1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 // We introduce this threshold to help performance of instrumentation based 75 // PGO before we actually hook up inliner with analysis passes such as BPI and 76 // BFI. 77 static cl::opt<int> ColdThreshold( 78 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 79 cl::desc("Threshold for inlining functions with cold attribute")); 80 81 static cl::opt<int> 82 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 83 cl::ZeroOrMore, 84 cl::desc("Threshold for hot callsites ")); 85 86 static cl::opt<int> LocallyHotCallSiteThreshold( 87 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 88 cl::desc("Threshold for locally hot callsites ")); 89 90 static cl::opt<int> ColdCallSiteRelFreq( 91 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 92 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 93 "entry frequency, for a callsite to be cold in the absence of " 94 "profile information.")); 95 96 static cl::opt<int> HotCallSiteRelFreq( 97 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 98 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 99 "entry frequency, for a callsite to be hot in the absence of " 100 "profile information.")); 101 102 static cl::opt<bool> OptComputeFullInlineCost( 103 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::desc("Compute the full inline cost of a call site even when the cost " 105 "exceeds the threshold.")); 106 107 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 108 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 109 cl::ZeroOrMore, 110 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 111 "attributes.")); 112 113 namespace { 114 class InlineCostCallAnalyzer; 115 116 // This struct is used to store information about inline cost of a 117 // particular instruction 118 struct InstructionCostDetail { 119 int CostBefore = 0; 120 int CostAfter = 0; 121 int ThresholdBefore = 0; 122 int ThresholdAfter = 0; 123 124 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 125 126 int getCostDelta() const { return CostAfter - CostBefore; } 127 128 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 129 }; 130 131 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 132 private: 133 InlineCostCallAnalyzer *const ICCA; 134 135 public: 136 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 137 virtual void emitInstructionAnnot(const Instruction *I, 138 formatted_raw_ostream &OS) override; 139 }; 140 141 /// Carry out call site analysis, in order to evaluate inlinability. 142 /// NOTE: the type is currently used as implementation detail of functions such 143 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 144 /// expectation is that they come from the outer scope, from the wrapper 145 /// functions. If we want to support constructing CallAnalyzer objects where 146 /// lambdas are provided inline at construction, or where the object needs to 147 /// otherwise survive past the scope of the provided functions, we need to 148 /// revisit the argument types. 149 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 150 typedef InstVisitor<CallAnalyzer, bool> Base; 151 friend class InstVisitor<CallAnalyzer, bool>; 152 153 protected: 154 virtual ~CallAnalyzer() {} 155 /// The TargetTransformInfo available for this compilation. 156 const TargetTransformInfo &TTI; 157 158 /// Getter for the cache of @llvm.assume intrinsics. 159 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 160 161 /// Getter for BlockFrequencyInfo 162 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 163 164 /// Profile summary information. 165 ProfileSummaryInfo *PSI; 166 167 /// The called function. 168 Function &F; 169 170 // Cache the DataLayout since we use it a lot. 171 const DataLayout &DL; 172 173 /// The OptimizationRemarkEmitter available for this compilation. 174 OptimizationRemarkEmitter *ORE; 175 176 /// The candidate callsite being analyzed. Please do not use this to do 177 /// analysis in the caller function; we want the inline cost query to be 178 /// easily cacheable. Instead, use the cover function paramHasAttr. 179 CallBase &CandidateCall; 180 181 /// Extension points for handling callsite features. 182 /// Called after a basic block was analyzed. 183 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 184 185 /// Called before an instruction was analyzed 186 virtual void onInstructionAnalysisStart(const Instruction *I) {} 187 188 /// Called after an instruction was analyzed 189 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 190 191 /// Called at the end of the analysis of the callsite. Return the outcome of 192 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 193 /// the reason it can't. 194 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 195 /// Called when we're about to start processing a basic block, and every time 196 /// we are done processing an instruction. Return true if there is no point in 197 /// continuing the analysis (e.g. we've determined already the call site is 198 /// too expensive to inline) 199 virtual bool shouldStop() { return false; } 200 201 /// Called before the analysis of the callee body starts (with callsite 202 /// contexts propagated). It checks callsite-specific information. Return a 203 /// reason analysis can't continue if that's the case, or 'true' if it may 204 /// continue. 205 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 206 /// Called if the analysis engine decides SROA cannot be done for the given 207 /// alloca. 208 virtual void onDisableSROA(AllocaInst *Arg) {} 209 210 /// Called the analysis engine determines load elimination won't happen. 211 virtual void onDisableLoadElimination() {} 212 213 /// Called to account for a call. 214 virtual void onCallPenalty() {} 215 216 /// Called to account for the expectation the inlining would result in a load 217 /// elimination. 218 virtual void onLoadEliminationOpportunity() {} 219 220 /// Called to account for the cost of argument setup for the Call in the 221 /// callee's body (not the callsite currently under analysis). 222 virtual void onCallArgumentSetup(const CallBase &Call) {} 223 224 /// Called to account for a load relative intrinsic. 225 virtual void onLoadRelativeIntrinsic() {} 226 227 /// Called to account for a lowered call. 228 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 229 } 230 231 /// Account for a jump table of given size. Return false to stop further 232 /// processing the switch instruction 233 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 234 235 /// Account for a case cluster of given size. Return false to stop further 236 /// processing of the instruction. 237 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 238 239 /// Called at the end of processing a switch instruction, with the given 240 /// number of case clusters. 241 virtual void onFinalizeSwitch(unsigned JumpTableSize, 242 unsigned NumCaseCluster) {} 243 244 /// Called to account for any other instruction not specifically accounted 245 /// for. 246 virtual void onMissedSimplification() {} 247 248 /// Start accounting potential benefits due to SROA for the given alloca. 249 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 250 251 /// Account SROA savings for the AllocaInst value. 252 virtual void onAggregateSROAUse(AllocaInst *V) {} 253 254 bool handleSROA(Value *V, bool DoNotDisable) { 255 // Check for SROA candidates in comparisons. 256 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 257 if (DoNotDisable) { 258 onAggregateSROAUse(SROAArg); 259 return true; 260 } 261 disableSROAForArg(SROAArg); 262 } 263 return false; 264 } 265 266 bool IsCallerRecursive = false; 267 bool IsRecursiveCall = false; 268 bool ExposesReturnsTwice = false; 269 bool HasDynamicAlloca = false; 270 bool ContainsNoDuplicateCall = false; 271 bool HasReturn = false; 272 bool HasIndirectBr = false; 273 bool HasUninlineableIntrinsic = false; 274 bool InitsVargArgs = false; 275 276 /// Number of bytes allocated statically by the callee. 277 uint64_t AllocatedSize = 0; 278 unsigned NumInstructions = 0; 279 unsigned NumVectorInstructions = 0; 280 281 /// While we walk the potentially-inlined instructions, we build up and 282 /// maintain a mapping of simplified values specific to this callsite. The 283 /// idea is to propagate any special information we have about arguments to 284 /// this call through the inlinable section of the function, and account for 285 /// likely simplifications post-inlining. The most important aspect we track 286 /// is CFG altering simplifications -- when we prove a basic block dead, that 287 /// can cause dramatic shifts in the cost of inlining a function. 288 DenseMap<Value *, Constant *> SimplifiedValues; 289 290 /// Keep track of the values which map back (through function arguments) to 291 /// allocas on the caller stack which could be simplified through SROA. 292 DenseMap<Value *, AllocaInst *> SROAArgValues; 293 294 /// Keep track of Allocas for which we believe we may get SROA optimization. 295 DenseSet<AllocaInst *> EnabledSROAAllocas; 296 297 /// Keep track of values which map to a pointer base and constant offset. 298 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 299 300 /// Keep track of dead blocks due to the constant arguments. 301 SetVector<BasicBlock *> DeadBlocks; 302 303 /// The mapping of the blocks to their known unique successors due to the 304 /// constant arguments. 305 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 306 307 /// Model the elimination of repeated loads that is expected to happen 308 /// whenever we simplify away the stores that would otherwise cause them to be 309 /// loads. 310 bool EnableLoadElimination; 311 SmallPtrSet<Value *, 16> LoadAddrSet; 312 313 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 314 auto It = SROAArgValues.find(V); 315 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 316 return nullptr; 317 return It->second; 318 } 319 320 // Custom simplification helper routines. 321 bool isAllocaDerivedArg(Value *V); 322 void disableSROAForArg(AllocaInst *SROAArg); 323 void disableSROA(Value *V); 324 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 325 void disableLoadElimination(); 326 bool isGEPFree(GetElementPtrInst &GEP); 327 bool canFoldInboundsGEP(GetElementPtrInst &I); 328 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 329 bool simplifyCallSite(Function *F, CallBase &Call); 330 template <typename Callable> 331 bool simplifyInstruction(Instruction &I, Callable Evaluate); 332 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 333 334 /// Return true if the given argument to the function being considered for 335 /// inlining has the given attribute set either at the call site or the 336 /// function declaration. Primarily used to inspect call site specific 337 /// attributes since these can be more precise than the ones on the callee 338 /// itself. 339 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 340 341 /// Return true if the given value is known non null within the callee if 342 /// inlined through this particular callsite. 343 bool isKnownNonNullInCallee(Value *V); 344 345 /// Return true if size growth is allowed when inlining the callee at \p Call. 346 bool allowSizeGrowth(CallBase &Call); 347 348 // Custom analysis routines. 349 InlineResult analyzeBlock(BasicBlock *BB, 350 SmallPtrSetImpl<const Value *> &EphValues); 351 352 // Disable several entry points to the visitor so we don't accidentally use 353 // them by declaring but not defining them here. 354 void visit(Module *); 355 void visit(Module &); 356 void visit(Function *); 357 void visit(Function &); 358 void visit(BasicBlock *); 359 void visit(BasicBlock &); 360 361 // Provide base case for our instruction visit. 362 bool visitInstruction(Instruction &I); 363 364 // Our visit overrides. 