1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintDebugInstructionDeltas("print-instruction-deltas", 58 cl::Hidden, cl::init(false), 59 cl::desc("Prints deltas of cost and threshold per instruction")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 // We introduce this threshold to help performance of instrumentation based 75 // PGO before we actually hook up inliner with analysis passes such as BPI and 76 // BFI. 77 static cl::opt<int> ColdThreshold( 78 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 79 cl::desc("Threshold for inlining functions with cold attribute")); 80 81 static cl::opt<int> 82 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 83 cl::ZeroOrMore, 84 cl::desc("Threshold for hot callsites ")); 85 86 static cl::opt<int> LocallyHotCallSiteThreshold( 87 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 88 cl::desc("Threshold for locally hot callsites ")); 89 90 static cl::opt<int> ColdCallSiteRelFreq( 91 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 92 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 93 "entry frequency, for a callsite to be cold in the absence of " 94 "profile information.")); 95 96 static cl::opt<int> HotCallSiteRelFreq( 97 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 98 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 99 "entry frequency, for a callsite to be hot in the absence of " 100 "profile information.")); 101 102 static cl::opt<bool> OptComputeFullInlineCost( 103 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::desc("Compute the full inline cost of a call site even when the cost " 105 "exceeds the threshold.")); 106 107 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 108 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 109 cl::ZeroOrMore, 110 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 111 "attributes.")); 112 113 namespace { 114 class InlineCostCallAnalyzer; 115 116 // This struct is used to store information about inline cost of a 117 // particular instruction 118 struct InstructionCostDetail { 119 int CostBefore; 120 int CostAfter; 121 int ThresholdBefore; 122 int ThresholdAfter; 123 }; 124 125 class CostAnnotationWriter : public AssemblyAnnotationWriter { 126 public: 127 // This DenseMap stores the delta change in cost and threshold after 128 // accounting for the given instruction. 129 DenseMap <const Instruction *, InstructionCostDetail> CostThresholdMap; 130 131 virtual void emitInstructionAnnot(const Instruction *I, 132 formatted_raw_ostream &OS); 133 }; 134 135 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 136 typedef InstVisitor<CallAnalyzer, bool> Base; 137 friend class InstVisitor<CallAnalyzer, bool>; 138 139 protected: 140 virtual ~CallAnalyzer() {} 141 /// The TargetTransformInfo available for this compilation. 142 const TargetTransformInfo &TTI; 143 144 /// Getter for the cache of @llvm.assume intrinsics. 145 std::function<AssumptionCache &(Function &)> &GetAssumptionCache; 146 147 /// Getter for BlockFrequencyInfo 148 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI; 149 150 /// Profile summary information. 151 ProfileSummaryInfo *PSI; 152 153 /// The called function. 154 Function &F; 155 156 // Cache the DataLayout since we use it a lot. 157 const DataLayout &DL; 158 159 /// The OptimizationRemarkEmitter available for this compilation. 160 OptimizationRemarkEmitter *ORE; 161 162 /// The candidate callsite being analyzed. Please do not use this to do 163 /// analysis in the caller function; we want the inline cost query to be 164 /// easily cacheable. Instead, use the cover function paramHasAttr. 165 CallBase &CandidateCall; 166 167 /// Extension points for handling callsite features. 168 /// Called after a basic block was analyzed. 169 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 170 171 /// Called before an instruction was analyzed 172 virtual void onInstructionAnalysisStart(const Instruction *I) {} 173 174 /// Called after an instruction was analyzed 175 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 176 177 /// Called at the end of the analysis of the callsite. Return the outcome of 178 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 179 /// the reason it can't. 180 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 181 /// Called when we're about to start processing a basic block, and every time 182 /// we are done processing an instruction. Return true if there is no point in 183 /// continuing the analysis (e.g. we've determined already the call site is 184 /// too expensive to inline) 185 virtual bool shouldStop() { return false; } 186 187 /// Called before the analysis of the callee body starts (with callsite 188 /// contexts propagated). It checks callsite-specific information. Return a 189 /// reason analysis can't continue if that's the case, or 'true' if it may 190 /// continue. 191 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 192 /// Called if the analysis engine decides SROA cannot be done for the given 193 /// alloca. 194 virtual void onDisableSROA(AllocaInst *Arg) {} 195 196 /// Called the analysis engine determines load elimination won't happen. 197 virtual void onDisableLoadElimination() {} 198 199 /// Called to account for a call. 200 virtual void onCallPenalty() {} 201 202 /// Called to account for the expectation the inlining would result in a load 203 /// elimination. 204 virtual void onLoadEliminationOpportunity() {} 205 206 /// Called to account for the cost of argument setup for the Call in the 207 /// callee's body (not the callsite currently under analysis). 208 virtual void onCallArgumentSetup(const CallBase &Call) {} 209 210 /// Called to account for a load relative intrinsic. 211 virtual void onLoadRelativeIntrinsic() {} 212 213 /// Called to account for a lowered call. 214 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 215 } 216 217 /// Account for a jump table of given size. Return false to stop further 218 /// processing the switch instruction 219 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 220 221 /// Account for a case cluster of given size. Return false to stop further 222 /// processing of the instruction. 223 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 224 225 /// Called at the end of processing a switch instruction, with the given 226 /// number of case clusters. 227 virtual void onFinalizeSwitch(unsigned JumpTableSize, 228 unsigned NumCaseCluster) {} 229 230 /// Called to account for any other instruction not specifically accounted 231 /// for. 232 virtual void onMissedSimplification() {} 233 234 /// Start accounting potential benefits due to SROA for the given alloca. 235 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 236 237 /// Account SROA savings for the AllocaInst value. 238 virtual void onAggregateSROAUse(AllocaInst *V) {} 239 240 bool handleSROA(Value *V, bool DoNotDisable) { 241 // Check for SROA candidates in comparisons. 242 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 243 if (DoNotDisable) { 244 onAggregateSROAUse(SROAArg); 245 return true; 246 } 247 disableSROAForArg(SROAArg); 248 } 249 return false; 250 } 251 252 bool IsCallerRecursive = false; 253 bool IsRecursiveCall = false; 254 bool ExposesReturnsTwice = false; 255 bool HasDynamicAlloca = false; 256 bool ContainsNoDuplicateCall = false; 257 bool HasReturn = false; 258 bool HasIndirectBr = false; 259 bool HasUninlineableIntrinsic = false; 260 bool InitsVargArgs = false; 261 262 /// Number of bytes allocated statically by the callee. 263 uint64_t AllocatedSize = 0; 264 unsigned NumInstructions = 0; 265 unsigned NumVectorInstructions = 0; 266 267 /// While we walk the potentially-inlined instructions, we build up and 268 /// maintain a mapping of simplified values specific to this callsite. The 269 /// idea is to propagate any special information we have about arguments to 270 /// this call through the inlinable section of the function, and account for 271 /// likely simplifications post-inlining. The most important aspect we track 272 /// is CFG altering simplifications -- when we prove a basic block dead, that 273 /// can cause dramatic shifts in the cost of inlining a function. 274 DenseMap<Value *, Constant *> SimplifiedValues; 275 276 /// Keep track of the values which map back (through function arguments) to 277 /// allocas on the caller stack which could be simplified through SROA. 278 DenseMap<Value *, AllocaInst *> SROAArgValues; 279 280 /// Keep track of Allocas for which we believe we may get SROA optimization. 281 DenseSet<AllocaInst *> EnabledSROAAllocas; 282 283 /// Keep track of values which map to a pointer base and constant offset. 284 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 285 286 /// Keep track of dead blocks due to the constant arguments. 287 SetVector<BasicBlock *> DeadBlocks; 288 289 /// The mapping of the blocks to their known unique successors due to the 290 /// constant arguments. 291 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 292 293 /// Model the elimination of repeated loads that is expected to happen 294 /// whenever we simplify away the stores that would otherwise cause them to be 295 /// loads. 296 bool EnableLoadElimination; 297 SmallPtrSet<Value *, 16> LoadAddrSet; 298 299 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 300 auto It = SROAArgValues.find(V); 301 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 302 return nullptr; 303 return It->second; 304 } 305 306 // Custom simplification helper routines. 307 bool isAllocaDerivedArg(Value *V); 308 void disableSROAForArg(AllocaInst *SROAArg); 309 void disableSROA(Value *V); 310 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 311 void disableLoadElimination(); 312 bool isGEPFree(GetElementPtrInst &GEP); 313 bool canFoldInboundsGEP(GetElementPtrInst &I); 314 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 315 bool simplifyCallSite(Function *F, CallBase &Call); 316 template <typename Callable> 317 bool simplifyInstruction(Instruction &I, Callable Evaluate); 318 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 319 320 /// Return true if the given argument to the function being considered for 321 /// inlining has the given attribute set either at the call site or the 322 /// function declaration. Primarily used to inspect call site specific 323 /// attributes since these can be more precise than the ones on the callee 324 /// itself. 325 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 326 327 /// Return true if the given value is known non null within the callee if 328 /// inlined through this particular callsite. 329 bool isKnownNonNullInCallee(Value *V); 330 331 /// Return true if size growth is allowed when inlining the callee at \p Call. 332 bool allowSizeGrowth(CallBase &Call); 333 334 // Custom analysis routines. 335 InlineResult analyzeBlock(BasicBlock *BB, 336 SmallPtrSetImpl<const Value *> &EphValues); 337 338 // Disable several entry points to the visitor so we don't accidentally use 339 // them by declaring but not defining them here. 340 void visit(Module *); 341 void visit(Module &); 342 void visit(Function *); 343 void visit(Function &); 344 void visit(BasicBlock *); 345 void visit(BasicBlock &); 346 347 // Provide base case for our instruction visit. 348 bool visitInstruction(Instruction &I); 349 350 // Our visit overrides. 