pass is merely exposing an existing 27 // condition in the code. 28 // 29 // This code may be run before instcombine. In many cases, instcombine checks 30 // for the same kinds of things and turns instructions with undefined behavior 31 // into unreachable (or equivalent). Because of this, this pass makes some 32 // effort to look through bitcasts and so on. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Analysis/Lint.h" 37 #include "llvm/ADT/APInt.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/ConstantFolding.h" 44 #include "llvm/Analysis/InstructionSimplify.h" 45 #include "llvm/Analysis/Loads.h" 46 #include "llvm/Analysis/MemoryLocation.h" 47 #include "llvm/Analysis/Passes.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/IR/Argument.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/CallSite.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/InstVisitor.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/LegacyPassManager.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/InitializePasses.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/KnownBits.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <cassert> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 81 using namespace llvm; 82 83 namespace { 84 namespace MemRef { 85 static const unsigned Read = 1; 86 static const unsigned Write = 2; 87 static const unsigned Callee = 4; 88 static const unsigned Branchee = 8; 89 } // end namespace MemRef 90 91 class Lint : public FunctionPass, public InstVisitor<Lint> { 92 friend class InstVisitor<Lint>; 93 94 void visitFunction(Function &F); 95 96 void visitCallSite(CallSite CS); 97 void visitMemoryReference(Instruction &I, Value *Ptr, 98 uint64_t Size, unsigned Align, 99 Type *Ty, unsigned Flags); 100 void visitEHBeginCatch(IntrinsicInst *II); 101 void visitEHEndCatch(IntrinsicInst *II); 102 103 void visitCallInst(CallInst &I); 104 void visitInvokeInst(InvokeInst &I); 105 void visitReturnInst(ReturnInst &I); 106 void visitLoadInst(LoadInst &I); 107 void visitStoreInst(StoreInst &I); 108 void visitXor(BinaryOperator &I); 109 void visitSub(BinaryOperator &I); 110 void visitLShr(BinaryOperator &I); 111 void visitAShr(BinaryOperator &I); 112 void visitShl(BinaryOperator &I); 113 void visitSDiv(BinaryOperator &I); 114 void visitUDiv(BinaryOperator &I); 115 void visitSRem(BinaryOperator &I); 116 void visitURem(BinaryOperator &I); 117 void visitAllocaInst(AllocaInst &I); 118 void visitVAArgInst(VAArgInst &I); 119 void visitIndirectBrInst(IndirectBrInst &I); 120 void visitExtractElementInst(ExtractElementInst &I); 121 void visitInsertElementInst(InsertElementInst &I); 122 void visitUnreachableInst(UnreachableInst &I); 123 124 Value *findValue(Value *V, bool OffsetOk) const; 125 Value *findValueImpl(Value *V, bool OffsetOk, 126 SmallPtrSetImpl<Value *> &Visited) const; 127 128 public: 129 Module *Mod; 130 const DataLayout *DL; 131 AliasAnalysis *AA; 132 AssumptionCache *AC; 133 DominatorTree *DT; 134 TargetLibraryInfo *TLI; 135 136 std::string Messages; 137 raw_string_ostream MessagesStr; 138 139 static char ID; // Pass identification, replacement for typeid 140 Lint() : FunctionPass(ID), MessagesStr(Messages) { 141 initializeLintPass(*PassRegistry::getPassRegistry()); 142 } 143 144 bool runOnFunction(Function &F) override; 145 146 void getAnalysisUsage(AnalysisUsage &AU) const override { 147 AU.setPreservesAll(); 148 AU.addRequired<AAResultsWrapperPass>(); 149 AU.addRequired<AssumptionCacheTracker>(); 150 AU.addRequired<TargetLibraryInfoWrapperPass>(); 151 AU.addRequired<DominatorTreeWrapperPass>(); 152 } 153 void print(raw_ostream &O, const Module *M) const override {} 154 155 void WriteValues(ArrayRef<const Value *> Vs) { 156 for (const Value *V : Vs) { 157 if (!V) 158 continue; 159 if (isa<Instruction>(V)) { 160 MessagesStr << *V << '\n'; 161 } else { 162 V->printAsOperand(MessagesStr, true, Mod); 163 MessagesStr << '\n'; 164 } 165 } 166 } 167 168 /// A check failed, so printout out the condition and the message. 169 /// 170 /// This provides a nice place to put a breakpoint if you want to see why 171 /// something is not correct. 172 void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } 173 174 /// A check failed (with values to print). 