1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis 2 //Implementation -==// 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements divergence analysis which determines whether a branch 11 // in a GPU program is divergent.It can help branch optimizations such as jump 12 // threading and loop unswitching to make better decisions. 13 // 14 // GPU programs typically use the SIMD execution model, where multiple threads 15 // in the same execution group have to execute in lock-step. Therefore, if the 16 // code contains divergent branches (i.e., threads in a group do not agree on 17 // which path of the branch to take), the group of threads has to execute all 18 // the paths from that branch with different subsets of threads enabled until 19 // they converge at the immediately post-dominating BB of the paths. 20 // 21 // Due to this execution model, some optimizations such as jump 22 // threading and loop unswitching can be unfortunately harmful when performed on 23 // divergent branches. Therefore, an analysis that computes which branches in a 24 // GPU program are divergent can help the compiler to selectively run these 25 // optimizations. 26 // 27 // This file defines divergence analysis which computes a conservative but 28 // non-trivial approximation of all divergent branches in a GPU program. It 29 // partially implements the approach described in 30 // 31 // Divergence Analysis 32 // Sampaio, Souza, Collange, Pereira 33 // TOPLAS '13 34 // 35 // The divergence analysis identifies the sources of divergence (e.g., special 36 // variables that hold the thread ID), and recursively marks variables that are 37 // data or sync dependent on a source of divergence as divergent. 38 // 39 // While data dependency is a well-known concept, the notion of sync dependency 40 // is worth more explanation. Sync dependence characterizes the control flow 41 // aspect of the propagation of branch divergence. For example, 42 // 43 // %cond = icmp slt i32 %tid, 10 44 // br i1 %cond, label %then, label %else 45 // then: 46 // br label %merge 47 // else: 48 // br label %merge 49 // merge: 50 // %a = phi i32 [ 0, %then ], [ 1, %else ] 51 // 52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid 53 // because %tid is not on its use-def chains, %a is sync dependent on %tid 54 // because the branch "br i1 %cond" depends on %tid and affects which value %a 55 // is assigned to. 56 // 57 // The current implementation has the following limitations: 58 // 1. intra-procedural. It conservatively considers the arguments of a 59 // non-kernel-entry function and the return value of a function call as 60 // divergent. 61 // 2. memory as black box. It conservatively considers values loaded from 62 // generic or local address as divergent. This can be improved by leveraging 63 // pointer analysis. 64 // 65 //===----------------------------------------------------------------------===// 66 67 #include "llvm/ADT/PostOrderIterator.h" 68 #include "llvm/Analysis/CFG.h" 69 #include "llvm/Analysis/DivergenceAnalysis.h" 70 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 71 #include "llvm/Analysis/Passes.h" 72 #include "llvm/Analysis/PostDominators.h" 73 #include "llvm/Analysis/TargetTransformInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/InstIterator.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <vector> 81 using namespace llvm; 82 83 #define DEBUG_TYPE "divergence" 84 85 // transparently use the GPUDivergenceAnalysis 86 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false), 87 cl::Hidden, 88 cl::desc("turn the LegacyDivergenceAnalysis into " 89 "a wrapper for GPUDivergenceAnalysis")); 90 91 namespace { 92 93 class DivergencePropagator { 94 public: 95 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, 96 PostDominatorTree &PDT, DenseSet<const Value *> &DV) 97 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {} 98 void populateWithSourcesOfDivergence(); 99 void propagate(); 100 101 private: 102 // A helper function that explores data dependents of V. 103 void exploreDataDependency(Value *V); 104 // A helper function that explores sync dependents of TI. 105 void exploreSyncDependency(Instruction *TI); 106 // Computes the influence region from Start to End. This region includes all 107 // basic blocks on any simple path from Start to End. 108 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, 109 DenseSet<BasicBlock *> &InfluenceRegion); 110 // Finds all users of I that are outside the influence region, and add these 111 // users to Worklist. 112 void findUsersOutsideInfluenceRegion( 113 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); 114 115 Function &F; 116 TargetTransformInfo &TTI; 117 DominatorTree &DT; 118 PostDominatorTree &PDT; 119 std::vector<Value *> Worklist; // Stack for DFS. 120 DenseSet<const Value *> &DV; // Stores all divergent values. 