1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintDebugInstructionDeltas( 58 "print-instruction-deltas", cl::Hidden, cl::init(false), 59 cl::desc("Prints deltas of cost and threshold per instruction")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 // We introduce this threshold to help performance of instrumentation based 75 // PGO before we actually hook up inliner with analysis passes such as BPI and 76 // BFI. 77 static cl::opt<int> ColdThreshold( 78 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 79 cl::desc("Threshold for inlining functions with cold attribute")); 80 81 static cl::opt<int> 82 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 83 cl::ZeroOrMore, 84 cl::desc("Threshold for hot callsites ")); 85 86 static cl::opt<int> LocallyHotCallSiteThreshold( 87 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 88 cl::desc("Threshold for locally hot callsites ")); 89 90 static cl::opt<int> ColdCallSiteRelFreq( 91 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 92 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 93 "entry frequency, for a callsite to be cold in the absence of " 94 "profile information.")); 95 96 static cl::opt<int> HotCallSiteRelFreq( 97 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 98 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 99 "entry frequency, for a callsite to be hot in the absence of " 100 "profile information.")); 101 102 static cl::opt<bool> OptComputeFullInlineCost( 103 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::desc("Compute the full inline cost of a call site even when the cost " 105 "exceeds the threshold.")); 106 107 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 108 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 109 cl::ZeroOrMore, 110 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 111 "attributes.")); 112 113 namespace { 114 class InlineCostCallAnalyzer; 115 116 // This struct is used to store information about inline cost of a 117 // particular instruction 118 struct InstructionCostDetail { 119 int CostBefore = 0; 120 int CostAfter = 0; 121 int ThresholdBefore = 0; 122 int ThresholdAfter = 0; 123 124 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 125 126 int getCostDelta() const { return CostAfter - CostBefore; } 127 128 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 129 }; 130 131 class CostAnnotationWriter : public AssemblyAnnotationWriter { 132 public: 133 // This DenseMap stores the delta change in cost and threshold after 134 // accounting for the given instruction. 135 DenseMap<const Instruction *, InstructionCostDetail> CostThresholdMap; 136 137 virtual void emitInstructionAnnot(const Instruction *I, 138 formatted_raw_ostream &OS); 139 }; 140 141 /// Carry out call site analysis, in order to evaluate inlinability. 142 /// NOTE: the type is currently used as implementation detail of functions such 143 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 144 /// expectation is that they come from the outer scope, from the wrapper 145 /// functions. If we want to support constructing CallAnalyzer objects where 146 /// lambdas are provided inline at construction, or where the object needs to 147 /// otherwise survive past the scope of the provided functions, we need to 148 /// revisit the argument types. 149 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 150 typedef InstVisitor<CallAnalyzer, bool> Base; 151 friend class InstVisitor<CallAnalyzer, bool>; 152 153 protected: 154 virtual ~CallAnalyzer() {} 155 /// The TargetTransformInfo available for this compilation. 156 const TargetTransformInfo &TTI; 157 158 /// Getter for the cache of @llvm.assume intrinsics. 159 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 160 161 /// Getter for BlockFrequencyInfo 162 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 163 164 /// Profile summary information. 165 ProfileSummaryInfo *PSI; 166 167 /// The called function. 168 Function &F; 169 170 // Cache the DataLayout since we use it a lot. 171 const DataLayout &DL; 172 173 /// The OptimizationRemarkEmitter available for this compilation. 174 OptimizationRemarkEmitter *ORE; 175 176 /// The candidate callsite being analyzed. Please do not use this to do 177 /// analysis in the caller function; we want the inline cost query to be 178 /// easily cacheable. Instead, use the cover function paramHasAttr. 179 CallBase &CandidateCall; 180 181 /// Extension points for handling callsite features. 182 /// Called after a basic block was analyzed. 183 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 184 185 /// Called before an instruction was analyzed 186 virtual void onInstructionAnalysisStart(const Instruction *I) {} 187 188 /// Called after an instruction was analyzed 189 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 190 191 /// Called at the end of the analysis of the callsite. Return the outcome of 192 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 193 /// the reason it can't. 194 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 195 /// Called when we're about to start processing a basic block, and every time 196 /// we are done processing an instruction. Return true if there is no point in 197 /// continuing the analysis (e.g. we've determined already the call site is 198 /// too expensive to inline) 199 virtual bool shouldStop() { return false; } 200 201 /// Called before the analysis of the callee body starts (with callsite 202 /// contexts propagated). It checks callsite-specific information. Return a 203 /// reason analysis can't continue if that's the case, or 'true' if it may 204 /// continue. 205 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 206 /// Called if the analysis engine decides SROA cannot be done for the given 207 /// alloca. 208 virtual void onDisableSROA(AllocaInst *Arg) {} 209 210 /// Called the analysis engine determines load elimination won't happen. 211 virtual void onDisableLoadElimination() {} 212 213 /// Called to account for a call. 214 virtual void onCallPenalty() {} 215 216 /// Called to account for the expectation the inlining would result in a load 217 /// elimination. 218 virtual void onLoadEliminationOpportunity() {} 219 220 /// Called to account for the cost of argument setup for the Call in the 221 /// callee's body (not the callsite currently under analysis). 222 virtual void onCallArgumentSetup(const CallBase &Call) {} 223 224 /// Called to account for a load relative intrinsic. 225 virtual void onLoadRelativeIntrinsic() {} 226 227 /// Called to account for a lowered call. 228 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 229 } 230 231 /// Account for a jump table of given size. Return false to stop further 232 /// processing the switch instruction 233 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 234 235 /// Account for a case cluster of given size. Return false to stop further 236 /// processing of the instruction. 237 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 238 239 /// Called at the end of processing a switch instruction, with the given 240 /// number of case clusters. 241 virtual void onFinalizeSwitch(unsigned JumpTableSize, 242 unsigned NumCaseCluster) {} 243 244 /// Called to account for any other instruction not specifically accounted 245 /// for. 246 virtual void onMissedSimplification() {} 247 248 /// Start accounting potential benefits due to SROA for the given alloca. 249 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 250 251 /// Account SROA savings for the AllocaInst value. 252 virtual void onAggregateSROAUse(AllocaInst *V) {} 253 254 bool handleSROA(Value *V, bool DoNotDisable) { 255 // Check for SROA candidates in comparisons. 256 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 257 if (DoNotDisable) { 258 onAggregateSROAUse(SROAArg); 259 return true; 260 } 261 disableSROAForArg(SROAArg); 262 } 263 return false; 264 } 265 266 bool IsCallerRecursive = false; 267 bool IsRecursiveCall = false; 268 bool ExposesReturnsTwice = false; 269 bool HasDynamicAlloca = false; 270 bool ContainsNoDuplicateCall = false; 271 bool HasReturn = false; 272 bool HasIndirectBr = false; 273 bool HasUninlineableIntrinsic = false; 274 bool InitsVargArgs = false; 275 276 /// Number of bytes allocated statically by the callee. 277 uint64_t AllocatedSize = 0; 278 unsigned NumInstructions = 0; 279 unsigned NumVectorInstructions = 0; 280 281 /// While we walk the potentially-inlined instructions, we build up and 282 /// maintain a mapping of simplified values specific to this callsite. The 283 /// idea is to propagate any special information we have about arguments to 284 /// this call through the inlinable section of the function, and account for 285 /// likely simplifications post-inlining. The most important aspect we track 286 /// is CFG altering simplifications -- when we prove a basic block dead, that 287 /// can cause dramatic shifts in the cost of inlining a function. 288 DenseMap<Value *, Constant *> SimplifiedValues; 289 290 /// Keep track of the values which map back (through function arguments) to 291 /// allocas on the caller stack which could be simplified through SROA. 292 DenseMap<Value *, AllocaInst *> SROAArgValues; 293 294 /// Keep track of Allocas for which we believe we may get SROA optimization. 295 DenseSet<AllocaInst *> EnabledSROAAllocas; 296 297 /// Keep track of values which map to a pointer base and constant offset. 298 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 299 300 /// Keep track of dead blocks due to the constant arguments. 301 SetVector<BasicBlock *> DeadBlocks; 302 303 /// The mapping of the blocks to their known unique successors due to the 304 /// constant arguments. 305 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 306 307 /// Model the elimination of repeated loads that is expected to happen 308 /// whenever we simplify away the stores that would otherwise cause them to be 309 /// loads. 310 bool EnableLoadElimination; 311 SmallPtrSet<Value *, 16> LoadAddrSet; 312 313 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 314 auto It = SROAArgValues.find(V); 315 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 316 return nullptr; 317 return It->second; 318 } 319 320 // Custom simplification helper routines. 321 bool isAllocaDerivedArg(Value *V); 322 void disableSROAForArg(AllocaInst *SROAArg); 323 void disableSROA(Value *V); 324 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 325 void disableLoadElimination(); 326 bool isGEPFree(GetElementPtrInst &GEP); 327 bool canFoldInboundsGEP(GetElementPtrInst &I); 328 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 329 bool simplifyCallSite(Function *F, CallBase &Call); 330 template <typename Callable> 331 bool simplifyInstruction(Instruction &I, Callable Evaluate); 332 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 333 334 /// Return true if the given argument to the function being considered for 335 /// inlining has the given attribute set either at the call site or the 336 /// function declaration. Primarily used to inspect call site specific 337 /// attributes since these can be more precise than the ones on the callee 338 /// itself. 339 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 340 341 /// Return true if the given value is known non null within the callee if 342 /// inlined through this particular callsite. 343 bool isKnownNonNullInCallee(Value *V); 344 345 /// Return true if size growth is allowed when inlining the callee at \p Call. 346 bool allowSizeGrowth(CallBase &Call); 347 348 // Custom analysis routines. 349 InlineResult analyzeBlock(BasicBlock *BB, 350 SmallPtrSetImpl<const Value *> &EphValues); 351 352 // Disable several entry points to the visitor so we don't accidentally use 353 // them by declaring but not defining them here. 354 void visit(Module *); 355 void visit(Module &); 356 void visit(Function *); 357 void visit(Function &); 358 void visit(BasicBlock *); 359 void visit(BasicBlock &); 360 361 // Provide base case for our instruction visit. 