365 bool visitAlloca(AllocaInst &I); 366 bool visitPHI(PHINode &I); 367 bool visitGetElementPtr(GetElementPtrInst &I); 368 bool visitBitCast(BitCastInst &I); 369 bool visitPtrToInt(PtrToIntInst &I); 370 bool visitIntToPtr(IntToPtrInst &I); 371 bool visitCastInst(CastInst &I); 372 bool visitUnaryInstruction(UnaryInstruction &I); 373 bool visitCmpInst(CmpInst &I); 374 bool visitSub(BinaryOperator &I); 375 bool visitBinaryOperator(BinaryOperator &I); 376 bool visitFNeg(UnaryOperator &I); 377 bool visitLoad(LoadInst &I); 378 bool visitStore(StoreInst &I); 379 bool visitExtractValue(ExtractValueInst &I); 380 bool visitInsertValue(InsertValueInst &I); 381 bool visitCallBase(CallBase &Call); 382 bool visitReturnInst(ReturnInst &RI); 383 bool visitBranchInst(BranchInst &BI); 384 bool visitSelectInst(SelectInst &SI); 385 bool visitSwitchInst(SwitchInst &SI); 386 bool visitIndirectBrInst(IndirectBrInst &IBI); 387 bool visitResumeInst(ResumeInst &RI); 388 bool visitCleanupReturnInst(CleanupReturnInst &RI); 389 bool visitCatchReturnInst(CatchReturnInst &RI); 390 bool visitUnreachableInst(UnreachableInst &I); 391 392 public: 393 CallAnalyzer( 394 Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 395 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 396 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 397 ProfileSummaryInfo *PSI = nullptr, 398 OptimizationRemarkEmitter *ORE = nullptr) 399 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 400 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 401 CandidateCall(Call), EnableLoadElimination(true) {} 402 403 InlineResult analyze(); 404 405 // Keep a bunch of stats about the cost savings found so we can print them 406 // out when debugging. 407 unsigned NumConstantArgs = 0; 408 unsigned NumConstantOffsetPtrArgs = 0; 409 unsigned NumAllocaArgs = 0; 410 unsigned NumConstantPtrCmps = 0; 411 unsigned NumConstantPtrDiffs = 0; 412 unsigned NumInstructionsSimplified = 0; 413 414 void dump(); 415 }; 416 417 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 418 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 419 class InlineCostCallAnalyzer final : public CallAnalyzer { 420 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 421 const bool ComputeFullInlineCost; 422 int LoadEliminationCost = 0; 423 /// Bonus to be applied when percentage of vector instructions in callee is 424 /// high (see more details in updateThreshold). 425 int VectorBonus = 0; 426 /// Bonus to be applied when the callee has only one reachable basic block. 427 int SingleBBBonus = 0; 428 429 /// Tunable parameters that control the analysis. 430 const InlineParams &Params; 431 432 // This DenseMap stores the delta change in cost and threshold after 433 // accounting for the given instruction. The map is filled only with the 434 // flag PrintInstructionComments on. 435 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 436 437 /// Upper bound for the inlining cost. Bonuses are being applied to account 438 /// for speculative "expected profit" of the inlining decision. 439 int Threshold = 0; 440 441 /// Attempt to evaluate indirect calls to boost its inline cost. 442 const bool BoostIndirectCalls; 443 444 /// Ignore the threshold when finalizing analysis. 445 const bool IgnoreThreshold; 446 447 /// Inlining cost measured in abstract units, accounts for all the 448 /// instructions expected to be executed for a given function invocation. 449 /// Instructions that are statically proven to be dead based on call-site 450 /// arguments are not counted here. 451 int Cost = 0; 452 453 bool SingleBB = true; 454 455 unsigned SROACostSavings = 0; 456 unsigned SROACostSavingsLost = 0; 457 458 /// The mapping of caller Alloca values to their accumulated cost savings. If 459 /// we have to disable SROA for one of the allocas, this tells us how much 460 /// cost must be added. 461 DenseMap<AllocaInst *, int> SROAArgCosts; 462 463 /// Return true if \p Call is a cold callsite. 464 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 465 466 /// Update Threshold based on callsite properties such as callee 467 /// attributes and callee hotness for PGO builds. The Callee is explicitly 468 /// passed to support analyzing indirect calls whose target is inferred by 469 /// analysis. 470 void updateThreshold(CallBase &Call, Function &Callee); 471 /// Return a higher threshold if \p Call is a hot callsite. 472 Optional<int> getHotCallSiteThreshold(CallBase &Call, 473 BlockFrequencyInfo *CallerBFI); 474 475 /// Handle a capped 'int' increment for Cost. 476 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 477 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 478 Cost = (int)std::min(UpperBound, Cost + Inc); 479 } 480 481 void onDisableSROA(AllocaInst *Arg) override { 482 auto CostIt = SROAArgCosts.find(Arg); 483 if (CostIt == SROAArgCosts.end()) 484 return; 485 addCost(CostIt->second); 486 SROACostSavings -= CostIt->second; 487 SROACostSavingsLost += CostIt->second; 488 SROAArgCosts.erase(CostIt); 489 } 490 491 void onDisableLoadElimination() override { 492 addCost(LoadEliminationCost); 493 LoadEliminationCost = 0; 494 } 495 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 496 void onCallArgumentSetup(const CallBase &Call) override { 497 // Pay the price of the argument setup. We account for the average 1 498 // instruction per call argument setup here. 499 addCost(Call.arg_size() * InlineConstants::InstrCost); 500 } 501 void onLoadRelativeIntrinsic() override { 502 // This is normally lowered to 4 LLVM instructions. 503 addCost(3 * InlineConstants::InstrCost); 504 } 505 void onLoweredCall(Function *F, CallBase &Call, 506 bool IsIndirectCall) override { 507 // We account for the average 1 instruction per call argument setup here. 508 addCost(Call.arg_size() * InlineConstants::InstrCost); 509 510 // If we have a constant that we are calling as a function, we can peer 511 // through it and see the function target. This happens not infrequently 512 // during devirtualization and so we want to give it a hefty bonus for 513 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 514 // Pretend to inline the function, with a custom threshold. 515 if (IsIndirectCall && BoostIndirectCalls) { 516 auto IndirectCallParams = Params; 517 IndirectCallParams.DefaultThreshold = 518 InlineConstants::IndirectCallThreshold; 519 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 520 /// to instantiate the derived class. 521 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 522 GetAssumptionCache, GetBFI, PSI, ORE, false); 523 if (CA.analyze().isSuccess()) { 524 // We were able to inline the indirect call! Subtract the cost from the 525 // threshold to get the bonus we want to apply, but don't go below zero. 526 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 527 } 528 } else 529 // Otherwise simply add the cost for merely making the call. 530 addCost(InlineConstants::CallPenalty); 531 } 532 533 void onFinalizeSwitch(unsigned JumpTableSize, 534 unsigned NumCaseCluster) override { 535 // If suitable for a jump table, consider the cost for the table size and 536 // branch to destination. 537 // Maximum valid cost increased in this function. 538 if (JumpTableSize) { 539 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 540 4 * InlineConstants::InstrCost; 541 542 addCost(JTCost, (int64_t)CostUpperBound); 543 return; 544 } 545 // Considering forming a binary search, we should find the number of nodes 546 // which is same as the number of comparisons when lowered. For a given 547 // number of clusters, n, we can define a recursive function, f(n), to find 548 // the number of nodes in the tree. The recursion is : 549 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 550 // and f(n) = n, when n <= 3. 551 // This will lead a binary tree where the leaf should be either f(2) or f(3) 552 // when n > 3. So, the number of comparisons from leaves should be n, while 553 // the number of non-leaf should be : 554 // 2^(log2(n) - 1) - 1 555 // = 2^log2(n) * 2^-1 - 1 556 // = n / 2 - 1. 557 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 558 // number of comparisons in a simple closed form : 559 // n + n / 2 - 1 = n * 3 / 2 - 1 560 if (NumCaseCluster <= 3) { 561 // Suppose a comparison includes one compare and one conditional branch. 562 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 563 return; 564 } 565 566 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 567 int64_t SwitchCost = 568 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 569 570 addCost(SwitchCost, (int64_t)CostUpperBound); 571 } 572 void onMissedSimplification() override { 573 addCost(InlineConstants::InstrCost); 574 } 575 576 void onInitializeSROAArg(AllocaInst *Arg) override { 577 assert(Arg != nullptr && 578 "Should not initialize SROA costs for null value."); 579 SROAArgCosts[Arg] = 0; 580 } 581 582 void onAggregateSROAUse(AllocaInst *SROAArg) override { 583 auto CostIt = SROAArgCosts.find(SROAArg); 584 assert(CostIt != SROAArgCosts.end() && 585 "expected this argument to have a cost"); 586 CostIt->second += InlineConstants::InstrCost; 587 SROACostSavings += InlineConstants::InstrCost; 588 } 589 590 void onBlockAnalyzed(const BasicBlock *BB) override { 591 auto *TI = BB->getTerminator(); 592 // If we had any successors at this point, than post-inlining is likely to 593 // have them as well. Note that we assume any basic blocks which existed 594 // due to branches or switches which folded above will also fold after 595 // inlining. 596 if (SingleBB && TI->getNumSuccessors() > 1) { 597 // Take off the bonus we applied to the threshold. 598 Threshold -= SingleBBBonus; 599 SingleBB = false; 600 } 601 } 602 603 void onInstructionAnalysisStart(const Instruction *I) override { 604 // This function is called to store the initial cost of inlining before 605 // the given instruction was assessed. 606 if (!PrintInstructionComments) 607 return; 608 InstructionCostDetailMap[I].CostBefore = Cost; 609 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 610 } 611 612 void onInstructionAnalysisFinish(const Instruction *I) override { 613 // This function is called to find new values of cost and threshold after 614 // the instruction has been assessed. 615 if (!PrintInstructionComments) 616 return; 617 InstructionCostDetailMap[I].CostAfter = Cost; 618 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 619 } 620 621 InlineResult finalizeAnalysis() override { 622 // Loops generally act a lot like calls in that they act like barriers to 623 // movement, require a certain amount of setup, etc. So when optimising for 624 // size, we penalise any call sites that perform loops. We do this after all 625 // other costs here, so will likely only be dealing with relatively small 626 // functions (and hence DT and LI will hopefully be cheap). 627 auto *Caller = CandidateCall.getFunction(); 628 if (Caller->hasMinSize()) { 629 DominatorTree DT(F); 630 LoopInfo LI(DT); 631 int NumLoops = 0; 632 for (Loop *L : LI) { 633 // Ignore loops that will not be executed 634 if (DeadBlocks.count(L->getHeader())) 635 continue; 636 NumLoops++; 637 } 638 addCost(NumLoops * InlineConstants::CallPenalty); 639 } 640 641 // We applied the maximum possible vector bonus at the beginning. Now, 642 // subtract the excess bonus, if any, from the Threshold before 643 // comparing against Cost. 644 if (NumVectorInstructions <= NumInstructions / 10) 645 Threshold -= VectorBonus; 646 else if (NumVectorInstructions <= NumInstructions / 2) 647 Threshold -= VectorBonus / 2; 648 649 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 650 return InlineResult::success(); 651 return InlineResult::failure("Cost over threshold."); 652 } 653 bool shouldStop() override { 654 // Bail out the moment we cross the threshold. This means we'll under-count 655 // the cost, but only when undercounting doesn't matter. 