1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inline cost analysis. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/InlineCost.h" 15 #include "llvm/Support/CallSite.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/IntrinsicInst.h" 18 #include "llvm/Target/TargetData.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 21 using namespace llvm; 22 23 /// callIsSmall - If a call is likely to lower to a single target instruction, 24 /// or is otherwise deemed small return true. 25 /// TODO: Perhaps calls like memcpy, strcpy, etc? 26 bool llvm::callIsSmall(const Function *F) { 27 if (!F) return false; 28 29 if (F->hasLocalLinkage()) return false; 30 31 if (!F->hasName()) return false; 32 33 StringRef Name = F->getName(); 34 35 // These will all likely lower to a single selection DAG node. 36 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || 37 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || 38 Name == "sin" || Name == "sinf" || Name == "sinl" || 39 Name == "cos" || Name == "cosf" || Name == "cosl" || 40 Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" ) 41 return true; 42 43 // These are all likely to be optimized into something smaller. 44 if (Name == "pow" || Name == "powf" || Name == "powl" || 45 Name == "exp2" || Name == "exp2l" || Name == "exp2f" || 46 Name == "floor" || Name == "floorf" || Name == "ceil" || 47 Name == "round" || Name == "ffs" || Name == "ffsl" || 48 Name == "abs" || Name == "labs" || Name == "llabs") 49 return true; 50 51 return false; 52 } 53 54 /// analyzeBasicBlock - Fill in the current structure with information gleaned 55 /// from the specified block. 56 void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB, 57 const TargetData *TD) { 58 ++NumBlocks; 59 unsigned NumInstsBeforeThisBB = NumInsts; 60 for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); 61 II != E; ++II) { 62 if (isa<PHINode>(II)) continue; // PHI nodes don't count. 63 64 // Special handling for calls. 65 if (isa<CallInst>(II) || isa<InvokeInst>(II)) { 66 if (const IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(II)) { 67 switch (IntrinsicI->getIntrinsicID()) { 68 default: break; 69 case Intrinsic::dbg_declare: 70 case Intrinsic::dbg_value: 71 case Intrinsic::invariant_start: 72 case Intrinsic::invariant_end: 73 case Intrinsic::lifetime_start: 74 case Intrinsic::lifetime_end: 75 case Intrinsic::objectsize: 76 case Intrinsic::ptr_annotation: 77 case Intrinsic::var_annotation: 78 // These intrinsics don't count as size. 79 continue; 80 } 81 } 82 83 ImmutableCallSite CS(cast<Instruction>(II)); 84 85 if (const Function *F = CS.getCalledFunction()) { 86 // If a function is both internal and has a single use, then it is 87 // extremely likely to get inlined in the future (it was probably 88 // exposed by an interleaved devirtualization pass). 89 if (!CS.isNoInline() && F->hasInternalLinkage() && F->hasOneUse()) 90 ++NumInlineCandidates; 91 92 // If this call is to function itself, then the function is recursive. 93 // Inlining it into other functions is a bad idea, because this is 94 // basically just a form of loop peeling, and our metrics aren't useful 95 // for that case. 96 if (F == BB->getParent()) 97 isRecursive = true; 98 } 99 100 if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) { 101 // Each argument to a call takes on average one instruction to set up. 102 NumInsts += CS.arg_size(); 103 104 // We don't want inline asm to count as a call - that would prevent loop 105 // unrolling. The argument setup cost is still real, though. 106 if (!isa<InlineAsm>(CS.getCalledValue())) 107 ++NumCalls; 108 } 109 } 110 111 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 112 if (!AI->isStaticAlloca()) 113 this->usesDynamicAlloca = true; 114 } 115 116 if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy()) 117 ++NumVectorInsts; 118 119 if (const CastInst *CI = dyn_cast<CastInst>(II)) { 120 // Noop casts, including ptr <-> int, don't count. 121 if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || 122 isa<PtrToIntInst>(CI)) 123 continue; 124 // trunc to a native type is free (assuming the target has compare and 125 // shift-right of the same width). 