1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<int> CallPenalty( 117 "inline-call-penalty", cl::Hidden, cl::init(25), 118 cl::desc("Call penalty that is applied per callsite when inlining")); 119 120 static cl::opt<bool> OptComputeFullInlineCost( 121 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 122 cl::desc("Compute the full inline cost of a call site even when the cost " 123 "exceeds the threshold.")); 124 125 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 126 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 127 cl::ZeroOrMore, 128 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 129 "attributes.")); 130 131 static cl::opt<bool> DisableGEPConstOperand( 132 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 133 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 134 135 namespace { 136 class InlineCostCallAnalyzer; 137 138 /// This function behaves more like CallBase::hasFnAttr: when it looks for the 139 /// requested attribute, it check both the call instruction and the called 140 /// function (if it's available and operand bundles don't prohibit that). 141 Attribute getFnAttr(CallBase &CB, StringRef AttrKind) { 142 Attribute CallAttr = CB.getFnAttr(AttrKind); 143 if (CallAttr.isValid()) 144 return CallAttr; 145 146 // Operand bundles override attributes on the called function, but don't 147 // override attributes directly present on the call instruction. 148 if (!CB.isFnAttrDisallowedByOpBundle(AttrKind)) 149 if (const Function *F = CB.getCalledFunction()) 150 return F->getFnAttribute(AttrKind); 151 152 return {}; 153 } 154 155 Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 156 Attribute Attr = getFnAttr(CB, AttrKind); 157 int AttrValue; 158 if (Attr.getValueAsString().getAsInteger(10, AttrValue)) 159 return None; 160 return AttrValue; 161 } 162 163 // This struct is used to store information about inline cost of a 164 // particular instruction 165 struct InstructionCostDetail { 166 int CostBefore = 0; 167 int CostAfter = 0; 168 int ThresholdBefore = 0; 169 int ThresholdAfter = 0; 170 171 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 172 173 int getCostDelta() const { return CostAfter - CostBefore; } 174 175 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 176 }; 177 178 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 179 private: 180 InlineCostCallAnalyzer *const ICCA; 181 182 public: 183 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 184 virtual void emitInstructionAnnot(const Instruction *I, 185 formatted_raw_ostream &OS) override; 186 }; 187 188 /// Carry out call site analysis, in order to evaluate inlinability. 189 /// NOTE: the type is currently used as implementation detail of functions such 190 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 191 /// expectation is that they come from the outer scope, from the wrapper 192 /// functions. If we want to support constructing CallAnalyzer objects where 193 /// lambdas are provided inline at construction, or where the object needs to 194 /// otherwise survive past the scope of the provided functions, we need to 195 /// revisit the argument types. 196 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 197 typedef InstVisitor<CallAnalyzer, bool> Base; 198 friend class InstVisitor<CallAnalyzer, bool>; 199 200 protected: 201 virtual ~CallAnalyzer() {} 202 /// The TargetTransformInfo available for this compilation. 203 const TargetTransformInfo &TTI; 204 205 /// Getter for the cache of @llvm.assume intrinsics. 206 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 207 208 /// Getter for BlockFrequencyInfo 209 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 210 211 /// Profile summary information. 212 ProfileSummaryInfo *PSI; 213 214 /// The called function. 215 Function &F; 216 217 // Cache the DataLayout since we use it a lot. 218 const DataLayout &DL; 219 220 /// The OptimizationRemarkEmitter available for this compilation. 221 OptimizationRemarkEmitter *ORE; 222 223 /// The candidate callsite being analyzed. Please do not use this to do 224 /// analysis in the caller function; we want the inline cost query to be 225 /// easily cacheable. Instead, use the cover function paramHasAttr. 226 CallBase &CandidateCall; 227 228 /// Extension points for handling callsite features. 229 // Called before a basic block was analyzed. 230 virtual void onBlockStart(const BasicBlock *BB) {} 231 232 /// Called after a basic block was analyzed. 233 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 234 235 /// Called before an instruction was analyzed 236 virtual void onInstructionAnalysisStart(const Instruction *I) {} 237 238 /// Called after an instruction was analyzed 239 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 240 241 /// Called at the end of the analysis of the callsite. Return the outcome of 242 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 243 /// the reason it can't. 244 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 245 /// Called when we're about to start processing a basic block, and every time 246 /// we are done processing an instruction. Return true if there is no point in 247 /// continuing the analysis (e.g. we've determined already the call site is 248 /// too expensive to inline) 249 virtual bool shouldStop() { return false; } 250 251 /// Called before the analysis of the callee body starts (with callsite 252 /// contexts propagated). It checks callsite-specific information. Return a 253 /// reason analysis can't continue if that's the case, or 'true' if it may 254 /// continue. 255 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 256 /// Called if the analysis engine decides SROA cannot be done for the given 257 /// alloca. 258 virtual void onDisableSROA(AllocaInst *Arg) {} 259 260 /// Called the analysis engine determines load elimination won't happen. 261 virtual void onDisableLoadElimination() {} 262 263 /// Called when we visit a CallBase, before the analysis starts. Return false 264 /// to stop further processing of the instruction. 265 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 266 267 /// Called to account for a call. 268 virtual void onCallPenalty() {} 269 270 /// Called to account for the expectation the inlining would result in a load 271 /// elimination. 272 virtual void onLoadEliminationOpportunity() {} 273 274 /// Called to account for the cost of argument setup for the Call in the 275 /// callee's body (not the callsite currently under analysis). 276 virtual void onCallArgumentSetup(const CallBase &Call) {} 277 278 /// Called to account for a load relative intrinsic. 279 virtual void onLoadRelativeIntrinsic() {} 280 281 /// Called to account for a lowered call. 282 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 283 } 284 285 /// Account for a jump table of given size. Return false to stop further 286 /// processing the switch instruction 287 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 288 289 /// Account for a case cluster of given size. Return false to stop further 290 /// processing of the instruction. 291 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 292 293 /// Called at the end of processing a switch instruction, with the given 294 /// number of case clusters. 295 virtual void onFinalizeSwitch(unsigned JumpTableSize, 296 unsigned NumCaseCluster) {} 297 298 /// Called to account for any other instruction not specifically accounted 299 /// for. 300 virtual void onMissedSimplification() {} 301 302 /// Start accounting potential benefits due to SROA for the given alloca. 303 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 304 305 /// Account SROA savings for the AllocaInst value. 306 virtual void onAggregateSROAUse(AllocaInst *V) {} 307 308 bool handleSROA(Value *V, bool DoNotDisable) { 309 // Check for SROA candidates in comparisons. 310 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 311 if (DoNotDisable) { 312 onAggregateSROAUse(SROAArg); 313 return true; 314 } 315 disableSROAForArg(SROAArg); 316 } 317 return false; 318 } 319 320 bool IsCallerRecursive = false; 321 bool IsRecursiveCall = false; 322 bool ExposesReturnsTwice = false; 323 bool HasDynamicAlloca = false; 324 bool ContainsNoDuplicateCall = false; 325 bool HasReturn = false; 326 bool HasIndirectBr = false; 327 bool HasUninlineableIntrinsic = false; 328 bool InitsVargArgs = false; 329 330 /// Number of bytes allocated statically by the callee. 331 uint64_t AllocatedSize = 0; 332 unsigned NumInstructions = 0; 333 unsigned NumVectorInstructions = 0; 334 335 /// While we walk the potentially-inlined instructions, we build up and 336 /// maintain a mapping of simplified values specific to this callsite. The 337 /// idea is to propagate any special information we have about arguments to 338 /// this call through the inlinable section of the function, and account for 339 /// likely simplifications post-inlining. The most important aspect we track 340 /// is CFG altering simplifications -- when we prove a basic block dead, that 341 /// can cause dramatic shifts in the cost of inlining a function. 342 DenseMap<Value *, Constant *> SimplifiedValues; 343 344 /// Keep track of the values which map back (through function arguments) to 345 /// allocas on the caller stack which could be simplified through SROA. 346 DenseMap<Value *, AllocaInst *> SROAArgValues; 347 348 /// Keep track of Allocas for which we believe we may get SROA optimization. 349 DenseSet<AllocaInst *> EnabledSROAAllocas; 350 351 /// Keep track of values which map to a pointer base and constant offset. 352 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 353 354 /// Keep track of dead blocks due to the constant arguments. 355 SetVector<BasicBlock *> DeadBlocks; 356 357 /// The mapping of the blocks to their known unique successors due to the 358 /// constant arguments. 359 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 360 361 /// Model the elimination of repeated loads that is expected to happen 362 /// whenever we simplify away the stores that would otherwise cause them to be 363 /// loads. 364 bool EnableLoadElimination; 365 366 /// Whether we allow inlining for recursive call. 367 bool AllowRecursiveCall; 368 369 SmallPtrSet<Value *, 16> LoadAddrSet; 370 371 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 372 auto It = SROAArgValues.find(V); 373 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 374 return nullptr; 375 return It->second; 376 } 377 378 // Custom simplification helper routines. 379 bool isAllocaDerivedArg(Value *V); 380 void disableSROAForArg(AllocaInst *SROAArg); 381 void disableSROA(Value *V); 382 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 383 void disableLoadElimination(); 384 bool isGEPFree(GetElementPtrInst &GEP); 385 bool canFoldInboundsGEP(GetElementPtrInst &I); 386 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 387 bool simplifyCallSite(Function *F, CallBase &Call); 388 template <typename Callable> 389 bool simplifyInstruction(Instruction &I, Callable Evaluate); 390 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 391 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 392 393 /// Return true if the given argument to the function being considered for 394 /// inlining has the given attribute set either at the call site or the 395 /// function declaration. Primarily used to inspect call site specific 396 /// attributes since these can be more precise than the ones on the callee 397 /// itself. 398 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 399 400 /// Return true if the given value is known non null within the callee if 401 /// inlined through this particular callsite. 402 bool isKnownNonNullInCallee(Value *V); 403 404 /// Return true if size growth is allowed when inlining the callee at \p Call. 405 bool allowSizeGrowth(CallBase &Call); 406 407 // Custom analysis routines. 408 InlineResult analyzeBlock(BasicBlock *BB, 409 SmallPtrSetImpl<const Value *> &EphValues); 410 411 // Disable several entry points to the visitor so we don't accidentally use 412 // them by declaring but not defining them here. 413 void visit(Module *); 414 void visit(Module &); 415 void visit(Function *); 416 void visit(Function &); 417 void visit(BasicBlock *); 418 void visit(BasicBlock &); 419 420 // Provide base case for our instruction visit. 421 bool visitInstruction(Instruction &I); 422 423 // Our visit overrides. 424 bool visitAlloca(AllocaInst &I); 425 bool visitPHI(PHINode &I); 426 bool visitGetElementPtr(GetElementPtrInst &I); 427 bool visitBitCast(BitCastInst &I); 428 bool visitPtrToInt(PtrToIntInst &I); 429 bool visitIntToPtr(IntToPtrInst &I); 430 bool visitCastInst(CastInst &I); 431 bool visitCmpInst(CmpInst &I); 432 bool visitSub(BinaryOperator &I); 433 bool visitBinaryOperator(BinaryOperator &I); 434 bool visitFNeg(UnaryOperator &I); 435 bool visitLoad(LoadInst &I); 436 bool visitStore(StoreInst &I); 437 bool visitExtractValue(ExtractValueInst &I); 438 bool visitInsertValue(InsertValueInst &I); 439 bool visitCallBase(CallBase &Call); 440 bool visitReturnInst(ReturnInst &RI); 441 bool visitBranchInst(BranchInst &BI); 442 bool visitSelectInst(SelectInst &SI); 443 bool visitSwitchInst(SwitchInst &SI); 444 bool visitIndirectBrInst(IndirectBrInst &IBI); 445 bool visitResumeInst(ResumeInst &RI); 446 bool visitCleanupReturnInst(CleanupReturnInst &RI); 447 bool visitCatchReturnInst(CatchReturnInst &RI); 448 bool visitUnreachableInst(UnreachableInst &I); 449 450 public: 451 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 452 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 453 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 454 ProfileSummaryInfo *PSI = nullptr, 455 OptimizationRemarkEmitter *ORE = nullptr) 456 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 457 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 458 CandidateCall(Call), EnableLoadElimination(true), 459 AllowRecursiveCall(false) {} 460 461 InlineResult analyze(); 462 463 Optional<Constant *> getSimplifiedValue(Instruction *I) { 464 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 465 return SimplifiedValues[I]; 466 return None; 467 } 468 469 // Keep a bunch of stats about the cost savings found so we can print them 470 // out when debugging. 