362 bool visitInstruction(Instruction &I); 363 364 // Our visit overrides. 365 bool visitAlloca(AllocaInst &I); 366 bool visitPHI(PHINode &I); 367 bool visitGetElementPtr(GetElementPtrInst &I); 368 bool visitBitCast(BitCastInst &I); 369 bool visitPtrToInt(PtrToIntInst &I); 370 bool visitIntToPtr(IntToPtrInst &I); 371 bool visitCastInst(CastInst &I); 372 bool visitUnaryInstruction(UnaryInstruction &I); 373 bool visitCmpInst(CmpInst &I); 374 bool visitSub(BinaryOperator &I); 375 bool visitBinaryOperator(BinaryOperator &I); 376 bool visitFNeg(UnaryOperator &I); 377 bool visitLoad(LoadInst &I); 378 bool visitStore(StoreInst &I); 379 bool visitExtractValue(ExtractValueInst &I); 380 bool visitInsertValue(InsertValueInst &I); 381 bool visitCallBase(CallBase &Call); 382 bool visitReturnInst(ReturnInst &RI); 383 bool visitBranchInst(BranchInst &BI); 384 bool visitSelectInst(SelectInst &SI); 385 bool visitSwitchInst(SwitchInst &SI); 386 bool visitIndirectBrInst(IndirectBrInst &IBI); 387 bool visitResumeInst(ResumeInst &RI); 388 bool visitCleanupReturnInst(CleanupReturnInst &RI); 389 bool visitCatchReturnInst(CatchReturnInst &RI); 390 bool visitUnreachableInst(UnreachableInst &I); 391 392 public: 393 CallAnalyzer( 394 Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 395 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 396 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 397 ProfileSummaryInfo *PSI = nullptr, 398 OptimizationRemarkEmitter *ORE = nullptr) 399 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 400 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 401 CandidateCall(Call), EnableLoadElimination(true) {} 402 403 InlineResult analyze(); 404 405 // Keep a bunch of stats about the cost savings found so we can print them 406 // out when debugging. 407 unsigned NumConstantArgs = 0; 408 unsigned NumConstantOffsetPtrArgs = 0; 409 unsigned NumAllocaArgs = 0; 410 unsigned NumConstantPtrCmps = 0; 411 unsigned NumConstantPtrDiffs = 0; 412 unsigned NumInstructionsSimplified = 0; 413 414 void dump(); 415 }; 416 417 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 418 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 419 class InlineCostCallAnalyzer final : public CallAnalyzer { 420 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 421 const bool ComputeFullInlineCost; 422 int LoadEliminationCost = 0; 423 /// Bonus to be applied when percentage of vector instructions in callee is 424 /// high (see more details in updateThreshold). 425 int VectorBonus = 0; 426 /// Bonus to be applied when the callee has only one reachable basic block. 427 int SingleBBBonus = 0; 428 429 /// Tunable parameters that control the analysis. 430 const InlineParams &Params; 431 432 /// Upper bound for the inlining cost. Bonuses are being applied to account 433 /// for speculative "expected profit" of the inlining decision. 434 int Threshold = 0; 435 436 /// Attempt to evaluate indirect calls to boost its inline cost. 437 const bool BoostIndirectCalls; 438 439 /// Ignore the threshold when finalizing analysis. 440 const bool IgnoreThreshold; 441 442 /// Inlining cost measured in abstract units, accounts for all the 443 /// instructions expected to be executed for a given function invocation. 444 /// Instructions that are statically proven to be dead based on call-site 445 /// arguments are not counted here. 446 int Cost = 0; 447 448 bool SingleBB = true; 449 450 unsigned SROACostSavings = 0; 451 unsigned SROACostSavingsLost = 0; 452 453 /// The mapping of caller Alloca values to their accumulated cost savings. If 454 /// we have to disable SROA for one of the allocas, this tells us how much 455 /// cost must be added. 456 DenseMap<AllocaInst *, int> SROAArgCosts; 457 458 /// Return true if \p Call is a cold callsite. 459 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 460 461 /// Update Threshold based on callsite properties such as callee 462 /// attributes and callee hotness for PGO builds. The Callee is explicitly 463 /// passed to support analyzing indirect calls whose target is inferred by 464 /// analysis. 465 void updateThreshold(CallBase &Call, Function &Callee); 466 /// Return a higher threshold if \p Call is a hot callsite. 467 Optional<int> getHotCallSiteThreshold(CallBase &Call, 468 BlockFrequencyInfo *CallerBFI); 469 470 /// Handle a capped 'int' increment for Cost. 471 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 472 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 473 Cost = (int)std::min(UpperBound, Cost + Inc); 474 } 475 476 void onDisableSROA(AllocaInst *Arg) override { 477 auto CostIt = SROAArgCosts.find(Arg); 478 if (CostIt == SROAArgCosts.end()) 479 return; 480 addCost(CostIt->second); 481 SROACostSavings -= CostIt->second; 482 SROACostSavingsLost += CostIt->second; 483 SROAArgCosts.erase(CostIt); 484 } 485 486 void onDisableLoadElimination() override { 487 addCost(LoadEliminationCost); 488 LoadEliminationCost = 0; 489 } 490 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 491 void onCallArgumentSetup(const CallBase &Call) override { 492 // Pay the price of the argument setup. We account for the average 1 493 // instruction per call argument setup here. 494 addCost(Call.arg_size() * InlineConstants::InstrCost); 495 } 496 void onLoadRelativeIntrinsic() override { 497 // This is normally lowered to 4 LLVM instructions. 498 addCost(3 * InlineConstants::InstrCost); 499 } 500 void onLoweredCall(Function *F, CallBase &Call, 501 bool IsIndirectCall) override { 502 // We account for the average 1 instruction per call argument setup here. 503 addCost(Call.arg_size() * InlineConstants::InstrCost); 504 505 // If we have a constant that we are calling as a function, we can peer 506 // through it and see the function target. This happens not infrequently 507 // during devirtualization and so we want to give it a hefty bonus for 508 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 509 // Pretend to inline the function, with a custom threshold. 510 if (IsIndirectCall && BoostIndirectCalls) { 511 auto IndirectCallParams = Params; 512 IndirectCallParams.DefaultThreshold = 513 InlineConstants::IndirectCallThreshold; 514 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 515 /// to instantiate the derived class. 516 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 517 GetAssumptionCache, GetBFI, PSI, ORE, false); 518 if (CA.analyze().isSuccess()) { 519 // We were able to inline the indirect call! Subtract the cost from the 520 // threshold to get the bonus we want to apply, but don't go below zero. 521 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 522 } 523 } else 524 // Otherwise simply add the cost for merely making the call. 525 addCost(InlineConstants::CallPenalty); 526 } 527 528 void onFinalizeSwitch(unsigned JumpTableSize, 529 unsigned NumCaseCluster) override { 530 // If suitable for a jump table, consider the cost for the table size and 531 // branch to destination. 532 // Maximum valid cost increased in this function. 533 if (JumpTableSize) { 534 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 535 4 * InlineConstants::InstrCost; 536 537 addCost(JTCost, (int64_t)CostUpperBound); 538 return; 539 } 540 // Considering forming a binary search, we should find the number of nodes 541 // which is same as the number of comparisons when lowered. For a given 542 // number of clusters, n, we can define a recursive function, f(n), to find 543 // the number of nodes in the tree. The recursion is : 544 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 545 // and f(n) = n, when n <= 3. 546 // This will lead a binary tree where the leaf should be either f(2) or f(3) 547 // when n > 3. So, the number of comparisons from leaves should be n, while 548 // the number of non-leaf should be : 549 // 2^(log2(n) - 1) - 1 550 // = 2^log2(n) * 2^-1 - 1 551 // = n / 2 - 1. 552 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 553 // number of comparisons in a simple closed form : 554 // n + n / 2 - 1 = n * 3 / 2 - 1 555 if (NumCaseCluster <= 3) { 556 // Suppose a comparison includes one compare and one conditional branch. 557 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 558 return; 559 } 560 561 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 562 int64_t SwitchCost = 563 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 564 565 addCost(SwitchCost, (int64_t)CostUpperBound); 566 } 567 void onMissedSimplification() override { 568 addCost(InlineConstants::InstrCost); 569 } 570 571 void onInitializeSROAArg(AllocaInst *Arg) override { 572 assert(Arg != nullptr && 573 "Should not initialize SROA costs for null value."); 574 SROAArgCosts[Arg] = 0; 575 } 576 577 void onAggregateSROAUse(AllocaInst *SROAArg) override { 578 auto CostIt = SROAArgCosts.find(SROAArg); 579 assert(CostIt != SROAArgCosts.end() && 580 "expected this argument to have a cost"); 581 CostIt->second += InlineConstants::InstrCost; 582 SROACostSavings += InlineConstants::InstrCost; 583 } 584 585 void onBlockAnalyzed(const BasicBlock *BB) override { 586 auto *TI = BB->getTerminator(); 587 // If we had any successors at this point, than post-inlining is likely to 588 // have them as well. Note that we assume any basic blocks which existed 589 // due to branches or switches which folded above will also fold after 590 // inlining. 591 if (SingleBB && TI->getNumSuccessors() > 1) { 592 // Take off the bonus we applied to the threshold. 593 Threshold -= SingleBBBonus; 594 SingleBB = false; 595 } 596 } 597 598 void onInstructionAnalysisStart(const Instruction *I) override { 599 // This function is called to store the initial cost of inlining before 600 // the given instruction was assessed. 601 if (!PrintDebugInstructionDeltas) 602 return; 603 Writer.CostThresholdMap[I].CostBefore = Cost; 604 Writer.CostThresholdMap[I].ThresholdBefore = Threshold; 605 } 606 607 void onInstructionAnalysisFinish(const Instruction *I) override { 608 // This function is called to find new values of cost and threshold after 609 // the instruction has been assessed. 610 if (!PrintDebugInstructionDeltas) 611 return; 612 Writer.CostThresholdMap[I].CostAfter = Cost; 613 Writer.CostThresholdMap[I].ThresholdAfter = Threshold; 614 } 615 616 InlineResult finalizeAnalysis() override { 617 // Loops generally act a lot like calls in that they act like barriers to 618 // movement, require a certain amount of setup, etc. So when optimising for 619 // size, we penalise any call sites that perform loops. We do this after all 620 // other costs here, so will likely only be dealing with relatively small 621 // functions (and hence DT and LI will hopefully be cheap). 622 auto *Caller = CandidateCall.getFunction(); 623 if (Caller->hasMinSize()) { 624 DominatorTree DT(F); 625 LoopInfo LI(DT); 626 int NumLoops = 0; 627 for (Loop *L : LI) { 628 // Ignore loops that will not be executed 629 if (DeadBlocks.count(L->getHeader())) 630 continue; 631 NumLoops++; 632 } 633 addCost(NumLoops * InlineConstants::CallPenalty); 634 } 635 636 // We applied the maximum possible vector bonus at the beginning. Now, 637 // subtract the excess bonus, if any, from the Threshold before 638 // comparing against Cost. 639 if (NumVectorInstructions <= NumInstructions / 10) 640 Threshold -= VectorBonus; 641 else if (NumVectorInstructions <= NumInstructions / 2) 642 Threshold -= VectorBonus / 2; 643 644 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 645 return InlineResult::success(); 646 return InlineResult::failure("Cost over threshold."); 647 } 648 bool shouldStop() override { 649 // Bail out the moment we cross the threshold. This means we'll under-count 650 // the cost, but only when undercounting doesn't matter. 