121 }; 122 123 void DivergencePropagator::populateWithSourcesOfDivergence() { 124 Worklist.clear(); 125 DV.clear(); 126 for (auto &I : instructions(F)) { 127 if (TTI.isSourceOfDivergence(&I)) { 128 Worklist.push_back(&I); 129 DV.insert(&I); 130 } 131 } 132 for (auto &Arg : F.args()) { 133 if (TTI.isSourceOfDivergence(&Arg)) { 134 Worklist.push_back(&Arg); 135 DV.insert(&Arg); 136 } 137 } 138 } 139 140 void DivergencePropagator::exploreSyncDependency(Instruction *TI) { 141 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's 142 // immediate post dominator are divergent. This rule handles if-then-else 143 // patterns. For example, 144 // 145 // if (tid < 5) 146 // a1 = 1; 147 // else 148 // a2 = 2; 149 // a = phi(a1, a2); // sync dependent on (tid < 5) 150 BasicBlock *ThisBB = TI->getParent(); 151 152 // Unreachable blocks may not be in the dominator tree. 153 if (!DT.isReachableFromEntry(ThisBB)) 154 return; 155 156 // If the function has no exit blocks or doesn't reach any exit blocks, the 157 // post dominator may be null. 158 DomTreeNode *ThisNode = PDT.getNode(ThisBB); 159 if (!ThisNode) 160 return; 161 162 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock(); 163 if (IPostDom == nullptr) 164 return; 165 166 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { 167 // A PHINode is uniform if it returns the same value no matter which path is 168 // taken. 169 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) 170 Worklist.push_back(&*I); 171 } 172 173 // Propagation rule 2: if a value defined in a loop is used outside, the user 174 // is sync dependent on the condition of the loop exits that dominate the 175 // user. For example, 176 // 177 // int i = 0; 178 // do { 179 // i++; 180 // if (foo(i)) ... // uniform 181 // } while (i < tid); 182 // if (bar(i)) ... // divergent 183 // 184 // A program may contain unstructured loops. Therefore, we cannot leverage 185 // LoopInfo, which only recognizes natural loops. 186 // 187 // The algorithm used here handles both natural and unstructured loops. Given 188 // a branch TI, we first compute its influence region, the union of all simple 189 // paths from TI to its immediate post dominator (IPostDom). Then, we search 190 // for all the values defined in the influence region but used outside. All 191 // these users are sync dependent on TI. 192 DenseSet<BasicBlock *> InfluenceRegion; 193 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); 194 // An insight that can speed up the search process is that all the in-region 195 // values that are used outside must dominate TI. Therefore, instead of 196 // searching every basic blocks in the influence region, we search all the 197 // dominators of TI until it is outside the influence region. 198 BasicBlock *InfluencedBB = ThisBB; 199 while (InfluenceRegion.count(InfluencedBB)) { 200 for (auto &I : *InfluencedBB) 201 findUsersOutsideInfluenceRegion(I, InfluenceRegion); 202 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); 203 if (IDomNode == nullptr) 204 break; 205 InfluencedBB = IDomNode->getBlock(); 206 } 207 } 208 209 void DivergencePropagator::findUsersOutsideInfluenceRegion( 210 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { 211 for (User *U : I.users()) { 212 Instruction *UserInst = cast<Instruction>(U); 213 if (!InfluenceRegion.count(UserInst->getParent())) { 214 if (DV.insert(UserInst).second) 215 Worklist.push_back(UserInst); 216 } 217 } 218 } 219 220 // A helper function for computeInfluenceRegion that adds successors of "ThisBB" 221 // to the influence region. 222 static void 223 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, 224 DenseSet<BasicBlock *> &InfluenceRegion, 225 std::vector<BasicBlock *> &InfluenceStack) { 226 for (BasicBlock *Succ : successors(ThisBB)) { 227 if (Succ != End && InfluenceRegion.insert(Succ).second) 228 InfluenceStack.push_back(Succ); 229 } 230 } 231 232 void DivergencePropagator::computeInfluenceRegion( 233 BasicBlock *Start, BasicBlock *End, 234 DenseSet<BasicBlock *> &InfluenceRegion) { 235 assert(PDT.properlyDominates(End, Start) && 236 "End does not properly dominate Start"); 237 238 // The influence region starts from the end of "Start" to the beginning of 239 // "End". Therefore, "Start" should not be in the region unless "Start" is in 240 // a loop that doesn't contain "End". 