1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/InstVisitor.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "inline-cost"
44 
45 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
46 
47 static cl::opt<int> InlineThreshold(
48     "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
49     cl::desc("Control the amount of inlining to perform (default = 225)"));
50 
51 static cl::opt<int> HintThreshold(
52     "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
53     cl::desc("Threshold for inlining functions with inline hint"));
54 
55 static cl::opt<int>
56     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
57                           cl::init(45), cl::ZeroOrMore,
58                           cl::desc("Threshold for inlining cold callsites"));
59 
60 // We introduce this threshold to help performance of instrumentation based
61 // PGO before we actually hook up inliner with analysis passes such as BPI and
62 // BFI.
63 static cl::opt<int> ColdThreshold(
64     "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
65     cl::desc("Threshold for inlining functions with cold attribute"));
66 
67 static cl::opt<int>
68     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
69                          cl::ZeroOrMore,
70                          cl::desc("Threshold for hot callsites "));
71 
72 static cl::opt<int> LocallyHotCallSiteThreshold(
73     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
74     cl::desc("Threshold for locally hot callsites "));
75 
76 static cl::opt<int> ColdCallSiteRelFreq(
77     "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
78     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
79              "entry frequency, for a callsite to be cold in the absence of "
80              "profile information."));
81 
82 static cl::opt<int> HotCallSiteRelFreq(
83     "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
84     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
85              "entry frequency, for a callsite to be hot in the absence of "
86              "profile information."));
87 
88 static cl::opt<bool> OptComputeFullInlineCost(
89     "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
90     cl::desc("Compute the full inline cost of a call site even when the cost "
91              "exceeds the threshold."));
92 
93 namespace {
94 
95 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
96   typedef InstVisitor<CallAnalyzer, bool> Base;
97   friend class InstVisitor<CallAnalyzer, bool>;
98 
99   /// The TargetTransformInfo available for this compilation.
100   const TargetTransformInfo &TTI;
101 
102   /// Getter for the cache of @llvm.assume intrinsics.
103   std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
104 
105   /// Getter for BlockFrequencyInfo
106   Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
107 
108   /// Profile summary information.
109   ProfileSummaryInfo *PSI;
110 
111   /// The called function.
112   Function &F;
113 
114   // Cache the DataLayout since we use it a lot.
115   const DataLayout &DL;
116 
117   /// The OptimizationRemarkEmitter available for this compilation.
118   OptimizationRemarkEmitter *ORE;
119 
120   /// The candidate callsite being analyzed. Please do not use this to do
121   /// analysis in the caller function; we want the inline cost query to be
122   /// easily cacheable. Instead, use the cover function paramHasAttr.
123   CallBase &CandidateCall;
124 
125   /// Tunable parameters that control the analysis.
126   const InlineParams &Params;
127 
128   /// Upper bound for the inlining cost. Bonuses are being applied to account
129   /// for speculative "expected profit" of the inlining decision.
130   int Threshold;
131 
132   /// Inlining cost measured in abstract units, accounts for all the
133   /// instructions expected to be executed for a given function invocation.
134   /// Instructions that are statically proven to be dead based on call-site
135   /// arguments are not counted here.
136   int Cost = 0;
137 
138   bool ComputeFullInlineCost;
139 
140   bool IsCallerRecursive = false;
141   bool IsRecursiveCall = false;
142   bool ExposesReturnsTwice = false;
143   bool HasDynamicAlloca = false;
144   bool ContainsNoDuplicateCall = false;
145   bool HasReturn = false;
146   bool HasIndirectBr = false;
147   bool HasUninlineableIntrinsic = false;
148   bool InitsVargArgs = false;
149 
150   /// Number of bytes allocated statically by the callee.
151   uint64_t AllocatedSize = 0;
152   unsigned NumInstructions = 0;
153   unsigned NumVectorInstructions = 0;
154 
155   /// Bonus to be applied when percentage of vector instructions in callee is
156   /// high (see more details in updateThreshold).
157   int VectorBonus = 0;
158   /// Bonus to be applied when the callee has only one reachable basic block.
159   int SingleBBBonus = 0;
160 
161   /// While we walk the potentially-inlined instructions, we build up and
162   /// maintain a mapping of simplified values specific to this callsite. The
163   /// idea is to propagate any special information we have about arguments to
164   /// this call through the inlinable section of the function, and account for
165   /// likely simplifications post-inlining. The most important aspect we track
166   /// is CFG altering simplifications -- when we prove a basic block dead, that
167   /// can cause dramatic shifts in the cost of inlining a function.
168   DenseMap<Value *, Constant *> SimplifiedValues;
169 
170   /// Keep track of the values which map back (through function arguments) to
171   /// allocas on the caller stack which could be simplified through SROA.
172   DenseMap<Value *, Value *> SROAArgValues;
173 
174   /// The mapping of caller Alloca values to their accumulated cost savings. If
175   /// we have to disable SROA for one of the allocas, this tells us how much
176   /// cost must be added.
177   DenseMap<Value *, int> SROAArgCosts;
178 
179   /// Keep track of values which map to a pointer base and constant offset.
180   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
181 
182   /// Keep track of dead blocks due to the constant arguments.
183   SetVector<BasicBlock *> DeadBlocks;
184 
185   /// The mapping of the blocks to their known unique successors due to the
186   /// constant arguments.
187   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
188 
189   /// Model the elimination of repeated loads that is expected to happen
190   /// whenever we simplify away the stores that would otherwise cause them to be
191   /// loads.
192   bool EnableLoadElimination;
193   SmallPtrSet<Value *, 16> LoadAddrSet;
194   int LoadEliminationCost = 0;
195 
196   // Custom simplification helper routines.
197   bool isAllocaDerivedArg(Value *V);
198   bool lookupSROAArgAndCost(Value *V, Value *&Arg,
199                             DenseMap<Value *, int>::iterator &CostIt);
200   void disableSROA(DenseMap<Value *, int>::iterator CostIt);
201   void disableSROA(Value *V);
202   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
203   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
204                           int InstructionCost);
205   void disableLoadElimination();
206   bool isGEPFree(GetElementPtrInst &GEP);
207   bool canFoldInboundsGEP(GetElementPtrInst &I);
208   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
209   bool simplifyCallSite(Function *F, CallBase &Call);
210   template <typename Callable>
211   bool simplifyInstruction(Instruction &I, Callable Evaluate);
212   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
213 
214   /// Return true if the given argument to the function being considered for
215   /// inlining has the given attribute set either at the call site or the
216   /// function declaration.  Primarily used to inspect call site specific
217   /// attributes since these can be more precise than the ones on the callee
218   /// itself.
219   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
220 
221   /// Return true if the given value is known non null within the callee if
222   /// inlined through this particular callsite.
223   bool isKnownNonNullInCallee(Value *V);
224 
225   /// Update Threshold based on callsite properties such as callee
226   /// attributes and callee hotness for PGO builds. The Callee is explicitly
227   /// passed to support analyzing indirect calls whose target is inferred by
228   /// analysis.
229   void updateThreshold(CallBase &Call, Function &Callee);
230 
231   /// Return true if size growth is allowed when inlining the callee at \p Call.
232   bool allowSizeGrowth(CallBase &Call);
233 
234   /// Return true if \p Call is a cold callsite.
235   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
236 
237   /// Return a higher threshold if \p Call is a hot callsite.
238   Optional<int> getHotCallSiteThreshold(CallBase &Call,
239                                         BlockFrequencyInfo *CallerBFI);
240 
241   // Custom analysis routines.
242   InlineResult analyzeBlock(BasicBlock *BB,
243                             SmallPtrSetImpl<const Value *> &EphValues);
244 
245   /// Handle a capped 'int' increment for Cost.
246   void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
247     assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
248     Cost = (int)std::min(UpperBound, Cost + Inc);
249   }
250 
251   // Disable several entry points to the visitor so we don't accidentally use
252   // them by declaring but not defining them here.
253   void visit(Module *);
254   void visit(Module &);
255   void visit(Function *);
256   void visit(Function &);
257   void visit(BasicBlock *);
258   void visit(BasicBlock &);
259 
260   // Provide base case for our instruction visit.
261   bool visitInstruction(Instruction &I);
262 
263   // Our visit overrides.
264   bool visitAlloca(AllocaInst &I);
265   bool visitPHI(PHINode &I);
266   bool visitGetElementPtr(GetElementPtrInst &I);
267   bool visitBitCast(BitCastInst &I);
268   bool visitPtrToInt(PtrToIntInst &I);
269   bool visitIntToPtr(IntToPtrInst &I);
270   bool visitCastInst(CastInst &I);
271   bool visitUnaryInstruction(UnaryInstruction &I);
272   bool visitCmpInst(CmpInst &I);
273   bool visitSub(BinaryOperator &I);
274   bool visitBinaryOperator(BinaryOperator &I);
275   bool visitLoad(LoadInst &I);
276   bool visitStore(StoreInst &I);
277   bool visitExtractValue(ExtractValueInst &I);
278   bool visitInsertValue(InsertValueInst &I);
279   bool visitCallBase(CallBase &Call);
280   bool visitReturnInst(ReturnInst &RI);
281   bool visitBranchInst(BranchInst &BI);
282   bool visitSelectInst(SelectInst &SI);
283   bool visitSwitchInst(SwitchInst &SI);
284   bool visitIndirectBrInst(IndirectBrInst &IBI);
285   bool visitResumeInst(ResumeInst &RI);
286   bool visitCleanupReturnInst(CleanupReturnInst &RI);
287   bool visitCatchReturnInst(CatchReturnInst &RI);
288   bool visitUnreachableInst(UnreachableInst &I);
289 
290 public:
291   CallAnalyzer(const TargetTransformInfo &TTI,
292                std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
293                Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
294                ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
295                Function &Callee, CallBase &Call, const InlineParams &Params)
296       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
297         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
298         CandidateCall(Call), Params(Params), Threshold(Params.DefaultThreshold),
299         ComputeFullInlineCost(OptComputeFullInlineCost ||
300                               Params.ComputeFullInlineCost || ORE),
301         EnableLoadElimination(true) {}
302 
303   InlineResult analyzeCall(CallBase &Call);
304 
305   int getThreshold() { return Threshold; }
306   int getCost() { return Cost; }
307 
308   // Keep a bunch of stats about the cost savings found so we can print them
309   // out when debugging.
