1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interface for lazy computation of value constraint 11 // information. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "lazy-value-info" 16 #include "llvm/Analysis/LazyValueInfo.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Target/TargetData.h" 23 #include "llvm/Target/TargetLibraryInfo.h" 24 #include "llvm/Support/CFG.h" 25 #include "llvm/Support/ConstantRange.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Support/ValueHandle.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include <map> 32 #include <stack> 33 using namespace llvm; 34 35 char LazyValueInfo::ID = 0; 36 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info", 37 "Lazy Value Information Analysis", false, true) 38 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 39 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info", 40 "Lazy Value Information Analysis", false, true) 41 42 namespace llvm { 43 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } 44 } 45 46 47 //===----------------------------------------------------------------------===// 48 // LVILatticeVal 49 //===----------------------------------------------------------------------===// 50 51 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each 52 /// value. 53 /// 54 /// FIXME: This is basically just for bringup, this can be made a lot more rich 55 /// in the future. 56 /// 57 namespace { 58 class LVILatticeVal { 59 enum LatticeValueTy { 60 /// undefined - This Value has no known value yet. 61 undefined, 62 63 /// constant - This Value has a specific constant value. 64 constant, 65 /// notconstant - This Value is known to not have the specified value. 66 notconstant, 67 68 /// constantrange - The Value falls within this range. 69 constantrange, 70 71 /// overdefined - This value is not known to be constant, and we know that 72 /// it has a value. 73 overdefined 74 }; 75 76 /// Val: This stores the current lattice value along with the Constant* for 77 /// the constant if this is a 'constant' or 'notconstant' value. 78 LatticeValueTy Tag; 79 Constant *Val; 80 ConstantRange Range; 81 82 public: 83 LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {} 84 85 static LVILatticeVal get(Constant *C) { 86 LVILatticeVal Res; 87 if (!isa<UndefValue>(C)) 88 Res.markConstant(C); 89 return Res; 90 } 91 static LVILatticeVal getNot(Constant *C) { 92 LVILatticeVal Res; 93 if (!isa<UndefValue>(C)) 94 Res.markNotConstant(C); 95 return Res; 96 } 97 static LVILatticeVal getRange(ConstantRange CR) { 98 LVILatticeVal Res; 99 Res.markConstantRange(CR); 100 return Res; 101 } 102 103 bool isUndefined() const { return Tag == undefined; } 104 bool isConstant() const { return Tag == constant; } 105 bool isNotConstant() const { return Tag == notconstant; } 106 bool isConstantRange() const { return Tag == constantrange; } 107 bool isOverdefined() const { return Tag == overdefined; } 108 109 Constant *getConstant() const { 110 assert(isConstant() && "Cannot get the constant of a non-constant!"); 111 return Val; 112 } 113 114 Constant *getNotConstant() const { 115 assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); 116 return Val; 117 } 118 119 ConstantRange getConstantRange() const { 120 assert(isConstantRange() && 121 "Cannot get the constant-range of a non-constant-range!"); 122 return Range; 123 } 124 125 /// markOverdefined - Return true if this is a change in status. 126 bool markOverdefined() { 127 if (isOverdefined()) 128 return false; 129 Tag = overdefined; 130 return true; 131 } 132 133 /// markConstant - Return true if this is a change in status. 134 bool markConstant(Constant *V) { 135 assert(V && "Marking constant with NULL"); 136 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 137 return markConstantRange(ConstantRange(CI->getValue())); 138 if (isa<UndefValue>(V)) 139 return false; 140 141 assert((!isConstant() || getConstant() == V) && 142 "Marking constant with different value"); 143 assert(isUndefined()); 144 Tag = constant; 145 Val = V; 146 return true; 147 } 148 149 /// markNotConstant - Return true if this is a change in status. 150 bool markNotConstant(Constant *V) { 151 assert(V && "Marking constant with NULL"); 152 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 153 return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); 154 if (isa<UndefValue>(V)) 155 return false; 156 157 assert((!isConstant() || getConstant() != V) && 158 "Marking constant !constant with same value"); 159 assert((!isNotConstant() || getNotConstant() == V) && 160 "Marking !constant with different value"); 161 assert(isUndefined() || isConstant()); 162 Tag = notconstant; 163 Val = V; 164 return true; 165 } 166 167 /// markConstantRange - Return true if this is a change in status. 