1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintDebugInstructionDeltas( 58 "print-instruction-deltas", cl::Hidden, cl::init(false), 59 cl::desc("Prints deltas of cost and threshold per instruction")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 // We introduce this threshold to help performance of instrumentation based 75 // PGO before we actually hook up inliner with analysis passes such as BPI and 76 // BFI. 77 static cl::opt<int> ColdThreshold( 78 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 79 cl::desc("Threshold for inlining functions with cold attribute")); 80 81 static cl::opt<int> 82 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 83 cl::ZeroOrMore, 84 cl::desc("Threshold for hot callsites ")); 85 86 static cl::opt<int> LocallyHotCallSiteThreshold( 87 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 88 cl::desc("Threshold for locally hot callsites ")); 89 90 static cl::opt<int> ColdCallSiteRelFreq( 91 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 92 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 93 "entry frequency, for a callsite to be cold in the absence of " 94 "profile information.")); 95 96 static cl::opt<int> HotCallSiteRelFreq( 97 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 98 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 99 "entry frequency, for a callsite to be hot in the absence of " 100 "profile information.")); 101 102 static cl::opt<bool> OptComputeFullInlineCost( 103 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::desc("Compute the full inline cost of a call site even when the cost " 105 "exceeds the threshold.")); 106 107 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 108 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 109 cl::ZeroOrMore, 110 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 111 "attributes.")); 112 113 namespace { 114 class InlineCostCallAnalyzer; 115 116 // This struct is used to store information about inline cost of a 117 // particular instruction 118 struct InstructionCostDetail { 119 int CostBefore = 0; 120 int CostAfter = 0; 121 int ThresholdBefore = 0; 122 int ThresholdAfter = 0; 123 124 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 125 126 int getCostDelta() const { return CostAfter - CostBefore; } 127 128 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 129 }; 130 131 class CostAnnotationWriter : public AssemblyAnnotationWriter { 132 public: 133 // This DenseMap stores the delta change in cost and threshold after 134 // accounting for the given instruction. 135 DenseMap<const Instruction *, InstructionCostDetail> CostThresholdMap; 136 137 virtual void emitInstructionAnnot(const Instruction *I, 138 formatted_raw_ostream &OS); 139 }; 140 141 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 142 typedef InstVisitor<CallAnalyzer, bool> Base; 143 friend class InstVisitor<CallAnalyzer, bool>; 144 145 protected: 146 virtual ~CallAnalyzer() {} 147 /// The TargetTransformInfo available for this compilation. 148 const TargetTransformInfo &TTI; 149 150 /// Getter for the cache of @llvm.assume intrinsics. 151 std::function<AssumptionCache &(Function &)> &GetAssumptionCache; 152 153 /// Getter for BlockFrequencyInfo 154 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI; 155 156 /// Profile summary information. 157 ProfileSummaryInfo *PSI; 158 159 /// The called function. 160 Function &F; 161 162 // Cache the DataLayout since we use it a lot. 163 const DataLayout &DL; 164 165 /// The OptimizationRemarkEmitter available for this compilation. 166 OptimizationRemarkEmitter *ORE; 167 168 /// The candidate callsite being analyzed. Please do not use this to do 169 /// analysis in the caller function; we want the inline cost query to be 170 /// easily cacheable. Instead, use the cover function paramHasAttr. 171 CallBase &CandidateCall; 172 173 /// Extension points for handling callsite features. 174 /// Called after a basic block was analyzed. 175 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 176 177 /// Called before an instruction was analyzed 178 virtual void onInstructionAnalysisStart(const Instruction *I) {} 179 180 /// Called after an instruction was analyzed 181 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 182 183 /// Called at the end of the analysis of the callsite. Return the outcome of 184 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 185 /// the reason it can't. 186 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 187 /// Called when we're about to start processing a basic block, and every time 188 /// we are done processing an instruction. Return true if there is no point in 189 /// continuing the analysis (e.g. we've determined already the call site is 190 /// too expensive to inline) 191 virtual bool shouldStop() { return false; } 192 193 /// Called before the analysis of the callee body starts (with callsite 194 /// contexts propagated). It checks callsite-specific information. Return a 195 /// reason analysis can't continue if that's the case, or 'true' if it may 196 /// continue. 197 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 198 /// Called if the analysis engine decides SROA cannot be done for the given 199 /// alloca. 200 virtual void onDisableSROA(AllocaInst *Arg) {} 201 202 /// Called the analysis engine determines load elimination won't happen. 203 virtual void onDisableLoadElimination() {} 204 205 /// Called to account for a call. 206 virtual void onCallPenalty() {} 207 208 /// Called to account for the expectation the inlining would result in a load 209 /// elimination. 210 virtual void onLoadEliminationOpportunity() {} 211 212 /// Called to account for the cost of argument setup for the Call in the 213 /// callee's body (not the callsite currently under analysis). 214 virtual void onCallArgumentSetup(const CallBase &Call) {} 215 216 /// Called to account for a load relative intrinsic. 217 virtual void onLoadRelativeIntrinsic() {} 218 219 /// Called to account for a lowered call. 220 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 221 } 222 223 /// Account for a jump table of given size. Return false to stop further 224 /// processing the switch instruction 225 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 226 227 /// Account for a case cluster of given size. Return false to stop further 228 /// processing of the instruction. 229 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 230 231 /// Called at the end of processing a switch instruction, with the given 232 /// number of case clusters. 233 virtual void onFinalizeSwitch(unsigned JumpTableSize, 234 unsigned NumCaseCluster) {} 235 236 /// Called to account for any other instruction not specifically accounted 237 /// for. 238 virtual void onMissedSimplification() {} 239 240 /// Start accounting potential benefits due to SROA for the given alloca. 241 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 242 243 /// Account SROA savings for the AllocaInst value. 244 virtual void onAggregateSROAUse(AllocaInst *V) {} 245 246 bool handleSROA(Value *V, bool DoNotDisable) { 247 // Check for SROA candidates in comparisons. 248 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 249 if (DoNotDisable) { 250 onAggregateSROAUse(SROAArg); 251 return true; 252 } 253 disableSROAForArg(SROAArg); 254 } 255 return false; 256 } 257 258 bool IsCallerRecursive = false; 259 bool IsRecursiveCall = false; 260 bool ExposesReturnsTwice = false; 261 bool HasDynamicAlloca = false; 262 bool ContainsNoDuplicateCall = false; 263 bool HasReturn = false; 264 bool HasIndirectBr = false; 265 bool HasUninlineableIntrinsic = false; 266 bool InitsVargArgs = false; 267 268 /// Number of bytes allocated statically by the callee. 269 uint64_t AllocatedSize = 0; 270 unsigned NumInstructions = 0; 271 unsigned NumVectorInstructions = 0; 272 273 /// While we walk the potentially-inlined instructions, we build up and 274 /// maintain a mapping of simplified values specific to this callsite. The 275 /// idea is to propagate any special information we have about arguments to 276 /// this call through the inlinable section of the function, and account for 277 /// likely simplifications post-inlining. The most important aspect we track 278 /// is CFG altering simplifications -- when we prove a basic block dead, that 279 /// can cause dramatic shifts in the cost of inlining a function. 280 DenseMap<Value *, Constant *> SimplifiedValues; 281 282 /// Keep track of the values which map back (through function arguments) to 283 /// allocas on the caller stack which could be simplified through SROA. 284 DenseMap<Value *, AllocaInst *> SROAArgValues; 285 286 /// Keep track of Allocas for which we believe we may get SROA optimization. 287 DenseSet<AllocaInst *> EnabledSROAAllocas; 288 289 /// Keep track of values which map to a pointer base and constant offset. 290 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 291 292 /// Keep track of dead blocks due to the constant arguments. 293 SetVector<BasicBlock *> DeadBlocks; 294 295 /// The mapping of the blocks to their known unique successors due to the 296 /// constant arguments. 297 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 298 299 /// Model the elimination of repeated loads that is expected to happen 300 /// whenever we simplify away the stores that would otherwise cause them to be 301 /// loads. 302 bool EnableLoadElimination; 303 SmallPtrSet<Value *, 16> LoadAddrSet; 304 305 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 306 auto It = SROAArgValues.find(V); 307 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 308 return nullptr; 309 return It->second; 310 } 311 312 // Custom simplification helper routines. 313 bool isAllocaDerivedArg(Value *V); 314 void disableSROAForArg(AllocaInst *SROAArg); 315 void disableSROA(Value *V); 316 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 317 void disableLoadElimination(); 318 bool isGEPFree(GetElementPtrInst &GEP); 319 bool canFoldInboundsGEP(GetElementPtrInst &I); 320 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 321 bool simplifyCallSite(Function *F, CallBase &Call); 322 template <typename Callable> 323 bool simplifyInstruction(Instruction &I, Callable Evaluate); 324 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 325 326 /// Return true if the given argument to the function being considered for 327 /// inlining has the given attribute set either at the call site or the 328 /// function declaration. Primarily used to inspect call site specific 329 /// attributes since these can be more precise than the ones on the callee 330 /// itself. 331 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 332 333 /// Return true if the given value is known non null within the callee if 334 /// inlined through this particular callsite. 335 bool isKnownNonNullInCallee(Value *V); 336 337 /// Return true if size growth is allowed when inlining the callee at \p Call. 338 bool allowSizeGrowth(CallBase &Call); 339 340 // Custom analysis routines. 341 InlineResult analyzeBlock(BasicBlock *BB, 342 SmallPtrSetImpl<const Value *> &EphValues); 343 344 // Disable several entry points to the visitor so we don't accidentally use 345 // them by declaring but not defining them here. 346 void visit(Module *); 347 void visit(Module &); 348 void visit(Function *); 349 void visit(Function &); 350 void visit(BasicBlock *); 351 void visit(BasicBlock &); 352 353 // Provide base case for our instruction visit. 354 bool visitInstruction(Instruction &I); 355 356 // Our visit overrides. 