1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<int> CallPenalty( 117 "inline-call-penalty", cl::Hidden, cl::init(25), 118 cl::desc("Call penalty that is applied per callsite when inlining")); 119 120 static cl::opt<bool> OptComputeFullInlineCost( 121 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 122 cl::desc("Compute the full inline cost of a call site even when the cost " 123 "exceeds the threshold.")); 124 125 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 126 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 129 "attributes.")); 130 131 static cl::opt<bool> DisableGEPConstOperand( 132 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 133 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 134 135 namespace { 136 class InlineCostCallAnalyzer; 137 138 /// This function behaves more like CallBase::hasFnAttr: when it looks for the 139 /// requested attribute, it check both the call instruction and the called 140 /// function (if it's available and operand bundles don't prohibit that). 141 Attribute getFnAttr(CallBase &CB, StringRef AttrKind) { 142 Attribute CallAttr = CB.getFnAttr(AttrKind); 143 if (CallAttr.isValid()) 144 return CallAttr; 145 146 // Operand bundles override attributes on the called function, but don't 147 // override attributes directly present on the call instruction. 148 if (!CB.isFnAttrDisallowedByOpBundle(AttrKind)) 149 if (const Function *F = CB.getCalledFunction()) 150 return F->getFnAttribute(AttrKind); 151 152 return {}; 153 } 154 155 Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 156 Attribute Attr = getFnAttr(CB, AttrKind); 157 int AttrValue; 158 if (Attr.getValueAsString().getAsInteger(10, AttrValue)) 159 return None; 160 return AttrValue; 161 } 162 163 // This struct is used to store information about inline cost of a 164 // particular instruction 165 struct InstructionCostDetail { 166 int CostBefore = 0; 167 int CostAfter = 0; 168 int ThresholdBefore = 0; 169 int ThresholdAfter = 0; 170 171 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 172 173 int getCostDelta() const { return CostAfter - CostBefore; } 174 175 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 176 }; 177 178 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 179 private: 180 InlineCostCallAnalyzer *const ICCA; 181 182 public: 183 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 184 virtual void emitInstructionAnnot(const Instruction *I, 185 formatted_raw_ostream &OS) override; 186 }; 187 188 /// Carry out call site analysis, in order to evaluate inlinability. 189 /// NOTE: the type is currently used as implementation detail of functions such 190 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 191 /// expectation is that they come from the outer scope, from the wrapper 192 /// functions. If we want to support constructing CallAnalyzer objects where 193 /// lambdas are provided inline at construction, or where the object needs to 194 /// otherwise survive past the scope of the provided functions, we need to 195 /// revisit the argument types. 196 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 197 typedef InstVisitor<CallAnalyzer, bool> Base; 198 friend class InstVisitor<CallAnalyzer, bool>; 199 200 protected: 201 virtual ~CallAnalyzer() {} 202 /// The TargetTransformInfo available for this compilation. 203 const TargetTransformInfo &TTI; 204 205 /// Getter for the cache of @llvm.assume intrinsics. 206 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 207 208 /// Getter for BlockFrequencyInfo 209 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 210 211 /// Profile summary information. 212 ProfileSummaryInfo *PSI; 213 214 /// The called function. 215 Function &F; 216 217 // Cache the DataLayout since we use it a lot. 218 const DataLayout &DL; 219 220 /// The OptimizationRemarkEmitter available for this compilation. 221 OptimizationRemarkEmitter *ORE; 222 223 /// The candidate callsite being analyzed. Please do not use this to do 224 /// analysis in the caller function; we want the inline cost query to be 225 /// easily cacheable. Instead, use the cover function paramHasAttr. 226 CallBase &CandidateCall; 227 228 /// Extension points for handling callsite features. 229 // Called before a basic block was analyzed. 230 virtual void onBlockStart(const BasicBlock *BB) {} 231 232 /// Called after a basic block was analyzed. 233 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 234 235 /// Called before an instruction was analyzed 236 virtual void onInstructionAnalysisStart(const Instruction *I) {} 237 238 /// Called after an instruction was analyzed 239 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 240 241 /// Called at the end of the analysis of the callsite. Return the outcome of 242 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 243 /// the reason it can't. 244 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 245 /// Called when we're about to start processing a basic block, and every time 246 /// we are done processing an instruction. Return true if there is no point in 247 /// continuing the analysis (e.g. we've determined already the call site is 248 /// too expensive to inline) 249 virtual bool shouldStop() { return false; } 250 251 /// Called before the analysis of the callee body starts (with callsite 252 /// contexts propagated). It checks callsite-specific information. Return a 253 /// reason analysis can't continue if that's the case, or 'true' if it may 254 /// continue. 255 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 256 /// Called if the analysis engine decides SROA cannot be done for the given 257 /// alloca. 258 virtual void onDisableSROA(AllocaInst *Arg) {} 259 260 /// Called the analysis engine determines load elimination won't happen. 261 virtual void onDisableLoadElimination() {} 262 263 /// Called when we visit a CallBase, before the analysis starts. Return false 264 /// to stop further processing of the instruction. 265 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 266 267 /// Called to account for a call. 268 virtual void onCallPenalty() {} 269 270 /// Called to account for the expectation the inlining would result in a load 271 /// elimination. 272 virtual void onLoadEliminationOpportunity() {} 273 274 /// Called to account for the cost of argument setup for the Call in the 275 /// callee's body (not the callsite currently under analysis). 276 virtual void onCallArgumentSetup(const CallBase &Call) {} 277 278 /// Called to account for a load relative intrinsic. 279 virtual void onLoadRelativeIntrinsic() {} 280 281 /// Called to account for a lowered call. 282 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 283 } 284 285 /// Account for a jump table of given size. Return false to stop further 286 /// processing the switch instruction 287 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 288 289 /// Account for a case cluster of given size. Return false to stop further 290 /// processing of the instruction. 291 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 292 293 /// Called at the end of processing a switch instruction, with the given 294 /// number of case clusters. 295 virtual void onFinalizeSwitch(unsigned JumpTableSize, 296 unsigned NumCaseCluster) {} 297 298 /// Called to account for any other instruction not specifically accounted 299 /// for. 300 virtual void onMissedSimplification() {} 301 302 /// Start accounting potential benefits due to SROA for the given alloca. 303 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 304 305 /// Account SROA savings for the AllocaInst value. 306 virtual void onAggregateSROAUse(AllocaInst *V) {} 307 308 bool handleSROA(Value *V, bool DoNotDisable) { 309 // Check for SROA candidates in comparisons. 310 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 311 if (DoNotDisable) { 312 onAggregateSROAUse(SROAArg); 313 return true; 314 } 315 disableSROAForArg(SROAArg); 316 } 317 return false; 318 } 319 320 bool IsCallerRecursive = false; 321 bool IsRecursiveCall = false; 322 bool ExposesReturnsTwice = false; 323 bool HasDynamicAlloca = false; 324 bool ContainsNoDuplicateCall = false; 325 bool HasReturn = false; 326 bool HasIndirectBr = false; 327 bool HasUninlineableIntrinsic = false; 328 bool InitsVargArgs = false; 329 330 /// Number of bytes allocated statically by the callee. 331 uint64_t AllocatedSize = 0; 332 unsigned NumInstructions = 0; 333 unsigned NumVectorInstructions = 0; 334 335 /// While we walk the potentially-inlined instructions, we build up and 336 /// maintain a mapping of simplified values specific to this callsite. The 337 /// idea is to propagate any special information we have about arguments to 338 /// this call through the inlinable section of the function, and account for 339 /// likely simplifications post-inlining. The most important aspect we track 340 /// is CFG altering simplifications -- when we prove a basic block dead, that 341 /// can cause dramatic shifts in the cost of inlining a function. 342 DenseMap<Value *, Constant *> SimplifiedValues; 343 344 /// Keep track of the values which map back (through function arguments) to 345 /// allocas on the caller stack which could be simplified through SROA. 346 DenseMap<Value *, AllocaInst *> SROAArgValues; 347 348 /// Keep track of Allocas for which we believe we may get SROA optimization. 349 DenseSet<AllocaInst *> EnabledSROAAllocas; 350 351 /// Keep track of values which map to a pointer base and constant offset. 352 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 353 354 /// Keep track of dead blocks due to the constant arguments. 355 SetVector<BasicBlock *> DeadBlocks; 356 357 /// The mapping of the blocks to their known unique successors due to the 358 /// constant arguments. 359 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 360 361 /// Model the elimination of repeated loads that is expected to happen 362 /// whenever we simplify away the stores that would otherwise cause them to be 363 /// loads. 364 bool EnableLoadElimination; 365 366 /// Whether we allow inlining for recursive call. 367 bool AllowRecursiveCall; 368 369 SmallPtrSet<Value *, 16> LoadAddrSet; 370 371 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 372 auto It = SROAArgValues.find(V); 373 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 374 return nullptr; 375 return It->second; 376 } 377 378 // Custom simplification helper routines. 379 bool isAllocaDerivedArg(Value *V); 380 void disableSROAForArg(AllocaInst *SROAArg); 381 void disableSROA(Value *V); 382 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 383 void disableLoadElimination(); 384 bool isGEPFree(GetElementPtrInst &GEP); 385 bool canFoldInboundsGEP(GetElementPtrInst &I); 386 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 387 bool simplifyCallSite(Function *F, CallBase &Call); 388 template <typename Callable> 389 bool simplifyInstruction(Instruction &I, Callable Evaluate); 390 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 391 392 /// Return true if the given argument to the function being considered for 393 /// inlining has the given attribute set either at the call site or the 394 /// function declaration. Primarily used to inspect call site specific 395 /// attributes since these can be more precise than the ones on the callee 396 /// itself. 397 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 398 399 /// Return true if the given value is known non null within the callee if 400 /// inlined through this particular callsite. 401 bool isKnownNonNullInCallee(Value *V); 402 403 /// Return true if size growth is allowed when inlining the callee at \p Call. 404 bool allowSizeGrowth(CallBase &Call); 405 406 // Custom analysis routines. 407 InlineResult analyzeBlock(BasicBlock *BB, 408 SmallPtrSetImpl<const Value *> &EphValues); 409 410 // Disable several entry points to the visitor so we don't accidentally use 411 // them by declaring but not defining them here. 412 void visit(Module *); 413 void visit(Module &); 414 void visit(Function *); 415 void visit(Function &); 416 void visit(BasicBlock *); 417 void visit(BasicBlock &); 418 419 // Provide base case for our instruction visit. 420 bool visitInstruction(Instruction &I); 421 422 // Our visit overrides. 423 bool visitAlloca(AllocaInst &I); 424 bool visitPHI(PHINode &I); 425 bool visitGetElementPtr(GetElementPtrInst &I); 426 bool visitBitCast(BitCastInst &I); 427 bool visitPtrToInt(PtrToIntInst &I); 428 bool visitIntToPtr(IntToPtrInst &I); 429 bool visitCastInst(CastInst &I); 430 bool visitCmpInst(CmpInst &I); 431 bool visitSub(BinaryOperator &I); 432 bool visitBinaryOperator(BinaryOperator &I); 433 bool visitFNeg(UnaryOperator &I); 434 bool visitLoad(LoadInst &I); 435 bool visitStore(StoreInst &I); 436 bool visitExtractValue(ExtractValueInst &I); 437 bool visitInsertValue(InsertValueInst &I); 438 bool visitCallBase(CallBase &Call); 439 bool visitReturnInst(ReturnInst &RI); 440 bool visitBranchInst(BranchInst &BI); 441 bool visitSelectInst(SelectInst &SI); 442 bool visitSwitchInst(SwitchInst &SI); 443 bool visitIndirectBrInst(IndirectBrInst &IBI); 444 bool visitResumeInst(ResumeInst &RI); 445 bool visitCleanupReturnInst(CleanupReturnInst &RI); 446 bool visitCatchReturnInst(CatchReturnInst &RI); 447 bool visitUnreachableInst(UnreachableInst &I); 448 449 public: 450 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 451 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 452 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 453 ProfileSummaryInfo *PSI = nullptr, 454 OptimizationRemarkEmitter *ORE = nullptr) 455 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 456 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 457 CandidateCall(Call), EnableLoadElimination(true), 458 AllowRecursiveCall(false) {} 459 460 InlineResult analyze(); 461 462 Optional<Constant *> getSimplifiedValue(Instruction *I) { 463 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 464 return SimplifiedValues[I]; 465 return None; 466 } 467 468 // Keep a bunch of stats about the cost savings found so we can print them 469 // out when debugging. 