1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for lazy computation of value constraint 10 // information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LazyValueInfo.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/ValueLattice.h" 24 #include "llvm/IR/AssemblyAnnotationWriter.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/FormattedStream.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <map> 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 #define DEBUG_TYPE "lazy-value-info" 44 45 // This is the number of worklist items we will process to try to discover an 46 // answer for a given value. 47 static const unsigned MaxProcessedPerValue = 500; 48 49 char LazyValueInfoWrapperPass::ID = 0; 50 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", 51 "Lazy Value Information Analysis", false, true) 52 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 53 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 54 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", 55 "Lazy Value Information Analysis", false, true) 56 57 namespace llvm { 58 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } 59 } 60 61 AnalysisKey LazyValueAnalysis::Key; 62 63 /// Returns true if this lattice value represents at most one possible value. 64 /// This is as precise as any lattice value can get while still representing 65 /// reachable code. 66 static bool hasSingleValue(const ValueLatticeElement &Val) { 67 if (Val.isConstantRange() && 68 Val.getConstantRange().isSingleElement()) 69 // Integer constants are single element ranges 70 return true; 71 if (Val.isConstant()) 72 // Non integer constants 73 return true; 74 return false; 75 } 76 77 /// Combine two sets of facts about the same value into a single set of 78 /// facts. Note that this method is not suitable for merging facts along 79 /// different paths in a CFG; that's what the mergeIn function is for. This 80 /// is for merging facts gathered about the same value at the same location 81 /// through two independent means. 82 /// Notes: 83 /// * This method does not promise to return the most precise possible lattice 84 /// value implied by A and B. It is allowed to return any lattice element 85 /// which is at least as strong as *either* A or B (unless our facts 86 /// conflict, see below). 87 /// * Due to unreachable code, the intersection of two lattice values could be 88 /// contradictory. If this happens, we return some valid lattice value so as 89 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but 90 /// we do not make this guarantee. TODO: This would be a useful enhancement. 91 static ValueLatticeElement intersect(const ValueLatticeElement &A, 92 const ValueLatticeElement &B) { 93 // Undefined is the strongest state. It means the value is known to be along 94 // an unreachable path. 95 if (A.isUndefined()) 96 return A; 97 if (B.isUndefined()) 98 return B; 99 100 // If we gave up for one, but got a useable fact from the other, use it. 101 if (A.isOverdefined()) 102 return B; 103 if (B.isOverdefined()) 104 return A; 105 106 // Can't get any more precise than constants. 107 if (hasSingleValue(A)) 108 return A; 109 if (hasSingleValue(B)) 110 return B; 111 112 // Could be either constant range or not constant here. 113 if (!A.isConstantRange() || !B.isConstantRange()) { 114 // TODO: Arbitrary choice, could be improved 115 return A; 116 } 117 118 // Intersect two constant ranges 119 ConstantRange Range = 120 A.getConstantRange().intersectWith(B.getConstantRange()); 121 // Note: An empty range is implicitly converted to overdefined internally. 122 // TODO: We could instead use Undefined here since we've proven a conflict 123 // and thus know this path must be unreachable. 124 return ValueLatticeElement::getRange(std::move(Range)); 125 } 126 127 //===----------------------------------------------------------------------===// 128 // LazyValueInfoCache Decl 129 //===----------------------------------------------------------------------===// 130 131 namespace { 132 /// A callback value handle updates the cache when values are erased. 133 class LazyValueInfoCache; 134 struct LVIValueHandle final : public CallbackVH { 135 // Needs to access getValPtr(), which is protected. 136 friend struct DenseMapInfo<LVIValueHandle>; 137 138 LazyValueInfoCache *Parent; 139 140 LVIValueHandle(Value *V, LazyValueInfoCache *P) 141 : CallbackVH(V), Parent(P) { } 142 143 void deleted() override; 144 void allUsesReplacedWith(Value *V) override { 145 deleted(); 146 } 147 }; 148 } // end anonymous namespace 149 150 namespace { 151 /// This is the cache kept by LazyValueInfo which 152 /// maintains information about queries across the clients' queries. 153 class LazyValueInfoCache { 154 /// This is all of the cached block information for exactly one Value*. 155 /// The entries are sorted by the BasicBlock* of the 156 /// entries, allowing us to do a lookup with a binary search. 157 /// Over-defined lattice values are recorded in OverDefinedCache to reduce 158 /// memory overhead. 159 struct ValueCacheEntryTy { 160 ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} 161 LVIValueHandle Handle; 162 SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals; 163 }; 164 165 /// This tracks, on a per-block basis, the set of values that are 166 /// over-defined at the end of that block. 167 typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>> 168 OverDefinedCacheTy; 169 /// Keep track of all blocks that we have ever seen, so we 170 /// don't spend time removing unused blocks from our caches. 171 DenseSet<PoisoningVH<BasicBlock> > SeenBlocks; 172 173 /// This is all of the cached information for all values, 174 /// mapped from Value* to key information. 175 DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache; 176 OverDefinedCacheTy OverDefinedCache; 177 178 179 public: 180 void insertResult(Value *Val, BasicBlock *BB, 181 const ValueLatticeElement &Result) { 182 SeenBlocks.insert(BB); 183 184 // Insert over-defined values into their own cache to reduce memory 185 // overhead. 186 if (Result.isOverdefined()) 187 OverDefinedCache[BB].insert(Val); 188 else { 189 auto It = ValueCache.find_as(Val); 190 if (It == ValueCache.end()) { 191 ValueCache[Val] = std::make_unique<ValueCacheEntryTy>(Val, this); 192 It = ValueCache.find_as(Val); 193 assert(It != ValueCache.end() && "Val was just added to the map!"); 194 } 195 It->second->BlockVals[BB] = Result; 196 } 197 } 198 199 bool isOverdefined(Value *V, BasicBlock *BB) const { 200 auto ODI = OverDefinedCache.find(BB); 201 202 if (ODI == OverDefinedCache.end()) 203 return false; 204 205 return ODI->second.count(V); 206 } 207 208 bool hasCachedValueInfo(Value *V, BasicBlock *BB) const { 209 if (isOverdefined(V, BB)) 210 return true; 211 212 auto I = ValueCache.find_as(V); 213 if (I == ValueCache.end()) 214 return false; 215 216 return I->second->BlockVals.count(BB); 217 } 218 219 ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const { 220 if (isOverdefined(V, BB)) 221 return ValueLatticeElement::getOverdefined(); 222 223 auto I = ValueCache.find_as(V); 224 if (I == ValueCache.end()) 225 return ValueLatticeElement(); 226 auto BBI = I->second->BlockVals.find(BB); 227 if (BBI == I->second->BlockVals.end()) 228 return ValueLatticeElement(); 229 return BBI->second; 230 } 231 232 /// clear - Empty the cache. 233 void clear() { 234 SeenBlocks.clear(); 235 ValueCache.clear(); 236 OverDefinedCache.clear(); 237 } 238 239 /// Inform the cache that a given value has been deleted. 240 void eraseValue(Value *V); 241 242 /// This is part of the update interface to inform the cache 243 /// that a block has been deleted. 244 void eraseBlock(BasicBlock *BB); 245 246 /// Updates the cache to remove any influence an overdefined value in 247 /// OldSucc might have (unless also overdefined in NewSucc). This just 248 /// flushes elements from the cache and does not add any. 249 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); 250 251 friend struct LVIValueHandle; 252 }; 253 } 254 255 void LazyValueInfoCache::eraseValue(Value *V) { 256 for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) { 257 // Copy and increment the iterator immediately so we can erase behind 258 // ourselves. 259 auto Iter = I++; 260 SmallPtrSetImpl<Value *> &ValueSet = Iter->second; 261 ValueSet.erase(V); 262 if (ValueSet.empty()) 263 OverDefinedCache.erase(Iter); 264 } 265 266 ValueCache.erase(V); 267 } 268 269 void LVIValueHandle::deleted() { 270 // This erasure deallocates *this, so it MUST happen after we're done 271 // using any and all members of *this. 272 Parent->eraseValue(*this); 273 } 274 275 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { 276 // Shortcut if we have never seen this block. 277 DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); 278 if (I == SeenBlocks.end()) 279 return; 280 SeenBlocks.erase(I); 281 282 auto ODI = OverDefinedCache.find(BB); 283 if (ODI != OverDefinedCache.end()) 284 OverDefinedCache.erase(ODI); 285 286 for (auto &I : ValueCache) 287 I.second->BlockVals.erase(BB); 288 } 289 290 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, 291 BasicBlock *NewSucc) { 292 // When an edge in the graph has been threaded, values that we could not 293 // determine a value for before (i.e. were marked overdefined) may be 294 // possible to solve now. We do NOT try to proactively update these values. 295 // Instead, we clear their entries from the cache, and allow lazy updating to 296 // recompute them when needed. 