310   unsigned NumConstantArgs = 0;
311   unsigned NumConstantOffsetPtrArgs = 0;
312   unsigned NumAllocaArgs = 0;
313   unsigned NumConstantPtrCmps = 0;
314   unsigned NumConstantPtrDiffs = 0;
315   unsigned NumInstructionsSimplified = 0;
316   unsigned SROACostSavings = 0;
317   unsigned SROACostSavingsLost = 0;
318 
319   void dump();
320 };
321 
322 } // namespace
323 
324 /// Test whether the given value is an Alloca-derived function argument.
325 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
326   return SROAArgValues.count(V);
327 }
328 
329 /// Lookup the SROA-candidate argument and cost iterator which V maps to.
330 /// Returns false if V does not map to a SROA-candidate.
331 bool CallAnalyzer::lookupSROAArgAndCost(
332     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
333   if (SROAArgValues.empty() || SROAArgCosts.empty())
334     return false;
335 
336   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
337   if (ArgIt == SROAArgValues.end())
338     return false;
339 
340   Arg = ArgIt->second;
341   CostIt = SROAArgCosts.find(Arg);
342   return CostIt != SROAArgCosts.end();
343 }
344 
345 /// Disable SROA for the candidate marked by this cost iterator.
346 ///
347 /// This marks the candidate as no longer viable for SROA, and adds the cost
348 /// savings associated with it back into the inline cost measurement.
349 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
350   // If we're no longer able to perform SROA we need to undo its cost savings
351   // and prevent subsequent analysis.
352   addCost(CostIt->second);
353   SROACostSavings -= CostIt->second;
354   SROACostSavingsLost += CostIt->second;
355   SROAArgCosts.erase(CostIt);
356   disableLoadElimination();
357 }
358 
359 /// If 'V' maps to a SROA candidate, disable SROA for it.
360 void CallAnalyzer::disableSROA(Value *V) {
361   Value *SROAArg;
362   DenseMap<Value *, int>::iterator CostIt;
363   if (lookupSROAArgAndCost(V, SROAArg, CostIt))
364     disableSROA(CostIt);
365 }
366 
367 /// Accumulate the given cost for a particular SROA candidate.
368 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
369                                       int InstructionCost) {
370   CostIt->second += InstructionCost;
371   SROACostSavings += InstructionCost;
372 }
373 
374 void CallAnalyzer::disableLoadElimination() {
375   if (EnableLoadElimination) {
376     addCost(LoadEliminationCost);
377     LoadEliminationCost = 0;
378     EnableLoadElimination = false;
379   }
380 }
381 
382 /// Accumulate a constant GEP offset into an APInt if possible.
383 ///
384 /// Returns false if unable to compute the offset for any reason. Respects any
385 /// simplified values known during the analysis of this callsite.
386 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
387   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
388   assert(IntPtrWidth == Offset.getBitWidth());
389 
390   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
391        GTI != GTE; ++GTI) {
392     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
393     if (!OpC)
394       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
395         OpC = dyn_cast<ConstantInt>(SimpleOp);
396     if (!OpC)
397       return false;
398     if (OpC->isZero())
399       continue;
400 
401     // Handle a struct index, which adds its field offset to the pointer.
402     if (StructType *STy = GTI.getStructTypeOrNull()) {
403       unsigned ElementIdx = OpC->getZExtValue();
404       const StructLayout *SL = DL.getStructLayout(STy);
405       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
406       continue;
407     }
408 
409     APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
410     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
411   }
412   return true;
413 }
414 
415 /// Use TTI to check whether a GEP is free.
416 ///
417 /// Respects any simplified values known during the analysis of this callsite.
418 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
419   SmallVector<Value *, 4> Operands;
420   Operands.push_back(GEP.getOperand(0));
421   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
422     if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
423        Operands.push_back(SimpleOp);
424      else
425        Operands.push_back(*I);
426   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
427 }
428 
429 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
430   // Check whether inlining will turn a dynamic alloca into a static
431   // alloca and handle that case.
432   if (I.isArrayAllocation()) {
433     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
434     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
435       Type *Ty = I.getAllocatedType();
436       AllocatedSize = SaturatingMultiplyAdd(
437           AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize);
438       return Base::visitAlloca(I);
439     }
440   }
441 
442   // Accumulate the allocated size.
443   if (I.isStaticAlloca()) {
444     Type *Ty = I.getAllocatedType();
445     AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize);
446   }
447 
448   // We will happily inline static alloca instructions.
449   if (I.isStaticAlloca())
450     return Base::visitAlloca(I);
451 
452   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
453   // a variety of reasons, and so we would like to not inline them into
454   // functions which don't currently have a dynamic alloca. This simply
455   // disables inlining altogether in the presence of a dynamic alloca.
456   HasDynamicAlloca = true;
457   return false;
458 }
459 
460 bool CallAnalyzer::visitPHI(PHINode &I) {
461   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
462   // though we don't want to propagate it's bonuses. The idea is to disable
463   // SROA if it *might* be used in an inappropriate manner.
464 
465   // Phi nodes are always zero-cost.
466   // FIXME: Pointer sizes may differ between different address spaces, so do we
467   // need to use correct address space in the call to getPointerSizeInBits here?
468   // Or could we skip the getPointerSizeInBits call completely? As far as I can
469   // see the ZeroOffset is used as a dummy value, so we can probably use any
470   // bit width for the ZeroOffset?
471   APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
472   bool CheckSROA = I.getType()->isPointerTy();
473 
474   // Track the constant or pointer with constant offset we've seen so far.
475   Constant *FirstC = nullptr;
476   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
477   Value *FirstV = nullptr;
478 
479   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
480     BasicBlock *Pred = I.getIncomingBlock(i);
481     // If the incoming block is dead, skip the incoming block.
482     if (DeadBlocks.count(Pred))
483       continue;
484     // If the parent block of phi is not the known successor of the incoming
485     // block, skip the incoming block.
486     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
487     if (KnownSuccessor && KnownSuccessor != I.getParent())
488       continue;
489 
490     Value *V = I.getIncomingValue(i);
491     // If the incoming value is this phi itself, skip the incoming value.
492     if (&I == V)
493       continue;
494 
495     Constant *C = dyn_cast<Constant>(V);
496     if (!C)
497       C = SimplifiedValues.lookup(V);
498 
499     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
500     if (!C && CheckSROA)
501       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
502 
503     if (!C && !BaseAndOffset.first)
504       // The incoming value is neither a constant nor a pointer with constant
505       // offset, exit early.
506       return true;
507 
508     if (FirstC) {
509       if (FirstC == C)
510         // If we've seen a constant incoming value before and it is the same
511         // constant we see this time, continue checking the next incoming value.
512         continue;
513       // Otherwise early exit because we either see a different constant or saw
514       // a constant before but we have a pointer with constant offset this time.
515       return true;
516     }
517 
518     if (FirstV) {
519       // The same logic as above, but check pointer with constant offset here.
520       if (FirstBaseAndOffset == BaseAndOffset)
521         continue;
522       return true;
523     }
524 
525     if (C) {
526       // This is the 1st time we've seen a constant, record it.
527       FirstC = C;
528       continue;
529     }
530 
531     // The remaining case is that this is the 1st time we've seen a pointer with
532     // constant offset, record it.
533     FirstV = V;
534     FirstBaseAndOffset = BaseAndOffset;
535   }
536 
537   // Check if we can map phi to a constant.
538   if (FirstC) {
539     SimplifiedValues[&I] = FirstC;
540     return true;
541   }
542 
543   // Check if we can map phi to a pointer with constant offset.
544   if (FirstBaseAndOffset.first) {
545     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
546 
547     Value *SROAArg;
548     DenseMap<Value *, int>::iterator CostIt;
549     if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt))
550       SROAArgValues[&I] = SROAArg;
551   }
552 
553   return true;
554 }
555 
556 /// Check we can fold GEPs of constant-offset call site argument pointers.
557 /// This requires target data and inbounds GEPs.
558 ///
559 /// \return true if the specified GEP can be folded.
560 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
561   // Check if we have a base + offset for the pointer.
562   std::pair<Value *, APInt> BaseAndOffset =
563       ConstantOffsetPtrs.lookup(I.getPointerOperand());
564   if (!BaseAndOffset.first)
565     return false;
566 
567   // Check if the offset of this GEP is constant, and if so accumulate it
568   // into Offset.
569   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
570     return false;
571 
572   // Add the result as a new mapping to Base + Offset.
573   ConstantOffsetPtrs[&I] = BaseAndOffset;
574 
575   return true;
576 }
577 
578 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
579   Value *SROAArg;
580   DenseMap<Value *, int>::iterator CostIt;
581   bool SROACandidate =
582       lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);
583 
584   // Lambda to check whether a GEP's indices are all constant.
585   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
586     for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
587       if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
588         return false;
589     return true;
590   };
591 
592   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
593     if (SROACandidate)
594       SROAArgValues[&I] = SROAArg;
595 
596     // Constant GEPs are modeled as free.