357 bool visitAlloca(AllocaInst &I); 358 bool visitPHI(PHINode &I); 359 bool visitGetElementPtr(GetElementPtrInst &I); 360 bool visitBitCast(BitCastInst &I); 361 bool visitPtrToInt(PtrToIntInst &I); 362 bool visitIntToPtr(IntToPtrInst &I); 363 bool visitCastInst(CastInst &I); 364 bool visitUnaryInstruction(UnaryInstruction &I); 365 bool visitCmpInst(CmpInst &I); 366 bool visitSub(BinaryOperator &I); 367 bool visitBinaryOperator(BinaryOperator &I); 368 bool visitFNeg(UnaryOperator &I); 369 bool visitLoad(LoadInst &I); 370 bool visitStore(StoreInst &I); 371 bool visitExtractValue(ExtractValueInst &I); 372 bool visitInsertValue(InsertValueInst &I); 373 bool visitCallBase(CallBase &Call); 374 bool visitReturnInst(ReturnInst &RI); 375 bool visitBranchInst(BranchInst &BI); 376 bool visitSelectInst(SelectInst &SI); 377 bool visitSwitchInst(SwitchInst &SI); 378 bool visitIndirectBrInst(IndirectBrInst &IBI); 379 bool visitResumeInst(ResumeInst &RI); 380 bool visitCleanupReturnInst(CleanupReturnInst &RI); 381 bool visitCatchReturnInst(CatchReturnInst &RI); 382 bool visitUnreachableInst(UnreachableInst &I); 383 384 public: 385 CallAnalyzer(const TargetTransformInfo &TTI, 386 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 387 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, 388 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, 389 Function &Callee, CallBase &Call) 390 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 391 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 392 CandidateCall(Call), EnableLoadElimination(true) {} 393 394 InlineResult analyze(); 395 396 // Keep a bunch of stats about the cost savings found so we can print them 397 // out when debugging. 398 unsigned NumConstantArgs = 0; 399 unsigned NumConstantOffsetPtrArgs = 0; 400 unsigned NumAllocaArgs = 0; 401 unsigned NumConstantPtrCmps = 0; 402 unsigned NumConstantPtrDiffs = 0; 403 unsigned NumInstructionsSimplified = 0; 404 405 void dump(); 406 }; 407 408 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 409 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 410 class InlineCostCallAnalyzer final : public CallAnalyzer { 411 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 412 const bool ComputeFullInlineCost; 413 int LoadEliminationCost = 0; 414 /// Bonus to be applied when percentage of vector instructions in callee is 415 /// high (see more details in updateThreshold). 416 int VectorBonus = 0; 417 /// Bonus to be applied when the callee has only one reachable basic block. 418 int SingleBBBonus = 0; 419 420 /// Tunable parameters that control the analysis. 421 const InlineParams &Params; 422 423 /// Upper bound for the inlining cost. Bonuses are being applied to account 424 /// for speculative "expected profit" of the inlining decision. 425 int Threshold = 0; 426 427 /// Attempt to evaluate indirect calls to boost its inline cost. 428 const bool BoostIndirectCalls; 429 430 /// Ignore the threshold when finalizing analysis. 431 const bool IgnoreThreshold; 432 433 /// Inlining cost measured in abstract units, accounts for all the 434 /// instructions expected to be executed for a given function invocation. 435 /// Instructions that are statically proven to be dead based on call-site 436 /// arguments are not counted here. 437 int Cost = 0; 438 439 bool SingleBB = true; 440 441 unsigned SROACostSavings = 0; 442 unsigned SROACostSavingsLost = 0; 443 444 /// The mapping of caller Alloca values to their accumulated cost savings. If 445 /// we have to disable SROA for one of the allocas, this tells us how much 446 /// cost must be added. 447 DenseMap<AllocaInst *, int> SROAArgCosts; 448 449 /// Return true if \p Call is a cold callsite. 450 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 451 452 /// Update Threshold based on callsite properties such as callee 453 /// attributes and callee hotness for PGO builds. The Callee is explicitly 454 /// passed to support analyzing indirect calls whose target is inferred by 455 /// analysis. 456 void updateThreshold(CallBase &Call, Function &Callee); 457 /// Return a higher threshold if \p Call is a hot callsite. 458 Optional<int> getHotCallSiteThreshold(CallBase &Call, 459 BlockFrequencyInfo *CallerBFI); 460 461 /// Handle a capped 'int' increment for Cost. 462 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 463 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 464 Cost = (int)std::min(UpperBound, Cost + Inc); 465 } 466 467 void onDisableSROA(AllocaInst *Arg) override { 468 auto CostIt = SROAArgCosts.find(Arg); 469 if (CostIt == SROAArgCosts.end()) 470 return; 471 addCost(CostIt->second); 472 SROACostSavings -= CostIt->second; 473 SROACostSavingsLost += CostIt->second; 474 SROAArgCosts.erase(CostIt); 475 } 476 477 void onDisableLoadElimination() override { 478 addCost(LoadEliminationCost); 479 LoadEliminationCost = 0; 480 } 481 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 482 void onCallArgumentSetup(const CallBase &Call) override { 483 // Pay the price of the argument setup. We account for the average 1 484 // instruction per call argument setup here. 485 addCost(Call.arg_size() * InlineConstants::InstrCost); 486 } 487 void onLoadRelativeIntrinsic() override { 488 // This is normally lowered to 4 LLVM instructions. 489 addCost(3 * InlineConstants::InstrCost); 490 } 491 void onLoweredCall(Function *F, CallBase &Call, 492 bool IsIndirectCall) override { 493 // We account for the average 1 instruction per call argument setup here. 494 addCost(Call.arg_size() * InlineConstants::InstrCost); 495 496 // If we have a constant that we are calling as a function, we can peer 497 // through it and see the function target. This happens not infrequently 498 // during devirtualization and so we want to give it a hefty bonus for 499 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 500 // Pretend to inline the function, with a custom threshold. 501 if (IsIndirectCall && BoostIndirectCalls) { 502 auto IndirectCallParams = Params; 503 IndirectCallParams.DefaultThreshold = 504 InlineConstants::IndirectCallThreshold; 505 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 506 /// to instantiate the derived class. 507 InlineCostCallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, 508 Call, IndirectCallParams, false); 509 if (CA.analyze().isSuccess()) { 510 // We were able to inline the indirect call! Subtract the cost from the 511 // threshold to get the bonus we want to apply, but don't go below zero. 512 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 513 } 514 } else 515 // Otherwise simply add the cost for merely making the call. 516 addCost(InlineConstants::CallPenalty); 517 } 518 519 void onFinalizeSwitch(unsigned JumpTableSize, 520 unsigned NumCaseCluster) override { 521 // If suitable for a jump table, consider the cost for the table size and 522 // branch to destination. 523 // Maximum valid cost increased in this function. 524 if (JumpTableSize) { 525 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 526 4 * InlineConstants::InstrCost; 527 528 addCost(JTCost, (int64_t)CostUpperBound); 529 return; 530 } 531 // Considering forming a binary search, we should find the number of nodes 532 // which is same as the number of comparisons when lowered. For a given 533 // number of clusters, n, we can define a recursive function, f(n), to find 534 // the number of nodes in the tree. The recursion is : 535 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 536 // and f(n) = n, when n <= 3. 537 // This will lead a binary tree where the leaf should be either f(2) or f(3) 538 // when n > 3. So, the number of comparisons from leaves should be n, while 539 // the number of non-leaf should be : 540 // 2^(log2(n) - 1) - 1 541 // = 2^log2(n) * 2^-1 - 1 542 // = n / 2 - 1. 543 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 544 // number of comparisons in a simple closed form : 545 // n + n / 2 - 1 = n * 3 / 2 - 1 546 if (NumCaseCluster <= 3) { 547 // Suppose a comparison includes one compare and one conditional branch. 548 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 549 return; 550 } 551 552 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 553 int64_t SwitchCost = 554 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 555 556 addCost(SwitchCost, (int64_t)CostUpperBound); 557 } 558 void onMissedSimplification() override { 559 addCost(InlineConstants::InstrCost); 560 } 561 562 void onInitializeSROAArg(AllocaInst *Arg) override { 563 assert(Arg != nullptr && 564 "Should not initialize SROA costs for null value."); 565 SROAArgCosts[Arg] = 0; 566 } 567 568 void onAggregateSROAUse(AllocaInst *SROAArg) override { 569 auto CostIt = SROAArgCosts.find(SROAArg); 570 assert(CostIt != SROAArgCosts.end() && 571 "expected this argument to have a cost"); 572 CostIt->second += InlineConstants::InstrCost; 573 SROACostSavings += InlineConstants::InstrCost; 574 } 575 576 void onBlockAnalyzed(const BasicBlock *BB) override { 577 auto *TI = BB->getTerminator(); 578 // If we had any successors at this point, than post-inlining is likely to 579 // have them as well. Note that we assume any basic blocks which existed 580 // due to branches or switches which folded above will also fold after 581 // inlining. 582 if (SingleBB && TI->getNumSuccessors() > 1) { 583 // Take off the bonus we applied to the threshold. 584 Threshold -= SingleBBBonus; 585 SingleBB = false; 586 } 587 } 588 589 void onInstructionAnalysisStart(const Instruction *I) override { 590 // This function is called to store the initial cost of inlining before 591 // the given instruction was assessed. 592 if (!PrintDebugInstructionDeltas) 593 return; 594 Writer.CostThresholdMap[I].CostBefore = Cost; 595 Writer.CostThresholdMap[I].ThresholdBefore = Threshold; 596 } 597 598 void onInstructionAnalysisFinish(const Instruction *I) override { 599 // This function is called to find new values of cost and threshold after 600 // the instruction has been assessed. 601 if (!PrintDebugInstructionDeltas) 602 return; 603 Writer.CostThresholdMap[I].CostAfter = Cost; 604 Writer.CostThresholdMap[I].ThresholdAfter = Threshold; 605 } 606 607 InlineResult finalizeAnalysis() override { 608 // Loops generally act a lot like calls in that they act like barriers to 609 // movement, require a certain amount of setup, etc. So when optimising for 610 // size, we penalise any call sites that perform loops. We do this after all 611 // other costs here, so will likely only be dealing with relatively small 612 // functions (and hence DT and LI will hopefully be cheap). 613 auto *Caller = CandidateCall.getFunction(); 614 if (Caller->hasMinSize()) { 615 DominatorTree DT(F); 616 LoopInfo LI(DT); 617 int NumLoops = 0; 618 for (Loop *L : LI) { 619 // Ignore loops that will not be executed 620 if (DeadBlocks.count(L->getHeader())) 621 continue; 622 NumLoops++; 623 } 624 addCost(NumLoops * InlineConstants::CallPenalty); 625 } 626 627 // We applied the maximum possible vector bonus at the beginning. Now, 628 // subtract the excess bonus, if any, from the Threshold before 629 // comparing against Cost. 630 if (NumVectorInstructions <= NumInstructions / 10) 631 Threshold -= VectorBonus; 632 else if (NumVectorInstructions <= NumInstructions / 2) 633 Threshold -= VectorBonus / 2; 634 635 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 636 return InlineResult::success(); 637 return InlineResult::failure("Cost over threshold."); 638 } 639 bool shouldStop() override { 640 // Bail out the moment we cross the threshold. This means we'll under-count 641 // the cost, but only when undercounting doesn't matter. 642 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 643 } 644 645 void onLoadEliminationOpportunity() override { 646 LoadEliminationCost += InlineConstants::InstrCost; 647 } 648 649 InlineResult onAnalysisStart() override { 650 // Perform some tweaks to the cost and threshold based on the direct 651 // callsite information. 