126 if (isa<TruncInst>(CI) && TD && 127 TD->isLegalInteger(TD->getTypeSizeInBits(CI->getType()))) 128 continue; 129 // Result of a cmp instruction is often extended (to be used by other 130 // cmp instructions, logical or return instructions). These are usually 131 // nop on most sane targets. 132 if (isa<CmpInst>(CI->getOperand(0))) 133 continue; 134 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){ 135 // If a GEP has all constant indices, it will probably be folded with 136 // a load/store. 137 if (GEPI->hasAllConstantIndices()) 138 continue; 139 } 140 141 ++NumInsts; 142 } 143 144 if (isa<ReturnInst>(BB->getTerminator())) 145 ++NumRets; 146 147 // We never want to inline functions that contain an indirectbr. This is 148 // incorrect because all the blockaddress's (in static global initializers 149 // for example) would be referring to the original function, and this indirect 150 // jump would jump from the inlined copy of the function into the original 151 // function which is extremely undefined behavior. 152 // FIXME: This logic isn't really right; we can safely inline functions 153 // with indirectbr's as long as no other function or global references the 154 // blockaddress of a block within the current function. And as a QOI issue, 155 // if someone is using a blockaddress without an indirectbr, and that 156 // reference somehow ends up in another function or global, we probably 157 // don't want to inline this function. 158 if (isa<IndirectBrInst>(BB->getTerminator())) 159 containsIndirectBr = true; 160 161 // Remember NumInsts for this BB. 162 NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB; 163 } 164 165 // CountCodeReductionForConstant - Figure out an approximation for how many 166 // instructions will be constant folded if the specified value is constant. 167 // 168 unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) { 169 unsigned Reduction = 0; 170 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 171 User *U = *UI; 172 if (isa<BranchInst>(U) || isa<SwitchInst>(U)) { 173 // We will be able to eliminate all but one of the successors. 174 const TerminatorInst &TI = cast<TerminatorInst>(*U); 175 const unsigned NumSucc = TI.getNumSuccessors(); 176 unsigned Instrs = 0; 177 for (unsigned I = 0; I != NumSucc; ++I) 178 Instrs += NumBBInsts[TI.getSuccessor(I)]; 179 // We don't know which blocks will be eliminated, so use the average size. 180 Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; 181 } else { 182 // Figure out if this instruction will be removed due to simple constant 183 // propagation. 184 Instruction &Inst = cast<Instruction>(*U); 185 186 // We can't constant propagate instructions which have effects or 187 // read memory. 188 // 189 // FIXME: It would be nice to capture the fact that a load from a 190 // pointer-to-constant-global is actually a *really* good thing to zap. 191 // Unfortunately, we don't know the pointer that may get propagated here, 192 // so we can't make this decision. 193 if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || 194 isa<AllocaInst>(Inst)) 195 continue; 196 197 bool AllOperandsConstant = true; 198 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) 199 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { 200 AllOperandsConstant = false; 201 break; 202 } 203 204 if (AllOperandsConstant) { 205 // We will get to remove this instruction... 206 Reduction += InlineConstants::InstrCost; 207 208 // And any other instructions that use it which become constants 209 // themselves. 210 Reduction += CountCodeReductionForConstant(&Inst); 211 } 212 } 213 } 214 return Reduction; 215 } 216 217 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller 218 // the function will be if it is inlined into a context where an argument 219 // becomes an alloca. 