1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueLattice.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/AssemblyAnnotationWriter.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <map> 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 #define DEBUG_TYPE "lazy-value-info" 45 46 // This is the number of worklist items we will process to try to discover an 47 // answer for a given value. 48 static const unsigned MaxProcessedPerValue = 500; 49 50 char LazyValueInfoWrapperPass::ID = 0; 51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { 52 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 53 } 54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 55 "Lazy Value Information Analysis", false, true) 56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 59 "Lazy Value Information Analysis", false, true) 60 61 namespace llvm { 62 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 63 } 64 65 AnalysisKey LazyValueAnalysis::Key; 66 67 /// Returns true if this lattice value represents at most one possible value. 68 /// This is as precise as any lattice value can get while still representing 69 /// reachable code. 70 static bool hasSingleValue(const ValueLatticeElement &Val) { 71 if (Val.isConstantRange() && 72 Val.getConstantRange().isSingleElement()) 73 // Integer constants are single element ranges 74 return true; 75 if (Val.isConstant()) 76 // Non integer constants 77 return true; 78 return false; 79 } 80 81 /// Combine two sets of facts about the same value into a single set of 82 /// facts. Note that this method is not suitable for merging facts along 83 /// different paths in a CFG; that's what the mergeIn function is for. This 84 /// is for merging facts gathered about the same value at the same location 85 /// through two independent means. 86 /// Notes: 87 /// * This method does not promise to return the most precise possible lattice 88 /// value implied by A and B. It is allowed to return any lattice element 89 /// which is at least as strong as *either* A or B (unless our facts 90 /// conflict, see below). 91 /// * Due to unreachable code, the intersection of two lattice values could be 92 /// contradictory. If this happens, we return some valid lattice value so as 93 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 94 /// we do not make this guarantee. TODO: This would be a useful enhancement. 95 static ValueLatticeElement intersect(const ValueLatticeElement &A, 96 const ValueLatticeElement &B) { 97 // Undefined is the strongest state. It means the value is known to be along 98 // an unreachable path. 99 if (A.isUnknown()) 100 return A; 101 if (B.isUnknown()) 102 return B; 103 104 // If we gave up for one, but got a useable fact from the other, use it. 105 if (A.isOverdefined()) 106 return B; 107 if (B.isOverdefined()) 108 return A; 109 110 // Can't get any more precise than constants. 111 if (hasSingleValue(A)) 112 return A; 113 if (hasSingleValue(B)) 114 return B; 115 116 // Could be either constant range or not constant here. 117 if (!A.isConstantRange() || !B.isConstantRange()) { 118 // TODO: Arbitrary choice, could be improved 119 return A; 120 } 121 122 // Intersect two constant ranges 123 ConstantRange Range = 124 A.getConstantRange().intersectWith(B.getConstantRange()); 125 // Note: An empty range is implicitly converted to unknown or undef depending 126 // on MayIncludeUndef internally. 127 return ValueLatticeElement::getRange( 128 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() | 129 B.isConstantRangeIncludingUndef()); 130 } 131 132 //===----------------------------------------------------------------------===// 133 // LazyValueInfoCache Decl 134 //===----------------------------------------------------------------------===// 135 136 namespace { 137 /// A callback value handle updates the cache when values are erased. 138 class LazyValueInfoCache; 139 struct LVIValueHandle final : public CallbackVH { 140 // Needs to access getValPtr(), which is protected. 141 friend struct DenseMapInfo<LVIValueHandle>; 142 143 LazyValueInfoCache *Parent; 144 145 LVIValueHandle(Value *V, LazyValueInfoCache *P) 146 : CallbackVH(V), Parent(P) { } 147 148 void deleted() override; 149 void allUsesReplacedWith(Value *V) override { 150 deleted(); 151 } 152 }; 153 } // end anonymous namespace 154 155 namespace { 156 /// This is the cache kept by LazyValueInfo which 157 /// maintains information about queries across the clients' queries. 158 class LazyValueInfoCache { 159 /// This is all of the cached block information for exactly one Value*. 160 /// The entries are sorted by the BasicBlock* of the 161 /// entries, allowing us to do a lookup with a binary search. 162 /// Over-defined lattice values are recorded in OverDefinedCache to reduce 163 /// memory overhead. 164 struct ValueCacheEntryTy { 165 ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} 166 LVIValueHandle Handle; 167 SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals; 168 }; 169 170 /// This tracks, on a per-block basis, the set of values that are 171 /// over-defined at the end of that block. 172 typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>> 173 OverDefinedCacheTy; 174 /// Keep track of all blocks that we have ever seen, so we 175 /// don't spend time removing unused blocks from our caches. 176 DenseSet<PoisoningVH<BasicBlock> > SeenBlocks; 177 178 /// This is all of the cached information for all values, 179 /// mapped from Value* to key information. 180 DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache; 181 OverDefinedCacheTy OverDefinedCache; 182 183 184 public: 185 void insertResult(Value *Val, BasicBlock *BB, 186 const ValueLatticeElement &Result) { 187 SeenBlocks.insert(BB); 188 189 // Insert over-defined values into their own cache to reduce memory 190 // overhead. 191 if (Result.isOverdefined()) 192 OverDefinedCache[BB].insert(Val); 193 else { 194 auto It = ValueCache.find_as(Val); 195 if (It == ValueCache.end()) { 196 ValueCache[Val] = std::make_unique<ValueCacheEntryTy>(Val, this); 197 It = ValueCache.find_as(Val); 198 assert(It != ValueCache.end() && "Val was just added to the map!"); 199 } 200 It->second->BlockVals[BB] = Result; 201 } 202 } 203 204 bool isOverdefined(Value *V, BasicBlock *BB) const { 205 auto ODI = OverDefinedCache.find(BB); 206 207 if (ODI == OverDefinedCache.end()) 208 return false; 209 210 return ODI->second.count(V); 211 } 212 213 Optional<ValueLatticeElement> getCachedValueInfo(Value *V, 214 BasicBlock *BB) const { 215 if (isOverdefined(V, BB)) 216 return ValueLatticeElement::getOverdefined(); 217 218 auto I = ValueCache.find_as(V); 219 if (I == ValueCache.end()) 220 return None; 221 auto BBI = I->second->BlockVals.find(BB); 222 if (BBI == I->second->BlockVals.end()) 223 return None; 224 return BBI->second; 225 } 226 227 /// clear - Empty the cache. 228 void clear() { 229 SeenBlocks.clear(); 230 ValueCache.clear(); 231 OverDefinedCache.clear(); 232 } 233 234 /// Inform the cache that a given value has been deleted. 235 void eraseValue(Value *V); 236 237 /// This is part of the update interface to inform the cache 238 /// that a block has been deleted. 239 void eraseBlock(BasicBlock *BB); 240 241 /// Updates the cache to remove any influence an overdefined value in 242 /// OldSucc might have (unless also overdefined in NewSucc). This just 243 /// flushes elements from the cache and does not add any. 244 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 245 246 friend struct LVIValueHandle; 247 }; 248 } 249 250 void LazyValueInfoCache::eraseValue(Value *V) { 251 for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) { 252 // Copy and increment the iterator immediately so we can erase behind 253 // ourselves. 254 auto Iter = I++; 255 SmallPtrSetImpl<Value *> &ValueSet = Iter->second; 256 ValueSet.erase(V); 257 if (ValueSet.empty()) 258 OverDefinedCache.erase(Iter); 259 } 260 261 ValueCache.erase(V); 262 } 263 264 void LVIValueHandle::deleted() { 265 // This erasure deallocates *this, so it MUST happen after we're done 266 // using any and all members of *this. 267 Parent->eraseValue(*this); 268 } 269 270 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 271 // Shortcut if we have never seen this block. 272 DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); 273 if (I == SeenBlocks.end()) 274 return; 275 SeenBlocks.erase(I); 276 277 auto ODI = OverDefinedCache.find(BB); 278 if (ODI != OverDefinedCache.end()) 279 OverDefinedCache.erase(ODI); 280 281 for (auto &I : ValueCache) 282 I.second->BlockVals.erase(BB); 283 } 284 285 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 286 BasicBlock *NewSucc) { 287 // When an edge in the graph has been threaded, values that we could not 288 // determine a value for before (i.e. were marked overdefined) may be 289 // possible to solve now. We do NOT try to proactively update these values. 290 // Instead, we clear their entries from the cache, and allow lazy updating to 291 // recompute them when needed. 292 293 // The updating process is fairly simple: we need to drop cached info 294 // for all values that were marked overdefined in OldSucc, and for those same 295 // values in any successor of OldSucc (except NewSucc) in which they were 296 // also marked overdefined. 