652 653 // We want to more aggressively inline vector-dense kernels, so up the 654 // threshold, and we'll lower it if the % of vector instructions gets too 655 // low. Note that these bonuses are some what arbitrary and evolved over 656 // time by accident as much as because they are principled bonuses. 657 // 658 // FIXME: It would be nice to remove all such bonuses. At least it would be 659 // nice to base the bonus values on something more scientific. 660 assert(NumInstructions == 0); 661 assert(NumVectorInstructions == 0); 662 663 // Update the threshold based on callsite properties 664 updateThreshold(CandidateCall, F); 665 666 // While Threshold depends on commandline options that can take negative 667 // values, we want to enforce the invariant that the computed threshold and 668 // bonuses are non-negative. 669 assert(Threshold >= 0); 670 assert(SingleBBBonus >= 0); 671 assert(VectorBonus >= 0); 672 673 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 674 // this Threshold any time, and cost cannot decrease, we can stop processing 675 // the rest of the function body. 676 Threshold += (SingleBBBonus + VectorBonus); 677 678 // Give out bonuses for the callsite, as the instructions setting them up 679 // will be gone after inlining. 680 addCost(-getCallsiteCost(this->CandidateCall, DL)); 681 682 // If this function uses the coldcc calling convention, prefer not to inline 683 // it. 684 if (F.getCallingConv() == CallingConv::Cold) 685 Cost += InlineConstants::ColdccPenalty; 686 687 // Check if we're done. This can happen due to bonuses and penalties. 688 if (Cost >= Threshold && !ComputeFullInlineCost) 689 return InlineResult::failure("high cost"); 690 691 return InlineResult::success(); 692 } 693 694 public: 695 InlineCostCallAnalyzer( 696 const TargetTransformInfo &TTI, 697 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 698 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, 699 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 700 CallBase &Call, const InlineParams &Params, bool BoostIndirect = true, 701 bool IgnoreThreshold = false) 702 : CallAnalyzer(TTI, GetAssumptionCache, GetBFI, PSI, ORE, Callee, Call), 703 ComputeFullInlineCost(OptComputeFullInlineCost || 704 Params.ComputeFullInlineCost || ORE), 705 Params(Params), Threshold(Params.DefaultThreshold), 706 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold) {} 707 708 /// Annotation Writer for cost annotation 709 CostAnnotationWriter Writer; 710 711 void dump(); 712 713 virtual ~InlineCostCallAnalyzer() {} 714 int getThreshold() { return Threshold; } 715 int getCost() { return Cost; } 716 }; 717 } // namespace 718 719 /// Test whether the given value is an Alloca-derived function argument. 720 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 721 return SROAArgValues.count(V); 722 } 723 724 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 725 onDisableSROA(SROAArg); 726 EnabledSROAAllocas.erase(SROAArg); 727 disableLoadElimination(); 728 } 729 730 void CostAnnotationWriter::emitInstructionAnnot(const Instruction *I, 731 formatted_raw_ostream &OS) { 732 // The cost of inlining of the given instruction is printed always. 733 // The threshold delta is printed only when it is non-zero. It happens 734 // when we decided to give a bonus at a particular instruction. 735 if (CostThresholdMap.count(I) == 0) { 736 OS << "; No analysis for the instruction\n"; 737 return; 738 } 739 const auto &Record = CostThresholdMap[I]; 740 OS << "; cost before = " << Record.CostBefore 741 << ", cost after = " << Record.CostAfter 742 << ", threshold before = " << Record.ThresholdBefore 743 << ", threshold after = " << Record.ThresholdAfter << ", "; 744 OS << "cost delta = " << Record.getCostDelta(); 745 if (Record.hasThresholdChanged()) 746 OS << ", threshold delta = " << Record.getThresholdDelta(); 747 OS << "\n"; 748 } 749 750 /// If 'V' maps to a SROA candidate, disable SROA for it. 751 void CallAnalyzer::disableSROA(Value *V) { 752 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 753 disableSROAForArg(SROAArg); 754 } 755 } 756 757 void CallAnalyzer::disableLoadElimination() { 758 if (EnableLoadElimination) { 759 onDisableLoadElimination(); 760 EnableLoadElimination = false; 761 } 762 } 763 764 /// Accumulate a constant GEP offset into an APInt if possible. 765 /// 766 /// Returns false if unable to compute the offset for any reason. Respects any 767 /// simplified values known during the analysis of this callsite. 768 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 769 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 770 assert(IntPtrWidth == Offset.getBitWidth()); 771 772 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 773 GTI != GTE; ++GTI) { 774 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 775 if (!OpC) 776 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 777 OpC = dyn_cast<ConstantInt>(SimpleOp); 778 if (!OpC) 779 return false; 780 if (OpC->isZero()) 781 continue; 782 783 // Handle a struct index, which adds its field offset to the pointer. 784 if (StructType *STy = GTI.getStructTypeOrNull()) { 785 unsigned ElementIdx = OpC->getZExtValue(); 786 const StructLayout *SL = DL.getStructLayout(STy); 787 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 788 continue; 789 } 790 791 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 792 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 793 } 794 return true; 795 } 796 797 /// Use TTI to check whether a GEP is free. 798 /// 799 /// Respects any simplified values known during the analysis of this callsite. 800 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 801 SmallVector<Value *, 4> Operands; 802 Operands.push_back(GEP.getOperand(0)); 803 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 804 if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) 805 Operands.push_back(SimpleOp); 806 else 807 Operands.push_back(*I); 808 return TargetTransformInfo::TCC_Free == 809 TTI.getUserCost(&GEP, Operands, 810 TargetTransformInfo::TCK_SizeAndLatency); 811 } 812 813 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 814 // Check whether inlining will turn a dynamic alloca into a static 815 // alloca and handle that case. 816 if (I.isArrayAllocation()) { 817 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 818 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 819 Type *Ty = I.getAllocatedType(); 820 AllocatedSize = SaturatingMultiplyAdd( 821 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(), 822 AllocatedSize); 823 return Base::visitAlloca(I); 824 } 825 } 826 827 // Accumulate the allocated size. 828 if (I.isStaticAlloca()) { 829 Type *Ty = I.getAllocatedType(); 830 AllocatedSize = 831 SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize); 832 } 833 834 // We will happily inline static alloca instructions. 835 if (I.isStaticAlloca()) 836 return Base::visitAlloca(I); 837 838 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 839 // a variety of reasons, and so we would like to not inline them into 840 // functions which don't currently have a dynamic alloca. This simply 841 // disables inlining altogether in the presence of a dynamic alloca. 842 HasDynamicAlloca = true; 843 return false; 844 } 845 846 bool CallAnalyzer::visitPHI(PHINode &I) { 847 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 848 // though we don't want to propagate it's bonuses. The idea is to disable 849 // SROA if it *might* be used in an inappropriate manner. 850 851 // Phi nodes are always zero-cost. 852 // FIXME: Pointer sizes may differ between different address spaces, so do we 853 // need to use correct address space in the call to getPointerSizeInBits here? 854 // Or could we skip the getPointerSizeInBits call completely? As far as I can 855 // see the ZeroOffset is used as a dummy value, so we can probably use any 856 // bit width for the ZeroOffset? 857 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 858 bool CheckSROA = I.getType()->isPointerTy(); 859 860 // Track the constant or pointer with constant offset we've seen so far. 861 Constant *FirstC = nullptr; 862 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 863 Value *FirstV = nullptr; 864 865 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 866 BasicBlock *Pred = I.getIncomingBlock(i); 867 // If the incoming block is dead, skip the incoming block. 868 if (DeadBlocks.count(Pred)) 869 continue; 870 // If the parent block of phi is not the known successor of the incoming 871 // block, skip the incoming block. 872 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 873 if (KnownSuccessor && KnownSuccessor != I.getParent()) 874 continue; 875 876 Value *V = I.getIncomingValue(i); 877 // If the incoming value is this phi itself, skip the incoming value. 878 if (&I == V) 879 continue; 880 881 Constant *C = dyn_cast<Constant>(V); 882 if (!C) 883 C = SimplifiedValues.lookup(V); 884 885 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 886 if (!C && CheckSROA) 887 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 888 889 if (!C && !BaseAndOffset.first) 890 // The incoming value is neither a constant nor a pointer with constant 891 // offset, exit early. 892 return true; 893 894 if (FirstC) { 895 if (FirstC == C) 896 // If we've seen a constant incoming value before and it is the same 897 // constant we see this time, continue checking the next incoming value. 898 continue; 899 // Otherwise early exit because we either see a different constant or saw 900 // a constant before but we have a pointer with constant offset this time. 901 return true; 902 } 903 904 if (FirstV) { 905 // The same logic as above, but check pointer with constant offset here. 906 if (FirstBaseAndOffset == BaseAndOffset) 907 continue; 908 return true; 909 } 910 911 if (C) { 912 // This is the 1st time we've seen a constant, record it. 913 FirstC = C; 914 continue; 915 } 916 917 // The remaining case is that this is the 1st time we've seen a pointer with 918 // constant offset, record it. 919 FirstV = V; 920 FirstBaseAndOffset = BaseAndOffset; 921 } 922 923 // Check if we can map phi to a constant. 924 if (FirstC) { 925 SimplifiedValues[&I] = FirstC; 926 return true; 927 } 928 929 // Check if we can map phi to a pointer with constant offset. 930 if (FirstBaseAndOffset.first) { 931 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 932 933 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 934 SROAArgValues[&I] = SROAArg; 935 } 936 937 return true; 938 } 939 940 /// Check we can fold GEPs of constant-offset call site argument pointers. 941 /// This requires target data and inbounds GEPs. 942 /// 943 /// \return true if the specified GEP can be folded. 944 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 945 // Check if we have a base + offset for the pointer. 946 std::pair<Value *, APInt> BaseAndOffset = 947 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 948 if (!BaseAndOffset.first) 949 return false; 950 951 // Check if the offset of this GEP is constant, and if so accumulate it 952 // into Offset. 953 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 954 return false; 955 956 // Add the result as a new mapping to Base + Offset. 957 ConstantOffsetPtrs[&I] = BaseAndOffset; 958 959 return true; 960 } 961 962 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 963 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 964 965 // Lambda to check whether a GEP's indices are all constant. 966 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 967 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 968 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 969 return false; 970 return true; 971 }; 972 973 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 974 if (SROAArg) 975 SROAArgValues[&I] = SROAArg; 976 977 // Constant GEPs are modeled as free. 978 return true; 979 } 980 981 // Variable GEPs will require math and will disable SROA. 982 if (SROAArg) 983 disableSROAForArg(SROAArg); 984 return isGEPFree(I); 985 } 986 987 /// Simplify \p I if its operands are constants and update SimplifiedValues. 