220 // 221 unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) { 222 if (!V->getType()->isPointerTy()) return 0; // Not a pointer 223 unsigned Reduction = 0; 224 225 // Looking at ICmpInsts will never abort the analysis and return zero, and 226 // analyzing them is expensive, so save them for last so that we don't do 227 // extra work that we end up throwing out. 228 SmallVector<ICmpInst *, 4> ICmpInsts; 229 230 SmallVector<Value *, 4> Worklist; 231 Worklist.push_back(V); 232 do { 233 Value *V = Worklist.pop_back_val(); 234 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 235 UI != E; ++UI){ 236 Instruction *I = cast<Instruction>(*UI); 237 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 238 if (!LI->isSimple()) 239 return 0; 240 Reduction += InlineConstants::InstrCost; 241 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 242 if (!SI->isSimple()) 243 return 0; 244 Reduction += InlineConstants::InstrCost; 245 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 246 // If the GEP has variable indices, we won't be able to do much with it. 247 if (!GEP->hasAllConstantIndices()) 248 return 0; 249 // A non-zero GEP will likely become a mask operation after SROA. 250 if (GEP->hasAllZeroIndices()) 251 Reduction += InlineConstants::InstrCost; 252 Worklist.push_back(GEP); 253 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) { 254 // Track pointer through bitcasts. 255 Worklist.push_back(BCI); 256 Reduction += InlineConstants::InstrCost; 257 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 258 // SROA can handle a select of alloca iff all uses of the alloca are 259 // loads, and dereferenceable. We assume it's dereferenceable since 260 // we're told the input is an alloca. 261 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end(); 262 UI != UE; ++UI) { 263 LoadInst *LI = dyn_cast<LoadInst>(*UI); 264 if (LI == 0 || !LI->isSimple()) return 0; 265 } 266 // We don't know whether we'll be deleting the rest of the chain of 267 // instructions from the SelectInst on, because we don't know whether 268 // the other side of the select is also an alloca or not. 269 continue; 270 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 271 switch (II->getIntrinsicID()) { 272 default: 273 return 0; 274 case Intrinsic::memset: 275 case Intrinsic::memcpy: 276 case Intrinsic::memmove: 277 case Intrinsic::lifetime_start: 278 case Intrinsic::lifetime_end: 279 // SROA can usually chew through these intrinsics. 280 Reduction += InlineConstants::InstrCost; 281 break; 282 } 283 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 284 if (!isa<Constant>(ICI->getOperand(1))) 285 return 0; 286 ICmpInsts.push_back(ICI); 287 } else { 288 // If there is some other strange instruction, we're not going to be 289 // able to do much if we inline this. 290 return 0; 291 } 292 } 293 } while (!Worklist.empty()); 294 295 while (!ICmpInsts.empty()) { 296 ICmpInst *ICI = ICmpInsts.pop_back_val(); 297 298 // An icmp pred (alloca, C) becomes true if the predicate is true when 299 // equal and false otherwise. 300 bool Result = ICI->isTrueWhenEqual(); 301 302 SmallVector<Instruction *, 4> Worklist; 303 Worklist.push_back(ICI); 304 do { 305 Instruction *U = Worklist.pop_back_val(); 306 Reduction += InlineConstants::InstrCost; 307 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 308 UI != UE; ++UI) { 309 Instruction *I = dyn_cast<Instruction>(*UI); 310 if (!I || I->mayHaveSideEffects()) continue; 311 if (I->getNumOperands() == 1) 312 Worklist.push_back(I); 313 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 314 // If BO produces the same value as U, then the other operand is 315 // irrelevant and we can put it into the Worklist to continue 316 // deleting dead instructions. If BO produces the same value as the 317 // other operand, we can delete BO but that's it. 318 if (Result == true) { 319 if (BO->getOpcode() == Instruction::Or) 320 Worklist.push_back(I); 321 if (BO->getOpcode() == Instruction::And) 322 Reduction += InlineConstants::InstrCost; 323 } else { 324 if (BO->getOpcode() == Instruction::Or || 325 BO->getOpcode() == Instruction::Xor) 326 Reduction += InlineConstants::InstrCost; 327 if (BO->getOpcode() == Instruction::And) 328 Worklist.push_back(I); 329 } 330 } 331 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 332 BasicBlock *BB = BI->getSuccessor(Result ? 0 : 1); 333 if (BB->getSinglePredecessor()) 334 Reduction += InlineConstants::InstrCost * NumBBInsts[BB]; 335 } 336 } 337 } while (!Worklist.empty()); 338 } 339 340 return Reduction; 341 } 342 343 /// analyzeFunction - Fill in the current structure with information gleaned 344 /// from the specified function. 