597     return true;
598   }
599 
600   // Variable GEPs will require math and will disable SROA.
601   if (SROACandidate)
602     disableSROA(CostIt);
603   return isGEPFree(I);
604 }
605 
606 /// Simplify \p I if its operands are constants and update SimplifiedValues.
607 /// \p Evaluate is a callable specific to instruction type that evaluates the
608 /// instruction when all the operands are constants.
609 template <typename Callable>
610 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
611   SmallVector<Constant *, 2> COps;
612   for (Value *Op : I.operands()) {
613     Constant *COp = dyn_cast<Constant>(Op);
614     if (!COp)
615       COp = SimplifiedValues.lookup(Op);
616     if (!COp)
617       return false;
618     COps.push_back(COp);
619   }
620   auto *C = Evaluate(COps);
621   if (!C)
622     return false;
623   SimplifiedValues[&I] = C;
624   return true;
625 }
626 
627 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
628   // Propagate constants through bitcasts.
629   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
630         return ConstantExpr::getBitCast(COps[0], I.getType());
631       }))
632     return true;
633 
634   // Track base/offsets through casts
635   std::pair<Value *, APInt> BaseAndOffset =
636       ConstantOffsetPtrs.lookup(I.getOperand(0));
637   // Casts don't change the offset, just wrap it up.
638   if (BaseAndOffset.first)
639     ConstantOffsetPtrs[&I] = BaseAndOffset;
640 
641   // Also look for SROA candidates here.
642   Value *SROAArg;
643   DenseMap<Value *, int>::iterator CostIt;
644   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
645     SROAArgValues[&I] = SROAArg;
646 
647   // Bitcasts are always zero cost.
648   return true;
649 }
650 
651 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
652   // Propagate constants through ptrtoint.
653   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
654         return ConstantExpr::getPtrToInt(COps[0], I.getType());
655       }))
656     return true;
657 
658   // Track base/offset pairs when converted to a plain integer provided the
659   // integer is large enough to represent the pointer.
660   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
661   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
662   if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
663     std::pair<Value *, APInt> BaseAndOffset =
664         ConstantOffsetPtrs.lookup(I.getOperand(0));
665     if (BaseAndOffset.first)
666       ConstantOffsetPtrs[&I] = BaseAndOffset;
667   }
668 
669   // This is really weird. Technically, ptrtoint will disable SROA. However,
670   // unless that ptrtoint is *used* somewhere in the live basic blocks after
671   // inlining, it will be nuked, and SROA should proceed. All of the uses which
672   // would block SROA would also block SROA if applied directly to a pointer,
673   // and so we can just add the integer in here. The only places where SROA is
674   // preserved either cannot fire on an integer, or won't in-and-of themselves
675   // disable SROA (ext) w/o some later use that we would see and disable.
676   Value *SROAArg;
677   DenseMap<Value *, int>::iterator CostIt;
678   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
679     SROAArgValues[&I] = SROAArg;
680 
681   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
682 }
683 
684 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
685   // Propagate constants through ptrtoint.
686   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
687         return ConstantExpr::getIntToPtr(COps[0], I.getType());
688       }))
689     return true;
690 
691   // Track base/offset pairs when round-tripped through a pointer without
692   // modifications provided the integer is not too large.
693   Value *Op = I.getOperand(0);
694   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
695   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
696     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
697     if (BaseAndOffset.first)
698       ConstantOffsetPtrs[&I] = BaseAndOffset;
699   }
700 
701   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
702   Value *SROAArg;
703   DenseMap<Value *, int>::iterator CostIt;
704   if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
705     SROAArgValues[&I] = SROAArg;
706 
707   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
708 }
709 
710 bool CallAnalyzer::visitCastInst(CastInst &I) {
711   // Propagate constants through ptrtoint.
712   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
713         return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
714       }))
715     return true;
716 
717   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
718   disableSROA(I.getOperand(0));
719 
720   // If this is a floating-point cast, and the target says this operation
721   // is expensive, this may eventually become a library call. Treat the cost
722   // as such.
723   switch (I.getOpcode()) {
724   case Instruction::FPTrunc:
725   case Instruction::FPExt:
726   case Instruction::UIToFP:
727   case Instruction::SIToFP:
728   case Instruction::FPToUI:
729   case Instruction::FPToSI:
730     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
731       addCost(InlineConstants::CallPenalty);
732     break;
733   default:
734     break;
735   }
736 
737   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
738 }
739 
740 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
741   Value *Operand = I.getOperand(0);
742   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
743         return ConstantFoldInstOperands(&I, COps[0], DL);
744       }))
745     return true;
746 
747   // Disable any SROA on the argument to arbitrary unary operators.
748   disableSROA(Operand);
749 
750   return false;
751 }
752 
753 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
754   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
755 }
756 
757 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
758   // Does the *call site* have the NonNull attribute set on an argument?  We
759   // use the attribute on the call site to memoize any analysis done in the
760   // caller. This will also trip if the callee function has a non-null
761   // parameter attribute, but that's a less interesting case because hopefully
762   // the callee would already have been simplified based on that.
763   if (Argument *A = dyn_cast<Argument>(V))
764     if (paramHasAttr(A, Attribute::NonNull))
765       return true;
766 
767   // Is this an alloca in the caller?  This is distinct from the attribute case
768   // above because attributes aren't updated within the inliner itself and we
769   // always want to catch the alloca derived case.
770   if (isAllocaDerivedArg(V))
771     // We can actually predict the result of comparisons between an
772     // alloca-derived value and null. Note that this fires regardless of
773     // SROA firing.
774     return true;
775 
776   return false;
777 }
778 
779 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
780   // If the normal destination of the invoke or the parent block of the call
781   // site is unreachable-terminated, there is little point in inlining this
782   // unless there is literally zero cost.
783   // FIXME: Note that it is possible that an unreachable-terminated block has a
784   // hot entry. For example, in below scenario inlining hot_call_X() may be
785   // beneficial :
786   // main() {
787   //   hot_call_1();
788   //   ...
789   //   hot_call_N()
790   //   exit(0);
791   // }
792   // For now, we are not handling this corner case here as it is rare in real
793   // code. In future, we should elaborate this based on BPI and BFI in more
794   // general threshold adjusting heuristics in updateThreshold().
795   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
796     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
797       return false;
798   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
799     return false;
800 
801   return true;
802 }
803 
804 bool CallAnalyzer::isColdCallSite(CallBase &Call,
805                                   BlockFrequencyInfo *CallerBFI) {
806   // If global profile summary is available, then callsite's coldness is
807   // determined based on that.
808   if (PSI && PSI->hasProfileSummary())
809     return PSI->isColdCallSite(CallSite(&Call), CallerBFI);
810 
811   // Otherwise we need BFI to be available.
812   if (!CallerBFI)
813     return false;
814 
815   // Determine if the callsite is cold relative to caller's entry. We could
816   // potentially cache the computation of scaled entry frequency, but the added
817   // complexity is not worth it unless this scaling shows up high in the
818   // profiles.
819   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
820   auto CallSiteBB = Call.getParent();
821   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
822   auto CallerEntryFreq =
823       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
824   return CallSiteFreq < CallerEntryFreq * ColdProb;
825 }
826 
827 Optional<int>
828 CallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
829                                       BlockFrequencyInfo *CallerBFI) {
830 
831   // If global profile summary is available, then callsite's hotness is
832   // determined based on that.
833   if (PSI && PSI->hasProfileSummary() &&
834       PSI->isHotCallSite(CallSite(&Call), CallerBFI))
835     return Params.HotCallSiteThreshold;
836 
837   // Otherwise we need BFI to be available and to have a locally hot callsite
838   // threshold.
839   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
840     return None;
841 
842   // Determine if the callsite is hot relative to caller's entry. We could
843   // potentially cache the computation of scaled entry frequency, but the added
844   // complexity is not worth it unless this scaling shows up high in the
845   // profiles.
846   auto CallSiteBB = Call.getParent();
847   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
848   auto CallerEntryFreq = CallerBFI->getEntryFreq();
849   if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
850     return Params.LocallyHotCallSiteThreshold;
851 
852   // Otherwise treat it normally.
853   return None;
854 }
855 
856 void CallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
857   // If no size growth is allowed for this inlining, set Threshold to 0.
858   if (!allowSizeGrowth(Call)) {
859     Threshold = 0;
860     return;
861   }
862 
863   Function *Caller = Call.getCaller();
864 
865   // return min(A, B) if B is valid.
866   auto MinIfValid = [](int A, Optional<int> B) {
867     return B ? std::min(A, B.getValue()) : A;
868   };
869 
870   // return max(A, B) if B is valid.
871   auto MaxIfValid = [](int A, Optional<int> B) {
872     return B ? std::max(A, B.getValue()) : A;
873   };
874 
875   // Various bonus percentages. These are multiplied by Threshold to get the
876   // bonus values.
877   // SingleBBBonus: This bonus is applied if the callee has a single reachable
878   // basic block at the given callsite context. This is speculatively applied
879   // and withdrawn if more than one basic block is seen.
880   //
881   // Vector bonuses: We want to more aggressively inline vector-dense kernels
882   // and apply this bonus based on the percentage of vector instructions. A
883   // bonus is applied if the vector instructions exceed 50% and half that amount
884   // is applied if it exceeds 10%. Note that these bonuses are some what
885   // arbitrary and evolved over time by accident as much as because they are
886   // principled bonuses.
887   // FIXME: It would be nice to base the bonus values on something more
888   // scientific.
889   //
890   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
891   // of the last call to a static function as inlining such functions is
892   // guaranteed to reduce code size.
893   //
894   // These bonus percentages may be set to 0 based on properties of the caller
895   // and the callsite.