988 /// \p Evaluate is a callable specific to instruction type that evaluates the 989 /// instruction when all the operands are constants. 990 template <typename Callable> 991 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 992 SmallVector<Constant *, 2> COps; 993 for (Value *Op : I.operands()) { 994 Constant *COp = dyn_cast<Constant>(Op); 995 if (!COp) 996 COp = SimplifiedValues.lookup(Op); 997 if (!COp) 998 return false; 999 COps.push_back(COp); 1000 } 1001 auto *C = Evaluate(COps); 1002 if (!C) 1003 return false; 1004 SimplifiedValues[&I] = C; 1005 return true; 1006 } 1007 1008 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1009 // Propagate constants through bitcasts. 1010 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1011 return ConstantExpr::getBitCast(COps[0], I.getType()); 1012 })) 1013 return true; 1014 1015 // Track base/offsets through casts 1016 std::pair<Value *, APInt> BaseAndOffset = 1017 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1018 // Casts don't change the offset, just wrap it up. 1019 if (BaseAndOffset.first) 1020 ConstantOffsetPtrs[&I] = BaseAndOffset; 1021 1022 // Also look for SROA candidates here. 1023 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1024 SROAArgValues[&I] = SROAArg; 1025 1026 // Bitcasts are always zero cost. 1027 return true; 1028 } 1029 1030 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1031 // Propagate constants through ptrtoint. 1032 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1033 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1034 })) 1035 return true; 1036 1037 // Track base/offset pairs when converted to a plain integer provided the 1038 // integer is large enough to represent the pointer. 1039 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1040 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1041 if (IntegerSize >= DL.getPointerSizeInBits(AS)) { 1042 std::pair<Value *, APInt> BaseAndOffset = 1043 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1044 if (BaseAndOffset.first) 1045 ConstantOffsetPtrs[&I] = BaseAndOffset; 1046 } 1047 1048 // This is really weird. Technically, ptrtoint will disable SROA. However, 1049 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1050 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1051 // would block SROA would also block SROA if applied directly to a pointer, 1052 // and so we can just add the integer in here. The only places where SROA is 1053 // preserved either cannot fire on an integer, or won't in-and-of themselves 1054 // disable SROA (ext) w/o some later use that we would see and disable. 1055 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1056 SROAArgValues[&I] = SROAArg; 1057 1058 return TargetTransformInfo::TCC_Free == 1059 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1060 } 1061 1062 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1063 // Propagate constants through ptrtoint. 1064 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1065 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1066 })) 1067 return true; 1068 1069 // Track base/offset pairs when round-tripped through a pointer without 1070 // modifications provided the integer is not too large. 1071 Value *Op = I.getOperand(0); 1072 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1073 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1074 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1075 if (BaseAndOffset.first) 1076 ConstantOffsetPtrs[&I] = BaseAndOffset; 1077 } 1078 1079 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1080 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1081 SROAArgValues[&I] = SROAArg; 1082 1083 return TargetTransformInfo::TCC_Free == 1084 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1085 } 1086 1087 bool CallAnalyzer::visitCastInst(CastInst &I) { 1088 // Propagate constants through casts. 1089 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1090 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1091 })) 1092 return true; 1093 1094 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. 1095 disableSROA(I.getOperand(0)); 1096 1097 // If this is a floating-point cast, and the target says this operation 1098 // is expensive, this may eventually become a library call. Treat the cost 1099 // as such. 1100 switch (I.getOpcode()) { 1101 case Instruction::FPTrunc: 1102 case Instruction::FPExt: 1103 case Instruction::UIToFP: 1104 case Instruction::SIToFP: 1105 case Instruction::FPToUI: 1106 case Instruction::FPToSI: 1107 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1108 onCallPenalty(); 1109 break; 1110 default: 1111 break; 1112 } 1113 1114 return TargetTransformInfo::TCC_Free == 1115 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1116 } 1117 1118 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1119 Value *Operand = I.getOperand(0); 1120 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1121 return ConstantFoldInstOperands(&I, COps[0], DL); 1122 })) 1123 return true; 1124 1125 // Disable any SROA on the argument to arbitrary unary instructions. 1126 disableSROA(Operand); 1127 1128 return false; 1129 } 1130 1131 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1132 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1133 } 1134 1135 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1136 // Does the *call site* have the NonNull attribute set on an argument? We 1137 // use the attribute on the call site to memoize any analysis done in the 1138 // caller. This will also trip if the callee function has a non-null 1139 // parameter attribute, but that's a less interesting case because hopefully 1140 // the callee would already have been simplified based on that. 1141 if (Argument *A = dyn_cast<Argument>(V)) 1142 if (paramHasAttr(A, Attribute::NonNull)) 1143 return true; 1144 1145 // Is this an alloca in the caller? This is distinct from the attribute case 1146 // above because attributes aren't updated within the inliner itself and we 1147 // always want to catch the alloca derived case. 1148 if (isAllocaDerivedArg(V)) 1149 // We can actually predict the result of comparisons between an 1150 // alloca-derived value and null. Note that this fires regardless of 1151 // SROA firing. 1152 return true; 1153 1154 return false; 1155 } 1156 1157 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1158 // If the normal destination of the invoke or the parent block of the call 1159 // site is unreachable-terminated, there is little point in inlining this 1160 // unless there is literally zero cost. 1161 // FIXME: Note that it is possible that an unreachable-terminated block has a 1162 // hot entry. For example, in below scenario inlining hot_call_X() may be 1163 // beneficial : 1164 // main() { 1165 // hot_call_1(); 1166 // ... 1167 // hot_call_N() 1168 // exit(0); 1169 // } 1170 // For now, we are not handling this corner case here as it is rare in real 1171 // code. In future, we should elaborate this based on BPI and BFI in more 1172 // general threshold adjusting heuristics in updateThreshold(). 1173 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1174 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1175 return false; 1176 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1177 return false; 1178 1179 return true; 1180 } 1181 1182 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1183 BlockFrequencyInfo *CallerBFI) { 1184 // If global profile summary is available, then callsite's coldness is 1185 // determined based on that. 1186 if (PSI && PSI->hasProfileSummary()) 1187 return PSI->isColdCallSite(Call, CallerBFI); 1188 1189 // Otherwise we need BFI to be available. 1190 if (!CallerBFI) 1191 return false; 1192 1193 // Determine if the callsite is cold relative to caller's entry. We could 1194 // potentially cache the computation of scaled entry frequency, but the added 1195 // complexity is not worth it unless this scaling shows up high in the 1196 // profiles. 1197 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1198 auto CallSiteBB = Call.getParent(); 1199 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1200 auto CallerEntryFreq = 1201 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1202 return CallSiteFreq < CallerEntryFreq * ColdProb; 1203 } 1204 1205 Optional<int> 1206 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1207 BlockFrequencyInfo *CallerBFI) { 1208 1209 // If global profile summary is available, then callsite's hotness is 1210 // determined based on that. 1211 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1212 return Params.HotCallSiteThreshold; 1213 1214 // Otherwise we need BFI to be available and to have a locally hot callsite 1215 // threshold. 1216 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1217 return None; 1218 1219 // Determine if the callsite is hot relative to caller's entry. We could 1220 // potentially cache the computation of scaled entry frequency, but the added 1221 // complexity is not worth it unless this scaling shows up high in the 1222 // profiles. 1223 auto CallSiteBB = Call.getParent(); 1224 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1225 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1226 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1227 return Params.LocallyHotCallSiteThreshold; 1228 1229 // Otherwise treat it normally. 1230 return None; 1231 } 1232 1233 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1234 // If no size growth is allowed for this inlining, set Threshold to 0. 1235 if (!allowSizeGrowth(Call)) { 1236 Threshold = 0; 1237 return; 1238 } 1239 1240 Function *Caller = Call.getCaller(); 1241 1242 // return min(A, B) if B is valid. 1243 auto MinIfValid = [](int A, Optional<int> B) { 1244 return B ? std::min(A, B.getValue()) : A; 1245 }; 1246 1247 // return max(A, B) if B is valid. 1248 auto MaxIfValid = [](int A, Optional<int> B) { 1249 return B ? std::max(A, B.getValue()) : A; 1250 }; 1251 1252 // Various bonus percentages. These are multiplied by Threshold to get the 1253 // bonus values. 1254 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1255 // basic block at the given callsite context. This is speculatively applied 1256 // and withdrawn if more than one basic block is seen. 1257 // 1258 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1259 // of the last call to a static function as inlining such functions is 1260 // guaranteed to reduce code size. 1261 // 1262 // These bonus percentages may be set to 0 based on properties of the caller 1263 // and the callsite. 1264 int SingleBBBonusPercent = 50; 1265 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1266 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1267 1268 // Lambda to set all the above bonus and bonus percentages to 0. 1269 auto DisallowAllBonuses = [&]() { 1270 SingleBBBonusPercent = 0; 1271 VectorBonusPercent = 0; 1272 LastCallToStaticBonus = 0; 1273 }; 1274 1275 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1276 // and reduce the threshold if the caller has the necessary attribute. 1277 if (Caller->hasMinSize()) { 1278 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1279 // For minsize, we want to disable the single BB bonus and the vector 1280 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1281 // a static function will, at the minimum, eliminate the parameter setup and 1282 // call/return instructions. 