297 298 // The updating process is fairly simple: we need to drop cached info 299 // for all values that were marked overdefined in OldSucc, and for those same 300 // values in any successor of OldSucc (except NewSucc) in which they were 301 // also marked overdefined. 302 std::vector<BasicBlock*> worklist; 303 worklist.push_back(OldSucc); 304 305 auto I = OverDefinedCache.find(OldSucc); 306 if (I == OverDefinedCache.end()) 307 return; // Nothing to process here. 308 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); 309 310 // Use a worklist to perform a depth-first search of OldSucc's successors. 311 // NOTE: We do not need a visited list since any blocks we have already 312 // visited will have had their overdefined markers cleared already, and we 313 // thus won't loop to their successors. 314 while (!worklist.empty()) { 315 BasicBlock *ToUpdate = worklist.back(); 316 worklist.pop_back(); 317 318 // Skip blocks only accessible through NewSucc. 319 if (ToUpdate == NewSucc) continue; 320 321 // If a value was marked overdefined in OldSucc, and is here too... 322 auto OI = OverDefinedCache.find(ToUpdate); 323 if (OI == OverDefinedCache.end()) 324 continue; 325 SmallPtrSetImpl<Value *> &ValueSet = OI->second; 326 327 bool changed = false; 328 for (Value *V : ValsToClear) { 329 if (!ValueSet.erase(V)) 330 continue; 331 332 // If we removed anything, then we potentially need to update 333 // blocks successors too. 334 changed = true; 335 336 if (ValueSet.empty()) { 337 OverDefinedCache.erase(OI); 338 break; 339 } 340 } 341 342 if (!changed) continue; 343 344 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); 345 } 346 } 347 348 349 namespace { 350 /// An assembly annotator class to print LazyValueCache information in 351 /// comments. 352 class LazyValueInfoImpl; 353 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { 354 LazyValueInfoImpl *LVIImpl; 355 // While analyzing which blocks we can solve values for, we need the dominator 356 // information. Since this is an optional parameter in LVI, we require this 357 // DomTreeAnalysis pass in the printer pass, and pass the dominator 358 // tree to the LazyValueInfoAnnotatedWriter. 359 DominatorTree &DT; 360 361 public: 362 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) 363 : LVIImpl(L), DT(DTree) {} 364 365 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 366 formatted_raw_ostream &OS); 367 368 virtual void emitInstructionAnnot(const Instruction *I, 369 formatted_raw_ostream &OS); 370 }; 371 } 372 namespace { 373 // The actual implementation of the lazy analysis and update. Note that the 374 // inheritance from LazyValueInfoCache is intended to be temporary while 375 // splitting the code and then transitioning to a has-a relationship. 376 class LazyValueInfoImpl { 377 378 /// Cached results from previous queries 379 LazyValueInfoCache TheCache; 380 381 /// This stack holds the state of the value solver during a query. 382 /// It basically emulates the callstack of the naive 383 /// recursive value lookup process. 384 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; 385 386 /// Keeps track of which block-value pairs are in BlockValueStack. 387 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; 388 389 /// Push BV onto BlockValueStack unless it's already in there. 390 /// Returns true on success. 391 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { 392 if (!BlockValueSet.insert(BV).second) 393 return false; // It's already in the stack. 394 395 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " 396 << BV.first->getName() << "\n"); 397 BlockValueStack.push_back(BV); 398 return true; 399 } 400 401 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. 402 const DataLayout &DL; ///< A mandatory DataLayout 403 DominatorTree *DT; ///< An optional DT pointer. 404 DominatorTree *DisabledDT; ///< Stores DT if it's disabled. 405 406 ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB); 407 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, 408 ValueLatticeElement &Result, Instruction *CxtI = nullptr); 409 bool hasBlockValue(Value *Val, BasicBlock *BB); 410 411 // These methods process one work item and may add more. A false value 412 // returned means that the work item was not completely processed and must 413 // be revisited after going through the new items. 414 bool solveBlockValue(Value *Val, BasicBlock *BB); 415 bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, 416 BasicBlock *BB); 417 bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, 418 BasicBlock *BB); 419 bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, 420 BasicBlock *BB); 421 bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S, 422 BasicBlock *BB); 423 Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I, 424 BasicBlock *BB); 425 bool solveBlockValueBinaryOpImpl( 426 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, 427 std::function<ConstantRange(const ConstantRange &, 428 const ConstantRange &)> OpFn); 429 bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI, 430 BasicBlock *BB); 431 bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, 432 BasicBlock *BB); 433 bool solveBlockValueOverflowIntrinsic( 434 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB); 435 bool solveBlockValueSaturatingIntrinsic(ValueLatticeElement &BBLV, 436 SaturatingInst *SI, BasicBlock *BB); 437 bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II, 438 BasicBlock *BB); 439 bool solveBlockValueExtractValue(ValueLatticeElement &BBLV, 440 ExtractValueInst *EVI, BasicBlock *BB); 441 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, 442 ValueLatticeElement &BBLV, 443 Instruction *BBI); 444 445 void solve(); 446 447 public: 448 /// This is the query interface to determine the lattice 449 /// value for the specified Value* at the end of the specified block. 450 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, 451 Instruction *CxtI = nullptr); 452 453 /// This is the query interface to determine the lattice 454 /// value for the specified Value* at the specified instruction (generally 455 /// from an assume intrinsic). 456 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); 457 458 /// This is the query interface to determine the lattice 459 /// value for the specified Value* that is true on the specified edge. 460 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, 461 BasicBlock *ToBB, 462 Instruction *CxtI = nullptr); 463 464 /// Complete flush all previously computed values 465 void clear() { 466 TheCache.clear(); 467 } 468 469 /// Printing the LazyValueInfo Analysis. 470 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 471 LazyValueInfoAnnotatedWriter Writer(this, DTree); 472 F.print(OS, &Writer); 473 } 474 475 /// This is part of the update interface to inform the cache 476 /// that a block has been deleted. 477 void eraseBlock(BasicBlock *BB) { 478 TheCache.eraseBlock(BB); 479 } 480 481 /// Disables use of the DominatorTree within LVI. 482 void disableDT() { 483 if (DT) { 484 assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!"); 485 std::swap(DT, DisabledDT); 486 } 487 } 488 489 /// Enables use of the DominatorTree within LVI. Does nothing if the class 490 /// instance was initialized without a DT pointer. 491 void enableDT() { 492 if (DisabledDT) { 493 assert(!DT && "Both DT and DisabledDT are not nullptr!"); 494 std::swap(DT, DisabledDT); 495 } 496 } 497 498 /// This is the update interface to inform the cache that an edge from 499 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. 500 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); 501 502 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, 503 DominatorTree *DT = nullptr) 504 : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {} 505 }; 506 } // end anonymous namespace 507 508 509 void LazyValueInfoImpl::solve() { 510 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( 511 BlockValueStack.begin(), BlockValueStack.end()); 512 513 unsigned processedCount = 0; 514 while (!BlockValueStack.empty()) { 515 processedCount++; 516 // Abort if we have to process too many values to get a result for this one. 517 // Because of the design of the overdefined cache currently being per-block 518 // to avoid naming-related issues (IE it wants to try to give different 519 // results for the same name in different blocks), overdefined results don't 520 // get cached globally, which in turn means we will often try to rediscover 521 // the same overdefined result again and again. Once something like 522 // PredicateInfo is used in LVI or CVP, we should be able to make the 523 // overdefined cache global, and remove this throttle. 524 if (processedCount > MaxProcessedPerValue) { 525 LLVM_DEBUG( 526 dbgs() << "Giving up on stack because we are getting too deep\n"); 527 // Fill in the original values 528 while (!StartingStack.empty()) { 529 std::pair<BasicBlock *, Value *> &e = StartingStack.back(); 530 TheCache.insertResult(e.second, e.first, 531 ValueLatticeElement::getOverdefined()); 532 StartingStack.pop_back(); 533 } 534 BlockValueSet.clear(); 535 BlockValueStack.clear(); 536 return; 537 } 538 std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); 539 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); 540 541 if (solveBlockValue(e.second, e.first)) { 542 // The work item was completely processed. 543 assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); 544 assert(TheCache.hasCachedValueInfo(e.second, e.first) && 545 "Result should be in cache!"); 546 547 LLVM_DEBUG( 548 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " 549 << TheCache.getCachedValueInfo(e.second, e.first) << "\n"); 550 551 BlockValueStack.pop_back(); 552 BlockValueSet.erase(e); 553 } else { 554 // More work needs to be done before revisiting. 