351 bool visitAlloca(AllocaInst &I); 352 bool visitPHI(PHINode &I); 353 bool visitGetElementPtr(GetElementPtrInst &I); 354 bool visitBitCast(BitCastInst &I); 355 bool visitPtrToInt(PtrToIntInst &I); 356 bool visitIntToPtr(IntToPtrInst &I); 357 bool visitCastInst(CastInst &I); 358 bool visitUnaryInstruction(UnaryInstruction &I); 359 bool visitCmpInst(CmpInst &I); 360 bool visitSub(BinaryOperator &I); 361 bool visitBinaryOperator(BinaryOperator &I); 362 bool visitFNeg(UnaryOperator &I); 363 bool visitLoad(LoadInst &I); 364 bool visitStore(StoreInst &I); 365 bool visitExtractValue(ExtractValueInst &I); 366 bool visitInsertValue(InsertValueInst &I); 367 bool visitCallBase(CallBase &Call); 368 bool visitReturnInst(ReturnInst &RI); 369 bool visitBranchInst(BranchInst &BI); 370 bool visitSelectInst(SelectInst &SI); 371 bool visitSwitchInst(SwitchInst &SI); 372 bool visitIndirectBrInst(IndirectBrInst &IBI); 373 bool visitResumeInst(ResumeInst &RI); 374 bool visitCleanupReturnInst(CleanupReturnInst &RI); 375 bool visitCatchReturnInst(CatchReturnInst &RI); 376 bool visitUnreachableInst(UnreachableInst &I); 377 378 public: 379 CallAnalyzer(const TargetTransformInfo &TTI, 380 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 381 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, 382 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, 383 Function &Callee, CallBase &Call) 384 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 385 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 386 CandidateCall(Call), EnableLoadElimination(true) {} 387 388 InlineResult analyze(); 389 390 // Keep a bunch of stats about the cost savings found so we can print them 391 // out when debugging. 392 unsigned NumConstantArgs = 0; 393 unsigned NumConstantOffsetPtrArgs = 0; 394 unsigned NumAllocaArgs = 0; 395 unsigned NumConstantPtrCmps = 0; 396 unsigned NumConstantPtrDiffs = 0; 397 unsigned NumInstructionsSimplified = 0; 398 399 void dump(); 400 }; 401 402 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 403 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 404 class InlineCostCallAnalyzer final : public CallAnalyzer { 405 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 406 const bool ComputeFullInlineCost; 407 int LoadEliminationCost = 0; 408 /// Bonus to be applied when percentage of vector instructions in callee is 409 /// high (see more details in updateThreshold). 410 int VectorBonus = 0; 411 /// Bonus to be applied when the callee has only one reachable basic block. 412 int SingleBBBonus = 0; 413 414 /// Tunable parameters that control the analysis. 415 const InlineParams &Params; 416 417 /// Upper bound for the inlining cost. Bonuses are being applied to account 418 /// for speculative "expected profit" of the inlining decision. 419 int Threshold = 0; 420 421 /// Attempt to evaluate indirect calls to boost its inline cost. 422 const bool BoostIndirectCalls; 423 424 /// Inlining cost measured in abstract units, accounts for all the 425 /// instructions expected to be executed for a given function invocation. 426 /// Instructions that are statically proven to be dead based on call-site 427 /// arguments are not counted here. 428 int Cost = 0; 429 430 bool SingleBB = true; 431 432 unsigned SROACostSavings = 0; 433 unsigned SROACostSavingsLost = 0; 434 435 /// The mapping of caller Alloca values to their accumulated cost savings. If 436 /// we have to disable SROA for one of the allocas, this tells us how much 437 /// cost must be added. 438 DenseMap<AllocaInst *, int> SROAArgCosts; 439 440 /// Return true if \p Call is a cold callsite. 441 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 442 443 /// Update Threshold based on callsite properties such as callee 444 /// attributes and callee hotness for PGO builds. The Callee is explicitly 445 /// passed to support analyzing indirect calls whose target is inferred by 446 /// analysis. 447 void updateThreshold(CallBase &Call, Function &Callee); 448 /// Return a higher threshold if \p Call is a hot callsite. 449 Optional<int> getHotCallSiteThreshold(CallBase &Call, 450 BlockFrequencyInfo *CallerBFI); 451 452 /// Handle a capped 'int' increment for Cost. 453 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 454 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 455 Cost = (int)std::min(UpperBound, Cost + Inc); 456 } 457 458 void onDisableSROA(AllocaInst *Arg) override { 459 auto CostIt = SROAArgCosts.find(Arg); 460 if (CostIt == SROAArgCosts.end()) 461 return; 462 addCost(CostIt->second); 463 SROACostSavings -= CostIt->second; 464 SROACostSavingsLost += CostIt->second; 465 SROAArgCosts.erase(CostIt); 466 } 467 468 void onDisableLoadElimination() override { 469 addCost(LoadEliminationCost); 470 LoadEliminationCost = 0; 471 } 472 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 473 void onCallArgumentSetup(const CallBase &Call) override { 474 // Pay the price of the argument setup. We account for the average 1 475 // instruction per call argument setup here. 476 addCost(Call.arg_size() * InlineConstants::InstrCost); 477 } 478 void onLoadRelativeIntrinsic() override { 479 // This is normally lowered to 4 LLVM instructions. 480 addCost(3 * InlineConstants::InstrCost); 481 } 482 void onLoweredCall(Function *F, CallBase &Call, 483 bool IsIndirectCall) override { 484 // We account for the average 1 instruction per call argument setup here. 485 addCost(Call.arg_size() * InlineConstants::InstrCost); 486 487 // If we have a constant that we are calling as a function, we can peer 488 // through it and see the function target. This happens not infrequently 489 // during devirtualization and so we want to give it a hefty bonus for 490 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 491 // Pretend to inline the function, with a custom threshold. 492 if (IsIndirectCall && BoostIndirectCalls) { 493 auto IndirectCallParams = Params; 494 IndirectCallParams.DefaultThreshold = 495 InlineConstants::IndirectCallThreshold; 496 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 497 /// to instantiate the derived class. 498 InlineCostCallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, 499 Call, IndirectCallParams, false); 500 if (CA.analyze().isSuccess()) { 501 // We were able to inline the indirect call! Subtract the cost from the 502 // threshold to get the bonus we want to apply, but don't go below zero. 503 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 504 } 505 } else 506 // Otherwise simply add the cost for merely making the call. 507 addCost(InlineConstants::CallPenalty); 508 } 509 510 void onFinalizeSwitch(unsigned JumpTableSize, 511 unsigned NumCaseCluster) override { 512 // If suitable for a jump table, consider the cost for the table size and 513 // branch to destination. 514 // Maximum valid cost increased in this function. 515 if (JumpTableSize) { 516 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 517 4 * InlineConstants::InstrCost; 518 519 addCost(JTCost, (int64_t)CostUpperBound); 520 return; 521 } 522 // Considering forming a binary search, we should find the number of nodes 523 // which is same as the number of comparisons when lowered. For a given 524 // number of clusters, n, we can define a recursive function, f(n), to find 525 // the number of nodes in the tree. The recursion is : 526 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 527 // and f(n) = n, when n <= 3. 528 // This will lead a binary tree where the leaf should be either f(2) or f(3) 529 // when n > 3. So, the number of comparisons from leaves should be n, while 530 // the number of non-leaf should be : 531 // 2^(log2(n) - 1) - 1 532 // = 2^log2(n) * 2^-1 - 1 533 // = n / 2 - 1. 534 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 535 // number of comparisons in a simple closed form : 536 // n + n / 2 - 1 = n * 3 / 2 - 1 537 if (NumCaseCluster <= 3) { 538 // Suppose a comparison includes one compare and one conditional branch. 539 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 540 return; 541 } 542 543 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 544 int64_t SwitchCost = 545 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 546 547 addCost(SwitchCost, (int64_t)CostUpperBound); 548 } 549 void onMissedSimplification() override { 550 addCost(InlineConstants::InstrCost); 551 } 552 553 void onInitializeSROAArg(AllocaInst *Arg) override { 554 assert(Arg != nullptr && 555 "Should not initialize SROA costs for null value."); 556 SROAArgCosts[Arg] = 0; 557 } 558 559 void onAggregateSROAUse(AllocaInst *SROAArg) override { 560 auto CostIt = SROAArgCosts.find(SROAArg); 561 assert(CostIt != SROAArgCosts.end() && 562 "expected this argument to have a cost"); 563 CostIt->second += InlineConstants::InstrCost; 564 SROACostSavings += InlineConstants::InstrCost; 565 } 566 567 void onBlockAnalyzed(const BasicBlock *BB) override { 568 auto *TI = BB->getTerminator(); 569 // If we had any successors at this point, than post-inlining is likely to 570 // have them as well. Note that we assume any basic blocks which existed 571 // due to branches or switches which folded above will also fold after 572 // inlining. 573 if (SingleBB && TI->getNumSuccessors() > 1) { 574 // Take off the bonus we applied to the threshold. 575 Threshold -= SingleBBBonus; 576 SingleBB = false; 577 } 578 } 579 580 void onInstructionAnalysisStart(const Instruction *I) override { 581 // This function is called to store the initial cost of inlining before 582 // the given instruction was assessed. 583 if (!PrintDebugInstructionDeltas) 584 return ; 585 Writer.CostThresholdMap[I].CostBefore = Cost; 586 Writer.CostThresholdMap[I].ThresholdBefore = Threshold; 587 } 588 589 void onInstructionAnalysisFinish(const Instruction *I) override { 590 // This function is called to find new values of cost and threshold after 591 // the instruction has been assessed. 592 if (!PrintDebugInstructionDeltas) 593 return ; 594 Writer.CostThresholdMap[I].CostAfter = Cost; 595 Writer.CostThresholdMap[I].ThresholdAfter = Threshold; 596 } 597 598 InlineResult finalizeAnalysis() override { 599 // Loops generally act a lot like calls in that they act like barriers to 600 // movement, require a certain amount of setup, etc. So when optimising for 601 // size, we penalise any call sites that perform loops. We do this after all 602 // other costs here, so will likely only be dealing with relatively small 603 // functions (and hence DT and LI will hopefully be cheap). 604 auto *Caller = CandidateCall.getFunction(); 605 if (Caller->hasMinSize()) { 606 DominatorTree DT(F); 607 LoopInfo LI(DT); 608 int NumLoops = 0; 609 for (Loop *L : LI) { 610 // Ignore loops that will not be executed 611 if (DeadBlocks.count(L->getHeader())) 612 continue; 613 NumLoops++; 614 } 615 addCost(NumLoops * InlineConstants::CallPenalty); 616 } 617 618 // We applied the maximum possible vector bonus at the beginning. Now, 619 // subtract the excess bonus, if any, from the Threshold before 620 // comparing against Cost. 621 if (NumVectorInstructions <= NumInstructions / 10) 622 Threshold -= VectorBonus; 623 else if (NumVectorInstructions <= NumInstructions / 2) 624 Threshold -= VectorBonus / 2; 625 626 if (Cost < std::max(1, Threshold)) 627 return InlineResult::success(); 628 return InlineResult::failure("Cost over threshold."); 629 } 630 bool shouldStop() override { 631 // Bail out the moment we cross the threshold. This means we'll under-count 632 // the cost, but only when undercounting doesn't matter. 633 return Cost >= Threshold && !ComputeFullInlineCost; 634 } 635 636 void onLoadEliminationOpportunity() override { 637 LoadEliminationCost += InlineConstants::InstrCost; 638 } 639 640 InlineResult onAnalysisStart() override { 641 // Perform some tweaks to the cost and threshold based on the direct 642 // callsite information. 