1283 SingleBBBonusPercent = 0; 1284 VectorBonusPercent = 0; 1285 } else if (Caller->hasOptSize()) 1286 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1287 1288 // Adjust the threshold based on inlinehint attribute and profile based 1289 // hotness information if the caller does not have MinSize attribute. 1290 if (!Caller->hasMinSize()) { 1291 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1292 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1293 1294 // FIXME: After switching to the new passmanager, simplify the logic below 1295 // by checking only the callsite hotness/coldness as we will reliably 1296 // have local profile information. 1297 // 1298 // Callsite hotness and coldness can be determined if sample profile is 1299 // used (which adds hotness metadata to calls) or if caller's 1300 // BlockFrequencyInfo is available. 1301 BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr; 1302 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1303 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1304 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1305 // FIXME: This should update the threshold only if it exceeds the 1306 // current threshold, but AutoFDO + ThinLTO currently relies on this 1307 // behavior to prevent inlining of hot callsites during ThinLTO 1308 // compile phase. 1309 Threshold = HotCallSiteThreshold.getValue(); 1310 } else if (isColdCallSite(Call, CallerBFI)) { 1311 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1312 // Do not apply bonuses for a cold callsite including the 1313 // LastCallToStatic bonus. While this bonus might result in code size 1314 // reduction, it can cause the size of a non-cold caller to increase 1315 // preventing it from being inlined. 1316 DisallowAllBonuses(); 1317 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1318 } else if (PSI) { 1319 // Use callee's global profile information only if we have no way of 1320 // determining this via callsite information. 1321 if (PSI->isFunctionEntryHot(&Callee)) { 1322 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1323 // If callsite hotness can not be determined, we may still know 1324 // that the callee is hot and treat it as a weaker hint for threshold 1325 // increase. 1326 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1327 } else if (PSI->isFunctionEntryCold(&Callee)) { 1328 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1329 // Do not apply bonuses for a cold callee including the 1330 // LastCallToStatic bonus. While this bonus might result in code size 1331 // reduction, it can cause the size of a non-cold caller to increase 1332 // preventing it from being inlined. 1333 DisallowAllBonuses(); 1334 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1335 } 1336 } 1337 } 1338 1339 // Finally, take the target-specific inlining threshold multiplier into 1340 // account. 1341 Threshold *= TTI.getInliningThresholdMultiplier(); 1342 1343 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1344 VectorBonus = Threshold * VectorBonusPercent / 100; 1345 1346 bool OnlyOneCallAndLocalLinkage = 1347 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1348 // If there is only one call of the function, and it has internal linkage, 1349 // the cost of inlining it drops dramatically. It may seem odd to update 1350 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1351 if (OnlyOneCallAndLocalLinkage) 1352 Cost -= LastCallToStaticBonus; 1353 } 1354 1355 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1356 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1357 // First try to handle simplified comparisons. 1358 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1359 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1360 })) 1361 return true; 1362 1363 if (I.getOpcode() == Instruction::FCmp) 1364 return false; 1365 1366 // Otherwise look for a comparison between constant offset pointers with 1367 // a common base. 1368 Value *LHSBase, *RHSBase; 1369 APInt LHSOffset, RHSOffset; 1370 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1371 if (LHSBase) { 1372 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1373 if (RHSBase && LHSBase == RHSBase) { 1374 // We have common bases, fold the icmp to a constant based on the 1375 // offsets. 1376 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1377 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1378 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1379 SimplifiedValues[&I] = C; 1380 ++NumConstantPtrCmps; 1381 return true; 1382 } 1383 } 1384 } 1385 1386 // If the comparison is an equality comparison with null, we can simplify it 1387 // if we know the value (argument) can't be null 1388 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1389 isKnownNonNullInCallee(I.getOperand(0))) { 1390 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1391 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1392 : ConstantInt::getFalse(I.getType()); 1393 return true; 1394 } 1395 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1396 } 1397 1398 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1399 // Try to handle a special case: we can fold computing the difference of two 1400 // constant-related pointers. 1401 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1402 Value *LHSBase, *RHSBase; 1403 APInt LHSOffset, RHSOffset; 1404 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1405 if (LHSBase) { 1406 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1407 if (RHSBase && LHSBase == RHSBase) { 1408 // We have common bases, fold the subtract to a constant based on the 1409 // offsets. 1410 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1411 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1412 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1413 SimplifiedValues[&I] = C; 1414 ++NumConstantPtrDiffs; 1415 return true; 1416 } 1417 } 1418 } 1419 1420 // Otherwise, fall back to the generic logic for simplifying and handling 1421 // instructions. 1422 return Base::visitSub(I); 1423 } 1424 1425 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1426 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1427 Constant *CLHS = dyn_cast<Constant>(LHS); 1428 if (!CLHS) 1429 CLHS = SimplifiedValues.lookup(LHS); 1430 Constant *CRHS = dyn_cast<Constant>(RHS); 1431 if (!CRHS) 1432 CRHS = SimplifiedValues.lookup(RHS); 1433 1434 Value *SimpleV = nullptr; 1435 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1436 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1437 FI->getFastMathFlags(), DL); 1438 else 1439 SimpleV = 1440 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1441 1442 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1443 SimplifiedValues[&I] = C; 1444 1445 if (SimpleV) 1446 return true; 1447 1448 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1449 disableSROA(LHS); 1450 disableSROA(RHS); 1451 1452 // If the instruction is floating point, and the target says this operation 1453 // is expensive, this may eventually become a library call. Treat the cost 1454 // as such. Unless it's fneg which can be implemented with an xor. 1455 using namespace llvm::PatternMatch; 1456 if (I.getType()->isFloatingPointTy() && 1457 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1458 !match(&I, m_FNeg(m_Value()))) 1459 onCallPenalty(); 1460 1461 return false; 1462 } 1463 1464 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1465 Value *Op = I.getOperand(0); 1466 Constant *COp = dyn_cast<Constant>(Op); 1467 if (!COp) 1468 COp = SimplifiedValues.lookup(Op); 1469 1470 Value *SimpleV = SimplifyFNegInst( 1471 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1472 1473 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1474 SimplifiedValues[&I] = C; 1475 1476 if (SimpleV) 1477 return true; 1478 1479 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1480 disableSROA(Op); 1481 1482 return false; 1483 } 1484 1485 bool CallAnalyzer::visitLoad(LoadInst &I) { 1486 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1487 return true; 1488 1489 // If the data is already loaded from this address and hasn't been clobbered 1490 // by any stores or calls, this load is likely to be redundant and can be 1491 // eliminated. 1492 if (EnableLoadElimination && 1493 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1494 onLoadEliminationOpportunity(); 1495 return true; 1496 } 1497 1498 return false; 1499 } 1500 1501 bool CallAnalyzer::visitStore(StoreInst &I) { 1502 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1503 return true; 1504 1505 // The store can potentially clobber loads and prevent repeated loads from 1506 // being eliminated. 1507 // FIXME: 1508 // 1. We can probably keep an initial set of eliminatable loads substracted 1509 // from the cost even when we finally see a store. We just need to disable 1510 // *further* accumulation of elimination savings. 1511 // 2. We should probably at some point thread MemorySSA for the callee into 1512 // this and then use that to actually compute *really* precise savings. 1513 disableLoadElimination(); 1514 return false; 1515 } 1516 1517 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1518 // Constant folding for extract value is trivial. 1519 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1520 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1521 })) 1522 return true; 1523 1524 // SROA can look through these but give them a cost. 1525 return false; 1526 } 1527 1528 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1529 // Constant folding for insert value is trivial. 1530 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1531 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1532 /*InsertedValueOperand*/ COps[1], 1533 I.getIndices()); 1534 })) 1535 return true; 1536 1537 // SROA can look through these but give them a cost. 1538 return false; 1539 } 1540 1541 /// Try to simplify a call site. 1542 /// 1543 /// Takes a concrete function and callsite and tries to actually simplify it by 1544 /// analyzing the arguments and call itself with instsimplify. Returns true if 1545 /// it has simplified the callsite to some other entity (a constant), making it 1546 /// free. 1547 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1548 // FIXME: Using the instsimplify logic directly for this is inefficient 1549 // because we have to continually rebuild the argument list even when no 1550 // simplifications can be performed. Until that is fixed with remapping 1551 // inside of instsimplify, directly constant fold calls here. 1552 if (!canConstantFoldCallTo(&Call, F)) 1553 return false; 1554 1555 // Try to re-map the arguments to constants. 1556 SmallVector<Constant *, 4> ConstantArgs; 1557 ConstantArgs.reserve(Call.arg_size()); 1558 for (Value *I : Call.args()) { 1559 Constant *C = dyn_cast<Constant>(I); 1560 if (!C) 1561 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1562 if (!C) 1563 return false; // This argument doesn't map to a constant. 1564 1565 ConstantArgs.push_back(C); 1566 } 1567 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1568 SimplifiedValues[&Call] = C; 1569 return true; 1570 } 1571 1572 return false; 1573 } 1574 1575 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1576 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1577 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1578 // This aborts the entire analysis. 1579 ExposesReturnsTwice = true; 1580 return false; 1581 } 1582 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1583 ContainsNoDuplicateCall = true; 1584 1585 Value *Callee = Call.getCalledOperand(); 1586 Function *F = dyn_cast_or_null<Function>(Callee); 1587 bool IsIndirectCall = !F; 1588 if (IsIndirectCall) { 1589 // Check if this happens to be an indirect function call to a known function 1590 // in this inline context. If not, we've done all we can. 1591 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1592 if (!F) { 1593 onCallArgumentSetup(Call); 1594 1595 if (!Call.onlyReadsMemory()) 1596 disableLoadElimination(); 1597 return Base::visitCallBase(Call); 1598 } 1599 } 1600 1601 assert(F && "Expected a call to a known function"); 1602 1603 // When we have a concrete function, first try to simplify it directly. 