1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis 2 //Implementation -==// 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements divergence analysis which determines whether a branch 11 // in a GPU program is divergent.It can help branch optimizations such as jump 12 // threading and loop unswitching to make better decisions. 13 // 14 // GPU programs typically use the SIMD execution model, where multiple threads 15 // in the same execution group have to execute in lock-step. Therefore, if the 16 // code contains divergent branches (i.e., threads in a group do not agree on 17 // which path of the branch to take), the group of threads has to execute all 18 // the paths from that branch with different subsets of threads enabled until 19 // they converge at the immediately post-dominating BB of the paths. 20 // 21 // Due to this execution model, some optimizations such as jump 22 // threading and loop unswitching can be unfortunately harmful when performed on 23 // divergent branches. Therefore, an analysis that computes which branches in a 24 // GPU program are divergent can help the compiler to selectively run these 25 // optimizations. 26 // 27 // This file defines divergence analysis which computes a conservative but 28 // non-trivial approximation of all divergent branches in a GPU program. It 29 // partially implements the approach described in 30 // 31 // Divergence Analysis 32 // Sampaio, Souza, Collange, Pereira 33 // TOPLAS '13 34 // 35 // The divergence analysis identifies the sources of divergence (e.g., special 36 // variables that hold the thread ID), and recursively marks variables that are 37 // data or sync dependent on a source of divergence as divergent. 38 // 39 // While data dependency is a well-known concept, the notion of sync dependency 40 // is worth more explanation. Sync dependence characterizes the control flow 41 // aspect of the propagation of branch divergence. For example, 42 // 43 // %cond = icmp slt i32 %tid, 10 44 // br i1 %cond, label %then, label %else 45 // then: 46 // br label %merge 47 // else: 48 // br label %merge 49 // merge: 50 // %a = phi i32 [ 0, %then ], [ 1, %else ] 51 // 52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid 53 // because %tid is not on its use-def chains, %a is sync dependent on %tid 54 // because the branch "br i1 %cond" depends on %tid and affects which value %a 55 // is assigned to. 56 // 57 // The current implementation has the following limitations: 58 // 1. intra-procedural. It conservatively considers the arguments of a 59 // non-kernel-entry function and the return value of a function call as 60 // divergent. 61 // 2. memory as black box. It conservatively considers values loaded from 62 // generic or local address as divergent. This can be improved by leveraging 63 // pointer analysis. 64 // 65 //===----------------------------------------------------------------------===// 66 67 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 68 #include "llvm/ADT/PostOrderIterator.h" 69 #include "llvm/Analysis/CFG.h" 70 #include "llvm/Analysis/DivergenceAnalysis.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/Passes.h" 73 #include "llvm/Analysis/PostDominators.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/InstIterator.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/Value.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include <vector> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "divergence" 87 88 // transparently use the GPUDivergenceAnalysis 89 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false), 90 cl::Hidden, 91 cl::desc("turn the LegacyDivergenceAnalysis into " 92 "a wrapper for GPUDivergenceAnalysis")); 93 94 namespace { 95 96 class DivergencePropagator { 97 public: 98 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, 99 PostDominatorTree &PDT, DenseSet<const Value *> &DV, 100 DenseSet<const Use *> &DU) 101 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {} 102 void populateWithSourcesOfDivergence(); 103 void propagate(); 104 105 private: 106 // A helper function that explores data dependents of V. 107 void exploreDataDependency(Value *V); 108 // A helper function that explores sync dependents of TI. 109 void exploreSyncDependency(Instruction *TI); 110 // Computes the influence region from Start to End. This region includes all 111 // basic blocks on any simple path from Start to End. 112 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, 113 DenseSet<BasicBlock *> &InfluenceRegion); 114 // Finds all users of I that are outside the influence region, and add these 115 // users to Worklist. 116 void findUsersOutsideInfluenceRegion( 117 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); 118 119 Function &F; 120 TargetTransformInfo &TTI; 121 DominatorTree &DT; 122 PostDominatorTree &PDT; 123 std::vector<Value *> Worklist; // Stack for DFS. 124 DenseSet<const Value *> &DV; // Stores all divergent values. 