896   int SingleBBBonusPercent = 50;
897   int VectorBonusPercent = 150;
898   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
899 
900   // Lambda to set all the above bonus and bonus percentages to 0.
901   auto DisallowAllBonuses = [&]() {
902     SingleBBBonusPercent = 0;
903     VectorBonusPercent = 0;
904     LastCallToStaticBonus = 0;
905   };
906 
907   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
908   // and reduce the threshold if the caller has the necessary attribute.
909   if (Caller->hasMinSize()) {
910     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
911     // For minsize, we want to disable the single BB bonus and the vector
912     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
913     // a static function will, at the minimum, eliminate the parameter setup and
914     // call/return instructions.
915     SingleBBBonusPercent = 0;
916     VectorBonusPercent = 0;
917   } else if (Caller->hasOptSize())
918     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
919 
920   // Adjust the threshold based on inlinehint attribute and profile based
921   // hotness information if the caller does not have MinSize attribute.
922   if (!Caller->hasMinSize()) {
923     if (Callee.hasFnAttribute(Attribute::InlineHint))
924       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
925 
926     // FIXME: After switching to the new passmanager, simplify the logic below
927     // by checking only the callsite hotness/coldness as we will reliably
928     // have local profile information.
929     //
930     // Callsite hotness and coldness can be determined if sample profile is
931     // used (which adds hotness metadata to calls) or if caller's
932     // BlockFrequencyInfo is available.
933     BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
934     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
935     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
936       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
937       // FIXME: This should update the threshold only if it exceeds the
938       // current threshold, but AutoFDO + ThinLTO currently relies on this
939       // behavior to prevent inlining of hot callsites during ThinLTO
940       // compile phase.
941       Threshold = HotCallSiteThreshold.getValue();
942     } else if (isColdCallSite(Call, CallerBFI)) {
943       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
944       // Do not apply bonuses for a cold callsite including the
945       // LastCallToStatic bonus. While this bonus might result in code size
946       // reduction, it can cause the size of a non-cold caller to increase
947       // preventing it from being inlined.
948       DisallowAllBonuses();
949       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
950     } else if (PSI) {
951       // Use callee's global profile information only if we have no way of
952       // determining this via callsite information.
953       if (PSI->isFunctionEntryHot(&Callee)) {
954         LLVM_DEBUG(dbgs() << "Hot callee.\n");
955         // If callsite hotness can not be determined, we may still know
956         // that the callee is hot and treat it as a weaker hint for threshold
957         // increase.
958         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
959       } else if (PSI->isFunctionEntryCold(&Callee)) {
960         LLVM_DEBUG(dbgs() << "Cold callee.\n");
961         // Do not apply bonuses for a cold callee including the
962         // LastCallToStatic bonus. While this bonus might result in code size
963         // reduction, it can cause the size of a non-cold caller to increase
964         // preventing it from being inlined.
965         DisallowAllBonuses();
966         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
967       }
968     }
969   }
970 
971   // Finally, take the target-specific inlining threshold multiplier into
972   // account.
973   Threshold *= TTI.getInliningThresholdMultiplier();
974 
975   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
976   VectorBonus = Threshold * VectorBonusPercent / 100;
977 
978   bool OnlyOneCallAndLocalLinkage =
979       F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
980   // If there is only one call of the function, and it has internal linkage,
981   // the cost of inlining it drops dramatically. It may seem odd to update
982   // Cost in updateThreshold, but the bonus depends on the logic in this method.
983   if (OnlyOneCallAndLocalLinkage)
984     Cost -= LastCallToStaticBonus;
985 }
986 
987 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
988   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
989   // First try to handle simplified comparisons.
990   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
991         return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
992       }))
993     return true;
994 
995   if (I.getOpcode() == Instruction::FCmp)
996     return false;
997 
998   // Otherwise look for a comparison between constant offset pointers with
999   // a common base.
1000   Value *LHSBase, *RHSBase;
1001   APInt LHSOffset, RHSOffset;
1002   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1003   if (LHSBase) {
1004     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1005     if (RHSBase && LHSBase == RHSBase) {
1006       // We have common bases, fold the icmp to a constant based on the
1007       // offsets.
1008       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1009       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1010       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1011         SimplifiedValues[&I] = C;
1012         ++NumConstantPtrCmps;
1013         return true;
1014       }
1015     }
1016   }
1017 
1018   // If the comparison is an equality comparison with null, we can simplify it
1019   // if we know the value (argument) can't be null
1020   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1021       isKnownNonNullInCallee(I.getOperand(0))) {
1022     bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1023     SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1024                                       : ConstantInt::getFalse(I.getType());
1025     return true;
1026   }
1027   // Finally check for SROA candidates in comparisons.
1028   Value *SROAArg;
1029   DenseMap<Value *, int>::iterator CostIt;
1030   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
1031     if (isa<ConstantPointerNull>(I.getOperand(1))) {
1032       accumulateSROACost(CostIt, InlineConstants::InstrCost);
1033       return true;
1034     }
1035 
1036     disableSROA(CostIt);
1037   }
1038 
1039   return false;
1040 }
1041 
1042 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1043   // Try to handle a special case: we can fold computing the difference of two
1044   // constant-related pointers.
1045   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1046   Value *LHSBase, *RHSBase;
1047   APInt LHSOffset, RHSOffset;
1048   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1049   if (LHSBase) {
1050     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1051     if (RHSBase && LHSBase == RHSBase) {
1052       // We have common bases, fold the subtract to a constant based on the
1053       // offsets.
1054       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1055       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1056       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1057         SimplifiedValues[&I] = C;
1058         ++NumConstantPtrDiffs;
1059         return true;
1060       }
1061     }
1062   }
1063 
1064   // Otherwise, fall back to the generic logic for simplifying and handling
1065   // instructions.
1066   return Base::visitSub(I);
1067 }
1068 
1069 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1070   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1071   Constant *CLHS = dyn_cast<Constant>(LHS);
1072   if (!CLHS)
1073     CLHS = SimplifiedValues.lookup(LHS);
1074   Constant *CRHS = dyn_cast<Constant>(RHS);
1075   if (!CRHS)
1076     CRHS = SimplifiedValues.lookup(RHS);
1077 
1078   Value *SimpleV = nullptr;
1079   if (auto FI = dyn_cast<FPMathOperator>(&I))
1080     SimpleV = SimplifyFPBinOp(I.getOpcode(), CLHS ? CLHS : LHS,
1081                               CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL);
1082   else
1083     SimpleV =
1084         SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1085 
1086   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1087     SimplifiedValues[&I] = C;
1088 
1089   if (SimpleV)
1090     return true;
1091 
1092   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1093   disableSROA(LHS);
1094   disableSROA(RHS);
1095 
1096   // If the instruction is floating point, and the target says this operation
1097   // is expensive, this may eventually become a library call. Treat the cost
1098   // as such.
1099   if (I.getType()->isFloatingPointTy() &&
1100       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1101     addCost(InlineConstants::CallPenalty);
1102 
1103   return false;
1104 }
1105 
1106 bool CallAnalyzer::visitLoad(LoadInst &I) {
1107   Value *SROAArg;
1108   DenseMap<Value *, int>::iterator CostIt;
1109   if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1110     if (I.isSimple()) {
1111       accumulateSROACost(CostIt, InlineConstants::InstrCost);
1112       return true;
1113     }
1114 
1115     disableSROA(CostIt);
1116   }
1117 
1118   // If the data is already loaded from this address and hasn't been clobbered
1119   // by any stores or calls, this load is likely to be redundant and can be
1120   // eliminated.
1121   if (EnableLoadElimination &&
1122       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1123     LoadEliminationCost += InlineConstants::InstrCost;
1124     return true;
1125   }
1126 
1127   return false;
1128 }
1129 
1130 bool CallAnalyzer::visitStore(StoreInst &I) {
1131   Value *SROAArg;
1132   DenseMap<Value *, int>::iterator CostIt;
1133   if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1134     if (I.isSimple()) {
1135       accumulateSROACost(CostIt, InlineConstants::InstrCost);
1136       return true;
1137     }
1138 
1139     disableSROA(CostIt);
1140   }
1141 
1142   // The store can potentially clobber loads and prevent repeated loads from
1143   // being eliminated.
1144   // FIXME:
1145   // 1. We can probably keep an initial set of eliminatable loads substracted
1146   // from the cost even when we finally see a store. We just need to disable
1147   // *further* accumulation of elimination savings.
1148   // 2. We should probably at some point thread MemorySSA for the callee into
1149   // this and then use that to actually compute *really* precise savings.
1150   disableLoadElimination();
1151   return false;
1152 }
1153 
1154 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1155   // Constant folding for extract value is trivial.
1156   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1157         return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1158       }))
1159     return true;
1160 
1161   // SROA can look through these but give them a cost.
1162   return false;
1163 }
1164 
1165 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1166   // Constant folding for insert value is trivial.
1167   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1168         return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1169                                             /*InsertedValueOperand*/ COps[1],
1170                                             I.getIndices());
1171       }))
1172     return true;
1173 
1174   // SROA can look through these but give them a cost.
1175   return false;
1176 }
1177 
1178 /// Try to simplify a call site.
1179 ///
1180 /// Takes a concrete function and callsite and tries to actually simplify it by
1181 /// analyzing the arguments and call itself with instsimplify. Returns true if
1182 /// it has simplified the callsite to some other entity (a constant), making it
1183 /// free.
1184 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
1185   // FIXME: Using the instsimplify logic directly for this is inefficient
1186   // because we have to continually rebuild the argument list even when no
1187   // simplifications can be performed. Until that is fixed with remapping
1188   // inside of instsimplify, directly constant fold calls here.