1604 if (simplifyCallSite(F, Call)) 1605 return true; 1606 1607 // Next check if it is an intrinsic we know about. 1608 // FIXME: Lift this into part of the InstVisitor. 1609 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1610 switch (II->getIntrinsicID()) { 1611 default: 1612 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1613 disableLoadElimination(); 1614 return Base::visitCallBase(Call); 1615 1616 case Intrinsic::load_relative: 1617 onLoadRelativeIntrinsic(); 1618 return false; 1619 1620 case Intrinsic::memset: 1621 case Intrinsic::memcpy: 1622 case Intrinsic::memmove: 1623 disableLoadElimination(); 1624 // SROA can usually chew through these intrinsics, but they aren't free. 1625 return false; 1626 case Intrinsic::icall_branch_funnel: 1627 case Intrinsic::localescape: 1628 HasUninlineableIntrinsic = true; 1629 return false; 1630 case Intrinsic::vastart: 1631 InitsVargArgs = true; 1632 return false; 1633 } 1634 } 1635 1636 if (F == Call.getFunction()) { 1637 // This flag will fully abort the analysis, so don't bother with anything 1638 // else. 1639 IsRecursiveCall = true; 1640 return false; 1641 } 1642 1643 if (TTI.isLoweredToCall(F)) { 1644 onLoweredCall(F, Call, IsIndirectCall); 1645 } 1646 1647 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1648 disableLoadElimination(); 1649 return Base::visitCallBase(Call); 1650 } 1651 1652 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1653 // At least one return instruction will be free after inlining. 1654 bool Free = !HasReturn; 1655 HasReturn = true; 1656 return Free; 1657 } 1658 1659 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1660 // We model unconditional branches as essentially free -- they really 1661 // shouldn't exist at all, but handling them makes the behavior of the 1662 // inliner more regular and predictable. Interestingly, conditional branches 1663 // which will fold away are also free. 1664 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1665 dyn_cast_or_null<ConstantInt>( 1666 SimplifiedValues.lookup(BI.getCondition())); 1667 } 1668 1669 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1670 bool CheckSROA = SI.getType()->isPointerTy(); 1671 Value *TrueVal = SI.getTrueValue(); 1672 Value *FalseVal = SI.getFalseValue(); 1673 1674 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1675 if (!TrueC) 1676 TrueC = SimplifiedValues.lookup(TrueVal); 1677 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1678 if (!FalseC) 1679 FalseC = SimplifiedValues.lookup(FalseVal); 1680 Constant *CondC = 1681 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1682 1683 if (!CondC) { 1684 // Select C, X, X => X 1685 if (TrueC == FalseC && TrueC) { 1686 SimplifiedValues[&SI] = TrueC; 1687 return true; 1688 } 1689 1690 if (!CheckSROA) 1691 return Base::visitSelectInst(SI); 1692 1693 std::pair<Value *, APInt> TrueBaseAndOffset = 1694 ConstantOffsetPtrs.lookup(TrueVal); 1695 std::pair<Value *, APInt> FalseBaseAndOffset = 1696 ConstantOffsetPtrs.lookup(FalseVal); 1697 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1698 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1699 1700 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1701 SROAArgValues[&SI] = SROAArg; 1702 return true; 1703 } 1704 1705 return Base::visitSelectInst(SI); 1706 } 1707 1708 // Select condition is a constant. 1709 Value *SelectedV = CondC->isAllOnesValue() 1710 ? TrueVal 1711 : (CondC->isNullValue()) ? FalseVal : nullptr; 1712 if (!SelectedV) { 1713 // Condition is a vector constant that is not all 1s or all 0s. If all 1714 // operands are constants, ConstantExpr::getSelect() can handle the cases 1715 // such as select vectors. 1716 if (TrueC && FalseC) { 1717 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1718 SimplifiedValues[&SI] = C; 1719 return true; 1720 } 1721 } 1722 return Base::visitSelectInst(SI); 1723 } 1724 1725 // Condition is either all 1s or all 0s. SI can be simplified. 1726 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1727 SimplifiedValues[&SI] = SelectedC; 1728 return true; 1729 } 1730 1731 if (!CheckSROA) 1732 return true; 1733 1734 std::pair<Value *, APInt> BaseAndOffset = 1735 ConstantOffsetPtrs.lookup(SelectedV); 1736 if (BaseAndOffset.first) { 1737 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1738 1739 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1740 SROAArgValues[&SI] = SROAArg; 1741 } 1742 1743 return true; 1744 } 1745 1746 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1747 // We model unconditional switches as free, see the comments on handling 1748 // branches. 1749 if (isa<ConstantInt>(SI.getCondition())) 1750 return true; 1751 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1752 if (isa<ConstantInt>(V)) 1753 return true; 1754 1755 // Assume the most general case where the switch is lowered into 1756 // either a jump table, bit test, or a balanced binary tree consisting of 1757 // case clusters without merging adjacent clusters with the same 1758 // destination. We do not consider the switches that are lowered with a mix 1759 // of jump table/bit test/binary search tree. The cost of the switch is 1760 // proportional to the size of the tree or the size of jump table range. 1761 // 1762 // NB: We convert large switches which are just used to initialize large phi 1763 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 1764 // inlining those. It will prevent inlining in cases where the optimization 1765 // does not (yet) fire. 1766 1767 unsigned JumpTableSize = 0; 1768 BlockFrequencyInfo *BFI = GetBFI ? &((*GetBFI)(F)) : nullptr; 1769 unsigned NumCaseCluster = 1770 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 1771 1772 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 1773 return false; 1774 } 1775 1776 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 1777 // We never want to inline functions that contain an indirectbr. This is 1778 // incorrect because all the blockaddress's (in static global initializers 1779 // for example) would be referring to the original function, and this 1780 // indirect jump would jump from the inlined copy of the function into the 1781 // original function which is extremely undefined behavior. 1782 // FIXME: This logic isn't really right; we can safely inline functions with 1783 // indirectbr's as long as no other function or global references the 1784 // blockaddress of a block within the current function. 1785 HasIndirectBr = true; 1786 return false; 1787 } 1788 1789 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 1790 // FIXME: It's not clear that a single instruction is an accurate model for 1791 // the inline cost of a resume instruction. 1792 return false; 1793 } 1794 1795 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 1796 // FIXME: It's not clear that a single instruction is an accurate model for 1797 // the inline cost of a cleanupret instruction. 1798 return false; 1799 } 1800 1801 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 1802 // FIXME: It's not clear that a single instruction is an accurate model for 1803 // the inline cost of a catchret instruction. 1804 return false; 1805 } 1806 1807 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 1808 // FIXME: It might be reasonably to discount the cost of instructions leading 1809 // to unreachable as they have the lowest possible impact on both runtime and 1810 // code size. 1811 return true; // No actual code is needed for unreachable. 1812 } 1813 1814 bool CallAnalyzer::visitInstruction(Instruction &I) { 1815 // Some instructions are free. All of the free intrinsics can also be 1816 // handled by SROA, etc. 1817 if (TargetTransformInfo::TCC_Free == 1818 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency)) 1819 return true; 1820 1821 // We found something we don't understand or can't handle. Mark any SROA-able 1822 // values in the operand list as no longer viable. 1823 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 1824 disableSROA(*OI); 1825 1826 return false; 1827 } 1828 1829 /// Analyze a basic block for its contribution to the inline cost. 1830 /// 1831 /// This method walks the analyzer over every instruction in the given basic 1832 /// block and accounts for their cost during inlining at this callsite. It 1833 /// aborts early if the threshold has been exceeded or an impossible to inline 1834 /// construct has been detected. It returns false if inlining is no longer 1835 /// viable, and true if inlining remains viable. 1836 InlineResult 1837 CallAnalyzer::analyzeBlock(BasicBlock *BB, 1838 SmallPtrSetImpl<const Value *> &EphValues) { 1839 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1840 // FIXME: Currently, the number of instructions in a function regardless of 1841 // our ability to simplify them during inline to constants or dead code, 1842 // are actually used by the vector bonus heuristic. As long as that's true, 1843 // we have to special case debug intrinsics here to prevent differences in 1844 // inlining due to debug symbols. Eventually, the number of unsimplified 1845 // instructions shouldn't factor into the cost computation, but until then, 1846 // hack around it here. 1847 if (isa<DbgInfoIntrinsic>(I)) 1848 continue; 1849 1850 // Skip ephemeral values. 1851 if (EphValues.count(&*I)) 1852 continue; 1853 1854 ++NumInstructions; 1855 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 1856 ++NumVectorInstructions; 1857 1858 // If the instruction simplified to a constant, there is no cost to this 1859 // instruction. Visit the instructions using our InstVisitor to account for 1860 // all of the per-instruction logic. The visit tree returns true if we 1861 // consumed the instruction in any way, and false if the instruction's base 1862 // cost should count against inlining. 1863 onInstructionAnalysisStart(&*I); 1864 1865 if (Base::visit(&*I)) 1866 ++NumInstructionsSimplified; 1867 else 1868 onMissedSimplification(); 1869 1870 onInstructionAnalysisFinish(&*I); 1871 using namespace ore; 1872 // If the visit this instruction detected an uninlinable pattern, abort. 1873 InlineResult IR = InlineResult::success(); 1874 if (IsRecursiveCall) 1875 IR = InlineResult::failure("recursive"); 1876 else if (ExposesReturnsTwice) 1877 IR = InlineResult::failure("exposes returns twice"); 1878 else if (HasDynamicAlloca) 1879 IR = InlineResult::failure("dynamic alloca"); 1880 else if (HasIndirectBr) 1881 IR = InlineResult::failure("indirect branch"); 1882 else if (HasUninlineableIntrinsic) 1883 IR = InlineResult::failure("uninlinable intrinsic"); 1884 else if (InitsVargArgs) 1885 IR = InlineResult::failure("varargs"); 1886 if (!IR.isSuccess()) { 1887 if (ORE) 1888 ORE->emit([&]() { 1889 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1890 &CandidateCall) 1891 << NV("Callee", &F) << " has uninlinable pattern (" 1892 << NV("InlineResult", IR.getFailureReason()) 1893 << ") and cost is not fully computed"; 1894 }); 1895 return IR; 1896 } 1897 1898 // If the caller is a recursive function then we don't want to inline 1899 // functions which allocate a lot of stack space because it would increase 1900 // the caller stack usage dramatically. 