297 std::vector<BasicBlock*> worklist; 298 worklist.push_back(OldSucc); 299 300 auto I = OverDefinedCache.find(OldSucc); 301 if (I == OverDefinedCache.end()) 302 return; // Nothing to process here. 303 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); 304 305 // Use a worklist to perform a depth-first search of OldSucc's successors. 306 // NOTE: We do not need a visited list since any blocks we have already 307 // visited will have had their overdefined markers cleared already, and we 308 // thus won't loop to their successors. 309 while (!worklist.empty()) { 310 BasicBlock *ToUpdate = worklist.back(); 311 worklist.pop_back(); 312 313 // Skip blocks only accessible through NewSucc. 314 if (ToUpdate == NewSucc) continue; 315 316 // If a value was marked overdefined in OldSucc, and is here too... 317 auto OI = OverDefinedCache.find(ToUpdate); 318 if (OI == OverDefinedCache.end()) 319 continue; 320 SmallPtrSetImpl<Value *> &ValueSet = OI->second; 321 322 bool changed = false; 323 for (Value *V : ValsToClear) { 324 if (!ValueSet.erase(V)) 325 continue; 326 327 // If we removed anything, then we potentially need to update 328 // blocks successors too. 329 changed = true; 330 331 if (ValueSet.empty()) { 332 OverDefinedCache.erase(OI); 333 break; 334 } 335 } 336 337 if (!changed) continue; 338 339 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); 340 } 341 } 342 343 344 namespace { 345 /// An assembly annotator class to print LazyValueCache information in 346 /// comments. 347 class LazyValueInfoImpl; 348 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 349 LazyValueInfoImpl *LVIImpl; 350 // While analyzing which blocks we can solve values for, we need the dominator 351 // information. 352 DominatorTree &DT; 353 354 public: 355 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 356 : LVIImpl(L), DT(DTree) {} 357 358 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 359 formatted_raw_ostream &OS); 360 361 virtual void emitInstructionAnnot(const Instruction *I, 362 formatted_raw_ostream &OS); 363 }; 364 } 365 namespace { 366 // The actual implementation of the lazy analysis and update. Note that the 367 // inheritance from LazyValueInfoCache is intended to be temporary while 368 // splitting the code and then transitioning to a has-a relationship. 369 class LazyValueInfoImpl { 370 371 /// Cached results from previous queries 372 LazyValueInfoCache TheCache; 373 374 /// This stack holds the state of the value solver during a query. 375 /// It basically emulates the callstack of the naive 376 /// recursive value lookup process. 377 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 378 379 /// Keeps track of which block-value pairs are in BlockValueStack. 380 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 381 382 /// Push BV onto BlockValueStack unless it's already in there. 383 /// Returns true on success. 384 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 385 if (!BlockValueSet.insert(BV).second) 386 return false; // It's already in the stack. 387 388 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 389 << BV.first->getName() << "\n"); 390 BlockValueStack.push_back(BV); 391 return true; 392 } 393 394 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 395 const DataLayout &DL; ///< A mandatory DataLayout 396 397 Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB); 398 Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, 399 BasicBlock *T, Instruction *CxtI = nullptr); 400 401 // These methods process one work item and may add more. A false value 402 // returned means that the work item was not completely processed and must 403 // be revisited after going through the new items. 404 bool solveBlockValue(Value *Val, BasicBlock *BB); 405 Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB); 406 Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, 407 BasicBlock *BB); 408 Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, 409 BasicBlock *BB); 410 Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, 411 BasicBlock *BB); 412 Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I, 413 BasicBlock *BB); 414 Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( 415 Instruction *I, BasicBlock *BB, 416 std::function<ConstantRange(const ConstantRange &, 417 const ConstantRange &)> OpFn); 418 Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI, 419 BasicBlock *BB); 420 Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, 421 BasicBlock *BB); 422 Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic( 423 WithOverflowInst *WO, BasicBlock *BB); 424 Optional<ValueLatticeElement> solveBlockValueSaturatingIntrinsic( 425 SaturatingInst *SI, BasicBlock *BB); 426 Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, 427 BasicBlock *BB); 428 Optional<ValueLatticeElement> solveBlockValueExtractValue( 429 ExtractValueInst *EVI, BasicBlock *BB); 430 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 431 ValueLatticeElement &BBLV, 432 Instruction *BBI); 433 434 void solve(); 435 436 public: 437 /// This is the query interface to determine the lattice 438 /// value for the specified Value* at the end of the specified block. 439 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 440 Instruction *CxtI = nullptr); 441 442 /// This is the query interface to determine the lattice 443 /// value for the specified Value* at the specified instruction (generally 444 /// from an assume intrinsic). 445 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 446 447 /// This is the query interface to determine the lattice 448 /// value for the specified Value* that is true on the specified edge. 449 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 450 BasicBlock *ToBB, 451 Instruction *CxtI = nullptr); 452 453 /// Complete flush all previously computed values 454 void clear() { 455 TheCache.clear(); 456 } 457 458 /// Printing the LazyValueInfo Analysis. 459 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 460 LazyValueInfoAnnotatedWriter Writer(this, DTree); 461 F.print(OS, &Writer); 462 } 463 464 /// This is part of the update interface to inform the cache 465 /// that a block has been deleted. 466 void eraseBlock(BasicBlock *BB) { 467 TheCache.eraseBlock(BB); 468 } 469 470 /// This is the update interface to inform the cache that an edge from 471 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 472 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 473 474 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL) 475 : AC(AC), DL(DL) {} 476 }; 477 } // end anonymous namespace 478 479 480 void LazyValueInfoImpl::solve() { 481 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 482 BlockValueStack.begin(), BlockValueStack.end()); 483 484 unsigned processedCount = 0; 485 while (!BlockValueStack.empty()) { 486 processedCount++; 487 // Abort if we have to process too many values to get a result for this one. 488 // Because of the design of the overdefined cache currently being per-block 489 // to avoid naming-related issues (IE it wants to try to give different 490 // results for the same name in different blocks), overdefined results don't 491 // get cached globally, which in turn means we will often try to rediscover 492 // the same overdefined result again and again. Once something like 493 // PredicateInfo is used in LVI or CVP, we should be able to make the 494 // overdefined cache global, and remove this throttle. 495 if (processedCount > MaxProcessedPerValue) { 496 LLVM_DEBUG( 497 dbgs() << "Giving up on stack because we are getting too deep\n"); 498 // Fill in the original values 499 while (!StartingStack.empty()) { 500 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 501 TheCache.insertResult(e.second, e.first, 502 ValueLatticeElement::getOverdefined()); 503 StartingStack.pop_back(); 504 } 505 BlockValueSet.clear(); 506 BlockValueStack.clear(); 507 return; 508 } 509 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 510 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 511 512 if (solveBlockValue(e.second, e.first)) { 513 // The work item was completely processed. 514 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 515 #ifndef NDEBUG 516 Optional<ValueLatticeElement> BBLV = 517 TheCache.getCachedValueInfo(e.second, e.first); 518 assert(BBLV && "Result should be in cache!"); 519 LLVM_DEBUG( 520 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 521 << *BBLV << "\n"); 522 #endif 523 524 BlockValueStack.pop_back(); 525 BlockValueSet.erase(e); 526 } else { 527 // More work needs to be done before revisiting. 528 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 529 } 530 } 531 } 532 533 Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val, 534 BasicBlock *BB) { 535 // If already a constant, there is nothing to compute. 536 if (Constant *VC = dyn_cast<Constant>(Val)) 537 return ValueLatticeElement::get(VC); 538 539 if (Optional<ValueLatticeElement> OptLatticeVal = 540 TheCache.getCachedValueInfo(Val, BB)) 541 return OptLatticeVal; 542 543 // We have hit a cycle, assume overdefined. 544 if (!pushBlockValue({ BB, Val })) 545 return ValueLatticeElement::getOverdefined(); 546 547 // Yet to be resolved. 