656 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 657 } 658 659 void onLoadEliminationOpportunity() override { 660 LoadEliminationCost += InlineConstants::InstrCost; 661 } 662 663 InlineResult onAnalysisStart() override { 664 // Perform some tweaks to the cost and threshold based on the direct 665 // callsite information. 666 667 // We want to more aggressively inline vector-dense kernels, so up the 668 // threshold, and we'll lower it if the % of vector instructions gets too 669 // low. Note that these bonuses are some what arbitrary and evolved over 670 // time by accident as much as because they are principled bonuses. 671 // 672 // FIXME: It would be nice to remove all such bonuses. At least it would be 673 // nice to base the bonus values on something more scientific. 674 assert(NumInstructions == 0); 675 assert(NumVectorInstructions == 0); 676 677 // Update the threshold based on callsite properties 678 updateThreshold(CandidateCall, F); 679 680 // While Threshold depends on commandline options that can take negative 681 // values, we want to enforce the invariant that the computed threshold and 682 // bonuses are non-negative. 683 assert(Threshold >= 0); 684 assert(SingleBBBonus >= 0); 685 assert(VectorBonus >= 0); 686 687 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 688 // this Threshold any time, and cost cannot decrease, we can stop processing 689 // the rest of the function body. 690 Threshold += (SingleBBBonus + VectorBonus); 691 692 // Give out bonuses for the callsite, as the instructions setting them up 693 // will be gone after inlining. 694 addCost(-getCallsiteCost(this->CandidateCall, DL)); 695 696 // If this function uses the coldcc calling convention, prefer not to inline 697 // it. 698 if (F.getCallingConv() == CallingConv::Cold) 699 Cost += InlineConstants::ColdccPenalty; 700 701 // Check if we're done. This can happen due to bonuses and penalties. 702 if (Cost >= Threshold && !ComputeFullInlineCost) 703 return InlineResult::failure("high cost"); 704 705 return InlineResult::success(); 706 } 707 708 public: 709 InlineCostCallAnalyzer( 710 Function &Callee, CallBase &Call, const InlineParams &Params, 711 const TargetTransformInfo &TTI, 712 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 713 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 714 ProfileSummaryInfo *PSI = nullptr, 715 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 716 bool IgnoreThreshold = false) 717 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 718 ComputeFullInlineCost(OptComputeFullInlineCost || 719 Params.ComputeFullInlineCost || ORE), 720 Params(Params), Threshold(Params.DefaultThreshold), 721 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 722 Writer(this) {} 723 724 /// Annotation Writer for instruction details 725 InlineCostAnnotationWriter Writer; 726 727 void dump(); 728 729 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 730 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 731 return InstructionCostDetailMap[I]; 732 return None; 733 } 734 735 virtual ~InlineCostCallAnalyzer() {} 736 int getThreshold() { return Threshold; } 737 int getCost() { return Cost; } 738 }; 739 } // namespace 740 741 /// Test whether the given value is an Alloca-derived function argument. 742 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 743 return SROAArgValues.count(V); 744 } 745 746 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 747 onDisableSROA(SROAArg); 748 EnabledSROAAllocas.erase(SROAArg); 749 disableLoadElimination(); 750 } 751 752 void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I, 753 formatted_raw_ostream &OS) { 754 // The cost of inlining of the given instruction is printed always. 755 // The threshold delta is printed only when it is non-zero. It happens 756 // when we decided to give a bonus at a particular instruction. 757 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 758 if (!Record) 759 OS << "; No analysis for the instruction"; 760 else { 761 OS << "; cost before = " << Record->CostBefore 762 << ", cost after = " << Record->CostAfter 763 << ", threshold before = " << Record->ThresholdBefore 764 << ", threshold after = " << Record->ThresholdAfter << ", "; 765 OS << "cost delta = " << Record->getCostDelta(); 766 if (Record->hasThresholdChanged()) 767 OS << ", threshold delta = " << Record->getThresholdDelta(); 768 } 769 OS << "\n"; 770 } 771 772 /// If 'V' maps to a SROA candidate, disable SROA for it. 773 void CallAnalyzer::disableSROA(Value *V) { 774 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 775 disableSROAForArg(SROAArg); 776 } 777 } 778 779 void CallAnalyzer::disableLoadElimination() { 780 if (EnableLoadElimination) { 781 onDisableLoadElimination(); 782 EnableLoadElimination = false; 783 } 784 } 785 786 /// Accumulate a constant GEP offset into an APInt if possible. 787 /// 788 /// Returns false if unable to compute the offset for any reason. Respects any 789 /// simplified values known during the analysis of this callsite. 790 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 791 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 792 assert(IntPtrWidth == Offset.getBitWidth()); 793 794 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 795 GTI != GTE; ++GTI) { 796 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 797 if (!OpC) 798 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 799 OpC = dyn_cast<ConstantInt>(SimpleOp); 800 if (!OpC) 801 return false; 802 if (OpC->isZero()) 803 continue; 804 805 // Handle a struct index, which adds its field offset to the pointer. 806 if (StructType *STy = GTI.getStructTypeOrNull()) { 807 unsigned ElementIdx = OpC->getZExtValue(); 808 const StructLayout *SL = DL.getStructLayout(STy); 809 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 810 continue; 811 } 812 813 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 814 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 815 } 816 return true; 817 } 818 819 /// Use TTI to check whether a GEP is free. 820 /// 821 /// Respects any simplified values known during the analysis of this callsite. 822 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 823 SmallVector<Value *, 4> Operands; 824 Operands.push_back(GEP.getOperand(0)); 825 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 826 if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) 827 Operands.push_back(SimpleOp); 828 else 829 Operands.push_back(*I); 830 return TargetTransformInfo::TCC_Free == 831 TTI.getUserCost(&GEP, Operands, 832 TargetTransformInfo::TCK_SizeAndLatency); 833 } 834 835 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 836 // Check whether inlining will turn a dynamic alloca into a static 837 // alloca and handle that case. 838 if (I.isArrayAllocation()) { 839 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 840 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 841 Type *Ty = I.getAllocatedType(); 842 AllocatedSize = SaturatingMultiplyAdd( 843 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(), 844 AllocatedSize); 845 return Base::visitAlloca(I); 846 } 847 } 848 849 // Accumulate the allocated size. 850 if (I.isStaticAlloca()) { 851 Type *Ty = I.getAllocatedType(); 852 AllocatedSize = 853 SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize); 854 } 855 856 // We will happily inline static alloca instructions. 857 if (I.isStaticAlloca()) 858 return Base::visitAlloca(I); 859 860 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 861 // a variety of reasons, and so we would like to not inline them into 862 // functions which don't currently have a dynamic alloca. This simply 863 // disables inlining altogether in the presence of a dynamic alloca. 864 HasDynamicAlloca = true; 865 return false; 866 } 867 868 bool CallAnalyzer::visitPHI(PHINode &I) { 869 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 870 // though we don't want to propagate it's bonuses. The idea is to disable 871 // SROA if it *might* be used in an inappropriate manner. 872 873 // Phi nodes are always zero-cost. 874 // FIXME: Pointer sizes may differ between different address spaces, so do we 875 // need to use correct address space in the call to getPointerSizeInBits here? 876 // Or could we skip the getPointerSizeInBits call completely? As far as I can 877 // see the ZeroOffset is used as a dummy value, so we can probably use any 878 // bit width for the ZeroOffset? 879 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 880 bool CheckSROA = I.getType()->isPointerTy(); 881 882 // Track the constant or pointer with constant offset we've seen so far. 883 Constant *FirstC = nullptr; 884 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 885 Value *FirstV = nullptr; 886 887 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 888 BasicBlock *Pred = I.getIncomingBlock(i); 889 // If the incoming block is dead, skip the incoming block. 890 if (DeadBlocks.count(Pred)) 891 continue; 892 // If the parent block of phi is not the known successor of the incoming 893 // block, skip the incoming block. 894 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 895 if (KnownSuccessor && KnownSuccessor != I.getParent()) 896 continue; 897 898 Value *V = I.getIncomingValue(i); 899 // If the incoming value is this phi itself, skip the incoming value. 900 if (&I == V) 901 continue; 902 903 Constant *C = dyn_cast<Constant>(V); 904 if (!C) 905 C = SimplifiedValues.lookup(V); 906 907 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 908 if (!C && CheckSROA) 909 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 910 911 if (!C && !BaseAndOffset.first) 912 // The incoming value is neither a constant nor a pointer with constant 913 // offset, exit early. 914 return true; 915 916 if (FirstC) { 917 if (FirstC == C) 918 // If we've seen a constant incoming value before and it is the same 919 // constant we see this time, continue checking the next incoming value. 920 continue; 921 // Otherwise early exit because we either see a different constant or saw 922 // a constant before but we have a pointer with constant offset this time. 923 return true; 924 } 925 926 if (FirstV) { 927 // The same logic as above, but check pointer with constant offset here. 928 if (FirstBaseAndOffset == BaseAndOffset) 929 continue; 930 return true; 931 } 932 933 if (C) { 934 // This is the 1st time we've seen a constant, record it. 935 FirstC = C; 936 continue; 937 } 938 939 // The remaining case is that this is the 1st time we've seen a pointer with 940 // constant offset, record it. 941 FirstV = V; 942 FirstBaseAndOffset = BaseAndOffset; 943 } 944 945 // Check if we can map phi to a constant. 946 if (FirstC) { 947 SimplifiedValues[&I] = FirstC; 948 return true; 949 } 950 951 // Check if we can map phi to a pointer with constant offset. 952 if (FirstBaseAndOffset.first) { 953 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 954 955 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 956 SROAArgValues[&I] = SROAArg; 957 } 958 959 return true; 960 } 961 962 /// Check we can fold GEPs of constant-offset call site argument pointers. 963 /// This requires target data and inbounds GEPs. 964 /// 965 /// \return true if the specified GEP can be folded. 966 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 967 // Check if we have a base + offset for the pointer. 968 std::pair<Value *, APInt> BaseAndOffset = 969 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 970 if (!BaseAndOffset.first) 971 return false; 972 973 // Check if the offset of this GEP is constant, and if so accumulate it 974 // into Offset. 975 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 976 return false; 977 978 // Add the result as a new mapping to Base + Offset. 