470 unsigned NumConstantArgs = 0; 471 unsigned NumConstantOffsetPtrArgs = 0; 472 unsigned NumAllocaArgs = 0; 473 unsigned NumConstantPtrCmps = 0; 474 unsigned NumConstantPtrDiffs = 0; 475 unsigned NumInstructionsSimplified = 0; 476 477 void dump(); 478 }; 479 480 // Considering forming a binary search, we should find the number of nodes 481 // which is same as the number of comparisons when lowered. For a given 482 // number of clusters, n, we can define a recursive function, f(n), to find 483 // the number of nodes in the tree. The recursion is : 484 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 485 // and f(n) = n, when n <= 3. 486 // This will lead a binary tree where the leaf should be either f(2) or f(3) 487 // when n > 3. So, the number of comparisons from leaves should be n, while 488 // the number of non-leaf should be : 489 // 2^(log2(n) - 1) - 1 490 // = 2^log2(n) * 2^-1 - 1 491 // = n / 2 - 1. 492 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 493 // number of comparisons in a simple closed form : 494 // n + n / 2 - 1 = n * 3 / 2 - 1 495 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 496 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 497 } 498 499 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 500 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 501 class InlineCostCallAnalyzer final : public CallAnalyzer { 502 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 503 const bool ComputeFullInlineCost; 504 int LoadEliminationCost = 0; 505 /// Bonus to be applied when percentage of vector instructions in callee is 506 /// high (see more details in updateThreshold). 507 int VectorBonus = 0; 508 /// Bonus to be applied when the callee has only one reachable basic block. 509 int SingleBBBonus = 0; 510 511 /// Tunable parameters that control the analysis. 512 const InlineParams &Params; 513 514 // This DenseMap stores the delta change in cost and threshold after 515 // accounting for the given instruction. The map is filled only with the 516 // flag PrintInstructionComments on. 517 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 518 519 /// Upper bound for the inlining cost. Bonuses are being applied to account 520 /// for speculative "expected profit" of the inlining decision. 521 int Threshold = 0; 522 523 /// Attempt to evaluate indirect calls to boost its inline cost. 524 const bool BoostIndirectCalls; 525 526 /// Ignore the threshold when finalizing analysis. 527 const bool IgnoreThreshold; 528 529 // True if the cost-benefit-analysis-based inliner is enabled. 530 const bool CostBenefitAnalysisEnabled; 531 532 /// Inlining cost measured in abstract units, accounts for all the 533 /// instructions expected to be executed for a given function invocation. 534 /// Instructions that are statically proven to be dead based on call-site 535 /// arguments are not counted here. 536 int Cost = 0; 537 538 // The cumulative cost at the beginning of the basic block being analyzed. At 539 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 540 // the size of that basic block. 541 int CostAtBBStart = 0; 542 543 // The static size of live but cold basic blocks. This is "static" in the 544 // sense that it's not weighted by profile counts at all. 545 int ColdSize = 0; 546 547 // Whether inlining is decided by cost-benefit analysis. 548 bool DecidedByCostBenefit = false; 549 550 // The cost-benefit pair computed by cost-benefit analysis. 551 Optional<CostBenefitPair> CostBenefit = None; 552 553 bool SingleBB = true; 554 555 unsigned SROACostSavings = 0; 556 unsigned SROACostSavingsLost = 0; 557 558 /// The mapping of caller Alloca values to their accumulated cost savings. If 559 /// we have to disable SROA for one of the allocas, this tells us how much 560 /// cost must be added. 561 DenseMap<AllocaInst *, int> SROAArgCosts; 562 563 /// Return true if \p Call is a cold callsite. 564 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 565 566 /// Update Threshold based on callsite properties such as callee 567 /// attributes and callee hotness for PGO builds. The Callee is explicitly 568 /// passed to support analyzing indirect calls whose target is inferred by 569 /// analysis. 570 void updateThreshold(CallBase &Call, Function &Callee); 571 /// Return a higher threshold if \p Call is a hot callsite. 572 Optional<int> getHotCallSiteThreshold(CallBase &Call, 573 BlockFrequencyInfo *CallerBFI); 574 575 /// Handle a capped 'int' increment for Cost. 576 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 577 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 578 Cost = std::min<int>(UpperBound, Cost + Inc); 579 } 580 581 void onDisableSROA(AllocaInst *Arg) override { 582 auto CostIt = SROAArgCosts.find(Arg); 583 if (CostIt == SROAArgCosts.end()) 584 return; 585 addCost(CostIt->second); 586 SROACostSavings -= CostIt->second; 587 SROACostSavingsLost += CostIt->second; 588 SROAArgCosts.erase(CostIt); 589 } 590 591 void onDisableLoadElimination() override { 592 addCost(LoadEliminationCost); 593 LoadEliminationCost = 0; 594 } 595 596 bool onCallBaseVisitStart(CallBase &Call) override { 597 if (Optional<int> AttrCallThresholdBonus = 598 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 599 Threshold += *AttrCallThresholdBonus; 600 601 if (Optional<int> AttrCallCost = 602 getStringFnAttrAsInt(Call, "call-inline-cost")) { 603 addCost(*AttrCallCost); 604 // Prevent further processing of the call since we want to override its 605 // inline cost, not just add to it. 606 return false; 607 } 608 return true; 609 } 610 611 void onCallPenalty() override { addCost(CallPenalty); } 612 void onCallArgumentSetup(const CallBase &Call) override { 613 // Pay the price of the argument setup. We account for the average 1 614 // instruction per call argument setup here. 615 addCost(Call.arg_size() * InlineConstants::InstrCost); 616 } 617 void onLoadRelativeIntrinsic() override { 618 // This is normally lowered to 4 LLVM instructions. 619 addCost(3 * InlineConstants::InstrCost); 620 } 621 void onLoweredCall(Function *F, CallBase &Call, 622 bool IsIndirectCall) override { 623 // We account for the average 1 instruction per call argument setup here. 624 addCost(Call.arg_size() * InlineConstants::InstrCost); 625 626 // If we have a constant that we are calling as a function, we can peer 627 // through it and see the function target. This happens not infrequently 628 // during devirtualization and so we want to give it a hefty bonus for 629 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 630 // Pretend to inline the function, with a custom threshold. 631 if (IsIndirectCall && BoostIndirectCalls) { 632 auto IndirectCallParams = Params; 633 IndirectCallParams.DefaultThreshold = 634 InlineConstants::IndirectCallThreshold; 635 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 636 /// to instantiate the derived class. 637 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 638 GetAssumptionCache, GetBFI, PSI, ORE, false); 639 if (CA.analyze().isSuccess()) { 640 // We were able to inline the indirect call! Subtract the cost from the 641 // threshold to get the bonus we want to apply, but don't go below zero. 642 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 643 } 644 } else 645 // Otherwise simply add the cost for merely making the call. 646 addCost(CallPenalty); 647 } 648 649 void onFinalizeSwitch(unsigned JumpTableSize, 650 unsigned NumCaseCluster) override { 651 // If suitable for a jump table, consider the cost for the table size and 652 // branch to destination. 653 // Maximum valid cost increased in this function. 654 if (JumpTableSize) { 655 int64_t JTCost = 656 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 657 4 * InlineConstants::InstrCost; 658 659 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 660 return; 661 } 662 663 if (NumCaseCluster <= 3) { 664 // Suppose a comparison includes one compare and one conditional branch. 665 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 666 return; 667 } 668 669 int64_t ExpectedNumberOfCompare = 670 getExpectedNumberOfCompare(NumCaseCluster); 671 int64_t SwitchCost = 672 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 673 674 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 675 } 676 void onMissedSimplification() override { 677 addCost(InlineConstants::InstrCost); 678 } 679 680 void onInitializeSROAArg(AllocaInst *Arg) override { 681 assert(Arg != nullptr && 682 "Should not initialize SROA costs for null value."); 683 SROAArgCosts[Arg] = 0; 684 } 685 686 void onAggregateSROAUse(AllocaInst *SROAArg) override { 687 auto CostIt = SROAArgCosts.find(SROAArg); 688 assert(CostIt != SROAArgCosts.end() && 689 "expected this argument to have a cost"); 690 CostIt->second += InlineConstants::InstrCost; 691 SROACostSavings += InlineConstants::InstrCost; 692 } 693 694 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 695 696 void onBlockAnalyzed(const BasicBlock *BB) override { 697 if (CostBenefitAnalysisEnabled) { 698 // Keep track of the static size of live but cold basic blocks. For now, 699 // we define a cold basic block to be one that's never executed. 700 assert(GetBFI && "GetBFI must be available"); 701 BlockFrequencyInfo *BFI = &(GetBFI(F)); 702 assert(BFI && "BFI must be available"); 703 auto ProfileCount = BFI->getBlockProfileCount(BB); 704 assert(ProfileCount.hasValue()); 705 if (ProfileCount.getValue() == 0) 706 ColdSize += Cost - CostAtBBStart; 707 } 708 709 auto *TI = BB->getTerminator(); 710 // If we had any successors at this point, than post-inlining is likely to 711 // have them as well. Note that we assume any basic blocks which existed 712 // due to branches or switches which folded above will also fold after 713 // inlining. 714 if (SingleBB && TI->getNumSuccessors() > 1) { 715 // Take off the bonus we applied to the threshold. 716 Threshold -= SingleBBBonus; 717 SingleBB = false; 718 } 719 } 720 721 void onInstructionAnalysisStart(const Instruction *I) override { 722 // This function is called to store the initial cost of inlining before 723 // the given instruction was assessed. 724 if (!PrintInstructionComments) 725 return; 726 InstructionCostDetailMap[I].CostBefore = Cost; 727 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 728 } 729 730 void onInstructionAnalysisFinish(const Instruction *I) override { 731 // This function is called to find new values of cost and threshold after 732 // the instruction has been assessed. 733 if (!PrintInstructionComments) 734 return; 735 InstructionCostDetailMap[I].CostAfter = Cost; 736 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 737 } 738 739 bool isCostBenefitAnalysisEnabled() { 740 if (!PSI || !PSI->hasProfileSummary()) 741 return false; 742 743 if (!GetBFI) 744 return false; 745 746 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 747 // Honor the explicit request from the user. 748 if (!InlineEnableCostBenefitAnalysis) 749 return false; 750 } else { 751 // Otherwise, require instrumentation profile. 752 if (!PSI->hasInstrumentationProfile()) 753 return false; 754 } 755 756 auto *Caller = CandidateCall.getParent()->getParent(); 757 if (!Caller->getEntryCount()) 758 return false; 759 760 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 761 if (!CallerBFI) 762 return false; 763 764 // For now, limit to hot call site. 765 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 766 return false; 767 768 // Make sure we have a nonzero entry count. 769 auto EntryCount = F.getEntryCount(); 770 if (!EntryCount || !EntryCount.getCount()) 771 return false; 772 773 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 774 if (!CalleeBFI) 775 return false; 776 777 return true; 778 } 779 780 // Determine whether we should inline the given call site, taking into account 781 // both the size cost and the cycle savings. Return None if we don't have 782 // suficient profiling information to determine. 783 Optional<bool> costBenefitAnalysis() { 784 if (!CostBenefitAnalysisEnabled) 785 return None; 786 787 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 788 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 789 // falling back to the cost-based metric. 790 // TODO: Improve this hacky condition. 791 if (Threshold == 0) 792 return None; 793 794 assert(GetBFI); 795 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 796 assert(CalleeBFI); 797 798 // The cycle savings expressed as the sum of InlineConstants::InstrCost 799 // multiplied by the estimated dynamic count of each instruction we can 800 // avoid. Savings come from the call site cost, such as argument setup and 801 // the call instruction, as well as the instructions that are folded. 802 // 803 // We use 128-bit APInt here to avoid potential overflow. This variable 804 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 805 // assumes that we can avoid or fold a billion instructions, each with a 806 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 807 // period on a 4GHz machine. 808 APInt CycleSavings(128, 0); 809 810 for (auto &BB : F) { 811 APInt CurrentSavings(128, 0); 812 for (auto &I : BB) { 813 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 814 // Count a conditional branch as savings if it becomes unconditional. 815 if (BI->isConditional() && 816 dyn_cast_or_null<ConstantInt>( 817 SimplifiedValues.lookup(BI->getCondition()))) { 818 CurrentSavings += InlineConstants::InstrCost; 819 } 820 } else if (Value *V = dyn_cast<Value>(&I)) { 821 // Count an instruction as savings if we can fold it. 822 if (SimplifiedValues.count(V)) { 823 CurrentSavings += InlineConstants::InstrCost; 824 } 825 } 826 } 827 828 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 829 assert(ProfileCount.hasValue()); 830 CurrentSavings *= ProfileCount.getValue(); 831 CycleSavings += CurrentSavings; 832 } 833 834 // Compute the cycle savings per call. 835 auto EntryProfileCount = F.getEntryCount(); 836 assert(EntryProfileCount.hasValue() && EntryProfileCount.getCount()); 837 auto EntryCount = EntryProfileCount.getCount(); 838 CycleSavings += EntryCount / 2; 839 CycleSavings = CycleSavings.udiv(EntryCount); 840 841 // Compute the total savings for the call site. 842 auto *CallerBB = CandidateCall.getParent(); 843 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 844 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 845 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 846 847 // Remove the cost of the cold basic blocks. 