1189   if (!canConstantFoldCallTo(&Call, F))
1190     return false;
1191 
1192   // Try to re-map the arguments to constants.
1193   SmallVector<Constant *, 4> ConstantArgs;
1194   ConstantArgs.reserve(Call.arg_size());
1195   for (Value *I : Call.args()) {
1196     Constant *C = dyn_cast<Constant>(I);
1197     if (!C)
1198       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
1199     if (!C)
1200       return false; // This argument doesn't map to a constant.
1201 
1202     ConstantArgs.push_back(C);
1203   }
1204   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
1205     SimplifiedValues[&Call] = C;
1206     return true;
1207   }
1208 
1209   return false;
1210 }
1211 
1212 bool CallAnalyzer::visitCallBase(CallBase &Call) {
1213   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
1214       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
1215     // This aborts the entire analysis.
1216     ExposesReturnsTwice = true;
1217     return false;
1218   }
1219   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
1220     ContainsNoDuplicateCall = true;
1221 
1222   if (Function *F = Call.getCalledFunction()) {
1223     // When we have a concrete function, first try to simplify it directly.
1224     if (simplifyCallSite(F, Call))
1225       return true;
1226 
1227     // Next check if it is an intrinsic we know about.
1228     // FIXME: Lift this into part of the InstVisitor.
1229     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
1230       switch (II->getIntrinsicID()) {
1231       default:
1232         if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
1233           disableLoadElimination();
1234         return Base::visitCallBase(Call);
1235 
1236       case Intrinsic::load_relative:
1237         // This is normally lowered to 4 LLVM instructions.
1238         addCost(3 * InlineConstants::InstrCost);
1239         return false;
1240 
1241       case Intrinsic::memset:
1242       case Intrinsic::memcpy:
1243       case Intrinsic::memmove:
1244         disableLoadElimination();
1245         // SROA can usually chew through these intrinsics, but they aren't free.
1246         return false;
1247       case Intrinsic::icall_branch_funnel:
1248       case Intrinsic::localescape:
1249         HasUninlineableIntrinsic = true;
1250         return false;
1251       case Intrinsic::vastart:
1252         InitsVargArgs = true;
1253         return false;
1254       }
1255     }
1256 
1257     if (F == Call.getFunction()) {
1258       // This flag will fully abort the analysis, so don't bother with anything
1259       // else.
1260       IsRecursiveCall = true;
1261       return false;
1262     }
1263 
1264     if (TTI.isLoweredToCall(F)) {
1265       // We account for the average 1 instruction per call argument setup
1266       // here.
1267       addCost(Call.arg_size() * InlineConstants::InstrCost);
1268 
1269       // Everything other than inline ASM will also have a significant cost
1270       // merely from making the call.
1271       if (!isa<InlineAsm>(Call.getCalledValue()))
1272         addCost(InlineConstants::CallPenalty);
1273     }
1274 
1275     if (!Call.onlyReadsMemory())
1276       disableLoadElimination();
1277     return Base::visitCallBase(Call);
1278   }
1279 
1280   // Otherwise we're in a very special case -- an indirect function call. See
1281   // if we can be particularly clever about this.
1282   Value *Callee = Call.getCalledValue();
1283 
1284   // First, pay the price of the argument setup. We account for the average
1285   // 1 instruction per call argument setup here.
1286   addCost(Call.arg_size() * InlineConstants::InstrCost);
1287 
1288   // Next, check if this happens to be an indirect function call to a known
1289   // function in this inline context. If not, we've done all we can.
1290   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
1291   if (!F) {
1292     if (!Call.onlyReadsMemory())
1293       disableLoadElimination();
1294     return Base::visitCallBase(Call);
1295   }
1296 
1297   // If we have a constant that we are calling as a function, we can peer
1298   // through it and see the function target. This happens not infrequently
1299   // during devirtualization and so we want to give it a hefty bonus for
1300   // inlining, but cap that bonus in the event that inlining wouldn't pan
1301   // out. Pretend to inline the function, with a custom threshold.
1302   auto IndirectCallParams = Params;
1303   IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold;
1304   CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, Call,
1305                   IndirectCallParams);
1306   if (CA.analyzeCall(Call)) {
1307     // We were able to inline the indirect call! Subtract the cost from the
1308     // threshold to get the bonus we want to apply, but don't go below zero.
1309     Cost -= std::max(0, CA.getThreshold() - CA.getCost());
1310   }
1311 
1312   if (!F->onlyReadsMemory())
1313     disableLoadElimination();
1314   return Base::visitCallBase(Call);
1315 }
1316 
1317 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
1318   // At least one return instruction will be free after inlining.
1319   bool Free = !HasReturn;
1320   HasReturn = true;
1321   return Free;
1322 }
1323 
1324 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
1325   // We model unconditional branches as essentially free -- they really
1326   // shouldn't exist at all, but handling them makes the behavior of the
1327   // inliner more regular and predictable. Interestingly, conditional branches
1328   // which will fold away are also free.
1329   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
1330          dyn_cast_or_null<ConstantInt>(
1331              SimplifiedValues.lookup(BI.getCondition()));
1332 }
1333 
1334 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
1335   bool CheckSROA = SI.getType()->isPointerTy();
1336   Value *TrueVal = SI.getTrueValue();
1337   Value *FalseVal = SI.getFalseValue();
1338 
1339   Constant *TrueC = dyn_cast<Constant>(TrueVal);
1340   if (!TrueC)
1341     TrueC = SimplifiedValues.lookup(TrueVal);
1342   Constant *FalseC = dyn_cast<Constant>(FalseVal);
1343   if (!FalseC)
1344     FalseC = SimplifiedValues.lookup(FalseVal);
1345   Constant *CondC =
1346       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
1347 
1348   if (!CondC) {
1349     // Select C, X, X => X
1350     if (TrueC == FalseC && TrueC) {
1351       SimplifiedValues[&SI] = TrueC;
1352       return true;
1353     }
1354 
1355     if (!CheckSROA)
1356       return Base::visitSelectInst(SI);
1357 
1358     std::pair<Value *, APInt> TrueBaseAndOffset =
1359         ConstantOffsetPtrs.lookup(TrueVal);
1360     std::pair<Value *, APInt> FalseBaseAndOffset =
1361         ConstantOffsetPtrs.lookup(FalseVal);
1362     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
1363       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
1364 
1365       Value *SROAArg;
1366       DenseMap<Value *, int>::iterator CostIt;
1367       if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt))
1368         SROAArgValues[&SI] = SROAArg;
1369       return true;
1370     }
1371 
1372     return Base::visitSelectInst(SI);
1373   }
1374 
1375   // Select condition is a constant.
1376   Value *SelectedV = CondC->isAllOnesValue()
1377                          ? TrueVal
1378                          : (CondC->isNullValue()) ? FalseVal : nullptr;
1379   if (!SelectedV) {
1380     // Condition is a vector constant that is not all 1s or all 0s.  If all
1381     // operands are constants, ConstantExpr::getSelect() can handle the cases
1382     // such as select vectors.
1383     if (TrueC && FalseC) {
1384       if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
1385         SimplifiedValues[&SI] = C;
1386         return true;
1387       }
1388     }
1389     return Base::visitSelectInst(SI);
1390   }
1391 
1392   // Condition is either all 1s or all 0s. SI can be simplified.
1393   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
1394     SimplifiedValues[&SI] = SelectedC;
1395     return true;
1396   }
1397 
1398   if (!CheckSROA)
1399     return true;
1400 
1401   std::pair<Value *, APInt> BaseAndOffset =
1402       ConstantOffsetPtrs.lookup(SelectedV);
1403   if (BaseAndOffset.first) {
1404     ConstantOffsetPtrs[&SI] = BaseAndOffset;
1405 
1406     Value *SROAArg;
1407     DenseMap<Value *, int>::iterator CostIt;
1408     if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt))
1409       SROAArgValues[&SI] = SROAArg;
1410   }
1411 
1412   return true;
1413 }
1414 
1415 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
1416   // We model unconditional switches as free, see the comments on handling
1417   // branches.
1418   if (isa<ConstantInt>(SI.getCondition()))
1419     return true;
1420   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
1421     if (isa<ConstantInt>(V))
1422       return true;
1423 
1424   // Assume the most general case where the switch is lowered into
1425   // either a jump table, bit test, or a balanced binary tree consisting of
1426   // case clusters without merging adjacent clusters with the same
1427   // destination. We do not consider the switches that are lowered with a mix
1428   // of jump table/bit test/binary search tree. The cost of the switch is
1429   // proportional to the size of the tree or the size of jump table range.
1430   //
1431   // NB: We convert large switches which are just used to initialize large phi
1432   // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
1433   // inlining those. It will prevent inlining in cases where the optimization
1434   // does not (yet) fire.
1435 
1436   // Maximum valid cost increased in this function.
1437   int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
1438 
1439   // Exit early for a large switch, assuming one case needs at least one
1440   // instruction.
1441   // FIXME: This is not true for a bit test, but ignore such case for now to
1442   // save compile-time.
1443   int64_t CostLowerBound =
1444       std::min((int64_t)CostUpperBound,
1445                (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost);
1446 
1447   if (CostLowerBound > Threshold && !ComputeFullInlineCost) {
1448     addCost((int64_t)SI.getNumCases() * InlineConstants::InstrCost);
1449     return false;
1450   }
1451 
1452   unsigned JumpTableSize = 0;
1453   unsigned NumCaseCluster =
1454       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);
1455 
1456   // If suitable for a jump table, consider the cost for the table size and
1457   // branch to destination.