548 return None; 549 } 550 551 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 552 switch (BBI->getOpcode()) { 553 default: break; 554 case Instruction::Load: 555 case Instruction::Call: 556 case Instruction::Invoke: 557 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 558 if (isa<IntegerType>(BBI->getType())) { 559 return ValueLatticeElement::getRange( 560 getConstantRangeFromMetadata(*Ranges)); 561 } 562 break; 563 }; 564 // Nothing known - will be intersected with other facts 565 return ValueLatticeElement::getOverdefined(); 566 } 567 568 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 569 assert(!isa<Constant>(Val) && "Value should not be constant"); 570 assert(!TheCache.getCachedValueInfo(Val, BB) && 571 "Value should not be in cache"); 572 573 // Hold off inserting this value into the Cache in case we have to return 574 // false and come back later. 575 Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); 576 if (!Res) 577 // Work pushed, will revisit 578 return false; 579 580 TheCache.insertResult(Val, BB, *Res); 581 return true; 582 } 583 584 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl( 585 Value *Val, BasicBlock *BB) { 586 Instruction *BBI = dyn_cast<Instruction>(Val); 587 if (!BBI || BBI->getParent() != BB) 588 return solveBlockValueNonLocal(Val, BB); 589 590 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 591 return solveBlockValuePHINode(PN, BB); 592 593 if (auto *SI = dyn_cast<SelectInst>(BBI)) 594 return solveBlockValueSelect(SI, BB); 595 596 // If this value is a nonnull pointer, record it's range and bailout. Note 597 // that for all other pointer typed values, we terminate the search at the 598 // definition. We could easily extend this to look through geps, bitcasts, 599 // and the like to prove non-nullness, but it's not clear that's worth it 600 // compile time wise. The context-insensitive value walk done inside 601 // isKnownNonZero gets most of the profitable cases at much less expense. 602 // This does mean that we have a sensitivity to where the defining 603 // instruction is placed, even if it could legally be hoisted much higher. 604 // That is unfortunate. 605 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 606 if (PT && isKnownNonZero(BBI, DL)) 607 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 608 609 if (BBI->getType()->isIntegerTy()) { 610 if (auto *CI = dyn_cast<CastInst>(BBI)) 611 return solveBlockValueCast(CI, BB); 612 613 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 614 return solveBlockValueBinaryOp(BO, BB); 615 616 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 617 return solveBlockValueExtractValue(EVI, BB); 618 619 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 620 return solveBlockValueIntrinsic(II, BB); 621 } 622 623 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 624 << "' - unknown inst def found.\n"); 625 return getFromRangeMetadata(BBI); 626 } 627 628 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { 629 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 630 return L->getPointerAddressSpace() == 0 && 631 GetUnderlyingObject(L->getPointerOperand(), 632 L->getModule()->getDataLayout()) == Ptr; 633 } 634 if (StoreInst *S = dyn_cast<StoreInst>(I)) { 635 return S->getPointerAddressSpace() == 0 && 636 GetUnderlyingObject(S->getPointerOperand(), 637 S->getModule()->getDataLayout()) == Ptr; 638 } 639 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 640 if (MI->isVolatile()) return false; 641 642 // FIXME: check whether it has a valuerange that excludes zero? 643 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 644 if (!Len || Len->isZero()) return false; 645 646 if (MI->getDestAddressSpace() == 0) 647 if (GetUnderlyingObject(MI->getRawDest(), 648 MI->getModule()->getDataLayout()) == Ptr) 649 return true; 650 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 651 if (MTI->getSourceAddressSpace() == 0) 652 if (GetUnderlyingObject(MTI->getRawSource(), 653 MTI->getModule()->getDataLayout()) == Ptr) 654 return true; 655 } 656 return false; 657 } 658 659 /// Return true if the allocation associated with Val is ever dereferenced 660 /// within the given basic block. This establishes the fact Val is not null, 661 /// but does not imply that the memory at Val is dereferenceable. (Val may 662 /// point off the end of the dereferenceable part of the object.) 663 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { 664 assert(Val->getType()->isPointerTy()); 665 666 const DataLayout &DL = BB->getModule()->getDataLayout(); 667 Value *UnderlyingVal = GetUnderlyingObject(Val, DL); 668 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge 669 // inside InstructionDereferencesPointer either. 670 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) 671 for (Instruction &I : *BB) 672 if (InstructionDereferencesPointer(&I, UnderlyingVal)) 673 return true; 674 return false; 675 } 676 677 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal( 678 Value *Val, BasicBlock *BB) { 679 ValueLatticeElement Result; // Start Undefined. 680 681 // If this is the entry block, we must be asking about an argument. The 682 // value is overdefined. 683 if (BB == &BB->getParent()->getEntryBlock()) { 684 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 685 // Before giving up, see if we can prove the pointer non-null local to 686 // this particular block. 687 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 688 if (PTy && 689 (isKnownNonZero(Val, DL) || 690 (isObjectDereferencedInBlock(Val, BB) && 691 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) 692 return ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 693 else 694 return ValueLatticeElement::getOverdefined(); 695 } 696 697 // Loop over all of our predecessors, merging what we know from them into 698 // result. If we encounter an unexplored predecessor, we eagerly explore it 699 // in a depth first manner. In practice, this has the effect of discovering 700 // paths we can't analyze eagerly without spending compile times analyzing 701 // other paths. This heuristic benefits from the fact that predecessors are 702 // frequently arranged such that dominating ones come first and we quickly 703 // find a path to function entry. TODO: We should consider explicitly 704 // canonicalizing to make this true rather than relying on this happy 705 // accident. 706 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 707 Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, *PI, BB); 708 if (!EdgeResult) 709 // Explore that input, then return here 710 return None; 711 712 Result.mergeIn(*EdgeResult); 713 714 // If we hit overdefined, exit early. The BlockVals entry is already set 715 // to overdefined. 716 if (Result.isOverdefined()) { 717 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 718 << "' - overdefined because of pred (non local).\n"); 719 // Before giving up, see if we can prove the pointer non-null local to 720 // this particular block. 721 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 722 if (PTy && isObjectDereferencedInBlock(Val, BB) && 723 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) { 724 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 725 } 726 727 return Result; 728 } 729 } 730 731 // Return the merged value, which is more precise than 'overdefined'. 732 assert(!Result.isOverdefined()); 733 return Result; 734 } 735 736 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode( 737 PHINode *PN, BasicBlock *BB) { 738 ValueLatticeElement Result; // Start Undefined. 739 740 // Loop over all of our predecessors, merging what we know from them into 741 // result. See the comment about the chosen traversal order in 742 // solveBlockValueNonLocal; the same reasoning applies here. 743 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 744 BasicBlock *PhiBB = PN->getIncomingBlock(i); 745 Value *PhiVal = PN->getIncomingValue(i); 746 // Note that we can provide PN as the context value to getEdgeValue, even 747 // though the results will be cached, because PN is the value being used as 748 // the cache key in the caller. 749 Optional<ValueLatticeElement> EdgeResult = 750 getEdgeValue(PhiVal, PhiBB, BB, PN); 751 if (!EdgeResult) 752 // Explore that input, then return here 753 return None; 754 755 Result.mergeIn(*EdgeResult); 756 757 // If we hit overdefined, exit early. The BlockVals entry is already set 758 // to overdefined. 759 if (Result.isOverdefined()) { 760 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 761 << "' - overdefined because of pred (local).\n"); 762 763 return Result; 764 } 765 } 766 767 // Return the merged value, which is more precise than 'overdefined'. 768 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 769 return Result; 770 } 771 772 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 773 bool isTrueDest = true); 774 775 // If we can determine a constraint on the value given conditions assumed by 776 // the program, intersect those constraints with BBLV 777 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 778 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 779 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 780 if (!BBI) 781 return; 782 783 BasicBlock *BB = BBI->getParent(); 784 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 785 if (!AssumeVH) 786 continue; 787 788 // Only check assumes in the block of the context instruction. Other 789 // assumes will have already been taken into account when the value was 790 // propagated from predecessor blocks. 