175 /// 176 /// This calls the Message-only version so that the above is easier to set 177 /// a breakpoint on. 178 template <typename T1, typename... Ts> 179 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) { 180 CheckFailed(Message); 181 WriteValues({V1, Vs...}); 182 } 183 }; 184 } // end anonymous namespace 185 186 char Lint::ID = 0; 187 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR", 188 false, true) 189 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 190 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 193 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR", 194 false, true) 195 196 // Assert - We know that cond should be true, if not print an error message. 197 #define Assert(C, ...) \ 198 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 199 200 // Lint::run - This is the main Analysis entry point for a 201 // function. 202 // 203 bool Lint::runOnFunction(Function &F) { 204 Mod = F.getParent(); 205 DL = &F.getParent()->getDataLayout(); 206 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 207 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 208 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 209 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 210 visit(F); 211 dbgs() << MessagesStr.str(); 212 Messages.clear(); 213 return false; 214 } 215 216 void Lint::visitFunction(Function &F) { 217 // This isn't undefined behavior, it's just a little unusual, and it's a 218 // fairly common mistake to neglect to name a function. 219 Assert(F.hasName() || F.hasLocalLinkage(), 220 "Unusual: Unnamed function with non-local linkage", &F); 221 222 // TODO: Check for irreducible control flow. 223 } 224 225 void Lint::visitCallSite(CallSite CS) { 226 Instruction &I = *CS.getInstruction(); 227 Value *Callee = CS.getCalledValue(); 228 229 visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr, 230 MemRef::Callee); 231 232 if (Function *F = dyn_cast<Function>(findValue(Callee, 233 /*OffsetOk=*/false))) { 234 Assert(CS.getCallingConv() == F->getCallingConv(), 235 "Undefined behavior: Caller and callee calling convention differ", 236 &I); 237 238 FunctionType *FT = F->getFunctionType(); 239 unsigned NumActualArgs = CS.arg_size(); 240 241 Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs 242 : FT->getNumParams() == NumActualArgs, 243 "Undefined behavior: Call argument count mismatches callee " 244 "argument count", 245 &I); 246 247 Assert(FT->getReturnType() == I.getType(), 248 "Undefined behavior: Call return type mismatches " 249 "callee return type", 250 &I); 251 252 // Check argument types (in case the callee was casted) and attributes. 253 // TODO: Verify that caller and callee attributes are compatible. 254 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); 255 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); 256 for (; AI != AE; ++AI) { 257 Value *Actual = *AI; 258 if (PI != PE) { 259 Argument *Formal = &*PI++; 260 Assert(Formal->getType() == Actual->getType(), 261 "Undefined behavior: Call argument type mismatches " 262 "callee parameter type", 263 &I); 264 265 // Check that noalias arguments don't alias other arguments. This is 266 // not fully precise because we don't know the sizes of the dereferenced 267 // memory regions. 268 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { 269 AttributeList PAL = CS.getAttributes(); 270 unsigned ArgNo = 0; 271 for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; 272 ++BI, ++ArgNo) { 273 // Skip ByVal arguments since they will be memcpy'd to the callee's 274 // stack so we're not really passing the pointer anyway. 275 if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal)) 276 continue; 277 // If both arguments are readonly, they have no dependence. 278 if (Formal->onlyReadsMemory() && CS.onlyReadsMemory(ArgNo)) 279 continue; 280 if (AI != BI && (*BI)->getType()->isPointerTy()) { 281 AliasResult Result = AA->alias(*AI, *BI); 282 Assert(Result != MustAlias && Result != PartialAlias, 283 "Unusual: noalias argument aliases another argument", &I); 284 } 285 } 286 } 287 288 // Check that an sret argument points to valid memory. 289 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { 290 Type *Ty = 291 cast<PointerType>(Formal->getType())->getElementType(); 292 visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty), 293 DL->getABITypeAlignment(Ty), Ty, 294 MemRef::Read | MemRef::Write); 295 } 296 } 297 } 298 } 299 300 if (CS.isCall()) { 301 const CallInst *CI = cast<CallInst>(CS.getInstruction()); 302 if (CI->isTailCall()) { 303 const AttributeList &PAL = CI->getAttributes(); 304 unsigned ArgNo = 0; 305 for (Value *Arg : CS.args()) { 306 // Skip ByVal arguments since they will be memcpy'd to the callee's 307 // stack anyway. 