471 unsigned NumConstantArgs = 0; 472 unsigned NumConstantOffsetPtrArgs = 0; 473 unsigned NumAllocaArgs = 0; 474 unsigned NumConstantPtrCmps = 0; 475 unsigned NumConstantPtrDiffs = 0; 476 unsigned NumInstructionsSimplified = 0; 477 478 void dump(); 479 }; 480 481 // Considering forming a binary search, we should find the number of nodes 482 // which is same as the number of comparisons when lowered. For a given 483 // number of clusters, n, we can define a recursive function, f(n), to find 484 // the number of nodes in the tree. The recursion is : 485 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 486 // and f(n) = n, when n <= 3. 487 // This will lead a binary tree where the leaf should be either f(2) or f(3) 488 // when n > 3. So, the number of comparisons from leaves should be n, while 489 // the number of non-leaf should be : 490 // 2^(log2(n) - 1) - 1 491 // = 2^log2(n) * 2^-1 - 1 492 // = n / 2 - 1. 493 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 494 // number of comparisons in a simple closed form : 495 // n + n / 2 - 1 = n * 3 / 2 - 1 496 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 497 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 498 } 499 500 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 501 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 502 class InlineCostCallAnalyzer final : public CallAnalyzer { 503 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 504 const bool ComputeFullInlineCost; 505 int LoadEliminationCost = 0; 506 /// Bonus to be applied when percentage of vector instructions in callee is 507 /// high (see more details in updateThreshold). 508 int VectorBonus = 0; 509 /// Bonus to be applied when the callee has only one reachable basic block. 510 int SingleBBBonus = 0; 511 512 /// Tunable parameters that control the analysis. 513 const InlineParams &Params; 514 515 // This DenseMap stores the delta change in cost and threshold after 516 // accounting for the given instruction. The map is filled only with the 517 // flag PrintInstructionComments on. 518 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 519 520 /// Upper bound for the inlining cost. Bonuses are being applied to account 521 /// for speculative "expected profit" of the inlining decision. 522 int Threshold = 0; 523 524 /// Attempt to evaluate indirect calls to boost its inline cost. 525 const bool BoostIndirectCalls; 526 527 /// Ignore the threshold when finalizing analysis. 528 const bool IgnoreThreshold; 529 530 // True if the cost-benefit-analysis-based inliner is enabled. 531 const bool CostBenefitAnalysisEnabled; 532 533 /// Inlining cost measured in abstract units, accounts for all the 534 /// instructions expected to be executed for a given function invocation. 535 /// Instructions that are statically proven to be dead based on call-site 536 /// arguments are not counted here. 537 int Cost = 0; 538 539 // The cumulative cost at the beginning of the basic block being analyzed. At 540 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 541 // the size of that basic block. 542 int CostAtBBStart = 0; 543 544 // The static size of live but cold basic blocks. This is "static" in the 545 // sense that it's not weighted by profile counts at all. 546 int ColdSize = 0; 547 548 // Whether inlining is decided by cost-benefit analysis. 549 bool DecidedByCostBenefit = false; 550 551 // The cost-benefit pair computed by cost-benefit analysis. 552 Optional<CostBenefitPair> CostBenefit = None; 553 554 bool SingleBB = true; 555 556 unsigned SROACostSavings = 0; 557 unsigned SROACostSavingsLost = 0; 558 559 /// The mapping of caller Alloca values to their accumulated cost savings. If 560 /// we have to disable SROA for one of the allocas, this tells us how much 561 /// cost must be added. 562 DenseMap<AllocaInst *, int> SROAArgCosts; 563 564 /// Return true if \p Call is a cold callsite. 565 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 566 567 /// Update Threshold based on callsite properties such as callee 568 /// attributes and callee hotness for PGO builds. The Callee is explicitly 569 /// passed to support analyzing indirect calls whose target is inferred by 570 /// analysis. 571 void updateThreshold(CallBase &Call, Function &Callee); 572 /// Return a higher threshold if \p Call is a hot callsite. 573 Optional<int> getHotCallSiteThreshold(CallBase &Call, 574 BlockFrequencyInfo *CallerBFI); 575 576 /// Handle a capped 'int' increment for Cost. 577 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 578 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 579 Cost = std::min<int>(UpperBound, Cost + Inc); 580 } 581 582 void onDisableSROA(AllocaInst *Arg) override { 583 auto CostIt = SROAArgCosts.find(Arg); 584 if (CostIt == SROAArgCosts.end()) 585 return; 586 addCost(CostIt->second); 587 SROACostSavings -= CostIt->second; 588 SROACostSavingsLost += CostIt->second; 589 SROAArgCosts.erase(CostIt); 590 } 591 592 void onDisableLoadElimination() override { 593 addCost(LoadEliminationCost); 594 LoadEliminationCost = 0; 595 } 596 597 bool onCallBaseVisitStart(CallBase &Call) override { 598 if (Optional<int> AttrCallThresholdBonus = 599 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 600 Threshold += *AttrCallThresholdBonus; 601 602 if (Optional<int> AttrCallCost = 603 getStringFnAttrAsInt(Call, "call-inline-cost")) { 604 addCost(*AttrCallCost); 605 // Prevent further processing of the call since we want to override its 606 // inline cost, not just add to it. 607 return false; 608 } 609 return true; 610 } 611 612 void onCallPenalty() override { addCost(CallPenalty); } 613 void onCallArgumentSetup(const CallBase &Call) override { 614 // Pay the price of the argument setup. We account for the average 1 615 // instruction per call argument setup here. 616 addCost(Call.arg_size() * InlineConstants::InstrCost); 617 } 618 void onLoadRelativeIntrinsic() override { 619 // This is normally lowered to 4 LLVM instructions. 620 addCost(3 * InlineConstants::InstrCost); 621 } 622 void onLoweredCall(Function *F, CallBase &Call, 623 bool IsIndirectCall) override { 624 // We account for the average 1 instruction per call argument setup here. 625 addCost(Call.arg_size() * InlineConstants::InstrCost); 626 627 // If we have a constant that we are calling as a function, we can peer 628 // through it and see the function target. This happens not infrequently 629 // during devirtualization and so we want to give it a hefty bonus for 630 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 631 // Pretend to inline the function, with a custom threshold. 632 if (IsIndirectCall && BoostIndirectCalls) { 633 auto IndirectCallParams = Params; 634 IndirectCallParams.DefaultThreshold = 635 InlineConstants::IndirectCallThreshold; 636 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 637 /// to instantiate the derived class. 638 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 639 GetAssumptionCache, GetBFI, PSI, ORE, false); 640 if (CA.analyze().isSuccess()) { 641 // We were able to inline the indirect call! Subtract the cost from the 642 // threshold to get the bonus we want to apply, but don't go below zero. 643 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 644 } 645 } else 646 // Otherwise simply add the cost for merely making the call. 647 addCost(CallPenalty); 648 } 649 650 void onFinalizeSwitch(unsigned JumpTableSize, 651 unsigned NumCaseCluster) override { 652 // If suitable for a jump table, consider the cost for the table size and 653 // branch to destination. 654 // Maximum valid cost increased in this function. 655 if (JumpTableSize) { 656 int64_t JTCost = 657 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 658 4 * InlineConstants::InstrCost; 659 660 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 661 return; 662 } 663 664 if (NumCaseCluster <= 3) { 665 // Suppose a comparison includes one compare and one conditional branch. 666 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 667 return; 668 } 669 670 int64_t ExpectedNumberOfCompare = 671 getExpectedNumberOfCompare(NumCaseCluster); 672 int64_t SwitchCost = 673 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 674 675 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 676 } 677 void onMissedSimplification() override { 678 addCost(InlineConstants::InstrCost); 679 } 680 681 void onInitializeSROAArg(AllocaInst *Arg) override { 682 assert(Arg != nullptr && 683 "Should not initialize SROA costs for null value."); 684 SROAArgCosts[Arg] = 0; 685 } 686 687 void onAggregateSROAUse(AllocaInst *SROAArg) override { 688 auto CostIt = SROAArgCosts.find(SROAArg); 689 assert(CostIt != SROAArgCosts.end() && 690 "expected this argument to have a cost"); 691 CostIt->second += InlineConstants::InstrCost; 692 SROACostSavings += InlineConstants::InstrCost; 693 } 694 695 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 696 697 void onBlockAnalyzed(const BasicBlock *BB) override { 698 if (CostBenefitAnalysisEnabled) { 699 // Keep track of the static size of live but cold basic blocks. For now, 700 // we define a cold basic block to be one that's never executed. 701 assert(GetBFI && "GetBFI must be available"); 702 BlockFrequencyInfo *BFI = &(GetBFI(F)); 703 assert(BFI && "BFI must be available"); 704 auto ProfileCount = BFI->getBlockProfileCount(BB); 705 assert(ProfileCount.hasValue()); 706 if (ProfileCount.getValue() == 0) 707 ColdSize += Cost - CostAtBBStart; 708 } 709 710 auto *TI = BB->getTerminator(); 711 // If we had any successors at this point, than post-inlining is likely to 712 // have them as well. Note that we assume any basic blocks which existed 713 // due to branches or switches which folded above will also fold after 714 // inlining. 715 if (SingleBB && TI->getNumSuccessors() > 1) { 716 // Take off the bonus we applied to the threshold. 717 Threshold -= SingleBBBonus; 718 SingleBB = false; 719 } 720 } 721 722 void onInstructionAnalysisStart(const Instruction *I) override { 723 // This function is called to store the initial cost of inlining before 724 // the given instruction was assessed. 725 if (!PrintInstructionComments) 726 return; 727 InstructionCostDetailMap[I].CostBefore = Cost; 728 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 729 } 730 731 void onInstructionAnalysisFinish(const Instruction *I) override { 732 // This function is called to find new values of cost and threshold after 733 // the instruction has been assessed. 734 if (!PrintInstructionComments) 735 return; 736 InstructionCostDetailMap[I].CostAfter = Cost; 737 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 738 } 739 740 bool isCostBenefitAnalysisEnabled() { 741 if (!PSI || !PSI->hasProfileSummary()) 742 return false; 743 744 if (!GetBFI) 745 return false; 746 747 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 748 // Honor the explicit request from the user. 749 if (!InlineEnableCostBenefitAnalysis) 750 return false; 751 } else { 752 // Otherwise, require instrumentation profile. 753 if (!PSI->hasInstrumentationProfile()) 754 return false; 755 } 756 757 auto *Caller = CandidateCall.getParent()->getParent(); 758 if (!Caller->getEntryCount()) 759 return false; 760 761 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 762 if (!CallerBFI) 763 return false; 764 765 // For now, limit to hot call site. 766 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 767 return false; 768 769 // Make sure we have a nonzero entry count. 770 auto EntryCount = F.getEntryCount(); 771 if (!EntryCount || !EntryCount.getCount()) 772 return false; 773 774 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 775 if (!CalleeBFI) 776 return false; 777 778 return true; 779 } 780 781 // Determine whether we should inline the given call site, taking into account 782 // both the size cost and the cycle savings. Return None if we don't have 783 // suficient profiling information to determine. 784 Optional<bool> costBenefitAnalysis() { 785 if (!CostBenefitAnalysisEnabled) 786 return None; 787 788 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 789 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 790 // falling back to the cost-based metric. 791 // TODO: Improve this hacky condition. 792 if (Threshold == 0) 793 return None; 794 795 assert(GetBFI); 796 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 797 assert(CalleeBFI); 798 799 // The cycle savings expressed as the sum of InlineConstants::InstrCost 800 // multiplied by the estimated dynamic count of each instruction we can 801 // avoid. Savings come from the call site cost, such as argument setup and 802 // the call instruction, as well as the instructions that are folded. 803 // 804 // We use 128-bit APInt here to avoid potential overflow. This variable 805 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 806 // assumes that we can avoid or fold a billion instructions, each with a 807 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 808 // period on a 4GHz machine. 809 APInt CycleSavings(128, 0); 810 811 for (auto &BB : F) { 812 APInt CurrentSavings(128, 0); 813 for (auto &I : BB) { 814 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 815 // Count a conditional branch as savings if it becomes unconditional. 816 if (BI->isConditional() && 817 dyn_cast_or_null<ConstantInt>( 818 SimplifiedValues.lookup(BI->getCondition()))) { 819 CurrentSavings += InlineConstants::InstrCost; 820 } 821 } else if (Value *V = dyn_cast<Value>(&I)) { 822 // Count an instruction as savings if we can fold it. 823 if (SimplifiedValues.count(V)) { 824 CurrentSavings += InlineConstants::InstrCost; 825 } 826 } 827 } 828 829 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 830 assert(ProfileCount.hasValue()); 831 CurrentSavings *= ProfileCount.getValue(); 832 CycleSavings += CurrentSavings; 833 } 834 835 // Compute the cycle savings per call. 836 auto EntryProfileCount = F.getEntryCount(); 837 assert(EntryProfileCount.hasValue() && EntryProfileCount.getCount()); 838 auto EntryCount = EntryProfileCount.getCount(); 839 CycleSavings += EntryCount / 2; 840 CycleSavings = CycleSavings.udiv(EntryCount); 841 842 // Compute the total savings for the call site. 843 auto *CallerBB = CandidateCall.getParent(); 844 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 845 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 846 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 847 848 // Remove the cost of the cold basic blocks. 849 int Size = Cost - ColdSize; 850 851 // Allow tiny callees to be inlined regardless of whether they meet the 852 // savings threshold. 