979 ConstantOffsetPtrs[&I] = BaseAndOffset; 980 981 return true; 982 } 983 984 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 985 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 986 987 // Lambda to check whether a GEP's indices are all constant. 988 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 989 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 990 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 991 return false; 992 return true; 993 }; 994 995 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 996 if (SROAArg) 997 SROAArgValues[&I] = SROAArg; 998 999 // Constant GEPs are modeled as free. 1000 return true; 1001 } 1002 1003 // Variable GEPs will require math and will disable SROA. 1004 if (SROAArg) 1005 disableSROAForArg(SROAArg); 1006 return isGEPFree(I); 1007 } 1008 1009 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1010 /// \p Evaluate is a callable specific to instruction type that evaluates the 1011 /// instruction when all the operands are constants. 1012 template <typename Callable> 1013 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1014 SmallVector<Constant *, 2> COps; 1015 for (Value *Op : I.operands()) { 1016 Constant *COp = dyn_cast<Constant>(Op); 1017 if (!COp) 1018 COp = SimplifiedValues.lookup(Op); 1019 if (!COp) 1020 return false; 1021 COps.push_back(COp); 1022 } 1023 auto *C = Evaluate(COps); 1024 if (!C) 1025 return false; 1026 SimplifiedValues[&I] = C; 1027 return true; 1028 } 1029 1030 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1031 // Propagate constants through bitcasts. 1032 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1033 return ConstantExpr::getBitCast(COps[0], I.getType()); 1034 })) 1035 return true; 1036 1037 // Track base/offsets through casts 1038 std::pair<Value *, APInt> BaseAndOffset = 1039 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1040 // Casts don't change the offset, just wrap it up. 1041 if (BaseAndOffset.first) 1042 ConstantOffsetPtrs[&I] = BaseAndOffset; 1043 1044 // Also look for SROA candidates here. 1045 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1046 SROAArgValues[&I] = SROAArg; 1047 1048 // Bitcasts are always zero cost. 1049 return true; 1050 } 1051 1052 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1053 // Propagate constants through ptrtoint. 1054 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1055 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1056 })) 1057 return true; 1058 1059 // Track base/offset pairs when converted to a plain integer provided the 1060 // integer is large enough to represent the pointer. 1061 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1062 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1063 if (IntegerSize >= DL.getPointerSizeInBits(AS)) { 1064 std::pair<Value *, APInt> BaseAndOffset = 1065 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1066 if (BaseAndOffset.first) 1067 ConstantOffsetPtrs[&I] = BaseAndOffset; 1068 } 1069 1070 // This is really weird. Technically, ptrtoint will disable SROA. However, 1071 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1072 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1073 // would block SROA would also block SROA if applied directly to a pointer, 1074 // and so we can just add the integer in here. The only places where SROA is 1075 // preserved either cannot fire on an integer, or won't in-and-of themselves 1076 // disable SROA (ext) w/o some later use that we would see and disable. 1077 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1078 SROAArgValues[&I] = SROAArg; 1079 1080 return TargetTransformInfo::TCC_Free == 1081 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1082 } 1083 1084 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1085 // Propagate constants through ptrtoint. 1086 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1087 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1088 })) 1089 return true; 1090 1091 // Track base/offset pairs when round-tripped through a pointer without 1092 // modifications provided the integer is not too large. 1093 Value *Op = I.getOperand(0); 1094 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1095 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1096 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1097 if (BaseAndOffset.first) 1098 ConstantOffsetPtrs[&I] = BaseAndOffset; 1099 } 1100 1101 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1102 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1103 SROAArgValues[&I] = SROAArg; 1104 1105 return TargetTransformInfo::TCC_Free == 1106 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1107 } 1108 1109 bool CallAnalyzer::visitCastInst(CastInst &I) { 1110 // Propagate constants through casts. 1111 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1112 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1113 })) 1114 return true; 1115 1116 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. 1117 disableSROA(I.getOperand(0)); 1118 1119 // If this is a floating-point cast, and the target says this operation 1120 // is expensive, this may eventually become a library call. Treat the cost 1121 // as such. 1122 switch (I.getOpcode()) { 1123 case Instruction::FPTrunc: 1124 case Instruction::FPExt: 1125 case Instruction::UIToFP: 1126 case Instruction::SIToFP: 1127 case Instruction::FPToUI: 1128 case Instruction::FPToSI: 1129 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1130 onCallPenalty(); 1131 break; 1132 default: 1133 break; 1134 } 1135 1136 return TargetTransformInfo::TCC_Free == 1137 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1138 } 1139 1140 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1141 Value *Operand = I.getOperand(0); 1142 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1143 return ConstantFoldInstOperands(&I, COps[0], DL); 1144 })) 1145 return true; 1146 1147 // Disable any SROA on the argument to arbitrary unary instructions. 1148 disableSROA(Operand); 1149 1150 return false; 1151 } 1152 1153 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1154 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1155 } 1156 1157 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1158 // Does the *call site* have the NonNull attribute set on an argument? We 1159 // use the attribute on the call site to memoize any analysis done in the 1160 // caller. This will also trip if the callee function has a non-null 1161 // parameter attribute, but that's a less interesting case because hopefully 1162 // the callee would already have been simplified based on that. 1163 if (Argument *A = dyn_cast<Argument>(V)) 1164 if (paramHasAttr(A, Attribute::NonNull)) 1165 return true; 1166 1167 // Is this an alloca in the caller? This is distinct from the attribute case 1168 // above because attributes aren't updated within the inliner itself and we 1169 // always want to catch the alloca derived case. 1170 if (isAllocaDerivedArg(V)) 1171 // We can actually predict the result of comparisons between an 1172 // alloca-derived value and null. Note that this fires regardless of 1173 // SROA firing. 1174 return true; 1175 1176 return false; 1177 } 1178 1179 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1180 // If the normal destination of the invoke or the parent block of the call 1181 // site is unreachable-terminated, there is little point in inlining this 1182 // unless there is literally zero cost. 1183 // FIXME: Note that it is possible that an unreachable-terminated block has a 1184 // hot entry. For example, in below scenario inlining hot_call_X() may be 1185 // beneficial : 1186 // main() { 1187 // hot_call_1(); 1188 // ... 1189 // hot_call_N() 1190 // exit(0); 1191 // } 1192 // For now, we are not handling this corner case here as it is rare in real 1193 // code. In future, we should elaborate this based on BPI and BFI in more 1194 // general threshold adjusting heuristics in updateThreshold(). 1195 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1196 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1197 return false; 1198 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1199 return false; 1200 1201 return true; 1202 } 1203 1204 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1205 BlockFrequencyInfo *CallerBFI) { 1206 // If global profile summary is available, then callsite's coldness is 1207 // determined based on that. 1208 if (PSI && PSI->hasProfileSummary()) 1209 return PSI->isColdCallSite(Call, CallerBFI); 1210 1211 // Otherwise we need BFI to be available. 1212 if (!CallerBFI) 1213 return false; 1214 1215 // Determine if the callsite is cold relative to caller's entry. We could 1216 // potentially cache the computation of scaled entry frequency, but the added 1217 // complexity is not worth it unless this scaling shows up high in the 1218 // profiles. 1219 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1220 auto CallSiteBB = Call.getParent(); 1221 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1222 auto CallerEntryFreq = 1223 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1224 return CallSiteFreq < CallerEntryFreq * ColdProb; 1225 } 1226 1227 Optional<int> 1228 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1229 BlockFrequencyInfo *CallerBFI) { 1230 1231 // If global profile summary is available, then callsite's hotness is 1232 // determined based on that. 1233 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1234 return Params.HotCallSiteThreshold; 1235 1236 // Otherwise we need BFI to be available and to have a locally hot callsite 1237 // threshold. 1238 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1239 return None; 1240 1241 // Determine if the callsite is hot relative to caller's entry. We could 1242 // potentially cache the computation of scaled entry frequency, but the added 1243 // complexity is not worth it unless this scaling shows up high in the 1244 // profiles. 1245 auto CallSiteBB = Call.getParent(); 1246 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1247 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1248 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1249 return Params.LocallyHotCallSiteThreshold; 1250 1251 // Otherwise treat it normally. 1252 return None; 1253 } 1254 1255 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1256 // If no size growth is allowed for this inlining, set Threshold to 0. 1257 if (!allowSizeGrowth(Call)) { 1258 Threshold = 0; 1259 return; 1260 } 1261 1262 Function *Caller = Call.getCaller(); 1263 1264 // return min(A, B) if B is valid. 1265 auto MinIfValid = [](int A, Optional<int> B) { 1266 return B ? std::min(A, B.getValue()) : A; 1267 }; 1268 1269 // return max(A, B) if B is valid. 1270 auto MaxIfValid = [](int A, Optional<int> B) { 1271 return B ? std::max(A, B.getValue()) : A; 1272 }; 1273 1274 // Various bonus percentages. These are multiplied by Threshold to get the 1275 // bonus values. 1276 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1277 // basic block at the given callsite context. This is speculatively applied 1278 // and withdrawn if more than one basic block is seen. 1279 // 1280 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1281 // of the last call to a static function as inlining such functions is 1282 // guaranteed to reduce code size. 1283 // 1284 // These bonus percentages may be set to 0 based on properties of the caller 1285 // and the callsite. 1286 int SingleBBBonusPercent = 50; 1287 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1288 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1289 1290 // Lambda to set all the above bonus and bonus percentages to 0. 1291 auto DisallowAllBonuses = [&]() { 1292 SingleBBBonusPercent = 0; 1293 VectorBonusPercent = 0; 1294 LastCallToStaticBonus = 0; 1295 }; 1296 1297 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1298 // and reduce the threshold if the caller has the necessary attribute. 