555 assert(BlockValueStack.back() != e && "Stack should have been pushed!"); 556 } 557 } 558 } 559 560 bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) { 561 // If already a constant, there is nothing to compute. 562 if (isa<Constant>(Val)) 563 return true; 564 565 return TheCache.hasCachedValueInfo(Val, BB); 566 } 567 568 ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val, 569 BasicBlock *BB) { 570 // If already a constant, there is nothing to compute. 571 if (Constant *VC = dyn_cast<Constant>(Val)) 572 return ValueLatticeElement::get(VC); 573 574 return TheCache.getCachedValueInfo(Val, BB); 575 } 576 577 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { 578 switch (BBI->getOpcode()) { 579 default: break; 580 case Instruction::Load: 581 case Instruction::Call: 582 case Instruction::Invoke: 583 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) 584 if (isa<IntegerType>(BBI->getType())) { 585 return ValueLatticeElement::getRange( 586 getConstantRangeFromMetadata(*Ranges)); 587 } 588 break; 589 }; 590 // Nothing known - will be intersected with other facts 591 return ValueLatticeElement::getOverdefined(); 592 } 593 594 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { 595 if (isa<Constant>(Val)) 596 return true; 597 598 if (TheCache.hasCachedValueInfo(Val, BB)) { 599 // If we have a cached value, use that. 600 LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" 601 << TheCache.getCachedValueInfo(Val, BB) << '\n'); 602 603 // Since we're reusing a cached value, we don't need to update the 604 // OverDefinedCache. The cache will have been properly updated whenever the 605 // cached value was inserted. 606 return true; 607 } 608 609 // Hold off inserting this value into the Cache in case we have to return 610 // false and come back later. 611 ValueLatticeElement Res; 612 if (!solveBlockValueImpl(Res, Val, BB)) 613 // Work pushed, will revisit 614 return false; 615 616 TheCache.insertResult(Val, BB, Res); 617 return true; 618 } 619 620 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res, 621 Value *Val, BasicBlock *BB) { 622 623 Instruction *BBI = dyn_cast<Instruction>(Val); 624 if (!BBI || BBI->getParent() != BB) 625 return solveBlockValueNonLocal(Res, Val, BB); 626 627 if (PHINode *PN = dyn_cast<PHINode>(BBI)) 628 return solveBlockValuePHINode(Res, PN, BB); 629 630 if (auto *SI = dyn_cast<SelectInst>(BBI)) 631 return solveBlockValueSelect(Res, SI, BB); 632 633 // If this value is a nonnull pointer, record it's range and bailout. Note 634 // that for all other pointer typed values, we terminate the search at the 635 // definition. We could easily extend this to look through geps, bitcasts, 636 // and the like to prove non-nullness, but it's not clear that's worth it 637 // compile time wise. The context-insensitive value walk done inside 638 // isKnownNonZero gets most of the profitable cases at much less expense. 639 // This does mean that we have a sensitivity to where the defining 640 // instruction is placed, even if it could legally be hoisted much higher. 641 // That is unfortunate. 642 PointerType *PT = dyn_cast<PointerType>(BBI->getType()); 643 if (PT && isKnownNonZero(BBI, DL)) { 644 Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); 645 return true; 646 } 647 if (BBI->getType()->isIntegerTy()) { 648 if (auto *CI = dyn_cast<CastInst>(BBI)) 649 return solveBlockValueCast(Res, CI, BB); 650 651 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) 652 return solveBlockValueBinaryOp(Res, BO, BB); 653 654 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) 655 return solveBlockValueExtractValue(Res, EVI, BB); 656 657 if (auto *II = dyn_cast<IntrinsicInst>(BBI)) 658 return solveBlockValueIntrinsic(Res, II, BB); 659 } 660 661 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 662 << "' - unknown inst def found.\n"); 663 Res = getFromRangeMetadata(BBI); 664 return true; 665 } 666 667 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { 668 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 669 return L->getPointerAddressSpace() == 0 && 670 GetUnderlyingObject(L->getPointerOperand(), 671 L->getModule()->getDataLayout()) == Ptr; 672 } 673 if (StoreInst *S = dyn_cast<StoreInst>(I)) { 674 return S->getPointerAddressSpace() == 0 && 675 GetUnderlyingObject(S->getPointerOperand(), 676 S->getModule()->getDataLayout()) == Ptr; 677 } 678 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 679 if (MI->isVolatile()) return false; 680 681 // FIXME: check whether it has a valuerange that excludes zero? 682 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); 683 if (!Len || Len->isZero()) return false; 684 685 if (MI->getDestAddressSpace() == 0) 686 if (GetUnderlyingObject(MI->getRawDest(), 687 MI->getModule()->getDataLayout()) == Ptr) 688 return true; 689 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 690 if (MTI->getSourceAddressSpace() == 0) 691 if (GetUnderlyingObject(MTI->getRawSource(), 692 MTI->getModule()->getDataLayout()) == Ptr) 693 return true; 694 } 695 return false; 696 } 697 698 /// Return true if the allocation associated with Val is ever dereferenced 699 /// within the given basic block. This establishes the fact Val is not null, 700 /// but does not imply that the memory at Val is dereferenceable. (Val may 701 /// point off the end of the dereferenceable part of the object.) 702 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { 703 assert(Val->getType()->isPointerTy()); 704 705 const DataLayout &DL = BB->getModule()->getDataLayout(); 706 Value *UnderlyingVal = GetUnderlyingObject(Val, DL); 707 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge 708 // inside InstructionDereferencesPointer either. 709 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) 710 for (Instruction &I : *BB) 711 if (InstructionDereferencesPointer(&I, UnderlyingVal)) 712 return true; 713 return false; 714 } 715 716 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV, 717 Value *Val, BasicBlock *BB) { 718 ValueLatticeElement Result; // Start Undefined. 719 720 // If this is the entry block, we must be asking about an argument. The 721 // value is overdefined. 722 if (BB == &BB->getParent()->getEntryBlock()) { 723 assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); 724 // Before giving up, see if we can prove the pointer non-null local to 725 // this particular block. 726 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 727 if (PTy && 728 (isKnownNonZero(Val, DL) || 729 (isObjectDereferencedInBlock(Val, BB) && 730 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) { 731 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 732 } else { 733 Result = ValueLatticeElement::getOverdefined(); 734 } 735 BBLV = Result; 736 return true; 737 } 738 739 // Loop over all of our predecessors, merging what we know from them into 740 // result. If we encounter an unexplored predecessor, we eagerly explore it 741 // in a depth first manner. In practice, this has the effect of discovering 742 // paths we can't analyze eagerly without spending compile times analyzing 743 // other paths. This heuristic benefits from the fact that predecessors are 744 // frequently arranged such that dominating ones come first and we quickly 745 // find a path to function entry. TODO: We should consider explicitly 746 // canonicalizing to make this true rather than relying on this happy 747 // accident. 748 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 749 ValueLatticeElement EdgeResult; 750 if (!getEdgeValue(Val, *PI, BB, EdgeResult)) 751 // Explore that input, then return here 752 return false; 753 754 Result.mergeIn(EdgeResult, DL); 755 756 // If we hit overdefined, exit early. The BlockVals entry is already set 757 // to overdefined. 758 if (Result.isOverdefined()) { 759 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 760 << "' - overdefined because of pred (non local).\n"); 761 // Before giving up, see if we can prove the pointer non-null local to 762 // this particular block. 763 PointerType *PTy = dyn_cast<PointerType>(Val->getType()); 764 if (PTy && isObjectDereferencedInBlock(Val, BB) && 765 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) { 766 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); 767 } 768 769 BBLV = Result; 770 return true; 771 } 772 } 773 774 // Return the merged value, which is more precise than 'overdefined'. 775 assert(!Result.isOverdefined()); 776 BBLV = Result; 777 return true; 778 } 779 780 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV, 781 PHINode *PN, BasicBlock *BB) { 782 ValueLatticeElement Result; // Start Undefined. 783 784 // Loop over all of our predecessors, merging what we know from them into 785 // result. See the comment about the chosen traversal order in 786 // solveBlockValueNonLocal; the same reasoning applies here. 787 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 788 BasicBlock *PhiBB = PN->getIncomingBlock(i); 789 Value *PhiVal = PN->getIncomingValue(i); 790 ValueLatticeElement EdgeResult; 791 // Note that we can provide PN as the context value to getEdgeValue, even 792 // though the results will be cached, because PN is the value being used as 793 // the cache key in the caller. 794 if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN)) 795 // Explore that input, then return here 796 return false; 797 798 Result.mergeIn(EdgeResult, DL); 799 800 // If we hit overdefined, exit early. The BlockVals entry is already set 801 // to overdefined. 802 if (Result.isOverdefined()) { 803 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 804 << "' - overdefined because of pred (local).