1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 // We introduce this threshold to help performance of instrumentation based 75 // PGO before we actually hook up inliner with analysis passes such as BPI and 76 // BFI. 77 static cl::opt<int> ColdThreshold( 78 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 79 cl::desc("Threshold for inlining functions with cold attribute")); 80 81 static cl::opt<int> 82 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 83 cl::ZeroOrMore, 84 cl::desc("Threshold for hot callsites ")); 85 86 static cl::opt<int> LocallyHotCallSiteThreshold( 87 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 88 cl::desc("Threshold for locally hot callsites ")); 89 90 static cl::opt<int> ColdCallSiteRelFreq( 91 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 92 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 93 "entry frequency, for a callsite to be cold in the absence of " 94 "profile information.")); 95 96 static cl::opt<int> HotCallSiteRelFreq( 97 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 98 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 99 "entry frequency, for a callsite to be hot in the absence of " 100 "profile information.")); 101 102 static cl::opt<bool> OptComputeFullInlineCost( 103 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::desc("Compute the full inline cost of a call site even when the cost " 105 "exceeds the threshold.")); 106 107 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 108 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 109 cl::ZeroOrMore, 110 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 111 "attributes.")); 112 113 namespace { 114 class InlineCostCallAnalyzer; 115 116 // This struct is used to store information about inline cost of a 117 // particular instruction 118 struct InstructionCostDetail { 119 int CostBefore = 0; 120 int CostAfter = 0; 121 int ThresholdBefore = 0; 122 int ThresholdAfter = 0; 123 124 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 125 126 int getCostDelta() const { return CostAfter - CostBefore; } 127 128 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 129 }; 130 131 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 132 private: 133 InlineCostCallAnalyzer *const ICCA; 134 135 public: 136 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 137 virtual void emitInstructionAnnot(const Instruction *I, 138 formatted_raw_ostream &OS) override; 139 }; 140 141 /// Carry out call site analysis, in order to evaluate inlinability. 142 /// NOTE: the type is currently used as implementation detail of functions such 143 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 144 /// expectation is that they come from the outer scope, from the wrapper 145 /// functions. If we want to support constructing CallAnalyzer objects where 146 /// lambdas are provided inline at construction, or where the object needs to 147 /// otherwise survive past the scope of the provided functions, we need to 148 /// revisit the argument types. 149 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 150 typedef InstVisitor<CallAnalyzer, bool> Base; 151 friend class InstVisitor<CallAnalyzer, bool>; 152 153 protected: 154 virtual ~CallAnalyzer() {} 155 /// The TargetTransformInfo available for this compilation. 156 const TargetTransformInfo &TTI; 157 158 /// Getter for the cache of @llvm.assume intrinsics. 159 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 160 161 /// Getter for BlockFrequencyInfo 162 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 163 164 /// Profile summary information. 165 ProfileSummaryInfo *PSI; 166 167 /// The called function. 168 Function &F; 169 170 // Cache the DataLayout since we use it a lot. 171 const DataLayout &DL; 172 173 /// The OptimizationRemarkEmitter available for this compilation. 174 OptimizationRemarkEmitter *ORE; 175 176 /// The candidate callsite being analyzed. Please do not use this to do 177 /// analysis in the caller function; we want the inline cost query to be 178 /// easily cacheable. Instead, use the cover function paramHasAttr. 179 CallBase &CandidateCall; 180 181 /// Extension points for handling callsite features. 182 /// Called after a basic block was analyzed. 183 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 184 185 /// Called before an instruction was analyzed 186 virtual void onInstructionAnalysisStart(const Instruction *I) {} 187 188 /// Called after an instruction was analyzed 189 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 190 191 /// Called at the end of the analysis of the callsite. Return the outcome of 192 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 193 /// the reason it can't. 194 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 195 /// Called when we're about to start processing a basic block, and every time 196 /// we are done processing an instruction. Return true if there is no point in 197 /// continuing the analysis (e.g. we've determined already the call site is 198 /// too expensive to inline) 199 virtual bool shouldStop() { return false; } 200 201 /// Called before the analysis of the callee body starts (with callsite 202 /// contexts propagated). It checks callsite-specific information. Return a 203 /// reason analysis can't continue if that's the case, or 'true' if it may 204 /// continue. 