791 auto *I = cast<CallInst>(AssumeVH); 792 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) 793 continue; 794 795 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); 796 } 797 798 // If guards are not used in the module, don't spend time looking for them 799 auto *GuardDecl = BBI->getModule()->getFunction( 800 Intrinsic::getName(Intrinsic::experimental_guard)); 801 if (!GuardDecl || GuardDecl->use_empty()) 802 return; 803 804 if (BBI->getIterator() == BB->begin()) 805 return; 806 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), 807 BB->rend())) { 808 Value *Cond = nullptr; 809 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 810 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); 811 } 812 } 813 814 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect( 815 SelectInst *SI, BasicBlock *BB) { 816 // Recurse on our inputs if needed 817 Optional<ValueLatticeElement> OptTrueVal = 818 getBlockValue(SI->getTrueValue(), BB); 819 if (!OptTrueVal) 820 return None; 821 ValueLatticeElement &TrueVal = *OptTrueVal; 822 823 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 824 // extra slots in the table if we can. 825 if (TrueVal.isOverdefined()) 826 return ValueLatticeElement::getOverdefined(); 827 828 Optional<ValueLatticeElement> OptFalseVal = 829 getBlockValue(SI->getFalseValue(), BB); 830 if (!OptFalseVal) 831 return None; 832 ValueLatticeElement &FalseVal = *OptFalseVal; 833 834 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 835 // extra slots in the table if we can. 836 if (FalseVal.isOverdefined()) 837 return ValueLatticeElement::getOverdefined(); 838 839 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { 840 const ConstantRange &TrueCR = TrueVal.getConstantRange(); 841 const ConstantRange &FalseCR = FalseVal.getConstantRange(); 842 Value *LHS = nullptr; 843 Value *RHS = nullptr; 844 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 845 // Is this a min specifically of our two inputs? (Avoid the risk of 846 // ValueTracking getting smarter looking back past our immediate inputs.) 847 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 848 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { 849 ConstantRange ResultCR = [&]() { 850 switch (SPR.Flavor) { 851 default: 852 llvm_unreachable("unexpected minmax type!"); 853 case SPF_SMIN: /// Signed minimum 854 return TrueCR.smin(FalseCR); 855 case SPF_UMIN: /// Unsigned minimum 856 return TrueCR.umin(FalseCR); 857 case SPF_SMAX: /// Signed maximum 858 return TrueCR.smax(FalseCR); 859 case SPF_UMAX: /// Unsigned maximum 860 return TrueCR.umax(FalseCR); 861 }; 862 }(); 863 return ValueLatticeElement::getRange( 864 ResultCR, TrueVal.isConstantRangeIncludingUndef() | 865 FalseVal.isConstantRangeIncludingUndef()); 866 } 867 868 if (SPR.Flavor == SPF_ABS) { 869 if (LHS == SI->getTrueValue()) 870 return ValueLatticeElement::getRange( 871 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); 872 if (LHS == SI->getFalseValue()) 873 return ValueLatticeElement::getRange( 874 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); 875 } 876 877 if (SPR.Flavor == SPF_NABS) { 878 ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); 879 if (LHS == SI->getTrueValue()) 880 return ValueLatticeElement::getRange( 881 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 882 if (LHS == SI->getFalseValue()) 883 return ValueLatticeElement::getRange( 884 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); 885 } 886 } 887 888 // Can we constrain the facts about the true and false values by using the 889 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 890 // TODO: We could potentially refine an overdefined true value above. 891 Value *Cond = SI->getCondition(); 892 TrueVal = intersect(TrueVal, 893 getValueFromCondition(SI->getTrueValue(), Cond, true)); 894 FalseVal = intersect(FalseVal, 895 getValueFromCondition(SI->getFalseValue(), Cond, false)); 896 897 // Handle clamp idioms such as: 898 // %24 = constantrange<0, 17> 899 // %39 = icmp eq i32 %24, 0 900 // %40 = add i32 %24, -1 901 // %siv.next = select i1 %39, i32 16, i32 %40 902 // %siv.next = constantrange<0, 17> not <-1, 17> 903 // In general, this can handle any clamp idiom which tests the edge 904 // condition via an equality or inequality. 905 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 906 ICmpInst::Predicate Pred = ICI->getPredicate(); 907 Value *A = ICI->getOperand(0); 908 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 909 auto addConstants = [](ConstantInt *A, ConstantInt *B) { 910 assert(A->getType() == B->getType()); 911 return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); 912 }; 913 // See if either input is A + C2, subject to the constraint from the 914 // condition that A != C when that input is used. We can assume that 915 // that input doesn't include C + C2. 916 ConstantInt *CIAdded; 917 switch (Pred) { 918 default: break; 919 case ICmpInst::ICMP_EQ: 920 if (match(SI->getFalseValue(), m_Add(m_Specific(A), 921 m_ConstantInt(CIAdded)))) { 922 auto ResNot = addConstants(CIBase, CIAdded); 923 FalseVal = intersect(FalseVal, 924 ValueLatticeElement::getNot(ResNot)); 925 } 926 break; 927 case ICmpInst::ICMP_NE: 928 if (match(SI->getTrueValue(), m_Add(m_Specific(A), 929 m_ConstantInt(CIAdded)))) { 930 auto ResNot = addConstants(CIBase, CIAdded); 931 TrueVal = intersect(TrueVal, 932 ValueLatticeElement::getNot(ResNot)); 933 } 934 break; 935 }; 936 } 937 } 938 939 ValueLatticeElement Result = TrueVal; 940 Result.mergeIn(FalseVal); 941 return Result; 942 } 943 944 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op, 945 Instruction *I, 946 BasicBlock *BB) { 947 Optional<ValueLatticeElement> OptVal = getBlockValue(I->getOperand(Op), BB); 948 if (!OptVal) 949 return None; 950 951 ValueLatticeElement &Val = *OptVal; 952 intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I); 953 if (Val.isConstantRange()) 954 return Val.getConstantRange(); 955 956 const unsigned OperandBitWidth = 957 DL.getTypeSizeInBits(I->getOperand(Op)->getType()); 958 return ConstantRange::getFull(OperandBitWidth); 959 } 960 961 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast( 962 CastInst *CI, BasicBlock *BB) { 963 // Without knowing how wide the input is, we can't analyze it in any useful 964 // way. 965 if (!CI->getOperand(0)->getType()->isSized()) 966 return ValueLatticeElement::getOverdefined(); 967 968 // Filter out casts we don't know how to reason about before attempting to 969 // recurse on our operand. This can cut a long search short if we know we're 970 // not going to be able to get any useful information anways. 971 switch (CI->getOpcode()) { 972 case Instruction::Trunc: 973 case Instruction::SExt: 974 case Instruction::ZExt: 975 case Instruction::BitCast: 976 break; 977 default: 978 // Unhandled instructions are overdefined. 979 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 980 << "' - overdefined (unknown cast).\n"); 981 return ValueLatticeElement::getOverdefined(); 982 } 983 984 // Figure out the range of the LHS. If that fails, we still apply the 985 // transfer rule on the full set since we may be able to locally infer 986 // interesting facts. 987 Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB); 988 if (!LHSRes.hasValue()) 989 // More work to do before applying this transfer rule. 990 return None; 991 const ConstantRange &LHSRange = LHSRes.getValue(); 992 993 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 994 995 // NOTE: We're currently limited by the set of operations that ConstantRange 996 // can evaluate symbolically. Enhancing that set will allows us to analyze 997 // more definitions. 998 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 999 ResultBitWidth)); 1000 } 1001 1002 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 1003 Instruction *I, BasicBlock *BB, 1004 std::function<ConstantRange(const ConstantRange &, 1005 const ConstantRange &)> OpFn) { 1006 // Figure out the ranges of the operands. If that fails, use a 1007 // conservative range, but apply the transfer rule anyways. This 1008 // lets us pick up facts from expressions like "and i32 (call i32 1009 // @foo()), 32" 1010 Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB); 1011 Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB); 1012 if (!LHSRes.hasValue() || !RHSRes.hasValue()) 1013 // More work to do before applying this transfer rule. 1014 return None; 1015 1016 const ConstantRange &LHSRange = LHSRes.getValue(); 1017 const ConstantRange &RHSRange = RHSRes.getValue(); 1018 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 1019 } 1020 1021 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp( 1022 BinaryOperator *BO, BasicBlock *BB) { 1023 assert(BO->getOperand(0)->getType()->isSized() && 1024 "all operands to binary operators are sized"); 1025 if (BO->getOpcode() == Instruction::Xor) { 1026 // Xor is the only operation not supported by ConstantRange::binaryOp(). 