651 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 652 } 653 654 void onLoadEliminationOpportunity() override { 655 LoadEliminationCost += InlineConstants::InstrCost; 656 } 657 658 InlineResult onAnalysisStart() override { 659 // Perform some tweaks to the cost and threshold based on the direct 660 // callsite information. 661 662 // We want to more aggressively inline vector-dense kernels, so up the 663 // threshold, and we'll lower it if the % of vector instructions gets too 664 // low. Note that these bonuses are some what arbitrary and evolved over 665 // time by accident as much as because they are principled bonuses. 666 // 667 // FIXME: It would be nice to remove all such bonuses. At least it would be 668 // nice to base the bonus values on something more scientific. 669 assert(NumInstructions == 0); 670 assert(NumVectorInstructions == 0); 671 672 // Update the threshold based on callsite properties 673 updateThreshold(CandidateCall, F); 674 675 // While Threshold depends on commandline options that can take negative 676 // values, we want to enforce the invariant that the computed threshold and 677 // bonuses are non-negative. 678 assert(Threshold >= 0); 679 assert(SingleBBBonus >= 0); 680 assert(VectorBonus >= 0); 681 682 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 683 // this Threshold any time, and cost cannot decrease, we can stop processing 684 // the rest of the function body. 685 Threshold += (SingleBBBonus + VectorBonus); 686 687 // Give out bonuses for the callsite, as the instructions setting them up 688 // will be gone after inlining. 689 addCost(-getCallsiteCost(this->CandidateCall, DL)); 690 691 // If this function uses the coldcc calling convention, prefer not to inline 692 // it. 693 if (F.getCallingConv() == CallingConv::Cold) 694 Cost += InlineConstants::ColdccPenalty; 695 696 // Check if we're done. This can happen due to bonuses and penalties. 697 if (Cost >= Threshold && !ComputeFullInlineCost) 698 return InlineResult::failure("high cost"); 699 700 return InlineResult::success(); 701 } 702 703 public: 704 InlineCostCallAnalyzer( 705 Function &Callee, CallBase &Call, const InlineParams &Params, 706 const TargetTransformInfo &TTI, 707 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 708 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 709 ProfileSummaryInfo *PSI = nullptr, 710 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 711 bool IgnoreThreshold = false) 712 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 713 ComputeFullInlineCost(OptComputeFullInlineCost || 714 Params.ComputeFullInlineCost || ORE), 715 Params(Params), Threshold(Params.DefaultThreshold), 716 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold) {} 717 718 /// Annotation Writer for cost annotation 719 CostAnnotationWriter Writer; 720 721 void dump(); 722 723 virtual ~InlineCostCallAnalyzer() {} 724 int getThreshold() { return Threshold; } 725 int getCost() { return Cost; } 726 }; 727 } // namespace 728 729 /// Test whether the given value is an Alloca-derived function argument. 730 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 731 return SROAArgValues.count(V); 732 } 733 734 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 735 onDisableSROA(SROAArg); 736 EnabledSROAAllocas.erase(SROAArg); 737 disableLoadElimination(); 738 } 739 740 void CostAnnotationWriter::emitInstructionAnnot(const Instruction *I, 741 formatted_raw_ostream &OS) { 742 // The cost of inlining of the given instruction is printed always. 743 // The threshold delta is printed only when it is non-zero. It happens 744 // when we decided to give a bonus at a particular instruction. 745 if (CostThresholdMap.count(I) == 0) { 746 OS << "; No analysis for the instruction\n"; 747 return; 748 } 749 const auto &Record = CostThresholdMap[I]; 750 OS << "; cost before = " << Record.CostBefore 751 << ", cost after = " << Record.CostAfter 752 << ", threshold before = " << Record.ThresholdBefore 753 << ", threshold after = " << Record.ThresholdAfter << ", "; 754 OS << "cost delta = " << Record.getCostDelta(); 755 if (Record.hasThresholdChanged()) 756 OS << ", threshold delta = " << Record.getThresholdDelta(); 757 OS << "\n"; 758 } 759 760 /// If 'V' maps to a SROA candidate, disable SROA for it. 761 void CallAnalyzer::disableSROA(Value *V) { 762 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 763 disableSROAForArg(SROAArg); 764 } 765 } 766 767 void CallAnalyzer::disableLoadElimination() { 768 if (EnableLoadElimination) { 769 onDisableLoadElimination(); 770 EnableLoadElimination = false; 771 } 772 } 773 774 /// Accumulate a constant GEP offset into an APInt if possible. 775 /// 776 /// Returns false if unable to compute the offset for any reason. Respects any 777 /// simplified values known during the analysis of this callsite. 778 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 779 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 780 assert(IntPtrWidth == Offset.getBitWidth()); 781 782 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 783 GTI != GTE; ++GTI) { 784 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 785 if (!OpC) 786 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 787 OpC = dyn_cast<ConstantInt>(SimpleOp); 788 if (!OpC) 789 return false; 790 if (OpC->isZero()) 791 continue; 792 793 // Handle a struct index, which adds its field offset to the pointer. 794 if (StructType *STy = GTI.getStructTypeOrNull()) { 795 unsigned ElementIdx = OpC->getZExtValue(); 796 const StructLayout *SL = DL.getStructLayout(STy); 797 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 798 continue; 799 } 800 801 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 802 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 803 } 804 return true; 805 } 806 807 /// Use TTI to check whether a GEP is free. 808 /// 809 /// Respects any simplified values known during the analysis of this callsite. 810 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 811 SmallVector<Value *, 4> Operands; 812 Operands.push_back(GEP.getOperand(0)); 813 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 814 if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) 815 Operands.push_back(SimpleOp); 816 else 817 Operands.push_back(*I); 818 return TargetTransformInfo::TCC_Free == 819 TTI.getUserCost(&GEP, Operands, 820 TargetTransformInfo::TCK_SizeAndLatency); 821 } 822 823 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 824 // Check whether inlining will turn a dynamic alloca into a static 825 // alloca and handle that case. 826 if (I.isArrayAllocation()) { 827 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 828 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 829 Type *Ty = I.getAllocatedType(); 830 AllocatedSize = SaturatingMultiplyAdd( 831 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(), 832 AllocatedSize); 833 return Base::visitAlloca(I); 834 } 835 } 836 837 // Accumulate the allocated size. 838 if (I.isStaticAlloca()) { 839 Type *Ty = I.getAllocatedType(); 840 AllocatedSize = 841 SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize); 842 } 843 844 // We will happily inline static alloca instructions. 845 if (I.isStaticAlloca()) 846 return Base::visitAlloca(I); 847 848 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 849 // a variety of reasons, and so we would like to not inline them into 850 // functions which don't currently have a dynamic alloca. This simply 851 // disables inlining altogether in the presence of a dynamic alloca. 852 HasDynamicAlloca = true; 853 return false; 854 } 855 856 bool CallAnalyzer::visitPHI(PHINode &I) { 857 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 858 // though we don't want to propagate it's bonuses. The idea is to disable 859 // SROA if it *might* be used in an inappropriate manner. 860 861 // Phi nodes are always zero-cost. 862 // FIXME: Pointer sizes may differ between different address spaces, so do we 863 // need to use correct address space in the call to getPointerSizeInBits here? 864 // Or could we skip the getPointerSizeInBits call completely? As far as I can 865 // see the ZeroOffset is used as a dummy value, so we can probably use any 866 // bit width for the ZeroOffset? 867 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 868 bool CheckSROA = I.getType()->isPointerTy(); 869 870 // Track the constant or pointer with constant offset we've seen so far. 871 Constant *FirstC = nullptr; 872 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 873 Value *FirstV = nullptr; 874 875 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 876 BasicBlock *Pred = I.getIncomingBlock(i); 877 // If the incoming block is dead, skip the incoming block. 878 if (DeadBlocks.count(Pred)) 879 continue; 880 // If the parent block of phi is not the known successor of the incoming 881 // block, skip the incoming block. 882 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 883 if (KnownSuccessor && KnownSuccessor != I.getParent()) 884 continue; 885 886 Value *V = I.getIncomingValue(i); 887 // If the incoming value is this phi itself, skip the incoming value. 888 if (&I == V) 889 continue; 890 891 Constant *C = dyn_cast<Constant>(V); 892 if (!C) 893 C = SimplifiedValues.lookup(V); 894 895 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 896 if (!C && CheckSROA) 897 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 898 899 if (!C && !BaseAndOffset.first) 900 // The incoming value is neither a constant nor a pointer with constant 901 // offset, exit early. 902 return true; 903 904 if (FirstC) { 905 if (FirstC == C) 906 // If we've seen a constant incoming value before and it is the same 907 // constant we see this time, continue checking the next incoming value. 908 continue; 909 // Otherwise early exit because we either see a different constant or saw 910 // a constant before but we have a pointer with constant offset this time. 911 return true; 912 } 913 914 if (FirstV) { 915 // The same logic as above, but check pointer with constant offset here. 916 if (FirstBaseAndOffset == BaseAndOffset) 917 continue; 918 return true; 919 } 920 921 if (C) { 922 // This is the 1st time we've seen a constant, record it. 923 FirstC = C; 924 continue; 925 } 926 927 // The remaining case is that this is the 1st time we've seen a pointer with 928 // constant offset, record it. 929 FirstV = V; 930 FirstBaseAndOffset = BaseAndOffset; 931 } 932 933 // Check if we can map phi to a constant. 934 if (FirstC) { 935 SimplifiedValues[&I] = FirstC; 936 return true; 937 } 938 939 // Check if we can map phi to a pointer with constant offset. 940 if (FirstBaseAndOffset.first) { 941 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 942 943 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 944 SROAArgValues[&I] = SROAArg; 945 } 946 947 return true; 948 } 949 950 /// Check we can fold GEPs of constant-offset call site argument pointers. 951 /// This requires target data and inbounds GEPs. 952 /// 953 /// \return true if the specified GEP can be folded. 954 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 955 // Check if we have a base + offset for the pointer. 956 std::pair<Value *, APInt> BaseAndOffset = 957 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 958 if (!BaseAndOffset.first) 959 return false; 960 961 // Check if the offset of this GEP is constant, and if so accumulate it 962 // into Offset. 963 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 964 return false; 965 966 // Add the result as a new mapping to Base + Offset. 967 ConstantOffsetPtrs[&I] = BaseAndOffset; 968 969 return true; 970 } 971 972 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 973 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 974 975 // Lambda to check whether a GEP's indices are all constant. 