125 DenseSet<const Use *> &DU; // Stores divergent uses of possibly uniform 126 // values. 127 }; 128 129 void DivergencePropagator::populateWithSourcesOfDivergence() { 130 Worklist.clear(); 131 DV.clear(); 132 DU.clear(); 133 for (auto &I : instructions(F)) { 134 if (TTI.isSourceOfDivergence(&I)) { 135 Worklist.push_back(&I); 136 DV.insert(&I); 137 } 138 } 139 for (auto &Arg : F.args()) { 140 if (TTI.isSourceOfDivergence(&Arg)) { 141 Worklist.push_back(&Arg); 142 DV.insert(&Arg); 143 } 144 } 145 } 146 147 void DivergencePropagator::exploreSyncDependency(Instruction *TI) { 148 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's 149 // immediate post dominator are divergent. This rule handles if-then-else 150 // patterns. For example, 151 // 152 // if (tid < 5) 153 // a1 = 1; 154 // else 155 // a2 = 2; 156 // a = phi(a1, a2); // sync dependent on (tid < 5) 157 BasicBlock *ThisBB = TI->getParent(); 158 159 // Unreachable blocks may not be in the dominator tree. 160 if (!DT.isReachableFromEntry(ThisBB)) 161 return; 162 163 // If the function has no exit blocks or doesn't reach any exit blocks, the 164 // post dominator may be null. 165 DomTreeNode *ThisNode = PDT.getNode(ThisBB); 166 if (!ThisNode) 167 return; 168 169 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock(); 170 if (IPostDom == nullptr) 171 return; 172 173 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { 174 // A PHINode is uniform if it returns the same value no matter which path is 175 // taken. 176 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) 177 Worklist.push_back(&*I); 178 } 179 180 // Propagation rule 2: if a value defined in a loop is used outside, the user 181 // is sync dependent on the condition of the loop exits that dominate the 182 // user. For example, 183 // 184 // int i = 0; 185 // do { 186 // i++; 187 // if (foo(i)) ... // uniform 188 // } while (i < tid); 189 // if (bar(i)) ... // divergent 190 // 191 // A program may contain unstructured loops. Therefore, we cannot leverage 192 // LoopInfo, which only recognizes natural loops. 193 // 194 // The algorithm used here handles both natural and unstructured loops. Given 195 // a branch TI, we first compute its influence region, the union of all simple 196 // paths from TI to its immediate post dominator (IPostDom). Then, we search 197 // for all the values defined in the influence region but used outside. All 198 // these users are sync dependent on TI. 199 DenseSet<BasicBlock *> InfluenceRegion; 200 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); 201 // An insight that can speed up the search process is that all the in-region 202 // values that are used outside must dominate TI. Therefore, instead of 203 // searching every basic blocks in the influence region, we search all the 204 // dominators of TI until it is outside the influence region. 205 BasicBlock *InfluencedBB = ThisBB; 206 while (InfluenceRegion.count(InfluencedBB)) { 207 for (auto &I : *InfluencedBB) { 208 if (!DV.count(&I)) 209 findUsersOutsideInfluenceRegion(I, InfluenceRegion); 210 } 211 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); 212 if (IDomNode == nullptr) 213 break; 214 InfluencedBB = IDomNode->getBlock(); 215 } 216 } 217 218 void DivergencePropagator::findUsersOutsideInfluenceRegion( 219 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { 220 for (Use &Use : I.uses()) { 221 Instruction *UserInst = cast<Instruction>(Use.getUser()); 222 if (!InfluenceRegion.count(UserInst->getParent())) { 223 DU.insert(&Use); 224 if (DV.insert(UserInst).second) 225 Worklist.push_back(UserInst); 226 } 227 } 228 } 229 230 // A helper function for computeInfluenceRegion that adds successors of "ThisBB" 231 // to the influence region. 232 static void 233 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, 234 DenseSet<BasicBlock *> &InfluenceRegion, 235 std::vector<BasicBlock *> &InfluenceStack) { 236 for (BasicBlock *Succ : successors(ThisBB)) { 237 if (Succ != End && InfluenceRegion.insert(Succ).second) 238 InfluenceStack.push_back(Succ); 239 } 240 } 241 242 void DivergencePropagator::computeInfluenceRegion( 243 BasicBlock *Start, BasicBlock *End, 244 DenseSet<BasicBlock *> &InfluenceRegion) { 245 assert(PDT.properlyDominates(End, Start) && 246 "End does not properly dominate Start"); 247 248 // The influence region starts from the end of "Start" to the beginning of 249 // "End". Therefore, "Start" should not be in the region unless "Start" is in 250 // a loop that doesn't contain "End". 