1027 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1028 << "' - overdefined (unknown binary operator).\n"); 1029 return ValueLatticeElement::getOverdefined(); 1030 } 1031 1032 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 1033 unsigned NoWrapKind = 0; 1034 if (OBO->hasNoUnsignedWrap()) 1035 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 1036 if (OBO->hasNoSignedWrap()) 1037 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 1038 1039 return solveBlockValueBinaryOpImpl( 1040 BO, BB, 1041 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 1042 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 1043 }); 1044 } 1045 1046 return solveBlockValueBinaryOpImpl( 1047 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 1048 return CR1.binaryOp(BO->getOpcode(), CR2); 1049 }); 1050 } 1051 1052 Optional<ValueLatticeElement> 1053 LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, 1054 BasicBlock *BB) { 1055 return solveBlockValueBinaryOpImpl( 1056 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 1057 return CR1.binaryOp(WO->getBinaryOp(), CR2); 1058 }); 1059 } 1060 1061 Optional<ValueLatticeElement> 1062 LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic(SaturatingInst *SI, 1063 BasicBlock *BB) { 1064 switch (SI->getIntrinsicID()) { 1065 case Intrinsic::uadd_sat: 1066 return solveBlockValueBinaryOpImpl( 1067 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1068 return CR1.uadd_sat(CR2); 1069 }); 1070 case Intrinsic::usub_sat: 1071 return solveBlockValueBinaryOpImpl( 1072 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1073 return CR1.usub_sat(CR2); 1074 }); 1075 case Intrinsic::sadd_sat: 1076 return solveBlockValueBinaryOpImpl( 1077 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1078 return CR1.sadd_sat(CR2); 1079 }); 1080 case Intrinsic::ssub_sat: 1081 return solveBlockValueBinaryOpImpl( 1082 SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1083 return CR1.ssub_sat(CR2); 1084 }); 1085 default: 1086 llvm_unreachable("All llvm.sat intrinsic are handled."); 1087 } 1088 } 1089 1090 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic( 1091 IntrinsicInst *II, BasicBlock *BB) { 1092 if (auto *SI = dyn_cast<SaturatingInst>(II)) 1093 return solveBlockValueSaturatingIntrinsic(SI, BB); 1094 1095 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1096 << "' - overdefined (unknown intrinsic).\n"); 1097 return ValueLatticeElement::getOverdefined(); 1098 } 1099 1100 Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue( 1101 ExtractValueInst *EVI, BasicBlock *BB) { 1102 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1103 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1104 return solveBlockValueOverflowIntrinsic(WO, BB); 1105 1106 // Handle extractvalue of insertvalue to allow further simplification 1107 // based on replaced with.overflow intrinsics. 1108 if (Value *V = SimplifyExtractValueInst( 1109 EVI->getAggregateOperand(), EVI->getIndices(), 1110 EVI->getModule()->getDataLayout())) 1111 return getBlockValue(V, BB); 1112 1113 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1114 << "' - overdefined (unknown extractvalue).\n"); 1115 return ValueLatticeElement::getOverdefined(); 1116 } 1117 1118 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, 1119 bool isTrueDest) { 1120 Value *LHS = ICI->getOperand(0); 1121 Value *RHS = ICI->getOperand(1); 1122 CmpInst::Predicate Predicate = ICI->getPredicate(); 1123 1124 if (isa<Constant>(RHS)) { 1125 if (ICI->isEquality() && LHS == Val) { 1126 // We know that V has the RHS constant if this is a true SETEQ or 1127 // false SETNE. 1128 if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) 1129 return ValueLatticeElement::get(cast<Constant>(RHS)); 1130 else if (!isa<UndefValue>(RHS)) 1131 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1132 } 1133 } 1134 1135 if (!Val->getType()->isIntegerTy()) 1136 return ValueLatticeElement::getOverdefined(); 1137 1138 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible 1139 // range of Val guaranteed by the condition. Recognize comparisons in the from 1140 // of: 1141 // icmp <pred> Val, ... 1142 // icmp <pred> (add Val, Offset), ... 1143 // The latter is the range checking idiom that InstCombine produces. Subtract 1144 // the offset from the allowed range for RHS in this case. 1145 1146 // Val or (add Val, Offset) can be on either hand of the comparison 1147 if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { 1148 std::swap(LHS, RHS); 1149 Predicate = CmpInst::getSwappedPredicate(Predicate); 1150 } 1151 1152 ConstantInt *Offset = nullptr; 1153 if (LHS != Val) 1154 match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); 1155 1156 if (LHS == Val || Offset) { 1157 // Calculate the range of values that are allowed by the comparison 1158 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1159 /*isFullSet=*/true); 1160 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) 1161 RHSRange = ConstantRange(CI->getValue()); 1162 else if (Instruction *I = dyn_cast<Instruction>(RHS)) 1163 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1164 RHSRange = getConstantRangeFromMetadata(*Ranges); 1165 1166 // If we're interested in the false dest, invert the condition 1167 CmpInst::Predicate Pred = 1168 isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); 1169 ConstantRange TrueValues = 1170 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1171 1172 if (Offset) // Apply the offset from above. 1173 TrueValues = TrueValues.subtract(Offset->getValue()); 1174 1175 return ValueLatticeElement::getRange(std::move(TrueValues)); 1176 } 1177 1178 return ValueLatticeElement::getOverdefined(); 1179 } 1180 1181 // Handle conditions of the form 1182 // extractvalue(op.with.overflow(%x, C), 1). 1183 static ValueLatticeElement getValueFromOverflowCondition( 1184 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1185 // TODO: This only works with a constant RHS for now. We could also compute 1186 // the range of the RHS, but this doesn't fit into the current structure of 1187 // the edge value calculation. 1188 const APInt *C; 1189 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1190 return ValueLatticeElement::getOverdefined(); 1191 1192 // Calculate the possible values of %x for which no overflow occurs. 1193 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1194 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1195 1196 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1197 // constrained to it's inverse (all values that might cause overflow). 1198 if (IsTrueDest) 1199 NWR = NWR.inverse(); 1200 return ValueLatticeElement::getRange(NWR); 1201 } 1202 1203 static ValueLatticeElement 1204 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1205 SmallDenseMap<Value*, ValueLatticeElement> &Visited); 1206 1207 static ValueLatticeElement 1208 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, 1209 SmallDenseMap<Value*, ValueLatticeElement> &Visited) { 1210 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1211 return getValueFromICmpCondition(Val, ICI, isTrueDest); 1212 1213 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1214 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1215 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1216 return getValueFromOverflowCondition(Val, WO, isTrueDest); 1217 1218 // Handle conditions in the form of (cond1 && cond2), we know that on the 1219 // true dest path both of the conditions hold. Similarly for conditions of 1220 // the form (cond1 || cond2), we know that on the false dest path neither 1221 // condition holds. 1222 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); 1223 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || 1224 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) 1225 return ValueLatticeElement::getOverdefined(); 1226 1227 // Prevent infinite recursion if Cond references itself as in this example: 1228 // Cond: "%tmp4 = and i1 %tmp4, undef" 1229 // BL: "%tmp4 = and i1 %tmp4, undef" 1230 // BR: "i1 undef" 1231 Value *BL = BO->getOperand(0); 1232 Value *BR = BO->getOperand(1); 1233 if (BL == Cond || BR == Cond) 1234 return ValueLatticeElement::getOverdefined(); 1235 1236 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), 1237 getValueFromCondition(Val, BR, isTrueDest, Visited)); 1238 } 1239 1240 static ValueLatticeElement 1241 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1242 SmallDenseMap<Value*, ValueLatticeElement> &Visited) { 1243 auto I = Visited.find(Cond); 1244 if (I != Visited.end()) 1245 return I->second; 1246 1247 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); 1248 Visited[Cond] = Result; 1249 return Result; 1250 } 1251 1252 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 1253 bool isTrueDest) { 1254 assert(Cond && "precondition"); 1255 SmallDenseMap<Value*, ValueLatticeElement> Visited; 1256 return getValueFromCondition(Val, Cond, isTrueDest, Visited); 1257 } 1258 1259 // Return true if Usr has Op as an operand, otherwise false. 