1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
2 //Implementation -==//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
13 //
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
20 //
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
25 // optimizations.
26 //
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
30 //
31 //   Divergence Analysis
32 //   Sampaio, Souza, Collange, Pereira
33 //   TOPLAS '13
34 //
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
38 //
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
42 //
43 //   %cond = icmp slt i32 %tid, 10
44 //   br i1 %cond, label %then, label %else
45 // then:
46 //   br label %merge
47 // else:
48 //   br label %merge
49 // merge:
50 //   %a = phi i32 [ 0, %then ], [ 1, %else ]
51 //
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 // is assigned to.
56 //
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 //    non-kernel-entry function and the return value of a function call as
60 //    divergent.
61 // 2. memory as black box. It conservatively considers values loaded from
62 //    generic or local address as divergent. This can be improved by leveraging
63 //    pointer analysis.
64 //
65 //===----------------------------------------------------------------------===//
66 
67 #include "llvm/ADT/PostOrderIterator.h"
68 #include "llvm/Analysis/CFG.h"
69 #include "llvm/Analysis/DivergenceAnalysis.h"
70 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
71 #include "llvm/Analysis/Passes.h"
72 #include "llvm/Analysis/PostDominators.h"
73 #include "llvm/Analysis/TargetTransformInfo.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/InstIterator.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include <vector>
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "divergence"
84 
85 // transparently use the GPUDivergenceAnalysis
86 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
87                               cl::Hidden,
88                               cl::desc("turn the LegacyDivergenceAnalysis into "
89                                        "a wrapper for GPUDivergenceAnalysis"));
90 
91 namespace {
92 
93 class DivergencePropagator {
94 public:
95   DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
96                        PostDominatorTree &PDT, DenseSet<const Value *> &DV,
97                        DenseSet<const Use *> &DU)
98       : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
99   void populateWithSourcesOfDivergence();
100   void propagate();
101 
102 private:
103   // A helper function that explores data dependents of V.
104   void exploreDataDependency(Value *V);
105   // A helper function that explores sync dependents of TI.
106   void exploreSyncDependency(Instruction *TI);
107   // Computes the influence region from Start to End. This region includes all
108   // basic blocks on any simple path from Start to End.
109   void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
110                               DenseSet<BasicBlock *> &InfluenceRegion);
111   // Finds all users of I that are outside the influence region, and add these
112   // users to Worklist.
113   void findUsersOutsideInfluenceRegion(
114       Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
115 
116   Function &F;
117   TargetTransformInfo &TTI;
118   DominatorTree &DT;
119   PostDominatorTree &PDT;
120   std::vector<Value *> Worklist; // Stack for DFS.
121   DenseSet<const Value *> &DV;   // Stores all divergent values.
122   DenseSet<const Use *> &DU;   // Stores divergent uses of possibly uniform
123                                // values.
124 };
125 
126 void DivergencePropagator::populateWithSourcesOfDivergence() {
127   Worklist.clear();
128   DV.clear();
129   DU.clear();
130   for (auto &I : instructions(F)) {
131     if (TTI.isSourceOfDivergence(&I)) {
132       Worklist.push_back(&I);
133       DV.insert(&I);
134     }
135   }
136   for (auto &Arg : F.args()) {
137     if (TTI.isSourceOfDivergence(&Arg)) {
138       Worklist.push_back(&Arg);
139       DV.insert(&Arg);
140     }
141   }
142 }
143 
144 void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
145   // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
146   // immediate post dominator are divergent. This rule handles if-then-else
147   // patterns. For example,
148   //
149   // if (tid < 5)
150   //   a1 = 1;
151   // else
152   //   a2 = 2;
153   // a = phi(a1, a2); // sync dependent on (tid < 5)
154   BasicBlock *ThisBB = TI->getParent();
155 
156   // Unreachable blocks may not be in the dominator tree.
157   if (!DT.isReachableFromEntry(ThisBB))
158     return;
159 
160   // If the function has no exit blocks or doesn't reach any exit blocks, the
161   // post dominator may be null.