1299 if (Caller->hasMinSize()) { 1300 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1301 // For minsize, we want to disable the single BB bonus and the vector 1302 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1303 // a static function will, at the minimum, eliminate the parameter setup and 1304 // call/return instructions. 1305 SingleBBBonusPercent = 0; 1306 VectorBonusPercent = 0; 1307 } else if (Caller->hasOptSize()) 1308 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1309 1310 // Adjust the threshold based on inlinehint attribute and profile based 1311 // hotness information if the caller does not have MinSize attribute. 1312 if (!Caller->hasMinSize()) { 1313 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1314 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1315 1316 // FIXME: After switching to the new passmanager, simplify the logic below 1317 // by checking only the callsite hotness/coldness as we will reliably 1318 // have local profile information. 1319 // 1320 // Callsite hotness and coldness can be determined if sample profile is 1321 // used (which adds hotness metadata to calls) or if caller's 1322 // BlockFrequencyInfo is available. 1323 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1324 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1325 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1326 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1327 // FIXME: This should update the threshold only if it exceeds the 1328 // current threshold, but AutoFDO + ThinLTO currently relies on this 1329 // behavior to prevent inlining of hot callsites during ThinLTO 1330 // compile phase. 1331 Threshold = HotCallSiteThreshold.getValue(); 1332 } else if (isColdCallSite(Call, CallerBFI)) { 1333 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1334 // Do not apply bonuses for a cold callsite including the 1335 // LastCallToStatic bonus. While this bonus might result in code size 1336 // reduction, it can cause the size of a non-cold caller to increase 1337 // preventing it from being inlined. 1338 DisallowAllBonuses(); 1339 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1340 } else if (PSI) { 1341 // Use callee's global profile information only if we have no way of 1342 // determining this via callsite information. 1343 if (PSI->isFunctionEntryHot(&Callee)) { 1344 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1345 // If callsite hotness can not be determined, we may still know 1346 // that the callee is hot and treat it as a weaker hint for threshold 1347 // increase. 1348 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1349 } else if (PSI->isFunctionEntryCold(&Callee)) { 1350 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1351 // Do not apply bonuses for a cold callee including the 1352 // LastCallToStatic bonus. While this bonus might result in code size 1353 // reduction, it can cause the size of a non-cold caller to increase 1354 // preventing it from being inlined. 1355 DisallowAllBonuses(); 1356 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1357 } 1358 } 1359 } 1360 1361 // Finally, take the target-specific inlining threshold multiplier into 1362 // account. 1363 Threshold *= TTI.getInliningThresholdMultiplier(); 1364 1365 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1366 VectorBonus = Threshold * VectorBonusPercent / 100; 1367 1368 bool OnlyOneCallAndLocalLinkage = 1369 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1370 // If there is only one call of the function, and it has internal linkage, 1371 // the cost of inlining it drops dramatically. It may seem odd to update 1372 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1373 if (OnlyOneCallAndLocalLinkage) 1374 Cost -= LastCallToStaticBonus; 1375 } 1376 1377 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1378 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1379 // First try to handle simplified comparisons. 1380 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1381 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1382 })) 1383 return true; 1384 1385 if (I.getOpcode() == Instruction::FCmp) 1386 return false; 1387 1388 // Otherwise look for a comparison between constant offset pointers with 1389 // a common base. 1390 Value *LHSBase, *RHSBase; 1391 APInt LHSOffset, RHSOffset; 1392 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1393 if (LHSBase) { 1394 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1395 if (RHSBase && LHSBase == RHSBase) { 1396 // We have common bases, fold the icmp to a constant based on the 1397 // offsets. 1398 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1399 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1400 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1401 SimplifiedValues[&I] = C; 1402 ++NumConstantPtrCmps; 1403 return true; 1404 } 1405 } 1406 } 1407 1408 // If the comparison is an equality comparison with null, we can simplify it 1409 // if we know the value (argument) can't be null 1410 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1411 isKnownNonNullInCallee(I.getOperand(0))) { 1412 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1413 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1414 : ConstantInt::getFalse(I.getType()); 1415 return true; 1416 } 1417 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1418 } 1419 1420 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1421 // Try to handle a special case: we can fold computing the difference of two 1422 // constant-related pointers. 1423 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1424 Value *LHSBase, *RHSBase; 1425 APInt LHSOffset, RHSOffset; 1426 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1427 if (LHSBase) { 1428 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1429 if (RHSBase && LHSBase == RHSBase) { 1430 // We have common bases, fold the subtract to a constant based on the 1431 // offsets. 1432 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1433 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1434 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1435 SimplifiedValues[&I] = C; 1436 ++NumConstantPtrDiffs; 1437 return true; 1438 } 1439 } 1440 } 1441 1442 // Otherwise, fall back to the generic logic for simplifying and handling 1443 // instructions. 1444 return Base::visitSub(I); 1445 } 1446 1447 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1448 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1449 Constant *CLHS = dyn_cast<Constant>(LHS); 1450 if (!CLHS) 1451 CLHS = SimplifiedValues.lookup(LHS); 1452 Constant *CRHS = dyn_cast<Constant>(RHS); 1453 if (!CRHS) 1454 CRHS = SimplifiedValues.lookup(RHS); 1455 1456 Value *SimpleV = nullptr; 1457 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1458 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1459 FI->getFastMathFlags(), DL); 1460 else 1461 SimpleV = 1462 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1463 1464 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1465 SimplifiedValues[&I] = C; 1466 1467 if (SimpleV) 1468 return true; 1469 1470 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1471 disableSROA(LHS); 1472 disableSROA(RHS); 1473 1474 // If the instruction is floating point, and the target says this operation 1475 // is expensive, this may eventually become a library call. Treat the cost 1476 // as such. Unless it's fneg which can be implemented with an xor. 1477 using namespace llvm::PatternMatch; 1478 if (I.getType()->isFloatingPointTy() && 1479 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1480 !match(&I, m_FNeg(m_Value()))) 1481 onCallPenalty(); 1482 1483 return false; 1484 } 1485 1486 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1487 Value *Op = I.getOperand(0); 1488 Constant *COp = dyn_cast<Constant>(Op); 1489 if (!COp) 1490 COp = SimplifiedValues.lookup(Op); 1491 1492 Value *SimpleV = SimplifyFNegInst( 1493 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1494 1495 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1496 SimplifiedValues[&I] = C; 1497 1498 if (SimpleV) 1499 return true; 1500 1501 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1502 disableSROA(Op); 1503 1504 return false; 1505 } 1506 1507 bool CallAnalyzer::visitLoad(LoadInst &I) { 1508 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1509 return true; 1510 1511 // If the data is already loaded from this address and hasn't been clobbered 1512 // by any stores or calls, this load is likely to be redundant and can be 1513 // eliminated. 1514 if (EnableLoadElimination && 1515 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1516 onLoadEliminationOpportunity(); 1517 return true; 1518 } 1519 1520 return false; 1521 } 1522 1523 bool CallAnalyzer::visitStore(StoreInst &I) { 1524 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1525 return true; 1526 1527 // The store can potentially clobber loads and prevent repeated loads from 1528 // being eliminated. 1529 // FIXME: 1530 // 1. We can probably keep an initial set of eliminatable loads substracted 1531 // from the cost even when we finally see a store. We just need to disable 1532 // *further* accumulation of elimination savings. 1533 // 2. We should probably at some point thread MemorySSA for the callee into 1534 // this and then use that to actually compute *really* precise savings. 1535 disableLoadElimination(); 1536 return false; 1537 } 1538 1539 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1540 // Constant folding for extract value is trivial. 1541 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1542 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1543 })) 1544 return true; 1545 1546 // SROA can look through these but give them a cost. 1547 return false; 1548 } 1549 1550 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1551 // Constant folding for insert value is trivial. 1552 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1553 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1554 /*InsertedValueOperand*/ COps[1], 1555 I.getIndices()); 1556 })) 1557 return true; 1558 1559 // SROA can look through these but give them a cost. 1560 return false; 1561 } 1562 1563 /// Try to simplify a call site. 1564 /// 1565 /// Takes a concrete function and callsite and tries to actually simplify it by 1566 /// analyzing the arguments and call itself with instsimplify. Returns true if 1567 /// it has simplified the callsite to some other entity (a constant), making it 1568 /// free. 1569 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1570 // FIXME: Using the instsimplify logic directly for this is inefficient 1571 // because we have to continually rebuild the argument list even when no 1572 // simplifications can be performed. Until that is fixed with remapping 1573 // inside of instsimplify, directly constant fold calls here. 1574 if (!canConstantFoldCallTo(&Call, F)) 1575 return false; 1576 1577 // Try to re-map the arguments to constants. 1578 SmallVector<Constant *, 4> ConstantArgs; 1579 ConstantArgs.reserve(Call.arg_size()); 1580 for (Value *I : Call.args()) { 1581 Constant *C = dyn_cast<Constant>(I); 1582 if (!C) 1583 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1584 if (!C) 1585 return false; // This argument doesn't map to a constant. 1586 1587 ConstantArgs.push_back(C); 1588 } 1589 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1590 SimplifiedValues[&Call] = C; 1591 return true; 1592 } 1593 1594 return false; 1595 } 1596 1597 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1598 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1599 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1600 // This aborts the entire analysis. 