\n"); 805 806 BBLV = Result; 807 return true; 808 } 809 } 810 811 // Return the merged value, which is more precise than 'overdefined'. 812 assert(!Result.isOverdefined() && "Possible PHI in entry block?"); 813 BBLV = Result; 814 return true; 815 } 816 817 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 818 bool isTrueDest = true); 819 820 // If we can determine a constraint on the value given conditions assumed by 821 // the program, intersect those constraints with BBLV 822 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( 823 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { 824 BBI = BBI ? BBI : dyn_cast<Instruction>(Val); 825 if (!BBI) 826 return; 827 828 for (auto &AssumeVH : AC->assumptionsFor(Val)) { 829 if (!AssumeVH) 830 continue; 831 auto *I = cast<CallInst>(AssumeVH); 832 if (!isValidAssumeForContext(I, BBI, DT)) 833 continue; 834 835 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); 836 } 837 838 // If guards are not used in the module, don't spend time looking for them 839 auto *GuardDecl = BBI->getModule()->getFunction( 840 Intrinsic::getName(Intrinsic::experimental_guard)); 841 if (!GuardDecl || GuardDecl->use_empty()) 842 return; 843 844 if (BBI->getIterator() == BBI->getParent()->begin()) 845 return; 846 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), 847 BBI->getParent()->rend())) { 848 Value *Cond = nullptr; 849 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) 850 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); 851 } 852 } 853 854 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV, 855 SelectInst *SI, BasicBlock *BB) { 856 857 // Recurse on our inputs if needed 858 if (!hasBlockValue(SI->getTrueValue(), BB)) { 859 if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) 860 return false; 861 BBLV = ValueLatticeElement::getOverdefined(); 862 return true; 863 } 864 ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB); 865 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 866 // extra slots in the table if we can. 867 if (TrueVal.isOverdefined()) { 868 BBLV = ValueLatticeElement::getOverdefined(); 869 return true; 870 } 871 872 if (!hasBlockValue(SI->getFalseValue(), BB)) { 873 if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) 874 return false; 875 BBLV = ValueLatticeElement::getOverdefined(); 876 return true; 877 } 878 ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB); 879 // If we hit overdefined, don't ask more queries. We want to avoid poisoning 880 // extra slots in the table if we can. 881 if (FalseVal.isOverdefined()) { 882 BBLV = ValueLatticeElement::getOverdefined(); 883 return true; 884 } 885 886 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { 887 const ConstantRange &TrueCR = TrueVal.getConstantRange(); 888 const ConstantRange &FalseCR = FalseVal.getConstantRange(); 889 Value *LHS = nullptr; 890 Value *RHS = nullptr; 891 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); 892 // Is this a min specifically of our two inputs? (Avoid the risk of 893 // ValueTracking getting smarter looking back past our immediate inputs.) 894 if (SelectPatternResult::isMinOrMax(SPR.Flavor) && 895 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { 896 ConstantRange ResultCR = [&]() { 897 switch (SPR.Flavor) { 898 default: 899 llvm_unreachable("unexpected minmax type!"); 900 case SPF_SMIN: /// Signed minimum 901 return TrueCR.smin(FalseCR); 902 case SPF_UMIN: /// Unsigned minimum 903 return TrueCR.umin(FalseCR); 904 case SPF_SMAX: /// Signed maximum 905 return TrueCR.smax(FalseCR); 906 case SPF_UMAX: /// Unsigned maximum 907 return TrueCR.umax(FalseCR); 908 }; 909 }(); 910 BBLV = ValueLatticeElement::getRange(ResultCR); 911 return true; 912 } 913 914 if (SPR.Flavor == SPF_ABS) { 915 if (LHS == SI->getTrueValue()) { 916 BBLV = ValueLatticeElement::getRange(TrueCR.abs()); 917 return true; 918 } 919 if (LHS == SI->getFalseValue()) { 920 BBLV = ValueLatticeElement::getRange(FalseCR.abs()); 921 return true; 922 } 923 } 924 925 if (SPR.Flavor == SPF_NABS) { 926 ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); 927 if (LHS == SI->getTrueValue()) { 928 BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs())); 929 return true; 930 } 931 if (LHS == SI->getFalseValue()) { 932 BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs())); 933 return true; 934 } 935 } 936 } 937 938 // Can we constrain the facts about the true and false values by using the 939 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). 940 // TODO: We could potentially refine an overdefined true value above. 941 Value *Cond = SI->getCondition(); 942 TrueVal = intersect(TrueVal, 943 getValueFromCondition(SI->getTrueValue(), Cond, true)); 944 FalseVal = intersect(FalseVal, 945 getValueFromCondition(SI->getFalseValue(), Cond, false)); 946 947 // Handle clamp idioms such as: 948 // %24 = constantrange<0, 17> 949 // %39 = icmp eq i32 %24, 0 950 // %40 = add i32 %24, -1 951 // %siv.next = select i1 %39, i32 16, i32 %40 952 // %siv.next = constantrange<0, 17> not <-1, 17> 953 // In general, this can handle any clamp idiom which tests the edge 954 // condition via an equality or inequality. 955 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 956 ICmpInst::Predicate Pred = ICI->getPredicate(); 957 Value *A = ICI->getOperand(0); 958 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 959 auto addConstants = [](ConstantInt *A, ConstantInt *B) { 960 assert(A->getType() == B->getType()); 961 return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); 962 }; 963 // See if either input is A + C2, subject to the constraint from the 964 // condition that A != C when that input is used. We can assume that 965 // that input doesn't include C + C2. 966 ConstantInt *CIAdded; 967 switch (Pred) { 968 default: break; 969 case ICmpInst::ICMP_EQ: 970 if (match(SI->getFalseValue(), m_Add(m_Specific(A), 971 m_ConstantInt(CIAdded)))) { 972 auto ResNot = addConstants(CIBase, CIAdded); 973 FalseVal = intersect(FalseVal, 974 ValueLatticeElement::getNot(ResNot)); 975 } 976 break; 977 case ICmpInst::ICMP_NE: 978 if (match(SI->getTrueValue(), m_Add(m_Specific(A), 979 m_ConstantInt(CIAdded)))) { 980 auto ResNot = addConstants(CIBase, CIAdded); 981 TrueVal = intersect(TrueVal, 982 ValueLatticeElement::getNot(ResNot)); 983 } 984 break; 985 }; 986 } 987 } 988 989 ValueLatticeElement Result; // Start Undefined. 990 Result.mergeIn(TrueVal, DL); 991 Result.mergeIn(FalseVal, DL); 992 BBLV = Result; 993 return true; 994 } 995 996 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op, 997 Instruction *I, 998 BasicBlock *BB) { 999 if (!hasBlockValue(I->getOperand(Op), BB)) 1000 if (pushBlockValue(std::make_pair(BB, I->getOperand(Op)))) 1001 return None; 1002 1003 const unsigned OperandBitWidth = 1004 DL.getTypeSizeInBits(I->getOperand(Op)->getType()); 1005 ConstantRange Range = ConstantRange::getFull(OperandBitWidth); 1006 if (hasBlockValue(I->getOperand(Op), BB)) { 1007 ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB); 1008 intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I); 1009 if (Val.isConstantRange()) 1010 Range = Val.getConstantRange(); 1011 } 1012 return Range; 1013 } 1014 1015 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV, 1016 CastInst *CI, 1017 BasicBlock *BB) { 1018 if (!CI->getOperand(0)->getType()->isSized()) { 1019 // Without knowing how wide the input is, we can't analyze it in any useful 1020 // way. 1021 BBLV = ValueLatticeElement::getOverdefined(); 1022 return true; 1023 } 1024 1025 // Filter out casts we don't know how to reason about before attempting to 1026 // recurse on our operand. This can cut a long search short if we know we're 1027 // not going to be able to get any useful information anways. 1028 switch (CI->getOpcode()) { 1029 case Instruction::Trunc: 1030 case Instruction::SExt: 1031 case Instruction::ZExt: 1032 case Instruction::BitCast: 1033 break; 1034 default: 1035 // Unhandled instructions are overdefined. 1036 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1037 << "' - overdefined (unknown cast).\n"); 1038 BBLV = ValueLatticeElement::getOverdefined(); 1039 return true; 1040 } 1041 1042 // Figure out the range of the LHS. If that fails, we still apply the 1043 // transfer rule on the full set since we may be able to locally infer 1044 // interesting facts. 1045 Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB); 1046 if (!LHSRes.hasValue()) 1047 // More work to do before applying this transfer rule. 1048 return false; 1049 ConstantRange LHSRange = LHSRes.getValue(); 1050 1051 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); 1052 1053 // NOTE: We're currently limited by the set of operations that ConstantRange 1054 // can evaluate symbolically. Enhancing that set will allows us to analyze 1055 // more definitions. 1056 BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), 1057 ResultBitWidth)); 1058 return true; 1059 } 1060 1061 bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl( 1062 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, 1063 std::function<ConstantRange(const ConstantRange &, 1064 const ConstantRange &)> OpFn) { 1065 // Figure out the ranges of the operands. If that fails, use a 1066 // conservative range, but apply the transfer rule anyways. This 1067 // lets us pick up facts from expressions like "and i32 (call i32 1068 // @foo()), 32" 1069 Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB); 1070 Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB); 1071 if (!LHSRes.hasValue() || !RHSRes.hasValue()) 1072 // More work to do before applying this transfer rule. 1073 return false; 1074 1075 ConstantRange LHSRange = LHSRes.getValue(); 1076 ConstantRange RHSRange = RHSRes.getValue(); 1077 BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); 1078 return true; 1079 } 1080 1081 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV, 1082 BinaryOperator *BO, 1083 BasicBlock *BB) { 1084 1085 assert(BO->getOperand(0)->getType()->isSized() && 1086 "all operands to binary operators are sized"); 1087 if (BO->getOpcode() == Instruction::Xor) { 1088 // Xor is the only operation not supported by ConstantRange::binaryOp(). 