643 644 // We want to more aggressively inline vector-dense kernels, so up the 645 // threshold, and we'll lower it if the % of vector instructions gets too 646 // low. Note that these bonuses are some what arbitrary and evolved over 647 // time by accident as much as because they are principled bonuses. 648 // 649 // FIXME: It would be nice to remove all such bonuses. At least it would be 650 // nice to base the bonus values on something more scientific. 651 assert(NumInstructions == 0); 652 assert(NumVectorInstructions == 0); 653 654 // Update the threshold based on callsite properties 655 updateThreshold(CandidateCall, F); 656 657 // While Threshold depends on commandline options that can take negative 658 // values, we want to enforce the invariant that the computed threshold and 659 // bonuses are non-negative. 660 assert(Threshold >= 0); 661 assert(SingleBBBonus >= 0); 662 assert(VectorBonus >= 0); 663 664 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 665 // this Threshold any time, and cost cannot decrease, we can stop processing 666 // the rest of the function body. 667 Threshold += (SingleBBBonus + VectorBonus); 668 669 // Give out bonuses for the callsite, as the instructions setting them up 670 // will be gone after inlining. 671 addCost(-getCallsiteCost(this->CandidateCall, DL)); 672 673 // If this function uses the coldcc calling convention, prefer not to inline 674 // it. 675 if (F.getCallingConv() == CallingConv::Cold) 676 Cost += InlineConstants::ColdccPenalty; 677 678 // Check if we're done. This can happen due to bonuses and penalties. 679 if (Cost >= Threshold && !ComputeFullInlineCost) 680 return InlineResult::failure("high cost"); 681 682 return InlineResult::success(); 683 } 684 685 public: 686 InlineCostCallAnalyzer( 687 const TargetTransformInfo &TTI, 688 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 689 Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, 690 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 691 CallBase &Call, const InlineParams &Params, bool BoostIndirect = true) 692 : CallAnalyzer(TTI, GetAssumptionCache, GetBFI, PSI, ORE, Callee, Call), 693 ComputeFullInlineCost(OptComputeFullInlineCost || 694 Params.ComputeFullInlineCost || ORE), 695 Params(Params), Threshold(Params.DefaultThreshold), 696 BoostIndirectCalls(BoostIndirect) {} 697 698 /// Annotation Writer for cost annotation 699 CostAnnotationWriter Writer; 700 701 void dump(); 702 703 virtual ~InlineCostCallAnalyzer() {} 704 int getThreshold() { return Threshold; } 705 int getCost() { return Cost; } 706 }; 707 } // namespace 708 709 /// Test whether the given value is an Alloca-derived function argument. 710 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 711 return SROAArgValues.count(V); 712 } 713 714 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 715 onDisableSROA(SROAArg); 716 EnabledSROAAllocas.erase(SROAArg); 717 disableLoadElimination(); 718 } 719 720 void CostAnnotationWriter::emitInstructionAnnot( 721 const Instruction *I, formatted_raw_ostream &OS) { 722 // The cost of inlining of the given instruction is printed always. 723 // The threshold delta is printed only when it is non-zero. It happens 724 // when we decided to give a bonus at a particular instruction. 725 OS << "; cost before = " << CostThresholdMap[I].CostBefore << 726 ", cost after = " << CostThresholdMap[I].CostAfter << 727 ", threshold before = " << CostThresholdMap[I].ThresholdBefore << 728 ", threshold after = " << CostThresholdMap[I].ThresholdAfter << 729 ", "; 730 OS << "cost delta = " << CostThresholdMap[I].CostAfter - 731 CostThresholdMap[I].CostBefore; 732 if (CostThresholdMap[I].ThresholdAfter != CostThresholdMap[I].ThresholdBefore) 733 OS << ", threshold delta = " << CostThresholdMap[I].ThresholdAfter - 734 CostThresholdMap[I].ThresholdBefore; 735 OS << "\n"; 736 } 737 738 /// If 'V' maps to a SROA candidate, disable SROA for it. 739 void CallAnalyzer::disableSROA(Value *V) { 740 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 741 disableSROAForArg(SROAArg); 742 } 743 } 744 745 void CallAnalyzer::disableLoadElimination() { 746 if (EnableLoadElimination) { 747 onDisableLoadElimination(); 748 EnableLoadElimination = false; 749 } 750 } 751 752 /// Accumulate a constant GEP offset into an APInt if possible. 753 /// 754 /// Returns false if unable to compute the offset for any reason. Respects any 755 /// simplified values known during the analysis of this callsite. 756 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 757 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 758 assert(IntPtrWidth == Offset.getBitWidth()); 759 760 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 761 GTI != GTE; ++GTI) { 762 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 763 if (!OpC) 764 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 765 OpC = dyn_cast<ConstantInt>(SimpleOp); 766 if (!OpC) 767 return false; 768 if (OpC->isZero()) 769 continue; 770 771 // Handle a struct index, which adds its field offset to the pointer. 772 if (StructType *STy = GTI.getStructTypeOrNull()) { 773 unsigned ElementIdx = OpC->getZExtValue(); 774 const StructLayout *SL = DL.getStructLayout(STy); 775 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 776 continue; 777 } 778 779 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 780 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 781 } 782 return true; 783 } 784 785 /// Use TTI to check whether a GEP is free. 786 /// 787 /// Respects any simplified values known during the analysis of this callsite. 788 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 789 SmallVector<Value *, 4> Operands; 790 Operands.push_back(GEP.getOperand(0)); 791 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 792 if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) 793 Operands.push_back(SimpleOp); 794 else 795 Operands.push_back(*I); 796 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands); 797 } 798 799 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 800 // Check whether inlining will turn a dynamic alloca into a static 801 // alloca and handle that case. 802 if (I.isArrayAllocation()) { 803 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 804 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 805 Type *Ty = I.getAllocatedType(); 806 AllocatedSize = SaturatingMultiplyAdd( 807 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(), 808 AllocatedSize); 809 return Base::visitAlloca(I); 810 } 811 } 812 813 // Accumulate the allocated size. 814 if (I.isStaticAlloca()) { 815 Type *Ty = I.getAllocatedType(); 816 AllocatedSize = 817 SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize); 818 } 819 820 // We will happily inline static alloca instructions. 821 if (I.isStaticAlloca()) 822 return Base::visitAlloca(I); 823 824 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 825 // a variety of reasons, and so we would like to not inline them into 826 // functions which don't currently have a dynamic alloca. This simply 827 // disables inlining altogether in the presence of a dynamic alloca. 828 HasDynamicAlloca = true; 829 return false; 830 } 831 832 bool CallAnalyzer::visitPHI(PHINode &I) { 833 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 834 // though we don't want to propagate it's bonuses. The idea is to disable 835 // SROA if it *might* be used in an inappropriate manner. 836 837 // Phi nodes are always zero-cost. 838 // FIXME: Pointer sizes may differ between different address spaces, so do we 839 // need to use correct address space in the call to getPointerSizeInBits here? 840 // Or could we skip the getPointerSizeInBits call completely? As far as I can 841 // see the ZeroOffset is used as a dummy value, so we can probably use any 842 // bit width for the ZeroOffset? 843 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 844 bool CheckSROA = I.getType()->isPointerTy(); 845 846 // Track the constant or pointer with constant offset we've seen so far. 847 Constant *FirstC = nullptr; 848 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 849 Value *FirstV = nullptr; 850 851 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 852 BasicBlock *Pred = I.getIncomingBlock(i); 853 // If the incoming block is dead, skip the incoming block. 854 if (DeadBlocks.count(Pred)) 855 continue; 856 // If the parent block of phi is not the known successor of the incoming 857 // block, skip the incoming block. 858 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 859 if (KnownSuccessor && KnownSuccessor != I.getParent()) 860 continue; 861 862 Value *V = I.getIncomingValue(i); 863 // If the incoming value is this phi itself, skip the incoming value. 864 if (&I == V) 865 continue; 866 867 Constant *C = dyn_cast<Constant>(V); 868 if (!C) 869 C = SimplifiedValues.lookup(V); 870 871 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 872 if (!C && CheckSROA) 873 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 874 875 if (!C && !BaseAndOffset.first) 876 // The incoming value is neither a constant nor a pointer with constant 877 // offset, exit early. 878 return true; 879 880 if (FirstC) { 881 if (FirstC == C) 882 // If we've seen a constant incoming value before and it is the same 883 // constant we see this time, continue checking the next incoming value. 884 continue; 885 // Otherwise early exit because we either see a different constant or saw 886 // a constant before but we have a pointer with constant offset this time. 887 return true; 888 } 889 890 if (FirstV) { 891 // The same logic as above, but check pointer with constant offset here. 892 if (FirstBaseAndOffset == BaseAndOffset) 893 continue; 894 return true; 895 } 896 897 if (C) { 898 // This is the 1st time we've seen a constant, record it. 899 FirstC = C; 900 continue; 901 } 902 903 // The remaining case is that this is the 1st time we've seen a pointer with 904 // constant offset, record it. 905 FirstV = V; 906 FirstBaseAndOffset = BaseAndOffset; 907 } 908 909 // Check if we can map phi to a constant. 910 if (FirstC) { 911 SimplifiedValues[&I] = FirstC; 912 return true; 913 } 914 915 // Check if we can map phi to a pointer with constant offset. 916 if (FirstBaseAndOffset.first) { 917 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 918 919 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 920 SROAArgValues[&I] = SROAArg; 921 } 922 923 return true; 924 } 925 926 /// Check we can fold GEPs of constant-offset call site argument pointers. 927 /// This requires target data and inbounds GEPs. 928 /// 929 /// \return true if the specified GEP can be folded. 930 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 931 // Check if we have a base + offset for the pointer. 932 std::pair<Value *, APInt> BaseAndOffset = 933 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 934 if (!BaseAndOffset.first) 935 return false; 936 937 // Check if the offset of this GEP is constant, and if so accumulate it 938 // into Offset. 939 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 940 return false; 941 942 // Add the result as a new mapping to Base + Offset. 943 ConstantOffsetPtrs[&I] = BaseAndOffset; 944 945 return true; 946 } 947 948 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 949 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 950 951 // Lambda to check whether a GEP's indices are all constant. 