345 void CodeMetrics::analyzeFunction(Function *F, const TargetData *TD) { 346 // If this function contains a call that "returns twice" (e.g., setjmp or 347 // _setjmp) and it isn't marked with "returns twice" itself, never inline it. 348 // This is a hack because we depend on the user marking their local variables 349 // as volatile if they are live across a setjmp call, and they probably 350 // won't do this in callers. 351 exposesReturnsTwice = F->callsFunctionThatReturnsTwice() && 352 !F->hasFnAttr(Attribute::ReturnsTwice); 353 354 // Look at the size of the callee. 355 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 356 analyzeBasicBlock(&*BB, TD); 357 } 358 359 /// analyzeFunction - Fill in the current structure with information gleaned 360 /// from the specified function. 361 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F, 362 const TargetData *TD) { 363 Metrics.analyzeFunction(F, TD); 364 365 // A function with exactly one return has it removed during the inlining 366 // process (see InlineFunction), so don't count it. 367 // FIXME: This knowledge should really be encoded outside of FunctionInfo. 368 if (Metrics.NumRets==1) 369 --Metrics.NumInsts; 370 371 // Check out all of the arguments to the function, figuring out how much 372 // code can be eliminated if one of the arguments is a constant. 373 ArgumentWeights.reserve(F->arg_size()); 374 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 375 ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I), 376 Metrics.CountCodeReductionForAlloca(I))); 377 } 378 379 /// NeverInline - returns true if the function should never be inlined into 380 /// any caller 381 bool InlineCostAnalyzer::FunctionInfo::NeverInline() { 382 return (Metrics.exposesReturnsTwice || Metrics.isRecursive || 383 Metrics.containsIndirectBr); 384 } 385 // getSpecializationBonus - The heuristic used to determine the per-call 386 // performance boost for using a specialization of Callee with argument 387 // specializedArgNo replaced by a constant. 388 int InlineCostAnalyzer::getSpecializationBonus(Function *Callee, 389 SmallVectorImpl<unsigned> &SpecializedArgNos) 390 { 391 if (Callee->mayBeOverridden()) 392 return 0; 393 394 int Bonus = 0; 395 // If this function uses the coldcc calling convention, prefer not to 396 // specialize it. 397 if (Callee->getCallingConv() == CallingConv::Cold) 398 Bonus -= InlineConstants::ColdccPenalty; 399 400 // Get information about the callee. 401 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; 402 403 // If we haven't calculated this information yet, do so now. 404 if (CalleeFI->Metrics.NumBlocks == 0) 405 CalleeFI->analyzeFunction(Callee, TD); 406 407 unsigned ArgNo = 0; 408 unsigned i = 0; 409 for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end(); 410 I != E; ++I, ++ArgNo) 411 if (ArgNo == SpecializedArgNos[i]) { 412 ++i; 413 Bonus += CountBonusForConstant(I); 414 } 415 416 // Calls usually take a long time, so they make the specialization gain 417 // smaller. 418 Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; 419 420 return Bonus; 421 } 422 423 // ConstantFunctionBonus - Figure out how much of a bonus we can get for 424 // possibly devirtualizing a function. We'll subtract the size of the function 425 // we may wish to inline from the indirect call bonus providing a limit on 426 // growth. Leave an upper limit of 0 for the bonus - we don't want to penalize 427 // inlining because we decide we don't want to give a bonus for 428 // devirtualizing. 429 int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) { 430 431 // This could just be NULL. 432 if (!C) return 0; 433 434 Function *F = dyn_cast<Function>(C); 435 if (!F) return 0; 436 437 int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F); 438 return (Bonus > 0) ? 0 : Bonus; 439 } 440 441 // CountBonusForConstant - Figure out an approximation for how much per-call 442 // performance boost we can expect if the specified value is constant. 443 int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) { 444 unsigned Bonus = 0; 445 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 446 User *U = *UI; 447 if (CallInst *CI = dyn_cast<CallInst>(U)) { 448 // Turning an indirect call into a direct call is a BIG win 449 if (CI->getCalledValue() == V) 450 Bonus += ConstantFunctionBonus(CallSite(CI), C); 451 } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { 452 // Turning an indirect call into a direct call is a BIG win 453 if (II->getCalledValue() == V) 454 Bonus += ConstantFunctionBonus(CallSite(II), C); 455 } 456 // FIXME: Eliminating conditional branches and switches should 457 // also yield a per-call performance boost. 