168 bool markConstantRange(const ConstantRange NewR) { 169 if (isConstantRange()) { 170 if (NewR.isEmptySet()) 171 return markOverdefined(); 172 173 bool changed = Range == NewR; 174 Range = NewR; 175 return changed; 176 } 177 178 assert(isUndefined()); 179 if (NewR.isEmptySet()) 180 return markOverdefined(); 181 182 Tag = constantrange; 183 Range = NewR; 184 return true; 185 } 186 187 /// mergeIn - Merge the specified lattice value into this one, updating this 188 /// one and returning true if anything changed. 189 bool mergeIn(const LVILatticeVal &RHS) { 190 if (RHS.isUndefined() || isOverdefined()) return false; 191 if (RHS.isOverdefined()) return markOverdefined(); 192 193 if (isUndefined()) { 194 Tag = RHS.Tag; 195 Val = RHS.Val; 196 Range = RHS.Range; 197 return true; 198 } 199 200 if (isConstant()) { 201 if (RHS.isConstant()) { 202 if (Val == RHS.Val) 203 return false; 204 return markOverdefined(); 205 } 206 207 if (RHS.isNotConstant()) { 208 if (Val == RHS.Val) 209 return markOverdefined(); 210 211 // Unless we can prove that the two Constants are different, we must 212 // move to overdefined. 213 // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding. 214 if (ConstantInt *Res = dyn_cast<ConstantInt>( 215 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, 216 getConstant(), 217 RHS.getNotConstant()))) 218 if (Res->isOne()) 219 return markNotConstant(RHS.getNotConstant()); 220 221 return markOverdefined(); 222 } 223 224 // RHS is a ConstantRange, LHS is a non-integer Constant. 225 226 // FIXME: consider the case where RHS is a range [1, 0) and LHS is 227 // a function. The correct result is to pick up RHS. 228 229 return markOverdefined(); 230 } 231 232 if (isNotConstant()) { 233 if (RHS.isConstant()) { 234 if (Val == RHS.Val) 235 return markOverdefined(); 236 237 // Unless we can prove that the two Constants are different, we must 238 // move to overdefined. 239 // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding. 240 if (ConstantInt *Res = dyn_cast<ConstantInt>( 241 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, 242 getNotConstant(), 243 RHS.getConstant()))) 244 if (Res->isOne()) 245 return false; 246 247 return markOverdefined(); 248 } 249 250 if (RHS.isNotConstant()) { 251 if (Val == RHS.Val) 252 return false; 253 return markOverdefined(); 254 } 255 256 return markOverdefined(); 257 } 258 259 assert(isConstantRange() && "New LVILattice type?"); 260 if (!RHS.isConstantRange()) 261 return markOverdefined(); 262 263 ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); 264 if (NewR.isFullSet()) 265 return markOverdefined(); 266 return markConstantRange(NewR); 267 } 268 }; 269 270 } // end anonymous namespace. 271 272 namespace llvm { 273 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) 274 LLVM_ATTRIBUTE_USED; 275 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { 276 if (Val.isUndefined()) 277 return OS << "undefined"; 278 if (Val.isOverdefined()) 279 return OS << "overdefined"; 280 281 if (Val.isNotConstant()) 282 return OS << "notconstant<" << *Val.getNotConstant() << '>'; 283 else if (Val.isConstantRange()) 284 return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " 285 << Val.getConstantRange().getUpper() << '>'; 286 return OS << "constant<" << *Val.getConstant() << '>'; 287 } 288 } 289 290 //===----------------------------------------------------------------------===// 291 // LazyValueInfoCache Decl 292 //===----------------------------------------------------------------------===// 293 294 namespace { 295 /// LVIValueHandle - A callback value handle update the cache when 296 /// values are erased. 297 class LazyValueInfoCache; 298 struct LVIValueHandle : public CallbackVH { 299 LazyValueInfoCache *Parent; 300 301 LVIValueHandle(Value *V, LazyValueInfoCache *P) 302 : CallbackVH(V), Parent(P) { } 303 304 void deleted(); 305 void allUsesReplacedWith(Value *V) { 306 deleted(); 307 } 308 }; 309 } 310 311 namespace { 312 /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which 313 /// maintains information about queries across the clients' queries. 314 class LazyValueInfoCache { 315 /// ValueCacheEntryTy - This is all of the cached block information for 316 /// exactly one Value*. The entries are sorted by the BasicBlock* of the 317 /// entries, allowing us to do a lookup with a binary search. 