952 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 953 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 954 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 955 return false; 956 return true; 957 }; 958 959 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 960 if (SROAArg) 961 SROAArgValues[&I] = SROAArg; 962 963 // Constant GEPs are modeled as free. 964 return true; 965 } 966 967 // Variable GEPs will require math and will disable SROA. 968 if (SROAArg) 969 disableSROAForArg(SROAArg); 970 return isGEPFree(I); 971 } 972 973 /// Simplify \p I if its operands are constants and update SimplifiedValues. 974 /// \p Evaluate is a callable specific to instruction type that evaluates the 975 /// instruction when all the operands are constants. 976 template <typename Callable> 977 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 978 SmallVector<Constant *, 2> COps; 979 for (Value *Op : I.operands()) { 980 Constant *COp = dyn_cast<Constant>(Op); 981 if (!COp) 982 COp = SimplifiedValues.lookup(Op); 983 if (!COp) 984 return false; 985 COps.push_back(COp); 986 } 987 auto *C = Evaluate(COps); 988 if (!C) 989 return false; 990 SimplifiedValues[&I] = C; 991 return true; 992 } 993 994 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 995 // Propagate constants through bitcasts. 996 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 997 return ConstantExpr::getBitCast(COps[0], I.getType()); 998 })) 999 return true; 1000 1001 // Track base/offsets through casts 1002 std::pair<Value *, APInt> BaseAndOffset = 1003 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1004 // Casts don't change the offset, just wrap it up. 1005 if (BaseAndOffset.first) 1006 ConstantOffsetPtrs[&I] = BaseAndOffset; 1007 1008 // Also look for SROA candidates here. 1009 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1010 SROAArgValues[&I] = SROAArg; 1011 1012 // Bitcasts are always zero cost. 1013 return true; 1014 } 1015 1016 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1017 // Propagate constants through ptrtoint. 1018 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1019 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1020 })) 1021 return true; 1022 1023 // Track base/offset pairs when converted to a plain integer provided the 1024 // integer is large enough to represent the pointer. 1025 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1026 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1027 if (IntegerSize >= DL.getPointerSizeInBits(AS)) { 1028 std::pair<Value *, APInt> BaseAndOffset = 1029 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1030 if (BaseAndOffset.first) 1031 ConstantOffsetPtrs[&I] = BaseAndOffset; 1032 } 1033 1034 // This is really weird. Technically, ptrtoint will disable SROA. However, 1035 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1036 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1037 // would block SROA would also block SROA if applied directly to a pointer, 1038 // and so we can just add the integer in here. The only places where SROA is 1039 // preserved either cannot fire on an integer, or won't in-and-of themselves 1040 // disable SROA (ext) w/o some later use that we would see and disable. 1041 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1042 SROAArgValues[&I] = SROAArg; 1043 1044 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 1045 } 1046 1047 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1048 // Propagate constants through ptrtoint. 1049 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1050 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1051 })) 1052 return true; 1053 1054 // Track base/offset pairs when round-tripped through a pointer without 1055 // modifications provided the integer is not too large. 1056 Value *Op = I.getOperand(0); 1057 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1058 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1059 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1060 if (BaseAndOffset.first) 1061 ConstantOffsetPtrs[&I] = BaseAndOffset; 1062 } 1063 1064 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1065 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1066 SROAArgValues[&I] = SROAArg; 1067 1068 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 1069 } 1070 1071 bool CallAnalyzer::visitCastInst(CastInst &I) { 1072 // Propagate constants through casts. 1073 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1074 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1075 })) 1076 return true; 1077 1078 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. 1079 disableSROA(I.getOperand(0)); 1080 1081 // If this is a floating-point cast, and the target says this operation 1082 // is expensive, this may eventually become a library call. Treat the cost 1083 // as such. 1084 switch (I.getOpcode()) { 1085 case Instruction::FPTrunc: 1086 case Instruction::FPExt: 1087 case Instruction::UIToFP: 1088 case Instruction::SIToFP: 1089 case Instruction::FPToUI: 1090 case Instruction::FPToSI: 1091 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1092 onCallPenalty(); 1093 break; 1094 default: 1095 break; 1096 } 1097 1098 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 1099 } 1100 1101 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1102 Value *Operand = I.getOperand(0); 1103 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1104 return ConstantFoldInstOperands(&I, COps[0], DL); 1105 })) 1106 return true; 1107 1108 // Disable any SROA on the argument to arbitrary unary instructions. 1109 disableSROA(Operand); 1110 1111 return false; 1112 } 1113 1114 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1115 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1116 } 1117 1118 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1119 // Does the *call site* have the NonNull attribute set on an argument? We 1120 // use the attribute on the call site to memoize any analysis done in the 1121 // caller. This will also trip if the callee function has a non-null 1122 // parameter attribute, but that's a less interesting case because hopefully 1123 // the callee would already have been simplified based on that. 1124 if (Argument *A = dyn_cast<Argument>(V)) 1125 if (paramHasAttr(A, Attribute::NonNull)) 1126 return true; 1127 1128 // Is this an alloca in the caller? This is distinct from the attribute case 1129 // above because attributes aren't updated within the inliner itself and we 1130 // always want to catch the alloca derived case. 1131 if (isAllocaDerivedArg(V)) 1132 // We can actually predict the result of comparisons between an 1133 // alloca-derived value and null. Note that this fires regardless of 1134 // SROA firing. 1135 return true; 1136 1137 return false; 1138 } 1139 1140 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1141 // If the normal destination of the invoke or the parent block of the call 1142 // site is unreachable-terminated, there is little point in inlining this 1143 // unless there is literally zero cost. 1144 // FIXME: Note that it is possible that an unreachable-terminated block has a 1145 // hot entry. For example, in below scenario inlining hot_call_X() may be 1146 // beneficial : 1147 // main() { 1148 // hot_call_1(); 1149 // ... 1150 // hot_call_N() 1151 // exit(0); 1152 // } 1153 // For now, we are not handling this corner case here as it is rare in real 1154 // code. In future, we should elaborate this based on BPI and BFI in more 1155 // general threshold adjusting heuristics in updateThreshold(). 1156 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1157 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1158 return false; 1159 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1160 return false; 1161 1162 return true; 1163 } 1164 1165 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1166 BlockFrequencyInfo *CallerBFI) { 1167 // If global profile summary is available, then callsite's coldness is 1168 // determined based on that. 1169 if (PSI && PSI->hasProfileSummary()) 1170 return PSI->isColdCallSite(CallSite(&Call), CallerBFI); 1171 1172 // Otherwise we need BFI to be available. 1173 if (!CallerBFI) 1174 return false; 1175 1176 // Determine if the callsite is cold relative to caller's entry. We could 1177 // potentially cache the computation of scaled entry frequency, but the added 1178 // complexity is not worth it unless this scaling shows up high in the 1179 // profiles. 1180 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1181 auto CallSiteBB = Call.getParent(); 1182 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1183 auto CallerEntryFreq = 1184 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1185 return CallSiteFreq < CallerEntryFreq * ColdProb; 1186 } 1187 1188 Optional<int> 1189 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1190 BlockFrequencyInfo *CallerBFI) { 1191 1192 // If global profile summary is available, then callsite's hotness is 1193 // determined based on that. 1194 if (PSI && PSI->hasProfileSummary() && 1195 PSI->isHotCallSite(CallSite(&Call), CallerBFI)) 1196 return Params.HotCallSiteThreshold; 1197 1198 // Otherwise we need BFI to be available and to have a locally hot callsite 1199 // threshold. 1200 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1201 return None; 1202 1203 // Determine if the callsite is hot relative to caller's entry. We could 1204 // potentially cache the computation of scaled entry frequency, but the added 1205 // complexity is not worth it unless this scaling shows up high in the 1206 // profiles. 1207 auto CallSiteBB = Call.getParent(); 1208 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1209 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1210 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1211 return Params.LocallyHotCallSiteThreshold; 1212 1213 // Otherwise treat it normally. 1214 return None; 1215 } 1216 1217 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1218 // If no size growth is allowed for this inlining, set Threshold to 0. 1219 if (!allowSizeGrowth(Call)) { 1220 Threshold = 0; 1221 return; 1222 } 1223 1224 Function *Caller = Call.getCaller(); 1225 1226 // return min(A, B) if B is valid. 1227 auto MinIfValid = [](int A, Optional<int> B) { 1228 return B ? std::min(A, B.getValue()) : A; 1229 }; 1230 1231 // return max(A, B) if B is valid. 1232 auto MaxIfValid = [](int A, Optional<int> B) { 1233 return B ? std::max(A, B.getValue()) : A; 1234 }; 1235 1236 // Various bonus percentages. These are multiplied by Threshold to get the 1237 // bonus values. 1238 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1239 // basic block at the given callsite context. This is speculatively applied 1240 // and withdrawn if more than one basic block is seen. 1241 // 1242 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1243 // of the last call to a static function as inlining such functions is 1244 // guaranteed to reduce code size. 1245 // 1246 // These bonus percentages may be set to 0 based on properties of the caller 1247 // and the callsite. 1248 int SingleBBBonusPercent = 50; 1249 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1250 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1251 1252 // Lambda to set all the above bonus and bonus percentages to 0. 1253 auto DisallowAllBonuses = [&]() { 1254 SingleBBBonusPercent = 0; 1255 VectorBonusPercent = 0; 1256 LastCallToStaticBonus = 0; 1257 }; 1258 1259 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1260 // and reduce the threshold if the caller has the necessary attribute. 