1601 ExposesReturnsTwice = true; 1602 return false; 1603 } 1604 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1605 ContainsNoDuplicateCall = true; 1606 1607 Value *Callee = Call.getCalledOperand(); 1608 Function *F = dyn_cast_or_null<Function>(Callee); 1609 bool IsIndirectCall = !F; 1610 if (IsIndirectCall) { 1611 // Check if this happens to be an indirect function call to a known function 1612 // in this inline context. If not, we've done all we can. 1613 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1614 if (!F) { 1615 onCallArgumentSetup(Call); 1616 1617 if (!Call.onlyReadsMemory()) 1618 disableLoadElimination(); 1619 return Base::visitCallBase(Call); 1620 } 1621 } 1622 1623 assert(F && "Expected a call to a known function"); 1624 1625 // When we have a concrete function, first try to simplify it directly. 1626 if (simplifyCallSite(F, Call)) 1627 return true; 1628 1629 // Next check if it is an intrinsic we know about. 1630 // FIXME: Lift this into part of the InstVisitor. 1631 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1632 switch (II->getIntrinsicID()) { 1633 default: 1634 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1635 disableLoadElimination(); 1636 return Base::visitCallBase(Call); 1637 1638 case Intrinsic::load_relative: 1639 onLoadRelativeIntrinsic(); 1640 return false; 1641 1642 case Intrinsic::memset: 1643 case Intrinsic::memcpy: 1644 case Intrinsic::memmove: 1645 disableLoadElimination(); 1646 // SROA can usually chew through these intrinsics, but they aren't free. 1647 return false; 1648 case Intrinsic::icall_branch_funnel: 1649 case Intrinsic::localescape: 1650 HasUninlineableIntrinsic = true; 1651 return false; 1652 case Intrinsic::vastart: 1653 InitsVargArgs = true; 1654 return false; 1655 } 1656 } 1657 1658 if (F == Call.getFunction()) { 1659 // This flag will fully abort the analysis, so don't bother with anything 1660 // else. 1661 IsRecursiveCall = true; 1662 return false; 1663 } 1664 1665 if (TTI.isLoweredToCall(F)) { 1666 onLoweredCall(F, Call, IsIndirectCall); 1667 } 1668 1669 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1670 disableLoadElimination(); 1671 return Base::visitCallBase(Call); 1672 } 1673 1674 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1675 // At least one return instruction will be free after inlining. 1676 bool Free = !HasReturn; 1677 HasReturn = true; 1678 return Free; 1679 } 1680 1681 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1682 // We model unconditional branches as essentially free -- they really 1683 // shouldn't exist at all, but handling them makes the behavior of the 1684 // inliner more regular and predictable. Interestingly, conditional branches 1685 // which will fold away are also free. 1686 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1687 dyn_cast_or_null<ConstantInt>( 1688 SimplifiedValues.lookup(BI.getCondition())); 1689 } 1690 1691 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1692 bool CheckSROA = SI.getType()->isPointerTy(); 1693 Value *TrueVal = SI.getTrueValue(); 1694 Value *FalseVal = SI.getFalseValue(); 1695 1696 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1697 if (!TrueC) 1698 TrueC = SimplifiedValues.lookup(TrueVal); 1699 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1700 if (!FalseC) 1701 FalseC = SimplifiedValues.lookup(FalseVal); 1702 Constant *CondC = 1703 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1704 1705 if (!CondC) { 1706 // Select C, X, X => X 1707 if (TrueC == FalseC && TrueC) { 1708 SimplifiedValues[&SI] = TrueC; 1709 return true; 1710 } 1711 1712 if (!CheckSROA) 1713 return Base::visitSelectInst(SI); 1714 1715 std::pair<Value *, APInt> TrueBaseAndOffset = 1716 ConstantOffsetPtrs.lookup(TrueVal); 1717 std::pair<Value *, APInt> FalseBaseAndOffset = 1718 ConstantOffsetPtrs.lookup(FalseVal); 1719 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1720 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1721 1722 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1723 SROAArgValues[&SI] = SROAArg; 1724 return true; 1725 } 1726 1727 return Base::visitSelectInst(SI); 1728 } 1729 1730 // Select condition is a constant. 1731 Value *SelectedV = CondC->isAllOnesValue() 1732 ? TrueVal 1733 : (CondC->isNullValue()) ? FalseVal : nullptr; 1734 if (!SelectedV) { 1735 // Condition is a vector constant that is not all 1s or all 0s. If all 1736 // operands are constants, ConstantExpr::getSelect() can handle the cases 1737 // such as select vectors. 1738 if (TrueC && FalseC) { 1739 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1740 SimplifiedValues[&SI] = C; 1741 return true; 1742 } 1743 } 1744 return Base::visitSelectInst(SI); 1745 } 1746 1747 // Condition is either all 1s or all 0s. SI can be simplified. 1748 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1749 SimplifiedValues[&SI] = SelectedC; 1750 return true; 1751 } 1752 1753 if (!CheckSROA) 1754 return true; 1755 1756 std::pair<Value *, APInt> BaseAndOffset = 1757 ConstantOffsetPtrs.lookup(SelectedV); 1758 if (BaseAndOffset.first) { 1759 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1760 1761 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1762 SROAArgValues[&SI] = SROAArg; 1763 } 1764 1765 return true; 1766 } 1767 1768 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1769 // We model unconditional switches as free, see the comments on handling 1770 // branches. 1771 if (isa<ConstantInt>(SI.getCondition())) 1772 return true; 1773 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1774 if (isa<ConstantInt>(V)) 1775 return true; 1776 1777 // Assume the most general case where the switch is lowered into 1778 // either a jump table, bit test, or a balanced binary tree consisting of 1779 // case clusters without merging adjacent clusters with the same 1780 // destination. We do not consider the switches that are lowered with a mix 1781 // of jump table/bit test/binary search tree. The cost of the switch is 1782 // proportional to the size of the tree or the size of jump table range. 1783 // 1784 // NB: We convert large switches which are just used to initialize large phi 1785 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 1786 // inlining those. It will prevent inlining in cases where the optimization 1787 // does not (yet) fire. 1788 1789 unsigned JumpTableSize = 0; 1790 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 1791 unsigned NumCaseCluster = 1792 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 1793 1794 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 1795 return false; 1796 } 1797 1798 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 1799 // We never want to inline functions that contain an indirectbr. This is 1800 // incorrect because all the blockaddress's (in static global initializers 1801 // for example) would be referring to the original function, and this 1802 // indirect jump would jump from the inlined copy of the function into the 1803 // original function which is extremely undefined behavior. 1804 // FIXME: This logic isn't really right; we can safely inline functions with 1805 // indirectbr's as long as no other function or global references the 1806 // blockaddress of a block within the current function. 1807 HasIndirectBr = true; 1808 return false; 1809 } 1810 1811 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 1812 // FIXME: It's not clear that a single instruction is an accurate model for 1813 // the inline cost of a resume instruction. 1814 return false; 1815 } 1816 1817 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 1818 // FIXME: It's not clear that a single instruction is an accurate model for 1819 // the inline cost of a cleanupret instruction. 1820 return false; 1821 } 1822 1823 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 1824 // FIXME: It's not clear that a single instruction is an accurate model for 1825 // the inline cost of a catchret instruction. 1826 return false; 1827 } 1828 1829 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 1830 // FIXME: It might be reasonably to discount the cost of instructions leading 1831 // to unreachable as they have the lowest possible impact on both runtime and 1832 // code size. 1833 return true; // No actual code is needed for unreachable. 1834 } 1835 1836 bool CallAnalyzer::visitInstruction(Instruction &I) { 1837 // Some instructions are free. All of the free intrinsics can also be 1838 // handled by SROA, etc. 1839 if (TargetTransformInfo::TCC_Free == 1840 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency)) 1841 return true; 1842 1843 // We found something we don't understand or can't handle. Mark any SROA-able 1844 // values in the operand list as no longer viable. 1845 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 1846 disableSROA(*OI); 1847 1848 return false; 1849 } 1850 1851 /// Analyze a basic block for its contribution to the inline cost. 1852 /// 1853 /// This method walks the analyzer over every instruction in the given basic 1854 /// block and accounts for their cost during inlining at this callsite. It 1855 /// aborts early if the threshold has been exceeded or an impossible to inline 1856 /// construct has been detected. It returns false if inlining is no longer 1857 /// viable, and true if inlining remains viable. 1858 InlineResult 1859 CallAnalyzer::analyzeBlock(BasicBlock *BB, 1860 SmallPtrSetImpl<const Value *> &EphValues) { 1861 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1862 // FIXME: Currently, the number of instructions in a function regardless of 1863 // our ability to simplify them during inline to constants or dead code, 1864 // are actually used by the vector bonus heuristic. As long as that's true, 1865 // we have to special case debug intrinsics here to prevent differences in 1866 // inlining due to debug symbols. Eventually, the number of unsimplified 1867 // instructions shouldn't factor into the cost computation, but until then, 1868 // hack around it here. 1869 if (isa<DbgInfoIntrinsic>(I)) 1870 continue; 1871 1872 // Skip ephemeral values. 1873 if (EphValues.count(&*I)) 1874 continue; 1875 1876 ++NumInstructions; 1877 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 1878 ++NumVectorInstructions; 1879 1880 // If the instruction simplified to a constant, there is no cost to this 1881 // instruction. Visit the instructions using our InstVisitor to account for 1882 // all of the per-instruction logic. The visit tree returns true if we 1883 // consumed the instruction in any way, and false if the instruction's base 1884 // cost should count against inlining. 1885 onInstructionAnalysisStart(&*I); 1886 1887 if (Base::visit(&*I)) 1888 ++NumInstructionsSimplified; 1889 else 1890 onMissedSimplification(); 1891 1892 onInstructionAnalysisFinish(&*I); 1893 using namespace ore; 1894 // If the visit this instruction detected an uninlinable pattern, abort. 1895 InlineResult IR = InlineResult::success(); 1896 if (IsRecursiveCall) 1897 IR = InlineResult::failure("recursive"); 1898 else if (ExposesReturnsTwice) 1899 IR = InlineResult::failure("exposes returns twice"); 1900 else if (HasDynamicAlloca) 1901 IR = InlineResult::failure("dynamic alloca"); 1902 else if (HasIndirectBr) 1903 IR = InlineResult::failure("indirect branch"); 1904 else if (HasUninlineableIntrinsic) 1905 IR = InlineResult::failure("uninlinable intrinsic"); 1906 else if (InitsVargArgs) 1907 IR = InlineResult::failure("varargs"); 1908 if (!IR.isSuccess()) { 1909 if (ORE) 1910 ORE->emit([&]() { 1911 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1912 &CandidateCall) 1913 << NV("Callee", &F) << " has uninlinable pattern (" 1914 << NV("InlineResult", IR.getFailureReason()) 1915 << ") and cost is not fully computed"; 1916 }); 1917 return IR; 1918 } 1919 1920 // If the caller is a recursive function then we don't want to inline 1921 // functions which allocate a lot of stack space because it would increase 1922 // the caller stack usage dramatically. 