1901 if (IsCallerRecursive && 1902 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 1903 auto IR = 1904 InlineResult::failure("recursive and allocates too much stack space"); 1905 if (ORE) 1906 ORE->emit([&]() { 1907 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1908 &CandidateCall) 1909 << NV("Callee", &F) << " is " 1910 << NV("InlineResult", IR.getFailureReason()) 1911 << ". Cost is not fully computed"; 1912 }); 1913 return IR; 1914 } 1915 1916 if (shouldStop()) 1917 return InlineResult::failure( 1918 "Call site analysis is not favorable to inlining."); 1919 } 1920 1921 return InlineResult::success(); 1922 } 1923 1924 /// Compute the base pointer and cumulative constant offsets for V. 1925 /// 1926 /// This strips all constant offsets off of V, leaving it the base pointer, and 1927 /// accumulates the total constant offset applied in the returned constant. It 1928 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 1929 /// no constant offsets applied. 1930 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 1931 if (!V->getType()->isPointerTy()) 1932 return nullptr; 1933 1934 unsigned AS = V->getType()->getPointerAddressSpace(); 1935 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 1936 APInt Offset = APInt::getNullValue(IntPtrWidth); 1937 1938 // Even though we don't look through PHI nodes, we could be called on an 1939 // instruction in an unreachable block, which may be on a cycle. 1940 SmallPtrSet<Value *, 4> Visited; 1941 Visited.insert(V); 1942 do { 1943 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1944 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 1945 return nullptr; 1946 V = GEP->getPointerOperand(); 1947 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1948 V = cast<Operator>(V)->getOperand(0); 1949 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1950 if (GA->isInterposable()) 1951 break; 1952 V = GA->getAliasee(); 1953 } else { 1954 break; 1955 } 1956 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1957 } while (Visited.insert(V).second); 1958 1959 Type *IdxPtrTy = DL.getIndexType(V->getType()); 1960 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 1961 } 1962 1963 /// Find dead blocks due to deleted CFG edges during inlining. 1964 /// 1965 /// If we know the successor of the current block, \p CurrBB, has to be \p 1966 /// NextBB, the other successors of \p CurrBB are dead if these successors have 1967 /// no live incoming CFG edges. If one block is found to be dead, we can 1968 /// continue growing the dead block list by checking the successors of the dead 1969 /// blocks to see if all their incoming edges are dead or not. 1970 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 1971 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 1972 // A CFG edge is dead if the predecessor is dead or the predecessor has a 1973 // known successor which is not the one under exam. 1974 return (DeadBlocks.count(Pred) || 1975 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 1976 }; 1977 1978 auto IsNewlyDead = [&](BasicBlock *BB) { 1979 // If all the edges to a block are dead, the block is also dead. 1980 return (!DeadBlocks.count(BB) && 1981 llvm::all_of(predecessors(BB), 1982 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 1983 }; 1984 1985 for (BasicBlock *Succ : successors(CurrBB)) { 1986 if (Succ == NextBB || !IsNewlyDead(Succ)) 1987 continue; 1988 SmallVector<BasicBlock *, 4> NewDead; 1989 NewDead.push_back(Succ); 1990 while (!NewDead.empty()) { 1991 BasicBlock *Dead = NewDead.pop_back_val(); 1992 if (DeadBlocks.insert(Dead)) 1993 // Continue growing the dead block lists. 1994 for (BasicBlock *S : successors(Dead)) 1995 if (IsNewlyDead(S)) 1996 NewDead.push_back(S); 1997 } 1998 } 1999 } 2000 2001 /// Analyze a call site for potential inlining. 2002 /// 2003 /// Returns true if inlining this call is viable, and false if it is not 2004 /// viable. It computes the cost and adjusts the threshold based on numerous 2005 /// factors and heuristics. If this method returns false but the computed cost 2006 /// is below the computed threshold, then inlining was forcibly disabled by 2007 /// some artifact of the routine. 2008 InlineResult CallAnalyzer::analyze() { 2009 ++NumCallsAnalyzed; 2010 2011 auto Result = onAnalysisStart(); 2012 if (!Result.isSuccess()) 2013 return Result; 2014 2015 if (F.empty()) 2016 return InlineResult::success(); 2017 2018 Function *Caller = CandidateCall.getFunction(); 2019 // Check if the caller function is recursive itself. 2020 for (User *U : Caller->users()) { 2021 CallBase *Call = dyn_cast<CallBase>(U); 2022 if (Call && Call->getFunction() == Caller) { 2023 IsCallerRecursive = true; 2024 break; 2025 } 2026 } 2027 2028 // Populate our simplified values by mapping from function arguments to call 2029 // arguments with known important simplifications. 2030 auto CAI = CandidateCall.arg_begin(); 2031 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 2032 FAI != FAE; ++FAI, ++CAI) { 2033 assert(CAI != CandidateCall.arg_end()); 2034 if (Constant *C = dyn_cast<Constant>(CAI)) 2035 SimplifiedValues[&*FAI] = C; 2036 2037 Value *PtrArg = *CAI; 2038 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2039 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); 2040 2041 // We can SROA any pointer arguments derived from alloca instructions. 2042 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2043 SROAArgValues[&*FAI] = SROAArg; 2044 onInitializeSROAArg(SROAArg); 2045 EnabledSROAAllocas.insert(SROAArg); 2046 } 2047 } 2048 } 2049 NumConstantArgs = SimplifiedValues.size(); 2050 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2051 NumAllocaArgs = SROAArgValues.size(); 2052 2053 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2054 // the ephemeral values multiple times (and they're completely determined by 2055 // the callee, so this is purely duplicate work). 2056 SmallPtrSet<const Value *, 32> EphValues; 2057 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2058 2059 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2060 // adding basic blocks of the callee which can be proven to be dead for this 2061 // particular call site in order to get more accurate cost estimates. This 2062 // requires a somewhat heavyweight iteration pattern: we need to walk the 2063 // basic blocks in a breadth-first order as we insert live successors. To 2064 // accomplish this, prioritizing for small iterations because we exit after 2065 // crossing our threshold, we use a small-size optimized SetVector. 2066 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2067 SmallPtrSet<BasicBlock *, 16>> 2068 BBSetVector; 2069 BBSetVector BBWorklist; 2070 BBWorklist.insert(&F.getEntryBlock()); 2071 2072 // Note that we *must not* cache the size, this loop grows the worklist. 2073 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2074 if (shouldStop()) 2075 break; 2076 2077 BasicBlock *BB = BBWorklist[Idx]; 2078 if (BB->empty()) 2079 continue; 2080 2081 // Disallow inlining a blockaddress with uses other than strictly callbr. 2082 // A blockaddress only has defined behavior for an indirect branch in the 2083 // same function, and we do not currently support inlining indirect 2084 // branches. But, the inliner may not see an indirect branch that ends up 2085 // being dead code at a particular call site. If the blockaddress escapes 2086 // the function, e.g., via a global variable, inlining may lead to an 2087 // invalid cross-function reference. 2088 // FIXME: pr/39560: continue relaxing this overt restriction. 2089 if (BB->hasAddressTaken()) 2090 for (User *U : BlockAddress::get(&*BB)->users()) 2091 if (!isa<CallBrInst>(*U)) 2092 return InlineResult::failure("blockaddress used outside of callbr"); 2093 2094 // Analyze the cost of this block. If we blow through the threshold, this 2095 // returns false, and we can bail on out. 2096 InlineResult IR = analyzeBlock(BB, EphValues); 2097 if (!IR.isSuccess()) 2098 return IR; 2099 2100 Instruction *TI = BB->getTerminator(); 2101 2102 // Add in the live successors by first checking whether we have terminator 2103 // that may be simplified based on the values simplified by this call. 2104 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2105 if (BI->isConditional()) { 2106 Value *Cond = BI->getCondition(); 2107 if (ConstantInt *SimpleCond = 2108 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2109 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2110 BBWorklist.insert(NextBB); 2111 KnownSuccessors[BB] = NextBB; 2112 findDeadBlocks(BB, NextBB); 2113 continue; 2114 } 2115 } 2116 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2117 Value *Cond = SI->getCondition(); 2118 if (ConstantInt *SimpleCond = 2119 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2120 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2121 BBWorklist.insert(NextBB); 2122 KnownSuccessors[BB] = NextBB; 2123 findDeadBlocks(BB, NextBB); 2124 continue; 2125 } 2126 } 2127 2128 // If we're unable to select a particular successor, just count all of 2129 // them. 2130 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2131 ++TIdx) 2132 BBWorklist.insert(TI->getSuccessor(TIdx)); 2133 2134 onBlockAnalyzed(BB); 2135 } 2136 2137 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2138 &F == CandidateCall.getCalledFunction(); 2139 // If this is a noduplicate call, we can still inline as long as 2140 // inlining this would cause the removal of the caller (so the instruction 2141 // is not actually duplicated, just moved). 2142 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2143 return InlineResult::failure("noduplicate"); 2144 2145 return finalizeAnalysis(); 2146 } 2147 2148 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2149 /// Dump stats about this call's analysis. 2150 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2151 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2152 if (PrintDebugInstructionDeltas) 2153 F.print(dbgs(), &Writer); 2154 DEBUG_PRINT_STAT(NumConstantArgs); 2155 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2156 DEBUG_PRINT_STAT(NumAllocaArgs); 2157 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2158 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2159 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2160 DEBUG_PRINT_STAT(NumInstructions); 2161 DEBUG_PRINT_STAT(SROACostSavings); 2162 DEBUG_PRINT_STAT(SROACostSavingsLost); 2163 DEBUG_PRINT_STAT(LoadEliminationCost); 2164 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2165 DEBUG_PRINT_STAT(Cost); 2166 DEBUG_PRINT_STAT(Threshold); 2167 #undef DEBUG_PRINT_STAT 2168 } 2169 #endif 2170 2171 /// Test that there are no attribute conflicts between Caller and Callee 2172 /// that prevent inlining. 2173 static bool functionsHaveCompatibleAttributes( 2174 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2175 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2176 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2177 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2178 // object, and always returns the same object (which is overwritten on each 2179 // GetTLI call). Therefore we copy the first result. 2180 auto CalleeTLI = GetTLI(*Callee); 2181 return TTI.areInlineCompatible(Caller, Callee) && 2182 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2183 InlineCallerSupersetNoBuiltin) && 2184 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2185 } 2186 2187 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2188 int Cost = 0; 2189 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2190 if (Call.isByValArgument(I)) { 2191 // We approximate the number of loads and stores needed by dividing the 2192 // size of the byval type by the target's pointer size. 2193 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2194 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2195 unsigned AS = PTy->getAddressSpace(); 2196 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2197 // Ceiling division. 