205 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 206 /// Called if the analysis engine decides SROA cannot be done for the given 207 /// alloca. 208 virtual void onDisableSROA(AllocaInst *Arg) {} 209 210 /// Called the analysis engine determines load elimination won't happen. 211 virtual void onDisableLoadElimination() {} 212 213 /// Called to account for a call. 214 virtual void onCallPenalty() {} 215 216 /// Called to account for the expectation the inlining would result in a load 217 /// elimination. 218 virtual void onLoadEliminationOpportunity() {} 219 220 /// Called to account for the cost of argument setup for the Call in the 221 /// callee's body (not the callsite currently under analysis). 222 virtual void onCallArgumentSetup(const CallBase &Call) {} 223 224 /// Called to account for a load relative intrinsic. 225 virtual void onLoadRelativeIntrinsic() {} 226 227 /// Called to account for a lowered call. 228 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 229 } 230 231 /// Account for a jump table of given size. Return false to stop further 232 /// processing the switch instruction 233 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 234 235 /// Account for a case cluster of given size. Return false to stop further 236 /// processing of the instruction. 237 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 238 239 /// Called at the end of processing a switch instruction, with the given 240 /// number of case clusters. 241 virtual void onFinalizeSwitch(unsigned JumpTableSize, 242 unsigned NumCaseCluster) {} 243 244 /// Called to account for any other instruction not specifically accounted 245 /// for. 246 virtual void onMissedSimplification() {} 247 248 /// Start accounting potential benefits due to SROA for the given alloca. 249 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 250 251 /// Account SROA savings for the AllocaInst value. 252 virtual void onAggregateSROAUse(AllocaInst *V) {} 253 254 bool handleSROA(Value *V, bool DoNotDisable) { 255 // Check for SROA candidates in comparisons. 256 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 257 if (DoNotDisable) { 258 onAggregateSROAUse(SROAArg); 259 return true; 260 } 261 disableSROAForArg(SROAArg); 262 } 263 return false; 264 } 265 266 bool IsCallerRecursive = false; 267 bool IsRecursiveCall = false; 268 bool ExposesReturnsTwice = false; 269 bool HasDynamicAlloca = false; 270 bool ContainsNoDuplicateCall = false; 271 bool HasReturn = false; 272 bool HasIndirectBr = false; 273 bool HasUninlineableIntrinsic = false; 274 bool InitsVargArgs = false; 275 276 /// Number of bytes allocated statically by the callee. 277 uint64_t AllocatedSize = 0; 278 unsigned NumInstructions = 0; 279 unsigned NumVectorInstructions = 0; 280 281 /// While we walk the potentially-inlined instructions, we build up and 282 /// maintain a mapping of simplified values specific to this callsite. The 283 /// idea is to propagate any special information we have about arguments to 284 /// this call through the inlinable section of the function, and account for 285 /// likely simplifications post-inlining. The most important aspect we track 286 /// is CFG altering simplifications -- when we prove a basic block dead, that 287 /// can cause dramatic shifts in the cost of inlining a function. 288 DenseMap<Value *, Constant *> SimplifiedValues; 289 290 /// Keep track of the values which map back (through function arguments) to 291 /// allocas on the caller stack which could be simplified through SROA. 292 DenseMap<Value *, AllocaInst *> SROAArgValues; 293 294 /// Keep track of Allocas for which we believe we may get SROA optimization. 295 DenseSet<AllocaInst *> EnabledSROAAllocas; 296 297 /// Keep track of values which map to a pointer base and constant offset. 298 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 299 300 /// Keep track of dead blocks due to the constant arguments. 301 SetVector<BasicBlock *> DeadBlocks; 302 303 /// The mapping of the blocks to their known unique successors due to the 304 /// constant arguments. 305 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 306 307 /// Model the elimination of repeated loads that is expected to happen 308 /// whenever we simplify away the stores that would otherwise cause them to be 309 /// loads. 