848 int Size = Cost - ColdSize; 849 850 // Allow tiny callees to be inlined regardless of whether they meet the 851 // savings threshold. 852 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 853 854 CostBenefit.emplace(APInt(128, Size), CycleSavings); 855 856 // Return true if the savings justify the cost of inlining. Specifically, 857 // we evaluate the following inequality: 858 // 859 // CycleSavings PSI->getOrCompHotCountThreshold() 860 // -------------- >= ----------------------------------- 861 // Size InlineSavingsMultiplier 862 // 863 // Note that the left hand side is specific to a call site. The right hand 864 // side is a constant for the entire executable. 865 APInt LHS = CycleSavings; 866 LHS *= InlineSavingsMultiplier; 867 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 868 RHS *= Size; 869 return LHS.uge(RHS); 870 } 871 872 InlineResult finalizeAnalysis() override { 873 // Loops generally act a lot like calls in that they act like barriers to 874 // movement, require a certain amount of setup, etc. So when optimising for 875 // size, we penalise any call sites that perform loops. We do this after all 876 // other costs here, so will likely only be dealing with relatively small 877 // functions (and hence DT and LI will hopefully be cheap). 878 auto *Caller = CandidateCall.getFunction(); 879 if (Caller->hasMinSize()) { 880 DominatorTree DT(F); 881 LoopInfo LI(DT); 882 int NumLoops = 0; 883 for (Loop *L : LI) { 884 // Ignore loops that will not be executed 885 if (DeadBlocks.count(L->getHeader())) 886 continue; 887 NumLoops++; 888 } 889 addCost(NumLoops * InlineConstants::LoopPenalty); 890 } 891 892 // We applied the maximum possible vector bonus at the beginning. Now, 893 // subtract the excess bonus, if any, from the Threshold before 894 // comparing against Cost. 895 if (NumVectorInstructions <= NumInstructions / 10) 896 Threshold -= VectorBonus; 897 else if (NumVectorInstructions <= NumInstructions / 2) 898 Threshold -= VectorBonus / 2; 899 900 if (Optional<int> AttrCost = 901 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 902 Cost = *AttrCost; 903 904 if (Optional<int> AttrThreshold = 905 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 906 Threshold = *AttrThreshold; 907 908 if (auto Result = costBenefitAnalysis()) { 909 DecidedByCostBenefit = true; 910 if (Result.getValue()) 911 return InlineResult::success(); 912 else 913 return InlineResult::failure("Cost over threshold."); 914 } 915 916 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 917 return InlineResult::success(); 918 return InlineResult::failure("Cost over threshold."); 919 } 920 bool shouldStop() override { 921 // Bail out the moment we cross the threshold. This means we'll under-count 922 // the cost, but only when undercounting doesn't matter. 923 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 924 } 925 926 void onLoadEliminationOpportunity() override { 927 LoadEliminationCost += InlineConstants::InstrCost; 928 } 929 930 InlineResult onAnalysisStart() override { 931 // Perform some tweaks to the cost and threshold based on the direct 932 // callsite information. 933 934 // We want to more aggressively inline vector-dense kernels, so up the 935 // threshold, and we'll lower it if the % of vector instructions gets too 936 // low. Note that these bonuses are some what arbitrary and evolved over 937 // time by accident as much as because they are principled bonuses. 938 // 939 // FIXME: It would be nice to remove all such bonuses. At least it would be 940 // nice to base the bonus values on something more scientific. 941 assert(NumInstructions == 0); 942 assert(NumVectorInstructions == 0); 943 944 // Update the threshold based on callsite properties 945 updateThreshold(CandidateCall, F); 946 947 // While Threshold depends on commandline options that can take negative 948 // values, we want to enforce the invariant that the computed threshold and 949 // bonuses are non-negative. 950 assert(Threshold >= 0); 951 assert(SingleBBBonus >= 0); 952 assert(VectorBonus >= 0); 953 954 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 955 // this Threshold any time, and cost cannot decrease, we can stop processing 956 // the rest of the function body. 957 Threshold += (SingleBBBonus + VectorBonus); 958 959 // Give out bonuses for the callsite, as the instructions setting them up 960 // will be gone after inlining. 961 addCost(-getCallsiteCost(this->CandidateCall, DL)); 962 963 // If this function uses the coldcc calling convention, prefer not to inline 964 // it. 965 if (F.getCallingConv() == CallingConv::Cold) 966 Cost += InlineConstants::ColdccPenalty; 967 968 // Check if we're done. This can happen due to bonuses and penalties. 969 if (Cost >= Threshold && !ComputeFullInlineCost) 970 return InlineResult::failure("high cost"); 971 972 return InlineResult::success(); 973 } 974 975 public: 976 InlineCostCallAnalyzer( 977 Function &Callee, CallBase &Call, const InlineParams &Params, 978 const TargetTransformInfo &TTI, 979 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 980 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 981 ProfileSummaryInfo *PSI = nullptr, 982 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 983 bool IgnoreThreshold = false) 984 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 985 ComputeFullInlineCost(OptComputeFullInlineCost || 986 Params.ComputeFullInlineCost || ORE || 987 isCostBenefitAnalysisEnabled()), 988 Params(Params), Threshold(Params.DefaultThreshold), 989 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 990 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 991 Writer(this) { 992 AllowRecursiveCall = Params.AllowRecursiveCall.getValue(); 993 } 994 995 /// Annotation Writer for instruction details 996 InlineCostAnnotationWriter Writer; 997 998 void dump(); 999 1000 // Prints the same analysis as dump(), but its definition is not dependent 1001 // on the build. 1002 void print(); 1003 1004 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1005 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 1006 return InstructionCostDetailMap[I]; 1007 return None; 1008 } 1009 1010 virtual ~InlineCostCallAnalyzer() {} 1011 int getThreshold() const { return Threshold; } 1012 int getCost() const { return Cost; } 1013 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1014 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1015 }; 1016 1017 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1018 private: 1019 InlineCostFeatures Cost = {}; 1020 1021 // FIXME: These constants are taken from the heuristic-based cost visitor. 1022 // These should be removed entirely in a later revision to avoid reliance on 1023 // heuristics in the ML inliner. 1024 static constexpr int JTCostMultiplier = 4; 1025 static constexpr int CaseClusterCostMultiplier = 2; 1026 static constexpr int SwitchCostMultiplier = 2; 1027 1028 // FIXME: These are taken from the heuristic-based cost visitor: we should 1029 // eventually abstract these to the CallAnalyzer to avoid duplication. 1030 unsigned SROACostSavingOpportunities = 0; 1031 int VectorBonus = 0; 1032 int SingleBBBonus = 0; 1033 int Threshold = 5; 1034 1035 DenseMap<AllocaInst *, unsigned> SROACosts; 1036 1037 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1038 Cost[static_cast<size_t>(Feature)] += Delta; 1039 } 1040 1041 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1042 Cost[static_cast<size_t>(Feature)] = Value; 1043 } 1044 1045 void onDisableSROA(AllocaInst *Arg) override { 1046 auto CostIt = SROACosts.find(Arg); 1047 if (CostIt == SROACosts.end()) 1048 return; 1049 1050 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 1051 SROACostSavingOpportunities -= CostIt->second; 1052 SROACosts.erase(CostIt); 1053 } 1054 1055 void onDisableLoadElimination() override { 1056 set(InlineCostFeatureIndex::LoadElimination, 1); 1057 } 1058 1059 void onCallPenalty() override { 1060 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1061 } 1062 1063 void onCallArgumentSetup(const CallBase &Call) override { 1064 increment(InlineCostFeatureIndex::CallArgumentSetup, 1065 Call.arg_size() * InlineConstants::InstrCost); 1066 } 1067 1068 void onLoadRelativeIntrinsic() override { 1069 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1070 3 * InlineConstants::InstrCost); 1071 } 1072 1073 void onLoweredCall(Function *F, CallBase &Call, 1074 bool IsIndirectCall) override { 1075 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1076 Call.arg_size() * InlineConstants::InstrCost); 1077 1078 if (IsIndirectCall) { 1079 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1080 /*HintThreshold*/ {}, 1081 /*ColdThreshold*/ {}, 1082 /*OptSizeThreshold*/ {}, 1083 /*OptMinSizeThreshold*/ {}, 1084 /*HotCallSiteThreshold*/ {}, 1085 /*LocallyHotCallSiteThreshold*/ {}, 1086 /*ColdCallSiteThreshold*/ {}, 1087 /*ComputeFullInlineCost*/ true, 1088 /*EnableDeferral*/ true}; 1089 IndirectCallParams.DefaultThreshold = 1090 InlineConstants::IndirectCallThreshold; 1091 1092 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1093 GetAssumptionCache, GetBFI, PSI, ORE, false, 1094 true); 1095 if (CA.analyze().isSuccess()) { 1096 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1097 CA.getCost()); 1098 increment(InlineCostFeatureIndex::NestedInlines, 1); 1099 } 1100 } else { 1101 onCallPenalty(); 1102 } 1103 } 1104 1105 void onFinalizeSwitch(unsigned JumpTableSize, 1106 unsigned NumCaseCluster) override { 1107 1108 if (JumpTableSize) { 1109 int64_t JTCost = 1110 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1111 JTCostMultiplier * InlineConstants::InstrCost; 1112 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1113 return; 1114 } 1115 1116 if (NumCaseCluster <= 3) { 1117 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1118 NumCaseCluster * CaseClusterCostMultiplier * 1119 InlineConstants::InstrCost); 1120 return; 1121 } 1122 1123 int64_t ExpectedNumberOfCompare = 1124 getExpectedNumberOfCompare(NumCaseCluster); 1125 1126 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1127 InlineConstants::InstrCost; 1128 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1129 } 1130 1131 void onMissedSimplification() override { 1132 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1133 InlineConstants::InstrCost); 1134 } 1135 1136 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1137 void onAggregateSROAUse(AllocaInst *Arg) override { 1138 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1139 SROACostSavingOpportunities += InlineConstants::InstrCost; 1140 } 1141 1142 void onBlockAnalyzed(const BasicBlock *BB) override { 1143 if (BB->getTerminator()->getNumSuccessors() > 1) 1144 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1145 Threshold -= SingleBBBonus; 1146 } 1147 1148 InlineResult finalizeAnalysis() override { 1149 auto *Caller = CandidateCall.getFunction(); 1150 if (Caller->hasMinSize()) { 1151 DominatorTree DT(F); 1152 LoopInfo LI(DT); 1153 for (Loop *L : LI) { 1154 // Ignore loops that will not be executed 1155 if (DeadBlocks.count(L->getHeader())) 1156 continue; 1157 increment(InlineCostFeatureIndex::NumLoops, 1158 InlineConstants::LoopPenalty); 1159 } 1160 } 1161 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1162 set(InlineCostFeatureIndex::SimplifiedInstructions, 1163 NumInstructionsSimplified); 1164 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1165 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1166 NumConstantOffsetPtrArgs); 1167 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1168 1169 if (NumVectorInstructions <= NumInstructions / 10) 1170 Threshold -= VectorBonus; 1171 else if (NumVectorInstructions <= NumInstructions / 2) 1172 Threshold -= VectorBonus / 2; 1173 1174 set(InlineCostFeatureIndex::Threshold, Threshold); 1175 1176 return InlineResult::success(); 1177 } 1178 1179 bool shouldStop() override { return false; } 1180 1181 void onLoadEliminationOpportunity() override { 1182 increment(InlineCostFeatureIndex::LoadElimination, 1); 1183 } 1184 1185 InlineResult onAnalysisStart() override { 1186 increment(InlineCostFeatureIndex::CallSiteCost, 1187 -1 * getCallsiteCost(this->CandidateCall, DL)); 1188 1189 set(InlineCostFeatureIndex::ColdCcPenalty, 1190 (F.getCallingConv() == CallingConv::Cold)); 1191 1192 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1193 // analyzer - instead, we should abstract it to a common method in the 1194 // CallAnalyzer 1195 int SingleBBBonusPercent = 50; 1196 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1197 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1198 Threshold *= TTI.getInliningThresholdMultiplier(); 1199 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1200 VectorBonus = Threshold * VectorBonusPercent / 100; 1201 Threshold += (SingleBBBonus + VectorBonus); 1202 1203 return InlineResult::success(); 1204 } 1205 1206 public: 1207 InlineCostFeaturesAnalyzer( 1208 const TargetTransformInfo &TTI, 1209 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1210 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1211 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1212 CallBase &Call) 1213 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1214 1215 const InlineCostFeatures &features() const { return Cost; } 1216 }; 1217 1218 } // namespace 1219 1220 /// Test whether the given value is an Alloca-derived function argument. 1221 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1222 return SROAArgValues.count(V); 1223 } 1224 1225 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1226 onDisableSROA(SROAArg); 1227 EnabledSROAAllocas.erase(SROAArg); 1228 disableLoadElimination(); 1229 } 1230 1231 void InlineCostAnnotationWriter::emitInstructionAnnot( 1232 const Instruction *I, formatted_raw_ostream &OS) { 1233 // The cost of inlining of the given instruction is printed always. 1234 // The threshold delta is printed only when it is non-zero. It happens 1235 // when we decided to give a bonus at a particular instruction. 