318 typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy; 319 320 /// ValueCache - This is all of the cached information for all values, 321 /// mapped from Value* to key information. 322 std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache; 323 324 /// OverDefinedCache - This tracks, on a per-block basis, the set of 325 /// values that are over-defined at the end of that block. This is required 326 /// for cache updating. 327 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; 328 DenseSet<OverDefinedPairTy> OverDefinedCache; 329 330 /// SeenBlocks - Keep track of all blocks that we have ever seen, so we 331 /// don't spend time removing unused blocks from our caches. 332 DenseSet<AssertingVH<BasicBlock> > SeenBlocks; 333 334 /// BlockValueStack - This stack holds the state of the value solver 335 /// during a query. It basically emulates the callstack of the naive 336 /// recursive value lookup process. 337 std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack; 338 339 friend struct LVIValueHandle; 340 341 /// OverDefinedCacheUpdater - A helper object that ensures that the 342 /// OverDefinedCache is updated whenever solveBlockValue returns. 343 struct OverDefinedCacheUpdater { 344 LazyValueInfoCache *Parent; 345 Value *Val; 346 BasicBlock *BB; 347 LVILatticeVal &BBLV; 348 349 OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV, 350 LazyValueInfoCache *P) 351 : Parent(P), Val(V), BB(B), BBLV(LV) { } 352 353 bool markResult(bool changed) { 354 if (changed && BBLV.isOverdefined()) 355 Parent->OverDefinedCache.insert(std::make_pair(BB, Val)); 356 return changed; 357 } 358 }; 359 360 361 362 LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); 363 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, 364 LVILatticeVal &Result); 365 bool hasBlockValue(Value *Val, BasicBlock *BB); 366 367 // These methods process one work item and may add more. A false value 368 // returned means that the work item was not completely processed and must 369 // be revisited after going through the new items. 370 bool solveBlockValue(Value *Val, BasicBlock *BB); 371 bool solveBlockValueNonLocal(LVILatticeVal &BBLV, 372 Value *Val, BasicBlock *BB); 373 bool solveBlockValuePHINode(LVILatticeVal &BBLV, 374 PHINode *PN, BasicBlock *BB); 375 bool solveBlockValueConstantRange(LVILatticeVal &BBLV, 376 Instruction *BBI, BasicBlock *BB); 377 378 void solve(); 379 380 ValueCacheEntryTy &lookup(Value *V) { 381 return ValueCache[LVIValueHandle(V, this)]; 382 } 383 384 public: 385 /// getValueInBlock - This is the query interface to determine the lattice 386 /// value for the specified Value* at the end of the specified block. 387 LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); 388 389 /// getValueOnEdge - This is the query interface to determine the lattice 390 /// value for the specified Value* that is true on the specified edge. 391 LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); 392 393 /// threadEdge - This is the update interface to inform the cache that an 394 /// edge from PredBB to OldSucc has been threaded to be from PredBB to 395 /// NewSucc. 396 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 397 398 /// eraseBlock - This is part of the update interface to inform the cache 399 /// that a block has been deleted. 400 void eraseBlock(BasicBlock *BB); 401 402 /// clear - Empty the cache. 403 void clear() { 404 SeenBlocks.clear(); 405 ValueCache.clear(); 406 OverDefinedCache.clear(); 407 } 408 }; 409 } // end anonymous namespace 410 411 void LVIValueHandle::deleted() { 412 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy; 413 414 SmallVector<OverDefinedPairTy, 4> ToErase; 415 for (DenseSet<OverDefinedPairTy>::iterator 416 I = Parent->OverDefinedCache.begin(), 417 E = Parent->OverDefinedCache.end(); 418 I != E; ++I) { 419 if (I->second == getValPtr()) 420 ToErase.push_back(*I); 421 } 422 423 for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), 424 E = ToErase.end(); I != E; ++I) 425 Parent->OverDefinedCache.erase(*I); 426 427 // This erasure deallocates *this, so it MUST happen after we're done 428 // using any and all members of *this. 429 Parent->ValueCache.erase(*this); 430 } 431 432 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 433 // Shortcut if we have never seen this block. 