1260 static bool usesOperand(User *Usr, Value *Op) { 1261 return find(Usr->operands(), Op) != Usr->op_end(); 1262 } 1263 1264 // Return true if the instruction type of Val is supported by 1265 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this 1266 // before calling constantFoldUser() to find out if it's even worth attempting 1267 // to call it. 1268 static bool isOperationFoldable(User *Usr) { 1269 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); 1270 } 1271 1272 // Check if Usr can be simplified to an integer constant when the value of one 1273 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1274 // lattice value range with a single element or otherwise return an overdefined 1275 // lattice value. 1276 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1277 const APInt &OpConstVal, 1278 const DataLayout &DL) { 1279 assert(isOperationFoldable(Usr) && "Precondition"); 1280 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1281 // Check if Usr can be simplified to a constant. 1282 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1283 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1284 if (auto *C = dyn_cast_or_null<ConstantInt>( 1285 SimplifyCastInst(CI->getOpcode(), OpConst, 1286 CI->getDestTy(), DL))) { 1287 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1288 } 1289 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1290 bool Op0Match = BO->getOperand(0) == Op; 1291 bool Op1Match = BO->getOperand(1) == Op; 1292 assert((Op0Match || Op1Match) && 1293 "Operand 0 nor Operand 1 isn't a match"); 1294 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1295 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1296 if (auto *C = dyn_cast_or_null<ConstantInt>( 1297 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1298 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1299 } 1300 } 1301 return ValueLatticeElement::getOverdefined(); 1302 } 1303 1304 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if 1305 /// Val is not constrained on the edge. Result is unspecified if return value 1306 /// is false. 1307 static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, 1308 BasicBlock *BBFrom, 1309 BasicBlock *BBTo) { 1310 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1311 // know that v != 0. 1312 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1313 // If this is a conditional branch and only one successor goes to BBTo, then 1314 // we may be able to infer something from the condition. 1315 if (BI->isConditional() && 1316 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1317 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1318 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1319 "BBTo isn't a successor of BBFrom"); 1320 Value *Condition = BI->getCondition(); 1321 1322 // If V is the condition of the branch itself, then we know exactly what 1323 // it is. 1324 if (Condition == Val) 1325 return ValueLatticeElement::get(ConstantInt::get( 1326 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1327 1328 // If the condition of the branch is an equality comparison, we may be 1329 // able to infer the value. 1330 ValueLatticeElement Result = getValueFromCondition(Val, Condition, 1331 isTrueDest); 1332 if (!Result.isOverdefined()) 1333 return Result; 1334 1335 if (User *Usr = dyn_cast<User>(Val)) { 1336 assert(Result.isOverdefined() && "Result isn't overdefined"); 1337 // Check with isOperationFoldable() first to avoid linearly iterating 1338 // over the operands unnecessarily which can be expensive for 1339 // instructions with many operands. 1340 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1341 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1342 if (usesOperand(Usr, Condition)) { 1343 // If Val has Condition as an operand and Val can be folded into a 1344 // constant with either Condition == true or Condition == false, 1345 // propagate the constant. 1346 // eg. 1347 // ; %Val is true on the edge to %then. 1348 // %Val = and i1 %Condition, true. 1349 // br %Condition, label %then, label %else 1350 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1351 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1352 } else { 1353 // If one of Val's operand has an inferred value, we may be able to 1354 // infer the value of Val. 1355 // eg. 1356 // ; %Val is 94 on the edge to %then. 1357 // %Val = add i8 %Op, 1 1358 // %Condition = icmp eq i8 %Op, 93 1359 // br i1 %Condition, label %then, label %else 1360 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1361 Value *Op = Usr->getOperand(i); 1362 ValueLatticeElement OpLatticeVal = 1363 getValueFromCondition(Op, Condition, isTrueDest); 1364 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { 1365 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); 1366 break; 1367 } 1368 } 1369 } 1370 } 1371 } 1372 if (!Result.isOverdefined()) 1373 return Result; 1374 } 1375 } 1376 1377 // If the edge was formed by a switch on the value, then we may know exactly 1378 // what it is. 1379 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1380 Value *Condition = SI->getCondition(); 1381 if (!isa<IntegerType>(Val->getType())) 1382 return None; 1383 bool ValUsesConditionAndMayBeFoldable = false; 1384 if (Condition != Val) { 1385 // Check if Val has Condition as an operand. 1386 if (User *Usr = dyn_cast<User>(Val)) 1387 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1388 usesOperand(Usr, Condition); 1389 if (!ValUsesConditionAndMayBeFoldable) 1390 return None; 1391 } 1392 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1393 "Condition != Val nor Val doesn't use Condition"); 1394 1395 bool DefaultCase = SI->getDefaultDest() == BBTo; 1396 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1397 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1398 1399 for (auto Case : SI->cases()) { 1400 APInt CaseValue = Case.getCaseValue()->getValue(); 1401 ConstantRange EdgeVal(CaseValue); 1402 if (ValUsesConditionAndMayBeFoldable) { 1403 User *Usr = cast<User>(Val); 1404 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1405 ValueLatticeElement EdgeLatticeVal = 1406 constantFoldUser(Usr, Condition, CaseValue, DL); 1407 if (EdgeLatticeVal.isOverdefined()) 1408 return None; 1409 EdgeVal = EdgeLatticeVal.getConstantRange(); 1410 } 1411 if (DefaultCase) { 1412 // It is possible that the default destination is the destination of 1413 // some cases. We cannot perform difference for those cases. 1414 // We know Condition != CaseValue in BBTo. In some cases we can use 1415 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1416 // only do this when f is identity (i.e. Val == Condition), but we 1417 // should be able to do this for any injective f. 1418 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1419 EdgesVals = EdgesVals.difference(EdgeVal); 1420 } else if (Case.getCaseSuccessor() == BBTo) 1421 EdgesVals = EdgesVals.unionWith(EdgeVal); 1422 } 1423 return ValueLatticeElement::getRange(std::move(EdgesVals)); 1424 } 1425 return None; 1426 } 1427 1428 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1429 /// the basic block if the edge does not constrain Val. 1430 Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue( 1431 Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) { 1432 // If already a constant, there is nothing to compute. 1433 if (Constant *VC = dyn_cast<Constant>(Val)) 1434 return ValueLatticeElement::get(VC); 1435 1436 ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo) 1437 .getValueOr(ValueLatticeElement::getOverdefined()); 1438 if (hasSingleValue(LocalResult)) 1439 // Can't get any more precise here 1440 return LocalResult; 1441 1442 Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom); 1443 if (!OptInBlock) 1444 return None; 1445 ValueLatticeElement &InBlock = *OptInBlock; 1446 1447 // Try to intersect ranges of the BB and the constraint on the edge. 1448 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, 1449 BBFrom->getTerminator()); 1450 // We can use the context instruction (generically the ultimate instruction 1451 // the calling pass is trying to simplify) here, even though the result of 1452 // this function is generally cached when called from the solve* functions 1453 // (and that cached result might be used with queries using a different 1454 // context instruction), because when this function is called from the solve* 1455 // functions, the context instruction is not provided. When called from 1456 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1457 // but then the result is not cached. 