853 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 854 855 CostBenefit.emplace(APInt(128, Size), CycleSavings); 856 857 // Return true if the savings justify the cost of inlining. Specifically, 858 // we evaluate the following inequality: 859 // 860 // CycleSavings PSI->getOrCompHotCountThreshold() 861 // -------------- >= ----------------------------------- 862 // Size InlineSavingsMultiplier 863 // 864 // Note that the left hand side is specific to a call site. The right hand 865 // side is a constant for the entire executable. 866 APInt LHS = CycleSavings; 867 LHS *= InlineSavingsMultiplier; 868 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 869 RHS *= Size; 870 return LHS.uge(RHS); 871 } 872 873 InlineResult finalizeAnalysis() override { 874 // Loops generally act a lot like calls in that they act like barriers to 875 // movement, require a certain amount of setup, etc. So when optimising for 876 // size, we penalise any call sites that perform loops. We do this after all 877 // other costs here, so will likely only be dealing with relatively small 878 // functions (and hence DT and LI will hopefully be cheap). 879 auto *Caller = CandidateCall.getFunction(); 880 if (Caller->hasMinSize()) { 881 DominatorTree DT(F); 882 LoopInfo LI(DT); 883 int NumLoops = 0; 884 for (Loop *L : LI) { 885 // Ignore loops that will not be executed 886 if (DeadBlocks.count(L->getHeader())) 887 continue; 888 NumLoops++; 889 } 890 addCost(NumLoops * InlineConstants::LoopPenalty); 891 } 892 893 // We applied the maximum possible vector bonus at the beginning. Now, 894 // subtract the excess bonus, if any, from the Threshold before 895 // comparing against Cost. 896 if (NumVectorInstructions <= NumInstructions / 10) 897 Threshold -= VectorBonus; 898 else if (NumVectorInstructions <= NumInstructions / 2) 899 Threshold -= VectorBonus / 2; 900 901 if (Optional<int> AttrCost = 902 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 903 Cost = *AttrCost; 904 905 if (Optional<int> AttrThreshold = 906 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 907 Threshold = *AttrThreshold; 908 909 if (auto Result = costBenefitAnalysis()) { 910 DecidedByCostBenefit = true; 911 if (Result.getValue()) 912 return InlineResult::success(); 913 else 914 return InlineResult::failure("Cost over threshold."); 915 } 916 917 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 918 return InlineResult::success(); 919 return InlineResult::failure("Cost over threshold."); 920 } 921 bool shouldStop() override { 922 // Bail out the moment we cross the threshold. This means we'll under-count 923 // the cost, but only when undercounting doesn't matter. 924 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 925 } 926 927 void onLoadEliminationOpportunity() override { 928 LoadEliminationCost += InlineConstants::InstrCost; 929 } 930 931 InlineResult onAnalysisStart() override { 932 // Perform some tweaks to the cost and threshold based on the direct 933 // callsite information. 934 935 // We want to more aggressively inline vector-dense kernels, so up the 936 // threshold, and we'll lower it if the % of vector instructions gets too 937 // low. Note that these bonuses are some what arbitrary and evolved over 938 // time by accident as much as because they are principled bonuses. 939 // 940 // FIXME: It would be nice to remove all such bonuses. At least it would be 941 // nice to base the bonus values on something more scientific. 942 assert(NumInstructions == 0); 943 assert(NumVectorInstructions == 0); 944 945 // Update the threshold based on callsite properties 946 updateThreshold(CandidateCall, F); 947 948 // While Threshold depends on commandline options that can take negative 949 // values, we want to enforce the invariant that the computed threshold and 950 // bonuses are non-negative. 951 assert(Threshold >= 0); 952 assert(SingleBBBonus >= 0); 953 assert(VectorBonus >= 0); 954 955 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 956 // this Threshold any time, and cost cannot decrease, we can stop processing 957 // the rest of the function body. 958 Threshold += (SingleBBBonus + VectorBonus); 959 960 // Give out bonuses for the callsite, as the instructions setting them up 961 // will be gone after inlining. 962 addCost(-getCallsiteCost(this->CandidateCall, DL)); 963 964 // If this function uses the coldcc calling convention, prefer not to inline 965 // it. 966 if (F.getCallingConv() == CallingConv::Cold) 967 Cost += InlineConstants::ColdccPenalty; 968 969 // Check if we're done. This can happen due to bonuses and penalties. 970 if (Cost >= Threshold && !ComputeFullInlineCost) 971 return InlineResult::failure("high cost"); 972 973 return InlineResult::success(); 974 } 975 976 public: 977 InlineCostCallAnalyzer( 978 Function &Callee, CallBase &Call, const InlineParams &Params, 979 const TargetTransformInfo &TTI, 980 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 981 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 982 ProfileSummaryInfo *PSI = nullptr, 983 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 984 bool IgnoreThreshold = false) 985 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 986 ComputeFullInlineCost(OptComputeFullInlineCost || 987 Params.ComputeFullInlineCost || ORE || 988 isCostBenefitAnalysisEnabled()), 989 Params(Params), Threshold(Params.DefaultThreshold), 990 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 991 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 992 Writer(this) { 993 AllowRecursiveCall = Params.AllowRecursiveCall.getValue(); 994 } 995 996 /// Annotation Writer for instruction details 997 InlineCostAnnotationWriter Writer; 998 999 void dump(); 1000 1001 // Prints the same analysis as dump(), but its definition is not dependent 1002 // on the build. 1003 void print(); 1004 1005 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1006 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 1007 return InstructionCostDetailMap[I]; 1008 return None; 1009 } 1010 1011 virtual ~InlineCostCallAnalyzer() {} 1012 int getThreshold() const { return Threshold; } 1013 int getCost() const { return Cost; } 1014 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1015 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1016 }; 1017 1018 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1019 private: 1020 InlineCostFeatures Cost = {}; 1021 1022 // FIXME: These constants are taken from the heuristic-based cost visitor. 1023 // These should be removed entirely in a later revision to avoid reliance on 1024 // heuristics in the ML inliner. 1025 static constexpr int JTCostMultiplier = 4; 1026 static constexpr int CaseClusterCostMultiplier = 2; 1027 static constexpr int SwitchCostMultiplier = 2; 1028 1029 // FIXME: These are taken from the heuristic-based cost visitor: we should 1030 // eventually abstract these to the CallAnalyzer to avoid duplication. 1031 unsigned SROACostSavingOpportunities = 0; 1032 int VectorBonus = 0; 1033 int SingleBBBonus = 0; 1034 int Threshold = 5; 1035 1036 DenseMap<AllocaInst *, unsigned> SROACosts; 1037 1038 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1039 Cost[static_cast<size_t>(Feature)] += Delta; 1040 } 1041 1042 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1043 Cost[static_cast<size_t>(Feature)] = Value; 1044 } 1045 1046 void onDisableSROA(AllocaInst *Arg) override { 1047 auto CostIt = SROACosts.find(Arg); 1048 if (CostIt == SROACosts.end()) 1049 return; 1050 1051 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 1052 SROACostSavingOpportunities -= CostIt->second; 1053 SROACosts.erase(CostIt); 1054 } 1055 1056 void onDisableLoadElimination() override { 1057 set(InlineCostFeatureIndex::LoadElimination, 1); 1058 } 1059 1060 void onCallPenalty() override { 1061 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1062 } 1063 1064 void onCallArgumentSetup(const CallBase &Call) override { 1065 increment(InlineCostFeatureIndex::CallArgumentSetup, 1066 Call.arg_size() * InlineConstants::InstrCost); 1067 } 1068 1069 void onLoadRelativeIntrinsic() override { 1070 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1071 3 * InlineConstants::InstrCost); 1072 } 1073 1074 void onLoweredCall(Function *F, CallBase &Call, 1075 bool IsIndirectCall) override { 1076 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1077 Call.arg_size() * InlineConstants::InstrCost); 1078 1079 if (IsIndirectCall) { 1080 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1081 /*HintThreshold*/ {}, 1082 /*ColdThreshold*/ {}, 1083 /*OptSizeThreshold*/ {}, 1084 /*OptMinSizeThreshold*/ {}, 1085 /*HotCallSiteThreshold*/ {}, 1086 /*LocallyHotCallSiteThreshold*/ {}, 1087 /*ColdCallSiteThreshold*/ {}, 1088 /*ComputeFullInlineCost*/ true, 1089 /*EnableDeferral*/ true}; 1090 IndirectCallParams.DefaultThreshold = 1091 InlineConstants::IndirectCallThreshold; 1092 1093 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1094 GetAssumptionCache, GetBFI, PSI, ORE, false, 1095 true); 1096 if (CA.analyze().isSuccess()) { 1097 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1098 CA.getCost()); 1099 increment(InlineCostFeatureIndex::NestedInlines, 1); 1100 } 1101 } else { 1102 onCallPenalty(); 1103 } 1104 } 1105 1106 void onFinalizeSwitch(unsigned JumpTableSize, 1107 unsigned NumCaseCluster) override { 1108 1109 if (JumpTableSize) { 1110 int64_t JTCost = 1111 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1112 JTCostMultiplier * InlineConstants::InstrCost; 1113 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1114 return; 1115 } 1116 1117 if (NumCaseCluster <= 3) { 1118 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1119 NumCaseCluster * CaseClusterCostMultiplier * 1120 InlineConstants::InstrCost); 1121 return; 1122 } 1123 1124 int64_t ExpectedNumberOfCompare = 1125 getExpectedNumberOfCompare(NumCaseCluster); 1126 1127 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1128 InlineConstants::InstrCost; 1129 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1130 } 1131 1132 void onMissedSimplification() override { 1133 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1134 InlineConstants::InstrCost); 1135 } 1136 1137 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1138 void onAggregateSROAUse(AllocaInst *Arg) override { 1139 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1140 SROACostSavingOpportunities += InlineConstants::InstrCost; 1141 } 1142 1143 void onBlockAnalyzed(const BasicBlock *BB) override { 1144 if (BB->getTerminator()->getNumSuccessors() > 1) 1145 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1146 Threshold -= SingleBBBonus; 1147 } 1148 1149 InlineResult finalizeAnalysis() override { 1150 auto *Caller = CandidateCall.getFunction(); 1151 if (Caller->hasMinSize()) { 1152 DominatorTree DT(F); 1153 LoopInfo LI(DT); 1154 for (Loop *L : LI) { 1155 // Ignore loops that will not be executed 1156 if (DeadBlocks.count(L->getHeader())) 1157 continue; 1158 increment(InlineCostFeatureIndex::NumLoops, 1159 InlineConstants::LoopPenalty); 1160 } 1161 } 1162 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1163 set(InlineCostFeatureIndex::SimplifiedInstructions, 1164 NumInstructionsSimplified); 1165 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1166 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1167 NumConstantOffsetPtrArgs); 1168 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1169 1170 if (NumVectorInstructions <= NumInstructions / 10) 1171 Threshold -= VectorBonus; 1172 else if (NumVectorInstructions <= NumInstructions / 2) 1173 Threshold -= VectorBonus / 2; 1174 1175 set(InlineCostFeatureIndex::Threshold, Threshold); 1176 1177 return InlineResult::success(); 1178 } 1179 1180 bool shouldStop() override { return false; } 1181 1182 void onLoadEliminationOpportunity() override { 1183 increment(InlineCostFeatureIndex::LoadElimination, 1); 1184 } 1185 1186 InlineResult onAnalysisStart() override { 1187 increment(InlineCostFeatureIndex::CallSiteCost, 1188 -1 * getCallsiteCost(this->CandidateCall, DL)); 1189 1190 set(InlineCostFeatureIndex::ColdCcPenalty, 1191 (F.getCallingConv() == CallingConv::Cold)); 1192 1193 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1194 // analyzer - instead, we should abstract it to a common method in the 1195 // CallAnalyzer 1196 int SingleBBBonusPercent = 50; 1197 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1198 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1199 Threshold *= TTI.getInliningThresholdMultiplier(); 1200 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1201 VectorBonus = Threshold * VectorBonusPercent / 100; 1202 Threshold += (SingleBBBonus + VectorBonus); 1203 1204 return InlineResult::success(); 1205 } 1206 1207 public: 1208 InlineCostFeaturesAnalyzer( 1209 const TargetTransformInfo &TTI, 1210 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1211 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1212 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1213 CallBase &Call) 1214 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1215 1216 const InlineCostFeatures &features() const { return Cost; } 1217 }; 1218 1219 } // namespace 1220 1221 /// Test whether the given value is an Alloca-derived function argument. 1222 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1223 return SROAArgValues.count(V); 1224 } 1225 1226 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1227 onDisableSROA(SROAArg); 1228 EnabledSROAAllocas.erase(SROAArg); 1229 disableLoadElimination(); 1230 } 1231 1232 void InlineCostAnnotationWriter::emitInstructionAnnot( 1233 const Instruction *I, formatted_raw_ostream &OS) { 1234 // The cost of inlining of the given instruction is printed always. 1235 // The threshold delta is printed only when it is non-zero. It happens 1236 // when we decided to give a bonus at a particular instruction. 