162   DomTreeNode *ThisNode = PDT.getNode(ThisBB);
163   if (!ThisNode)
164     return;
165 
166   BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
167   if (IPostDom == nullptr)
168     return;
169 
170   for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
171     // A PHINode is uniform if it returns the same value no matter which path is
172     // taken.
173     if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
174       Worklist.push_back(&*I);
175   }
176 
177   // Propagation rule 2: if a value defined in a loop is used outside, the user
178   // is sync dependent on the condition of the loop exits that dominate the
179   // user. For example,
180   //
181   // int i = 0;
182   // do {
183   //   i++;
184   //   if (foo(i)) ... // uniform
185   // } while (i < tid);
186   // if (bar(i)) ...   // divergent
187   //
188   // A program may contain unstructured loops. Therefore, we cannot leverage
189   // LoopInfo, which only recognizes natural loops.
190   //
191   // The algorithm used here handles both natural and unstructured loops.  Given
192   // a branch TI, we first compute its influence region, the union of all simple
193   // paths from TI to its immediate post dominator (IPostDom). Then, we search
194   // for all the values defined in the influence region but used outside. All
195   // these users are sync dependent on TI.
196   DenseSet<BasicBlock *> InfluenceRegion;
197   computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
198   // An insight that can speed up the search process is that all the in-region
199   // values that are used outside must dominate TI. Therefore, instead of
200   // searching every basic blocks in the influence region, we search all the
201   // dominators of TI until it is outside the influence region.
202   BasicBlock *InfluencedBB = ThisBB;
203   while (InfluenceRegion.count(InfluencedBB)) {
204     for (auto &I : *InfluencedBB) {
205       if (!DV.count(&I))
206         findUsersOutsideInfluenceRegion(I, InfluenceRegion);
207     }
208     DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
209     if (IDomNode == nullptr)
210       break;
211     InfluencedBB = IDomNode->getBlock();
212   }
213 }
214 
215 void DivergencePropagator::findUsersOutsideInfluenceRegion(
216     Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
217   for (Use &Use : I.uses()) {
218     Instruction *UserInst = cast<Instruction>(Use.getUser());
219     if (!InfluenceRegion.count(UserInst->getParent())) {
220       DU.insert(&Use);
221       if (DV.insert(UserInst).second)
222         Worklist.push_back(UserInst);
223     }
224   }
225 }
226 
227 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
228 // to the influence region.
229 static void
230 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
231                                DenseSet<BasicBlock *> &InfluenceRegion,
232                                std::vector<BasicBlock *> &InfluenceStack) {
233   for (BasicBlock *Succ : successors(ThisBB)) {
234     if (Succ != End && InfluenceRegion.insert(Succ).second)
235       InfluenceStack.push_back(Succ);
236   }
237 }
238 
239 void DivergencePropagator::computeInfluenceRegion(
240     BasicBlock *Start, BasicBlock *End,
241     DenseSet<BasicBlock *> &InfluenceRegion) {
242   assert(PDT.properlyDominates(End, Start) &&
243          "End does not properly dominate Start");
244 
245   // The influence region starts from the end of "Start" to the beginning of
246   // "End". Therefore, "Start" should not be in the region unless "Start" is in
247   // a loop that doesn't contain "End".
248   std::vector<BasicBlock *> InfluenceStack;
249   addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
250   while (!InfluenceStack.empty()) {
251     BasicBlock *BB = InfluenceStack.back();
252     InfluenceStack.pop_back();
253     addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
254   }
255 }
256 
257 void DivergencePropagator::exploreDataDependency(Value *V) {
258   // Follow def-use chains of V.
259   for (User *U : V->users()) {
260     Instruction *UserInst = cast<Instruction>(U);
261     if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
262       Worklist.push_back(UserInst);
263   }
264 }
265 
266 void DivergencePropagator::propagate() {
267   // Traverse the dependency graph using DFS.