458 else { 459 // Figure out the bonuses that wll accrue due to simple constant 460 // propagation. 461 Instruction &Inst = cast<Instruction>(*U); 462 463 // We can't constant propagate instructions which have effects or 464 // read memory. 465 // 466 // FIXME: It would be nice to capture the fact that a load from a 467 // pointer-to-constant-global is actually a *really* good thing to zap. 468 // Unfortunately, we don't know the pointer that may get propagated here, 469 // so we can't make this decision. 470 if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || 471 isa<AllocaInst>(Inst)) 472 continue; 473 474 bool AllOperandsConstant = true; 475 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) 476 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { 477 AllOperandsConstant = false; 478 break; 479 } 480 481 if (AllOperandsConstant) 482 Bonus += CountBonusForConstant(&Inst); 483 } 484 } 485 486 return Bonus; 487 } 488 489 int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) { 490 // Get information about the callee. 491 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; 492 493 // If we haven't calculated this information yet, do so now. 494 if (CalleeFI->Metrics.NumBlocks == 0) 495 CalleeFI->analyzeFunction(Callee, TD); 496 497 // InlineCost - This value measures how good of an inline candidate this call 498 // site is to inline. A lower inline cost make is more likely for the call to 499 // be inlined. This value may go negative. 500 // 501 int InlineCost = 0; 502 503 // Compute any size reductions we can expect due to arguments being passed into 504 // the function. 505 // 506 unsigned ArgNo = 0; 507 CallSite::arg_iterator I = CS.arg_begin(); 508 for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); 509 FI != FE; ++I, ++FI, ++ArgNo) { 510 511 // If an alloca is passed in, inlining this function is likely to allow 512 // significant future optimization possibilities (like scalar promotion, and 513 // scalarization), so encourage the inlining of the function. 514 // 515 if (isa<AllocaInst>(I)) 516 InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight; 517 518 // If this is a constant being passed into the function, use the argument 519 // weights calculated for the callee to determine how much will be folded 520 // away with this information. 521 else if (isa<Constant>(I)) 522 InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight; 523 } 524 525 // Each argument passed in has a cost at both the caller and the callee 526 // sides. Measurements show that each argument costs about the same as an 527 // instruction. 528 InlineCost -= (CS.arg_size() * InlineConstants::InstrCost); 529 530 // Now that we have considered all of the factors that make the call site more 531 // likely to be inlined, look at factors that make us not want to inline it. 532 533 // Calls usually take a long time, so they make the inlining gain smaller. 534 InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; 535 536 // Look at the size of the callee. Each instruction counts as 5. 537 InlineCost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost; 538 539 return InlineCost; 540 } 541 542 int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) { 543 // Get information about the callee. 544 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; 545 546 // If we haven't calculated this information yet, do so now. 547 if (CalleeFI->Metrics.NumBlocks == 0) 548 CalleeFI->analyzeFunction(Callee, TD); 549 550 bool isDirectCall = CS.getCalledFunction() == Callee; 551 Instruction *TheCall = CS.getInstruction(); 552 int Bonus = 0; 553 554 // If there is only one call of the function, and it has internal linkage, 555 // make it almost guaranteed to be inlined. 