976 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 977 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 978 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 979 return false; 980 return true; 981 }; 982 983 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 984 if (SROAArg) 985 SROAArgValues[&I] = SROAArg; 986 987 // Constant GEPs are modeled as free. 988 return true; 989 } 990 991 // Variable GEPs will require math and will disable SROA. 992 if (SROAArg) 993 disableSROAForArg(SROAArg); 994 return isGEPFree(I); 995 } 996 997 /// Simplify \p I if its operands are constants and update SimplifiedValues. 998 /// \p Evaluate is a callable specific to instruction type that evaluates the 999 /// instruction when all the operands are constants. 1000 template <typename Callable> 1001 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1002 SmallVector<Constant *, 2> COps; 1003 for (Value *Op : I.operands()) { 1004 Constant *COp = dyn_cast<Constant>(Op); 1005 if (!COp) 1006 COp = SimplifiedValues.lookup(Op); 1007 if (!COp) 1008 return false; 1009 COps.push_back(COp); 1010 } 1011 auto *C = Evaluate(COps); 1012 if (!C) 1013 return false; 1014 SimplifiedValues[&I] = C; 1015 return true; 1016 } 1017 1018 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1019 // Propagate constants through bitcasts. 1020 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1021 return ConstantExpr::getBitCast(COps[0], I.getType()); 1022 })) 1023 return true; 1024 1025 // Track base/offsets through casts 1026 std::pair<Value *, APInt> BaseAndOffset = 1027 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1028 // Casts don't change the offset, just wrap it up. 1029 if (BaseAndOffset.first) 1030 ConstantOffsetPtrs[&I] = BaseAndOffset; 1031 1032 // Also look for SROA candidates here. 1033 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1034 SROAArgValues[&I] = SROAArg; 1035 1036 // Bitcasts are always zero cost. 1037 return true; 1038 } 1039 1040 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1041 // Propagate constants through ptrtoint. 1042 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1043 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1044 })) 1045 return true; 1046 1047 // Track base/offset pairs when converted to a plain integer provided the 1048 // integer is large enough to represent the pointer. 1049 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1050 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1051 if (IntegerSize >= DL.getPointerSizeInBits(AS)) { 1052 std::pair<Value *, APInt> BaseAndOffset = 1053 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1054 if (BaseAndOffset.first) 1055 ConstantOffsetPtrs[&I] = BaseAndOffset; 1056 } 1057 1058 // This is really weird. Technically, ptrtoint will disable SROA. However, 1059 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1060 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1061 // would block SROA would also block SROA if applied directly to a pointer, 1062 // and so we can just add the integer in here. The only places where SROA is 1063 // preserved either cannot fire on an integer, or won't in-and-of themselves 1064 // disable SROA (ext) w/o some later use that we would see and disable. 1065 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1066 SROAArgValues[&I] = SROAArg; 1067 1068 return TargetTransformInfo::TCC_Free == 1069 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1070 } 1071 1072 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1073 // Propagate constants through ptrtoint. 1074 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1075 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1076 })) 1077 return true; 1078 1079 // Track base/offset pairs when round-tripped through a pointer without 1080 // modifications provided the integer is not too large. 1081 Value *Op = I.getOperand(0); 1082 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1083 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1084 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1085 if (BaseAndOffset.first) 1086 ConstantOffsetPtrs[&I] = BaseAndOffset; 1087 } 1088 1089 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1090 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1091 SROAArgValues[&I] = SROAArg; 1092 1093 return TargetTransformInfo::TCC_Free == 1094 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1095 } 1096 1097 bool CallAnalyzer::visitCastInst(CastInst &I) { 1098 // Propagate constants through casts. 1099 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1100 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1101 })) 1102 return true; 1103 1104 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. 1105 disableSROA(I.getOperand(0)); 1106 1107 // If this is a floating-point cast, and the target says this operation 1108 // is expensive, this may eventually become a library call. Treat the cost 1109 // as such. 1110 switch (I.getOpcode()) { 1111 case Instruction::FPTrunc: 1112 case Instruction::FPExt: 1113 case Instruction::UIToFP: 1114 case Instruction::SIToFP: 1115 case Instruction::FPToUI: 1116 case Instruction::FPToSI: 1117 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1118 onCallPenalty(); 1119 break; 1120 default: 1121 break; 1122 } 1123 1124 return TargetTransformInfo::TCC_Free == 1125 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1126 } 1127 1128 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1129 Value *Operand = I.getOperand(0); 1130 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1131 return ConstantFoldInstOperands(&I, COps[0], DL); 1132 })) 1133 return true; 1134 1135 // Disable any SROA on the argument to arbitrary unary instructions. 1136 disableSROA(Operand); 1137 1138 return false; 1139 } 1140 1141 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1142 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1143 } 1144 1145 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1146 // Does the *call site* have the NonNull attribute set on an argument? We 1147 // use the attribute on the call site to memoize any analysis done in the 1148 // caller. This will also trip if the callee function has a non-null 1149 // parameter attribute, but that's a less interesting case because hopefully 1150 // the callee would already have been simplified based on that. 1151 if (Argument *A = dyn_cast<Argument>(V)) 1152 if (paramHasAttr(A, Attribute::NonNull)) 1153 return true; 1154 1155 // Is this an alloca in the caller? This is distinct from the attribute case 1156 // above because attributes aren't updated within the inliner itself and we 1157 // always want to catch the alloca derived case. 1158 if (isAllocaDerivedArg(V)) 1159 // We can actually predict the result of comparisons between an 1160 // alloca-derived value and null. Note that this fires regardless of 1161 // SROA firing. 1162 return true; 1163 1164 return false; 1165 } 1166 1167 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1168 // If the normal destination of the invoke or the parent block of the call 1169 // site is unreachable-terminated, there is little point in inlining this 1170 // unless there is literally zero cost. 1171 // FIXME: Note that it is possible that an unreachable-terminated block has a 1172 // hot entry. For example, in below scenario inlining hot_call_X() may be 1173 // beneficial : 1174 // main() { 1175 // hot_call_1(); 1176 // ... 1177 // hot_call_N() 1178 // exit(0); 1179 // } 1180 // For now, we are not handling this corner case here as it is rare in real 1181 // code. In future, we should elaborate this based on BPI and BFI in more 1182 // general threshold adjusting heuristics in updateThreshold(). 1183 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1184 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1185 return false; 1186 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1187 return false; 1188 1189 return true; 1190 } 1191 1192 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1193 BlockFrequencyInfo *CallerBFI) { 1194 // If global profile summary is available, then callsite's coldness is 1195 // determined based on that. 1196 if (PSI && PSI->hasProfileSummary()) 1197 return PSI->isColdCallSite(Call, CallerBFI); 1198 1199 // Otherwise we need BFI to be available. 1200 if (!CallerBFI) 1201 return false; 1202 1203 // Determine if the callsite is cold relative to caller's entry. We could 1204 // potentially cache the computation of scaled entry frequency, but the added 1205 // complexity is not worth it unless this scaling shows up high in the 1206 // profiles. 1207 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1208 auto CallSiteBB = Call.getParent(); 1209 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1210 auto CallerEntryFreq = 1211 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1212 return CallSiteFreq < CallerEntryFreq * ColdProb; 1213 } 1214 1215 Optional<int> 1216 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1217 BlockFrequencyInfo *CallerBFI) { 1218 1219 // If global profile summary is available, then callsite's hotness is 1220 // determined based on that. 1221 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1222 return Params.HotCallSiteThreshold; 1223 1224 // Otherwise we need BFI to be available and to have a locally hot callsite 1225 // threshold. 1226 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1227 return None; 1228 1229 // Determine if the callsite is hot relative to caller's entry. We could 1230 // potentially cache the computation of scaled entry frequency, but the added 1231 // complexity is not worth it unless this scaling shows up high in the 1232 // profiles. 1233 auto CallSiteBB = Call.getParent(); 1234 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1235 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1236 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1237 return Params.LocallyHotCallSiteThreshold; 1238 1239 // Otherwise treat it normally. 1240 return None; 1241 } 1242 1243 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1244 // If no size growth is allowed for this inlining, set Threshold to 0. 1245 if (!allowSizeGrowth(Call)) { 1246 Threshold = 0; 1247 return; 1248 } 1249 1250 Function *Caller = Call.getCaller(); 1251 1252 // return min(A, B) if B is valid. 1253 auto MinIfValid = [](int A, Optional<int> B) { 1254 return B ? std::min(A, B.getValue()) : A; 1255 }; 1256 1257 // return max(A, B) if B is valid. 1258 auto MaxIfValid = [](int A, Optional<int> B) { 1259 return B ? std::max(A, B.getValue()) : A; 1260 }; 1261 1262 // Various bonus percentages. These are multiplied by Threshold to get the 1263 // bonus values. 1264 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1265 // basic block at the given callsite context. This is speculatively applied 1266 // and withdrawn if more than one basic block is seen. 1267 // 1268 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1269 // of the last call to a static function as inlining such functions is 1270 // guaranteed to reduce code size. 1271 // 1272 // These bonus percentages may be set to 0 based on properties of the caller 1273 // and the callsite. 1274 int SingleBBBonusPercent = 50; 1275 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1276 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1277 1278 // Lambda to set all the above bonus and bonus percentages to 0. 1279 auto DisallowAllBonuses = [&]() { 1280 SingleBBBonusPercent = 0; 1281 VectorBonusPercent = 0; 1282 LastCallToStaticBonus = 0; 1283 }; 1284 1285 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1286 // and reduce the threshold if the caller has the necessary attribute. 