268   while (!Worklist.empty()) {
269     Value *V = Worklist.back();
270     Worklist.pop_back();
271     if (Instruction *I = dyn_cast<Instruction>(V)) {
272       // Terminators with less than two successors won't introduce sync
273       // dependency. Ignore them.
274       if (I->isTerminator() && I->getNumSuccessors() > 1)
275         exploreSyncDependency(I);
276     }
277     exploreDataDependency(V);
278   }
279 }
280 
281 } // namespace
282 
283 // Register this pass.
284 char LegacyDivergenceAnalysis::ID = 0;
285 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
286                       "Legacy Divergence Analysis", false, true)
287 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
288 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
289 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
290 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
291                     "Legacy Divergence Analysis", false, true)
292 
293 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
294   return new LegacyDivergenceAnalysis();
295 }
296 
297 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
298   AU.addRequired<DominatorTreeWrapperPass>();
299   AU.addRequired<PostDominatorTreeWrapperPass>();
300   if (UseGPUDA)
301     AU.addRequired<LoopInfoWrapperPass>();
302   AU.setPreservesAll();
303 }
304 
305 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
306     const Function &F) const {
307   if (!UseGPUDA)
308     return false;
309 
310   // GPUDivergenceAnalysis requires a reducible CFG.
311   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
312   using RPOTraversal = ReversePostOrderTraversal<const Function *>;
313   RPOTraversal FuncRPOT(&F);
314   return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
315                                  const LoopInfo>(FuncRPOT, LI);
316 }
317 
318 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
319   auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
320   if (TTIWP == nullptr)
321     return false;
322 
323   TargetTransformInfo &TTI = TTIWP->getTTI(F);
324   // Fast path: if the target does not have branch divergence, we do not mark
325   // any branch as divergent.
326   if (!TTI.hasBranchDivergence())
327     return false;
328 
329   DivergentValues.clear();
330   DivergentUses.clear();
331   gpuDA = nullptr;
332 
333   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
334   auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
335 
336   if (shouldUseGPUDivergenceAnalysis(F)) {
337     // run the new GPU divergence analysis
338     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
339     gpuDA = std::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI);
340 
341   } else {
342     // run LLVM's existing DivergenceAnalysis
343     DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
344     DP.populateWithSourcesOfDivergence();
345     DP.propagate();
346   }
347 
348   LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
349                     << ":\n";
350              print(dbgs(), F.getParent()));
351 
352   return false;
353 }
354 
355 bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
356   if (gpuDA) {
357     return gpuDA->isDivergent(*V);
358   }
359   return DivergentValues.count(V);
360 }
361 
362 bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const {
363   if (gpuDA) {
364     return gpuDA->isDivergentUse(*U);
365   }
366   return DivergentValues.count(U->get()) || DivergentUses.count(U);
367 }
368 
369 void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
370   if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
371     return;
372 
373   const Function *F = nullptr;
374   if (!DivergentValues.empty()) {
375     const Value *FirstDivergentValue = *DivergentValues.begin();
376     if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
377       F = Arg->getParent();
378     } else if (const Instruction *I =
379                    dyn_cast<Instruction>(FirstDivergentValue)) {
380       F = I->getParent()->getParent();
381     } else {
382       llvm_unreachable("Only arguments and instructions can be divergent");
383     }
384   } else if (gpuDA) {
385     F = &gpuDA->getFunction();
386   }
387   if (!F)
388     return;
389 
390   // Dumps all divergent values in F, arguments and then instructions.
391   for (auto &Arg : F->args()) {
392     OS << (isDivergent(&Arg) ? "DIVERGENT: " : "           ");
393     OS << Arg << "\n";
394   }
395   // Iterate instructions using instructions() to ensure a deterministic order.
396   for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
397     auto &BB = *BI;
398     OS << "\n           " << BB.getName() << ":\n";
399     for (auto &I : BB.instructionsWithoutDebug()) {
400       OS << (isDivergent(&I) ? "DIVERGENT:     " : "               ");
401       OS << I << "\n";
402     }
403   }
404   OS << "\n";
405 }
406