310 bool EnableLoadElimination; 311 SmallPtrSet<Value *, 16> LoadAddrSet; 312 313 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 314 auto It = SROAArgValues.find(V); 315 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 316 return nullptr; 317 return It->second; 318 } 319 320 // Custom simplification helper routines. 321 bool isAllocaDerivedArg(Value *V); 322 void disableSROAForArg(AllocaInst *SROAArg); 323 void disableSROA(Value *V); 324 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 325 void disableLoadElimination(); 326 bool isGEPFree(GetElementPtrInst &GEP); 327 bool canFoldInboundsGEP(GetElementPtrInst &I); 328 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 329 bool simplifyCallSite(Function *F, CallBase &Call); 330 template <typename Callable> 331 bool simplifyInstruction(Instruction &I, Callable Evaluate); 332 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 333 334 /// Return true if the given argument to the function being considered for 335 /// inlining has the given attribute set either at the call site or the 336 /// function declaration. Primarily used to inspect call site specific 337 /// attributes since these can be more precise than the ones on the callee 338 /// itself. 339 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 340 341 /// Return true if the given value is known non null within the callee if 342 /// inlined through this particular callsite. 343 bool isKnownNonNullInCallee(Value *V); 344 345 /// Return true if size growth is allowed when inlining the callee at \p Call. 346 bool allowSizeGrowth(CallBase &Call); 347 348 // Custom analysis routines. 349 InlineResult analyzeBlock(BasicBlock *BB, 350 SmallPtrSetImpl<const Value *> &EphValues); 351 352 // Disable several entry points to the visitor so we don't accidentally use 353 // them by declaring but not defining them here. 354 void visit(Module *); 355 void visit(Module &); 356 void visit(Function *); 357 void visit(Function &); 358 void visit(BasicBlock *); 359 void visit(BasicBlock &); 360 361 // Provide base case for our instruction visit. 362 bool visitInstruction(Instruction &I); 363 364 // Our visit overrides. 365 bool visitAlloca(AllocaInst &I); 366 bool visitPHI(PHINode &I); 367 bool visitGetElementPtr(GetElementPtrInst &I); 368 bool visitBitCast(BitCastInst &I); 369 bool visitPtrToInt(PtrToIntInst &I); 370 bool visitIntToPtr(IntToPtrInst &I); 371 bool visitCastInst(CastInst &I); 372 bool visitUnaryInstruction(UnaryInstruction &I); 373 bool visitCmpInst(CmpInst &I); 374 bool visitSub(BinaryOperator &I); 375 bool visitBinaryOperator(BinaryOperator &I); 376 bool visitFNeg(UnaryOperator &I); 377 bool visitLoad(LoadInst &I); 378 bool visitStore(StoreInst &I); 379 bool visitExtractValue(ExtractValueInst &I); 380 bool visitInsertValue(InsertValueInst &I); 381 bool visitCallBase(CallBase &Call); 382 bool visitReturnInst(ReturnInst &RI); 383 bool visitBranchInst(BranchInst &BI); 384 bool visitSelectInst(SelectInst &SI); 385 bool visitSwitchInst(SwitchInst &SI); 386 bool visitIndirectBrInst(IndirectBrInst &IBI); 387 bool visitResumeInst(ResumeInst &RI); 388 bool visitCleanupReturnInst(CleanupReturnInst &RI); 389 bool visitCatchReturnInst(CatchReturnInst &RI); 390 bool visitUnreachableInst(UnreachableInst &I); 391 392 public: 393 CallAnalyzer( 394 Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 395 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 396 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 397 ProfileSummaryInfo *PSI = nullptr, 398 OptimizationRemarkEmitter *ORE = nullptr) 399 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 400 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 401 CandidateCall(Call), EnableLoadElimination(true) {} 402 403 InlineResult analyze(); 404 405 // Keep a bunch of stats about the cost savings found so we can print them 406 // out when debugging. 407 unsigned NumConstantArgs = 0; 408 unsigned NumConstantOffsetPtrArgs = 0; 409 unsigned NumAllocaArgs = 0; 410 unsigned NumConstantPtrCmps = 0; 411 unsigned NumConstantPtrDiffs = 0; 412 unsigned NumInstructionsSimplified = 0; 413 414 void dump(); 415 }; 416 417 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 418 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 419 class InlineCostCallAnalyzer final : public CallAnalyzer { 420 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 421 const bool ComputeFullInlineCost; 422 int LoadEliminationCost = 0; 423 /// Bonus to be applied when percentage of vector instructions in callee is 424 /// high (see more details in updateThreshold). 425 int VectorBonus = 0; 426 /// Bonus to be applied when the callee has only one reachable basic block. 427 int SingleBBBonus = 0; 428 429 /// Tunable parameters that control the analysis. 