1923 if (IsCallerRecursive && 1924 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 1925 auto IR = 1926 InlineResult::failure("recursive and allocates too much stack space"); 1927 if (ORE) 1928 ORE->emit([&]() { 1929 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1930 &CandidateCall) 1931 << NV("Callee", &F) << " is " 1932 << NV("InlineResult", IR.getFailureReason()) 1933 << ". Cost is not fully computed"; 1934 }); 1935 return IR; 1936 } 1937 1938 if (shouldStop()) 1939 return InlineResult::failure( 1940 "Call site analysis is not favorable to inlining."); 1941 } 1942 1943 return InlineResult::success(); 1944 } 1945 1946 /// Compute the base pointer and cumulative constant offsets for V. 1947 /// 1948 /// This strips all constant offsets off of V, leaving it the base pointer, and 1949 /// accumulates the total constant offset applied in the returned constant. It 1950 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 1951 /// no constant offsets applied. 1952 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 1953 if (!V->getType()->isPointerTy()) 1954 return nullptr; 1955 1956 unsigned AS = V->getType()->getPointerAddressSpace(); 1957 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 1958 APInt Offset = APInt::getNullValue(IntPtrWidth); 1959 1960 // Even though we don't look through PHI nodes, we could be called on an 1961 // instruction in an unreachable block, which may be on a cycle. 1962 SmallPtrSet<Value *, 4> Visited; 1963 Visited.insert(V); 1964 do { 1965 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1966 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 1967 return nullptr; 1968 V = GEP->getPointerOperand(); 1969 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1970 V = cast<Operator>(V)->getOperand(0); 1971 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1972 if (GA->isInterposable()) 1973 break; 1974 V = GA->getAliasee(); 1975 } else { 1976 break; 1977 } 1978 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1979 } while (Visited.insert(V).second); 1980 1981 Type *IdxPtrTy = DL.getIndexType(V->getType()); 1982 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 1983 } 1984 1985 /// Find dead blocks due to deleted CFG edges during inlining. 1986 /// 1987 /// If we know the successor of the current block, \p CurrBB, has to be \p 1988 /// NextBB, the other successors of \p CurrBB are dead if these successors have 1989 /// no live incoming CFG edges. If one block is found to be dead, we can 1990 /// continue growing the dead block list by checking the successors of the dead 1991 /// blocks to see if all their incoming edges are dead or not. 1992 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 1993 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 1994 // A CFG edge is dead if the predecessor is dead or the predecessor has a 1995 // known successor which is not the one under exam. 1996 return (DeadBlocks.count(Pred) || 1997 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 1998 }; 1999 2000 auto IsNewlyDead = [&](BasicBlock *BB) { 2001 // If all the edges to a block are dead, the block is also dead. 2002 return (!DeadBlocks.count(BB) && 2003 llvm::all_of(predecessors(BB), 2004 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2005 }; 2006 2007 for (BasicBlock *Succ : successors(CurrBB)) { 2008 if (Succ == NextBB || !IsNewlyDead(Succ)) 2009 continue; 2010 SmallVector<BasicBlock *, 4> NewDead; 2011 NewDead.push_back(Succ); 2012 while (!NewDead.empty()) { 2013 BasicBlock *Dead = NewDead.pop_back_val(); 2014 if (DeadBlocks.insert(Dead)) 2015 // Continue growing the dead block lists. 2016 for (BasicBlock *S : successors(Dead)) 2017 if (IsNewlyDead(S)) 2018 NewDead.push_back(S); 2019 } 2020 } 2021 } 2022 2023 /// Analyze a call site for potential inlining. 2024 /// 2025 /// Returns true if inlining this call is viable, and false if it is not 2026 /// viable. It computes the cost and adjusts the threshold based on numerous 2027 /// factors and heuristics. If this method returns false but the computed cost 2028 /// is below the computed threshold, then inlining was forcibly disabled by 2029 /// some artifact of the routine. 2030 InlineResult CallAnalyzer::analyze() { 2031 ++NumCallsAnalyzed; 2032 2033 auto Result = onAnalysisStart(); 2034 if (!Result.isSuccess()) 2035 return Result; 2036 2037 if (F.empty()) 2038 return InlineResult::success(); 2039 2040 Function *Caller = CandidateCall.getFunction(); 2041 // Check if the caller function is recursive itself. 2042 for (User *U : Caller->users()) { 2043 CallBase *Call = dyn_cast<CallBase>(U); 2044 if (Call && Call->getFunction() == Caller) { 2045 IsCallerRecursive = true; 2046 break; 2047 } 2048 } 2049 2050 // Populate our simplified values by mapping from function arguments to call 2051 // arguments with known important simplifications. 2052 auto CAI = CandidateCall.arg_begin(); 2053 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 2054 FAI != FAE; ++FAI, ++CAI) { 2055 assert(CAI != CandidateCall.arg_end()); 2056 if (Constant *C = dyn_cast<Constant>(CAI)) 2057 SimplifiedValues[&*FAI] = C; 2058 2059 Value *PtrArg = *CAI; 2060 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2061 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); 2062 2063 // We can SROA any pointer arguments derived from alloca instructions. 2064 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2065 SROAArgValues[&*FAI] = SROAArg; 2066 onInitializeSROAArg(SROAArg); 2067 EnabledSROAAllocas.insert(SROAArg); 2068 } 2069 } 2070 } 2071 NumConstantArgs = SimplifiedValues.size(); 2072 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2073 NumAllocaArgs = SROAArgValues.size(); 2074 2075 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2076 // the ephemeral values multiple times (and they're completely determined by 2077 // the callee, so this is purely duplicate work). 2078 SmallPtrSet<const Value *, 32> EphValues; 2079 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2080 2081 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2082 // adding basic blocks of the callee which can be proven to be dead for this 2083 // particular call site in order to get more accurate cost estimates. This 2084 // requires a somewhat heavyweight iteration pattern: we need to walk the 2085 // basic blocks in a breadth-first order as we insert live successors. To 2086 // accomplish this, prioritizing for small iterations because we exit after 2087 // crossing our threshold, we use a small-size optimized SetVector. 2088 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2089 SmallPtrSet<BasicBlock *, 16>> 2090 BBSetVector; 2091 BBSetVector BBWorklist; 2092 BBWorklist.insert(&F.getEntryBlock()); 2093 2094 // Note that we *must not* cache the size, this loop grows the worklist. 2095 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2096 if (shouldStop()) 2097 break; 2098 2099 BasicBlock *BB = BBWorklist[Idx]; 2100 if (BB->empty()) 2101 continue; 2102 2103 // Disallow inlining a blockaddress with uses other than strictly callbr. 2104 // A blockaddress only has defined behavior for an indirect branch in the 2105 // same function, and we do not currently support inlining indirect 2106 // branches. But, the inliner may not see an indirect branch that ends up 2107 // being dead code at a particular call site. If the blockaddress escapes 2108 // the function, e.g., via a global variable, inlining may lead to an 2109 // invalid cross-function reference. 2110 // FIXME: pr/39560: continue relaxing this overt restriction. 2111 if (BB->hasAddressTaken()) 2112 for (User *U : BlockAddress::get(&*BB)->users()) 2113 if (!isa<CallBrInst>(*U)) 2114 return InlineResult::failure("blockaddress used outside of callbr"); 2115 2116 // Analyze the cost of this block. If we blow through the threshold, this 2117 // returns false, and we can bail on out. 2118 InlineResult IR = analyzeBlock(BB, EphValues); 2119 if (!IR.isSuccess()) 2120 return IR; 2121 2122 Instruction *TI = BB->getTerminator(); 2123 2124 // Add in the live successors by first checking whether we have terminator 2125 // that may be simplified based on the values simplified by this call. 2126 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2127 if (BI->isConditional()) { 2128 Value *Cond = BI->getCondition(); 2129 if (ConstantInt *SimpleCond = 2130 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2131 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2132 BBWorklist.insert(NextBB); 2133 KnownSuccessors[BB] = NextBB; 2134 findDeadBlocks(BB, NextBB); 2135 continue; 2136 } 2137 } 2138 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2139 Value *Cond = SI->getCondition(); 2140 if (ConstantInt *SimpleCond = 2141 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2142 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2143 BBWorklist.insert(NextBB); 2144 KnownSuccessors[BB] = NextBB; 2145 findDeadBlocks(BB, NextBB); 2146 continue; 2147 } 2148 } 2149 2150 // If we're unable to select a particular successor, just count all of 2151 // them. 2152 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2153 ++TIdx) 2154 BBWorklist.insert(TI->getSuccessor(TIdx)); 2155 2156 onBlockAnalyzed(BB); 2157 } 2158 2159 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2160 &F == CandidateCall.getCalledFunction(); 2161 // If this is a noduplicate call, we can still inline as long as 2162 // inlining this would cause the removal of the caller (so the instruction 2163 // is not actually duplicated, just moved). 2164 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2165 return InlineResult::failure("noduplicate"); 2166 2167 return finalizeAnalysis(); 2168 } 2169 2170 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2171 /// Dump stats about this call's analysis. 2172 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2173 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2174 if (PrintInstructionComments) 2175 F.print(dbgs(), &Writer); 2176 DEBUG_PRINT_STAT(NumConstantArgs); 2177 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2178 DEBUG_PRINT_STAT(NumAllocaArgs); 2179 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2180 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2181 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2182 DEBUG_PRINT_STAT(NumInstructions); 2183 DEBUG_PRINT_STAT(SROACostSavings); 2184 DEBUG_PRINT_STAT(SROACostSavingsLost); 2185 DEBUG_PRINT_STAT(LoadEliminationCost); 2186 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2187 DEBUG_PRINT_STAT(Cost); 2188 DEBUG_PRINT_STAT(Threshold); 2189 #undef DEBUG_PRINT_STAT 2190 } 2191 #endif 2192 2193 /// Test that there are no attribute conflicts between Caller and Callee 2194 /// that prevent inlining. 2195 static bool functionsHaveCompatibleAttributes( 2196 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2197 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2198 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2199 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2200 // object, and always returns the same object (which is overwritten on each 2201 // GetTLI call). Therefore we copy the first result. 2202 auto CalleeTLI = GetTLI(*Callee); 2203 return TTI.areInlineCompatible(Caller, Callee) && 2204 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2205 InlineCallerSupersetNoBuiltin) && 2206 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2207 } 2208 2209 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2210 int Cost = 0; 2211 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2212 if (Call.isByValArgument(I)) { 2213 // We approximate the number of loads and stores needed by dividing the 2214 // size of the byval type by the target's pointer size. 2215 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2216 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2217 unsigned AS = PTy->getAddressSpace(); 2218 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2219 // Ceiling division. 