1237 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1238 if (!Record) 1239 OS << "; No analysis for the instruction"; 1240 else { 1241 OS << "; cost before = " << Record->CostBefore 1242 << ", cost after = " << Record->CostAfter 1243 << ", threshold before = " << Record->ThresholdBefore 1244 << ", threshold after = " << Record->ThresholdAfter << ", "; 1245 OS << "cost delta = " << Record->getCostDelta(); 1246 if (Record->hasThresholdChanged()) 1247 OS << ", threshold delta = " << Record->getThresholdDelta(); 1248 } 1249 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1250 if (C) { 1251 OS << ", simplified to "; 1252 C.getValue()->print(OS, true); 1253 } 1254 OS << "\n"; 1255 } 1256 1257 /// If 'V' maps to a SROA candidate, disable SROA for it. 1258 void CallAnalyzer::disableSROA(Value *V) { 1259 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1260 disableSROAForArg(SROAArg); 1261 } 1262 } 1263 1264 void CallAnalyzer::disableLoadElimination() { 1265 if (EnableLoadElimination) { 1266 onDisableLoadElimination(); 1267 EnableLoadElimination = false; 1268 } 1269 } 1270 1271 /// Accumulate a constant GEP offset into an APInt if possible. 1272 /// 1273 /// Returns false if unable to compute the offset for any reason. Respects any 1274 /// simplified values known during the analysis of this callsite. 1275 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1276 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1277 assert(IntPtrWidth == Offset.getBitWidth()); 1278 1279 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1280 GTI != GTE; ++GTI) { 1281 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1282 if (!OpC) 1283 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1284 OpC = dyn_cast<ConstantInt>(SimpleOp); 1285 if (!OpC) 1286 return false; 1287 if (OpC->isZero()) 1288 continue; 1289 1290 // Handle a struct index, which adds its field offset to the pointer. 1291 if (StructType *STy = GTI.getStructTypeOrNull()) { 1292 unsigned ElementIdx = OpC->getZExtValue(); 1293 const StructLayout *SL = DL.getStructLayout(STy); 1294 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1295 continue; 1296 } 1297 1298 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1299 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1300 } 1301 return true; 1302 } 1303 1304 /// Use TTI to check whether a GEP is free. 1305 /// 1306 /// Respects any simplified values known during the analysis of this callsite. 1307 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1308 SmallVector<Value *, 4> Operands; 1309 Operands.push_back(GEP.getOperand(0)); 1310 for (const Use &Op : GEP.indices()) 1311 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1312 Operands.push_back(SimpleOp); 1313 else 1314 Operands.push_back(Op); 1315 return TTI.getUserCost(&GEP, Operands, 1316 TargetTransformInfo::TCK_SizeAndLatency) == 1317 TargetTransformInfo::TCC_Free; 1318 } 1319 1320 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1321 disableSROA(I.getOperand(0)); 1322 1323 // Check whether inlining will turn a dynamic alloca into a static 1324 // alloca and handle that case. 1325 if (I.isArrayAllocation()) { 1326 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1327 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1328 // Sometimes a dynamic alloca could be converted into a static alloca 1329 // after this constant prop, and become a huge static alloca on an 1330 // unconditional CFG path. Avoid inlining if this is going to happen above 1331 // a threshold. 1332 // FIXME: If the threshold is removed or lowered too much, we could end up 1333 // being too pessimistic and prevent inlining non-problematic code. This 1334 // could result in unintended perf regressions. A better overall strategy 1335 // is needed to track stack usage during inlining. 1336 Type *Ty = I.getAllocatedType(); 1337 AllocatedSize = SaturatingMultiplyAdd( 1338 AllocSize->getLimitedValue(), 1339 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1340 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1341 HasDynamicAlloca = true; 1342 return false; 1343 } 1344 } 1345 1346 // Accumulate the allocated size. 1347 if (I.isStaticAlloca()) { 1348 Type *Ty = I.getAllocatedType(); 1349 AllocatedSize = 1350 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1351 } 1352 1353 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1354 // a variety of reasons, and so we would like to not inline them into 1355 // functions which don't currently have a dynamic alloca. This simply 1356 // disables inlining altogether in the presence of a dynamic alloca. 1357 if (!I.isStaticAlloca()) 1358 HasDynamicAlloca = true; 1359 1360 return false; 1361 } 1362 1363 bool CallAnalyzer::visitPHI(PHINode &I) { 1364 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1365 // though we don't want to propagate it's bonuses. The idea is to disable 1366 // SROA if it *might* be used in an inappropriate manner. 1367 1368 // Phi nodes are always zero-cost. 1369 // FIXME: Pointer sizes may differ between different address spaces, so do we 1370 // need to use correct address space in the call to getPointerSizeInBits here? 1371 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1372 // see the ZeroOffset is used as a dummy value, so we can probably use any 1373 // bit width for the ZeroOffset? 1374 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1375 bool CheckSROA = I.getType()->isPointerTy(); 1376 1377 // Track the constant or pointer with constant offset we've seen so far. 1378 Constant *FirstC = nullptr; 1379 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1380 Value *FirstV = nullptr; 1381 1382 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1383 BasicBlock *Pred = I.getIncomingBlock(i); 1384 // If the incoming block is dead, skip the incoming block. 1385 if (DeadBlocks.count(Pred)) 1386 continue; 1387 // If the parent block of phi is not the known successor of the incoming 1388 // block, skip the incoming block. 1389 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1390 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1391 continue; 1392 1393 Value *V = I.getIncomingValue(i); 1394 // If the incoming value is this phi itself, skip the incoming value. 1395 if (&I == V) 1396 continue; 1397 1398 Constant *C = dyn_cast<Constant>(V); 1399 if (!C) 1400 C = SimplifiedValues.lookup(V); 1401 1402 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1403 if (!C && CheckSROA) 1404 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1405 1406 if (!C && !BaseAndOffset.first) 1407 // The incoming value is neither a constant nor a pointer with constant 1408 // offset, exit early. 1409 return true; 1410 1411 if (FirstC) { 1412 if (FirstC == C) 1413 // If we've seen a constant incoming value before and it is the same 1414 // constant we see this time, continue checking the next incoming value. 1415 continue; 1416 // Otherwise early exit because we either see a different constant or saw 1417 // a constant before but we have a pointer with constant offset this time. 1418 return true; 1419 } 1420 1421 if (FirstV) { 1422 // The same logic as above, but check pointer with constant offset here. 1423 if (FirstBaseAndOffset == BaseAndOffset) 1424 continue; 1425 return true; 1426 } 1427 1428 if (C) { 1429 // This is the 1st time we've seen a constant, record it. 1430 FirstC = C; 1431 continue; 1432 } 1433 1434 // The remaining case is that this is the 1st time we've seen a pointer with 1435 // constant offset, record it. 1436 FirstV = V; 1437 FirstBaseAndOffset = BaseAndOffset; 1438 } 1439 1440 // Check if we can map phi to a constant. 1441 if (FirstC) { 1442 SimplifiedValues[&I] = FirstC; 1443 return true; 1444 } 1445 1446 // Check if we can map phi to a pointer with constant offset. 1447 if (FirstBaseAndOffset.first) { 1448 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1449 1450 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1451 SROAArgValues[&I] = SROAArg; 1452 } 1453 1454 return true; 1455 } 1456 1457 /// Check we can fold GEPs of constant-offset call site argument pointers. 1458 /// This requires target data and inbounds GEPs. 1459 /// 1460 /// \return true if the specified GEP can be folded. 1461 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1462 // Check if we have a base + offset for the pointer. 1463 std::pair<Value *, APInt> BaseAndOffset = 1464 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1465 if (!BaseAndOffset.first) 1466 return false; 1467 1468 // Check if the offset of this GEP is constant, and if so accumulate it 1469 // into Offset. 1470 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1471 return false; 1472 1473 // Add the result as a new mapping to Base + Offset. 1474 ConstantOffsetPtrs[&I] = BaseAndOffset; 1475 1476 return true; 1477 } 1478 1479 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1480 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1481 1482 // Lambda to check whether a GEP's indices are all constant. 1483 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1484 for (const Use &Op : GEP.indices()) 1485 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1486 return false; 1487 return true; 1488 }; 1489 1490 if (!DisableGEPConstOperand) 1491 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1492 SmallVector<Constant *, 2> Indices; 1493 for (unsigned int Index = 1; Index < COps.size(); ++Index) 1494 Indices.push_back(COps[Index]); 1495 return ConstantExpr::getGetElementPtr( 1496 I.getSourceElementType(), COps[0], Indices, I.isInBounds()); 1497 })) 1498 return true; 1499 1500 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1501 if (SROAArg) 1502 SROAArgValues[&I] = SROAArg; 1503 1504 // Constant GEPs are modeled as free. 1505 return true; 1506 } 1507 1508 // Variable GEPs will require math and will disable SROA. 1509 if (SROAArg) 1510 disableSROAForArg(SROAArg); 1511 return isGEPFree(I); 1512 } 1513 1514 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1515 /// \p Evaluate is a callable specific to instruction type that evaluates the 1516 /// instruction when all the operands are constants. 1517 template <typename Callable> 1518 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1519 SmallVector<Constant *, 2> COps; 1520 for (Value *Op : I.operands()) { 1521 Constant *COp = dyn_cast<Constant>(Op); 1522 if (!COp) 1523 COp = SimplifiedValues.lookup(Op); 1524 if (!COp) 1525 return false; 1526 COps.push_back(COp); 1527 } 1528 auto *C = Evaluate(COps); 1529 if (!C) 1530 return false; 1531 SimplifiedValues[&I] = C; 1532 return true; 1533 } 1534 1535 /// Try to simplify a call to llvm.is.constant. 1536 /// 1537 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1538 /// we expect calls of this specific intrinsic to be infrequent. 1539 /// 1540 /// FIXME: Given that we know CB's parent (F) caller 1541 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1542 /// whether inlining F into F's caller would change how the call to 1543 /// llvm.is.constant would evaluate. 1544 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1545 Value *Arg = CB.getArgOperand(0); 1546 auto *C = dyn_cast<Constant>(Arg); 1547 1548 if (!C) 1549 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1550 1551 Type *RT = CB.getFunctionType()->getReturnType(); 1552 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1553 return true; 1554 } 1555 1556 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1557 // Propagate constants through bitcasts. 1558 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1559 return ConstantExpr::getBitCast(COps[0], I.getType()); 1560 })) 1561 return true; 1562 1563 // Track base/offsets through casts 1564 std::pair<Value *, APInt> BaseAndOffset = 1565 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1566 // Casts don't change the offset, just wrap it up. 1567 if (BaseAndOffset.first) 1568 ConstantOffsetPtrs[&I] = BaseAndOffset; 1569 1570 // Also look for SROA candidates here. 1571 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1572 SROAArgValues[&I] = SROAArg; 1573 1574 // Bitcasts are always zero cost. 1575 return true; 1576 } 1577 1578 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1579 // Propagate constants through ptrtoint. 1580 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1581 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1582 })) 1583 return true; 1584 1585 // Track base/offset pairs when converted to a plain integer provided the 1586 // integer is large enough to represent the pointer. 1587 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1588 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1589 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1590 std::pair<Value *, APInt> BaseAndOffset = 1591 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1592 if (BaseAndOffset.first) 1593 ConstantOffsetPtrs[&I] = BaseAndOffset; 1594 } 1595 1596 // This is really weird. Technically, ptrtoint will disable SROA. However, 1597 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1598 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1599 // would block SROA would also block SROA if applied directly to a pointer, 1600 // and so we can just add the integer in here. The only places where SROA is 1601 // preserved either cannot fire on an integer, or won't in-and-of themselves 1602 // disable SROA (ext) w/o some later use that we would see and disable. 1603 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1604 SROAArgValues[&I] = SROAArg; 1605 1606 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1607 TargetTransformInfo::TCC_Free; 1608 } 1609 1610 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1611 // Propagate constants through ptrtoint. 1612 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1613 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1614 })) 1615 return true; 1616 1617 // Track base/offset pairs when round-tripped through a pointer without 1618 // modifications provided the integer is not too large. 1619 Value *Op = I.getOperand(0); 1620 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1621 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1622 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1623 if (BaseAndOffset.first) 1624 ConstantOffsetPtrs[&I] = BaseAndOffset; 1625 } 1626 1627 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1628 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1629 SROAArgValues[&I] = SROAArg; 1630 1631 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1632 TargetTransformInfo::TCC_Free; 1633 } 1634 1635 bool CallAnalyzer::visitCastInst(CastInst &I) { 1636 // Propagate constants through casts. 1637 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1638 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1639 })) 1640 return true; 1641 1642 // Disable SROA in the face of arbitrary casts we don't explicitly list 1643 // elsewhere. 