434 DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); 435 if (I == SeenBlocks.end()) 436 return; 437 SeenBlocks.erase(I); 438 439 SmallVector<OverDefinedPairTy, 4> ToErase; 440 for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), 441 E = OverDefinedCache.end(); I != E; ++I) { 442 if (I->first == BB) 443 ToErase.push_back(*I); 444 } 445 446 for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(), 447 E = ToErase.end(); I != E; ++I) 448 OverDefinedCache.erase(*I); 449 450 for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator 451 I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) 452 I->second.erase(BB); 453 } 454 455 void LazyValueInfoCache::solve() { 456 while (!BlockValueStack.empty()) { 457 std::pair<BasicBlock*, Value*> &e = BlockValueStack.top(); 458 if (solveBlockValue(e.second, e.first)) 459 BlockValueStack.pop(); 460 } 461 } 462 463 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { 464 // If already a constant, there is nothing to compute. 465 if (isa<Constant>(Val)) 466 return true; 467 468 LVIValueHandle ValHandle(Val, this); 469 if (!ValueCache.count(ValHandle)) return false; 470 return ValueCache[ValHandle].count(BB); 471 } 472 473 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { 474 // If already a constant, there is nothing to compute. 475 if (Constant *VC = dyn_cast<Constant>(Val)) 476 return LVILatticeVal::get(VC); 477 478 SeenBlocks.insert(BB); 479 return lookup(Val)[BB]; 480 } 481 482 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { 483 if (isa<Constant>(Val)) 484 return true; 485 486 ValueCacheEntryTy &Cache = lookup(Val); 487 SeenBlocks.insert(BB); 488 LVILatticeVal &BBLV = Cache[BB]; 489 490 // OverDefinedCacheUpdater is a helper object that will update 491 // the OverDefinedCache for us when this method exits. Make sure to 492 // call markResult on it as we exist, passing a bool to indicate if the 493 // cache needs updating, i.e. if we have solve a new value or not. 494 OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this); 495 496 // If we've already computed this block's value, return it. 497 if (!BBLV.isUndefined()) { 498 DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); 499 500 // Since we're reusing a cached value here, we don't need to update the 501 // OverDefinedCahce. The cache will have been properly updated 502 // whenever the cached value was inserted. 503 ODCacheUpdater.markResult(false); 504 return true; 505 } 506 507 // Otherwise, this is the first time we're seeing this block. Reset the 508 // lattice value to overdefined, so that cycles will terminate and be 509 // conservatively correct. 510 BBLV.markOverdefined(); 511 512 Instruction *BBI = dyn_cast<Instruction>(Val); 513 if (BBI == 0 || BBI->getParent() != BB) { 514 return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB)); 515 } 516 517 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 518 return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB)); 519 } 520 521 if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) { 522 BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType())); 523 return ODCacheUpdater.markResult(true); 524 } 525 526 // We can only analyze the definitions of certain classes of instructions 527 // (integral binops and casts at the moment), so bail if this isn't one. 528 LVILatticeVal Result; 529 if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) || 530 !BBI->getType()->isIntegerTy()) { 531 DEBUG(dbgs() << " compute BB '" << BB->getName() 532 << "' - overdefined because inst def found.\n"); 533 BBLV.markOverdefined(); 534 return ODCacheUpdater.markResult(true); 535 } 536 537 // FIXME: We're currently limited to binops with a constant RHS. This should 538 // be improved. 539 BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); 540 if (BO && !isa<ConstantInt>(BO->getOperand(1))) { 541 DEBUG(dbgs() << " compute BB '" << BB->getName() 542 << "' - overdefined because inst def found.