1261 if (Caller->hasMinSize()) { 1262 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1263 // For minsize, we want to disable the single BB bonus and the vector 1264 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1265 // a static function will, at the minimum, eliminate the parameter setup and 1266 // call/return instructions. 1267 SingleBBBonusPercent = 0; 1268 VectorBonusPercent = 0; 1269 } else if (Caller->hasOptSize()) 1270 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1271 1272 // Adjust the threshold based on inlinehint attribute and profile based 1273 // hotness information if the caller does not have MinSize attribute. 1274 if (!Caller->hasMinSize()) { 1275 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1276 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1277 1278 // FIXME: After switching to the new passmanager, simplify the logic below 1279 // by checking only the callsite hotness/coldness as we will reliably 1280 // have local profile information. 1281 // 1282 // Callsite hotness and coldness can be determined if sample profile is 1283 // used (which adds hotness metadata to calls) or if caller's 1284 // BlockFrequencyInfo is available. 1285 BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr; 1286 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1287 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1288 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1289 // FIXME: This should update the threshold only if it exceeds the 1290 // current threshold, but AutoFDO + ThinLTO currently relies on this 1291 // behavior to prevent inlining of hot callsites during ThinLTO 1292 // compile phase. 1293 Threshold = HotCallSiteThreshold.getValue(); 1294 } else if (isColdCallSite(Call, CallerBFI)) { 1295 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1296 // Do not apply bonuses for a cold callsite including the 1297 // LastCallToStatic bonus. While this bonus might result in code size 1298 // reduction, it can cause the size of a non-cold caller to increase 1299 // preventing it from being inlined. 1300 DisallowAllBonuses(); 1301 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1302 } else if (PSI) { 1303 // Use callee's global profile information only if we have no way of 1304 // determining this via callsite information. 1305 if (PSI->isFunctionEntryHot(&Callee)) { 1306 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1307 // If callsite hotness can not be determined, we may still know 1308 // that the callee is hot and treat it as a weaker hint for threshold 1309 // increase. 1310 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1311 } else if (PSI->isFunctionEntryCold(&Callee)) { 1312 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1313 // Do not apply bonuses for a cold callee including the 1314 // LastCallToStatic bonus. While this bonus might result in code size 1315 // reduction, it can cause the size of a non-cold caller to increase 1316 // preventing it from being inlined. 1317 DisallowAllBonuses(); 1318 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1319 } 1320 } 1321 } 1322 1323 // Finally, take the target-specific inlining threshold multiplier into 1324 // account. 1325 Threshold *= TTI.getInliningThresholdMultiplier(); 1326 1327 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1328 VectorBonus = Threshold * VectorBonusPercent / 100; 1329 1330 bool OnlyOneCallAndLocalLinkage = 1331 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1332 // If there is only one call of the function, and it has internal linkage, 1333 // the cost of inlining it drops dramatically. It may seem odd to update 1334 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1335 if (OnlyOneCallAndLocalLinkage) 1336 Cost -= LastCallToStaticBonus; 1337 } 1338 1339 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1340 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1341 // First try to handle simplified comparisons. 1342 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1343 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1344 })) 1345 return true; 1346 1347 if (I.getOpcode() == Instruction::FCmp) 1348 return false; 1349 1350 // Otherwise look for a comparison between constant offset pointers with 1351 // a common base. 1352 Value *LHSBase, *RHSBase; 1353 APInt LHSOffset, RHSOffset; 1354 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1355 if (LHSBase) { 1356 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1357 if (RHSBase && LHSBase == RHSBase) { 1358 // We have common bases, fold the icmp to a constant based on the 1359 // offsets. 1360 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1361 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1362 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1363 SimplifiedValues[&I] = C; 1364 ++NumConstantPtrCmps; 1365 return true; 1366 } 1367 } 1368 } 1369 1370 // If the comparison is an equality comparison with null, we can simplify it 1371 // if we know the value (argument) can't be null 1372 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1373 isKnownNonNullInCallee(I.getOperand(0))) { 1374 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1375 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1376 : ConstantInt::getFalse(I.getType()); 1377 return true; 1378 } 1379 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1380 } 1381 1382 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1383 // Try to handle a special case: we can fold computing the difference of two 1384 // constant-related pointers. 1385 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1386 Value *LHSBase, *RHSBase; 1387 APInt LHSOffset, RHSOffset; 1388 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1389 if (LHSBase) { 1390 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1391 if (RHSBase && LHSBase == RHSBase) { 1392 // We have common bases, fold the subtract to a constant based on the 1393 // offsets. 1394 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1395 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1396 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1397 SimplifiedValues[&I] = C; 1398 ++NumConstantPtrDiffs; 1399 return true; 1400 } 1401 } 1402 } 1403 1404 // Otherwise, fall back to the generic logic for simplifying and handling 1405 // instructions. 1406 return Base::visitSub(I); 1407 } 1408 1409 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1410 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1411 Constant *CLHS = dyn_cast<Constant>(LHS); 1412 if (!CLHS) 1413 CLHS = SimplifiedValues.lookup(LHS); 1414 Constant *CRHS = dyn_cast<Constant>(RHS); 1415 if (!CRHS) 1416 CRHS = SimplifiedValues.lookup(RHS); 1417 1418 Value *SimpleV = nullptr; 1419 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1420 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1421 FI->getFastMathFlags(), DL); 1422 else 1423 SimpleV = 1424 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1425 1426 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1427 SimplifiedValues[&I] = C; 1428 1429 if (SimpleV) 1430 return true; 1431 1432 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1433 disableSROA(LHS); 1434 disableSROA(RHS); 1435 1436 // If the instruction is floating point, and the target says this operation 1437 // is expensive, this may eventually become a library call. Treat the cost 1438 // as such. Unless it's fneg which can be implemented with an xor. 1439 using namespace llvm::PatternMatch; 1440 if (I.getType()->isFloatingPointTy() && 1441 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1442 !match(&I, m_FNeg(m_Value()))) 1443 onCallPenalty(); 1444 1445 return false; 1446 } 1447 1448 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1449 Value *Op = I.getOperand(0); 1450 Constant *COp = dyn_cast<Constant>(Op); 1451 if (!COp) 1452 COp = SimplifiedValues.lookup(Op); 1453 1454 Value *SimpleV = SimplifyFNegInst( 1455 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1456 1457 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1458 SimplifiedValues[&I] = C; 1459 1460 if (SimpleV) 1461 return true; 1462 1463 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1464 disableSROA(Op); 1465 1466 return false; 1467 } 1468 1469 bool CallAnalyzer::visitLoad(LoadInst &I) { 1470 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1471 return true; 1472 1473 // If the data is already loaded from this address and hasn't been clobbered 1474 // by any stores or calls, this load is likely to be redundant and can be 1475 // eliminated. 1476 if (EnableLoadElimination && 1477 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1478 onLoadEliminationOpportunity(); 1479 return true; 1480 } 1481 1482 return false; 1483 } 1484 1485 bool CallAnalyzer::visitStore(StoreInst &I) { 1486 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1487 return true; 1488 1489 // The store can potentially clobber loads and prevent repeated loads from 1490 // being eliminated. 1491 // FIXME: 1492 // 1. We can probably keep an initial set of eliminatable loads substracted 1493 // from the cost even when we finally see a store. We just need to disable 1494 // *further* accumulation of elimination savings. 1495 // 2. We should probably at some point thread MemorySSA for the callee into 1496 // this and then use that to actually compute *really* precise savings. 1497 disableLoadElimination(); 1498 return false; 1499 } 1500 1501 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1502 // Constant folding for extract value is trivial. 1503 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1504 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1505 })) 1506 return true; 1507 1508 // SROA can look through these but give them a cost. 1509 return false; 1510 } 1511 1512 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1513 // Constant folding for insert value is trivial. 1514 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1515 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1516 /*InsertedValueOperand*/ COps[1], 1517 I.getIndices()); 1518 })) 1519 return true; 1520 1521 // SROA can look through these but give them a cost. 1522 return false; 1523 } 1524 1525 /// Try to simplify a call site. 1526 /// 1527 /// Takes a concrete function and callsite and tries to actually simplify it by 1528 /// analyzing the arguments and call itself with instsimplify. Returns true if 1529 /// it has simplified the callsite to some other entity (a constant), making it 1530 /// free. 1531 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1532 // FIXME: Using the instsimplify logic directly for this is inefficient 1533 // because we have to continually rebuild the argument list even when no 1534 // simplifications can be performed. Until that is fixed with remapping 1535 // inside of instsimplify, directly constant fold calls here. 1536 if (!canConstantFoldCallTo(&Call, F)) 1537 return false; 1538 1539 // Try to re-map the arguments to constants. 1540 SmallVector<Constant *, 4> ConstantArgs; 1541 ConstantArgs.reserve(Call.arg_size()); 1542 for (Value *I : Call.args()) { 1543 Constant *C = dyn_cast<Constant>(I); 1544 if (!C) 1545 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1546 if (!C) 1547 return false; // This argument doesn't map to a constant. 