1644 disableSROA(I.getOperand(0)); 1645 1646 // If this is a floating-point cast, and the target says this operation 1647 // is expensive, this may eventually become a library call. Treat the cost 1648 // as such. 1649 switch (I.getOpcode()) { 1650 case Instruction::FPTrunc: 1651 case Instruction::FPExt: 1652 case Instruction::UIToFP: 1653 case Instruction::SIToFP: 1654 case Instruction::FPToUI: 1655 case Instruction::FPToSI: 1656 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1657 onCallPenalty(); 1658 break; 1659 default: 1660 break; 1661 } 1662 1663 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1664 TargetTransformInfo::TCC_Free; 1665 } 1666 1667 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1668 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1669 } 1670 1671 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1672 // Does the *call site* have the NonNull attribute set on an argument? We 1673 // use the attribute on the call site to memoize any analysis done in the 1674 // caller. This will also trip if the callee function has a non-null 1675 // parameter attribute, but that's a less interesting case because hopefully 1676 // the callee would already have been simplified based on that. 1677 if (Argument *A = dyn_cast<Argument>(V)) 1678 if (paramHasAttr(A, Attribute::NonNull)) 1679 return true; 1680 1681 // Is this an alloca in the caller? This is distinct from the attribute case 1682 // above because attributes aren't updated within the inliner itself and we 1683 // always want to catch the alloca derived case. 1684 if (isAllocaDerivedArg(V)) 1685 // We can actually predict the result of comparisons between an 1686 // alloca-derived value and null. Note that this fires regardless of 1687 // SROA firing. 1688 return true; 1689 1690 return false; 1691 } 1692 1693 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1694 // If the normal destination of the invoke or the parent block of the call 1695 // site is unreachable-terminated, there is little point in inlining this 1696 // unless there is literally zero cost. 1697 // FIXME: Note that it is possible that an unreachable-terminated block has a 1698 // hot entry. For example, in below scenario inlining hot_call_X() may be 1699 // beneficial : 1700 // main() { 1701 // hot_call_1(); 1702 // ... 1703 // hot_call_N() 1704 // exit(0); 1705 // } 1706 // For now, we are not handling this corner case here as it is rare in real 1707 // code. In future, we should elaborate this based on BPI and BFI in more 1708 // general threshold adjusting heuristics in updateThreshold(). 1709 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1710 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1711 return false; 1712 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1713 return false; 1714 1715 return true; 1716 } 1717 1718 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1719 BlockFrequencyInfo *CallerBFI) { 1720 // If global profile summary is available, then callsite's coldness is 1721 // determined based on that. 1722 if (PSI && PSI->hasProfileSummary()) 1723 return PSI->isColdCallSite(Call, CallerBFI); 1724 1725 // Otherwise we need BFI to be available. 1726 if (!CallerBFI) 1727 return false; 1728 1729 // Determine if the callsite is cold relative to caller's entry. We could 1730 // potentially cache the computation of scaled entry frequency, but the added 1731 // complexity is not worth it unless this scaling shows up high in the 1732 // profiles. 1733 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1734 auto CallSiteBB = Call.getParent(); 1735 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1736 auto CallerEntryFreq = 1737 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1738 return CallSiteFreq < CallerEntryFreq * ColdProb; 1739 } 1740 1741 Optional<int> 1742 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1743 BlockFrequencyInfo *CallerBFI) { 1744 1745 // If global profile summary is available, then callsite's hotness is 1746 // determined based on that. 1747 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1748 return Params.HotCallSiteThreshold; 1749 1750 // Otherwise we need BFI to be available and to have a locally hot callsite 1751 // threshold. 1752 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1753 return None; 1754 1755 // Determine if the callsite is hot relative to caller's entry. We could 1756 // potentially cache the computation of scaled entry frequency, but the added 1757 // complexity is not worth it unless this scaling shows up high in the 1758 // profiles. 1759 auto CallSiteBB = Call.getParent(); 1760 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1761 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1762 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1763 return Params.LocallyHotCallSiteThreshold; 1764 1765 // Otherwise treat it normally. 1766 return None; 1767 } 1768 1769 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1770 // If no size growth is allowed for this inlining, set Threshold to 0. 1771 if (!allowSizeGrowth(Call)) { 1772 Threshold = 0; 1773 return; 1774 } 1775 1776 Function *Caller = Call.getCaller(); 1777 1778 // return min(A, B) if B is valid. 1779 auto MinIfValid = [](int A, Optional<int> B) { 1780 return B ? std::min(A, B.getValue()) : A; 1781 }; 1782 1783 // return max(A, B) if B is valid. 1784 auto MaxIfValid = [](int A, Optional<int> B) { 1785 return B ? std::max(A, B.getValue()) : A; 1786 }; 1787 1788 // Various bonus percentages. These are multiplied by Threshold to get the 1789 // bonus values. 1790 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1791 // basic block at the given callsite context. This is speculatively applied 1792 // and withdrawn if more than one basic block is seen. 1793 // 1794 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1795 // of the last call to a static function as inlining such functions is 1796 // guaranteed to reduce code size. 1797 // 1798 // These bonus percentages may be set to 0 based on properties of the caller 1799 // and the callsite. 1800 int SingleBBBonusPercent = 50; 1801 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1802 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1803 1804 // Lambda to set all the above bonus and bonus percentages to 0. 1805 auto DisallowAllBonuses = [&]() { 1806 SingleBBBonusPercent = 0; 1807 VectorBonusPercent = 0; 1808 LastCallToStaticBonus = 0; 1809 }; 1810 1811 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1812 // and reduce the threshold if the caller has the necessary attribute. 1813 if (Caller->hasMinSize()) { 1814 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1815 // For minsize, we want to disable the single BB bonus and the vector 1816 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1817 // a static function will, at the minimum, eliminate the parameter setup and 1818 // call/return instructions. 1819 SingleBBBonusPercent = 0; 1820 VectorBonusPercent = 0; 1821 } else if (Caller->hasOptSize()) 1822 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1823 1824 // Adjust the threshold based on inlinehint attribute and profile based 1825 // hotness information if the caller does not have MinSize attribute. 1826 if (!Caller->hasMinSize()) { 1827 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1828 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1829 1830 // FIXME: After switching to the new passmanager, simplify the logic below 1831 // by checking only the callsite hotness/coldness as we will reliably 1832 // have local profile information. 1833 // 1834 // Callsite hotness and coldness can be determined if sample profile is 1835 // used (which adds hotness metadata to calls) or if caller's 1836 // BlockFrequencyInfo is available. 1837 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1838 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1839 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1840 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1841 // FIXME: This should update the threshold only if it exceeds the 1842 // current threshold, but AutoFDO + ThinLTO currently relies on this 1843 // behavior to prevent inlining of hot callsites during ThinLTO 1844 // compile phase. 1845 Threshold = HotCallSiteThreshold.getValue(); 1846 } else if (isColdCallSite(Call, CallerBFI)) { 1847 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1848 // Do not apply bonuses for a cold callsite including the 1849 // LastCallToStatic bonus. While this bonus might result in code size 1850 // reduction, it can cause the size of a non-cold caller to increase 1851 // preventing it from being inlined. 1852 DisallowAllBonuses(); 1853 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1854 } else if (PSI) { 1855 // Use callee's global profile information only if we have no way of 1856 // determining this via callsite information. 1857 if (PSI->isFunctionEntryHot(&Callee)) { 1858 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1859 // If callsite hotness can not be determined, we may still know 1860 // that the callee is hot and treat it as a weaker hint for threshold 1861 // increase. 1862 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1863 } else if (PSI->isFunctionEntryCold(&Callee)) { 1864 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1865 // Do not apply bonuses for a cold callee including the 1866 // LastCallToStatic bonus. While this bonus might result in code size 1867 // reduction, it can cause the size of a non-cold caller to increase 1868 // preventing it from being inlined. 1869 DisallowAllBonuses(); 1870 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1871 } 1872 } 1873 } 1874 1875 Threshold += TTI.adjustInliningThreshold(&Call); 1876 1877 // Finally, take the target-specific inlining threshold multiplier into 1878 // account. 1879 Threshold *= TTI.getInliningThresholdMultiplier(); 1880 1881 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1882 VectorBonus = Threshold * VectorBonusPercent / 100; 1883 1884 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 1885 &F == Call.getCalledFunction(); 1886 // If there is only one call of the function, and it has internal linkage, 1887 // the cost of inlining it drops dramatically. It may seem odd to update 1888 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1889 if (OnlyOneCallAndLocalLinkage) 1890 Cost -= LastCallToStaticBonus; 1891 } 1892 1893 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1894 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1895 // First try to handle simplified comparisons. 1896 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1897 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1898 })) 1899 return true; 1900 1901 if (I.getOpcode() == Instruction::FCmp) 1902 return false; 1903 1904 // Otherwise look for a comparison between constant offset pointers with 1905 // a common base. 1906 Value *LHSBase, *RHSBase; 1907 APInt LHSOffset, RHSOffset; 1908 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1909 if (LHSBase) { 1910 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1911 if (RHSBase && LHSBase == RHSBase) { 1912 // We have common bases, fold the icmp to a constant based on the 1913 // offsets. 1914 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1915 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1916 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1917 SimplifiedValues[&I] = C; 1918 ++NumConstantPtrCmps; 1919 return true; 1920 } 1921 } 1922 } 1923 1924 // If the comparison is an equality comparison with null, we can simplify it 1925 // if we know the value (argument) can't be null 1926 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1927 isKnownNonNullInCallee(I.getOperand(0))) { 1928 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1929 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1930 : ConstantInt::getFalse(I.getType()); 1931 return true; 1932 } 1933 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1934 } 1935 1936 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1937 // Try to handle a special case: we can fold computing the difference of two 1938 // constant-related pointers. 1939 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1940 Value *LHSBase, *RHSBase; 1941 APInt LHSOffset, RHSOffset; 1942 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1943 if (LHSBase) { 1944 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1945 if (RHSBase && LHSBase == RHSBase) { 1946 // We have common bases, fold the subtract to a constant based on the 1947 // offsets. 1948 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1949 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1950 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1951 SimplifiedValues[&I] = C; 1952 ++NumConstantPtrDiffs; 1953 return true; 1954 } 1955 } 1956 } 1957 1958 // Otherwise, fall back to the generic logic for simplifying and handling 1959 // instructions. 1960 return Base::visitSub(I); 1961 } 1962 1963 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1964 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1965 Constant *CLHS = dyn_cast<Constant>(LHS); 1966 if (!CLHS) 1967 CLHS = SimplifiedValues.lookup(LHS); 1968 Constant *CRHS = dyn_cast<Constant>(RHS); 1969 if (!CRHS) 1970 CRHS = SimplifiedValues.lookup(RHS); 1971 1972 Value *SimpleV = nullptr; 1973 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1974 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1975 FI->getFastMathFlags(), DL); 1976 else 1977 SimpleV = 1978 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1979 1980 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1981 SimplifiedValues[&I] = C; 1982 1983 if (SimpleV) 1984 return true; 1985 1986 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1987 disableSROA(LHS); 1988 disableSROA(RHS); 1989 1990 // If the instruction is floating point, and the target says this operation 1991 // is expensive, this may eventually become a library call. Treat the cost 1992 // as such. Unless it's fneg which can be implemented with an xor. 1993 using namespace llvm::PatternMatch; 1994 if (I.getType()->isFloatingPointTy() && 1995 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1996 !match(&I, m_FNeg(m_Value()))) 1997 onCallPenalty(); 1998 1999 return false; 2000 } 2001 2002 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2003 Value *Op = I.getOperand(0); 2004 Constant *COp = dyn_cast<Constant>(Op); 2005 if (!COp) 2006 COp = SimplifiedValues.lookup(Op); 2007 2008 Value *SimpleV = SimplifyFNegInst( 2009 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2010 2011 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2012 SimplifiedValues[&I] = C; 2013 2014 if (SimpleV) 2015 return true; 2016 2017 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2018 disableSROA(Op); 2019 2020 return false; 2021 } 2022 2023 bool CallAnalyzer::visitLoad(LoadInst &I) { 2024 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2025 return true; 2026 2027 // If the data is already loaded from this address and hasn't been clobbered 2028 // by any stores or calls, this load is likely to be redundant and can be 2029 // eliminated. 