308 if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal)) 309 continue; 310 Value *Obj = findValue(Arg, /*OffsetOk=*/true); 311 Assert(!isa<AllocaInst>(Obj), 312 "Undefined behavior: Call with \"tail\" keyword references " 313 "alloca", 314 &I); 315 } 316 } 317 } 318 319 320 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) 321 switch (II->getIntrinsicID()) { 322 default: break; 323 324 // TODO: Check more intrinsics 325 326 case Intrinsic::memcpy: { 327 MemCpyInst *MCI = cast<MemCpyInst>(&I); 328 // TODO: If the size is known, use it. 329 visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize, 330 MCI->getDestAlignment(), nullptr, MemRef::Write); 331 visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize, 332 MCI->getSourceAlignment(), nullptr, MemRef::Read); 333 334 // Check that the memcpy arguments don't overlap. The AliasAnalysis API 335 // isn't expressive enough for what we really want to do. Known partial 336 // overlap is not distinguished from the case where nothing is known. 337 auto Size = LocationSize::unknown(); 338 if (const ConstantInt *Len = 339 dyn_cast<ConstantInt>(findValue(MCI->getLength(), 340 /*OffsetOk=*/false))) 341 if (Len->getValue().isIntN(32)) 342 Size = LocationSize::precise(Len->getValue().getZExtValue()); 343 Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != 344 MustAlias, 345 "Undefined behavior: memcpy source and destination overlap", &I); 346 break; 347 } 348 case Intrinsic::memcpy_inline: { 349 MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I); 350 const uint64_t Size = MCII->getLength()->getValue().getLimitedValue(); 351 visitMemoryReference(I, MCII->getDest(), Size, MCII->getDestAlignment(), 352 nullptr, MemRef::Write); 353 visitMemoryReference(I, MCII->getSource(), Size, 354 MCII->getSourceAlignment(), nullptr, MemRef::Read); 355 356 // Check that the memcpy arguments don't overlap. The AliasAnalysis API 357 // isn't expressive enough for what we really want to do. Known partial 358 // overlap is not distinguished from the case where nothing is known. 359 const LocationSize LS = LocationSize::precise(Size); 360 Assert(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) != MustAlias, 361 "Undefined behavior: memcpy source and destination overlap", &I); 362 break; 363 } 364 case Intrinsic::memmove: { 365 MemMoveInst *MMI = cast<MemMoveInst>(&I); 366 // TODO: If the size is known, use it. 367 visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize, 368 MMI->getDestAlignment(), nullptr, MemRef::Write); 369 visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize, 370 MMI->getSourceAlignment(), nullptr, MemRef::Read); 371 break; 372 } 373 case Intrinsic::memset: { 374 MemSetInst *MSI = cast<MemSetInst>(&I); 375 // TODO: If the size is known, use it. 376 visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize, 377 MSI->getDestAlignment(), nullptr, MemRef::Write); 378 break; 379 } 380 381 case Intrinsic::vastart: 382 Assert(I.getParent()->getParent()->isVarArg(), 383 "Undefined behavior: va_start called in a non-varargs function", 384 &I); 385 386 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 387 nullptr, MemRef::Read | MemRef::Write); 388 break; 389 case Intrinsic::vacopy: 390 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 391 nullptr, MemRef::Write); 392 visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0, 393 nullptr, MemRef::Read); 394 break; 395 case Intrinsic::vaend: 396 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 397 nullptr, MemRef::Read | MemRef::Write); 398 break; 399 400 case Intrinsic::stackrestore: 401 // Stackrestore doesn't read or write memory, but it sets the 402 // stack pointer, which the compiler may read from or write to 403 // at any time, so check it for both readability and writeability. 