1548 1549 ConstantArgs.push_back(C); 1550 } 1551 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1552 SimplifiedValues[&Call] = C; 1553 return true; 1554 } 1555 1556 return false; 1557 } 1558 1559 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1560 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1561 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1562 // This aborts the entire analysis. 1563 ExposesReturnsTwice = true; 1564 return false; 1565 } 1566 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1567 ContainsNoDuplicateCall = true; 1568 1569 Value *Callee = Call.getCalledOperand(); 1570 Function *F = dyn_cast_or_null<Function>(Callee); 1571 bool IsIndirectCall = !F; 1572 if (IsIndirectCall) { 1573 // Check if this happens to be an indirect function call to a known function 1574 // in this inline context. If not, we've done all we can. 1575 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1576 if (!F) { 1577 onCallArgumentSetup(Call); 1578 1579 if (!Call.onlyReadsMemory()) 1580 disableLoadElimination(); 1581 return Base::visitCallBase(Call); 1582 } 1583 } 1584 1585 assert(F && "Expected a call to a known function"); 1586 1587 // When we have a concrete function, first try to simplify it directly. 1588 if (simplifyCallSite(F, Call)) 1589 return true; 1590 1591 // Next check if it is an intrinsic we know about. 1592 // FIXME: Lift this into part of the InstVisitor. 1593 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1594 switch (II->getIntrinsicID()) { 1595 default: 1596 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1597 disableLoadElimination(); 1598 return Base::visitCallBase(Call); 1599 1600 case Intrinsic::load_relative: 1601 onLoadRelativeIntrinsic(); 1602 return false; 1603 1604 case Intrinsic::memset: 1605 case Intrinsic::memcpy: 1606 case Intrinsic::memmove: 1607 disableLoadElimination(); 1608 // SROA can usually chew through these intrinsics, but they aren't free. 1609 return false; 1610 case Intrinsic::icall_branch_funnel: 1611 case Intrinsic::localescape: 1612 HasUninlineableIntrinsic = true; 1613 return false; 1614 case Intrinsic::vastart: 1615 InitsVargArgs = true; 1616 return false; 1617 } 1618 } 1619 1620 if (F == Call.getFunction()) { 1621 // This flag will fully abort the analysis, so don't bother with anything 1622 // else. 1623 IsRecursiveCall = true; 1624 return false; 1625 } 1626 1627 if (TTI.isLoweredToCall(F)) { 1628 onLoweredCall(F, Call, IsIndirectCall); 1629 } 1630 1631 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1632 disableLoadElimination(); 1633 return Base::visitCallBase(Call); 1634 } 1635 1636 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1637 // At least one return instruction will be free after inlining. 1638 bool Free = !HasReturn; 1639 HasReturn = true; 1640 return Free; 1641 } 1642 1643 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1644 // We model unconditional branches as essentially free -- they really 1645 // shouldn't exist at all, but handling them makes the behavior of the 1646 // inliner more regular and predictable. Interestingly, conditional branches 1647 // which will fold away are also free. 1648 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1649 dyn_cast_or_null<ConstantInt>( 1650 SimplifiedValues.lookup(BI.getCondition())); 1651 } 1652 1653 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1654 bool CheckSROA = SI.getType()->isPointerTy(); 1655 Value *TrueVal = SI.getTrueValue(); 1656 Value *FalseVal = SI.getFalseValue(); 1657 1658 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1659 if (!TrueC) 1660 TrueC = SimplifiedValues.lookup(TrueVal); 1661 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1662 if (!FalseC) 1663 FalseC = SimplifiedValues.lookup(FalseVal); 1664 Constant *CondC = 1665 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1666 1667 if (!CondC) { 1668 // Select C, X, X => X 1669 if (TrueC == FalseC && TrueC) { 1670 SimplifiedValues[&SI] = TrueC; 1671 return true; 1672 } 1673 1674 if (!CheckSROA) 1675 return Base::visitSelectInst(SI); 1676 1677 std::pair<Value *, APInt> TrueBaseAndOffset = 1678 ConstantOffsetPtrs.lookup(TrueVal); 1679 std::pair<Value *, APInt> FalseBaseAndOffset = 1680 ConstantOffsetPtrs.lookup(FalseVal); 1681 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1682 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1683 1684 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1685 SROAArgValues[&SI] = SROAArg; 1686 return true; 1687 } 1688 1689 return Base::visitSelectInst(SI); 1690 } 1691 1692 // Select condition is a constant. 1693 Value *SelectedV = CondC->isAllOnesValue() 1694 ? TrueVal 1695 : (CondC->isNullValue()) ? FalseVal : nullptr; 1696 if (!SelectedV) { 1697 // Condition is a vector constant that is not all 1s or all 0s. If all 1698 // operands are constants, ConstantExpr::getSelect() can handle the cases 1699 // such as select vectors. 1700 if (TrueC && FalseC) { 1701 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1702 SimplifiedValues[&SI] = C; 1703 return true; 1704 } 1705 } 1706 return Base::visitSelectInst(SI); 1707 } 1708 1709 // Condition is either all 1s or all 0s. SI can be simplified. 1710 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1711 SimplifiedValues[&SI] = SelectedC; 1712 return true; 1713 } 1714 1715 if (!CheckSROA) 1716 return true; 1717 1718 std::pair<Value *, APInt> BaseAndOffset = 1719 ConstantOffsetPtrs.lookup(SelectedV); 1720 if (BaseAndOffset.first) { 1721 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1722 1723 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1724 SROAArgValues[&SI] = SROAArg; 1725 } 1726 1727 return true; 1728 } 1729 1730 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1731 // We model unconditional switches as free, see the comments on handling 1732 // branches. 1733 if (isa<ConstantInt>(SI.getCondition())) 1734 return true; 1735 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1736 if (isa<ConstantInt>(V)) 1737 return true; 1738 1739 // Assume the most general case where the switch is lowered into 1740 // either a jump table, bit test, or a balanced binary tree consisting of 1741 // case clusters without merging adjacent clusters with the same 1742 // destination. We do not consider the switches that are lowered with a mix 1743 // of jump table/bit test/binary search tree. The cost of the switch is 1744 // proportional to the size of the tree or the size of jump table range. 1745 // 1746 // NB: We convert large switches which are just used to initialize large phi 1747 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 1748 // inlining those. It will prevent inlining in cases where the optimization 1749 // does not (yet) fire. 1750 1751 unsigned JumpTableSize = 0; 1752 BlockFrequencyInfo *BFI = GetBFI ? &((*GetBFI)(F)) : nullptr; 1753 unsigned NumCaseCluster = 1754 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 1755 1756 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 1757 return false; 1758 } 1759 1760 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 1761 // We never want to inline functions that contain an indirectbr. This is 1762 // incorrect because all the blockaddress's (in static global initializers 1763 // for example) would be referring to the original function, and this 1764 // indirect jump would jump from the inlined copy of the function into the 1765 // original function which is extremely undefined behavior. 1766 // FIXME: This logic isn't really right; we can safely inline functions with 1767 // indirectbr's as long as no other function or global references the 1768 // blockaddress of a block within the current function. 1769 HasIndirectBr = true; 1770 return false; 1771 } 1772 1773 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 1774 // FIXME: It's not clear that a single instruction is an accurate model for 1775 // the inline cost of a resume instruction. 1776 return false; 1777 } 1778 1779 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 1780 // FIXME: It's not clear that a single instruction is an accurate model for 1781 // the inline cost of a cleanupret instruction. 1782 return false; 1783 } 1784 1785 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 1786 // FIXME: It's not clear that a single instruction is an accurate model for 1787 // the inline cost of a catchret instruction. 1788 return false; 1789 } 1790 1791 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 1792 // FIXME: It might be reasonably to discount the cost of instructions leading 1793 // to unreachable as they have the lowest possible impact on both runtime and 1794 // code size. 1795 return true; // No actual code is needed for unreachable. 1796 } 1797 1798 bool CallAnalyzer::visitInstruction(Instruction &I) { 1799 // Some instructions are free. All of the free intrinsics can also be 1800 // handled by SROA, etc. 1801 if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) 1802 return true; 1803 1804 // We found something we don't understand or can't handle. Mark any SROA-able 1805 // values in the operand list as no longer viable. 1806 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 1807 disableSROA(*OI); 1808 1809 return false; 1810 } 1811 1812 /// Analyze a basic block for its contribution to the inline cost. 1813 /// 1814 /// This method walks the analyzer over every instruction in the given basic 1815 /// block and accounts for their cost during inlining at this callsite. It 1816 /// aborts early if the threshold has been exceeded or an impossible to inline 1817 /// construct has been detected. It returns false if inlining is no longer 1818 /// viable, and true if inlining remains viable. 1819 InlineResult 1820 CallAnalyzer::analyzeBlock(BasicBlock *BB, 1821 SmallPtrSetImpl<const Value *> &EphValues) { 1822 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1823 // FIXME: Currently, the number of instructions in a function regardless of 1824 // our ability to simplify them during inline to constants or dead code, 1825 // are actually used by the vector bonus heuristic. As long as that's true, 1826 // we have to special case debug intrinsics here to prevent differences in 1827 // inlining due to debug symbols. Eventually, the number of unsimplified 1828 // instructions shouldn't factor into the cost computation, but until then, 1829 // hack around it here. 1830 if (isa<DbgInfoIntrinsic>(I)) 1831 continue; 1832 1833 // Skip ephemeral values. 1834 if (EphValues.count(&*I)) 1835 continue; 1836 1837 ++NumInstructions; 1838 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 1839 ++NumVectorInstructions; 1840 1841 // If the instruction simplified to a constant, there is no cost to this 1842 // instruction. Visit the instructions using our InstVisitor to account for 1843 // all of the per-instruction logic. The visit tree returns true if we 1844 // consumed the instruction in any way, and false if the instruction's base 1845 // cost should count against inlining. 1846 onInstructionAnalysisStart(&*I); 1847 1848 if (Base::visit(&*I)) 1849 ++NumInstructionsSimplified; 1850 else 1851 onMissedSimplification(); 1852 1853 onInstructionAnalysisFinish(&*I); 1854 using namespace ore; 1855 // If the visit this instruction detected an uninlinable pattern, abort. 