1458   if (JumpTableSize) {
1459     int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
1460                      4 * InlineConstants::InstrCost;
1461 
1462     addCost(JTCost, (int64_t)CostUpperBound);
1463     return false;
1464   }
1465 
1466   // Considering forming a binary search, we should find the number of nodes
1467   // which is same as the number of comparisons when lowered. For a given
1468   // number of clusters, n, we can define a recursive function, f(n), to find
1469   // the number of nodes in the tree. The recursion is :
1470   // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
1471   // and f(n) = n, when n <= 3.
1472   // This will lead a binary tree where the leaf should be either f(2) or f(3)
1473   // when n > 3.  So, the number of comparisons from leaves should be n, while
1474   // the number of non-leaf should be :
1475   //   2^(log2(n) - 1) - 1
1476   //   = 2^log2(n) * 2^-1 - 1
1477   //   = n / 2 - 1.
1478   // Considering comparisons from leaf and non-leaf nodes, we can estimate the
1479   // number of comparisons in a simple closed form :
1480   //   n + n / 2 - 1 = n * 3 / 2 - 1
1481   if (NumCaseCluster <= 3) {
1482     // Suppose a comparison includes one compare and one conditional branch.
1483     addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
1484     return false;
1485   }
1486 
1487   int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
1488   int64_t SwitchCost =
1489       ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
1490 
1491   addCost(SwitchCost, (int64_t)CostUpperBound);
1492   return false;
1493 }
1494 
1495 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
1496   // We never want to inline functions that contain an indirectbr.  This is
1497   // incorrect because all the blockaddress's (in static global initializers
1498   // for example) would be referring to the original function, and this
1499   // indirect jump would jump from the inlined copy of the function into the
1500   // original function which is extremely undefined behavior.
1501   // FIXME: This logic isn't really right; we can safely inline functions with
1502   // indirectbr's as long as no other function or global references the
1503   // blockaddress of a block within the current function.
1504   HasIndirectBr = true;
1505   return false;
1506 }
1507 
1508 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
1509   // FIXME: It's not clear that a single instruction is an accurate model for
1510   // the inline cost of a resume instruction.
1511   return false;
1512 }
1513 
1514 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
1515   // FIXME: It's not clear that a single instruction is an accurate model for
1516   // the inline cost of a cleanupret instruction.
1517   return false;
1518 }
1519 
1520 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
1521   // FIXME: It's not clear that a single instruction is an accurate model for
1522   // the inline cost of a catchret instruction.
1523   return false;
1524 }
1525 
1526 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
1527   // FIXME: It might be reasonably to discount the cost of instructions leading
1528   // to unreachable as they have the lowest possible impact on both runtime and
1529   // code size.
1530   return true; // No actual code is needed for unreachable.
1531 }
1532 
1533 bool CallAnalyzer::visitInstruction(Instruction &I) {
1534   // Some instructions are free. All of the free intrinsics can also be
1535   // handled by SROA, etc.
1536   if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
1537     return true;
1538 
1539   // We found something we don't understand or can't handle. Mark any SROA-able
1540   // values in the operand list as no longer viable.
1541   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
1542     disableSROA(*OI);
1543 
1544   return false;
1545 }
1546 
1547 /// Analyze a basic block for its contribution to the inline cost.
1548 ///
1549 /// This method walks the analyzer over every instruction in the given basic
1550 /// block and accounts for their cost during inlining at this callsite. It
1551 /// aborts early if the threshold has been exceeded or an impossible to inline
1552 /// construct has been detected. It returns false if inlining is no longer
1553 /// viable, and true if inlining remains viable.
1554 InlineResult
1555 CallAnalyzer::analyzeBlock(BasicBlock *BB,
1556                            SmallPtrSetImpl<const Value *> &EphValues) {
1557   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1558     // FIXME: Currently, the number of instructions in a function regardless of
1559     // our ability to simplify them during inline to constants or dead code,
1560     // are actually used by the vector bonus heuristic. As long as that's true,
1561     // we have to special case debug intrinsics here to prevent differences in
1562     // inlining due to debug symbols. Eventually, the number of unsimplified
1563     // instructions shouldn't factor into the cost computation, but until then,
1564     // hack around it here.
1565     if (isa<DbgInfoIntrinsic>(I))
1566       continue;
1567 
1568     // Skip ephemeral values.
1569     if (EphValues.count(&*I))
1570       continue;
1571 
1572     ++NumInstructions;
1573     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
1574       ++NumVectorInstructions;
1575 
1576     // If the instruction simplified to a constant, there is no cost to this
1577     // instruction. Visit the instructions using our InstVisitor to account for
1578     // all of the per-instruction logic. The visit tree returns true if we
1579     // consumed the instruction in any way, and false if the instruction's base
1580     // cost should count against inlining.
1581     if (Base::visit(&*I))
1582       ++NumInstructionsSimplified;
1583     else
1584       addCost(InlineConstants::InstrCost);
1585 
1586     using namespace ore;
1587     // If the visit this instruction detected an uninlinable pattern, abort.
1588     InlineResult IR;
1589     if (IsRecursiveCall)
1590       IR = "recursive";
1591     else if (ExposesReturnsTwice)
1592       IR = "exposes returns twice";
1593     else if (HasDynamicAlloca)
1594       IR = "dynamic alloca";
1595     else if (HasIndirectBr)
1596       IR = "indirect branch";
1597     else if (HasUninlineableIntrinsic)
1598       IR = "uninlinable intrinsic";
1599     else if (InitsVargArgs)
1600       IR = "varargs";
1601     if (!IR) {
1602       if (ORE)
1603         ORE->emit([&]() {
1604           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1605                                           &CandidateCall)
1606                  << NV("Callee", &F) << " has uninlinable pattern ("
1607                  << NV("InlineResult", IR.message)
1608                  << ") and cost is not fully computed";
1609         });
1610       return IR;
1611     }
1612 
1613     // If the caller is a recursive function then we don't want to inline
1614     // functions which allocate a lot of stack space because it would increase
1615     // the caller stack usage dramatically.
1616     if (IsCallerRecursive &&
1617         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
1618       InlineResult IR = "recursive and allocates too much stack space";
1619       if (ORE)
1620         ORE->emit([&]() {
1621           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1622                                           &CandidateCall)
1623                  << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
1624                  << ". Cost is not fully computed";
1625         });
1626       return IR;
1627     }
1628 
1629     // Check if we've passed the maximum possible threshold so we don't spin in
1630     // huge basic blocks that will never inline.
1631     if (Cost >= Threshold && !ComputeFullInlineCost)
1632       return false;
1633   }
1634 
1635   return true;
1636 }
1637 
1638 /// Compute the base pointer and cumulative constant offsets for V.
1639 ///
1640 /// This strips all constant offsets off of V, leaving it the base pointer, and
1641 /// accumulates the total constant offset applied in the returned constant. It
1642 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
1643 /// no constant offsets applied.
1644 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
1645   if (!V->getType()->isPointerTy())
1646     return nullptr;
1647 
1648   unsigned AS = V->getType()->getPointerAddressSpace();
1649   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
1650   APInt Offset = APInt::getNullValue(IntPtrWidth);
1651 
1652   // Even though we don't look through PHI nodes, we could be called on an
1653   // instruction in an unreachable block, which may be on a cycle.
1654   SmallPtrSet<Value *, 4> Visited;
1655   Visited.insert(V);
1656   do {
1657     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1658       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
1659         return nullptr;
1660       V = GEP->getPointerOperand();
1661     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1662       V = cast<Operator>(V)->getOperand(0);
1663     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1664       if (GA->isInterposable())
1665         break;
1666       V = GA->getAliasee();
1667     } else {
1668       break;
1669     }
1670     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1671   } while (Visited.insert(V).second);
1672 
1673   Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
1674   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
1675 }
1676 
1677 /// Find dead blocks due to deleted CFG edges during inlining.
1678 ///
1679 /// If we know the successor of the current block, \p CurrBB, has to be \p
1680 /// NextBB, the other successors of \p CurrBB are dead if these successors have
1681 /// no live incoming CFG edges.  If one block is found to be dead, we can
1682 /// continue growing the dead block list by checking the successors of the dead
1683 /// blocks to see if all their incoming edges are dead or not.
1684 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
1685   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
1686     // A CFG edge is dead if the predecessor is dead or the predecessor has a
1687     // known successor which is not the one under exam.
1688     return (DeadBlocks.count(Pred) ||
1689             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
1690   };
1691 
1692   auto IsNewlyDead = [&](BasicBlock *BB) {
1693     // If all the edges to a block are dead, the block is also dead.
1694     return (!DeadBlocks.count(BB) &&
1695             llvm::all_of(predecessors(BB),
1696                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
1697   };
1698 
1699   for (BasicBlock *Succ : successors(CurrBB)) {
1700     if (Succ == NextBB || !IsNewlyDead(Succ))
1701       continue;
1702     SmallVector<BasicBlock *, 4> NewDead;
1703     NewDead.push_back(Succ);
1704     while (!NewDead.empty()) {
1705       BasicBlock *Dead = NewDead.pop_back_val();
1706       if (DeadBlocks.insert(Dead))
1707         // Continue growing the dead block lists.
1708         for (BasicBlock *S : successors(Dead))
1709           if (IsNewlyDead(S))
1710             NewDead.push_back(S);
1711     }
1712   }
1713 }
1714 
1715 /// Analyze a call site for potential inlining.
1716 ///
1717 /// Returns true if inlining this call is viable, and false if it is not
1718 /// viable. It computes the cost and adjusts the threshold based on numerous
1719 /// factors and heuristics. If this method returns false but the computed cost
1720 /// is below the computed threshold, then inlining was forcibly disabled by
1721 /// some artifact of the routine.