404 visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0, 405 nullptr, MemRef::Read | MemRef::Write); 406 break; 407 } 408 } 409 410 void Lint::visitCallInst(CallInst &I) { 411 return visitCallSite(&I); 412 } 413 414 void Lint::visitInvokeInst(InvokeInst &I) { 415 return visitCallSite(&I); 416 } 417 418 void Lint::visitReturnInst(ReturnInst &I) { 419 Function *F = I.getParent()->getParent(); 420 Assert(!F->doesNotReturn(), 421 "Unusual: Return statement in function with noreturn attribute", &I); 422 423 if (Value *V = I.getReturnValue()) { 424 Value *Obj = findValue(V, /*OffsetOk=*/true); 425 Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); 426 } 427 } 428 429 // TODO: Check that the reference is in bounds. 430 // TODO: Check readnone/readonly function attributes. 431 void Lint::visitMemoryReference(Instruction &I, 432 Value *Ptr, uint64_t Size, unsigned Align, 433 Type *Ty, unsigned Flags) { 434 // If no memory is being referenced, it doesn't matter if the pointer 435 // is valid. 436 if (Size == 0) 437 return; 438 439 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); 440 Assert(!isa<ConstantPointerNull>(UnderlyingObject), 441 "Undefined behavior: Null pointer dereference", &I); 442 Assert(!isa<UndefValue>(UnderlyingObject), 443 "Undefined behavior: Undef pointer dereference", &I); 444 Assert(!isa<ConstantInt>(UnderlyingObject) || 445 !cast<ConstantInt>(UnderlyingObject)->isMinusOne(), 446 "Unusual: All-ones pointer dereference", &I); 447 Assert(!isa<ConstantInt>(UnderlyingObject) || 448 !cast<ConstantInt>(UnderlyingObject)->isOne(), 449 "Unusual: Address one pointer dereference", &I); 450 451 if (Flags & MemRef::Write) { 452 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) 453 Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory", 454 &I); 455 Assert(!isa<Function>(UnderlyingObject) && 456 !isa<BlockAddress>(UnderlyingObject), 457 "Undefined behavior: Write to text section", &I); 458 } 459 if (Flags & MemRef::Read) { 460 Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", 461 &I); 462 Assert(!isa<BlockAddress>(UnderlyingObject), 463 "Undefined behavior: Load from block address", &I); 464 } 465 if (Flags & MemRef::Callee) { 466 Assert(!isa<BlockAddress>(UnderlyingObject), 467 "Undefined behavior: Call to block address", &I); 468 } 469 if (Flags & MemRef::Branchee) { 470 Assert(!isa<Constant>(UnderlyingObject) || 471 isa<BlockAddress>(UnderlyingObject), 472 "Undefined behavior: Branch to non-blockaddress", &I); 473 } 474 475 // Check for buffer overflows and misalignment. 476 // Only handles memory references that read/write something simple like an 477 // alloca instruction or a global variable. 478 int64_t Offset = 0; 479 if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { 480 // OK, so the access is to a constant offset from Ptr. Check that Ptr is 481 // something we can handle and if so extract the size of this base object 482 // along with its alignment. 483 uint64_t BaseSize = MemoryLocation::UnknownSize; 484 unsigned BaseAlign = 0; 485 486 if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { 487 Type *ATy = AI->getAllocatedType(); 488 if (!AI->isArrayAllocation() && ATy->isSized()) 489 BaseSize = DL->getTypeAllocSize(ATy); 490 BaseAlign = AI->getAlignment(); 491 if (BaseAlign == 0 && ATy->isSized()) 492 BaseAlign = DL->getABITypeAlignment(ATy); 493 } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { 494 // If the global may be defined differently in another compilation unit 495 // then don't warn about funky memory accesses. 496 if (GV->hasDefinitiveInitializer()) { 497 Type *GTy = GV->getValueType(); 498 if (GTy->isSized()) 499 BaseSize = DL->getTypeAllocSize(GTy); 500 BaseAlign = GV->getAlignment(); 501 if (BaseAlign == 0 && GTy->isSized()) 502 BaseAlign = DL->getABITypeAlignment(GTy); 503 } 504 } 505 506 // Accesses from before the start or after the end of the object are not 507 // defined. 508 Assert(Size == MemoryLocation::UnknownSize || 509 BaseSize == MemoryLocation::UnknownSize || 510 (Offset >= 0 && Offset + Size <= BaseSize), 511 "Undefined behavior: Buffer overflow", &I); 512 513 // Accesses that say that the memory is more aligned than it is are not 514 // defined. 