556 // 557 if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall) 558 Bonus += InlineConstants::LastCallToStaticBonus; 559 560 // If the instruction after the call, or if the normal destination of the 561 // invoke is an unreachable instruction, the function is noreturn. As such, 562 // there is little point in inlining this. 563 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 564 if (isa<UnreachableInst>(II->getNormalDest()->begin())) 565 Bonus += InlineConstants::NoreturnPenalty; 566 } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall))) 567 Bonus += InlineConstants::NoreturnPenalty; 568 569 // If this function uses the coldcc calling convention, prefer not to inline 570 // it. 571 if (Callee->getCallingConv() == CallingConv::Cold) 572 Bonus += InlineConstants::ColdccPenalty; 573 574 // Add to the inline quality for properties that make the call valuable to 575 // inline. This includes factors that indicate that the result of inlining 576 // the function will be optimizable. Currently this just looks at arguments 577 // passed into the function. 578 // 579 CallSite::arg_iterator I = CS.arg_begin(); 580 for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); 581 FI != FE; ++I, ++FI) 582 // Compute any constant bonus due to inlining we want to give here. 583 if (isa<Constant>(I)) 584 Bonus += CountBonusForConstant(FI, cast<Constant>(I)); 585 586 return Bonus; 587 } 588 589 // getInlineCost - The heuristic used to determine if we should inline the 590 // function call or not. 591 // 592 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, 593 SmallPtrSet<const Function*, 16> &NeverInline) { 594 return getInlineCost(CS, CS.getCalledFunction(), NeverInline); 595 } 596 597 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, 598 Function *Callee, 599 SmallPtrSet<const Function*, 16> &NeverInline) { 600 Instruction *TheCall = CS.getInstruction(); 601 Function *Caller = TheCall->getParent()->getParent(); 602 603 // Don't inline functions which can be redefined at link-time to mean 604 // something else. Don't inline functions marked noinline or call sites 605 // marked noinline. 606 if (Callee->mayBeOverridden() || 607 Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) || 608 CS.isNoInline()) 609 return llvm::InlineCost::getNever(); 610 611 // Get information about the callee. 612 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; 613 614 // If we haven't calculated this information yet, do so now. 615 if (CalleeFI->Metrics.NumBlocks == 0) 616 CalleeFI->analyzeFunction(Callee, TD); 617 618 // If we should never inline this, return a huge cost. 619 if (CalleeFI->NeverInline()) 620 return InlineCost::getNever(); 621 622 // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we 623 // could move this up and avoid computing the FunctionInfo for 624 // things we are going to just return always inline for. This 625 // requires handling setjmp somewhere else, however. 626 if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline)) 627 return InlineCost::getAlways(); 628 629 if (CalleeFI->Metrics.usesDynamicAlloca) { 630 // Get information about the caller. 631 FunctionInfo &CallerFI = CachedFunctionInfo[Caller]; 632 633 // If we haven't calculated this information yet, do so now. 634 if (CallerFI.Metrics.NumBlocks == 0) { 635 CallerFI.analyzeFunction(Caller, TD); 636 637 // Recompute the CalleeFI pointer, getting Caller could have invalidated 638 // it. 639 CalleeFI = &CachedFunctionInfo[Callee]; 640 } 641 642 // Don't inline a callee with dynamic alloca into a caller without them. 643 // Functions containing dynamic alloca's are inefficient in various ways; 644 // don't create more inefficiency. 645 if (!CallerFI.Metrics.usesDynamicAlloca) 646 return InlineCost::getNever(); 647 } 648 649 // InlineCost - This value measures how good of an inline candidate this call 650 // site is to inline. A lower inline cost make is more likely for the call to 651 // be inlined. This value may go negative due to the fact that bonuses 652 // are negative numbers. 653 // 654 int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee); 655 return llvm::InlineCost::get(InlineCost); 656 } 657 658 // getSpecializationCost - The heuristic used to determine the code-size 659 // impact of creating a specialized version of Callee with argument 660 // SpecializedArgNo replaced by a constant. 661 InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee, 662 SmallVectorImpl<unsigned> &SpecializedArgNos) 663 { 664 // Don't specialize functions which can be redefined at link-time to mean 665 // something else. 666 if (Callee->mayBeOverridden()) 667 return llvm::InlineCost::getNever(); 668 669 // Get information about the callee. 