\n"); 543 544 BBLV.markOverdefined(); 545 return ODCacheUpdater.markResult(true); 546 } 547 548 return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB)); 549 } 550 551 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { 552 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 553 return L->getPointerAddressSpace() == 0 && 554 GetUnderlyingObject(L->getPointerOperand()) == 555 GetUnderlyingObject(Ptr); 556 } 557 if (StoreInst *S = dyn_cast<StoreInst>(I)) { 558 return S->getPointerAddressSpace() == 0 && 559 GetUnderlyingObject(S->getPointerOperand()) == 560 GetUnderlyingObject(Ptr); 561 } 562 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 563 if (MI->isVolatile()) return false; 564 565 // FIXME: check whether it has a valuerange that excludes zero? 566 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 567 if (!Len || Len->isZero()) return false; 568 569 if (MI->getDestAddressSpace() == 0) 570 if (MI->getRawDest() == Ptr || MI->getDest() == Ptr) 571 return true; 572 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 573 if (MTI->getSourceAddressSpace() == 0) 574 if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr) 575 return true; 576 } 577 return false; 578 } 579 580 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, 581 Value *Val, BasicBlock *BB) { 582 LVILatticeVal Result; // Start Undefined. 583 584 // If this is a pointer, and there's a load from that pointer in this BB, 585 // then we know that the pointer can't be NULL. 586 bool NotNull = false; 587 if (Val->getType()->isPointerTy()) { 588 if (isa<AllocaInst>(Val)) { 589 NotNull = true; 590 } else { 591 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){ 592 if (InstructionDereferencesPointer(BI, Val)) { 593 NotNull = true; 594 break; 595 } 596 } 597 } 598 } 599 600 // If this is the entry block, we must be asking about an argument. The 601 // value is overdefined. 602 if (BB == &BB->getParent()->getEntryBlock()) { 603 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 604 if (NotNull) { 605 PointerType *PTy = cast<PointerType>(Val->getType()); 606 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); 607 } else { 608 Result.markOverdefined(); 609 } 610 BBLV = Result; 611 return true; 612 } 613 614 // Loop over all of our predecessors, merging what we know from them into 615 // result. 616 bool EdgesMissing = false; 617 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 618 LVILatticeVal EdgeResult; 619 EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); 620 if (EdgesMissing) 621 continue; 622 623 Result.mergeIn(EdgeResult); 624 625 // If we hit overdefined, exit early. The BlockVals entry is already set 626 // to overdefined. 627 if (Result.isOverdefined()) { 628 DEBUG(dbgs() << " compute BB '" << BB->getName() 629 << "' - overdefined because of pred.\n"); 630 // If we previously determined that this is a pointer that can't be null 631 // then return that rather than giving up entirely. 632 if (NotNull) { 633 PointerType *PTy = cast<PointerType>(Val->getType()); 634 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); 635 } 636 637 BBLV = Result; 638 return true; 639 } 640 } 641 if (EdgesMissing) 642 return false; 643 644 // Return the merged value, which is more precise than 'overdefined'. 645 assert(!Result.isOverdefined()); 646 BBLV = Result; 647 return true; 648 } 649 650 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, 651 PHINode *PN, BasicBlock *BB) { 652 LVILatticeVal Result; // Start Undefined. 653 654 // Loop over all of our predecessors, merging what we know from them into 655 // result. 656 bool EdgesMissing = false; 657 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 658 BasicBlock *PhiBB = PN->getIncomingBlock(i); 659 Value *PhiVal = PN->getIncomingValue(i); 660 LVILatticeVal EdgeResult; 661 EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult); 662 if (EdgesMissing) 663 continue; 664 665 Result.mergeIn(EdgeResult); 666 667 // If we hit overdefined, exit early. The BlockVals entry is already set 668 // to overdefined. 669 if (Result.isOverdefined()) { 670 DEBUG(dbgs() << " compute BB '" << BB->getName() 671 << "' - overdefined because of pred.\n"); 672 673 BBLV = Result; 674 return true; 675 } 676 } 677 if (EdgesMissing) 678 return false; 679 680 // Return the merged value, which is more precise than 'overdefined'. 681 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 682 BBLV = Result; 683 return true; 684 } 685 686 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV, 687 Instruction *BBI, 688 BasicBlock *BB) { 689 // Figure out the range of the LHS. If that fails, bail. 690 if (!hasBlockValue(BBI->getOperand(0), BB)) { 691 BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0))); 692 return false; 693 } 694 695 LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); 696 if (!LHSVal.isConstantRange()) { 697 BBLV.markOverdefined(); 698 return true; 699 } 700 701 ConstantRange LHSRange = LHSVal.getConstantRange(); 702 ConstantRange RHSRange(1); 703 IntegerType *ResultTy = cast<IntegerType>(BBI->getType()); 704 if (isa<BinaryOperator>(BBI)) { 705 if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) { 706 RHSRange = ConstantRange(RHS->getValue()); 707 } else { 708 BBLV.markOverdefined(); 709 return true; 710 } 711 } 712 713 // NOTE: We're currently limited by the set of operations that ConstantRange 714 // can evaluate symbolically. Enhancing that set will allows us to analyze 715 // more definitions. 