1089 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1090 << "' - overdefined (unknown binary operator).\n"); 1091 BBLV = ValueLatticeElement::getOverdefined(); 1092 return true; 1093 } 1094 1095 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { 1096 unsigned NoWrapKind = 0; 1097 if (OBO->hasNoUnsignedWrap()) 1098 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; 1099 if (OBO->hasNoSignedWrap()) 1100 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; 1101 1102 return solveBlockValueBinaryOpImpl( 1103 BBLV, BO, BB, 1104 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { 1105 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); 1106 }); 1107 } 1108 1109 return solveBlockValueBinaryOpImpl( 1110 BBLV, BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { 1111 return CR1.binaryOp(BO->getOpcode(), CR2); 1112 }); 1113 } 1114 1115 bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic( 1116 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) { 1117 return solveBlockValueBinaryOpImpl(BBLV, WO, BB, 1118 [WO](const ConstantRange &CR1, const ConstantRange &CR2) { 1119 return CR1.binaryOp(WO->getBinaryOp(), CR2); 1120 }); 1121 } 1122 1123 bool LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic( 1124 ValueLatticeElement &BBLV, SaturatingInst *SI, BasicBlock *BB) { 1125 switch (SI->getIntrinsicID()) { 1126 case Intrinsic::uadd_sat: 1127 return solveBlockValueBinaryOpImpl( 1128 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1129 return CR1.uadd_sat(CR2); 1130 }); 1131 case Intrinsic::usub_sat: 1132 return solveBlockValueBinaryOpImpl( 1133 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1134 return CR1.usub_sat(CR2); 1135 }); 1136 case Intrinsic::sadd_sat: 1137 return solveBlockValueBinaryOpImpl( 1138 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1139 return CR1.sadd_sat(CR2); 1140 }); 1141 case Intrinsic::ssub_sat: 1142 return solveBlockValueBinaryOpImpl( 1143 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { 1144 return CR1.ssub_sat(CR2); 1145 }); 1146 default: 1147 llvm_unreachable("All llvm.sat intrinsic are handled."); 1148 } 1149 } 1150 1151 bool LazyValueInfoImpl::solveBlockValueIntrinsic(ValueLatticeElement &BBLV, 1152 IntrinsicInst *II, 1153 BasicBlock *BB) { 1154 if (auto *SI = dyn_cast<SaturatingInst>(II)) 1155 return solveBlockValueSaturatingIntrinsic(BBLV, SI, BB); 1156 1157 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1158 << "' - overdefined (unknown intrinsic).\n"); 1159 BBLV = ValueLatticeElement::getOverdefined(); 1160 return true; 1161 } 1162 1163 bool LazyValueInfoImpl::solveBlockValueExtractValue( 1164 ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB) { 1165 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1166 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) 1167 return solveBlockValueOverflowIntrinsic(BBLV, WO, BB); 1168 1169 // Handle extractvalue of insertvalue to allow further simplification 1170 // based on replaced with.overflow intrinsics. 1171 if (Value *V = SimplifyExtractValueInst( 1172 EVI->getAggregateOperand(), EVI->getIndices(), 1173 EVI->getModule()->getDataLayout())) { 1174 if (!hasBlockValue(V, BB)) { 1175 if (pushBlockValue({ BB, V })) 1176 return false; 1177 BBLV = ValueLatticeElement::getOverdefined(); 1178 return true; 1179 } 1180 BBLV = getBlockValue(V, BB); 1181 return true; 1182 } 1183 1184 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() 1185 << "' - overdefined (unknown extractvalue).\n"); 1186 BBLV = ValueLatticeElement::getOverdefined(); 1187 return true; 1188 } 1189 1190 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, 1191 bool isTrueDest) { 1192 Value *LHS = ICI->getOperand(0); 1193 Value *RHS = ICI->getOperand(1); 1194 CmpInst::Predicate Predicate = ICI->getPredicate(); 1195 1196 if (isa<Constant>(RHS)) { 1197 if (ICI->isEquality() && LHS == Val) { 1198 // We know that V has the RHS constant if this is a true SETEQ or 1199 // false SETNE. 1200 if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) 1201 return ValueLatticeElement::get(cast<Constant>(RHS)); 1202 else 1203 return ValueLatticeElement::getNot(cast<Constant>(RHS)); 1204 } 1205 } 1206 1207 if (!Val->getType()->isIntegerTy()) 1208 return ValueLatticeElement::getOverdefined(); 1209 1210 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible 1211 // range of Val guaranteed by the condition. Recognize comparisons in the from 1212 // of: 1213 // icmp <pred> Val, ... 1214 // icmp <pred> (add Val, Offset), ... 1215 // The latter is the range checking idiom that InstCombine produces. Subtract 1216 // the offset from the allowed range for RHS in this case. 1217 1218 // Val or (add Val, Offset) can be on either hand of the comparison 1219 if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { 1220 std::swap(LHS, RHS); 1221 Predicate = CmpInst::getSwappedPredicate(Predicate); 1222 } 1223 1224 ConstantInt *Offset = nullptr; 1225 if (LHS != Val) 1226 match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); 1227 1228 if (LHS == Val || Offset) { 1229 // Calculate the range of values that are allowed by the comparison 1230 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), 1231 /*isFullSet=*/true); 1232 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) 1233 RHSRange = ConstantRange(CI->getValue()); 1234 else if (Instruction *I = dyn_cast<Instruction>(RHS)) 1235 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 1236 RHSRange = getConstantRangeFromMetadata(*Ranges); 1237 1238 // If we're interested in the false dest, invert the condition 1239 CmpInst::Predicate Pred = 1240 isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); 1241 ConstantRange TrueValues = 1242 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 1243 1244 if (Offset) // Apply the offset from above. 1245 TrueValues = TrueValues.subtract(Offset->getValue()); 1246 1247 return ValueLatticeElement::getRange(std::move(TrueValues)); 1248 } 1249 1250 return ValueLatticeElement::getOverdefined(); 1251 } 1252 1253 // Handle conditions of the form 1254 // extractvalue(op.with.overflow(%x, C), 1). 1255 static ValueLatticeElement getValueFromOverflowCondition( 1256 Value *Val, WithOverflowInst *WO, bool IsTrueDest) { 1257 // TODO: This only works with a constant RHS for now. We could also compute 1258 // the range of the RHS, but this doesn't fit into the current structure of 1259 // the edge value calculation. 1260 const APInt *C; 1261 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) 1262 return ValueLatticeElement::getOverdefined(); 1263 1264 // Calculate the possible values of %x for which no overflow occurs. 1265 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 1266 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 1267 1268 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is 1269 // constrained to it's inverse (all values that might cause overflow). 1270 if (IsTrueDest) 1271 NWR = NWR.inverse(); 1272 return ValueLatticeElement::getRange(NWR); 1273 } 1274 1275 static ValueLatticeElement 1276 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1277 DenseMap<Value*, ValueLatticeElement> &Visited); 1278 1279 static ValueLatticeElement 1280 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, 1281 DenseMap<Value*, ValueLatticeElement> &Visited) { 1282 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) 1283 return getValueFromICmpCondition(Val, ICI, isTrueDest); 1284 1285 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) 1286 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) 1287 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) 1288 return getValueFromOverflowCondition(Val, WO, isTrueDest); 1289 1290 // Handle conditions in the form of (cond1 && cond2), we know that on the 1291 // true dest path both of the conditions hold. Similarly for conditions of 1292 // the form (cond1 || cond2), we know that on the false dest path neither 1293 // condition holds. 1294 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); 1295 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || 1296 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) 1297 return ValueLatticeElement::getOverdefined(); 1298 1299 // Prevent infinite recursion if Cond references itself as in this example: 1300 // Cond: "%tmp4 = and i1 %tmp4, undef" 1301 // BL: "%tmp4 = and i1 %tmp4, undef" 1302 // BR: "i1 undef" 1303 Value *BL = BO->getOperand(0); 1304 Value *BR = BO->getOperand(1); 1305 if (BL == Cond || BR == Cond) 1306 return ValueLatticeElement::getOverdefined(); 1307 1308 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), 1309 getValueFromCondition(Val, BR, isTrueDest, Visited)); 1310 } 1311 1312 static ValueLatticeElement 1313 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, 1314 DenseMap<Value*, ValueLatticeElement> &Visited) { 1315 auto I = Visited.find(Cond); 1316 if (I != Visited.end()) 1317 return I->second; 1318 1319 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); 1320 Visited[Cond] = Result; 1321 return Result; 1322 } 1323 1324 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, 1325 bool isTrueDest) { 1326 assert(Cond && "precondition"); 1327 DenseMap<Value*, ValueLatticeElement> Visited; 1328 return getValueFromCondition(Val, Cond, isTrueDest, Visited); 1329 } 1330 1331 // Return true if Usr has Op as an operand, otherwise false. 