1287 if (Caller->hasMinSize()) { 1288 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1289 // For minsize, we want to disable the single BB bonus and the vector 1290 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1291 // a static function will, at the minimum, eliminate the parameter setup and 1292 // call/return instructions. 1293 SingleBBBonusPercent = 0; 1294 VectorBonusPercent = 0; 1295 } else if (Caller->hasOptSize()) 1296 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1297 1298 // Adjust the threshold based on inlinehint attribute and profile based 1299 // hotness information if the caller does not have MinSize attribute. 1300 if (!Caller->hasMinSize()) { 1301 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1302 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1303 1304 // FIXME: After switching to the new passmanager, simplify the logic below 1305 // by checking only the callsite hotness/coldness as we will reliably 1306 // have local profile information. 1307 // 1308 // Callsite hotness and coldness can be determined if sample profile is 1309 // used (which adds hotness metadata to calls) or if caller's 1310 // BlockFrequencyInfo is available. 1311 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1312 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1313 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1314 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1315 // FIXME: This should update the threshold only if it exceeds the 1316 // current threshold, but AutoFDO + ThinLTO currently relies on this 1317 // behavior to prevent inlining of hot callsites during ThinLTO 1318 // compile phase. 1319 Threshold = HotCallSiteThreshold.getValue(); 1320 } else if (isColdCallSite(Call, CallerBFI)) { 1321 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1322 // Do not apply bonuses for a cold callsite including the 1323 // LastCallToStatic bonus. While this bonus might result in code size 1324 // reduction, it can cause the size of a non-cold caller to increase 1325 // preventing it from being inlined. 1326 DisallowAllBonuses(); 1327 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1328 } else if (PSI) { 1329 // Use callee's global profile information only if we have no way of 1330 // determining this via callsite information. 1331 if (PSI->isFunctionEntryHot(&Callee)) { 1332 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1333 // If callsite hotness can not be determined, we may still know 1334 // that the callee is hot and treat it as a weaker hint for threshold 1335 // increase. 1336 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1337 } else if (PSI->isFunctionEntryCold(&Callee)) { 1338 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1339 // Do not apply bonuses for a cold callee including the 1340 // LastCallToStatic bonus. While this bonus might result in code size 1341 // reduction, it can cause the size of a non-cold caller to increase 1342 // preventing it from being inlined. 1343 DisallowAllBonuses(); 1344 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1345 } 1346 } 1347 } 1348 1349 // Finally, take the target-specific inlining threshold multiplier into 1350 // account. 1351 Threshold *= TTI.getInliningThresholdMultiplier(); 1352 1353 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1354 VectorBonus = Threshold * VectorBonusPercent / 100; 1355 1356 bool OnlyOneCallAndLocalLinkage = 1357 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1358 // If there is only one call of the function, and it has internal linkage, 1359 // the cost of inlining it drops dramatically. It may seem odd to update 1360 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1361 if (OnlyOneCallAndLocalLinkage) 1362 Cost -= LastCallToStaticBonus; 1363 } 1364 1365 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1366 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1367 // First try to handle simplified comparisons. 1368 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1369 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1370 })) 1371 return true; 1372 1373 if (I.getOpcode() == Instruction::FCmp) 1374 return false; 1375 1376 // Otherwise look for a comparison between constant offset pointers with 1377 // a common base. 1378 Value *LHSBase, *RHSBase; 1379 APInt LHSOffset, RHSOffset; 1380 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1381 if (LHSBase) { 1382 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1383 if (RHSBase && LHSBase == RHSBase) { 1384 // We have common bases, fold the icmp to a constant based on the 1385 // offsets. 1386 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1387 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1388 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1389 SimplifiedValues[&I] = C; 1390 ++NumConstantPtrCmps; 1391 return true; 1392 } 1393 } 1394 } 1395 1396 // If the comparison is an equality comparison with null, we can simplify it 1397 // if we know the value (argument) can't be null 1398 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1399 isKnownNonNullInCallee(I.getOperand(0))) { 1400 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1401 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1402 : ConstantInt::getFalse(I.getType()); 1403 return true; 1404 } 1405 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1406 } 1407 1408 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1409 // Try to handle a special case: we can fold computing the difference of two 1410 // constant-related pointers. 1411 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1412 Value *LHSBase, *RHSBase; 1413 APInt LHSOffset, RHSOffset; 1414 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1415 if (LHSBase) { 1416 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1417 if (RHSBase && LHSBase == RHSBase) { 1418 // We have common bases, fold the subtract to a constant based on the 1419 // offsets. 1420 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1421 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1422 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1423 SimplifiedValues[&I] = C; 1424 ++NumConstantPtrDiffs; 1425 return true; 1426 } 1427 } 1428 } 1429 1430 // Otherwise, fall back to the generic logic for simplifying and handling 1431 // instructions. 1432 return Base::visitSub(I); 1433 } 1434 1435 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1436 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1437 Constant *CLHS = dyn_cast<Constant>(LHS); 1438 if (!CLHS) 1439 CLHS = SimplifiedValues.lookup(LHS); 1440 Constant *CRHS = dyn_cast<Constant>(RHS); 1441 if (!CRHS) 1442 CRHS = SimplifiedValues.lookup(RHS); 1443 1444 Value *SimpleV = nullptr; 1445 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1446 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1447 FI->getFastMathFlags(), DL); 1448 else 1449 SimpleV = 1450 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1451 1452 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1453 SimplifiedValues[&I] = C; 1454 1455 if (SimpleV) 1456 return true; 1457 1458 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1459 disableSROA(LHS); 1460 disableSROA(RHS); 1461 1462 // If the instruction is floating point, and the target says this operation 1463 // is expensive, this may eventually become a library call. Treat the cost 1464 // as such. Unless it's fneg which can be implemented with an xor. 1465 using namespace llvm::PatternMatch; 1466 if (I.getType()->isFloatingPointTy() && 1467 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1468 !match(&I, m_FNeg(m_Value()))) 1469 onCallPenalty(); 1470 1471 return false; 1472 } 1473 1474 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1475 Value *Op = I.getOperand(0); 1476 Constant *COp = dyn_cast<Constant>(Op); 1477 if (!COp) 1478 COp = SimplifiedValues.lookup(Op); 1479 1480 Value *SimpleV = SimplifyFNegInst( 1481 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1482 1483 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1484 SimplifiedValues[&I] = C; 1485 1486 if (SimpleV) 1487 return true; 1488 1489 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1490 disableSROA(Op); 1491 1492 return false; 1493 } 1494 1495 bool CallAnalyzer::visitLoad(LoadInst &I) { 1496 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1497 return true; 1498 1499 // If the data is already loaded from this address and hasn't been clobbered 1500 // by any stores or calls, this load is likely to be redundant and can be 1501 // eliminated. 1502 if (EnableLoadElimination && 1503 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1504 onLoadEliminationOpportunity(); 1505 return true; 1506 } 1507 1508 return false; 1509 } 1510 1511 bool CallAnalyzer::visitStore(StoreInst &I) { 1512 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1513 return true; 1514 1515 // The store can potentially clobber loads and prevent repeated loads from 1516 // being eliminated. 1517 // FIXME: 1518 // 1. We can probably keep an initial set of eliminatable loads substracted 1519 // from the cost even when we finally see a store. We just need to disable 1520 // *further* accumulation of elimination savings. 1521 // 2. We should probably at some point thread MemorySSA for the callee into 1522 // this and then use that to actually compute *really* precise savings. 1523 disableLoadElimination(); 1524 return false; 1525 } 1526 1527 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1528 // Constant folding for extract value is trivial. 1529 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1530 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1531 })) 1532 return true; 1533 1534 // SROA can look through these but give them a cost. 1535 return false; 1536 } 1537 1538 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1539 // Constant folding for insert value is trivial. 1540 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1541 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1542 /*InsertedValueOperand*/ COps[1], 1543 I.getIndices()); 1544 })) 1545 return true; 1546 1547 // SROA can look through these but give them a cost. 1548 return false; 1549 } 1550 1551 /// Try to simplify a call site. 1552 /// 1553 /// Takes a concrete function and callsite and tries to actually simplify it by 1554 /// analyzing the arguments and call itself with instsimplify. Returns true if 1555 /// it has simplified the callsite to some other entity (a constant), making it 1556 /// free. 1557 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1558 // FIXME: Using the instsimplify logic directly for this is inefficient 1559 // because we have to continually rebuild the argument list even when no 1560 // simplifications can be performed. Until that is fixed with remapping 1561 // inside of instsimplify, directly constant fold calls here. 1562 if (!canConstantFoldCallTo(&Call, F)) 1563 return false; 1564 1565 // Try to re-map the arguments to constants. 1566 SmallVector<Constant *, 4> ConstantArgs; 1567 ConstantArgs.reserve(Call.arg_size()); 1568 for (Value *I : Call.args()) { 1569 Constant *C = dyn_cast<Constant>(I); 1570 if (!C) 1571 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1572 if (!C) 1573 return false; // This argument doesn't map to a constant. 1574 1575 ConstantArgs.push_back(C); 1576 } 1577 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1578 SimplifiedValues[&Call] = C; 1579 return true; 1580 } 1581 1582 return false; 1583 } 1584 1585 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1586 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1587 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1588 // This aborts the entire analysis. 