716 LVILatticeVal Result; 717 switch (BBI->getOpcode()) { 718 case Instruction::Add: 719 Result.markConstantRange(LHSRange.add(RHSRange)); 720 break; 721 case Instruction::Sub: 722 Result.markConstantRange(LHSRange.sub(RHSRange)); 723 break; 724 case Instruction::Mul: 725 Result.markConstantRange(LHSRange.multiply(RHSRange)); 726 break; 727 case Instruction::UDiv: 728 Result.markConstantRange(LHSRange.udiv(RHSRange)); 729 break; 730 case Instruction::Shl: 731 Result.markConstantRange(LHSRange.shl(RHSRange)); 732 break; 733 case Instruction::LShr: 734 Result.markConstantRange(LHSRange.lshr(RHSRange)); 735 break; 736 case Instruction::Trunc: 737 Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); 738 break; 739 case Instruction::SExt: 740 Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); 741 break; 742 case Instruction::ZExt: 743 Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); 744 break; 745 case Instruction::BitCast: 746 Result.markConstantRange(LHSRange); 747 break; 748 case Instruction::And: 749 Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); 750 break; 751 case Instruction::Or: 752 Result.markConstantRange(LHSRange.binaryOr(RHSRange)); 753 break; 754 755 // Unhandled instructions are overdefined. 756 default: 757 DEBUG(dbgs() << " compute BB '" << BB->getName() 758 << "' - overdefined because inst def found.\n"); 759 Result.markOverdefined(); 760 break; 761 } 762 763 BBLV = Result; 764 return true; 765 } 766 767 /// getEdgeValue - This method attempts to infer more complex 768 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, 769 BasicBlock *BBTo, LVILatticeVal &Result) { 770 // If already a constant, there is nothing to compute. 771 if (Constant *VC = dyn_cast<Constant>(Val)) { 772 Result = LVILatticeVal::get(VC); 773 return true; 774 } 775 776 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 777 // know that v != 0. 778 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 779 // If this is a conditional branch and only one successor goes to BBTo, then 780 // we maybe able to infer something from the condition. 781 if (BI->isConditional() && 782 BI->getSuccessor(0) != BI->getSuccessor(1)) { 783 bool isTrueDest = BI->getSuccessor(0) == BBTo; 784 assert(BI->getSuccessor(!isTrueDest) == BBTo && 785 "BBTo isn't a successor of BBFrom"); 786 787 // If V is the condition of the branch itself, then we know exactly what 788 // it is. 789 if (BI->getCondition() == Val) { 790 Result = LVILatticeVal::get(ConstantInt::get( 791 Type::getInt1Ty(Val->getContext()), isTrueDest)); 792 return true; 793 } 794 795 // If the condition of the branch is an equality comparison, we may be 796 // able to infer the value. 797 ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 798 if (ICI && ICI->getOperand(0) == Val && 799 isa<Constant>(ICI->getOperand(1))) { 800 if (ICI->isEquality()) { 801 // We know that V has the RHS constant if this is a true SETEQ or 802 // false SETNE. 803 if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) 804 Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); 805 else 806 Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); 807 return true; 808 } 809 810 if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 811 // Calculate the range of values that would satisfy the comparison. 812 ConstantRange CmpRange(CI->getValue(), CI->getValue()+1); 813 ConstantRange TrueValues = 814 ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange); 815 816 // If we're interested in the false dest, invert the condition. 817 if (!isTrueDest) TrueValues = TrueValues.inverse(); 818 819 // Figure out the possible values of the query BEFORE this branch. 820 if (!hasBlockValue(Val, BBFrom)) { 821 BlockValueStack.push(std::make_pair(BBFrom, Val)); 822 return false; 823 } 824 825 LVILatticeVal InBlock = getBlockValue(Val, BBFrom); 826 if (!InBlock.isConstantRange()) { 827 Result = LVILatticeVal::getRange(TrueValues); 828 return true; 829 } 830 831 // Find all potential values that satisfy both the input and output 832 // conditions. 