1332 static bool usesOperand(User *Usr, Value *Op) { 1333 return find(Usr->operands(), Op) != Usr->op_end(); 1334 } 1335 1336 // Return true if the instruction type of Val is supported by 1337 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this 1338 // before calling constantFoldUser() to find out if it's even worth attempting 1339 // to call it. 1340 static bool isOperationFoldable(User *Usr) { 1341 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); 1342 } 1343 1344 // Check if Usr can be simplified to an integer constant when the value of one 1345 // of its operands Op is an integer constant OpConstVal. If so, return it as an 1346 // lattice value range with a single element or otherwise return an overdefined 1347 // lattice value. 1348 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, 1349 const APInt &OpConstVal, 1350 const DataLayout &DL) { 1351 assert(isOperationFoldable(Usr) && "Precondition"); 1352 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); 1353 // Check if Usr can be simplified to a constant. 1354 if (auto *CI = dyn_cast<CastInst>(Usr)) { 1355 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); 1356 if (auto *C = dyn_cast_or_null<ConstantInt>( 1357 SimplifyCastInst(CI->getOpcode(), OpConst, 1358 CI->getDestTy(), DL))) { 1359 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1360 } 1361 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { 1362 bool Op0Match = BO->getOperand(0) == Op; 1363 bool Op1Match = BO->getOperand(1) == Op; 1364 assert((Op0Match || Op1Match) && 1365 "Operand 0 nor Operand 1 isn't a match"); 1366 Value *LHS = Op0Match ? OpConst : BO->getOperand(0); 1367 Value *RHS = Op1Match ? OpConst : BO->getOperand(1); 1368 if (auto *C = dyn_cast_or_null<ConstantInt>( 1369 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { 1370 return ValueLatticeElement::getRange(ConstantRange(C->getValue())); 1371 } 1372 } 1373 return ValueLatticeElement::getOverdefined(); 1374 } 1375 1376 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if 1377 /// Val is not constrained on the edge. Result is unspecified if return value 1378 /// is false. 1379 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, 1380 BasicBlock *BBTo, ValueLatticeElement &Result) { 1381 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we 1382 // know that v != 0. 1383 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { 1384 // If this is a conditional branch and only one successor goes to BBTo, then 1385 // we may be able to infer something from the condition. 1386 if (BI->isConditional() && 1387 BI->getSuccessor(0) != BI->getSuccessor(1)) { 1388 bool isTrueDest = BI->getSuccessor(0) == BBTo; 1389 assert(BI->getSuccessor(!isTrueDest) == BBTo && 1390 "BBTo isn't a successor of BBFrom"); 1391 Value *Condition = BI->getCondition(); 1392 1393 // If V is the condition of the branch itself, then we know exactly what 1394 // it is. 1395 if (Condition == Val) { 1396 Result = ValueLatticeElement::get(ConstantInt::get( 1397 Type::getInt1Ty(Val->getContext()), isTrueDest)); 1398 return true; 1399 } 1400 1401 // If the condition of the branch is an equality comparison, we may be 1402 // able to infer the value. 1403 Result = getValueFromCondition(Val, Condition, isTrueDest); 1404 if (!Result.isOverdefined()) 1405 return true; 1406 1407 if (User *Usr = dyn_cast<User>(Val)) { 1408 assert(Result.isOverdefined() && "Result isn't overdefined"); 1409 // Check with isOperationFoldable() first to avoid linearly iterating 1410 // over the operands unnecessarily which can be expensive for 1411 // instructions with many operands. 1412 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { 1413 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1414 if (usesOperand(Usr, Condition)) { 1415 // If Val has Condition as an operand and Val can be folded into a 1416 // constant with either Condition == true or Condition == false, 1417 // propagate the constant. 1418 // eg. 1419 // ; %Val is true on the edge to %then. 1420 // %Val = and i1 %Condition, true. 1421 // br %Condition, label %then, label %else 1422 APInt ConditionVal(1, isTrueDest ? 1 : 0); 1423 Result = constantFoldUser(Usr, Condition, ConditionVal, DL); 1424 } else { 1425 // If one of Val's operand has an inferred value, we may be able to 1426 // infer the value of Val. 1427 // eg. 1428 // ; %Val is 94 on the edge to %then. 1429 // %Val = add i8 %Op, 1 1430 // %Condition = icmp eq i8 %Op, 93 1431 // br i1 %Condition, label %then, label %else 1432 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { 1433 Value *Op = Usr->getOperand(i); 1434 ValueLatticeElement OpLatticeVal = 1435 getValueFromCondition(Op, Condition, isTrueDest); 1436 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { 1437 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); 1438 break; 1439 } 1440 } 1441 } 1442 } 1443 } 1444 if (!Result.isOverdefined()) 1445 return true; 1446 } 1447 } 1448 1449 // If the edge was formed by a switch on the value, then we may know exactly 1450 // what it is. 1451 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { 1452 Value *Condition = SI->getCondition(); 1453 if (!isa<IntegerType>(Val->getType())) 1454 return false; 1455 bool ValUsesConditionAndMayBeFoldable = false; 1456 if (Condition != Val) { 1457 // Check if Val has Condition as an operand. 1458 if (User *Usr = dyn_cast<User>(Val)) 1459 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && 1460 usesOperand(Usr, Condition); 1461 if (!ValUsesConditionAndMayBeFoldable) 1462 return false; 1463 } 1464 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && 1465 "Condition != Val nor Val doesn't use Condition"); 1466 1467 bool DefaultCase = SI->getDefaultDest() == BBTo; 1468 unsigned BitWidth = Val->getType()->getIntegerBitWidth(); 1469 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); 1470 1471 for (auto Case : SI->cases()) { 1472 APInt CaseValue = Case.getCaseValue()->getValue(); 1473 ConstantRange EdgeVal(CaseValue); 1474 if (ValUsesConditionAndMayBeFoldable) { 1475 User *Usr = cast<User>(Val); 1476 const DataLayout &DL = BBTo->getModule()->getDataLayout(); 1477 ValueLatticeElement EdgeLatticeVal = 1478 constantFoldUser(Usr, Condition, CaseValue, DL); 1479 if (EdgeLatticeVal.isOverdefined()) 1480 return false; 1481 EdgeVal = EdgeLatticeVal.getConstantRange(); 1482 } 1483 if (DefaultCase) { 1484 // It is possible that the default destination is the destination of 1485 // some cases. We cannot perform difference for those cases. 1486 // We know Condition != CaseValue in BBTo. In some cases we can use 1487 // this to infer Val == f(Condition) is != f(CaseValue). For now, we 1488 // only do this when f is identity (i.e. Val == Condition), but we 1489 // should be able to do this for any injective f. 1490 if (Case.getCaseSuccessor() != BBTo && Condition == Val) 1491 EdgesVals = EdgesVals.difference(EdgeVal); 1492 } else if (Case.getCaseSuccessor() == BBTo) 1493 EdgesVals = EdgesVals.unionWith(EdgeVal); 1494 } 1495 Result = ValueLatticeElement::getRange(std::move(EdgesVals)); 1496 return true; 1497 } 1498 return false; 1499 } 1500 1501 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at 1502 /// the basic block if the edge does not constrain Val. 1503 bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, 1504 BasicBlock *BBTo, 1505 ValueLatticeElement &Result, 1506 Instruction *CxtI) { 1507 // If already a constant, there is nothing to compute. 1508 if (Constant *VC = dyn_cast<Constant>(Val)) { 1509 Result = ValueLatticeElement::get(VC); 1510 return true; 1511 } 1512 1513 ValueLatticeElement LocalResult; 1514 if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) 1515 // If we couldn't constrain the value on the edge, LocalResult doesn't 1516 // provide any information. 1517 LocalResult = ValueLatticeElement::getOverdefined(); 1518 1519 if (hasSingleValue(LocalResult)) { 1520 // Can't get any more precise here 1521 Result = LocalResult; 1522 return true; 1523 } 1524 1525 if (!hasBlockValue(Val, BBFrom)) { 1526 if (pushBlockValue(std::make_pair(BBFrom, Val))) 1527 return false; 1528 // No new information. 1529 Result = LocalResult; 1530 return true; 1531 } 1532 1533 // Try to intersect ranges of the BB and the constraint on the edge. 1534 ValueLatticeElement InBlock = getBlockValue(Val, BBFrom); 1535 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, 1536 BBFrom->getTerminator()); 1537 // We can use the context instruction (generically the ultimate instruction 1538 // the calling pass is trying to simplify) here, even though the result of 1539 // this function is generally cached when called from the solve* functions 1540 // (and that cached result might be used with queries using a different 1541 // context instruction), because when this function is called from the solve* 1542 // functions, the context instruction is not provided. When called from 1543 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, 1544 // but then the result is not cached. 