1589 ExposesReturnsTwice = true; 1590 return false; 1591 } 1592 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1593 ContainsNoDuplicateCall = true; 1594 1595 Value *Callee = Call.getCalledOperand(); 1596 Function *F = dyn_cast_or_null<Function>(Callee); 1597 bool IsIndirectCall = !F; 1598 if (IsIndirectCall) { 1599 // Check if this happens to be an indirect function call to a known function 1600 // in this inline context. If not, we've done all we can. 1601 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1602 if (!F) { 1603 onCallArgumentSetup(Call); 1604 1605 if (!Call.onlyReadsMemory()) 1606 disableLoadElimination(); 1607 return Base::visitCallBase(Call); 1608 } 1609 } 1610 1611 assert(F && "Expected a call to a known function"); 1612 1613 // When we have a concrete function, first try to simplify it directly. 1614 if (simplifyCallSite(F, Call)) 1615 return true; 1616 1617 // Next check if it is an intrinsic we know about. 1618 // FIXME: Lift this into part of the InstVisitor. 1619 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1620 switch (II->getIntrinsicID()) { 1621 default: 1622 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1623 disableLoadElimination(); 1624 return Base::visitCallBase(Call); 1625 1626 case Intrinsic::load_relative: 1627 onLoadRelativeIntrinsic(); 1628 return false; 1629 1630 case Intrinsic::memset: 1631 case Intrinsic::memcpy: 1632 case Intrinsic::memmove: 1633 disableLoadElimination(); 1634 // SROA can usually chew through these intrinsics, but they aren't free. 1635 return false; 1636 case Intrinsic::icall_branch_funnel: 1637 case Intrinsic::localescape: 1638 HasUninlineableIntrinsic = true; 1639 return false; 1640 case Intrinsic::vastart: 1641 InitsVargArgs = true; 1642 return false; 1643 } 1644 } 1645 1646 if (F == Call.getFunction()) { 1647 // This flag will fully abort the analysis, so don't bother with anything 1648 // else. 1649 IsRecursiveCall = true; 1650 return false; 1651 } 1652 1653 if (TTI.isLoweredToCall(F)) { 1654 onLoweredCall(F, Call, IsIndirectCall); 1655 } 1656 1657 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1658 disableLoadElimination(); 1659 return Base::visitCallBase(Call); 1660 } 1661 1662 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1663 // At least one return instruction will be free after inlining. 1664 bool Free = !HasReturn; 1665 HasReturn = true; 1666 return Free; 1667 } 1668 1669 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1670 // We model unconditional branches as essentially free -- they really 1671 // shouldn't exist at all, but handling them makes the behavior of the 1672 // inliner more regular and predictable. Interestingly, conditional branches 1673 // which will fold away are also free. 1674 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1675 dyn_cast_or_null<ConstantInt>( 1676 SimplifiedValues.lookup(BI.getCondition())); 1677 } 1678 1679 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1680 bool CheckSROA = SI.getType()->isPointerTy(); 1681 Value *TrueVal = SI.getTrueValue(); 1682 Value *FalseVal = SI.getFalseValue(); 1683 1684 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1685 if (!TrueC) 1686 TrueC = SimplifiedValues.lookup(TrueVal); 1687 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1688 if (!FalseC) 1689 FalseC = SimplifiedValues.lookup(FalseVal); 1690 Constant *CondC = 1691 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1692 1693 if (!CondC) { 1694 // Select C, X, X => X 1695 if (TrueC == FalseC && TrueC) { 1696 SimplifiedValues[&SI] = TrueC; 1697 return true; 1698 } 1699 1700 if (!CheckSROA) 1701 return Base::visitSelectInst(SI); 1702 1703 std::pair<Value *, APInt> TrueBaseAndOffset = 1704 ConstantOffsetPtrs.lookup(TrueVal); 1705 std::pair<Value *, APInt> FalseBaseAndOffset = 1706 ConstantOffsetPtrs.lookup(FalseVal); 1707 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1708 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1709 1710 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1711 SROAArgValues[&SI] = SROAArg; 1712 return true; 1713 } 1714 1715 return Base::visitSelectInst(SI); 1716 } 1717 1718 // Select condition is a constant. 1719 Value *SelectedV = CondC->isAllOnesValue() 1720 ? TrueVal 1721 : (CondC->isNullValue()) ? FalseVal : nullptr; 1722 if (!SelectedV) { 1723 // Condition is a vector constant that is not all 1s or all 0s. If all 1724 // operands are constants, ConstantExpr::getSelect() can handle the cases 1725 // such as select vectors. 1726 if (TrueC && FalseC) { 1727 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1728 SimplifiedValues[&SI] = C; 1729 return true; 1730 } 1731 } 1732 return Base::visitSelectInst(SI); 1733 } 1734 1735 // Condition is either all 1s or all 0s. SI can be simplified. 1736 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1737 SimplifiedValues[&SI] = SelectedC; 1738 return true; 1739 } 1740 1741 if (!CheckSROA) 1742 return true; 1743 1744 std::pair<Value *, APInt> BaseAndOffset = 1745 ConstantOffsetPtrs.lookup(SelectedV); 1746 if (BaseAndOffset.first) { 1747 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1748 1749 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1750 SROAArgValues[&SI] = SROAArg; 1751 } 1752 1753 return true; 1754 } 1755 1756 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1757 // We model unconditional switches as free, see the comments on handling 1758 // branches. 1759 if (isa<ConstantInt>(SI.getCondition())) 1760 return true; 1761 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1762 if (isa<ConstantInt>(V)) 1763 return true; 1764 1765 // Assume the most general case where the switch is lowered into 1766 // either a jump table, bit test, or a balanced binary tree consisting of 1767 // case clusters without merging adjacent clusters with the same 1768 // destination. We do not consider the switches that are lowered with a mix 1769 // of jump table/bit test/binary search tree. The cost of the switch is 1770 // proportional to the size of the tree or the size of jump table range. 1771 // 1772 // NB: We convert large switches which are just used to initialize large phi 1773 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 1774 // inlining those. It will prevent inlining in cases where the optimization 1775 // does not (yet) fire. 1776 1777 unsigned JumpTableSize = 0; 1778 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 1779 unsigned NumCaseCluster = 1780 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 1781 1782 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 1783 return false; 1784 } 1785 1786 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 1787 // We never want to inline functions that contain an indirectbr. This is 1788 // incorrect because all the blockaddress's (in static global initializers 1789 // for example) would be referring to the original function, and this 1790 // indirect jump would jump from the inlined copy of the function into the 1791 // original function which is extremely undefined behavior. 1792 // FIXME: This logic isn't really right; we can safely inline functions with 1793 // indirectbr's as long as no other function or global references the 1794 // blockaddress of a block within the current function. 1795 HasIndirectBr = true; 1796 return false; 1797 } 1798 1799 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 1800 // FIXME: It's not clear that a single instruction is an accurate model for 1801 // the inline cost of a resume instruction. 1802 return false; 1803 } 1804 1805 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 1806 // FIXME: It's not clear that a single instruction is an accurate model for 1807 // the inline cost of a cleanupret instruction. 1808 return false; 1809 } 1810 1811 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 1812 // FIXME: It's not clear that a single instruction is an accurate model for 1813 // the inline cost of a catchret instruction. 1814 return false; 1815 } 1816 1817 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 1818 // FIXME: It might be reasonably to discount the cost of instructions leading 1819 // to unreachable as they have the lowest possible impact on both runtime and 1820 // code size. 1821 return true; // No actual code is needed for unreachable. 1822 } 1823 1824 bool CallAnalyzer::visitInstruction(Instruction &I) { 1825 // Some instructions are free. All of the free intrinsics can also be 1826 // handled by SROA, etc. 1827 if (TargetTransformInfo::TCC_Free == 1828 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency)) 1829 return true; 1830 1831 // We found something we don't understand or can't handle. Mark any SROA-able 1832 // values in the operand list as no longer viable. 1833 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 1834 disableSROA(*OI); 1835 1836 return false; 1837 } 1838 1839 /// Analyze a basic block for its contribution to the inline cost. 1840 /// 1841 /// This method walks the analyzer over every instruction in the given basic 1842 /// block and accounts for their cost during inlining at this callsite. It 1843 /// aborts early if the threshold has been exceeded or an impossible to inline 1844 /// construct has been detected. It returns false if inlining is no longer 1845 /// viable, and true if inlining remains viable. 1846 InlineResult 1847 CallAnalyzer::analyzeBlock(BasicBlock *BB, 1848 SmallPtrSetImpl<const Value *> &EphValues) { 1849 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1850 // FIXME: Currently, the number of instructions in a function regardless of 1851 // our ability to simplify them during inline to constants or dead code, 1852 // are actually used by the vector bonus heuristic. As long as that's true, 1853 // we have to special case debug intrinsics here to prevent differences in 1854 // inlining due to debug symbols. Eventually, the number of unsimplified 1855 // instructions shouldn't factor into the cost computation, but until then, 1856 // hack around it here. 1857 if (isa<DbgInfoIntrinsic>(I)) 1858 continue; 1859 1860 // Skip ephemeral values. 1861 if (EphValues.count(&*I)) 1862 continue; 1863 1864 ++NumInstructions; 1865 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 1866 ++NumVectorInstructions; 1867 1868 // If the instruction simplified to a constant, there is no cost to this 1869 // instruction. Visit the instructions using our InstVisitor to account for 1870 // all of the per-instruction logic. The visit tree returns true if we 1871 // consumed the instruction in any way, and false if the instruction's base 1872 // cost should count against inlining. 1873 onInstructionAnalysisStart(&*I); 1874 1875 if (Base::visit(&*I)) 1876 ++NumInstructionsSimplified; 1877 else 1878 onMissedSimplification(); 1879 1880 onInstructionAnalysisFinish(&*I); 1881 using namespace ore; 1882 // If the visit this instruction detected an uninlinable pattern, abort. 1883 InlineResult IR = InlineResult::success(); 1884 if (IsRecursiveCall) 1885 IR = InlineResult::failure("recursive"); 1886 else if (ExposesReturnsTwice) 1887 IR = InlineResult::failure("exposes returns twice"); 1888 else if (HasDynamicAlloca) 1889 IR = InlineResult::failure("dynamic alloca"); 1890 else if (HasIndirectBr) 1891 IR = InlineResult::failure("indirect branch"); 1892 else if (HasUninlineableIntrinsic) 1893 IR = InlineResult::failure("uninlinable intrinsic"); 1894 else if (InitsVargArgs) 1895 IR = InlineResult::failure("varargs"); 1896 if (!IR.isSuccess()) { 1897 if (ORE) 1898 ORE->emit([&]() { 1899 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1900 &CandidateCall) 1901 << NV("Callee", &F) << " has uninlinable pattern (" 1902 << NV("InlineResult", IR.getFailureReason()) 1903 << ") and cost is not fully computed"; 1904 }); 1905 return IR; 1906 } 1907 1908 // If the caller is a recursive function then we don't want to inline 1909 // functions which allocate a lot of stack space because it would increase 1910 // the caller stack usage dramatically. 