833 ConstantRange PossibleValues = 834 TrueValues.intersectWith(InBlock.getConstantRange()); 835 836 Result = LVILatticeVal::getRange(PossibleValues); 837 return true; 838 } 839 } 840 } 841 } 842 843 // If the edge was formed by a switch on the value, then we may know exactly 844 // what it is. 845 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 846 if (SI->getCondition() == Val) { 847 // We don't know anything in the default case. 848 if (SI->getDefaultDest() == BBTo) { 849 Result.markOverdefined(); 850 return true; 851 } 852 853 // We only know something if there is exactly one value that goes from 854 // BBFrom to BBTo. 855 unsigned NumEdges = 0; 856 ConstantInt *EdgeVal = 0; 857 for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i) { 858 if (SI->getCaseSuccessor(i) != BBTo) continue; 859 if (NumEdges++) break; 860 EdgeVal = SI->getCaseValue(i); 861 } 862 assert(EdgeVal && "Missing successor?"); 863 if (NumEdges == 1) { 864 Result = LVILatticeVal::get(EdgeVal); 865 return true; 866 } 867 } 868 } 869 870 // Otherwise see if the value is known in the block. 871 if (hasBlockValue(Val, BBFrom)) { 872 Result = getBlockValue(Val, BBFrom); 873 return true; 874 } 875 BlockValueStack.push(std::make_pair(BBFrom, Val)); 876 return false; 877 } 878 879 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { 880 DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 881 << BB->getName() << "'\n"); 882 883 BlockValueStack.push(std::make_pair(BB, V)); 884 solve(); 885 LVILatticeVal Result = getBlockValue(V, BB); 886 887 DEBUG(dbgs() << " Result = " << Result << "\n"); 888 return Result; 889 } 890 891 LVILatticeVal LazyValueInfoCache:: 892 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { 893 DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 894 << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); 895 896 LVILatticeVal Result; 897 if (!getEdgeValue(V, FromBB, ToBB, Result)) { 898 solve(); 899 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result); 900 (void)WasFastQuery; 901 assert(WasFastQuery && "More work to do after problem solved?"); 902 } 903 904 DEBUG(dbgs() << " Result = " << Result << "\n"); 905 return Result; 906 } 907 908 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 909 BasicBlock *NewSucc) { 910 // When an edge in the graph has been threaded, values that we could not 911 // determine a value for before (i.e. were marked overdefined) may be possible 912 // to solve now. We do NOT try to proactively update these values. Instead, 913 // we clear their entries from the cache, and allow lazy updating to recompute 914 // them when needed. 915 916 // The updating process is fairly simple: we need to dropped cached info 917 // for all values that were marked overdefined in OldSucc, and for those same 918 // values in any successor of OldSucc (except NewSucc) in which they were 919 // also marked overdefined. 920 std::vector<BasicBlock*> worklist; 921 worklist.push_back(OldSucc); 922 923 DenseSet<Value*> ClearSet; 924 for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(), 925 E = OverDefinedCache.end(); I != E; ++I) { 926 if (I->first == OldSucc) 927 ClearSet.insert(I->second); 928 } 929 930 // Use a worklist to perform a depth-first search of OldSucc's successors. 931 // NOTE: We do not need a visited list since any blocks we have already 932 // visited will have had their overdefined markers cleared already, and we 933 // thus won't loop to their successors. 934 while (!worklist.empty()) { 935 BasicBlock *ToUpdate = worklist.back(); 936 worklist.pop_back(); 937 938 // Skip blocks only accessible through NewSucc. 939 if (ToUpdate == NewSucc) continue; 940 941 bool changed = false; 942 for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end(); 943 I != E; ++I) { 944 // If a value was marked overdefined in OldSucc, and is here too... 945 DenseSet<OverDefinedPairTy>::iterator OI = 946 OverDefinedCache.find(std::make_pair(ToUpdate, *I)); 947 if (OI == OverDefinedCache.end()) continue; 948 949 // Remove it from the caches. 950 ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; 951 ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); 952 953 assert(CI != Entry.end() && "Couldn't find entry to update?"); 954 Entry.erase(CI); 955 OverDefinedCache.erase(OI); 956 957 // If we removed anything, then we potentially need to update 958 // blocks successors too. 959 changed = true; 960 } 961 962 if (!changed) continue; 963 964 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); 965 } 966 } 967 968 //===----------------------------------------------------------------------===// 969 // LazyValueInfo Impl 970 //===----------------------------------------------------------------------===// 971 972 /// getCache - This lazily constructs the LazyValueInfoCache. 