1545 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); 1546 1547 Result = intersect(LocalResult, InBlock); 1548 return true; 1549 } 1550 1551 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, 1552 Instruction *CxtI) { 1553 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" 1554 << BB->getName() << "'\n"); 1555 1556 assert(BlockValueStack.empty() && BlockValueSet.empty()); 1557 if (!hasBlockValue(V, BB)) { 1558 pushBlockValue(std::make_pair(BB, V)); 1559 solve(); 1560 } 1561 ValueLatticeElement Result = getBlockValue(V, BB); 1562 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1563 1564 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1565 return Result; 1566 } 1567 1568 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { 1569 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() 1570 << "'\n"); 1571 1572 if (auto *C = dyn_cast<Constant>(V)) 1573 return ValueLatticeElement::get(C); 1574 1575 ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); 1576 if (auto *I = dyn_cast<Instruction>(V)) 1577 Result = getFromRangeMetadata(I); 1578 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); 1579 1580 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1581 return Result; 1582 } 1583 1584 ValueLatticeElement LazyValueInfoImpl:: 1585 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, 1586 Instruction *CxtI) { 1587 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" 1588 << FromBB->getName() << "' to '" << ToBB->getName() 1589 << "'\n"); 1590 1591 ValueLatticeElement Result; 1592 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { 1593 solve(); 1594 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); 1595 (void)WasFastQuery; 1596 assert(WasFastQuery && "More work to do after problem solved?"); 1597 } 1598 1599 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); 1600 return Result; 1601 } 1602 1603 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1604 BasicBlock *NewSucc) { 1605 TheCache.threadEdgeImpl(OldSucc, NewSucc); 1606 } 1607 1608 //===----------------------------------------------------------------------===// 1609 // LazyValueInfo Impl 1610 //===----------------------------------------------------------------------===// 1611 1612 /// This lazily constructs the LazyValueInfoImpl. 1613 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, 1614 const DataLayout *DL, 1615 DominatorTree *DT = nullptr) { 1616 if (!PImpl) { 1617 assert(DL && "getCache() called with a null DataLayout"); 1618 PImpl = new LazyValueInfoImpl(AC, *DL, DT); 1619 } 1620 return *static_cast<LazyValueInfoImpl*>(PImpl); 1621 } 1622 1623 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { 1624 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1625 const DataLayout &DL = F.getParent()->getDataLayout(); 1626 1627 DominatorTreeWrapperPass *DTWP = 1628 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1629 Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; 1630 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1631 1632 if (Info.PImpl) 1633 getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear(); 1634 1635 // Fully lazy. 1636 return false; 1637 } 1638 1639 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1640 AU.setPreservesAll(); 1641 AU.addRequired<AssumptionCacheTracker>(); 1642 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1643 } 1644 1645 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } 1646 1647 LazyValueInfo::~LazyValueInfo() { releaseMemory(); } 1648 1649 void LazyValueInfo::releaseMemory() { 1650 // If the cache was allocated, free it. 1651 if (PImpl) { 1652 delete &getImpl(PImpl, AC, nullptr); 1653 PImpl = nullptr; 1654 } 1655 } 1656 1657 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, 1658 FunctionAnalysisManager::Invalidator &Inv) { 1659 // We need to invalidate if we have either failed to preserve this analyses 1660 // result directly or if any of its dependencies have been invalidated. 1661 auto PAC = PA.getChecker<LazyValueAnalysis>(); 1662 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 1663 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA))) 1664 return true; 1665 1666 return false; 1667 } 1668 1669 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } 1670 1671 LazyValueInfo LazyValueAnalysis::run(Function &F, 1672 FunctionAnalysisManager &FAM) { 1673 auto &AC = FAM.getResult<AssumptionAnalysis>(F); 1674 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1675 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 1676 1677 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT); 1678 } 1679 1680 /// Returns true if we can statically tell that this value will never be a 1681 /// "useful" constant. In practice, this means we've got something like an 1682 /// alloca or a malloc call for which a comparison against a constant can 1683 /// only be guarding dead code. Note that we are potentially giving up some 1684 /// precision in dead code (a constant result) in favour of avoiding a 1685 /// expensive search for a easily answered common query. 1686 static bool isKnownNonConstant(Value *V) { 1687 V = V->stripPointerCasts(); 1688 // The return val of alloc cannot be a Constant. 1689 if (isa<AllocaInst>(V)) 1690 return true; 1691 return false; 1692 } 1693 1694 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, 1695 Instruction *CxtI) { 1696 // Bail out early if V is known not to be a Constant. 1697 if (isKnownNonConstant(V)) 1698 return nullptr; 1699 1700 const DataLayout &DL = BB->getModule()->getDataLayout(); 1701 ValueLatticeElement Result = 1702 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); 1703 1704 if (Result.isConstant()) 1705 return Result.getConstant(); 1706 if (Result.isConstantRange()) { 1707 const ConstantRange &CR = Result.getConstantRange(); 1708 if (const APInt *SingleVal = CR.getSingleElement()) 1709 return ConstantInt::get(V->getContext(), *SingleVal); 1710 } 1711 return nullptr; 1712 } 1713 1714 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, 1715 Instruction *CxtI) { 1716 assert(V->getType()->isIntegerTy()); 1717 unsigned Width = V->getType()->getIntegerBitWidth(); 1718 const DataLayout &DL = BB->getModule()->getDataLayout(); 1719 ValueLatticeElement Result = 1720 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); 1721 if (Result.isUndefined()) 1722 return ConstantRange::getEmpty(Width); 1723 if (Result.isConstantRange()) 1724 return Result.getConstantRange(); 1725 // We represent ConstantInt constants as constant ranges but other kinds 1726 // of integer constants, i.e. ConstantExpr will be tagged as constants 1727 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1728 "ConstantInt value must be represented as constantrange"); 1729 return ConstantRange::getFull(Width); 1730 } 1731 1732 /// Determine whether the specified value is known to be a 1733 /// constant on the specified edge. Return null if not. 1734 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, 1735 BasicBlock *ToBB, 1736 Instruction *CxtI) { 1737 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1738 ValueLatticeElement Result = 1739 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); 1740 1741 if (Result.isConstant()) 1742 return Result.getConstant(); 1743 if (Result.isConstantRange()) { 1744 const ConstantRange &CR = Result.getConstantRange(); 1745 if (const APInt *SingleVal = CR.getSingleElement()) 1746 return ConstantInt::get(V->getContext(), *SingleVal); 1747 } 1748 return nullptr; 1749 } 1750 1751 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, 1752 BasicBlock *FromBB, 1753 BasicBlock *ToBB, 1754 Instruction *CxtI) { 1755 unsigned Width = V->getType()->getIntegerBitWidth(); 1756 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1757 ValueLatticeElement Result = 1758 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); 1759 1760 if (Result.isUndefined()) 1761 return ConstantRange::getEmpty(Width); 1762 if (Result.isConstantRange()) 1763 return Result.getConstantRange(); 1764 // We represent ConstantInt constants as constant ranges but other kinds 1765 // of integer constants, i.e. ConstantExpr will be tagged as constants 1766 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && 1767 "ConstantInt value must be represented as constantrange"); 1768 return ConstantRange::getFull(Width); 1769 } 1770 1771 static LazyValueInfo::Tristate 1772 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, 1773 const DataLayout &DL, TargetLibraryInfo *TLI) { 1774 // If we know the value is a constant, evaluate the conditional. 1775 Constant *Res = nullptr; 1776 if (Val.isConstant()) { 1777 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); 1778 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) 1779 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; 1780 return LazyValueInfo::Unknown; 1781 } 1782 1783 if (Val.isConstantRange()) { 1784 ConstantInt *CI = dyn_cast<ConstantInt>(C); 1785 if (!CI) return LazyValueInfo::Unknown; 1786 1787 const ConstantRange &CR = Val.getConstantRange(); 1788 if (Pred == ICmpInst::ICMP_EQ) { 1789 if (!CR.contains(CI->getValue())) 1790 return LazyValueInfo::False; 1791 1792 if (CR.isSingleElement()) 1793 return LazyValueInfo::True; 1794 } else if (Pred == ICmpInst::ICMP_NE) { 1795 if (!CR.contains(CI->getValue())) 1796 return LazyValueInfo::True; 1797 1798 if (CR.isSingleElement()) 1799 return LazyValueInfo::False; 1800 } else { 1801 // Handle more complex predicates. 1802 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( 1803 (ICmpInst::Predicate)Pred, CI->getValue()); 1804 if (TrueValues.contains(CR)) 1805 return LazyValueInfo::True; 1806 if (TrueValues.inverse().contains(CR)) 1807 return LazyValueInfo::False; 1808 } 1809 return LazyValueInfo::Unknown; 1810 } 1811 1812 if (Val.isNotConstant()) { 1813 // If this is an equality comparison, we can try to fold it knowing that 1814 // "V != C1". 