2030 if (EnableLoadElimination && 2031 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2032 onLoadEliminationOpportunity(); 2033 return true; 2034 } 2035 2036 return false; 2037 } 2038 2039 bool CallAnalyzer::visitStore(StoreInst &I) { 2040 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2041 return true; 2042 2043 // The store can potentially clobber loads and prevent repeated loads from 2044 // being eliminated. 2045 // FIXME: 2046 // 1. We can probably keep an initial set of eliminatable loads substracted 2047 // from the cost even when we finally see a store. We just need to disable 2048 // *further* accumulation of elimination savings. 2049 // 2. We should probably at some point thread MemorySSA for the callee into 2050 // this and then use that to actually compute *really* precise savings. 2051 disableLoadElimination(); 2052 return false; 2053 } 2054 2055 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2056 // Constant folding for extract value is trivial. 2057 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2058 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 2059 })) 2060 return true; 2061 2062 // SROA can't look through these, but they may be free. 2063 return Base::visitExtractValue(I); 2064 } 2065 2066 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2067 // Constant folding for insert value is trivial. 2068 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2069 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 2070 /*InsertedValueOperand*/ COps[1], 2071 I.getIndices()); 2072 })) 2073 return true; 2074 2075 // SROA can't look through these, but they may be free. 2076 return Base::visitInsertValue(I); 2077 } 2078 2079 /// Try to simplify a call site. 2080 /// 2081 /// Takes a concrete function and callsite and tries to actually simplify it by 2082 /// analyzing the arguments and call itself with instsimplify. Returns true if 2083 /// it has simplified the callsite to some other entity (a constant), making it 2084 /// free. 2085 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2086 // FIXME: Using the instsimplify logic directly for this is inefficient 2087 // because we have to continually rebuild the argument list even when no 2088 // simplifications can be performed. Until that is fixed with remapping 2089 // inside of instsimplify, directly constant fold calls here. 2090 if (!canConstantFoldCallTo(&Call, F)) 2091 return false; 2092 2093 // Try to re-map the arguments to constants. 2094 SmallVector<Constant *, 4> ConstantArgs; 2095 ConstantArgs.reserve(Call.arg_size()); 2096 for (Value *I : Call.args()) { 2097 Constant *C = dyn_cast<Constant>(I); 2098 if (!C) 2099 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2100 if (!C) 2101 return false; // This argument doesn't map to a constant. 2102 2103 ConstantArgs.push_back(C); 2104 } 2105 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2106 SimplifiedValues[&Call] = C; 2107 return true; 2108 } 2109 2110 return false; 2111 } 2112 2113 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2114 if (!onCallBaseVisitStart(Call)) 2115 return true; 2116 2117 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2118 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2119 // This aborts the entire analysis. 2120 ExposesReturnsTwice = true; 2121 return false; 2122 } 2123 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2124 ContainsNoDuplicateCall = true; 2125 2126 Value *Callee = Call.getCalledOperand(); 2127 Function *F = dyn_cast_or_null<Function>(Callee); 2128 bool IsIndirectCall = !F; 2129 if (IsIndirectCall) { 2130 // Check if this happens to be an indirect function call to a known function 2131 // in this inline context. If not, we've done all we can. 2132 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2133 if (!F) { 2134 onCallArgumentSetup(Call); 2135 2136 if (!Call.onlyReadsMemory()) 2137 disableLoadElimination(); 2138 return Base::visitCallBase(Call); 2139 } 2140 } 2141 2142 assert(F && "Expected a call to a known function"); 2143 2144 // When we have a concrete function, first try to simplify it directly. 2145 if (simplifyCallSite(F, Call)) 2146 return true; 2147 2148 // Next check if it is an intrinsic we know about. 2149 // FIXME: Lift this into part of the InstVisitor. 2150 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2151 switch (II->getIntrinsicID()) { 2152 default: 2153 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2154 disableLoadElimination(); 2155 return Base::visitCallBase(Call); 2156 2157 case Intrinsic::load_relative: 2158 onLoadRelativeIntrinsic(); 2159 return false; 2160 2161 case Intrinsic::memset: 2162 case Intrinsic::memcpy: 2163 case Intrinsic::memmove: 2164 disableLoadElimination(); 2165 // SROA can usually chew through these intrinsics, but they aren't free. 2166 return false; 2167 case Intrinsic::icall_branch_funnel: 2168 case Intrinsic::localescape: 2169 HasUninlineableIntrinsic = true; 2170 return false; 2171 case Intrinsic::vastart: 2172 InitsVargArgs = true; 2173 return false; 2174 case Intrinsic::launder_invariant_group: 2175 case Intrinsic::strip_invariant_group: 2176 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2177 SROAArgValues[II] = SROAArg; 2178 return true; 2179 case Intrinsic::is_constant: 2180 return simplifyIntrinsicCallIsConstant(Call); 2181 } 2182 } 2183 2184 if (F == Call.getFunction()) { 2185 // This flag will fully abort the analysis, so don't bother with anything 2186 // else. 2187 IsRecursiveCall = true; 2188 if (!AllowRecursiveCall) 2189 return false; 2190 } 2191 2192 if (TTI.isLoweredToCall(F)) { 2193 onLoweredCall(F, Call, IsIndirectCall); 2194 } 2195 2196 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2197 disableLoadElimination(); 2198 return Base::visitCallBase(Call); 2199 } 2200 2201 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2202 // At least one return instruction will be free after inlining. 2203 bool Free = !HasReturn; 2204 HasReturn = true; 2205 return Free; 2206 } 2207 2208 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2209 // We model unconditional branches as essentially free -- they really 2210 // shouldn't exist at all, but handling them makes the behavior of the 2211 // inliner more regular and predictable. Interestingly, conditional branches 2212 // which will fold away are also free. 2213 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2214 dyn_cast_or_null<ConstantInt>( 2215 SimplifiedValues.lookup(BI.getCondition())); 2216 } 2217 2218 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2219 bool CheckSROA = SI.getType()->isPointerTy(); 2220 Value *TrueVal = SI.getTrueValue(); 2221 Value *FalseVal = SI.getFalseValue(); 2222 2223 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2224 if (!TrueC) 2225 TrueC = SimplifiedValues.lookup(TrueVal); 2226 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2227 if (!FalseC) 2228 FalseC = SimplifiedValues.lookup(FalseVal); 2229 Constant *CondC = 2230 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2231 2232 if (!CondC) { 2233 // Select C, X, X => X 2234 if (TrueC == FalseC && TrueC) { 2235 SimplifiedValues[&SI] = TrueC; 2236 return true; 2237 } 2238 2239 if (!CheckSROA) 2240 return Base::visitSelectInst(SI); 2241 2242 std::pair<Value *, APInt> TrueBaseAndOffset = 2243 ConstantOffsetPtrs.lookup(TrueVal); 2244 std::pair<Value *, APInt> FalseBaseAndOffset = 2245 ConstantOffsetPtrs.lookup(FalseVal); 2246 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2247 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2248 2249 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2250 SROAArgValues[&SI] = SROAArg; 2251 return true; 2252 } 2253 2254 return Base::visitSelectInst(SI); 2255 } 2256 2257 // Select condition is a constant. 2258 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2259 : (CondC->isNullValue()) ? FalseVal 2260 : nullptr; 2261 if (!SelectedV) { 2262 // Condition is a vector constant that is not all 1s or all 0s. If all 2263 // operands are constants, ConstantExpr::getSelect() can handle the cases 2264 // such as select vectors. 2265 if (TrueC && FalseC) { 2266 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2267 SimplifiedValues[&SI] = C; 2268 return true; 2269 } 2270 } 2271 return Base::visitSelectInst(SI); 2272 } 2273 2274 // Condition is either all 1s or all 0s. SI can be simplified. 2275 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2276 SimplifiedValues[&SI] = SelectedC; 2277 return true; 2278 } 2279 2280 if (!CheckSROA) 2281 return true; 2282 2283 std::pair<Value *, APInt> BaseAndOffset = 2284 ConstantOffsetPtrs.lookup(SelectedV); 2285 if (BaseAndOffset.first) { 2286 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2287 2288 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2289 SROAArgValues[&SI] = SROAArg; 2290 } 2291 2292 return true; 2293 } 2294 2295 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2296 // We model unconditional switches as free, see the comments on handling 2297 // branches. 2298 if (isa<ConstantInt>(SI.getCondition())) 2299 return true; 2300 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2301 if (isa<ConstantInt>(V)) 2302 return true; 2303 2304 // Assume the most general case where the switch is lowered into 2305 // either a jump table, bit test, or a balanced binary tree consisting of 2306 // case clusters without merging adjacent clusters with the same 2307 // destination. We do not consider the switches that are lowered with a mix 2308 // of jump table/bit test/binary search tree. The cost of the switch is 2309 // proportional to the size of the tree or the size of jump table range. 2310 // 2311 // NB: We convert large switches which are just used to initialize large phi 2312 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2313 // inlining those. It will prevent inlining in cases where the optimization 2314 // does not (yet) fire. 2315 2316 unsigned JumpTableSize = 0; 2317 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2318 unsigned NumCaseCluster = 2319 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2320 2321 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2322 return false; 2323 } 2324 2325 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2326 // We never want to inline functions that contain an indirectbr. This is 2327 // incorrect because all the blockaddress's (in static global initializers 2328 // for example) would be referring to the original function, and this 2329 // indirect jump would jump from the inlined copy of the function into the 2330 // original function which is extremely undefined behavior. 2331 // FIXME: This logic isn't really right; we can safely inline functions with 2332 // indirectbr's as long as no other function or global references the 2333 // blockaddress of a block within the current function. 2334 HasIndirectBr = true; 2335 return false; 2336 } 2337 2338 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2339 // FIXME: It's not clear that a single instruction is an accurate model for 2340 // the inline cost of a resume instruction. 2341 return false; 2342 } 2343 2344 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2345 // FIXME: It's not clear that a single instruction is an accurate model for 2346 // the inline cost of a cleanupret instruction. 2347 return false; 2348 } 2349 2350 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2351 // FIXME: It's not clear that a single instruction is an accurate model for 2352 // the inline cost of a catchret instruction. 2353 return false; 2354 } 2355 2356 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2357 // FIXME: It might be reasonably to discount the cost of instructions leading 2358 // to unreachable as they have the lowest possible impact on both runtime and 2359 // code size. 2360 return true; // No actual code is needed for unreachable. 2361 } 2362 2363 bool CallAnalyzer::visitInstruction(Instruction &I) { 2364 // Some instructions are free. All of the free intrinsics can also be 2365 // handled by SROA, etc. 2366 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2367 TargetTransformInfo::TCC_Free) 2368 return true; 2369 2370 // We found something we don't understand or can't handle. Mark any SROA-able 2371 // values in the operand list as no longer viable. 2372 for (const Use &Op : I.operands()) 2373 disableSROA(Op); 2374 2375 return false; 2376 } 2377 2378 /// Analyze a basic block for its contribution to the inline cost. 2379 /// 2380 /// This method walks the analyzer over every instruction in the given basic 2381 /// block and accounts for their cost during inlining at this callsite. It 2382 /// aborts early if the threshold has been exceeded or an impossible to inline 2383 /// construct has been detected. It returns false if inlining is no longer 2384 /// viable, and true if inlining remains viable. 2385 InlineResult 2386 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2387 SmallPtrSetImpl<const Value *> &EphValues) { 2388 for (Instruction &I : *BB) { 2389 // FIXME: Currently, the number of instructions in a function regardless of 2390 // our ability to simplify them during inline to constants or dead code, 2391 // are actually used by the vector bonus heuristic. As long as that's true, 2392 // we have to special case debug intrinsics here to prevent differences in 2393 // inlining due to debug symbols. Eventually, the number of unsimplified 2394 // instructions shouldn't factor into the cost computation, but until then, 2395 // hack around it here. 2396 // Similarly, skip pseudo-probes. 2397 if (I.isDebugOrPseudoInst()) 2398 continue; 2399 2400 // Skip ephemeral values. 