1236 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1237 if (!Record) 1238 OS << "; No analysis for the instruction"; 1239 else { 1240 OS << "; cost before = " << Record->CostBefore 1241 << ", cost after = " << Record->CostAfter 1242 << ", threshold before = " << Record->ThresholdBefore 1243 << ", threshold after = " << Record->ThresholdAfter << ", "; 1244 OS << "cost delta = " << Record->getCostDelta(); 1245 if (Record->hasThresholdChanged()) 1246 OS << ", threshold delta = " << Record->getThresholdDelta(); 1247 } 1248 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1249 if (C) { 1250 OS << ", simplified to "; 1251 C.getValue()->print(OS, true); 1252 } 1253 OS << "\n"; 1254 } 1255 1256 /// If 'V' maps to a SROA candidate, disable SROA for it. 1257 void CallAnalyzer::disableSROA(Value *V) { 1258 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1259 disableSROAForArg(SROAArg); 1260 } 1261 } 1262 1263 void CallAnalyzer::disableLoadElimination() { 1264 if (EnableLoadElimination) { 1265 onDisableLoadElimination(); 1266 EnableLoadElimination = false; 1267 } 1268 } 1269 1270 /// Accumulate a constant GEP offset into an APInt if possible. 1271 /// 1272 /// Returns false if unable to compute the offset for any reason. Respects any 1273 /// simplified values known during the analysis of this callsite. 1274 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1275 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1276 assert(IntPtrWidth == Offset.getBitWidth()); 1277 1278 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1279 GTI != GTE; ++GTI) { 1280 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1281 if (!OpC) 1282 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1283 OpC = dyn_cast<ConstantInt>(SimpleOp); 1284 if (!OpC) 1285 return false; 1286 if (OpC->isZero()) 1287 continue; 1288 1289 // Handle a struct index, which adds its field offset to the pointer. 1290 if (StructType *STy = GTI.getStructTypeOrNull()) { 1291 unsigned ElementIdx = OpC->getZExtValue(); 1292 const StructLayout *SL = DL.getStructLayout(STy); 1293 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1294 continue; 1295 } 1296 1297 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1298 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1299 } 1300 return true; 1301 } 1302 1303 /// Use TTI to check whether a GEP is free. 1304 /// 1305 /// Respects any simplified values known during the analysis of this callsite. 1306 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1307 SmallVector<Value *, 4> Operands; 1308 Operands.push_back(GEP.getOperand(0)); 1309 for (const Use &Op : GEP.indices()) 1310 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1311 Operands.push_back(SimpleOp); 1312 else 1313 Operands.push_back(Op); 1314 return TTI.getUserCost(&GEP, Operands, 1315 TargetTransformInfo::TCK_SizeAndLatency) == 1316 TargetTransformInfo::TCC_Free; 1317 } 1318 1319 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1320 disableSROA(I.getOperand(0)); 1321 1322 // Check whether inlining will turn a dynamic alloca into a static 1323 // alloca and handle that case. 1324 if (I.isArrayAllocation()) { 1325 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1326 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1327 // Sometimes a dynamic alloca could be converted into a static alloca 1328 // after this constant prop, and become a huge static alloca on an 1329 // unconditional CFG path. Avoid inlining if this is going to happen above 1330 // a threshold. 1331 // FIXME: If the threshold is removed or lowered too much, we could end up 1332 // being too pessimistic and prevent inlining non-problematic code. This 1333 // could result in unintended perf regressions. A better overall strategy 1334 // is needed to track stack usage during inlining. 1335 Type *Ty = I.getAllocatedType(); 1336 AllocatedSize = SaturatingMultiplyAdd( 1337 AllocSize->getLimitedValue(), 1338 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1339 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1340 HasDynamicAlloca = true; 1341 return false; 1342 } 1343 } 1344 1345 // Accumulate the allocated size. 1346 if (I.isStaticAlloca()) { 1347 Type *Ty = I.getAllocatedType(); 1348 AllocatedSize = 1349 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1350 } 1351 1352 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1353 // a variety of reasons, and so we would like to not inline them into 1354 // functions which don't currently have a dynamic alloca. This simply 1355 // disables inlining altogether in the presence of a dynamic alloca. 1356 if (!I.isStaticAlloca()) 1357 HasDynamicAlloca = true; 1358 1359 return false; 1360 } 1361 1362 bool CallAnalyzer::visitPHI(PHINode &I) { 1363 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1364 // though we don't want to propagate it's bonuses. The idea is to disable 1365 // SROA if it *might* be used in an inappropriate manner. 1366 1367 // Phi nodes are always zero-cost. 1368 // FIXME: Pointer sizes may differ between different address spaces, so do we 1369 // need to use correct address space in the call to getPointerSizeInBits here? 1370 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1371 // see the ZeroOffset is used as a dummy value, so we can probably use any 1372 // bit width for the ZeroOffset? 1373 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 1374 bool CheckSROA = I.getType()->isPointerTy(); 1375 1376 // Track the constant or pointer with constant offset we've seen so far. 1377 Constant *FirstC = nullptr; 1378 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1379 Value *FirstV = nullptr; 1380 1381 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1382 BasicBlock *Pred = I.getIncomingBlock(i); 1383 // If the incoming block is dead, skip the incoming block. 1384 if (DeadBlocks.count(Pred)) 1385 continue; 1386 // If the parent block of phi is not the known successor of the incoming 1387 // block, skip the incoming block. 1388 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1389 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1390 continue; 1391 1392 Value *V = I.getIncomingValue(i); 1393 // If the incoming value is this phi itself, skip the incoming value. 1394 if (&I == V) 1395 continue; 1396 1397 Constant *C = dyn_cast<Constant>(V); 1398 if (!C) 1399 C = SimplifiedValues.lookup(V); 1400 1401 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1402 if (!C && CheckSROA) 1403 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1404 1405 if (!C && !BaseAndOffset.first) 1406 // The incoming value is neither a constant nor a pointer with constant 1407 // offset, exit early. 1408 return true; 1409 1410 if (FirstC) { 1411 if (FirstC == C) 1412 // If we've seen a constant incoming value before and it is the same 1413 // constant we see this time, continue checking the next incoming value. 1414 continue; 1415 // Otherwise early exit because we either see a different constant or saw 1416 // a constant before but we have a pointer with constant offset this time. 1417 return true; 1418 } 1419 1420 if (FirstV) { 1421 // The same logic as above, but check pointer with constant offset here. 1422 if (FirstBaseAndOffset == BaseAndOffset) 1423 continue; 1424 return true; 1425 } 1426 1427 if (C) { 1428 // This is the 1st time we've seen a constant, record it. 1429 FirstC = C; 1430 continue; 1431 } 1432 1433 // The remaining case is that this is the 1st time we've seen a pointer with 1434 // constant offset, record it. 1435 FirstV = V; 1436 FirstBaseAndOffset = BaseAndOffset; 1437 } 1438 1439 // Check if we can map phi to a constant. 1440 if (FirstC) { 1441 SimplifiedValues[&I] = FirstC; 1442 return true; 1443 } 1444 1445 // Check if we can map phi to a pointer with constant offset. 1446 if (FirstBaseAndOffset.first) { 1447 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1448 1449 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1450 SROAArgValues[&I] = SROAArg; 1451 } 1452 1453 return true; 1454 } 1455 1456 /// Check we can fold GEPs of constant-offset call site argument pointers. 1457 /// This requires target data and inbounds GEPs. 1458 /// 1459 /// \return true if the specified GEP can be folded. 1460 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1461 // Check if we have a base + offset for the pointer. 1462 std::pair<Value *, APInt> BaseAndOffset = 1463 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1464 if (!BaseAndOffset.first) 1465 return false; 1466 1467 // Check if the offset of this GEP is constant, and if so accumulate it 1468 // into Offset. 1469 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1470 return false; 1471 1472 // Add the result as a new mapping to Base + Offset. 1473 ConstantOffsetPtrs[&I] = BaseAndOffset; 1474 1475 return true; 1476 } 1477 1478 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1479 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1480 1481 // Lambda to check whether a GEP's indices are all constant. 1482 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1483 for (const Use &Op : GEP.indices()) 1484 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1485 return false; 1486 return true; 1487 }; 1488 1489 if (!DisableGEPConstOperand) 1490 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1491 SmallVector<Constant *, 2> Indices; 1492 for (unsigned int Index = 1; Index < COps.size(); ++Index) 1493 Indices.push_back(COps[Index]); 1494 return ConstantExpr::getGetElementPtr( 1495 I.getSourceElementType(), COps[0], Indices, I.isInBounds()); 1496 })) 1497 return true; 1498 1499 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1500 if (SROAArg) 1501 SROAArgValues[&I] = SROAArg; 1502 1503 // Constant GEPs are modeled as free. 1504 return true; 1505 } 1506 1507 // Variable GEPs will require math and will disable SROA. 1508 if (SROAArg) 1509 disableSROAForArg(SROAArg); 1510 return isGEPFree(I); 1511 } 1512 1513 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1514 /// \p Evaluate is a callable specific to instruction type that evaluates the 1515 /// instruction when all the operands are constants. 1516 template <typename Callable> 1517 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1518 SmallVector<Constant *, 2> COps; 1519 for (Value *Op : I.operands()) { 1520 Constant *COp = dyn_cast<Constant>(Op); 1521 if (!COp) 1522 COp = SimplifiedValues.lookup(Op); 1523 if (!COp) 1524 return false; 1525 COps.push_back(COp); 1526 } 1527 auto *C = Evaluate(COps); 1528 if (!C) 1529 return false; 1530 SimplifiedValues[&I] = C; 1531 return true; 1532 } 1533 1534 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1535 // Propagate constants through bitcasts. 1536 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1537 return ConstantExpr::getBitCast(COps[0], I.getType()); 1538 })) 1539 return true; 1540 1541 // Track base/offsets through casts 1542 std::pair<Value *, APInt> BaseAndOffset = 1543 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1544 // Casts don't change the offset, just wrap it up. 1545 if (BaseAndOffset.first) 1546 ConstantOffsetPtrs[&I] = BaseAndOffset; 1547 1548 // Also look for SROA candidates here. 1549 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1550 SROAArgValues[&I] = SROAArg; 1551 1552 // Bitcasts are always zero cost. 1553 return true; 1554 } 1555 1556 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1557 // Propagate constants through ptrtoint. 1558 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1559 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1560 })) 1561 return true; 1562 1563 // Track base/offset pairs when converted to a plain integer provided the 1564 // integer is large enough to represent the pointer. 1565 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1566 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1567 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1568 std::pair<Value *, APInt> BaseAndOffset = 1569 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1570 if (BaseAndOffset.first) 1571 ConstantOffsetPtrs[&I] = BaseAndOffset; 1572 } 1573 1574 // This is really weird. Technically, ptrtoint will disable SROA. However, 1575 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1576 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1577 // would block SROA would also block SROA if applied directly to a pointer, 1578 // and so we can just add the integer in here. The only places where SROA is 1579 // preserved either cannot fire on an integer, or won't in-and-of themselves 1580 // disable SROA (ext) w/o some later use that we would see and disable. 1581 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1582 SROAArgValues[&I] = SROAArg; 1583 1584 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1585 TargetTransformInfo::TCC_Free; 1586 } 1587 1588 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1589 // Propagate constants through ptrtoint. 1590 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1591 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1592 })) 1593 return true; 1594 1595 // Track base/offset pairs when round-tripped through a pointer without 1596 // modifications provided the integer is not too large. 1597 Value *Op = I.getOperand(0); 1598 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1599 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1600 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1601 if (BaseAndOffset.first) 1602 ConstantOffsetPtrs[&I] = BaseAndOffset; 1603 } 1604 1605 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1606 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1607 SROAArgValues[&I] = SROAArg; 1608 1609 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1610 TargetTransformInfo::TCC_Free; 1611 } 1612 1613 bool CallAnalyzer::visitCastInst(CastInst &I) { 1614 // Propagate constants through casts. 1615 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1616 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1617 })) 1618 return true; 1619 1620 // Disable SROA in the face of arbitrary casts we don't explicitly list 1621 // elsewhere. 