1911 if (IsCallerRecursive && 1912 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 1913 auto IR = 1914 InlineResult::failure("recursive and allocates too much stack space"); 1915 if (ORE) 1916 ORE->emit([&]() { 1917 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1918 &CandidateCall) 1919 << NV("Callee", &F) << " is " 1920 << NV("InlineResult", IR.getFailureReason()) 1921 << ". Cost is not fully computed"; 1922 }); 1923 return IR; 1924 } 1925 1926 if (shouldStop()) 1927 return InlineResult::failure( 1928 "Call site analysis is not favorable to inlining."); 1929 } 1930 1931 return InlineResult::success(); 1932 } 1933 1934 /// Compute the base pointer and cumulative constant offsets for V. 1935 /// 1936 /// This strips all constant offsets off of V, leaving it the base pointer, and 1937 /// accumulates the total constant offset applied in the returned constant. It 1938 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 1939 /// no constant offsets applied. 1940 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 1941 if (!V->getType()->isPointerTy()) 1942 return nullptr; 1943 1944 unsigned AS = V->getType()->getPointerAddressSpace(); 1945 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 1946 APInt Offset = APInt::getNullValue(IntPtrWidth); 1947 1948 // Even though we don't look through PHI nodes, we could be called on an 1949 // instruction in an unreachable block, which may be on a cycle. 1950 SmallPtrSet<Value *, 4> Visited; 1951 Visited.insert(V); 1952 do { 1953 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1954 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 1955 return nullptr; 1956 V = GEP->getPointerOperand(); 1957 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1958 V = cast<Operator>(V)->getOperand(0); 1959 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1960 if (GA->isInterposable()) 1961 break; 1962 V = GA->getAliasee(); 1963 } else { 1964 break; 1965 } 1966 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1967 } while (Visited.insert(V).second); 1968 1969 Type *IdxPtrTy = DL.getIndexType(V->getType()); 1970 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 1971 } 1972 1973 /// Find dead blocks due to deleted CFG edges during inlining. 1974 /// 1975 /// If we know the successor of the current block, \p CurrBB, has to be \p 1976 /// NextBB, the other successors of \p CurrBB are dead if these successors have 1977 /// no live incoming CFG edges. If one block is found to be dead, we can 1978 /// continue growing the dead block list by checking the successors of the dead 1979 /// blocks to see if all their incoming edges are dead or not. 1980 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 1981 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 1982 // A CFG edge is dead if the predecessor is dead or the predecessor has a 1983 // known successor which is not the one under exam. 1984 return (DeadBlocks.count(Pred) || 1985 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 1986 }; 1987 1988 auto IsNewlyDead = [&](BasicBlock *BB) { 1989 // If all the edges to a block are dead, the block is also dead. 1990 return (!DeadBlocks.count(BB) && 1991 llvm::all_of(predecessors(BB), 1992 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 1993 }; 1994 1995 for (BasicBlock *Succ : successors(CurrBB)) { 1996 if (Succ == NextBB || !IsNewlyDead(Succ)) 1997 continue; 1998 SmallVector<BasicBlock *, 4> NewDead; 1999 NewDead.push_back(Succ); 2000 while (!NewDead.empty()) { 2001 BasicBlock *Dead = NewDead.pop_back_val(); 2002 if (DeadBlocks.insert(Dead)) 2003 // Continue growing the dead block lists. 2004 for (BasicBlock *S : successors(Dead)) 2005 if (IsNewlyDead(S)) 2006 NewDead.push_back(S); 2007 } 2008 } 2009 } 2010 2011 /// Analyze a call site for potential inlining. 2012 /// 2013 /// Returns true if inlining this call is viable, and false if it is not 2014 /// viable. It computes the cost and adjusts the threshold based on numerous 2015 /// factors and heuristics. If this method returns false but the computed cost 2016 /// is below the computed threshold, then inlining was forcibly disabled by 2017 /// some artifact of the routine. 2018 InlineResult CallAnalyzer::analyze() { 2019 ++NumCallsAnalyzed; 2020 2021 auto Result = onAnalysisStart(); 2022 if (!Result.isSuccess()) 2023 return Result; 2024 2025 if (F.empty()) 2026 return InlineResult::success(); 2027 2028 Function *Caller = CandidateCall.getFunction(); 2029 // Check if the caller function is recursive itself. 2030 for (User *U : Caller->users()) { 2031 CallBase *Call = dyn_cast<CallBase>(U); 2032 if (Call && Call->getFunction() == Caller) { 2033 IsCallerRecursive = true; 2034 break; 2035 } 2036 } 2037 2038 // Populate our simplified values by mapping from function arguments to call 2039 // arguments with known important simplifications. 2040 auto CAI = CandidateCall.arg_begin(); 2041 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 2042 FAI != FAE; ++FAI, ++CAI) { 2043 assert(CAI != CandidateCall.arg_end()); 2044 if (Constant *C = dyn_cast<Constant>(CAI)) 2045 SimplifiedValues[&*FAI] = C; 2046 2047 Value *PtrArg = *CAI; 2048 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2049 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); 2050 2051 // We can SROA any pointer arguments derived from alloca instructions. 2052 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2053 SROAArgValues[&*FAI] = SROAArg; 2054 onInitializeSROAArg(SROAArg); 2055 EnabledSROAAllocas.insert(SROAArg); 2056 } 2057 } 2058 } 2059 NumConstantArgs = SimplifiedValues.size(); 2060 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2061 NumAllocaArgs = SROAArgValues.size(); 2062 2063 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2064 // the ephemeral values multiple times (and they're completely determined by 2065 // the callee, so this is purely duplicate work). 2066 SmallPtrSet<const Value *, 32> EphValues; 2067 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2068 2069 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2070 // adding basic blocks of the callee which can be proven to be dead for this 2071 // particular call site in order to get more accurate cost estimates. This 2072 // requires a somewhat heavyweight iteration pattern: we need to walk the 2073 // basic blocks in a breadth-first order as we insert live successors. To 2074 // accomplish this, prioritizing for small iterations because we exit after 2075 // crossing our threshold, we use a small-size optimized SetVector. 2076 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2077 SmallPtrSet<BasicBlock *, 16>> 2078 BBSetVector; 2079 BBSetVector BBWorklist; 2080 BBWorklist.insert(&F.getEntryBlock()); 2081 2082 // Note that we *must not* cache the size, this loop grows the worklist. 2083 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2084 if (shouldStop()) 2085 break; 2086 2087 BasicBlock *BB = BBWorklist[Idx]; 2088 if (BB->empty()) 2089 continue; 2090 2091 // Disallow inlining a blockaddress with uses other than strictly callbr. 2092 // A blockaddress only has defined behavior for an indirect branch in the 2093 // same function, and we do not currently support inlining indirect 2094 // branches. But, the inliner may not see an indirect branch that ends up 2095 // being dead code at a particular call site. If the blockaddress escapes 2096 // the function, e.g., via a global variable, inlining may lead to an 2097 // invalid cross-function reference. 2098 // FIXME: pr/39560: continue relaxing this overt restriction. 2099 if (BB->hasAddressTaken()) 2100 for (User *U : BlockAddress::get(&*BB)->users()) 2101 if (!isa<CallBrInst>(*U)) 2102 return InlineResult::failure("blockaddress used outside of callbr"); 2103 2104 // Analyze the cost of this block. If we blow through the threshold, this 2105 // returns false, and we can bail on out. 2106 InlineResult IR = analyzeBlock(BB, EphValues); 2107 if (!IR.isSuccess()) 2108 return IR; 2109 2110 Instruction *TI = BB->getTerminator(); 2111 2112 // Add in the live successors by first checking whether we have terminator 2113 // that may be simplified based on the values simplified by this call. 2114 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2115 if (BI->isConditional()) { 2116 Value *Cond = BI->getCondition(); 2117 if (ConstantInt *SimpleCond = 2118 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2119 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2120 BBWorklist.insert(NextBB); 2121 KnownSuccessors[BB] = NextBB; 2122 findDeadBlocks(BB, NextBB); 2123 continue; 2124 } 2125 } 2126 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2127 Value *Cond = SI->getCondition(); 2128 if (ConstantInt *SimpleCond = 2129 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2130 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2131 BBWorklist.insert(NextBB); 2132 KnownSuccessors[BB] = NextBB; 2133 findDeadBlocks(BB, NextBB); 2134 continue; 2135 } 2136 } 2137 2138 // If we're unable to select a particular successor, just count all of 2139 // them. 2140 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2141 ++TIdx) 2142 BBWorklist.insert(TI->getSuccessor(TIdx)); 2143 2144 onBlockAnalyzed(BB); 2145 } 2146 2147 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2148 &F == CandidateCall.getCalledFunction(); 2149 // If this is a noduplicate call, we can still inline as long as 2150 // inlining this would cause the removal of the caller (so the instruction 2151 // is not actually duplicated, just moved). 2152 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2153 return InlineResult::failure("noduplicate"); 2154 2155 return finalizeAnalysis(); 2156 } 2157 2158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2159 /// Dump stats about this call's analysis. 2160 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2161 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2162 if (PrintDebugInstructionDeltas) 2163 F.print(dbgs(), &Writer); 2164 DEBUG_PRINT_STAT(NumConstantArgs); 2165 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2166 DEBUG_PRINT_STAT(NumAllocaArgs); 2167 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2168 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2169 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2170 DEBUG_PRINT_STAT(NumInstructions); 2171 DEBUG_PRINT_STAT(SROACostSavings); 2172 DEBUG_PRINT_STAT(SROACostSavingsLost); 2173 DEBUG_PRINT_STAT(LoadEliminationCost); 2174 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2175 DEBUG_PRINT_STAT(Cost); 2176 DEBUG_PRINT_STAT(Threshold); 2177 #undef DEBUG_PRINT_STAT 2178 } 2179 #endif 2180 2181 /// Test that there are no attribute conflicts between Caller and Callee 2182 /// that prevent inlining. 2183 static bool functionsHaveCompatibleAttributes( 2184 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2185 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2186 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2187 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2188 // object, and always returns the same object (which is overwritten on each 2189 // GetTLI call). Therefore we copy the first result. 2190 auto CalleeTLI = GetTLI(*Callee); 2191 return TTI.areInlineCompatible(Caller, Callee) && 2192 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2193 InlineCallerSupersetNoBuiltin) && 2194 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2195 } 2196 2197 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2198 int Cost = 0; 2199 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2200 if (Call.isByValArgument(I)) { 2201 // We approximate the number of loads and stores needed by dividing the 2202 // size of the byval type by the target's pointer size. 2203 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2204 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2205 unsigned AS = PTy->getAddressSpace(); 2206 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2207 // Ceiling division. 