1722 InlineResult CallAnalyzer::analyzeCall(CallBase &Call) {
1723   ++NumCallsAnalyzed;
1724 
1725   // Perform some tweaks to the cost and threshold based on the direct
1726   // callsite information.
1727 
1728   // We want to more aggressively inline vector-dense kernels, so up the
1729   // threshold, and we'll lower it if the % of vector instructions gets too
1730   // low. Note that these bonuses are some what arbitrary and evolved over time
1731   // by accident as much as because they are principled bonuses.
1732   //
1733   // FIXME: It would be nice to remove all such bonuses. At least it would be
1734   // nice to base the bonus values on something more scientific.
1735   assert(NumInstructions == 0);
1736   assert(NumVectorInstructions == 0);
1737 
1738   // Update the threshold based on callsite properties
1739   updateThreshold(Call, F);
1740 
1741   // While Threshold depends on commandline options that can take negative
1742   // values, we want to enforce the invariant that the computed threshold and
1743   // bonuses are non-negative.
1744   assert(Threshold >= 0);
1745   assert(SingleBBBonus >= 0);
1746   assert(VectorBonus >= 0);
1747 
1748   // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1749   // this Threshold any time, and cost cannot decrease, we can stop processing
1750   // the rest of the function body.
1751   Threshold += (SingleBBBonus + VectorBonus);
1752 
1753   // Give out bonuses for the callsite, as the instructions setting them up
1754   // will be gone after inlining.
1755   addCost(-getCallsiteCost(Call, DL));
1756 
1757   // If this function uses the coldcc calling convention, prefer not to inline
1758   // it.
1759   if (F.getCallingConv() == CallingConv::Cold)
1760     Cost += InlineConstants::ColdccPenalty;
1761 
1762   // Check if we're done. This can happen due to bonuses and penalties.
1763   if (Cost >= Threshold && !ComputeFullInlineCost)
1764     return "high cost";
1765 
1766   if (F.empty())
1767     return true;
1768 
1769   Function *Caller = Call.getFunction();
1770   // Check if the caller function is recursive itself.
1771   for (User *U : Caller->users()) {
1772     CallBase *Call = dyn_cast<CallBase>(U);
1773     if (Call && Call->getFunction() == Caller) {
1774       IsCallerRecursive = true;
1775       break;
1776     }
1777   }
1778 
1779   // Populate our simplified values by mapping from function arguments to call
1780   // arguments with known important simplifications.
1781   auto CAI = Call.arg_begin();
1782   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1783        FAI != FAE; ++FAI, ++CAI) {
1784     assert(CAI != Call.arg_end());
1785     if (Constant *C = dyn_cast<Constant>(CAI))
1786       SimplifiedValues[&*FAI] = C;
1787 
1788     Value *PtrArg = *CAI;
1789     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1790       ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
1791 
1792       // We can SROA any pointer arguments derived from alloca instructions.
1793       if (isa<AllocaInst>(PtrArg)) {
1794         SROAArgValues[&*FAI] = PtrArg;
1795         SROAArgCosts[PtrArg] = 0;
1796       }
1797     }
1798   }
1799   NumConstantArgs = SimplifiedValues.size();
1800   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1801   NumAllocaArgs = SROAArgValues.size();
1802 
1803   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
1804   // the ephemeral values multiple times (and they're completely determined by
1805   // the callee, so this is purely duplicate work).
1806   SmallPtrSet<const Value *, 32> EphValues;
1807   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
1808 
1809   // The worklist of live basic blocks in the callee *after* inlining. We avoid
1810   // adding basic blocks of the callee which can be proven to be dead for this
1811   // particular call site in order to get more accurate cost estimates. This
1812   // requires a somewhat heavyweight iteration pattern: we need to walk the
1813   // basic blocks in a breadth-first order as we insert live successors. To
1814   // accomplish this, prioritizing for small iterations because we exit after
1815   // crossing our threshold, we use a small-size optimized SetVector.
1816   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1817                     SmallPtrSet<BasicBlock *, 16>>
1818       BBSetVector;
1819   BBSetVector BBWorklist;
1820   BBWorklist.insert(&F.getEntryBlock());
1821   bool SingleBB = true;
1822   // Note that we *must not* cache the size, this loop grows the worklist.
1823   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1824     // Bail out the moment we cross the threshold. This means we'll under-count
1825     // the cost, but only when undercounting doesn't matter.
1826     if (Cost >= Threshold && !ComputeFullInlineCost)
1827       break;
1828 
1829     BasicBlock *BB = BBWorklist[Idx];
1830     if (BB->empty())
1831       continue;
1832 
1833     // Disallow inlining a blockaddress with uses other than strictly callbr.
1834     // A blockaddress only has defined behavior for an indirect branch in the
1835     // same function, and we do not currently support inlining indirect
1836     // branches.  But, the inliner may not see an indirect branch that ends up
1837     // being dead code at a particular call site. If the blockaddress escapes
1838     // the function, e.g., via a global variable, inlining may lead to an
1839     // invalid cross-function reference.
1840     // FIXME: pr/39560: continue relaxing this overt restriction.
1841     if (BB->hasAddressTaken())
1842       for (User *U : BlockAddress::get(&*BB)->users())
1843         if (!isa<CallBrInst>(*U))
1844           return "blockaddress used outside of callbr";
1845 
1846     // Analyze the cost of this block. If we blow through the threshold, this
1847     // returns false, and we can bail on out.
1848     InlineResult IR = analyzeBlock(BB, EphValues);
1849     if (!IR)
1850       return IR;
1851 
1852     Instruction *TI = BB->getTerminator();
1853 
1854     // Add in the live successors by first checking whether we have terminator
1855     // that may be simplified based on the values simplified by this call.
1856     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1857       if (BI->isConditional()) {
1858         Value *Cond = BI->getCondition();
1859         if (ConstantInt *SimpleCond =
1860                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1861           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
1862           BBWorklist.insert(NextBB);
1863           KnownSuccessors[BB] = NextBB;
1864           findDeadBlocks(BB, NextBB);
1865           continue;
1866         }
1867       }
1868     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1869       Value *Cond = SI->getCondition();
1870       if (ConstantInt *SimpleCond =
1871               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1872         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
1873         BBWorklist.insert(NextBB);
1874         KnownSuccessors[BB] = NextBB;
1875         findDeadBlocks(BB, NextBB);
1876         continue;
1877       }
1878     }
1879 
1880     // If we're unable to select a particular successor, just count all of
1881     // them.
1882     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1883          ++TIdx)
1884       BBWorklist.insert(TI->getSuccessor(TIdx));
1885 
1886     // If we had any successors at this point, than post-inlining is likely to
1887     // have them as well. Note that we assume any basic blocks which existed
1888     // due to branches or switches which folded above will also fold after
1889     // inlining.
1890     if (SingleBB && TI->getNumSuccessors() > 1) {
1891       // Take off the bonus we applied to the threshold.
1892       Threshold -= SingleBBBonus;
1893       SingleBB = false;
1894     }
1895   }
1896 
1897   bool OnlyOneCallAndLocalLinkage =
1898       F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
1899   // If this is a noduplicate call, we can still inline as long as
1900   // inlining this would cause the removal of the caller (so the instruction
1901   // is not actually duplicated, just moved).
1902   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1903     return "noduplicate";
1904 
1905   // Loops generally act a lot like calls in that they act like barriers to
1906   // movement, require a certain amount of setup, etc. So when optimising for
1907   // size, we penalise any call sites that perform loops. We do this after all
1908   // other costs here, so will likely only be dealing with relatively small
1909   // functions (and hence DT and LI will hopefully be cheap).
1910   if (Caller->hasMinSize()) {
1911     DominatorTree DT(F);
1912     LoopInfo LI(DT);
1913     int NumLoops = 0;
1914     for (Loop *L : LI) {
1915       // Ignore loops that will not be executed
1916       if (DeadBlocks.count(L->getHeader()))
1917         continue;
1918       NumLoops++;
1919     }
1920     addCost(NumLoops * InlineConstants::CallPenalty);
1921   }
1922 
1923   // We applied the maximum possible vector bonus at the beginning. Now,
1924   // subtract the excess bonus, if any, from the Threshold before
1925   // comparing against Cost.
1926   if (NumVectorInstructions <= NumInstructions / 10)
1927     Threshold -= VectorBonus;
1928   else if (NumVectorInstructions <= NumInstructions / 2)
1929     Threshold -= VectorBonus/2;
1930 
1931   return Cost < std::max(1, Threshold);
1932 }
1933 
1934 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1935 /// Dump stats about this call's analysis.
1936 LLVM_DUMP_METHOD void CallAnalyzer::dump() {
1937 #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
1938   DEBUG_PRINT_STAT(NumConstantArgs);
1939   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1940   DEBUG_PRINT_STAT(NumAllocaArgs);
1941   DEBUG_PRINT_STAT(NumConstantPtrCmps);
1942   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1943   DEBUG_PRINT_STAT(NumInstructionsSimplified);
1944   DEBUG_PRINT_STAT(NumInstructions);
1945   DEBUG_PRINT_STAT(SROACostSavings);
1946   DEBUG_PRINT_STAT(SROACostSavingsLost);
1947   DEBUG_PRINT_STAT(LoadEliminationCost);
1948   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1949   DEBUG_PRINT_STAT(Cost);
1950   DEBUG_PRINT_STAT(Threshold);
1951 #undef DEBUG_PRINT_STAT
1952 }
1953 #endif
1954 
1955 /// Test that there are no attribute conflicts between Caller and Callee
1956 ///        that prevent inlining.