1622 disableSROA(I.getOperand(0)); 1623 1624 // If this is a floating-point cast, and the target says this operation 1625 // is expensive, this may eventually become a library call. Treat the cost 1626 // as such. 1627 switch (I.getOpcode()) { 1628 case Instruction::FPTrunc: 1629 case Instruction::FPExt: 1630 case Instruction::UIToFP: 1631 case Instruction::SIToFP: 1632 case Instruction::FPToUI: 1633 case Instruction::FPToSI: 1634 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1635 onCallPenalty(); 1636 break; 1637 default: 1638 break; 1639 } 1640 1641 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1642 TargetTransformInfo::TCC_Free; 1643 } 1644 1645 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1646 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1647 } 1648 1649 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1650 // Does the *call site* have the NonNull attribute set on an argument? We 1651 // use the attribute on the call site to memoize any analysis done in the 1652 // caller. This will also trip if the callee function has a non-null 1653 // parameter attribute, but that's a less interesting case because hopefully 1654 // the callee would already have been simplified based on that. 1655 if (Argument *A = dyn_cast<Argument>(V)) 1656 if (paramHasAttr(A, Attribute::NonNull)) 1657 return true; 1658 1659 // Is this an alloca in the caller? This is distinct from the attribute case 1660 // above because attributes aren't updated within the inliner itself and we 1661 // always want to catch the alloca derived case. 1662 if (isAllocaDerivedArg(V)) 1663 // We can actually predict the result of comparisons between an 1664 // alloca-derived value and null. Note that this fires regardless of 1665 // SROA firing. 1666 return true; 1667 1668 return false; 1669 } 1670 1671 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1672 // If the normal destination of the invoke or the parent block of the call 1673 // site is unreachable-terminated, there is little point in inlining this 1674 // unless there is literally zero cost. 1675 // FIXME: Note that it is possible that an unreachable-terminated block has a 1676 // hot entry. For example, in below scenario inlining hot_call_X() may be 1677 // beneficial : 1678 // main() { 1679 // hot_call_1(); 1680 // ... 1681 // hot_call_N() 1682 // exit(0); 1683 // } 1684 // For now, we are not handling this corner case here as it is rare in real 1685 // code. In future, we should elaborate this based on BPI and BFI in more 1686 // general threshold adjusting heuristics in updateThreshold(). 1687 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1688 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1689 return false; 1690 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1691 return false; 1692 1693 return true; 1694 } 1695 1696 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1697 BlockFrequencyInfo *CallerBFI) { 1698 // If global profile summary is available, then callsite's coldness is 1699 // determined based on that. 1700 if (PSI && PSI->hasProfileSummary()) 1701 return PSI->isColdCallSite(Call, CallerBFI); 1702 1703 // Otherwise we need BFI to be available. 1704 if (!CallerBFI) 1705 return false; 1706 1707 // Determine if the callsite is cold relative to caller's entry. We could 1708 // potentially cache the computation of scaled entry frequency, but the added 1709 // complexity is not worth it unless this scaling shows up high in the 1710 // profiles. 1711 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1712 auto CallSiteBB = Call.getParent(); 1713 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1714 auto CallerEntryFreq = 1715 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1716 return CallSiteFreq < CallerEntryFreq * ColdProb; 1717 } 1718 1719 Optional<int> 1720 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1721 BlockFrequencyInfo *CallerBFI) { 1722 1723 // If global profile summary is available, then callsite's hotness is 1724 // determined based on that. 1725 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1726 return Params.HotCallSiteThreshold; 1727 1728 // Otherwise we need BFI to be available and to have a locally hot callsite 1729 // threshold. 1730 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1731 return None; 1732 1733 // Determine if the callsite is hot relative to caller's entry. We could 1734 // potentially cache the computation of scaled entry frequency, but the added 1735 // complexity is not worth it unless this scaling shows up high in the 1736 // profiles. 1737 auto CallSiteBB = Call.getParent(); 1738 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1739 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1740 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1741 return Params.LocallyHotCallSiteThreshold; 1742 1743 // Otherwise treat it normally. 1744 return None; 1745 } 1746 1747 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1748 // If no size growth is allowed for this inlining, set Threshold to 0. 1749 if (!allowSizeGrowth(Call)) { 1750 Threshold = 0; 1751 return; 1752 } 1753 1754 Function *Caller = Call.getCaller(); 1755 1756 // return min(A, B) if B is valid. 1757 auto MinIfValid = [](int A, Optional<int> B) { 1758 return B ? std::min(A, B.getValue()) : A; 1759 }; 1760 1761 // return max(A, B) if B is valid. 1762 auto MaxIfValid = [](int A, Optional<int> B) { 1763 return B ? std::max(A, B.getValue()) : A; 1764 }; 1765 1766 // Various bonus percentages. These are multiplied by Threshold to get the 1767 // bonus values. 1768 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1769 // basic block at the given callsite context. This is speculatively applied 1770 // and withdrawn if more than one basic block is seen. 1771 // 1772 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1773 // of the last call to a static function as inlining such functions is 1774 // guaranteed to reduce code size. 1775 // 1776 // These bonus percentages may be set to 0 based on properties of the caller 1777 // and the callsite. 1778 int SingleBBBonusPercent = 50; 1779 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1780 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1781 1782 // Lambda to set all the above bonus and bonus percentages to 0. 1783 auto DisallowAllBonuses = [&]() { 1784 SingleBBBonusPercent = 0; 1785 VectorBonusPercent = 0; 1786 LastCallToStaticBonus = 0; 1787 }; 1788 1789 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1790 // and reduce the threshold if the caller has the necessary attribute. 1791 if (Caller->hasMinSize()) { 1792 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1793 // For minsize, we want to disable the single BB bonus and the vector 1794 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1795 // a static function will, at the minimum, eliminate the parameter setup and 1796 // call/return instructions. 1797 SingleBBBonusPercent = 0; 1798 VectorBonusPercent = 0; 1799 } else if (Caller->hasOptSize()) 1800 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1801 1802 // Adjust the threshold based on inlinehint attribute and profile based 1803 // hotness information if the caller does not have MinSize attribute. 1804 if (!Caller->hasMinSize()) { 1805 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1806 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1807 1808 // FIXME: After switching to the new passmanager, simplify the logic below 1809 // by checking only the callsite hotness/coldness as we will reliably 1810 // have local profile information. 1811 // 1812 // Callsite hotness and coldness can be determined if sample profile is 1813 // used (which adds hotness metadata to calls) or if caller's 1814 // BlockFrequencyInfo is available. 1815 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1816 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1817 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1818 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1819 // FIXME: This should update the threshold only if it exceeds the 1820 // current threshold, but AutoFDO + ThinLTO currently relies on this 1821 // behavior to prevent inlining of hot callsites during ThinLTO 1822 // compile phase. 1823 Threshold = HotCallSiteThreshold.getValue(); 1824 } else if (isColdCallSite(Call, CallerBFI)) { 1825 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1826 // Do not apply bonuses for a cold callsite including the 1827 // LastCallToStatic bonus. While this bonus might result in code size 1828 // reduction, it can cause the size of a non-cold caller to increase 1829 // preventing it from being inlined. 1830 DisallowAllBonuses(); 1831 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1832 } else if (PSI) { 1833 // Use callee's global profile information only if we have no way of 1834 // determining this via callsite information. 1835 if (PSI->isFunctionEntryHot(&Callee)) { 1836 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1837 // If callsite hotness can not be determined, we may still know 1838 // that the callee is hot and treat it as a weaker hint for threshold 1839 // increase. 1840 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1841 } else if (PSI->isFunctionEntryCold(&Callee)) { 1842 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1843 // Do not apply bonuses for a cold callee including the 1844 // LastCallToStatic bonus. While this bonus might result in code size 1845 // reduction, it can cause the size of a non-cold caller to increase 1846 // preventing it from being inlined. 1847 DisallowAllBonuses(); 1848 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1849 } 1850 } 1851 } 1852 1853 Threshold += TTI.adjustInliningThreshold(&Call); 1854 1855 // Finally, take the target-specific inlining threshold multiplier into 1856 // account. 1857 Threshold *= TTI.getInliningThresholdMultiplier(); 1858 1859 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1860 VectorBonus = Threshold * VectorBonusPercent / 100; 1861 1862 bool OnlyOneCallAndLocalLinkage = 1863 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1864 // If there is only one call of the function, and it has internal linkage, 1865 // the cost of inlining it drops dramatically. It may seem odd to update 1866 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1867 if (OnlyOneCallAndLocalLinkage) 1868 Cost -= LastCallToStaticBonus; 1869 } 1870 1871 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1872 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1873 // First try to handle simplified comparisons. 1874 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1875 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1876 })) 1877 return true; 1878 1879 if (I.getOpcode() == Instruction::FCmp) 1880 return false; 1881 1882 // Otherwise look for a comparison between constant offset pointers with 1883 // a common base. 1884 Value *LHSBase, *RHSBase; 1885 APInt LHSOffset, RHSOffset; 1886 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1887 if (LHSBase) { 1888 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1889 if (RHSBase && LHSBase == RHSBase) { 1890 // We have common bases, fold the icmp to a constant based on the 1891 // offsets. 1892 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1893 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1894 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1895 SimplifiedValues[&I] = C; 1896 ++NumConstantPtrCmps; 1897 return true; 1898 } 1899 } 1900 } 1901 1902 // If the comparison is an equality comparison with null, we can simplify it 1903 // if we know the value (argument) can't be null 1904 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1905 isKnownNonNullInCallee(I.getOperand(0))) { 1906 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1907 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1908 : ConstantInt::getFalse(I.getType()); 1909 return true; 1910 } 1911 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1912 } 1913 1914 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1915 // Try to handle a special case: we can fold computing the difference of two 1916 // constant-related pointers. 1917 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1918 Value *LHSBase, *RHSBase; 1919 APInt LHSOffset, RHSOffset; 1920 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1921 if (LHSBase) { 1922 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1923 if (RHSBase && LHSBase == RHSBase) { 1924 // We have common bases, fold the subtract to a constant based on the 1925 // offsets. 1926 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1927 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1928 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1929 SimplifiedValues[&I] = C; 1930 ++NumConstantPtrDiffs; 1931 return true; 1932 } 1933 } 1934 } 1935 1936 // Otherwise, fall back to the generic logic for simplifying and handling 1937 // instructions. 1938 return Base::visitSub(I); 1939 } 1940 1941 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1942 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1943 Constant *CLHS = dyn_cast<Constant>(LHS); 1944 if (!CLHS) 1945 CLHS = SimplifiedValues.lookup(LHS); 1946 Constant *CRHS = dyn_cast<Constant>(RHS); 1947 if (!CRHS) 1948 CRHS = SimplifiedValues.lookup(RHS); 1949 1950 Value *SimpleV = nullptr; 1951 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1952 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1953 FI->getFastMathFlags(), DL); 1954 else 1955 SimpleV = 1956 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1957 1958 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1959 SimplifiedValues[&I] = C; 1960 1961 if (SimpleV) 1962 return true; 1963 1964 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1965 disableSROA(LHS); 1966 disableSROA(RHS); 1967 1968 // If the instruction is floating point, and the target says this operation 1969 // is expensive, this may eventually become a library call. Treat the cost 1970 // as such. Unless it's fneg which can be implemented with an xor. 1971 using namespace llvm::PatternMatch; 1972 if (I.getType()->isFloatingPointTy() && 1973 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1974 !match(&I, m_FNeg(m_Value()))) 1975 onCallPenalty(); 1976 1977 return false; 1978 } 1979 1980 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1981 Value *Op = I.getOperand(0); 1982 Constant *COp = dyn_cast<Constant>(Op); 1983 if (!COp) 1984 COp = SimplifiedValues.lookup(Op); 1985 1986 Value *SimpleV = SimplifyFNegInst( 1987 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1988 1989 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1990 SimplifiedValues[&I] = C; 1991 1992 if (SimpleV) 1993 return true; 1994 1995 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1996 disableSROA(Op); 1997 1998 return false; 1999 } 2000 2001 bool CallAnalyzer::visitLoad(LoadInst &I) { 2002 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2003 return true; 2004 2005 // If the data is already loaded from this address and hasn't been clobbered 2006 // by any stores or calls, this load is likely to be redundant and can be 2007 // eliminated. 