973 static LazyValueInfoCache &getCache(void *&PImpl) { 974 if (!PImpl) 975 PImpl = new LazyValueInfoCache(); 976 return *static_cast<LazyValueInfoCache*>(PImpl); 977 } 978 979 bool LazyValueInfo::runOnFunction(Function &F) { 980 if (PImpl) 981 getCache(PImpl).clear(); 982 983 TD = getAnalysisIfAvailable<TargetData>(); 984 TLI = &getAnalysis<TargetLibraryInfo>(); 985 986 // Fully lazy. 987 return false; 988 } 989 990 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const { 991 AU.setPreservesAll(); 992 AU.addRequired<TargetLibraryInfo>(); 993 } 994 995 void LazyValueInfo::releaseMemory() { 996 // If the cache was allocated, free it. 997 if (PImpl) { 998 delete &getCache(PImpl); 999 PImpl = 0; 1000 } 1001 } 1002 1003 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { 1004 LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); 1005 1006 if (Result.isConstant()) 1007 return Result.getConstant(); 1008 if (Result.isConstantRange()) { 1009 ConstantRange CR = Result.getConstantRange(); 1010 if (const APInt *SingleVal = CR.getSingleElement()) 1011 return ConstantInt::get(V->getContext(), *SingleVal); 1012 } 1013 return 0; 1014 } 1015 1016 /// getConstantOnEdge - Determine whether the specified value is known to be a 1017 /// constant on the specified edge. Return null if not. 1018 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1019 BasicBlock *ToBB) { 1020 LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); 1021 1022 if (Result.isConstant()) 1023 return Result.getConstant(); 1024 if (Result.isConstantRange()) { 1025 ConstantRange CR = Result.getConstantRange(); 1026 if (const APInt *SingleVal = CR.getSingleElement()) 1027 return ConstantInt::get(V->getContext(), *SingleVal); 1028 } 1029 return 0; 1030 } 1031 1032 /// getPredicateOnEdge - Determine whether the specified value comparison 1033 /// with a constant is known to be true or false on the specified CFG edge. 1034 /// Pred is a CmpInst predicate. 1035 LazyValueInfo::Tristate 1036 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1037 BasicBlock *FromBB, BasicBlock *ToBB) { 1038 LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); 1039 1040 // If we know the value is a constant, evaluate the conditional. 1041 Constant *Res = 0; 1042 if (Result.isConstant()) { 1043 Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD, 1044 TLI); 1045 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1046 return ResCI->isZero() ? False : True; 1047 return Unknown; 1048 } 1049 1050 if (Result.isConstantRange()) { 1051 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1052 if (!CI) return Unknown; 1053 1054 ConstantRange CR = Result.getConstantRange(); 1055 if (Pred == ICmpInst::ICMP_EQ) { 1056 if (!CR.contains(CI->getValue())) 1057 return False; 1058 1059 if (CR.isSingleElement() && CR.contains(CI->getValue())) 1060 return True; 1061 } else if (Pred == ICmpInst::ICMP_NE) { 1062 if (!CR.contains(CI->getValue())) 1063 return True; 1064 1065 if (CR.isSingleElement() && CR.contains(CI->getValue())) 1066 return False; 1067 } 1068 1069 // Handle more complex predicates. 1070 ConstantRange TrueValues = 1071 ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); 1072 if (TrueValues.contains(CR)) 1073 return True; 1074 if (TrueValues.inverse().contains(CR)) 1075 return False; 1076 return Unknown; 1077 } 1078 1079 if (Result.isNotConstant()) { 1080 // If this is an equality comparison, we can try to fold it knowing that 1081 // "V != C1". 1082 if (Pred == ICmpInst::ICMP_EQ) { 1083 // !C1 == C -> false iff C1 == C. 1084 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1085 Result.getNotConstant(), C, TD, 1086 TLI); 1087 if (Res->isNullValue()) 1088 return False; 1089 } else if (Pred == ICmpInst::ICMP_NE) { 1090 // !C1 != C -> true iff C1 == C. 1091 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1092 Result.getNotConstant(), C, TD, 1093 TLI); 1094 if (Res->isNullValue()) 1095 return True; 1096 } 1097 return Unknown; 1098 } 1099 1100 return Unknown; 1101 } 1102 1103 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1104 BasicBlock *NewSucc) { 1105 if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); 1106 } 1107 1108 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1109 if (PImpl) getCache(PImpl).eraseBlock(BB); 1110 } 1111