515 if (Align == 0 && Ty && Ty->isSized()) 516 Align = DL->getABITypeAlignment(Ty); 517 Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset), 518 "Undefined behavior: Memory reference address is misaligned", &I); 519 } 520 } 521 522 void Lint::visitLoadInst(LoadInst &I) { 523 visitMemoryReference(I, I.getPointerOperand(), 524 DL->getTypeStoreSize(I.getType()), I.getAlignment(), 525 I.getType(), MemRef::Read); 526 } 527 528 void Lint::visitStoreInst(StoreInst &I) { 529 visitMemoryReference(I, I.getPointerOperand(), 530 DL->getTypeStoreSize(I.getOperand(0)->getType()), 531 I.getAlignment(), 532 I.getOperand(0)->getType(), MemRef::Write); 533 } 534 535 void Lint::visitXor(BinaryOperator &I) { 536 Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 537 "Undefined result: xor(undef, undef)", &I); 538 } 539 540 void Lint::visitSub(BinaryOperator &I) { 541 Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), 542 "Undefined result: sub(undef, undef)", &I); 543 } 544 545 void Lint::visitLShr(BinaryOperator &I) { 546 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), 547 /*OffsetOk=*/false))) 548 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 549 "Undefined result: Shift count out of range", &I); 550 } 551 552 void Lint::visitAShr(BinaryOperator &I) { 553 if (ConstantInt *CI = 554 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 555 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 556 "Undefined result: Shift count out of range", &I); 557 } 558 559 void Lint::visitShl(BinaryOperator &I) { 560 if (ConstantInt *CI = 561 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) 562 Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), 563 "Undefined result: Shift count out of range", &I); 564 } 565 566 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, 567 AssumptionCache *AC) { 568 // Assume undef could be zero. 569 if (isa<UndefValue>(V)) 570 return true; 571 572 VectorType *VecTy = dyn_cast<VectorType>(V->getType()); 573 if (!VecTy) { 574 KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT); 575 return Known.isZero(); 576 } 577 578 // Per-component check doesn't work with zeroinitializer 579 Constant *C = dyn_cast<Constant>(V); 580 if (!C) 581 return false; 582 583 if (C->isZeroValue()) 584 return true; 585 586 // For a vector, KnownZero will only be true if all values are zero, so check 587 // this per component 588 for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) { 589 Constant *Elem = C->getAggregateElement(I); 590 if (isa<UndefValue>(Elem)) 591 return true; 592 593 KnownBits Known = computeKnownBits(Elem, DL); 594 if (Known.isZero()) 595 return true; 596 } 597 598 return false; 599 } 600 601 void Lint::visitSDiv(BinaryOperator &I) { 602 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 603 "Undefined behavior: Division by zero", &I); 604 } 605 606 void Lint::visitUDiv(BinaryOperator &I) { 607 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 608 "Undefined behavior: Division by zero", &I); 609 } 610 611 void Lint::visitSRem(BinaryOperator &I) { 612 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 613 "Undefined behavior: Division by zero", &I); 614 } 615 616 void Lint::visitURem(BinaryOperator &I) { 617 Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), 618 "Undefined behavior: Division by zero", &I); 619 } 620 621 void Lint::visitAllocaInst(AllocaInst &I) { 622 if (isa<ConstantInt>(I.getArraySize())) 623 // This isn't undefined behavior, it's just an obvious pessimization. 624 Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), 625 "Pessimization: Static alloca outside of entry block", &I); 626 627 // TODO: Check for an unusual size (MSB set?) 628 } 629 630 void Lint::visitVAArgInst(VAArgInst &I) { 631 visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0, 632 nullptr, MemRef::Read | MemRef::Write); 633 } 634 635 void Lint::visitIndirectBrInst(IndirectBrInst &I) { 636 visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0, 637 nullptr, MemRef::Branchee); 638 639 Assert(I.getNumDestinations() != 0, 640 "Undefined behavior: indirectbr with no destinations", &I); 641 } 642 643 void Lint::visitExtractElementInst(ExtractElementInst &I) { 644 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), 645 /*OffsetOk=*/false))) 646 Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), 647 "Undefined result: extractelement index out of range", &I); 648 } 649 650 void Lint::visitInsertElementInst(InsertElementInst &I) { 651 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), 652 /*OffsetOk=*/false))) 653 Assert(CI->getValue().ult(I.getType()->getNumElements()), 654 "Undefined result: insertelement index out of range", &I); 655 } 656 657 void Lint::visitUnreachableInst(UnreachableInst &I) { 658 // This isn't undefined behavior, it's merely suspicious. 