1957 static bool functionsHaveCompatibleAttributes(Function *Caller,
1958                                               Function *Callee,
1959                                               TargetTransformInfo &TTI) {
1960   return TTI.areInlineCompatible(Caller, Callee) &&
1961          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
1962 }
1963 
1964 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
1965   int Cost = 0;
1966   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
1967     if (Call.isByValArgument(I)) {
1968       // We approximate the number of loads and stores needed by dividing the
1969       // size of the byval type by the target's pointer size.
1970       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
1971       unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
1972       unsigned AS = PTy->getAddressSpace();
1973       unsigned PointerSize = DL.getPointerSizeInBits(AS);
1974       // Ceiling division.
1975       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
1976 
1977       // If it generates more than 8 stores it is likely to be expanded as an
1978       // inline memcpy so we take that as an upper bound. Otherwise we assume
1979       // one load and one store per word copied.
1980       // FIXME: The maxStoresPerMemcpy setting from the target should be used
1981       // here instead of a magic number of 8, but it's not available via
1982       // DataLayout.
1983       NumStores = std::min(NumStores, 8U);
1984 
1985       Cost += 2 * NumStores * InlineConstants::InstrCost;
1986     } else {
1987       // For non-byval arguments subtract off one instruction per call
1988       // argument.
1989       Cost += InlineConstants::InstrCost;
1990     }
1991   }
1992   // The call instruction also disappears after inlining.
1993   Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
1994   return Cost;
1995 }
1996 
1997 InlineCost llvm::getInlineCost(
1998     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
1999     std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2000     Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2001     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2002   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2003                        GetAssumptionCache, GetBFI, PSI, ORE);
2004 }
2005 
2006 InlineCost llvm::getInlineCost(
2007     CallBase &Call, Function *Callee, const InlineParams &Params,
2008     TargetTransformInfo &CalleeTTI,
2009     std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2010     Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2011     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2012 
2013   // Cannot inline indirect calls.
2014   if (!Callee)
2015     return llvm::InlineCost::getNever("indirect call");
2016 
2017   // Never inline calls with byval arguments that does not have the alloca
2018   // address space. Since byval arguments can be replaced with a copy to an
2019   // alloca, the inlined code would need to be adjusted to handle that the
2020   // argument is in the alloca address space (so it is a little bit complicated
2021   // to solve).
2022   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2023   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2024     if (Call.isByValArgument(I)) {
2025       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2026       if (PTy->getAddressSpace() != AllocaAS)
2027         return llvm::InlineCost::getNever("byval arguments without alloca"
2028                                           " address space");
2029     }
2030 
2031   // Calls to functions with always-inline attributes should be inlined
2032   // whenever possible.
2033   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2034     auto IsViable = isInlineViable(*Callee);
2035     if (IsViable)
2036       return llvm::InlineCost::getAlways("always inline attribute");
2037     return llvm::InlineCost::getNever(IsViable.message);
2038   }
2039 
2040   // Never inline functions with conflicting attributes (unless callee has
2041   // always-inline attribute).
2042   Function *Caller = Call.getCaller();
2043   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
2044     return llvm::InlineCost::getNever("conflicting attributes");
2045 
2046   // Don't inline this call if the caller has the optnone attribute.
2047   if (Caller->hasOptNone())
2048     return llvm::InlineCost::getNever("optnone attribute");
2049 
2050   // Don't inline a function that treats null pointer as valid into a caller
2051   // that does not have this attribute.
2052   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2053     return llvm::InlineCost::getNever("nullptr definitions incompatible");
2054 
2055   // Don't inline functions which can be interposed at link-time.
2056   if (Callee->isInterposable())
2057     return llvm::InlineCost::getNever("interposable");
2058 
2059   // Don't inline functions marked noinline.
2060   if (Callee->hasFnAttribute(Attribute::NoInline))
2061     return llvm::InlineCost::getNever("noinline function attribute");
2062 
2063   // Don't inline call sites marked noinline.
2064   if (Call.isNoInline())
2065     return llvm::InlineCost::getNever("noinline call site attribute");
2066 
2067   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
2068                           << "... (caller:" << Caller->getName() << ")\n");
2069 
2070   CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee,
2071                   Call, Params);
2072   InlineResult ShouldInline = CA.analyzeCall(Call);
2073 
2074   LLVM_DEBUG(CA.dump());
2075 
2076   // Check if there was a reason to force inlining or no inlining.
2077   if (!ShouldInline && CA.getCost() < CA.getThreshold())
2078     return InlineCost::getNever(ShouldInline.message);
2079   if (ShouldInline && CA.getCost() >= CA.getThreshold())
2080     return InlineCost::getAlways("empty function");
2081 
2082   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2083 }
2084 
2085 InlineResult llvm::isInlineViable(Function &F) {
2086   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2087   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2088     // Disallow inlining of functions which contain indirect branches.
2089     if (isa<IndirectBrInst>(BI->getTerminator()))
2090       return "contains indirect branches";
2091 
2092     // Disallow inlining of blockaddresses which are used by non-callbr
2093     // instructions.
2094     if (BI->hasAddressTaken())
2095       for (User *U : BlockAddress::get(&*BI)->users())
2096         if (!isa<CallBrInst>(*U))
2097           return "blockaddress used outside of callbr";
2098 
2099     for (auto &II : *BI) {
2100       CallBase *Call = dyn_cast<CallBase>(&II);
2101       if (!Call)
2102         continue;
2103 
2104       // Disallow recursive calls.
2105       if (&F == Call->getCalledFunction())
2106         return "recursive call";
2107 
2108       // Disallow calls which expose returns-twice to a function not previously
2109       // attributed as such.
2110       if (!ReturnsTwice && isa<CallInst>(Call) &&
2111           cast<CallInst>(Call)->canReturnTwice())
2112         return "exposes returns-twice attribute";
2113 
2114       if (Call->getCalledFunction())
2115         switch (Call->getCalledFunction()->getIntrinsicID()) {
2116         default:
2117           break;
2118         // Disallow inlining of @llvm.icall.branch.funnel because current
2119         // backend can't separate call targets from call arguments.
2120         case llvm::Intrinsic::icall_branch_funnel:
2121           return "disallowed inlining of @llvm.icall.branch.funnel";
2122         // Disallow inlining functions that call @llvm.localescape. Doing this
2123         // correctly would require major changes to the inliner.
2124         case llvm::Intrinsic::localescape:
2125           return "disallowed inlining of @llvm.localescape";
2126         // Disallow inlining of functions that initialize VarArgs with va_start.
2127         case llvm::Intrinsic::vastart:
2128           return "contains VarArgs initialized with va_start";
2129         }
2130     }
2131   }
2132 
2133   return true;
2134 }
2135 
2136 // APIs to create InlineParams based on command line flags and/or other
2137 // parameters.
2138 
2139 InlineParams llvm::getInlineParams(int Threshold) {
2140   InlineParams Params;
2141 
2142   // This field is the threshold to use for a callee by default. This is
2143   // derived from one or more of:
2144   //  * optimization or size-optimization levels,
2145   //  * a value passed to createFunctionInliningPass function, or
2146   //  * the -inline-threshold flag.
2147   //  If the -inline-threshold flag is explicitly specified, that is used
2148   //  irrespective of anything else.
2149   if (InlineThreshold.getNumOccurrences() > 0)
2150     Params.DefaultThreshold = InlineThreshold;
2151   else
2152     Params.DefaultThreshold = Threshold;
2153 
2154   // Set the HintThreshold knob from the -inlinehint-threshold.
2155   Params.HintThreshold = HintThreshold;
2156 
2157   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2158   Params.HotCallSiteThreshold = HotCallSiteThreshold;
2159 
2160   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2161   // populate LocallyHotCallSiteThreshold. Later, we populate
2162   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2163   // we know that optimization level is O3 (in the getInlineParams variant that
2164   // takes the opt and size levels).
2165   // FIXME: Remove this check (and make the assignment unconditional) after
2166   // addressing size regression issues at O2.
2167   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2168     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2169 
2170   // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
2171   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
2172 
2173   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2174   // -inlinehint-threshold commandline option is not explicitly given. If that
2175   // option is present, then its value applies even for callees with size and
2176   // minsize attributes.
2177   // If the -inline-threshold is not specified, set the ColdThreshold from the
2178   // -inlinecold-threshold even if it is not explicitly passed. If
2179   // -inline-threshold is specified, then -inlinecold-threshold needs to be
2180   // explicitly specified to set the ColdThreshold knob
2181   if (InlineThreshold.getNumOccurrences() == 0) {
2182     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
2183     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
2184     Params.ColdThreshold = ColdThreshold;
2185   } else if (ColdThreshold.getNumOccurrences() > 0) {
2186     Params.ColdThreshold = ColdThreshold;
2187   }
2188   return Params;
2189 }
2190 
2191 InlineParams llvm::getInlineParams() {
2192   return getInlineParams(InlineThreshold);
2193 }
2194 
2195 // Compute the default threshold for inlining based on the opt level and the
2196 // size opt level.
2197 static int computeThresholdFromOptLevels(unsigned OptLevel,
2198                                          unsigned SizeOptLevel) {
2199   if (OptLevel > 2)
2200     return InlineConstants::OptAggressiveThreshold;
2201   if (SizeOptLevel == 1) // -Os
2202     return InlineConstants::OptSizeThreshold;
2203   if (SizeOptLevel == 2) // -Oz
2204     return InlineConstants::OptMinSizeThreshold;
2205   return InlineThreshold;
2206 }
2207 
2208 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2209   auto Params =
2210       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2211   // At O3, use the value of -locally-hot-callsite-threshold option to populate
2212   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2213   // when it is specified explicitly.
2214   if (OptLevel > 2)
2215     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2216   return Params;
2217 }
2218