1856 InlineResult IR = InlineResult::success(); 1857 if (IsRecursiveCall) 1858 IR = InlineResult::failure("recursive"); 1859 else if (ExposesReturnsTwice) 1860 IR = InlineResult::failure("exposes returns twice"); 1861 else if (HasDynamicAlloca) 1862 IR = InlineResult::failure("dynamic alloca"); 1863 else if (HasIndirectBr) 1864 IR = InlineResult::failure("indirect branch"); 1865 else if (HasUninlineableIntrinsic) 1866 IR = InlineResult::failure("uninlinable intrinsic"); 1867 else if (InitsVargArgs) 1868 IR = InlineResult::failure("varargs"); 1869 if (!IR.isSuccess()) { 1870 if (ORE) 1871 ORE->emit([&]() { 1872 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1873 &CandidateCall) 1874 << NV("Callee", &F) << " has uninlinable pattern (" 1875 << NV("InlineResult", IR.getFailureReason()) 1876 << ") and cost is not fully computed"; 1877 }); 1878 return IR; 1879 } 1880 1881 // If the caller is a recursive function then we don't want to inline 1882 // functions which allocate a lot of stack space because it would increase 1883 // the caller stack usage dramatically. 1884 if (IsCallerRecursive && 1885 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 1886 auto IR = 1887 InlineResult::failure("recursive and allocates too much stack space"); 1888 if (ORE) 1889 ORE->emit([&]() { 1890 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1891 &CandidateCall) 1892 << NV("Callee", &F) << " is " 1893 << NV("InlineResult", IR.getFailureReason()) 1894 << ". Cost is not fully computed"; 1895 }); 1896 return IR; 1897 } 1898 1899 if (shouldStop()) 1900 return InlineResult::failure( 1901 "Call site analysis is not favorable to inlining."); 1902 } 1903 1904 return InlineResult::success(); 1905 } 1906 1907 /// Compute the base pointer and cumulative constant offsets for V. 1908 /// 1909 /// This strips all constant offsets off of V, leaving it the base pointer, and 1910 /// accumulates the total constant offset applied in the returned constant. It 1911 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 1912 /// no constant offsets applied. 1913 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 1914 if (!V->getType()->isPointerTy()) 1915 return nullptr; 1916 1917 unsigned AS = V->getType()->getPointerAddressSpace(); 1918 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 1919 APInt Offset = APInt::getNullValue(IntPtrWidth); 1920 1921 // Even though we don't look through PHI nodes, we could be called on an 1922 // instruction in an unreachable block, which may be on a cycle. 1923 SmallPtrSet<Value *, 4> Visited; 1924 Visited.insert(V); 1925 do { 1926 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1927 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 1928 return nullptr; 1929 V = GEP->getPointerOperand(); 1930 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1931 V = cast<Operator>(V)->getOperand(0); 1932 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1933 if (GA->isInterposable()) 1934 break; 1935 V = GA->getAliasee(); 1936 } else { 1937 break; 1938 } 1939 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1940 } while (Visited.insert(V).second); 1941 1942 Type *IdxPtrTy = DL.getIndexType(V->getType()); 1943 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 1944 } 1945 1946 /// Find dead blocks due to deleted CFG edges during inlining. 1947 /// 1948 /// If we know the successor of the current block, \p CurrBB, has to be \p 1949 /// NextBB, the other successors of \p CurrBB are dead if these successors have 1950 /// no live incoming CFG edges. If one block is found to be dead, we can 1951 /// continue growing the dead block list by checking the successors of the dead 1952 /// blocks to see if all their incoming edges are dead or not. 1953 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 1954 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 1955 // A CFG edge is dead if the predecessor is dead or the predecessor has a 1956 // known successor which is not the one under exam. 1957 return (DeadBlocks.count(Pred) || 1958 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 1959 }; 1960 1961 auto IsNewlyDead = [&](BasicBlock *BB) { 1962 // If all the edges to a block are dead, the block is also dead. 1963 return (!DeadBlocks.count(BB) && 1964 llvm::all_of(predecessors(BB), 1965 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 1966 }; 1967 1968 for (BasicBlock *Succ : successors(CurrBB)) { 1969 if (Succ == NextBB || !IsNewlyDead(Succ)) 1970 continue; 1971 SmallVector<BasicBlock *, 4> NewDead; 1972 NewDead.push_back(Succ); 1973 while (!NewDead.empty()) { 1974 BasicBlock *Dead = NewDead.pop_back_val(); 1975 if (DeadBlocks.insert(Dead)) 1976 // Continue growing the dead block lists. 1977 for (BasicBlock *S : successors(Dead)) 1978 if (IsNewlyDead(S)) 1979 NewDead.push_back(S); 1980 } 1981 } 1982 } 1983 1984 /// Analyze a call site for potential inlining. 1985 /// 1986 /// Returns true if inlining this call is viable, and false if it is not 1987 /// viable. It computes the cost and adjusts the threshold based on numerous 1988 /// factors and heuristics. If this method returns false but the computed cost 1989 /// is below the computed threshold, then inlining was forcibly disabled by 1990 /// some artifact of the routine. 1991 InlineResult CallAnalyzer::analyze() { 1992 ++NumCallsAnalyzed; 1993 1994 auto Result = onAnalysisStart(); 1995 if (!Result.isSuccess()) 1996 return Result; 1997 1998 if (F.empty()) 1999 return InlineResult::success(); 2000 2001 Function *Caller = CandidateCall.getFunction(); 2002 // Check if the caller function is recursive itself. 2003 for (User *U : Caller->users()) { 2004 CallBase *Call = dyn_cast<CallBase>(U); 2005 if (Call && Call->getFunction() == Caller) { 2006 IsCallerRecursive = true; 2007 break; 2008 } 2009 } 2010 2011 // Populate our simplified values by mapping from function arguments to call 2012 // arguments with known important simplifications. 2013 auto CAI = CandidateCall.arg_begin(); 2014 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 2015 FAI != FAE; ++FAI, ++CAI) { 2016 assert(CAI != CandidateCall.arg_end()); 2017 if (Constant *C = dyn_cast<Constant>(CAI)) 2018 SimplifiedValues[&*FAI] = C; 2019 2020 Value *PtrArg = *CAI; 2021 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2022 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); 2023 2024 // We can SROA any pointer arguments derived from alloca instructions. 2025 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2026 SROAArgValues[&*FAI] = SROAArg; 2027 onInitializeSROAArg(SROAArg); 2028 EnabledSROAAllocas.insert(SROAArg); 2029 } 2030 } 2031 } 2032 NumConstantArgs = SimplifiedValues.size(); 2033 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2034 NumAllocaArgs = SROAArgValues.size(); 2035 2036 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2037 // the ephemeral values multiple times (and they're completely determined by 2038 // the callee, so this is purely duplicate work). 2039 SmallPtrSet<const Value *, 32> EphValues; 2040 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2041 2042 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2043 // adding basic blocks of the callee which can be proven to be dead for this 2044 // particular call site in order to get more accurate cost estimates. This 2045 // requires a somewhat heavyweight iteration pattern: we need to walk the 2046 // basic blocks in a breadth-first order as we insert live successors. To 2047 // accomplish this, prioritizing for small iterations because we exit after 2048 // crossing our threshold, we use a small-size optimized SetVector. 2049 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2050 SmallPtrSet<BasicBlock *, 16>> 2051 BBSetVector; 2052 BBSetVector BBWorklist; 2053 BBWorklist.insert(&F.getEntryBlock()); 2054 2055 // Note that we *must not* cache the size, this loop grows the worklist. 2056 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2057 if (shouldStop()) 2058 break; 2059 2060 BasicBlock *BB = BBWorklist[Idx]; 2061 if (BB->empty()) 2062 continue; 2063 2064 // Disallow inlining a blockaddress with uses other than strictly callbr. 2065 // A blockaddress only has defined behavior for an indirect branch in the 2066 // same function, and we do not currently support inlining indirect 2067 // branches. But, the inliner may not see an indirect branch that ends up 2068 // being dead code at a particular call site. If the blockaddress escapes 2069 // the function, e.g., via a global variable, inlining may lead to an 2070 // invalid cross-function reference. 2071 // FIXME: pr/39560: continue relaxing this overt restriction. 2072 if (BB->hasAddressTaken()) 2073 for (User *U : BlockAddress::get(&*BB)->users()) 2074 if (!isa<CallBrInst>(*U)) 2075 return InlineResult::failure("blockaddress used outside of callbr"); 2076 2077 // Analyze the cost of this block. If we blow through the threshold, this 2078 // returns false, and we can bail on out. 2079 InlineResult IR = analyzeBlock(BB, EphValues); 2080 if (!IR.isSuccess()) 2081 return IR; 2082 2083 Instruction *TI = BB->getTerminator(); 2084 2085 // Add in the live successors by first checking whether we have terminator 2086 // that may be simplified based on the values simplified by this call. 2087 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2088 if (BI->isConditional()) { 2089 Value *Cond = BI->getCondition(); 2090 if (ConstantInt *SimpleCond = 2091 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2092 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2093 BBWorklist.insert(NextBB); 2094 KnownSuccessors[BB] = NextBB; 2095 findDeadBlocks(BB, NextBB); 2096 continue; 2097 } 2098 } 2099 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2100 Value *Cond = SI->getCondition(); 2101 if (ConstantInt *SimpleCond = 2102 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2103 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2104 BBWorklist.insert(NextBB); 2105 KnownSuccessors[BB] = NextBB; 2106 findDeadBlocks(BB, NextBB); 2107 continue; 2108 } 2109 } 2110 2111 // If we're unable to select a particular successor, just count all of 2112 // them. 2113 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2114 ++TIdx) 2115 BBWorklist.insert(TI->getSuccessor(TIdx)); 2116 2117 onBlockAnalyzed(BB); 2118 } 2119 2120 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2121 &F == CandidateCall.getCalledFunction(); 2122 // If this is a noduplicate call, we can still inline as long as 2123 // inlining this would cause the removal of the caller (so the instruction 2124 // is not actually duplicated, just moved). 2125 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2126 return InlineResult::failure("noduplicate"); 2127 2128 return finalizeAnalysis(); 2129 } 2130 2131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2132 /// Dump stats about this call's analysis. 2133 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2134 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2135 if (PrintDebugInstructionDeltas) 2136 F.print(dbgs(), &Writer); 2137 DEBUG_PRINT_STAT(NumConstantArgs); 2138 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2139 DEBUG_PRINT_STAT(NumAllocaArgs); 2140 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2141 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2142 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2143 DEBUG_PRINT_STAT(NumInstructions); 2144 DEBUG_PRINT_STAT(SROACostSavings); 2145 DEBUG_PRINT_STAT(SROACostSavingsLost); 2146 DEBUG_PRINT_STAT(LoadEliminationCost); 2147 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2148 DEBUG_PRINT_STAT(Cost); 2149 DEBUG_PRINT_STAT(Threshold); 2150 #undef DEBUG_PRINT_STAT 2151 } 2152 #endif 2153 2154 /// Test that there are no attribute conflicts between Caller and Callee 2155 /// that prevent inlining. 