2401 if (EphValues.count(&I)) 2402 continue; 2403 2404 ++NumInstructions; 2405 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2406 ++NumVectorInstructions; 2407 2408 // If the instruction simplified to a constant, there is no cost to this 2409 // instruction. Visit the instructions using our InstVisitor to account for 2410 // all of the per-instruction logic. The visit tree returns true if we 2411 // consumed the instruction in any way, and false if the instruction's base 2412 // cost should count against inlining. 2413 onInstructionAnalysisStart(&I); 2414 2415 if (Base::visit(&I)) 2416 ++NumInstructionsSimplified; 2417 else 2418 onMissedSimplification(); 2419 2420 onInstructionAnalysisFinish(&I); 2421 using namespace ore; 2422 // If the visit this instruction detected an uninlinable pattern, abort. 2423 InlineResult IR = InlineResult::success(); 2424 if (IsRecursiveCall && !AllowRecursiveCall) 2425 IR = InlineResult::failure("recursive"); 2426 else if (ExposesReturnsTwice) 2427 IR = InlineResult::failure("exposes returns twice"); 2428 else if (HasDynamicAlloca) 2429 IR = InlineResult::failure("dynamic alloca"); 2430 else if (HasIndirectBr) 2431 IR = InlineResult::failure("indirect branch"); 2432 else if (HasUninlineableIntrinsic) 2433 IR = InlineResult::failure("uninlinable intrinsic"); 2434 else if (InitsVargArgs) 2435 IR = InlineResult::failure("varargs"); 2436 if (!IR.isSuccess()) { 2437 if (ORE) 2438 ORE->emit([&]() { 2439 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2440 &CandidateCall) 2441 << NV("Callee", &F) << " has uninlinable pattern (" 2442 << NV("InlineResult", IR.getFailureReason()) 2443 << ") and cost is not fully computed"; 2444 }); 2445 return IR; 2446 } 2447 2448 // If the caller is a recursive function then we don't want to inline 2449 // functions which allocate a lot of stack space because it would increase 2450 // the caller stack usage dramatically. 2451 if (IsCallerRecursive && 2452 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2453 auto IR = 2454 InlineResult::failure("recursive and allocates too much stack space"); 2455 if (ORE) 2456 ORE->emit([&]() { 2457 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2458 &CandidateCall) 2459 << NV("Callee", &F) << " is " 2460 << NV("InlineResult", IR.getFailureReason()) 2461 << ". Cost is not fully computed"; 2462 }); 2463 return IR; 2464 } 2465 2466 if (shouldStop()) 2467 return InlineResult::failure( 2468 "Call site analysis is not favorable to inlining."); 2469 } 2470 2471 return InlineResult::success(); 2472 } 2473 2474 /// Compute the base pointer and cumulative constant offsets for V. 2475 /// 2476 /// This strips all constant offsets off of V, leaving it the base pointer, and 2477 /// accumulates the total constant offset applied in the returned constant. It 2478 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2479 /// no constant offsets applied. 2480 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2481 if (!V->getType()->isPointerTy()) 2482 return nullptr; 2483 2484 unsigned AS = V->getType()->getPointerAddressSpace(); 2485 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2486 APInt Offset = APInt::getZero(IntPtrWidth); 2487 2488 // Even though we don't look through PHI nodes, we could be called on an 2489 // instruction in an unreachable block, which may be on a cycle. 2490 SmallPtrSet<Value *, 4> Visited; 2491 Visited.insert(V); 2492 do { 2493 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2494 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2495 return nullptr; 2496 V = GEP->getPointerOperand(); 2497 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2498 V = cast<Operator>(V)->getOperand(0); 2499 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2500 if (GA->isInterposable()) 2501 break; 2502 V = GA->getAliasee(); 2503 } else { 2504 break; 2505 } 2506 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2507 } while (Visited.insert(V).second); 2508 2509 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2510 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2511 } 2512 2513 /// Find dead blocks due to deleted CFG edges during inlining. 2514 /// 2515 /// If we know the successor of the current block, \p CurrBB, has to be \p 2516 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2517 /// no live incoming CFG edges. If one block is found to be dead, we can 2518 /// continue growing the dead block list by checking the successors of the dead 2519 /// blocks to see if all their incoming edges are dead or not. 2520 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2521 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2522 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2523 // known successor which is not the one under exam. 2524 return (DeadBlocks.count(Pred) || 2525 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2526 }; 2527 2528 auto IsNewlyDead = [&](BasicBlock *BB) { 2529 // If all the edges to a block are dead, the block is also dead. 2530 return (!DeadBlocks.count(BB) && 2531 llvm::all_of(predecessors(BB), 2532 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2533 }; 2534 2535 for (BasicBlock *Succ : successors(CurrBB)) { 2536 if (Succ == NextBB || !IsNewlyDead(Succ)) 2537 continue; 2538 SmallVector<BasicBlock *, 4> NewDead; 2539 NewDead.push_back(Succ); 2540 while (!NewDead.empty()) { 2541 BasicBlock *Dead = NewDead.pop_back_val(); 2542 if (DeadBlocks.insert(Dead)) 2543 // Continue growing the dead block lists. 2544 for (BasicBlock *S : successors(Dead)) 2545 if (IsNewlyDead(S)) 2546 NewDead.push_back(S); 2547 } 2548 } 2549 } 2550 2551 /// Analyze a call site for potential inlining. 2552 /// 2553 /// Returns true if inlining this call is viable, and false if it is not 2554 /// viable. It computes the cost and adjusts the threshold based on numerous 2555 /// factors and heuristics. If this method returns false but the computed cost 2556 /// is below the computed threshold, then inlining was forcibly disabled by 2557 /// some artifact of the routine. 2558 InlineResult CallAnalyzer::analyze() { 2559 ++NumCallsAnalyzed; 2560 2561 auto Result = onAnalysisStart(); 2562 if (!Result.isSuccess()) 2563 return Result; 2564 2565 if (F.empty()) 2566 return InlineResult::success(); 2567 2568 Function *Caller = CandidateCall.getFunction(); 2569 // Check if the caller function is recursive itself. 2570 for (User *U : Caller->users()) { 2571 CallBase *Call = dyn_cast<CallBase>(U); 2572 if (Call && Call->getFunction() == Caller) { 2573 IsCallerRecursive = true; 2574 break; 2575 } 2576 } 2577 2578 // Populate our simplified values by mapping from function arguments to call 2579 // arguments with known important simplifications. 2580 auto CAI = CandidateCall.arg_begin(); 2581 for (Argument &FAI : F.args()) { 2582 assert(CAI != CandidateCall.arg_end()); 2583 if (Constant *C = dyn_cast<Constant>(CAI)) 2584 SimplifiedValues[&FAI] = C; 2585 2586 Value *PtrArg = *CAI; 2587 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2588 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2589 2590 // We can SROA any pointer arguments derived from alloca instructions. 2591 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2592 SROAArgValues[&FAI] = SROAArg; 2593 onInitializeSROAArg(SROAArg); 2594 EnabledSROAAllocas.insert(SROAArg); 2595 } 2596 } 2597 ++CAI; 2598 } 2599 NumConstantArgs = SimplifiedValues.size(); 2600 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2601 NumAllocaArgs = SROAArgValues.size(); 2602 2603 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2604 // the ephemeral values multiple times (and they're completely determined by 2605 // the callee, so this is purely duplicate work). 2606 SmallPtrSet<const Value *, 32> EphValues; 2607 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2608 2609 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2610 // adding basic blocks of the callee which can be proven to be dead for this 2611 // particular call site in order to get more accurate cost estimates. This 2612 // requires a somewhat heavyweight iteration pattern: we need to walk the 2613 // basic blocks in a breadth-first order as we insert live successors. To 2614 // accomplish this, prioritizing for small iterations because we exit after 2615 // crossing our threshold, we use a small-size optimized SetVector. 2616 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2617 SmallPtrSet<BasicBlock *, 16>> 2618 BBSetVector; 2619 BBSetVector BBWorklist; 2620 BBWorklist.insert(&F.getEntryBlock()); 2621 2622 // Note that we *must not* cache the size, this loop grows the worklist. 2623 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2624 if (shouldStop()) 2625 break; 2626 2627 BasicBlock *BB = BBWorklist[Idx]; 2628 if (BB->empty()) 2629 continue; 2630 2631 onBlockStart(BB); 2632 2633 // Disallow inlining a blockaddress with uses other than strictly callbr. 2634 // A blockaddress only has defined behavior for an indirect branch in the 2635 // same function, and we do not currently support inlining indirect 2636 // branches. But, the inliner may not see an indirect branch that ends up 2637 // being dead code at a particular call site. If the blockaddress escapes 2638 // the function, e.g., via a global variable, inlining may lead to an 2639 // invalid cross-function reference. 2640 // FIXME: pr/39560: continue relaxing this overt restriction. 2641 if (BB->hasAddressTaken()) 2642 for (User *U : BlockAddress::get(&*BB)->users()) 2643 if (!isa<CallBrInst>(*U)) 2644 return InlineResult::failure("blockaddress used outside of callbr"); 2645 2646 // Analyze the cost of this block. If we blow through the threshold, this 2647 // returns false, and we can bail on out. 2648 InlineResult IR = analyzeBlock(BB, EphValues); 2649 if (!IR.isSuccess()) 2650 return IR; 2651 2652 Instruction *TI = BB->getTerminator(); 2653 2654 // Add in the live successors by first checking whether we have terminator 2655 // that may be simplified based on the values simplified by this call. 2656 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2657 if (BI->isConditional()) { 2658 Value *Cond = BI->getCondition(); 2659 if (ConstantInt *SimpleCond = 2660 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2661 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2662 BBWorklist.insert(NextBB); 2663 KnownSuccessors[BB] = NextBB; 2664 findDeadBlocks(BB, NextBB); 2665 continue; 2666 } 2667 } 2668 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2669 Value *Cond = SI->getCondition(); 2670 if (ConstantInt *SimpleCond = 2671 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2672 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2673 BBWorklist.insert(NextBB); 2674 KnownSuccessors[BB] = NextBB; 2675 findDeadBlocks(BB, NextBB); 2676 continue; 2677 } 2678 } 2679 2680 // If we're unable to select a particular successor, just count all of 2681 // them. 2682 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2683 ++TIdx) 2684 BBWorklist.insert(TI->getSuccessor(TIdx)); 2685 2686 onBlockAnalyzed(BB); 2687 } 2688 2689 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 2690 &F == CandidateCall.getCalledFunction(); 2691 // If this is a noduplicate call, we can still inline as long as 2692 // inlining this would cause the removal of the caller (so the instruction 2693 // is not actually duplicated, just moved). 2694 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2695 return InlineResult::failure("noduplicate"); 2696 2697 return finalizeAnalysis(); 2698 } 2699 2700 void InlineCostCallAnalyzer::print() { 2701 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2702 if (PrintInstructionComments) 2703 F.print(dbgs(), &Writer); 2704 DEBUG_PRINT_STAT(NumConstantArgs); 2705 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2706 DEBUG_PRINT_STAT(NumAllocaArgs); 2707 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2708 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2709 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2710 DEBUG_PRINT_STAT(NumInstructions); 2711 DEBUG_PRINT_STAT(SROACostSavings); 2712 DEBUG_PRINT_STAT(SROACostSavingsLost); 2713 DEBUG_PRINT_STAT(LoadEliminationCost); 2714 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2715 DEBUG_PRINT_STAT(Cost); 2716 DEBUG_PRINT_STAT(Threshold); 2717 #undef DEBUG_PRINT_STAT 2718 } 2719 2720 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2721 /// Dump stats about this call's analysis. 2722 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(); } 2723 #endif 2724 2725 /// Test that there are no attribute conflicts between Caller and Callee 2726 /// that prevent inlining. 2727 static bool functionsHaveCompatibleAttributes( 2728 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2729 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2730 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2731 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2732 // object, and always returns the same object (which is overwritten on each 2733 // GetTLI call). Therefore we copy the first result. 2734 auto CalleeTLI = GetTLI(*Callee); 2735 return TTI.areInlineCompatible(Caller, Callee) && 2736 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2737 InlineCallerSupersetNoBuiltin) && 2738 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2739 } 2740 2741 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2742 int Cost = 0; 2743 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2744 if (Call.isByValArgument(I)) { 2745 // We approximate the number of loads and stores needed by dividing the 2746 // size of the byval type by the target's pointer size. 2747 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2748 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2749 unsigned AS = PTy->getAddressSpace(); 2750 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2751 // Ceiling division. 2752 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2753 2754 // If it generates more than 8 stores it is likely to be expanded as an 2755 // inline memcpy so we take that as an upper bound. Otherwise we assume 2756 // one load and one store per word copied. 2757 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2758 // here instead of a magic number of 8, but it's not available via 2759 // DataLayout. 2760 NumStores = std::min(NumStores, 8U); 2761 2762 Cost += 2 * NumStores * InlineConstants::InstrCost; 2763 } else { 2764 // For non-byval arguments subtract off one instruction per call 2765 // argument. 