2008 if (EnableLoadElimination && 2009 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2010 onLoadEliminationOpportunity(); 2011 return true; 2012 } 2013 2014 return false; 2015 } 2016 2017 bool CallAnalyzer::visitStore(StoreInst &I) { 2018 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2019 return true; 2020 2021 // The store can potentially clobber loads and prevent repeated loads from 2022 // being eliminated. 2023 // FIXME: 2024 // 1. We can probably keep an initial set of eliminatable loads substracted 2025 // from the cost even when we finally see a store. We just need to disable 2026 // *further* accumulation of elimination savings. 2027 // 2. We should probably at some point thread MemorySSA for the callee into 2028 // this and then use that to actually compute *really* precise savings. 2029 disableLoadElimination(); 2030 return false; 2031 } 2032 2033 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2034 // Constant folding for extract value is trivial. 2035 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2036 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 2037 })) 2038 return true; 2039 2040 // SROA can't look through these, but they may be free. 2041 return Base::visitExtractValue(I); 2042 } 2043 2044 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2045 // Constant folding for insert value is trivial. 2046 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2047 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 2048 /*InsertedValueOperand*/ COps[1], 2049 I.getIndices()); 2050 })) 2051 return true; 2052 2053 // SROA can't look through these, but they may be free. 2054 return Base::visitInsertValue(I); 2055 } 2056 2057 /// Try to simplify a call site. 2058 /// 2059 /// Takes a concrete function and callsite and tries to actually simplify it by 2060 /// analyzing the arguments and call itself with instsimplify. Returns true if 2061 /// it has simplified the callsite to some other entity (a constant), making it 2062 /// free. 2063 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2064 // FIXME: Using the instsimplify logic directly for this is inefficient 2065 // because we have to continually rebuild the argument list even when no 2066 // simplifications can be performed. Until that is fixed with remapping 2067 // inside of instsimplify, directly constant fold calls here. 2068 if (!canConstantFoldCallTo(&Call, F)) 2069 return false; 2070 2071 // Try to re-map the arguments to constants. 2072 SmallVector<Constant *, 4> ConstantArgs; 2073 ConstantArgs.reserve(Call.arg_size()); 2074 for (Value *I : Call.args()) { 2075 Constant *C = dyn_cast<Constant>(I); 2076 if (!C) 2077 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2078 if (!C) 2079 return false; // This argument doesn't map to a constant. 2080 2081 ConstantArgs.push_back(C); 2082 } 2083 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2084 SimplifiedValues[&Call] = C; 2085 return true; 2086 } 2087 2088 return false; 2089 } 2090 2091 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2092 if (!onCallBaseVisitStart(Call)) 2093 return true; 2094 2095 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2096 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2097 // This aborts the entire analysis. 2098 ExposesReturnsTwice = true; 2099 return false; 2100 } 2101 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2102 ContainsNoDuplicateCall = true; 2103 2104 Value *Callee = Call.getCalledOperand(); 2105 Function *F = dyn_cast_or_null<Function>(Callee); 2106 bool IsIndirectCall = !F; 2107 if (IsIndirectCall) { 2108 // Check if this happens to be an indirect function call to a known function 2109 // in this inline context. If not, we've done all we can. 2110 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2111 if (!F) { 2112 onCallArgumentSetup(Call); 2113 2114 if (!Call.onlyReadsMemory()) 2115 disableLoadElimination(); 2116 return Base::visitCallBase(Call); 2117 } 2118 } 2119 2120 assert(F && "Expected a call to a known function"); 2121 2122 // When we have a concrete function, first try to simplify it directly. 2123 if (simplifyCallSite(F, Call)) 2124 return true; 2125 2126 // Next check if it is an intrinsic we know about. 2127 // FIXME: Lift this into part of the InstVisitor. 2128 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2129 switch (II->getIntrinsicID()) { 2130 default: 2131 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2132 disableLoadElimination(); 2133 return Base::visitCallBase(Call); 2134 2135 case Intrinsic::load_relative: 2136 onLoadRelativeIntrinsic(); 2137 return false; 2138 2139 case Intrinsic::memset: 2140 case Intrinsic::memcpy: 2141 case Intrinsic::memmove: 2142 disableLoadElimination(); 2143 // SROA can usually chew through these intrinsics, but they aren't free. 2144 return false; 2145 case Intrinsic::icall_branch_funnel: 2146 case Intrinsic::localescape: 2147 HasUninlineableIntrinsic = true; 2148 return false; 2149 case Intrinsic::vastart: 2150 InitsVargArgs = true; 2151 return false; 2152 case Intrinsic::launder_invariant_group: 2153 case Intrinsic::strip_invariant_group: 2154 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2155 SROAArgValues[II] = SROAArg; 2156 return true; 2157 } 2158 } 2159 2160 if (F == Call.getFunction()) { 2161 // This flag will fully abort the analysis, so don't bother with anything 2162 // else. 2163 IsRecursiveCall = true; 2164 if (!AllowRecursiveCall) 2165 return false; 2166 } 2167 2168 if (TTI.isLoweredToCall(F)) { 2169 onLoweredCall(F, Call, IsIndirectCall); 2170 } 2171 2172 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2173 disableLoadElimination(); 2174 return Base::visitCallBase(Call); 2175 } 2176 2177 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2178 // At least one return instruction will be free after inlining. 2179 bool Free = !HasReturn; 2180 HasReturn = true; 2181 return Free; 2182 } 2183 2184 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2185 // We model unconditional branches as essentially free -- they really 2186 // shouldn't exist at all, but handling them makes the behavior of the 2187 // inliner more regular and predictable. Interestingly, conditional branches 2188 // which will fold away are also free. 2189 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2190 dyn_cast_or_null<ConstantInt>( 2191 SimplifiedValues.lookup(BI.getCondition())); 2192 } 2193 2194 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2195 bool CheckSROA = SI.getType()->isPointerTy(); 2196 Value *TrueVal = SI.getTrueValue(); 2197 Value *FalseVal = SI.getFalseValue(); 2198 2199 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2200 if (!TrueC) 2201 TrueC = SimplifiedValues.lookup(TrueVal); 2202 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2203 if (!FalseC) 2204 FalseC = SimplifiedValues.lookup(FalseVal); 2205 Constant *CondC = 2206 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2207 2208 if (!CondC) { 2209 // Select C, X, X => X 2210 if (TrueC == FalseC && TrueC) { 2211 SimplifiedValues[&SI] = TrueC; 2212 return true; 2213 } 2214 2215 if (!CheckSROA) 2216 return Base::visitSelectInst(SI); 2217 2218 std::pair<Value *, APInt> TrueBaseAndOffset = 2219 ConstantOffsetPtrs.lookup(TrueVal); 2220 std::pair<Value *, APInt> FalseBaseAndOffset = 2221 ConstantOffsetPtrs.lookup(FalseVal); 2222 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2223 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2224 2225 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2226 SROAArgValues[&SI] = SROAArg; 2227 return true; 2228 } 2229 2230 return Base::visitSelectInst(SI); 2231 } 2232 2233 // Select condition is a constant. 2234 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2235 : (CondC->isNullValue()) ? FalseVal 2236 : nullptr; 2237 if (!SelectedV) { 2238 // Condition is a vector constant that is not all 1s or all 0s. If all 2239 // operands are constants, ConstantExpr::getSelect() can handle the cases 2240 // such as select vectors. 2241 if (TrueC && FalseC) { 2242 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2243 SimplifiedValues[&SI] = C; 2244 return true; 2245 } 2246 } 2247 return Base::visitSelectInst(SI); 2248 } 2249 2250 // Condition is either all 1s or all 0s. SI can be simplified. 2251 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2252 SimplifiedValues[&SI] = SelectedC; 2253 return true; 2254 } 2255 2256 if (!CheckSROA) 2257 return true; 2258 2259 std::pair<Value *, APInt> BaseAndOffset = 2260 ConstantOffsetPtrs.lookup(SelectedV); 2261 if (BaseAndOffset.first) { 2262 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2263 2264 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2265 SROAArgValues[&SI] = SROAArg; 2266 } 2267 2268 return true; 2269 } 2270 2271 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2272 // We model unconditional switches as free, see the comments on handling 2273 // branches. 2274 if (isa<ConstantInt>(SI.getCondition())) 2275 return true; 2276 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2277 if (isa<ConstantInt>(V)) 2278 return true; 2279 2280 // Assume the most general case where the switch is lowered into 2281 // either a jump table, bit test, or a balanced binary tree consisting of 2282 // case clusters without merging adjacent clusters with the same 2283 // destination. We do not consider the switches that are lowered with a mix 2284 // of jump table/bit test/binary search tree. The cost of the switch is 2285 // proportional to the size of the tree or the size of jump table range. 2286 // 2287 // NB: We convert large switches which are just used to initialize large phi 2288 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2289 // inlining those. It will prevent inlining in cases where the optimization 2290 // does not (yet) fire. 2291 2292 unsigned JumpTableSize = 0; 2293 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2294 unsigned NumCaseCluster = 2295 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2296 2297 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2298 return false; 2299 } 2300 2301 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2302 // We never want to inline functions that contain an indirectbr. This is 2303 // incorrect because all the blockaddress's (in static global initializers 2304 // for example) would be referring to the original function, and this 2305 // indirect jump would jump from the inlined copy of the function into the 2306 // original function which is extremely undefined behavior. 2307 // FIXME: This logic isn't really right; we can safely inline functions with 2308 // indirectbr's as long as no other function or global references the 2309 // blockaddress of a block within the current function. 2310 HasIndirectBr = true; 2311 return false; 2312 } 2313 2314 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2315 // FIXME: It's not clear that a single instruction is an accurate model for 2316 // the inline cost of a resume instruction. 2317 return false; 2318 } 2319 2320 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2321 // FIXME: It's not clear that a single instruction is an accurate model for 2322 // the inline cost of a cleanupret instruction. 2323 return false; 2324 } 2325 2326 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2327 // FIXME: It's not clear that a single instruction is an accurate model for 2328 // the inline cost of a catchret instruction. 2329 return false; 2330 } 2331 2332 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2333 // FIXME: It might be reasonably to discount the cost of instructions leading 2334 // to unreachable as they have the lowest possible impact on both runtime and 2335 // code size. 2336 return true; // No actual code is needed for unreachable. 2337 } 2338 2339 bool CallAnalyzer::visitInstruction(Instruction &I) { 2340 // Some instructions are free. All of the free intrinsics can also be 2341 // handled by SROA, etc. 2342 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2343 TargetTransformInfo::TCC_Free) 2344 return true; 2345 2346 // We found something we don't understand or can't handle. Mark any SROA-able 2347 // values in the operand list as no longer viable. 2348 for (const Use &Op : I.operands()) 2349 disableSROA(Op); 2350 2351 return false; 2352 } 2353 2354 /// Analyze a basic block for its contribution to the inline cost. 2355 /// 2356 /// This method walks the analyzer over every instruction in the given basic 2357 /// block and accounts for their cost during inlining at this callsite. It 2358 /// aborts early if the threshold has been exceeded or an impossible to inline 2359 /// construct has been detected. It returns false if inlining is no longer 2360 /// viable, and true if inlining remains viable. 2361 InlineResult 2362 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2363 SmallPtrSetImpl<const Value *> &EphValues) { 2364 for (Instruction &I : *BB) { 2365 // FIXME: Currently, the number of instructions in a function regardless of 2366 // our ability to simplify them during inline to constants or dead code, 2367 // are actually used by the vector bonus heuristic. As long as that's true, 2368 // we have to special case debug intrinsics here to prevent differences in 2369 // inlining due to debug symbols. Eventually, the number of unsimplified 2370 // instructions shouldn't factor into the cost computation, but until then, 2371 // hack around it here. 2372 if (isa<DbgInfoIntrinsic>(I)) 2373 continue; 2374 2375 // Skip pseudo-probes. 2376 if (isa<PseudoProbeInst>(I)) 2377 continue; 2378 2379 // Skip ephemeral values. 