2208 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2209 2210 // If it generates more than 8 stores it is likely to be expanded as an 2211 // inline memcpy so we take that as an upper bound. Otherwise we assume 2212 // one load and one store per word copied. 2213 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2214 // here instead of a magic number of 8, but it's not available via 2215 // DataLayout. 2216 NumStores = std::min(NumStores, 8U); 2217 2218 Cost += 2 * NumStores * InlineConstants::InstrCost; 2219 } else { 2220 // For non-byval arguments subtract off one instruction per call 2221 // argument. 2222 Cost += InlineConstants::InstrCost; 2223 } 2224 } 2225 // The call instruction also disappears after inlining. 2226 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2227 return Cost; 2228 } 2229 2230 InlineCost llvm::getInlineCost( 2231 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2232 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2233 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2234 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2235 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2236 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2237 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2238 } 2239 2240 Optional<int> llvm::getInliningCostEstimate( 2241 CallBase &Call, TargetTransformInfo &CalleeTTI, 2242 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2243 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2244 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2245 const InlineParams Params = {/* DefaultThreshold*/ 0, 2246 /*HintThreshold*/ {}, 2247 /*ColdThreshold*/ {}, 2248 /*OptSizeThreshold*/ {}, 2249 /*OptMinSizeThreshold*/ {}, 2250 /*HotCallSiteThreshold*/ {}, 2251 /*LocallyHotCallSiteThreshold*/ {}, 2252 /*ColdCallSiteThreshold*/ {}, 2253 /* ComputeFullInlineCost*/ true}; 2254 2255 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2256 GetAssumptionCache, GetBFI, PSI, ORE, true, 2257 /*IgnoreThreshold*/ true); 2258 auto R = CA.analyze(); 2259 if (!R.isSuccess()) 2260 return None; 2261 return CA.getCost(); 2262 } 2263 2264 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2265 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2266 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2267 2268 // Cannot inline indirect calls. 2269 if (!Callee) 2270 return InlineResult::failure("indirect call"); 2271 2272 // Never inline calls with byval arguments that does not have the alloca 2273 // address space. Since byval arguments can be replaced with a copy to an 2274 // alloca, the inlined code would need to be adjusted to handle that the 2275 // argument is in the alloca address space (so it is a little bit complicated 2276 // to solve). 2277 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2278 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2279 if (Call.isByValArgument(I)) { 2280 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2281 if (PTy->getAddressSpace() != AllocaAS) 2282 return InlineResult::failure("byval arguments without alloca" 2283 " address space"); 2284 } 2285 2286 // Calls to functions with always-inline attributes should be inlined 2287 // whenever possible. 2288 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2289 auto IsViable = isInlineViable(*Callee); 2290 if (IsViable.isSuccess()) 2291 return InlineResult::success(); 2292 return InlineResult::failure(IsViable.getFailureReason()); 2293 } 2294 2295 // Never inline functions with conflicting attributes (unless callee has 2296 // always-inline attribute). 2297 Function *Caller = Call.getCaller(); 2298 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2299 return InlineResult::failure("conflicting attributes"); 2300 2301 // Don't inline this call if the caller has the optnone attribute. 2302 if (Caller->hasOptNone()) 2303 return InlineResult::failure("optnone attribute"); 2304 2305 // Don't inline a function that treats null pointer as valid into a caller 2306 // that does not have this attribute. 2307 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2308 return InlineResult::failure("nullptr definitions incompatible"); 2309 2310 // Don't inline functions which can be interposed at link-time. 2311 if (Callee->isInterposable()) 2312 return InlineResult::failure("interposable"); 2313 2314 // Don't inline functions marked noinline. 2315 if (Callee->hasFnAttribute(Attribute::NoInline)) 2316 return InlineResult::failure("noinline function attribute"); 2317 2318 // Don't inline call sites marked noinline. 2319 if (Call.isNoInline()) 2320 return InlineResult::failure("noinline call site attribute"); 2321 2322 return None; 2323 } 2324 2325 InlineCost llvm::getInlineCost( 2326 CallBase &Call, Function *Callee, const InlineParams &Params, 2327 TargetTransformInfo &CalleeTTI, 2328 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2329 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2330 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2331 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2332 2333 auto UserDecision = 2334 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2335 2336 if (UserDecision.hasValue()) { 2337 if (UserDecision->isSuccess()) 2338 return llvm::InlineCost::getAlways("always inline attribute"); 2339 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2340 } 2341 2342 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2343 << "... (caller:" << Call.getCaller()->getName() 2344 << ")\n"); 2345 2346 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2347 GetAssumptionCache, GetBFI, PSI, ORE); 2348 InlineResult ShouldInline = CA.analyze(); 2349 2350 LLVM_DEBUG(CA.dump()); 2351 2352 // Check if there was a reason to force inlining or no inlining. 2353 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2354 return InlineCost::getNever(ShouldInline.getFailureReason()); 2355 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2356 return InlineCost::getAlways("empty function"); 2357 2358 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2359 } 2360 2361 InlineResult llvm::isInlineViable(Function &F) { 2362 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2363 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2364 // Disallow inlining of functions which contain indirect branches. 2365 if (isa<IndirectBrInst>(BI->getTerminator())) 2366 return InlineResult::failure("contains indirect branches"); 2367 2368 // Disallow inlining of blockaddresses which are used by non-callbr 2369 // instructions. 2370 if (BI->hasAddressTaken()) 2371 for (User *U : BlockAddress::get(&*BI)->users()) 2372 if (!isa<CallBrInst>(*U)) 2373 return InlineResult::failure("blockaddress used outside of callbr"); 2374 2375 for (auto &II : *BI) { 2376 CallBase *Call = dyn_cast<CallBase>(&II); 2377 if (!Call) 2378 continue; 2379 2380 // Disallow recursive calls. 2381 if (&F == Call->getCalledFunction()) 2382 return InlineResult::failure("recursive call"); 2383 2384 // Disallow calls which expose returns-twice to a function not previously 2385 // attributed as such. 2386 if (!ReturnsTwice && isa<CallInst>(Call) && 2387 cast<CallInst>(Call)->canReturnTwice()) 2388 return InlineResult::failure("exposes returns-twice attribute"); 2389 2390 if (Call->getCalledFunction()) 2391 switch (Call->getCalledFunction()->getIntrinsicID()) { 2392 default: 2393 break; 2394 case llvm::Intrinsic::icall_branch_funnel: 2395 // Disallow inlining of @llvm.icall.branch.funnel because current 2396 // backend can't separate call targets from call arguments. 2397 return InlineResult::failure( 2398 "disallowed inlining of @llvm.icall.branch.funnel"); 2399 case llvm::Intrinsic::localescape: 2400 // Disallow inlining functions that call @llvm.localescape. Doing this 2401 // correctly would require major changes to the inliner. 2402 return InlineResult::failure( 2403 "disallowed inlining of @llvm.localescape"); 2404 case llvm::Intrinsic::vastart: 2405 // Disallow inlining of functions that initialize VarArgs with 2406 // va_start. 2407 return InlineResult::failure( 2408 "contains VarArgs initialized with va_start"); 2409 } 2410 } 2411 } 2412 2413 return InlineResult::success(); 2414 } 2415 2416 // APIs to create InlineParams based on command line flags and/or other 2417 // parameters. 2418 2419 InlineParams llvm::getInlineParams(int Threshold) { 2420 InlineParams Params; 2421 2422 // This field is the threshold to use for a callee by default. This is 2423 // derived from one or more of: 2424 // * optimization or size-optimization levels, 2425 // * a value passed to createFunctionInliningPass function, or 2426 // * the -inline-threshold flag. 2427 // If the -inline-threshold flag is explicitly specified, that is used 2428 // irrespective of anything else. 2429 if (InlineThreshold.getNumOccurrences() > 0) 2430 Params.DefaultThreshold = InlineThreshold; 2431 else 2432 Params.DefaultThreshold = Threshold; 2433 2434 // Set the HintThreshold knob from the -inlinehint-threshold. 2435 Params.HintThreshold = HintThreshold; 2436 2437 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2438 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2439 2440 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2441 // populate LocallyHotCallSiteThreshold. Later, we populate 2442 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2443 // we know that optimization level is O3 (in the getInlineParams variant that 2444 // takes the opt and size levels). 2445 // FIXME: Remove this check (and make the assignment unconditional) after 2446 // addressing size regression issues at O2. 2447 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2448 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2449 2450 // Set the ColdCallSiteThreshold knob from the 2451 // -inline-cold-callsite-threshold. 2452 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2453 2454 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2455 // -inlinehint-threshold commandline option is not explicitly given. If that 2456 // option is present, then its value applies even for callees with size and 2457 // minsize attributes. 2458 // If the -inline-threshold is not specified, set the ColdThreshold from the 2459 // -inlinecold-threshold even if it is not explicitly passed. If 2460 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2461 // explicitly specified to set the ColdThreshold knob 2462 if (InlineThreshold.getNumOccurrences() == 0) { 2463 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2464 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2465 Params.ColdThreshold = ColdThreshold; 2466 } else if (ColdThreshold.getNumOccurrences() > 0) { 2467 Params.ColdThreshold = ColdThreshold; 2468 } 2469 return Params; 2470 } 2471 2472 InlineParams llvm::getInlineParams() { 2473 return getInlineParams(DefaultThreshold); 2474 } 2475 2476 // Compute the default threshold for inlining based on the opt level and the 2477 // size opt level. 2478 static int computeThresholdFromOptLevels(unsigned OptLevel, 2479 unsigned SizeOptLevel) { 2480 if (OptLevel > 2) 2481 return InlineConstants::OptAggressiveThreshold; 2482 if (SizeOptLevel == 1) // -Os 2483 return InlineConstants::OptSizeThreshold; 2484 if (SizeOptLevel == 2) // -Oz 2485 return InlineConstants::OptMinSizeThreshold; 2486 return DefaultThreshold; 2487 } 2488 2489 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2490 auto Params = 2491 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2492 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2493 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2494 // when it is specified explicitly. 2495 if (OptLevel > 2) 2496 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2497 return Params; 2498 } 2499