2766 Cost += InlineConstants::InstrCost; 2767 } 2768 } 2769 // The call instruction also disappears after inlining. 2770 Cost += InlineConstants::InstrCost + CallPenalty; 2771 return Cost; 2772 } 2773 2774 InlineCost llvm::getInlineCost( 2775 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2776 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2777 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2778 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2779 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2780 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2781 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2782 } 2783 2784 Optional<int> llvm::getInliningCostEstimate( 2785 CallBase &Call, TargetTransformInfo &CalleeTTI, 2786 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2787 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2788 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2789 const InlineParams Params = {/* DefaultThreshold*/ 0, 2790 /*HintThreshold*/ {}, 2791 /*ColdThreshold*/ {}, 2792 /*OptSizeThreshold*/ {}, 2793 /*OptMinSizeThreshold*/ {}, 2794 /*HotCallSiteThreshold*/ {}, 2795 /*LocallyHotCallSiteThreshold*/ {}, 2796 /*ColdCallSiteThreshold*/ {}, 2797 /*ComputeFullInlineCost*/ true, 2798 /*EnableDeferral*/ true}; 2799 2800 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2801 GetAssumptionCache, GetBFI, PSI, ORE, true, 2802 /*IgnoreThreshold*/ true); 2803 auto R = CA.analyze(); 2804 if (!R.isSuccess()) 2805 return None; 2806 return CA.getCost(); 2807 } 2808 2809 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2810 CallBase &Call, TargetTransformInfo &CalleeTTI, 2811 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2812 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2813 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2814 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2815 ORE, *Call.getCalledFunction(), Call); 2816 auto R = CFA.analyze(); 2817 if (!R.isSuccess()) 2818 return None; 2819 return CFA.features(); 2820 } 2821 2822 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2823 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2824 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2825 2826 // Cannot inline indirect calls. 2827 if (!Callee) 2828 return InlineResult::failure("indirect call"); 2829 2830 // When callee coroutine function is inlined into caller coroutine function 2831 // before coro-split pass, 2832 // coro-early pass can not handle this quiet well. 2833 // So we won't inline the coroutine function if it have not been unsplited 2834 if (Callee->isPresplitCoroutine()) 2835 return InlineResult::failure("unsplited coroutine call"); 2836 2837 // Never inline calls with byval arguments that does not have the alloca 2838 // address space. Since byval arguments can be replaced with a copy to an 2839 // alloca, the inlined code would need to be adjusted to handle that the 2840 // argument is in the alloca address space (so it is a little bit complicated 2841 // to solve). 2842 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2843 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2844 if (Call.isByValArgument(I)) { 2845 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2846 if (PTy->getAddressSpace() != AllocaAS) 2847 return InlineResult::failure("byval arguments without alloca" 2848 " address space"); 2849 } 2850 2851 // Calls to functions with always-inline attributes should be inlined 2852 // whenever possible. 2853 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2854 auto IsViable = isInlineViable(*Callee); 2855 if (IsViable.isSuccess()) 2856 return InlineResult::success(); 2857 return InlineResult::failure(IsViable.getFailureReason()); 2858 } 2859 2860 // Never inline functions with conflicting attributes (unless callee has 2861 // always-inline attribute). 2862 Function *Caller = Call.getCaller(); 2863 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2864 return InlineResult::failure("conflicting attributes"); 2865 2866 // Don't inline this call if the caller has the optnone attribute. 2867 if (Caller->hasOptNone()) 2868 return InlineResult::failure("optnone attribute"); 2869 2870 // Don't inline a function that treats null pointer as valid into a caller 2871 // that does not have this attribute. 2872 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2873 return InlineResult::failure("nullptr definitions incompatible"); 2874 2875 // Don't inline functions which can be interposed at link-time. 2876 if (Callee->isInterposable()) 2877 return InlineResult::failure("interposable"); 2878 2879 // Don't inline functions marked noinline. 2880 if (Callee->hasFnAttribute(Attribute::NoInline)) 2881 return InlineResult::failure("noinline function attribute"); 2882 2883 // Don't inline call sites marked noinline. 2884 if (Call.isNoInline()) 2885 return InlineResult::failure("noinline call site attribute"); 2886 2887 // Don't inline functions if one does not have any stack protector attribute 2888 // but the other does. 2889 if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr()) 2890 return InlineResult::failure( 2891 "stack protected caller but callee requested no stack protector"); 2892 if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr()) 2893 return InlineResult::failure( 2894 "stack protected callee but caller requested no stack protector"); 2895 2896 return None; 2897 } 2898 2899 InlineCost llvm::getInlineCost( 2900 CallBase &Call, Function *Callee, const InlineParams &Params, 2901 TargetTransformInfo &CalleeTTI, 2902 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2903 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2904 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2905 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2906 2907 auto UserDecision = 2908 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2909 2910 if (UserDecision.hasValue()) { 2911 if (UserDecision->isSuccess()) 2912 return llvm::InlineCost::getAlways("always inline attribute"); 2913 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2914 } 2915 2916 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2917 << "... (caller:" << Call.getCaller()->getName() 2918 << ")\n"); 2919 2920 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2921 GetAssumptionCache, GetBFI, PSI, ORE); 2922 InlineResult ShouldInline = CA.analyze(); 2923 2924 LLVM_DEBUG(CA.dump()); 2925 2926 // Always make cost benefit based decision explicit. 2927 // We use always/never here since threshold is not meaningful, 2928 // as it's not what drives cost-benefit analysis. 2929 if (CA.wasDecidedByCostBenefit()) { 2930 if (ShouldInline.isSuccess()) 2931 return InlineCost::getAlways("benefit over cost", 2932 CA.getCostBenefitPair()); 2933 else 2934 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2935 } 2936 2937 // Check if there was a reason to force inlining or no inlining. 2938 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2939 return InlineCost::getNever(ShouldInline.getFailureReason()); 2940 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2941 return InlineCost::getAlways("empty function"); 2942 2943 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2944 } 2945 2946 InlineResult llvm::isInlineViable(Function &F) { 2947 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2948 for (BasicBlock &BB : F) { 2949 // Disallow inlining of functions which contain indirect branches. 2950 if (isa<IndirectBrInst>(BB.getTerminator())) 2951 return InlineResult::failure("contains indirect branches"); 2952 2953 // Disallow inlining of blockaddresses which are used by non-callbr 2954 // instructions. 2955 if (BB.hasAddressTaken()) 2956 for (User *U : BlockAddress::get(&BB)->users()) 2957 if (!isa<CallBrInst>(*U)) 2958 return InlineResult::failure("blockaddress used outside of callbr"); 2959 2960 for (auto &II : BB) { 2961 CallBase *Call = dyn_cast<CallBase>(&II); 2962 if (!Call) 2963 continue; 2964 2965 // Disallow recursive calls. 2966 Function *Callee = Call->getCalledFunction(); 2967 if (&F == Callee) 2968 return InlineResult::failure("recursive call"); 2969 2970 // Disallow calls which expose returns-twice to a function not previously 2971 // attributed as such. 2972 if (!ReturnsTwice && isa<CallInst>(Call) && 2973 cast<CallInst>(Call)->canReturnTwice()) 2974 return InlineResult::failure("exposes returns-twice attribute"); 2975 2976 if (Callee) 2977 switch (Callee->getIntrinsicID()) { 2978 default: 2979 break; 2980 case llvm::Intrinsic::icall_branch_funnel: 2981 // Disallow inlining of @llvm.icall.branch.funnel because current 2982 // backend can't separate call targets from call arguments. 2983 return InlineResult::failure( 2984 "disallowed inlining of @llvm.icall.branch.funnel"); 2985 case llvm::Intrinsic::localescape: 2986 // Disallow inlining functions that call @llvm.localescape. Doing this 2987 // correctly would require major changes to the inliner. 2988 return InlineResult::failure( 2989 "disallowed inlining of @llvm.localescape"); 2990 case llvm::Intrinsic::vastart: 2991 // Disallow inlining of functions that initialize VarArgs with 2992 // va_start. 2993 return InlineResult::failure( 2994 "contains VarArgs initialized with va_start"); 2995 } 2996 } 2997 } 2998 2999 return InlineResult::success(); 3000 } 3001 3002 // APIs to create InlineParams based on command line flags and/or other 3003 // parameters. 3004 3005 InlineParams llvm::getInlineParams(int Threshold) { 3006 InlineParams Params; 3007 3008 // This field is the threshold to use for a callee by default. This is 3009 // derived from one or more of: 3010 // * optimization or size-optimization levels, 3011 // * a value passed to createFunctionInliningPass function, or 3012 // * the -inline-threshold flag. 3013 // If the -inline-threshold flag is explicitly specified, that is used 3014 // irrespective of anything else. 3015 if (InlineThreshold.getNumOccurrences() > 0) 3016 Params.DefaultThreshold = InlineThreshold; 3017 else 3018 Params.DefaultThreshold = Threshold; 3019 3020 // Set the HintThreshold knob from the -inlinehint-threshold. 3021 Params.HintThreshold = HintThreshold; 3022 3023 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3024 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3025 3026 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3027 // populate LocallyHotCallSiteThreshold. Later, we populate 3028 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3029 // we know that optimization level is O3 (in the getInlineParams variant that 3030 // takes the opt and size levels). 3031 // FIXME: Remove this check (and make the assignment unconditional) after 3032 // addressing size regression issues at O2. 3033 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3034 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3035 3036 // Set the ColdCallSiteThreshold knob from the 3037 // -inline-cold-callsite-threshold. 3038 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3039 3040 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3041 // -inlinehint-threshold commandline option is not explicitly given. If that 3042 // option is present, then its value applies even for callees with size and 3043 // minsize attributes. 3044 // If the -inline-threshold is not specified, set the ColdThreshold from the 3045 // -inlinecold-threshold even if it is not explicitly passed. If 3046 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3047 // explicitly specified to set the ColdThreshold knob 3048 if (InlineThreshold.getNumOccurrences() == 0) { 3049 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3050 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3051 Params.ColdThreshold = ColdThreshold; 3052 } else if (ColdThreshold.getNumOccurrences() > 0) { 3053 Params.ColdThreshold = ColdThreshold; 3054 } 3055 return Params; 3056 } 3057 3058 InlineParams llvm::getInlineParams() { 3059 return getInlineParams(DefaultThreshold); 3060 } 3061 3062 // Compute the default threshold for inlining based on the opt level and the 3063 // size opt level. 3064 static int computeThresholdFromOptLevels(unsigned OptLevel, 3065 unsigned SizeOptLevel) { 3066 if (OptLevel > 2) 3067 return InlineConstants::OptAggressiveThreshold; 3068 if (SizeOptLevel == 1) // -Os 3069 return InlineConstants::OptSizeThreshold; 3070 if (SizeOptLevel == 2) // -Oz 3071 return InlineConstants::OptMinSizeThreshold; 3072 return DefaultThreshold; 3073 } 3074 3075 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3076 auto Params = 3077 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3078 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3079 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3080 // when it is specified explicitly. 3081 if (OptLevel > 2) 3082 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3083 return Params; 3084 } 3085 3086 PreservedAnalyses 3087 InlineCostAnnotationPrinterPass::run(Function &F, 3088 FunctionAnalysisManager &FAM) { 3089 PrintInstructionComments = true; 3090 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3091 [&](Function &F) -> AssumptionCache & { 3092 return FAM.getResult<AssumptionAnalysis>(F); 3093 }; 3094 Module *M = F.getParent(); 3095 ProfileSummaryInfo PSI(*M); 3096 DataLayout DL(M); 3097 TargetTransformInfo TTI(DL); 3098 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3099 // In the current implementation, the type of InlineParams doesn't matter as 3100 // the pass serves only for verification of inliner's decisions. 3101 // We can add a flag which determines InlineParams for this run. Right now, 3102 // the default InlineParams are used. 3103 const InlineParams Params = llvm::getInlineParams(); 3104 for (BasicBlock &BB : F) { 3105 for (Instruction &I : BB) { 3106 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3107 Function *CalledFunction = CI->getCalledFunction(); 3108 if (!CalledFunction || CalledFunction->isDeclaration()) 3109 continue; 3110 OptimizationRemarkEmitter ORE(CalledFunction); 3111 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3112 GetAssumptionCache, nullptr, &PSI, &ORE); 3113 ICCA.analyze(); 3114 OS << " Analyzing call of " << CalledFunction->getName() 3115 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3116 ICCA.print(); 3117 } 3118 } 3119 } 3120 return PreservedAnalyses::all(); 3121 } 3122