1815 if (Pred == ICmpInst::ICMP_EQ) { 1816 // !C1 == C -> false iff C1 == C. 1817 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1818 Val.getNotConstant(), C, DL, 1819 TLI); 1820 if (Res->isNullValue()) 1821 return LazyValueInfo::False; 1822 } else if (Pred == ICmpInst::ICMP_NE) { 1823 // !C1 != C -> true iff C1 == C. 1824 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, 1825 Val.getNotConstant(), C, DL, 1826 TLI); 1827 if (Res->isNullValue()) 1828 return LazyValueInfo::True; 1829 } 1830 return LazyValueInfo::Unknown; 1831 } 1832 1833 return LazyValueInfo::Unknown; 1834 } 1835 1836 /// Determine whether the specified value comparison with a constant is known to 1837 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. 1838 LazyValueInfo::Tristate 1839 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, 1840 BasicBlock *FromBB, BasicBlock *ToBB, 1841 Instruction *CxtI) { 1842 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 1843 ValueLatticeElement Result = 1844 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); 1845 1846 return getPredicateResult(Pred, C, Result, DL, TLI); 1847 } 1848 1849 LazyValueInfo::Tristate 1850 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, 1851 Instruction *CxtI) { 1852 // Is or is not NonNull are common predicates being queried. If 1853 // isKnownNonZero can tell us the result of the predicate, we can 1854 // return it quickly. But this is only a fastpath, and falling 1855 // through would still be correct. 1856 const DataLayout &DL = CxtI->getModule()->getDataLayout(); 1857 if (V->getType()->isPointerTy() && C->isNullValue() && 1858 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { 1859 if (Pred == ICmpInst::ICMP_EQ) 1860 return LazyValueInfo::False; 1861 else if (Pred == ICmpInst::ICMP_NE) 1862 return LazyValueInfo::True; 1863 } 1864 ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI); 1865 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); 1866 if (Ret != Unknown) 1867 return Ret; 1868 1869 // Note: The following bit of code is somewhat distinct from the rest of LVI; 1870 // LVI as a whole tries to compute a lattice value which is conservatively 1871 // correct at a given location. In this case, we have a predicate which we 1872 // weren't able to prove about the merged result, and we're pushing that 1873 // predicate back along each incoming edge to see if we can prove it 1874 // separately for each input. As a motivating example, consider: 1875 // bb1: 1876 // %v1 = ... ; constantrange<1, 5> 1877 // br label %merge 1878 // bb2: 1879 // %v2 = ... ; constantrange<10, 20> 1880 // br label %merge 1881 // merge: 1882 // %phi = phi [%v1, %v2] ; constantrange<1,20> 1883 // %pred = icmp eq i32 %phi, 8 1884 // We can't tell from the lattice value for '%phi' that '%pred' is false 1885 // along each path, but by checking the predicate over each input separately, 1886 // we can. 1887 // We limit the search to one step backwards from the current BB and value. 1888 // We could consider extending this to search further backwards through the 1889 // CFG and/or value graph, but there are non-obvious compile time vs quality 1890 // tradeoffs. 1891 if (CxtI) { 1892 BasicBlock *BB = CxtI->getParent(); 1893 1894 // Function entry or an unreachable block. Bail to avoid confusing 1895 // analysis below. 1896 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1897 if (PI == PE) 1898 return Unknown; 1899 1900 // If V is a PHI node in the same block as the context, we need to ask 1901 // questions about the predicate as applied to the incoming value along 1902 // each edge. This is useful for eliminating cases where the predicate is 1903 // known along all incoming edges. 1904 if (auto *PHI = dyn_cast<PHINode>(V)) 1905 if (PHI->getParent() == BB) { 1906 Tristate Baseline = Unknown; 1907 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { 1908 Value *Incoming = PHI->getIncomingValue(i); 1909 BasicBlock *PredBB = PHI->getIncomingBlock(i); 1910 // Note that PredBB may be BB itself. 1911 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, 1912 CxtI); 1913 1914 // Keep going as long as we've seen a consistent known result for 1915 // all inputs. 1916 Baseline = (i == 0) ? Result /* First iteration */ 1917 : (Baseline == Result ? Baseline : Unknown); /* All others */ 1918 if (Baseline == Unknown) 1919 break; 1920 } 1921 if (Baseline != Unknown) 1922 return Baseline; 1923 } 1924 1925 // For a comparison where the V is outside this block, it's possible 1926 // that we've branched on it before. Look to see if the value is known 1927 // on all incoming edges. 1928 if (!isa<Instruction>(V) || 1929 cast<Instruction>(V)->getParent() != BB) { 1930 // For predecessor edge, determine if the comparison is true or false 1931 // on that edge. If they're all true or all false, we can conclude 1932 // the value of the comparison in this block. 1933 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1934 if (Baseline != Unknown) { 1935 // Check that all remaining incoming values match the first one. 1936 while (++PI != PE) { 1937 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); 1938 if (Ret != Baseline) break; 1939 } 1940 // If we terminated early, then one of the values didn't match. 1941 if (PI == PE) { 1942 return Baseline; 1943 } 1944 } 1945 } 1946 } 1947 return Unknown; 1948 } 1949 1950 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, 1951 BasicBlock *NewSucc) { 1952 if (PImpl) { 1953 const DataLayout &DL = PredBB->getModule()->getDataLayout(); 1954 getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); 1955 } 1956 } 1957 1958 void LazyValueInfo::eraseBlock(BasicBlock *BB) { 1959 if (PImpl) { 1960 const DataLayout &DL = BB->getModule()->getDataLayout(); 1961 getImpl(PImpl, AC, &DL, DT).eraseBlock(BB); 1962 } 1963 } 1964 1965 1966 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { 1967 if (PImpl) { 1968 getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS); 1969 } 1970 } 1971 1972 void LazyValueInfo::disableDT() { 1973 if (PImpl) 1974 getImpl(PImpl, AC, DL, DT).disableDT(); 1975 } 1976 1977 void LazyValueInfo::enableDT() { 1978 if (PImpl) 1979 getImpl(PImpl, AC, DL, DT).enableDT(); 1980 } 1981 1982 // Print the LVI for the function arguments at the start of each basic block. 1983 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( 1984 const BasicBlock *BB, formatted_raw_ostream &OS) { 1985 // Find if there are latticevalues defined for arguments of the function. 1986 auto *F = BB->getParent(); 1987 for (auto &Arg : F->args()) { 1988 ValueLatticeElement Result = LVIImpl->getValueInBlock( 1989 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); 1990 if (Result.isUndefined()) 1991 continue; 1992 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; 1993 } 1994 } 1995 1996 // This function prints the LVI analysis for the instruction I at the beginning 1997 // of various basic blocks. It relies on calculated values that are stored in 1998 // the LazyValueInfoCache, and in the absence of cached values, recalculate the 1999 // LazyValueInfo for `I`, and print that info. 2000 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( 2001 const Instruction *I, formatted_raw_ostream &OS) { 2002 2003 auto *ParentBB = I->getParent(); 2004 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; 2005 // We can generate (solve) LVI values only for blocks that are dominated by 2006 // the I's parent. However, to avoid generating LVI for all dominating blocks, 2007 // that contain redundant/uninteresting information, we print LVI for 2008 // blocks that may use this LVI information (such as immediate successor 2009 // blocks, and blocks that contain uses of `I`). 2010 auto printResult = [&](const BasicBlock *BB) { 2011 if (!BlocksContainingLVI.insert(BB).second) 2012 return; 2013 ValueLatticeElement Result = LVIImpl->getValueInBlock( 2014 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); 2015 OS << "; LatticeVal for: '" << *I << "' in BB: '"; 2016 BB->printAsOperand(OS, false); 2017 OS << "' is: " << Result << "\n"; 2018 }; 2019 2020 printResult(ParentBB); 2021 // Print the LVI analysis results for the immediate successor blocks, that 2022 // are dominated by `ParentBB`. 2023 for (auto *BBSucc : successors(ParentBB)) 2024 if (DT.dominates(ParentBB, BBSucc)) 2025 printResult(BBSucc); 2026 2027 // Print LVI in blocks where `I` is used. 2028 for (auto *U : I->users()) 2029 if (auto *UseI = dyn_cast<Instruction>(U)) 2030 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) 2031 printResult(UseI->getParent()); 2032 2033 } 2034 2035 namespace { 2036 // Printer class for LazyValueInfo results. 2037 class LazyValueInfoPrinter : public FunctionPass { 2038 public: 2039 static char ID; // Pass identification, replacement for typeid 2040 LazyValueInfoPrinter() : FunctionPass(ID) { 2041 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); 2042 } 2043 2044 void getAnalysisUsage(AnalysisUsage &AU) const override { 2045 AU.setPreservesAll(); 2046 AU.addRequired<LazyValueInfoWrapperPass>(); 2047 AU.addRequired<DominatorTreeWrapperPass>(); 2048 } 2049 2050 // Get the mandatory dominator tree analysis and pass this in to the 2051 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. 2052 bool runOnFunction(Function &F) override { 2053 dbgs() << "LVI for function '" << F.getName() << "':\n"; 2054 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 2055 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2056 LVI.printLVI(F, DTree, dbgs()); 2057 return false; 2058 } 2059 }; 2060 } 2061 2062 char LazyValueInfoPrinter::ID = 0; 2063 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", 2064 "Lazy Value Info Printer Pass", false, false) 2065 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 2066 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", 2067 "Lazy Value Info Printer Pass", false, false) 2068