2380 if (EphValues.count(&I)) 2381 continue; 2382 2383 ++NumInstructions; 2384 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2385 ++NumVectorInstructions; 2386 2387 // If the instruction simplified to a constant, there is no cost to this 2388 // instruction. Visit the instructions using our InstVisitor to account for 2389 // all of the per-instruction logic. The visit tree returns true if we 2390 // consumed the instruction in any way, and false if the instruction's base 2391 // cost should count against inlining. 2392 onInstructionAnalysisStart(&I); 2393 2394 if (Base::visit(&I)) 2395 ++NumInstructionsSimplified; 2396 else 2397 onMissedSimplification(); 2398 2399 onInstructionAnalysisFinish(&I); 2400 using namespace ore; 2401 // If the visit this instruction detected an uninlinable pattern, abort. 2402 InlineResult IR = InlineResult::success(); 2403 if (IsRecursiveCall && !AllowRecursiveCall) 2404 IR = InlineResult::failure("recursive"); 2405 else if (ExposesReturnsTwice) 2406 IR = InlineResult::failure("exposes returns twice"); 2407 else if (HasDynamicAlloca) 2408 IR = InlineResult::failure("dynamic alloca"); 2409 else if (HasIndirectBr) 2410 IR = InlineResult::failure("indirect branch"); 2411 else if (HasUninlineableIntrinsic) 2412 IR = InlineResult::failure("uninlinable intrinsic"); 2413 else if (InitsVargArgs) 2414 IR = InlineResult::failure("varargs"); 2415 if (!IR.isSuccess()) { 2416 if (ORE) 2417 ORE->emit([&]() { 2418 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2419 &CandidateCall) 2420 << NV("Callee", &F) << " has uninlinable pattern (" 2421 << NV("InlineResult", IR.getFailureReason()) 2422 << ") and cost is not fully computed"; 2423 }); 2424 return IR; 2425 } 2426 2427 // If the caller is a recursive function then we don't want to inline 2428 // functions which allocate a lot of stack space because it would increase 2429 // the caller stack usage dramatically. 2430 if (IsCallerRecursive && 2431 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2432 auto IR = 2433 InlineResult::failure("recursive and allocates too much stack space"); 2434 if (ORE) 2435 ORE->emit([&]() { 2436 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2437 &CandidateCall) 2438 << NV("Callee", &F) << " is " 2439 << NV("InlineResult", IR.getFailureReason()) 2440 << ". Cost is not fully computed"; 2441 }); 2442 return IR; 2443 } 2444 2445 if (shouldStop()) 2446 return InlineResult::failure( 2447 "Call site analysis is not favorable to inlining."); 2448 } 2449 2450 return InlineResult::success(); 2451 } 2452 2453 /// Compute the base pointer and cumulative constant offsets for V. 2454 /// 2455 /// This strips all constant offsets off of V, leaving it the base pointer, and 2456 /// accumulates the total constant offset applied in the returned constant. It 2457 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2458 /// no constant offsets applied. 2459 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2460 if (!V->getType()->isPointerTy()) 2461 return nullptr; 2462 2463 unsigned AS = V->getType()->getPointerAddressSpace(); 2464 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2465 APInt Offset = APInt::getNullValue(IntPtrWidth); 2466 2467 // Even though we don't look through PHI nodes, we could be called on an 2468 // instruction in an unreachable block, which may be on a cycle. 2469 SmallPtrSet<Value *, 4> Visited; 2470 Visited.insert(V); 2471 do { 2472 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2473 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2474 return nullptr; 2475 V = GEP->getPointerOperand(); 2476 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2477 V = cast<Operator>(V)->getOperand(0); 2478 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2479 if (GA->isInterposable()) 2480 break; 2481 V = GA->getAliasee(); 2482 } else { 2483 break; 2484 } 2485 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2486 } while (Visited.insert(V).second); 2487 2488 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2489 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2490 } 2491 2492 /// Find dead blocks due to deleted CFG edges during inlining. 2493 /// 2494 /// If we know the successor of the current block, \p CurrBB, has to be \p 2495 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2496 /// no live incoming CFG edges. If one block is found to be dead, we can 2497 /// continue growing the dead block list by checking the successors of the dead 2498 /// blocks to see if all their incoming edges are dead or not. 2499 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2500 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2501 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2502 // known successor which is not the one under exam. 2503 return (DeadBlocks.count(Pred) || 2504 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2505 }; 2506 2507 auto IsNewlyDead = [&](BasicBlock *BB) { 2508 // If all the edges to a block are dead, the block is also dead. 2509 return (!DeadBlocks.count(BB) && 2510 llvm::all_of(predecessors(BB), 2511 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2512 }; 2513 2514 for (BasicBlock *Succ : successors(CurrBB)) { 2515 if (Succ == NextBB || !IsNewlyDead(Succ)) 2516 continue; 2517 SmallVector<BasicBlock *, 4> NewDead; 2518 NewDead.push_back(Succ); 2519 while (!NewDead.empty()) { 2520 BasicBlock *Dead = NewDead.pop_back_val(); 2521 if (DeadBlocks.insert(Dead)) 2522 // Continue growing the dead block lists. 2523 for (BasicBlock *S : successors(Dead)) 2524 if (IsNewlyDead(S)) 2525 NewDead.push_back(S); 2526 } 2527 } 2528 } 2529 2530 /// Analyze a call site for potential inlining. 2531 /// 2532 /// Returns true if inlining this call is viable, and false if it is not 2533 /// viable. It computes the cost and adjusts the threshold based on numerous 2534 /// factors and heuristics. If this method returns false but the computed cost 2535 /// is below the computed threshold, then inlining was forcibly disabled by 2536 /// some artifact of the routine. 2537 InlineResult CallAnalyzer::analyze() { 2538 ++NumCallsAnalyzed; 2539 2540 auto Result = onAnalysisStart(); 2541 if (!Result.isSuccess()) 2542 return Result; 2543 2544 if (F.empty()) 2545 return InlineResult::success(); 2546 2547 Function *Caller = CandidateCall.getFunction(); 2548 // Check if the caller function is recursive itself. 2549 for (User *U : Caller->users()) { 2550 CallBase *Call = dyn_cast<CallBase>(U); 2551 if (Call && Call->getFunction() == Caller) { 2552 IsCallerRecursive = true; 2553 break; 2554 } 2555 } 2556 2557 // Populate our simplified values by mapping from function arguments to call 2558 // arguments with known important simplifications. 2559 auto CAI = CandidateCall.arg_begin(); 2560 for (Argument &FAI : F.args()) { 2561 assert(CAI != CandidateCall.arg_end()); 2562 if (Constant *C = dyn_cast<Constant>(CAI)) 2563 SimplifiedValues[&FAI] = C; 2564 2565 Value *PtrArg = *CAI; 2566 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2567 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2568 2569 // We can SROA any pointer arguments derived from alloca instructions. 2570 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2571 SROAArgValues[&FAI] = SROAArg; 2572 onInitializeSROAArg(SROAArg); 2573 EnabledSROAAllocas.insert(SROAArg); 2574 } 2575 } 2576 ++CAI; 2577 } 2578 NumConstantArgs = SimplifiedValues.size(); 2579 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2580 NumAllocaArgs = SROAArgValues.size(); 2581 2582 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2583 // the ephemeral values multiple times (and they're completely determined by 2584 // the callee, so this is purely duplicate work). 2585 SmallPtrSet<const Value *, 32> EphValues; 2586 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2587 2588 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2589 // adding basic blocks of the callee which can be proven to be dead for this 2590 // particular call site in order to get more accurate cost estimates. This 2591 // requires a somewhat heavyweight iteration pattern: we need to walk the 2592 // basic blocks in a breadth-first order as we insert live successors. To 2593 // accomplish this, prioritizing for small iterations because we exit after 2594 // crossing our threshold, we use a small-size optimized SetVector. 2595 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2596 SmallPtrSet<BasicBlock *, 16>> 2597 BBSetVector; 2598 BBSetVector BBWorklist; 2599 BBWorklist.insert(&F.getEntryBlock()); 2600 2601 // Note that we *must not* cache the size, this loop grows the worklist. 2602 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2603 if (shouldStop()) 2604 break; 2605 2606 BasicBlock *BB = BBWorklist[Idx]; 2607 if (BB->empty()) 2608 continue; 2609 2610 onBlockStart(BB); 2611 2612 // Disallow inlining a blockaddress with uses other than strictly callbr. 2613 // A blockaddress only has defined behavior for an indirect branch in the 2614 // same function, and we do not currently support inlining indirect 2615 // branches. But, the inliner may not see an indirect branch that ends up 2616 // being dead code at a particular call site. If the blockaddress escapes 2617 // the function, e.g., via a global variable, inlining may lead to an 2618 // invalid cross-function reference. 2619 // FIXME: pr/39560: continue relaxing this overt restriction. 2620 if (BB->hasAddressTaken()) 2621 for (User *U : BlockAddress::get(&*BB)->users()) 2622 if (!isa<CallBrInst>(*U)) 2623 return InlineResult::failure("blockaddress used outside of callbr"); 2624 2625 // Analyze the cost of this block. If we blow through the threshold, this 2626 // returns false, and we can bail on out. 2627 InlineResult IR = analyzeBlock(BB, EphValues); 2628 if (!IR.isSuccess()) 2629 return IR; 2630 2631 Instruction *TI = BB->getTerminator(); 2632 2633 // Add in the live successors by first checking whether we have terminator 2634 // that may be simplified based on the values simplified by this call. 2635 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2636 if (BI->isConditional()) { 2637 Value *Cond = BI->getCondition(); 2638 if (ConstantInt *SimpleCond = 2639 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2640 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2641 BBWorklist.insert(NextBB); 2642 KnownSuccessors[BB] = NextBB; 2643 findDeadBlocks(BB, NextBB); 2644 continue; 2645 } 2646 } 2647 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2648 Value *Cond = SI->getCondition(); 2649 if (ConstantInt *SimpleCond = 2650 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2651 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2652 BBWorklist.insert(NextBB); 2653 KnownSuccessors[BB] = NextBB; 2654 findDeadBlocks(BB, NextBB); 2655 continue; 2656 } 2657 } 2658 2659 // If we're unable to select a particular successor, just count all of 2660 // them. 2661 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2662 ++TIdx) 2663 BBWorklist.insert(TI->getSuccessor(TIdx)); 2664 2665 onBlockAnalyzed(BB); 2666 } 2667 2668 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2669 &F == CandidateCall.getCalledFunction(); 2670 // If this is a noduplicate call, we can still inline as long as 2671 // inlining this would cause the removal of the caller (so the instruction 2672 // is not actually duplicated, just moved). 2673 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2674 return InlineResult::failure("noduplicate"); 2675 2676 return finalizeAnalysis(); 2677 } 2678 2679 void InlineCostCallAnalyzer::print() { 2680 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2681 if (PrintInstructionComments) 2682 F.print(dbgs(), &Writer); 2683 DEBUG_PRINT_STAT(NumConstantArgs); 2684 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2685 DEBUG_PRINT_STAT(NumAllocaArgs); 2686 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2687 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2688 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2689 DEBUG_PRINT_STAT(NumInstructions); 2690 DEBUG_PRINT_STAT(SROACostSavings); 2691 DEBUG_PRINT_STAT(SROACostSavingsLost); 2692 DEBUG_PRINT_STAT(LoadEliminationCost); 2693 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2694 DEBUG_PRINT_STAT(Cost); 2695 DEBUG_PRINT_STAT(Threshold); 2696 #undef DEBUG_PRINT_STAT 2697 } 2698 2699 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2700 /// Dump stats about this call's analysis. 2701 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(); } 2702 #endif 2703 2704 /// Test that there are no attribute conflicts between Caller and Callee 2705 /// that prevent inlining. 2706 static bool functionsHaveCompatibleAttributes( 2707 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2708 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2709 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2710 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2711 // object, and always returns the same object (which is overwritten on each 2712 // GetTLI call). Therefore we copy the first result. 2713 auto CalleeTLI = GetTLI(*Callee); 2714 return TTI.areInlineCompatible(Caller, Callee) && 2715 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2716 InlineCallerSupersetNoBuiltin) && 2717 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2718 } 2719 2720 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2721 int Cost = 0; 2722 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2723 if (Call.isByValArgument(I)) { 2724 // We approximate the number of loads and stores needed by dividing the 2725 // size of the byval type by the target's pointer size. 2726 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2727 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2728 unsigned AS = PTy->getAddressSpace(); 2729 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2730 // Ceiling division. 2731 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2732 2733 // If it generates more than 8 stores it is likely to be expanded as an 2734 // inline memcpy so we take that as an upper bound. Otherwise we assume 2735 // one load and one store per word copied. 2736 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2737 // here instead of a magic number of 8, but it's not available via 2738 // DataLayout. 2739 NumStores = std::min(NumStores, 8U); 2740 2741 Cost += 2 * NumStores * InlineConstants::InstrCost; 2742 } else { 2743 // For non-byval arguments subtract off one instruction per call 2744 // argument. 