2198 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2199 2200 // If it generates more than 8 stores it is likely to be expanded as an 2201 // inline memcpy so we take that as an upper bound. Otherwise we assume 2202 // one load and one store per word copied. 2203 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2204 // here instead of a magic number of 8, but it's not available via 2205 // DataLayout. 2206 NumStores = std::min(NumStores, 8U); 2207 2208 Cost += 2 * NumStores * InlineConstants::InstrCost; 2209 } else { 2210 // For non-byval arguments subtract off one instruction per call 2211 // argument. 2212 Cost += InlineConstants::InstrCost; 2213 } 2214 } 2215 // The call instruction also disappears after inlining. 2216 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2217 return Cost; 2218 } 2219 2220 InlineCost llvm::getInlineCost( 2221 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2222 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 2223 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, 2224 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2225 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2226 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2227 GetAssumptionCache, GetBFI, GetTLI, PSI, ORE); 2228 } 2229 2230 Optional<int> llvm::getInliningCostEstimate( 2231 CallBase &Call, TargetTransformInfo &CalleeTTI, 2232 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 2233 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, 2234 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2235 const InlineParams Params = {/* DefaultThreshold*/ 0, 2236 /*HintThreshold*/ {}, 2237 /*ColdThreshold*/ {}, 2238 /*OptSizeThreshold*/ {}, 2239 /*OptMinSizeThreshold*/ {}, 2240 /*HotCallSiteThreshold*/ {}, 2241 /*LocallyHotCallSiteThreshold*/ {}, 2242 /*ColdCallSiteThreshold*/ {}, 2243 /* ComputeFullInlineCost*/ true}; 2244 2245 InlineCostCallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, 2246 *Call.getCalledFunction(), Call, Params, true, 2247 /*IgnoreThreshold*/ true); 2248 auto R = CA.analyze(); 2249 if (!R.isSuccess()) 2250 return None; 2251 return CA.getCost(); 2252 } 2253 2254 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2255 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2256 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2257 2258 // Cannot inline indirect calls. 2259 if (!Callee) 2260 return InlineResult::failure("indirect call"); 2261 2262 // Never inline calls with byval arguments that does not have the alloca 2263 // address space. Since byval arguments can be replaced with a copy to an 2264 // alloca, the inlined code would need to be adjusted to handle that the 2265 // argument is in the alloca address space (so it is a little bit complicated 2266 // to solve). 2267 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2268 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2269 if (Call.isByValArgument(I)) { 2270 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2271 if (PTy->getAddressSpace() != AllocaAS) 2272 return InlineResult::failure("byval arguments without alloca" 2273 " address space"); 2274 } 2275 2276 // Calls to functions with always-inline attributes should be inlined 2277 // whenever possible. 2278 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2279 auto IsViable = isInlineViable(*Callee); 2280 if (IsViable.isSuccess()) 2281 return InlineResult::success(); 2282 return InlineResult::failure(IsViable.getFailureReason()); 2283 } 2284 2285 // Never inline functions with conflicting attributes (unless callee has 2286 // always-inline attribute). 2287 Function *Caller = Call.getCaller(); 2288 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2289 return InlineResult::failure("conflicting attributes"); 2290 2291 // Don't inline this call if the caller has the optnone attribute. 2292 if (Caller->hasOptNone()) 2293 return InlineResult::failure("optnone attribute"); 2294 2295 // Don't inline a function that treats null pointer as valid into a caller 2296 // that does not have this attribute. 2297 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2298 return InlineResult::failure("nullptr definitions incompatible"); 2299 2300 // Don't inline functions which can be interposed at link-time. 2301 if (Callee->isInterposable()) 2302 return InlineResult::failure("interposable"); 2303 2304 // Don't inline functions marked noinline. 2305 if (Callee->hasFnAttribute(Attribute::NoInline)) 2306 return InlineResult::failure("noinline function attribute"); 2307 2308 // Don't inline call sites marked noinline. 2309 if (Call.isNoInline()) 2310 return InlineResult::failure("noinline call site attribute"); 2311 2312 return None; 2313 } 2314 2315 InlineCost llvm::getInlineCost( 2316 CallBase &Call, Function *Callee, const InlineParams &Params, 2317 TargetTransformInfo &CalleeTTI, 2318 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 2319 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, 2320 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2321 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2322 2323 auto UserDecision = 2324 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2325 2326 if (UserDecision.hasValue()) { 2327 if (UserDecision->isSuccess()) 2328 return llvm::InlineCost::getAlways("always inline attribute"); 2329 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2330 } 2331 2332 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2333 << "... (caller:" << Call.getCaller()->getName() 2334 << ")\n"); 2335 2336 InlineCostCallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, 2337 *Callee, Call, Params); 2338 InlineResult ShouldInline = CA.analyze(); 2339 2340 LLVM_DEBUG(CA.dump()); 2341 2342 // Check if there was a reason to force inlining or no inlining. 2343 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2344 return InlineCost::getNever(ShouldInline.getFailureReason()); 2345 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2346 return InlineCost::getAlways("empty function"); 2347 2348 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2349 } 2350 2351 InlineResult llvm::isInlineViable(Function &F) { 2352 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2353 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2354 // Disallow inlining of functions which contain indirect branches. 2355 if (isa<IndirectBrInst>(BI->getTerminator())) 2356 return InlineResult::failure("contains indirect branches"); 2357 2358 // Disallow inlining of blockaddresses which are used by non-callbr 2359 // instructions. 2360 if (BI->hasAddressTaken()) 2361 for (User *U : BlockAddress::get(&*BI)->users()) 2362 if (!isa<CallBrInst>(*U)) 2363 return InlineResult::failure("blockaddress used outside of callbr"); 2364 2365 for (auto &II : *BI) { 2366 CallBase *Call = dyn_cast<CallBase>(&II); 2367 if (!Call) 2368 continue; 2369 2370 // Disallow recursive calls. 2371 if (&F == Call->getCalledFunction()) 2372 return InlineResult::failure("recursive call"); 2373 2374 // Disallow calls which expose returns-twice to a function not previously 2375 // attributed as such. 2376 if (!ReturnsTwice && isa<CallInst>(Call) && 2377 cast<CallInst>(Call)->canReturnTwice()) 2378 return InlineResult::failure("exposes returns-twice attribute"); 2379 2380 if (Call->getCalledFunction()) 2381 switch (Call->getCalledFunction()->getIntrinsicID()) { 2382 default: 2383 break; 2384 case llvm::Intrinsic::icall_branch_funnel: 2385 // Disallow inlining of @llvm.icall.branch.funnel because current 2386 // backend can't separate call targets from call arguments. 2387 return InlineResult::failure( 2388 "disallowed inlining of @llvm.icall.branch.funnel"); 2389 case llvm::Intrinsic::localescape: 2390 // Disallow inlining functions that call @llvm.localescape. Doing this 2391 // correctly would require major changes to the inliner. 2392 return InlineResult::failure( 2393 "disallowed inlining of @llvm.localescape"); 2394 case llvm::Intrinsic::vastart: 2395 // Disallow inlining of functions that initialize VarArgs with 2396 // va_start. 2397 return InlineResult::failure( 2398 "contains VarArgs initialized with va_start"); 2399 } 2400 } 2401 } 2402 2403 return InlineResult::success(); 2404 } 2405 2406 // APIs to create InlineParams based on command line flags and/or other 2407 // parameters. 2408 2409 InlineParams llvm::getInlineParams(int Threshold) { 2410 InlineParams Params; 2411 2412 // This field is the threshold to use for a callee by default. This is 2413 // derived from one or more of: 2414 // * optimization or size-optimization levels, 2415 // * a value passed to createFunctionInliningPass function, or 2416 // * the -inline-threshold flag. 2417 // If the -inline-threshold flag is explicitly specified, that is used 2418 // irrespective of anything else. 2419 if (InlineThreshold.getNumOccurrences() > 0) 2420 Params.DefaultThreshold = InlineThreshold; 2421 else 2422 Params.DefaultThreshold = Threshold; 2423 2424 // Set the HintThreshold knob from the -inlinehint-threshold. 2425 Params.HintThreshold = HintThreshold; 2426 2427 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2428 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2429 2430 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2431 // populate LocallyHotCallSiteThreshold. Later, we populate 2432 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2433 // we know that optimization level is O3 (in the getInlineParams variant that 2434 // takes the opt and size levels). 2435 // FIXME: Remove this check (and make the assignment unconditional) after 2436 // addressing size regression issues at O2. 2437 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2438 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2439 2440 // Set the ColdCallSiteThreshold knob from the 2441 // -inline-cold-callsite-threshold. 2442 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2443 2444 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2445 // -inlinehint-threshold commandline option is not explicitly given. If that 2446 // option is present, then its value applies even for callees with size and 2447 // minsize attributes. 2448 // If the -inline-threshold is not specified, set the ColdThreshold from the 2449 // -inlinecold-threshold even if it is not explicitly passed. If 2450 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2451 // explicitly specified to set the ColdThreshold knob 2452 if (InlineThreshold.getNumOccurrences() == 0) { 2453 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2454 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2455 Params.ColdThreshold = ColdThreshold; 2456 } else if (ColdThreshold.getNumOccurrences() > 0) { 2457 Params.ColdThreshold = ColdThreshold; 2458 } 2459 return Params; 2460 } 2461 2462 InlineParams llvm::getInlineParams() { 2463 return getInlineParams(DefaultThreshold); 2464 } 2465 2466 // Compute the default threshold for inlining based on the opt level and the 2467 // size opt level. 2468 static int computeThresholdFromOptLevels(unsigned OptLevel, 2469 unsigned SizeOptLevel) { 2470 if (OptLevel > 2) 2471 return InlineConstants::OptAggressiveThreshold; 2472 if (SizeOptLevel == 1) // -Os 2473 return InlineConstants::OptSizeThreshold; 2474 if (SizeOptLevel == 2) // -Oz 2475 return InlineConstants::OptMinSizeThreshold; 2476 return DefaultThreshold; 2477 } 2478 2479 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2480 auto Params = 2481 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2482 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2483 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2484 // when it is specified explicitly. 2485 if (OptLevel > 2) 2486 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2487 return Params; 2488 } 2489