2156 static bool functionsHaveCompatibleAttributes( 2157 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2158 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2159 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2160 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2161 // object, and always returns the same object (which is overwritten on each 2162 // GetTLI call). Therefore we copy the first result. 2163 auto CalleeTLI = GetTLI(*Callee); 2164 return TTI.areInlineCompatible(Caller, Callee) && 2165 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2166 InlineCallerSupersetNoBuiltin) && 2167 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2168 } 2169 2170 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2171 int Cost = 0; 2172 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2173 if (Call.isByValArgument(I)) { 2174 // We approximate the number of loads and stores needed by dividing the 2175 // size of the byval type by the target's pointer size. 2176 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2177 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2178 unsigned AS = PTy->getAddressSpace(); 2179 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2180 // Ceiling division. 2181 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2182 2183 // If it generates more than 8 stores it is likely to be expanded as an 2184 // inline memcpy so we take that as an upper bound. Otherwise we assume 2185 // one load and one store per word copied. 2186 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2187 // here instead of a magic number of 8, but it's not available via 2188 // DataLayout. 2189 NumStores = std::min(NumStores, 8U); 2190 2191 Cost += 2 * NumStores * InlineConstants::InstrCost; 2192 } else { 2193 // For non-byval arguments subtract off one instruction per call 2194 // argument. 2195 Cost += InlineConstants::InstrCost; 2196 } 2197 } 2198 // The call instruction also disappears after inlining. 2199 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2200 return Cost; 2201 } 2202 2203 InlineCost llvm::getInlineCost( 2204 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2205 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 2206 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, 2207 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2208 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2209 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2210 GetAssumptionCache, GetBFI, GetTLI, PSI, ORE); 2211 } 2212 2213 InlineCost llvm::getInlineCost( 2214 CallBase &Call, Function *Callee, const InlineParams &Params, 2215 TargetTransformInfo &CalleeTTI, 2216 std::function<AssumptionCache &(Function &)> &GetAssumptionCache, 2217 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, 2218 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2219 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2220 2221 // Cannot inline indirect calls. 2222 if (!Callee) 2223 return llvm::InlineCost::getNever("indirect call"); 2224 2225 // Never inline calls with byval arguments that does not have the alloca 2226 // address space. Since byval arguments can be replaced with a copy to an 2227 // alloca, the inlined code would need to be adjusted to handle that the 2228 // argument is in the alloca address space (so it is a little bit complicated 2229 // to solve). 2230 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2231 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2232 if (Call.isByValArgument(I)) { 2233 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2234 if (PTy->getAddressSpace() != AllocaAS) 2235 return llvm::InlineCost::getNever("byval arguments without alloca" 2236 " address space"); 2237 } 2238 2239 // Calls to functions with always-inline attributes should be inlined 2240 // whenever possible. 2241 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2242 auto IsViable = isInlineViable(*Callee); 2243 if (IsViable.isSuccess()) 2244 return llvm::InlineCost::getAlways("always inline attribute"); 2245 return llvm::InlineCost::getNever(IsViable.getFailureReason()); 2246 } 2247 2248 // Never inline functions with conflicting attributes (unless callee has 2249 // always-inline attribute). 2250 Function *Caller = Call.getCaller(); 2251 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2252 return llvm::InlineCost::getNever("conflicting attributes"); 2253 2254 // Don't inline this call if the caller has the optnone attribute. 2255 if (Caller->hasOptNone()) 2256 return llvm::InlineCost::getNever("optnone attribute"); 2257 2258 // Don't inline a function that treats null pointer as valid into a caller 2259 // that does not have this attribute. 2260 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2261 return llvm::InlineCost::getNever("nullptr definitions incompatible"); 2262 2263 // Don't inline functions which can be interposed at link-time. 2264 if (Callee->isInterposable()) 2265 return llvm::InlineCost::getNever("interposable"); 2266 2267 // Don't inline functions marked noinline. 2268 if (Callee->hasFnAttribute(Attribute::NoInline)) 2269 return llvm::InlineCost::getNever("noinline function attribute"); 2270 2271 // Don't inline call sites marked noinline. 2272 if (Call.isNoInline()) 2273 return llvm::InlineCost::getNever("noinline call site attribute"); 2274 2275 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2276 << "... (caller:" << Caller->getName() << ")\n"); 2277 2278 InlineCostCallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, 2279 *Callee, Call, Params); 2280 InlineResult ShouldInline = CA.analyze(); 2281 2282 LLVM_DEBUG(CA.dump()); 2283 2284 // Check if there was a reason to force inlining or no inlining. 2285 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2286 return InlineCost::getNever(ShouldInline.getFailureReason()); 2287 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2288 return InlineCost::getAlways("empty function"); 2289 2290 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2291 } 2292 2293 InlineResult llvm::isInlineViable(Function &F) { 2294 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2295 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2296 // Disallow inlining of functions which contain indirect branches. 2297 if (isa<IndirectBrInst>(BI->getTerminator())) 2298 return InlineResult::failure("contains indirect branches"); 2299 2300 // Disallow inlining of blockaddresses which are used by non-callbr 2301 // instructions. 2302 if (BI->hasAddressTaken()) 2303 for (User *U : BlockAddress::get(&*BI)->users()) 2304 if (!isa<CallBrInst>(*U)) 2305 return InlineResult::failure("blockaddress used outside of callbr"); 2306 2307 for (auto &II : *BI) { 2308 CallBase *Call = dyn_cast<CallBase>(&II); 2309 if (!Call) 2310 continue; 2311 2312 // Disallow recursive calls. 2313 if (&F == Call->getCalledFunction()) 2314 return InlineResult::failure("recursive call"); 2315 2316 // Disallow calls which expose returns-twice to a function not previously 2317 // attributed as such. 2318 if (!ReturnsTwice && isa<CallInst>(Call) && 2319 cast<CallInst>(Call)->canReturnTwice()) 2320 return InlineResult::failure("exposes returns-twice attribute"); 2321 2322 if (Call->getCalledFunction()) 2323 switch (Call->getCalledFunction()->getIntrinsicID()) { 2324 default: 2325 break; 2326 case llvm::Intrinsic::icall_branch_funnel: 2327 // Disallow inlining of @llvm.icall.branch.funnel because current 2328 // backend can't separate call targets from call arguments. 2329 return InlineResult::failure( 2330 "disallowed inlining of @llvm.icall.branch.funnel"); 2331 case llvm::Intrinsic::localescape: 2332 // Disallow inlining functions that call @llvm.localescape. Doing this 2333 // correctly would require major changes to the inliner. 2334 return InlineResult::failure( 2335 "disallowed inlining of @llvm.localescape"); 2336 case llvm::Intrinsic::vastart: 2337 // Disallow inlining of functions that initialize VarArgs with 2338 // va_start. 2339 return InlineResult::failure( 2340 "contains VarArgs initialized with va_start"); 2341 } 2342 } 2343 } 2344 2345 return InlineResult::success(); 2346 } 2347 2348 // APIs to create InlineParams based on command line flags and/or other 2349 // parameters. 2350 2351 InlineParams llvm::getInlineParams(int Threshold) { 2352 InlineParams Params; 2353 2354 // This field is the threshold to use for a callee by default. This is 2355 // derived from one or more of: 2356 // * optimization or size-optimization levels, 2357 // * a value passed to createFunctionInliningPass function, or 2358 // * the -inline-threshold flag. 2359 // If the -inline-threshold flag is explicitly specified, that is used 2360 // irrespective of anything else. 2361 if (InlineThreshold.getNumOccurrences() > 0) 2362 Params.DefaultThreshold = InlineThreshold; 2363 else 2364 Params.DefaultThreshold = Threshold; 2365 2366 // Set the HintThreshold knob from the -inlinehint-threshold. 2367 Params.HintThreshold = HintThreshold; 2368 2369 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2370 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2371 2372 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2373 // populate LocallyHotCallSiteThreshold. Later, we populate 2374 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2375 // we know that optimization level is O3 (in the getInlineParams variant that 2376 // takes the opt and size levels). 2377 // FIXME: Remove this check (and make the assignment unconditional) after 2378 // addressing size regression issues at O2. 2379 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2380 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2381 2382 // Set the ColdCallSiteThreshold knob from the 2383 // -inline-cold-callsite-threshold. 2384 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2385 2386 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2387 // -inlinehint-threshold commandline option is not explicitly given. If that 2388 // option is present, then its value applies even for callees with size and 2389 // minsize attributes. 2390 // If the -inline-threshold is not specified, set the ColdThreshold from the 2391 // -inlinecold-threshold even if it is not explicitly passed. If 2392 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2393 // explicitly specified to set the ColdThreshold knob 2394 if (InlineThreshold.getNumOccurrences() == 0) { 2395 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2396 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2397 Params.ColdThreshold = ColdThreshold; 2398 } else if (ColdThreshold.getNumOccurrences() > 0) { 2399 Params.ColdThreshold = ColdThreshold; 2400 } 2401 return Params; 2402 } 2403 2404 InlineParams llvm::getInlineParams() { 2405 return getInlineParams(DefaultThreshold); 2406 } 2407 2408 // Compute the default threshold for inlining based on the opt level and the 2409 // size opt level. 2410 static int computeThresholdFromOptLevels(unsigned OptLevel, 2411 unsigned SizeOptLevel) { 2412 if (OptLevel > 2) 2413 return InlineConstants::OptAggressiveThreshold; 2414 if (SizeOptLevel == 1) // -Os 2415 return InlineConstants::OptSizeThreshold; 2416 if (SizeOptLevel == 2) // -Oz 2417 return InlineConstants::OptMinSizeThreshold; 2418 return DefaultThreshold; 2419 } 2420 2421 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2422 auto Params = 2423 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2424 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2425 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2426 // when it is specified explicitly. 2427 if (OptLevel > 2) 2428 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2429 return Params; 2430 } 2431