241 std::vector<BasicBlock *> InfluenceStack; 242 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); 243 while (!InfluenceStack.empty()) { 244 BasicBlock *BB = InfluenceStack.back(); 245 InfluenceStack.pop_back(); 246 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); 247 } 248 } 249 250 void DivergencePropagator::exploreDataDependency(Value *V) { 251 // Follow def-use chains of V. 252 for (User *U : V->users()) { 253 Instruction *UserInst = cast<Instruction>(U); 254 if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second) 255 Worklist.push_back(UserInst); 256 } 257 } 258 259 void DivergencePropagator::propagate() { 260 // Traverse the dependency graph using DFS. 261 while (!Worklist.empty()) { 262 Value *V = Worklist.back(); 263 Worklist.pop_back(); 264 if (Instruction *I = dyn_cast<Instruction>(V)) { 265 // Terminators with less than two successors won't introduce sync 266 // dependency. Ignore them. 267 if (I->isTerminator() && I->getNumSuccessors() > 1) 268 exploreSyncDependency(I); 269 } 270 exploreDataDependency(V); 271 } 272 } 273 274 } // namespace 275 276 // Register this pass. 277 char LegacyDivergenceAnalysis::ID = 0; 278 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence", 279 "Legacy Divergence Analysis", false, true) 280 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 281 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 282 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 283 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence", 284 "Legacy Divergence Analysis", false, true) 285 286 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() { 287 return new LegacyDivergenceAnalysis(); 288 } 289 290 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 291 AU.addRequired<DominatorTreeWrapperPass>(); 292 AU.addRequired<PostDominatorTreeWrapperPass>(); 293 if (UseGPUDA) 294 AU.addRequired<LoopInfoWrapperPass>(); 295 AU.setPreservesAll(); 296 } 297 298 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis( 299 const Function &F) const { 300 if (!UseGPUDA) 301 return false; 302 303 // GPUDivergenceAnalysis requires a reducible CFG. 304 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 305 using RPOTraversal = ReversePostOrderTraversal<const Function *>; 306 RPOTraversal FuncRPOT(&F); 307 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal, 308 const LoopInfo>(FuncRPOT, LI); 309 } 310 311 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) { 312 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 313 if (TTIWP == nullptr) 314 return false; 315 316 TargetTransformInfo &TTI = TTIWP->getTTI(F); 317 // Fast path: if the target does not have branch divergence, we do not mark 318 // any branch as divergent. 319 if (!TTI.hasBranchDivergence()) 320 return false; 321 322 DivergentValues.clear(); 323 gpuDA = nullptr; 324 325 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 326 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 327 328 if (shouldUseGPUDivergenceAnalysis(F)) { 329 // run the new GPU divergence analysis 330 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 331 gpuDA = llvm::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI); 332 333 } else { 334 // run LLVM's existing DivergenceAnalysis 335 DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues); 336 DP.populateWithSourcesOfDivergence(); 337 DP.propagate(); 338 } 339 340 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName() 341 << ":\n"; 342 print(dbgs(), F.getParent())); 343 344 return false; 345 } 346 347 bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const { 348 if (gpuDA) { 349 return gpuDA->isDivergent(*V); 350 } 351 return DivergentValues.count(V); 352 } 353 354 void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const { 355 if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty()) 356 return; 357 358 const Function *F = nullptr; 359 if (!DivergentValues.empty()) { 360 const Value *FirstDivergentValue = *DivergentValues.begin(); 361 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { 362 F = Arg->getParent(); 363 } else if (const Instruction *I = 364 dyn_cast<Instruction>(FirstDivergentValue)) { 365 F = I->getParent()->getParent(); 366 } else { 367 llvm_unreachable("Only arguments and instructions can be divergent"); 368 } 369 } else if (gpuDA) { 370 F = &gpuDA->getFunction(); 371 } 372 if (!F) 373 return; 374 375 // Dumps all divergent values in F, arguments and then instructions. 376 for (auto &Arg : F->args()) { 377 OS << (isDivergent(&Arg) ? "DIVERGENT: " : " "); 378 OS << Arg << "\n"; 379 } 380 // Iterate instructions using instructions() to ensure a deterministic order. 381 for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) { 382 auto &BB = *BI; 383 OS << "\n " << BB.getName() << ":\n"; 384 for (auto &I : BB.instructionsWithoutDebug()) { 385 OS << (isDivergent(&I) ? "DIVERGENT: " : " "); 386 OS << I << "\n"; 387 } 388 } 389 OS << "\n"; 390 } 391