670 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; 671 672 // If we haven't calculated this information yet, do so now. 673 if (CalleeFI->Metrics.NumBlocks == 0) 674 CalleeFI->analyzeFunction(Callee, TD); 675 676 int Cost = 0; 677 678 // Look at the original size of the callee. Each instruction counts as 5. 679 Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost; 680 681 // Offset that with the amount of code that can be constant-folded 682 // away with the given arguments replaced by constants. 683 for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(), 684 ae = SpecializedArgNos.end(); an != ae; ++an) 685 Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight; 686 687 return llvm::InlineCost::get(Cost); 688 } 689 690 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a 691 // higher threshold to determine if the function call should be inlined. 692 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) { 693 Function *Callee = CS.getCalledFunction(); 694 695 // Get information about the callee. 696 FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; 697 698 // If we haven't calculated this information yet, do so now. 699 if (CalleeFI.Metrics.NumBlocks == 0) 700 CalleeFI.analyzeFunction(Callee, TD); 701 702 float Factor = 1.0f; 703 // Single BB functions are often written to be inlined. 704 if (CalleeFI.Metrics.NumBlocks == 1) 705 Factor += 0.5f; 706 707 // Be more aggressive if the function contains a good chunk (if it mades up 708 // at least 10% of the instructions) of vector instructions. 709 if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2) 710 Factor += 2.0f; 711 else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10) 712 Factor += 1.5f; 713 return Factor; 714 } 715 716 /// growCachedCostInfo - update the cached cost info for Caller after Callee has 717 /// been inlined. 718 void 719 InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) { 720 CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics; 721 722 // For small functions we prefer to recalculate the cost for better accuracy. 723 if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) { 724 resetCachedCostInfo(Caller); 725 return; 726 } 727 728 // For large functions, we can save a lot of computation time by skipping 729 // recalculations. 730 if (CallerMetrics.NumCalls > 0) 731 --CallerMetrics.NumCalls; 732 733 if (Callee == 0) return; 734 735 CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics; 736 737 // If we don't have metrics for the callee, don't recalculate them just to 738 // update an approximation in the caller. Instead, just recalculate the 739 // caller info from scratch. 740 if (CalleeMetrics.NumBlocks == 0) { 741 resetCachedCostInfo(Caller); 742 return; 743 } 744 745 // Since CalleeMetrics were already calculated, we know that the CallerMetrics 746 // reference isn't invalidated: both were in the DenseMap. 747 CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca; 748 749 // FIXME: If any of these three are true for the callee, the callee was 750 // not inlined into the caller, so I think they're redundant here. 751 CallerMetrics.exposesReturnsTwice |= CalleeMetrics.exposesReturnsTwice; 752 CallerMetrics.isRecursive |= CalleeMetrics.isRecursive; 753 CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr; 754 755 CallerMetrics.NumInsts += CalleeMetrics.NumInsts; 756 CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks; 757 CallerMetrics.NumCalls += CalleeMetrics.NumCalls; 758 CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts; 759 CallerMetrics.NumRets += CalleeMetrics.NumRets; 760 761 // analyzeBasicBlock counts each function argument as an inst. 762 if (CallerMetrics.NumInsts >= Callee->arg_size()) 763 CallerMetrics.NumInsts -= Callee->arg_size(); 764 else 765 CallerMetrics.NumInsts = 0; 766 767 // We are not updating the argument weights. We have already determined that 768 // Caller is a fairly large function, so we accept the loss of precision. 769 } 770 771 /// clear - empty the cache of inline costs 772 void InlineCostAnalyzer::clear() { 773 CachedFunctionInfo.clear(); 774 } 775