2220 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2221 2222 // If it generates more than 8 stores it is likely to be expanded as an 2223 // inline memcpy so we take that as an upper bound. Otherwise we assume 2224 // one load and one store per word copied. 2225 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2226 // here instead of a magic number of 8, but it's not available via 2227 // DataLayout. 2228 NumStores = std::min(NumStores, 8U); 2229 2230 Cost += 2 * NumStores * InlineConstants::InstrCost; 2231 } else { 2232 // For non-byval arguments subtract off one instruction per call 2233 // argument. 2234 Cost += InlineConstants::InstrCost; 2235 } 2236 } 2237 // The call instruction also disappears after inlining. 2238 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2239 return Cost; 2240 } 2241 2242 InlineCost llvm::getInlineCost( 2243 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2244 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2245 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2246 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2247 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2248 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2249 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2250 } 2251 2252 Optional<int> llvm::getInliningCostEstimate( 2253 CallBase &Call, TargetTransformInfo &CalleeTTI, 2254 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2255 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2256 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2257 const InlineParams Params = {/* DefaultThreshold*/ 0, 2258 /*HintThreshold*/ {}, 2259 /*ColdThreshold*/ {}, 2260 /*OptSizeThreshold*/ {}, 2261 /*OptMinSizeThreshold*/ {}, 2262 /*HotCallSiteThreshold*/ {}, 2263 /*LocallyHotCallSiteThreshold*/ {}, 2264 /*ColdCallSiteThreshold*/ {}, 2265 /*ComputeFullInlineCost*/ true, 2266 /*EnableDeferral*/ true}; 2267 2268 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2269 GetAssumptionCache, GetBFI, PSI, ORE, true, 2270 /*IgnoreThreshold*/ true); 2271 auto R = CA.analyze(); 2272 if (!R.isSuccess()) 2273 return None; 2274 return CA.getCost(); 2275 } 2276 2277 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2278 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2279 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2280 2281 // Cannot inline indirect calls. 2282 if (!Callee) 2283 return InlineResult::failure("indirect call"); 2284 2285 // Never inline calls with byval arguments that does not have the alloca 2286 // address space. Since byval arguments can be replaced with a copy to an 2287 // alloca, the inlined code would need to be adjusted to handle that the 2288 // argument is in the alloca address space (so it is a little bit complicated 2289 // to solve). 2290 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2291 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2292 if (Call.isByValArgument(I)) { 2293 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2294 if (PTy->getAddressSpace() != AllocaAS) 2295 return InlineResult::failure("byval arguments without alloca" 2296 " address space"); 2297 } 2298 2299 // Calls to functions with always-inline attributes should be inlined 2300 // whenever possible. 2301 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2302 auto IsViable = isInlineViable(*Callee); 2303 if (IsViable.isSuccess()) 2304 return InlineResult::success(); 2305 return InlineResult::failure(IsViable.getFailureReason()); 2306 } 2307 2308 // Never inline functions with conflicting attributes (unless callee has 2309 // always-inline attribute). 2310 Function *Caller = Call.getCaller(); 2311 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2312 return InlineResult::failure("conflicting attributes"); 2313 2314 // Don't inline this call if the caller has the optnone attribute. 2315 if (Caller->hasOptNone()) 2316 return InlineResult::failure("optnone attribute"); 2317 2318 // Don't inline a function that treats null pointer as valid into a caller 2319 // that does not have this attribute. 2320 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2321 return InlineResult::failure("nullptr definitions incompatible"); 2322 2323 // Don't inline functions which can be interposed at link-time. 2324 if (Callee->isInterposable()) 2325 return InlineResult::failure("interposable"); 2326 2327 // Don't inline functions marked noinline. 2328 if (Callee->hasFnAttribute(Attribute::NoInline)) 2329 return InlineResult::failure("noinline function attribute"); 2330 2331 // Don't inline call sites marked noinline. 2332 if (Call.isNoInline()) 2333 return InlineResult::failure("noinline call site attribute"); 2334 2335 return None; 2336 } 2337 2338 InlineCost llvm::getInlineCost( 2339 CallBase &Call, Function *Callee, const InlineParams &Params, 2340 TargetTransformInfo &CalleeTTI, 2341 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2342 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2343 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2344 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2345 2346 auto UserDecision = 2347 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2348 2349 if (UserDecision.hasValue()) { 2350 if (UserDecision->isSuccess()) 2351 return llvm::InlineCost::getAlways("always inline attribute"); 2352 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2353 } 2354 2355 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2356 << "... (caller:" << Call.getCaller()->getName() 2357 << ")\n"); 2358 2359 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2360 GetAssumptionCache, GetBFI, PSI, ORE); 2361 InlineResult ShouldInline = CA.analyze(); 2362 2363 LLVM_DEBUG(CA.dump()); 2364 2365 // Check if there was a reason to force inlining or no inlining. 2366 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2367 return InlineCost::getNever(ShouldInline.getFailureReason()); 2368 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2369 return InlineCost::getAlways("empty function"); 2370 2371 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2372 } 2373 2374 InlineResult llvm::isInlineViable(Function &F) { 2375 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2376 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2377 // Disallow inlining of functions which contain indirect branches. 2378 if (isa<IndirectBrInst>(BI->getTerminator())) 2379 return InlineResult::failure("contains indirect branches"); 2380 2381 // Disallow inlining of blockaddresses which are used by non-callbr 2382 // instructions. 2383 if (BI->hasAddressTaken()) 2384 for (User *U : BlockAddress::get(&*BI)->users()) 2385 if (!isa<CallBrInst>(*U)) 2386 return InlineResult::failure("blockaddress used outside of callbr"); 2387 2388 for (auto &II : *BI) { 2389 CallBase *Call = dyn_cast<CallBase>(&II); 2390 if (!Call) 2391 continue; 2392 2393 // Disallow recursive calls. 2394 if (&F == Call->getCalledFunction()) 2395 return InlineResult::failure("recursive call"); 2396 2397 // Disallow calls which expose returns-twice to a function not previously 2398 // attributed as such. 2399 if (!ReturnsTwice && isa<CallInst>(Call) && 2400 cast<CallInst>(Call)->canReturnTwice()) 2401 return InlineResult::failure("exposes returns-twice attribute"); 2402 2403 if (Call->getCalledFunction()) 2404 switch (Call->getCalledFunction()->getIntrinsicID()) { 2405 default: 2406 break; 2407 case llvm::Intrinsic::icall_branch_funnel: 2408 // Disallow inlining of @llvm.icall.branch.funnel because current 2409 // backend can't separate call targets from call arguments. 2410 return InlineResult::failure( 2411 "disallowed inlining of @llvm.icall.branch.funnel"); 2412 case llvm::Intrinsic::localescape: 2413 // Disallow inlining functions that call @llvm.localescape. Doing this 2414 // correctly would require major changes to the inliner. 2415 return InlineResult::failure( 2416 "disallowed inlining of @llvm.localescape"); 2417 case llvm::Intrinsic::vastart: 2418 // Disallow inlining of functions that initialize VarArgs with 2419 // va_start. 2420 return InlineResult::failure( 2421 "contains VarArgs initialized with va_start"); 2422 } 2423 } 2424 } 2425 2426 return InlineResult::success(); 2427 } 2428 2429 // APIs to create InlineParams based on command line flags and/or other 2430 // parameters. 2431 2432 InlineParams llvm::getInlineParams(int Threshold) { 2433 InlineParams Params; 2434 2435 // This field is the threshold to use for a callee by default. This is 2436 // derived from one or more of: 2437 // * optimization or size-optimization levels, 2438 // * a value passed to createFunctionInliningPass function, or 2439 // * the -inline-threshold flag. 2440 // If the -inline-threshold flag is explicitly specified, that is used 2441 // irrespective of anything else. 2442 if (InlineThreshold.getNumOccurrences() > 0) 2443 Params.DefaultThreshold = InlineThreshold; 2444 else 2445 Params.DefaultThreshold = Threshold; 2446 2447 // Set the HintThreshold knob from the -inlinehint-threshold. 2448 Params.HintThreshold = HintThreshold; 2449 2450 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2451 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2452 2453 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2454 // populate LocallyHotCallSiteThreshold. Later, we populate 2455 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2456 // we know that optimization level is O3 (in the getInlineParams variant that 2457 // takes the opt and size levels). 2458 // FIXME: Remove this check (and make the assignment unconditional) after 2459 // addressing size regression issues at O2. 2460 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2461 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2462 2463 // Set the ColdCallSiteThreshold knob from the 2464 // -inline-cold-callsite-threshold. 2465 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2466 2467 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2468 // -inlinehint-threshold commandline option is not explicitly given. If that 2469 // option is present, then its value applies even for callees with size and 2470 // minsize attributes. 2471 // If the -inline-threshold is not specified, set the ColdThreshold from the 2472 // -inlinecold-threshold even if it is not explicitly passed. If 2473 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2474 // explicitly specified to set the ColdThreshold knob 2475 if (InlineThreshold.getNumOccurrences() == 0) { 2476 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2477 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2478 Params.ColdThreshold = ColdThreshold; 2479 } else if (ColdThreshold.getNumOccurrences() > 0) { 2480 Params.ColdThreshold = ColdThreshold; 2481 } 2482 return Params; 2483 } 2484 2485 InlineParams llvm::getInlineParams() { 2486 return getInlineParams(DefaultThreshold); 2487 } 2488 2489 // Compute the default threshold for inlining based on the opt level and the 2490 // size opt level. 2491 static int computeThresholdFromOptLevels(unsigned OptLevel, 2492 unsigned SizeOptLevel) { 2493 if (OptLevel > 2) 2494 return InlineConstants::OptAggressiveThreshold; 2495 if (SizeOptLevel == 1) // -Os 2496 return InlineConstants::OptSizeThreshold; 2497 if (SizeOptLevel == 2) // -Oz 2498 return InlineConstants::OptMinSizeThreshold; 2499 return DefaultThreshold; 2500 } 2501 2502 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2503 auto Params = 2504 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2505 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2506 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2507 // when it is specified explicitly. 2508 if (OptLevel > 2) 2509 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2510 return Params; 2511 } 2512