2745 Cost += InlineConstants::InstrCost; 2746 } 2747 } 2748 // The call instruction also disappears after inlining. 2749 Cost += InlineConstants::InstrCost + CallPenalty; 2750 return Cost; 2751 } 2752 2753 InlineCost llvm::getInlineCost( 2754 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2755 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2756 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2757 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2758 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2759 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2760 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2761 } 2762 2763 Optional<int> llvm::getInliningCostEstimate( 2764 CallBase &Call, TargetTransformInfo &CalleeTTI, 2765 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2766 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2767 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2768 const InlineParams Params = {/* DefaultThreshold*/ 0, 2769 /*HintThreshold*/ {}, 2770 /*ColdThreshold*/ {}, 2771 /*OptSizeThreshold*/ {}, 2772 /*OptMinSizeThreshold*/ {}, 2773 /*HotCallSiteThreshold*/ {}, 2774 /*LocallyHotCallSiteThreshold*/ {}, 2775 /*ColdCallSiteThreshold*/ {}, 2776 /*ComputeFullInlineCost*/ true, 2777 /*EnableDeferral*/ true}; 2778 2779 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2780 GetAssumptionCache, GetBFI, PSI, ORE, true, 2781 /*IgnoreThreshold*/ true); 2782 auto R = CA.analyze(); 2783 if (!R.isSuccess()) 2784 return None; 2785 return CA.getCost(); 2786 } 2787 2788 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2789 CallBase &Call, TargetTransformInfo &CalleeTTI, 2790 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2791 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2792 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2793 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2794 ORE, *Call.getCalledFunction(), Call); 2795 auto R = CFA.analyze(); 2796 if (!R.isSuccess()) 2797 return None; 2798 return CFA.features(); 2799 } 2800 2801 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2802 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2803 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2804 2805 // Cannot inline indirect calls. 2806 if (!Callee) 2807 return InlineResult::failure("indirect call"); 2808 2809 // When callee coroutine function is inlined into caller coroutine function 2810 // before coro-split pass, 2811 // coro-early pass can not handle this quiet well. 2812 // So we won't inline the coroutine function if it have not been unsplited 2813 if (Callee->isPresplitCoroutine()) 2814 return InlineResult::failure("unsplited coroutine call"); 2815 2816 // Never inline calls with byval arguments that does not have the alloca 2817 // address space. Since byval arguments can be replaced with a copy to an 2818 // alloca, the inlined code would need to be adjusted to handle that the 2819 // argument is in the alloca address space (so it is a little bit complicated 2820 // to solve). 2821 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2822 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2823 if (Call.isByValArgument(I)) { 2824 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2825 if (PTy->getAddressSpace() != AllocaAS) 2826 return InlineResult::failure("byval arguments without alloca" 2827 " address space"); 2828 } 2829 2830 // Calls to functions with always-inline attributes should be inlined 2831 // whenever possible. 2832 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2833 auto IsViable = isInlineViable(*Callee); 2834 if (IsViable.isSuccess()) 2835 return InlineResult::success(); 2836 return InlineResult::failure(IsViable.getFailureReason()); 2837 } 2838 2839 // Never inline functions with conflicting attributes (unless callee has 2840 // always-inline attribute). 2841 Function *Caller = Call.getCaller(); 2842 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2843 return InlineResult::failure("conflicting attributes"); 2844 2845 // Don't inline this call if the caller has the optnone attribute. 2846 if (Caller->hasOptNone()) 2847 return InlineResult::failure("optnone attribute"); 2848 2849 // Don't inline a function that treats null pointer as valid into a caller 2850 // that does not have this attribute. 2851 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2852 return InlineResult::failure("nullptr definitions incompatible"); 2853 2854 // Don't inline functions which can be interposed at link-time. 2855 if (Callee->isInterposable()) 2856 return InlineResult::failure("interposable"); 2857 2858 // Don't inline functions marked noinline. 2859 if (Callee->hasFnAttribute(Attribute::NoInline)) 2860 return InlineResult::failure("noinline function attribute"); 2861 2862 // Don't inline call sites marked noinline. 2863 if (Call.isNoInline()) 2864 return InlineResult::failure("noinline call site attribute"); 2865 2866 // Don't inline functions if one does not have any stack protector attribute 2867 // but the other does. 2868 if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr()) 2869 return InlineResult::failure( 2870 "stack protected caller but callee requested no stack protector"); 2871 if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr()) 2872 return InlineResult::failure( 2873 "stack protected callee but caller requested no stack protector"); 2874 2875 return None; 2876 } 2877 2878 InlineCost llvm::getInlineCost( 2879 CallBase &Call, Function *Callee, const InlineParams &Params, 2880 TargetTransformInfo &CalleeTTI, 2881 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2882 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2883 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2884 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2885 2886 auto UserDecision = 2887 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2888 2889 if (UserDecision.hasValue()) { 2890 if (UserDecision->isSuccess()) 2891 return llvm::InlineCost::getAlways("always inline attribute"); 2892 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2893 } 2894 2895 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2896 << "... (caller:" << Call.getCaller()->getName() 2897 << ")\n"); 2898 2899 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2900 GetAssumptionCache, GetBFI, PSI, ORE); 2901 InlineResult ShouldInline = CA.analyze(); 2902 2903 LLVM_DEBUG(CA.dump()); 2904 2905 // Always make cost benefit based decision explicit. 2906 // We use always/never here since threshold is not meaningful, 2907 // as it's not what drives cost-benefit analysis. 2908 if (CA.wasDecidedByCostBenefit()) { 2909 if (ShouldInline.isSuccess()) 2910 return InlineCost::getAlways("benefit over cost", 2911 CA.getCostBenefitPair()); 2912 else 2913 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2914 } 2915 2916 // Check if there was a reason to force inlining or no inlining. 2917 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2918 return InlineCost::getNever(ShouldInline.getFailureReason()); 2919 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2920 return InlineCost::getAlways("empty function"); 2921 2922 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2923 } 2924 2925 InlineResult llvm::isInlineViable(Function &F) { 2926 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2927 for (BasicBlock &BB : F) { 2928 // Disallow inlining of functions which contain indirect branches. 2929 if (isa<IndirectBrInst>(BB.getTerminator())) 2930 return InlineResult::failure("contains indirect branches"); 2931 2932 // Disallow inlining of blockaddresses which are used by non-callbr 2933 // instructions. 2934 if (BB.hasAddressTaken()) 2935 for (User *U : BlockAddress::get(&BB)->users()) 2936 if (!isa<CallBrInst>(*U)) 2937 return InlineResult::failure("blockaddress used outside of callbr"); 2938 2939 for (auto &II : BB) { 2940 CallBase *Call = dyn_cast<CallBase>(&II); 2941 if (!Call) 2942 continue; 2943 2944 // Disallow recursive calls. 2945 Function *Callee = Call->getCalledFunction(); 2946 if (&F == Callee) 2947 return InlineResult::failure("recursive call"); 2948 2949 // Disallow calls which expose returns-twice to a function not previously 2950 // attributed as such. 2951 if (!ReturnsTwice && isa<CallInst>(Call) && 2952 cast<CallInst>(Call)->canReturnTwice()) 2953 return InlineResult::failure("exposes returns-twice attribute"); 2954 2955 if (Callee) 2956 switch (Callee->getIntrinsicID()) { 2957 default: 2958 break; 2959 case llvm::Intrinsic::icall_branch_funnel: 2960 // Disallow inlining of @llvm.icall.branch.funnel because current 2961 // backend can't separate call targets from call arguments. 2962 return InlineResult::failure( 2963 "disallowed inlining of @llvm.icall.branch.funnel"); 2964 case llvm::Intrinsic::localescape: 2965 // Disallow inlining functions that call @llvm.localescape. Doing this 2966 // correctly would require major changes to the inliner. 2967 return InlineResult::failure( 2968 "disallowed inlining of @llvm.localescape"); 2969 case llvm::Intrinsic::vastart: 2970 // Disallow inlining of functions that initialize VarArgs with 2971 // va_start. 2972 return InlineResult::failure( 2973 "contains VarArgs initialized with va_start"); 2974 } 2975 } 2976 } 2977 2978 return InlineResult::success(); 2979 } 2980 2981 // APIs to create InlineParams based on command line flags and/or other 2982 // parameters. 2983 2984 InlineParams llvm::getInlineParams(int Threshold) { 2985 InlineParams Params; 2986 2987 // This field is the threshold to use for a callee by default. This is 2988 // derived from one or more of: 2989 // * optimization or size-optimization levels, 2990 // * a value passed to createFunctionInliningPass function, or 2991 // * the -inline-threshold flag. 2992 // If the -inline-threshold flag is explicitly specified, that is used 2993 // irrespective of anything else. 2994 if (InlineThreshold.getNumOccurrences() > 0) 2995 Params.DefaultThreshold = InlineThreshold; 2996 else 2997 Params.DefaultThreshold = Threshold; 2998 2999 // Set the HintThreshold knob from the -inlinehint-threshold. 3000 Params.HintThreshold = HintThreshold; 3001 3002 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3003 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3004 3005 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3006 // populate LocallyHotCallSiteThreshold. Later, we populate 3007 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3008 // we know that optimization level is O3 (in the getInlineParams variant that 3009 // takes the opt and size levels). 3010 // FIXME: Remove this check (and make the assignment unconditional) after 3011 // addressing size regression issues at O2. 3012 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3013 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3014 3015 // Set the ColdCallSiteThreshold knob from the 3016 // -inline-cold-callsite-threshold. 3017 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3018 3019 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3020 // -inlinehint-threshold commandline option is not explicitly given. If that 3021 // option is present, then its value applies even for callees with size and 3022 // minsize attributes. 3023 // If the -inline-threshold is not specified, set the ColdThreshold from the 3024 // -inlinecold-threshold even if it is not explicitly passed. If 3025 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3026 // explicitly specified to set the ColdThreshold knob 3027 if (InlineThreshold.getNumOccurrences() == 0) { 3028 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3029 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3030 Params.ColdThreshold = ColdThreshold; 3031 } else if (ColdThreshold.getNumOccurrences() > 0) { 3032 Params.ColdThreshold = ColdThreshold; 3033 } 3034 return Params; 3035 } 3036 3037 InlineParams llvm::getInlineParams() { 3038 return getInlineParams(DefaultThreshold); 3039 } 3040 3041 // Compute the default threshold for inlining based on the opt level and the 3042 // size opt level. 3043 static int computeThresholdFromOptLevels(unsigned OptLevel, 3044 unsigned SizeOptLevel) { 3045 if (OptLevel > 2) 3046 return InlineConstants::OptAggressiveThreshold; 3047 if (SizeOptLevel == 1) // -Os 3048 return InlineConstants::OptSizeThreshold; 3049 if (SizeOptLevel == 2) // -Oz 3050 return InlineConstants::OptMinSizeThreshold; 3051 return DefaultThreshold; 3052 } 3053 3054 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3055 auto Params = 3056 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3057 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3058 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3059 // when it is specified explicitly. 3060 if (OptLevel > 2) 3061 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3062 return Params; 3063 } 3064 3065 PreservedAnalyses 3066 InlineCostAnnotationPrinterPass::run(Function &F, 3067 FunctionAnalysisManager &FAM) { 3068 PrintInstructionComments = true; 3069 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3070 [&](Function &F) -> AssumptionCache & { 3071 return FAM.getResult<AssumptionAnalysis>(F); 3072 }; 3073 Module *M = F.getParent(); 3074 ProfileSummaryInfo PSI(*M); 3075 DataLayout DL(M); 3076 TargetTransformInfo TTI(DL); 3077 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3078 // In the current implementation, the type of InlineParams doesn't matter as 3079 // the pass serves only for verification of inliner's decisions. 3080 // We can add a flag which determines InlineParams for this run. Right now, 3081 // the default InlineParams are used. 3082 const InlineParams Params = llvm::getInlineParams(); 3083 for (BasicBlock &BB : F) { 3084 for (Instruction &I : BB) { 3085 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3086 Function *CalledFunction = CI->getCalledFunction(); 3087 if (!CalledFunction || CalledFunction->isDeclaration()) 3088 continue; 3089 OptimizationRemarkEmitter ORE(CalledFunction); 3090 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3091 GetAssumptionCache, nullptr, &PSI, &ORE); 3092 ICCA.analyze(); 3093 OS << " Analyzing call of " << CalledFunction->getName() 3094 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3095 ICCA.print(); 3096 } 3097 } 3098 } 3099 return PreservedAnalyses::all(); 3100 } 3101