1458 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1459 1460 return intersect(LocalResult, InBlock); 1461 } 1462 1463 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1464 Instruction *CxtI) { 1465 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1466 << BB->getName() << "'\n"); 1467 1468 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1469 Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB); 1470 if (!OptResult) { 1471 solve(); 1472 OptResult = getBlockValue(V, BB); 1473 assert(OptResult && "Value not available after solving"); 1474 } 1475 ValueLatticeElement Result = *OptResult; 1476 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1477 1478 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1479 return Result; 1480 } 1481 1482 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1483 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1484 << "'\n"); 1485 1486 if (auto *C = dyn_cast<Constant>(V)) 1487 return ValueLatticeElement::get(C); 1488 1489 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1490 if (auto *I = dyn_cast<Instruction>(V)) 1491 Result = getFromRangeMetadata(I); 1492 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1493 1494 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1495 return Result; 1496 } 1497 1498 ValueLatticeElement LazyValueInfoImpl:: 1499 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1500 Instruction *CxtI) { 1501 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1502 << FromBB->getName() << "' to '" << ToBB->getName() 1503 << "'\n"); 1504 1505 Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1506 if (!Result) { 1507 solve(); 1508 Result = getEdgeValue(V, FromBB, ToBB, CxtI); 1509 assert(Result && "More work to do after problem solved?"); 1510 } 1511 1512 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); 1513 return *Result; 1514 } 1515 1516 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1517 BasicBlock *NewSucc) { 1518 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1519 } 1520 1521 //===----------------------------------------------------------------------===// 1522 // LazyValueInfo Impl 1523 //===----------------------------------------------------------------------===// 1524 1525 /// This lazily constructs the LazyValueInfoImpl. 1526 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, 1527 const DataLayout *DL) { 1528 if (!PImpl) { 1529 assert(DL && "getCache() called with a null DataLayout"); 1530 PImpl = new LazyValueInfoImpl(AC, *DL); 1531 } 1532 return *static_cast<LazyValueInfoImpl*>(PImpl); 1533 } 1534 1535 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1536 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1537 const DataLayout &DL = F.getParent()->getDataLayout(); 1538 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1539 1540 if (Info.PImpl) 1541 getImpl(Info.PImpl, Info.AC, &DL).clear(); 1542 1543 // Fully lazy. 1544 return false; 1545 } 1546 1547 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1548 AU.setPreservesAll(); 1549 AU.addRequired<AssumptionCacheTracker>(); 1550 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1551 } 1552 1553 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1554 1555 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1556 1557 void LazyValueInfo::releaseMemory() { 1558 // If the cache was allocated, free it. 1559 if (PImpl) { 1560 delete &getImpl(PImpl, AC, nullptr); 1561 PImpl = nullptr; 1562 } 1563 } 1564 1565 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1566 FunctionAnalysisManager::Invalidator &Inv) { 1567 // We need to invalidate if we have either failed to preserve this analyses 1568 // result directly or if any of its dependencies have been invalidated. 1569 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1570 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) 1571 return true; 1572 1573 return false; 1574 } 1575 1576 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1577 1578 LazyValueInfo LazyValueAnalysis::run(Function &F, 1579 FunctionAnalysisManager &FAM) { 1580 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1581 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1582 1583 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI); 1584 } 1585 1586 /// Returns true if we can statically tell that this value will never be a 1587 /// "useful" constant. In practice, this means we've got something like an 1588 /// alloca or a malloc call for which a comparison against a constant can 1589 /// only be guarding dead code. Note that we are potentially giving up some 1590 /// precision in dead code (a constant result) in favour of avoiding a 1591 /// expensive search for a easily answered common query. 1592 static bool isKnownNonConstant(Value *V) { 1593 V = V->stripPointerCasts(); 1594 // The return val of alloc cannot be a Constant. 1595 if (isa<AllocaInst>(V)) 1596 return true; 1597 return false; 1598 } 1599 1600 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, 1601 Instruction *CxtI) { 1602 // Bail out early if V is known not to be a Constant. 1603 if (isKnownNonConstant(V)) 1604 return nullptr; 1605 1606 const DataLayout &DL = BB->getModule()->getDataLayout(); 1607 ValueLatticeElement Result = 1608 getImpl(PImpl, AC, &DL).getValueInBlock(V, BB, CxtI); 1609 1610 if (Result.isConstant()) 1611 return Result.getConstant(); 1612 if (Result.isConstantRange()) { 1613 const ConstantRange &CR = Result.getConstantRange(); 1614 if (const APInt *SingleVal = CR.getSingleElement()) 1615 return ConstantInt::get(V->getContext(), *SingleVal); 1616 } 1617 return nullptr; 1618 } 1619 1620 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, 1621 Instruction *CxtI, 1622 bool UndefAllowed) { 1623 assert(V->getType()->isIntegerTy()); 1624 unsigned Width = V->getType()->getIntegerBitWidth(); 1625 const DataLayout &DL = BB->getModule()->getDataLayout(); 1626 ValueLatticeElement Result = 1627 getImpl(PImpl, AC, &DL).getValueInBlock(V, BB, CxtI); 1628 if (Result.isUnknown()) 1629 return ConstantRange::getEmpty(Width); 1630 if (Result.isConstantRange(UndefAllowed)) 1631 return Result.getConstantRange(UndefAllowed); 1632 // We represent ConstantInt constants as constant ranges but other kinds 1633 // of integer constants, i.e. ConstantExpr will be tagged as constants 1634 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1635 "ConstantInt value must be represented as constantrange"); 1636 return ConstantRange::getFull(Width); 1637 } 1638 1639 /// Determine whether the specified value is known to be a 1640 /// constant on the specified edge. Return null if not. 1641 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1642 BasicBlock *ToBB, 1643 Instruction *CxtI) { 1644 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1645 ValueLatticeElement Result = 1646 getImpl(PImpl, AC, &DL).getValueOnEdge(V, FromBB, ToBB, CxtI); 1647 1648 if (Result.isConstant()) 1649 return Result.getConstant(); 1650 if (Result.isConstantRange()) { 1651 const ConstantRange &CR = Result.getConstantRange(); 1652 if (const APInt *SingleVal = CR.getSingleElement()) 1653 return ConstantInt::get(V->getContext(), *SingleVal); 1654 } 1655 return nullptr; 1656 } 1657 1658 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1659 BasicBlock *FromBB, 1660 BasicBlock *ToBB, 1661 Instruction *CxtI) { 1662 unsigned Width = V->getType()->getIntegerBitWidth(); 1663 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1664 ValueLatticeElement Result = 1665 getImpl(PImpl, AC, &DL).getValueOnEdge(V, FromBB, ToBB, CxtI); 1666 1667 if (Result.isUnknown()) 1668 return ConstantRange::getEmpty(Width); 1669 if (Result.isConstantRange()) 1670 return Result.getConstantRange(); 1671 // We represent ConstantInt constants as constant ranges but other kinds 1672 // of integer constants, i.e. ConstantExpr will be tagged as constants 1673 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1674 "ConstantInt value must be represented as constantrange"); 1675 return ConstantRange::getFull(Width); 1676 } 1677 1678 static LazyValueInfo::Tristate 1679 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1680 const DataLayout &DL, TargetLibraryInfo *TLI) { 1681 // If we know the value is a constant, evaluate the conditional. 1682 Constant *Res = nullptr; 1683 if (Val.isConstant()) { 1684 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); 1685 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1686 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1687 return LazyValueInfo::Unknown; 1688 } 1689 1690 if (Val.isConstantRange()) { 1691 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1692 if (!CI) return LazyValueInfo::Unknown; 1693 1694 const ConstantRange &CR = Val.getConstantRange(); 1695 if (Pred == ICmpInst::ICMP_EQ) { 1696 if (!CR.contains(CI->getValue())) 1697 return LazyValueInfo::False; 1698 1699 if (CR.isSingleElement()) 1700 return LazyValueInfo::True; 1701 } else if (Pred == ICmpInst::ICMP_NE) { 1702 if (!CR.contains(CI->getValue())) 1703 return LazyValueInfo::True; 1704 1705 if (CR.isSingleElement()) 1706 return LazyValueInfo::False; 1707 } else { 1708 // Handle more complex predicates. 1709 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1710 (ICmpInst::Predicate)Pred, CI->getValue()); 1711 if (TrueValues.contains(CR)) 1712 return LazyValueInfo::True; 1713 if (TrueValues.inverse().contains(CR)) 1714 return LazyValueInfo::False; 1715 } 1716 return LazyValueInfo::Unknown; 1717 } 1718 1719 if (Val.isNotConstant()) { 1720 // If this is an equality comparison, we can try to fold it knowing that 1721 // "V != C1". 