659 Assert(&I == &I.getParent()->front() || 660 std::prev(I.getIterator())->mayHaveSideEffects(), 661 "Unusual: unreachable immediately preceded by instruction without " 662 "side effects", 663 &I); 664 } 665 666 /// findValue - Look through bitcasts and simple memory reference patterns 667 /// to identify an equivalent, but more informative, value. If OffsetOk 668 /// is true, look through getelementptrs with non-zero offsets too. 669 /// 670 /// Most analysis passes don't require this logic, because instcombine 671 /// will simplify most of these kinds of things away. But it's a goal of 672 /// this Lint pass to be useful even on non-optimized IR. 673 Value *Lint::findValue(Value *V, bool OffsetOk) const { 674 SmallPtrSet<Value *, 4> Visited; 675 return findValueImpl(V, OffsetOk, Visited); 676 } 677 678 /// findValueImpl - Implementation helper for findValue. 679 Value *Lint::findValueImpl(Value *V, bool OffsetOk, 680 SmallPtrSetImpl<Value *> &Visited) const { 681 // Detect self-referential values. 682 if (!Visited.insert(V).second) 683 return UndefValue::get(V->getType()); 684 685 // TODO: Look through sext or zext cast, when the result is known to 686 // be interpreted as signed or unsigned, respectively. 687 // TODO: Look through eliminable cast pairs. 688 // TODO: Look through calls with unique return values. 689 // TODO: Look through vector insert/extract/shuffle. 690 V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts(); 691 if (LoadInst *L = dyn_cast<LoadInst>(V)) { 692 BasicBlock::iterator BBI = L->getIterator(); 693 BasicBlock *BB = L->getParent(); 694 SmallPtrSet<BasicBlock *, 4> VisitedBlocks; 695 for (;;) { 696 if (!VisitedBlocks.insert(BB).second) 697 break; 698 if (Value *U = 699 FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA)) 700 return findValueImpl(U, OffsetOk, Visited); 701 if (BBI != BB->begin()) break; 702 BB = BB->getUniquePredecessor(); 703 if (!BB) break; 704 BBI = BB->end(); 705 } 706 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 707 if (Value *W = PN->hasConstantValue()) 708 if (W != V) 709 return findValueImpl(W, OffsetOk, Visited); 710 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 711 if (CI->isNoopCast(*DL)) 712 return findValueImpl(CI->getOperand(0), OffsetOk, Visited); 713 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { 714 if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), 715 Ex->getIndices())) 716 if (W != V) 717 return findValueImpl(W, OffsetOk, Visited); 718 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 719 // Same as above, but for ConstantExpr instead of Instruction. 720 if (Instruction::isCast(CE->getOpcode())) { 721 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), 722 CE->getOperand(0)->getType(), CE->getType(), 723 *DL)) 724 return findValueImpl(CE->getOperand(0), OffsetOk, Visited); 725 } else if (CE->getOpcode() == Instruction::ExtractValue) { 726 ArrayRef<unsigned> Indices = CE->getIndices(); 727 if (Value *W = FindInsertedValue(CE->getOperand(0), Indices)) 728 if (W != V) 729 return findValueImpl(W, OffsetOk, Visited); 730 } 731 } 732 733 // As a last resort, try SimplifyInstruction or constant folding. 734 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 735 if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC})) 736 return findValueImpl(W, OffsetOk, Visited); 737 } else if (auto *C = dyn_cast<Constant>(V)) { 738 Value *W = ConstantFoldConstant(C, *DL, TLI); 739 if (W != V) 740 return findValueImpl(W, OffsetOk, Visited); 741 } 742 743 return V; 744 } 745 746 //===----------------------------------------------------------------------===// 747 // Implement the public interfaces to this file... 748 //===----------------------------------------------------------------------===// 749 750 FunctionPass *llvm::createLintPass() { 751 return new Lint(); 752 } 753 754 /// lintFunction - Check a function for errors, printing messages on stderr. 755 /// 756 void llvm::lintFunction(const Function &f) { 757 Function &F = const_cast<Function&>(f); 758 assert(!F.isDeclaration() && "Cannot lint external functions"); 759 760 legacy::FunctionPassManager FPM(F.getParent()); 761 Lint *V = new Lint(); 762 FPM.add(V); 763 FPM.run(F); 764 } 765 766 /// lintModule - Check a module for errors, printing messages on stderr. 767 /// 768 void llvm::lintModule(const Module &M) { 769 legacy::PassManager PM; 770 Lint *V = new Lint(); 771 PM.add(V); 772 PM.run(const_cast<Module&>(M)); 773 } 774