251 std::vector<BasicBlock *> InfluenceStack; 252 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); 253 while (!InfluenceStack.empty()) { 254 BasicBlock *BB = InfluenceStack.back(); 255 InfluenceStack.pop_back(); 256 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); 257 } 258 } 259 260 void DivergencePropagator::exploreDataDependency(Value *V) { 261 // Follow def-use chains of V. 262 for (User *U : V->users()) { 263 if (!TTI.isAlwaysUniform(U) && DV.insert(U).second) 264 Worklist.push_back(U); 265 } 266 } 267 268 void DivergencePropagator::propagate() { 269 // Traverse the dependency graph using DFS. 270 while (!Worklist.empty()) { 271 Value *V = Worklist.back(); 272 Worklist.pop_back(); 273 if (Instruction *I = dyn_cast<Instruction>(V)) { 274 // Terminators with less than two successors won't introduce sync 275 // dependency. Ignore them. 276 if (I->isTerminator() && I->getNumSuccessors() > 1) 277 exploreSyncDependency(I); 278 } 279 exploreDataDependency(V); 280 } 281 } 282 283 } // namespace 284 285 // Register this pass. 286 char LegacyDivergenceAnalysis::ID = 0; 287 LegacyDivergenceAnalysis::LegacyDivergenceAnalysis() : FunctionPass(ID) { 288 initializeLegacyDivergenceAnalysisPass(*PassRegistry::getPassRegistry()); 289 } 290 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence", 291 "Legacy Divergence Analysis", false, true) 292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 293 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 294 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 295 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence", 296 "Legacy Divergence Analysis", false, true) 297 298 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() { 299 return new LegacyDivergenceAnalysis(); 300 } 301 302 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 303 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 304 AU.addRequiredTransitive<PostDominatorTreeWrapperPass>(); 305 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 306 AU.setPreservesAll(); 307 } 308 309 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis( 310 const Function &F, const TargetTransformInfo &TTI) const { 311 if (!(UseGPUDA || TTI.useGPUDivergenceAnalysis())) 312 return false; 313 314 // GPUDivergenceAnalysis requires a reducible CFG. 315 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 316 using RPOTraversal = ReversePostOrderTraversal<const Function *>; 317 RPOTraversal FuncRPOT(&F); 318 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal, 319 const LoopInfo>(FuncRPOT, LI); 320 } 321 322 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) { 323 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 324 if (TTIWP == nullptr) 325 return false; 326 327 TargetTransformInfo &TTI = TTIWP->getTTI(F); 328 // Fast path: if the target does not have branch divergence, we do not mark 329 // any branch as divergent. 330 if (!TTI.hasBranchDivergence()) 331 return false; 332 333 DivergentValues.clear(); 334 DivergentUses.clear(); 335 gpuDA = nullptr; 336 337 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 338 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 339 340 if (shouldUseGPUDivergenceAnalysis(F, TTI)) { 341 // run the new GPU divergence analysis 342 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 343 gpuDA = std::make_unique<DivergenceInfo>(F, DT, PDT, LI, TTI, 344 /* KnownReducible = */ true); 345 346 } else { 347 // run LLVM's existing DivergenceAnalysis 348 DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses); 349 DP.populateWithSourcesOfDivergence(); 350 DP.propagate(); 351 } 352 353 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName() 354 << ":\n"; 355 print(dbgs(), F.getParent())); 356 357 return false; 358 } 359 360 bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const { 361 if (gpuDA) { 362 return gpuDA->isDivergent(*V); 363 } 364 return DivergentValues.count(V); 365 } 366 367 bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const { 368 if (gpuDA) { 369 return gpuDA->isDivergentUse(*U); 370 } 371 return DivergentValues.count(U->get()) || DivergentUses.count(U); 372 } 373 374 void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const { 375 if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty()) 376 return; 377 378 const Function *F = nullptr; 379 if (!DivergentValues.empty()) { 380 const Value *FirstDivergentValue = *DivergentValues.begin(); 381 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { 382 F = Arg->getParent(); 383 } else if (const Instruction *I = 384 dyn_cast<Instruction>(FirstDivergentValue)) { 385 F = I->getParent()->getParent(); 386 } else { 387 llvm_unreachable("Only arguments and instructions can be divergent"); 388 } 389 } else if (gpuDA) { 390 F = &gpuDA->getFunction(); 391 } 392 if (!F) 393 return; 394 395 // Dumps all divergent values in F, arguments and then instructions. 396 for (auto &Arg : F->args()) { 397 OS << (isDivergent(&Arg) ? "DIVERGENT: " : " "); 398 OS << Arg << "\n"; 399 } 400 // Iterate instructions using instructions() to ensure a deterministic order. 401 for (const BasicBlock &BB : *F) { 402 OS << "\n " << BB.getName() << ":\n"; 403 for (auto &I : BB.instructionsWithoutDebug()) { 404 OS << (isDivergent(&I) ? "DIVERGENT: " : " "); 405 OS << I << "\n"; 406 } 407 } 408 OS << "\n"; 409 } 410