1722 if (Pred == ICmpInst::ICMP_EQ) { 1723 // !C1 == C -> false iff C1 == C. 1724 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1725 Val.getNotConstant(), C, DL, 1726 TLI); 1727 if (Res->isNullValue()) 1728 return LazyValueInfo::False; 1729 } else if (Pred == ICmpInst::ICMP_NE) { 1730 // !C1 != C -> true iff C1 == C. 1731 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1732 Val.getNotConstant(), C, DL, 1733 TLI); 1734 if (Res->isNullValue()) 1735 return LazyValueInfo::True; 1736 } 1737 return LazyValueInfo::Unknown; 1738 } 1739 1740 return LazyValueInfo::Unknown; 1741 } 1742 1743 /// Determine whether the specified value comparison with a constant is known to 1744 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1745 LazyValueInfo::Tristate 1746 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1747 BasicBlock *FromBB, BasicBlock *ToBB, 1748 Instruction *CxtI) { 1749 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1750 ValueLatticeElement Result = 1751 getImpl(PImpl, AC, &DL).getValueOnEdge(V, FromBB, ToBB, CxtI); 1752 1753 return getPredicateResult(Pred, C, Result, DL, TLI); 1754 } 1755 1756 LazyValueInfo::Tristate 1757 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1758 Instruction *CxtI) { 1759 // Is or is not NonNull are common predicates being queried. If 1760 // isKnownNonZero can tell us the result of the predicate, we can 1761 // return it quickly. But this is only a fastpath, and falling 1762 // through would still be correct. 1763 const DataLayout &DL = CxtI->getModule()->getDataLayout(); 1764 if (V->getType()->isPointerTy() && C->isNullValue() && 1765 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1766 if (Pred == ICmpInst::ICMP_EQ) 1767 return LazyValueInfo::False; 1768 else if (Pred == ICmpInst::ICMP_NE) 1769 return LazyValueInfo::True; 1770 } 1771 ValueLatticeElement Result = getImpl(PImpl, AC, &DL).getValueAt(V, CxtI); 1772 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); 1773 if (Ret != Unknown) 1774 return Ret; 1775 1776 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1777 // LVI as a whole tries to compute a lattice value which is conservatively 1778 // correct at a given location. In this case, we have a predicate which we 1779 // weren't able to prove about the merged result, and we're pushing that 1780 // predicate back along each incoming edge to see if we can prove it 1781 // separately for each input. As a motivating example, consider: 1782 // bb1: 1783 // %v1 = ... ; constantrange<1, 5> 1784 // br label %merge 1785 // bb2: 1786 // %v2 = ... ; constantrange<10, 20> 1787 // br label %merge 1788 // merge: 1789 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1790 // %pred = icmp eq i32 %phi, 8 1791 // We can't tell from the lattice value for '%phi' that '%pred' is false 1792 // along each path, but by checking the predicate over each input separately, 1793 // we can. 1794 // We limit the search to one step backwards from the current BB and value. 1795 // We could consider extending this to search further backwards through the 1796 // CFG and/or value graph, but there are non-obvious compile time vs quality 1797 // tradeoffs. 1798 if (CxtI) { 1799 BasicBlock *BB = CxtI->getParent(); 1800 1801 // Function entry or an unreachable block. Bail to avoid confusing 1802 // analysis below. 1803 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1804 if (PI == PE) 1805 return Unknown; 1806 1807 // If V is a PHI node in the same block as the context, we need to ask 1808 // questions about the predicate as applied to the incoming value along 1809 // each edge. This is useful for eliminating cases where the predicate is 1810 // known along all incoming edges. 1811 if (auto *PHI = dyn_cast<PHINode>(V)) 1812 if (PHI->getParent() == BB) { 1813 Tristate Baseline = Unknown; 1814 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1815 Value *Incoming = PHI->getIncomingValue(i); 1816 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1817 // Note that PredBB may be BB itself. 1818 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, 1819 CxtI); 1820 1821 // Keep going as long as we've seen a consistent known result for 1822 // all inputs. 1823 Baseline = (i == 0) ? Result /* First iteration */ 1824 : (Baseline == Result ? Baseline : Unknown); /* All others */ 1825 if (Baseline == Unknown) 1826 break; 1827 } 1828 if (Baseline != Unknown) 1829 return Baseline; 1830 } 1831 1832 // For a comparison where the V is outside this block, it's possible 1833 // that we've branched on it before. Look to see if the value is known 1834 // on all incoming edges. 1835 if (!isa<Instruction>(V) || 1836 cast<Instruction>(V)->getParent() != BB) { 1837 // For predecessor edge, determine if the comparison is true or false 1838 // on that edge. If they're all true or all false, we can conclude 1839 // the value of the comparison in this block. 1840 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1841 if (Baseline != Unknown) { 1842 // Check that all remaining incoming values match the first one. 1843 while (++PI != PE) { 1844 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1845 if (Ret != Baseline) break; 1846 } 1847 // If we terminated early, then one of the values didn't match. 1848 if (PI == PE) { 1849 return Baseline; 1850 } 1851 } 1852 } 1853 } 1854 return Unknown; 1855 } 1856 1857 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1858 BasicBlock *NewSucc) { 1859 if (PImpl) { 1860 const DataLayout &DL = PredBB->getModule()->getDataLayout(); 1861 getImpl(PImpl, AC, &DL).threadEdge(PredBB, OldSucc, NewSucc); 1862 } 1863 } 1864 1865 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1866 if (PImpl) { 1867 const DataLayout &DL = BB->getModule()->getDataLayout(); 1868 getImpl(PImpl, AC, &DL).eraseBlock(BB); 1869 } 1870 } 1871 1872 1873 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 1874 if (PImpl) { 1875 getImpl(PImpl, AC, DL).printLVI(F, DTree, OS); 1876 } 1877 } 1878 1879 // Print the LVI for the function arguments at the start of each basic block. 1880 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 1881 const BasicBlock *BB, formatted_raw_ostream &OS) { 1882 // Find if there are latticevalues defined for arguments of the function. 1883 auto *F = BB->getParent(); 1884 for (auto &Arg : F->args()) { 1885 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1886 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 1887 if (Result.isUnknown()) 1888 continue; 1889 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 1890 } 1891 } 1892 1893 // This function prints the LVI analysis for the instruction I at the beginning 1894 // of various basic blocks. It relies on calculated values that are stored in 1895 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 1896 // LazyValueInfo for `I`, and print that info. 1897 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 1898 const Instruction *I, formatted_raw_ostream &OS) { 1899 1900 auto *ParentBB = I->getParent(); 1901 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 1902 // We can generate (solve) LVI values only for blocks that are dominated by 1903 // the I's parent. However, to avoid generating LVI for all dominating blocks, 1904 // that contain redundant/uninteresting information, we print LVI for 1905 // blocks that may use this LVI information (such as immediate successor 1906 // blocks, and blocks that contain uses of `I`). 1907 auto printResult = [&](const BasicBlock *BB) { 1908 if (!BlocksContainingLVI.insert(BB).second) 1909 return; 1910 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1911 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 1912 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 1913 BB->printAsOperand(OS, false); 1914 OS << "' is: " << Result << "\n"; 1915 }; 1916 1917 printResult(ParentBB); 1918 // Print the LVI analysis results for the immediate successor blocks, that 1919 // are dominated by `ParentBB`. 1920 for (auto *BBSucc : successors(ParentBB)) 1921 if (DT.dominates(ParentBB, BBSucc)) 1922 printResult(BBSucc); 1923 1924 // Print LVI in blocks where `I` is used. 1925 for (auto *U : I->users()) 1926 if (auto *UseI = dyn_cast<Instruction>(U)) 1927 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 1928 printResult(UseI->getParent()); 1929 1930 } 1931 1932 namespace { 1933 // Printer class for LazyValueInfo results. 1934 class LazyValueInfoPrinter : public FunctionPass { 1935 public: 1936 static char ID; // Pass identification, replacement for typeid 1937 LazyValueInfoPrinter() : FunctionPass(ID) { 1938 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); 1939 } 1940 1941 void getAnalysisUsage(AnalysisUsage &AU) const override { 1942 AU.setPreservesAll(); 1943 AU.addRequired<LazyValueInfoWrapperPass>(); 1944 AU.addRequired<DominatorTreeWrapperPass>(); 1945 } 1946 1947 // Get the mandatory dominator tree analysis and pass this in to the 1948 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. 1949 bool runOnFunction(Function &F) override { 1950 dbgs() << "LVI for function '" << F.getName() << "':\n"; 1951 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 1952 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1953 LVI.printLVI(F, DTree, dbgs()); 1954 return false; 1955 } 1956 }; 1957 } 1958 1959 char LazyValueInfoPrinter::ID = 0; 1960 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", 1961 "Lazy Value Info Printer Pass", false, false) 1962 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 1963 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", 1964 "Lazy Value Info Printer Pass", false, false) 1965