430 const InlineParams &Params; 431 432 // This DenseMap stores the delta change in cost and threshold after 433 // accounting for the given instruction. The map is filled only with the 434 // flag PrintInstructionComments on. 435 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 436 437 /// Upper bound for the inlining cost. Bonuses are being applied to account 438 /// for speculative "expected profit" of the inlining decision. 439 int Threshold = 0; 440 441 /// Attempt to evaluate indirect calls to boost its inline cost. 442 const bool BoostIndirectCalls; 443 444 /// Ignore the threshold when finalizing analysis. 445 const bool IgnoreThreshold; 446 447 /// Inlining cost measured in abstract units, accounts for all the 448 /// instructions expected to be executed for a given function invocation. 449 /// Instructions that are statically proven to be dead based on call-site 450 /// arguments are not counted here. 451 int Cost = 0; 452 453 bool SingleBB = true; 454 455 unsigned SROACostSavings = 0; 456 unsigned SROACostSavingsLost = 0; 457 458 /// The mapping of caller Alloca values to their accumulated cost savings. If 459 /// we have to disable SROA for one of the allocas, this tells us how much 460 /// cost must be added. 461 DenseMap<AllocaInst *, int> SROAArgCosts; 462 463 /// Return true if \p Call is a cold callsite. 464 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 465 466 /// Update Threshold based on callsite properties such as callee 467 /// attributes and callee hotness for PGO builds. The Callee is explicitly 468 /// passed to support analyzing indirect calls whose target is inferred by 469 /// analysis. 470 void updateThreshold(CallBase &Call, Function &Callee); 471 /// Return a higher threshold if \p Call is a hot callsite. 472 Optional<int> getHotCallSiteThreshold(CallBase &Call, 473 BlockFrequencyInfo *CallerBFI); 474 475 /// Handle a capped 'int' increment for Cost. 476 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 477 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 478 Cost = (int)std::min(UpperBound, Cost + Inc); 479 } 480 481 void onDisableSROA(AllocaInst *Arg) override { 482 auto CostIt = SROAArgCosts.find(Arg); 483 if (CostIt == SROAArgCosts.end()) 484 return; 485 addCost(CostIt->second); 486 SROACostSavings -= CostIt->second; 487 SROACostSavingsLost += CostIt->second; 488 SROAArgCosts.erase(CostIt); 489 } 490 491 void onDisableLoadElimination() override { 492 addCost(LoadEliminationCost); 493 LoadEliminationCost = 0; 494 } 495 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 496 void onCallArgumentSetup(const CallBase &Call) override { 497 // Pay the price of the argument setup. We account for the average 1 498 // instruction per call argument setup here. 499 addCost(Call.arg_size() * InlineConstants::InstrCost); 500 } 501 void onLoadRelativeIntrinsic() override { 502 // This is normally lowered to 4 LLVM instructions. 503 addCost(3 * InlineConstants::InstrCost); 504 } 505 void onLoweredCall(Function *F, CallBase &Call, 506 bool IsIndirectCall) override { 507 // We account for the average 1 instruction per call argument setup here. 508 addCost(Call.arg_size() * InlineConstants::InstrCost); 509 510 // If we have a constant that we are calling as a function, we can peer 511 // through it and see the function target. This happens not infrequently 512 // during devirtualization and so we want to give it a hefty bonus for 513 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 514 // Pretend to inline the function, with a custom threshold. 515 if (IsIndirectCall && BoostIndirectCalls) { 516 auto IndirectCallParams = Params; 517 IndirectCallParams.DefaultThreshold = 518 InlineConstants::IndirectCallThreshold; 519 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 520 /// to instantiate the derived class. 521 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 522 GetAssumptionCache, GetBFI, PSI, ORE, false); 523 if (CA.analyze().isSuccess()) { 524 // We were able to inline the indirect call! Subtract the cost from the 525 // threshold to get the bonus we want to apply, but don't go below zero. 526 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 527 } 528 } else 529 // Otherwise simply add the cost for merely making the call. 530 addCost(InlineConstants::CallPenalty); 531 } 532 533 void onFinalizeSwitch(unsigned JumpTableSize, 534 unsigned NumCaseCluster) override { 535 // If suitable for a jump table, consider the cost for the table size and 536 // branch to destination. 537 // Maximum valid cost increased in this function. 538 if (JumpTableSize) { 539 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 540 4 * InlineConstants::InstrCost; 541 542 addCost(JTCost, (int64_t)CostUpperBound); 543 return; 544 } 545 // Considering forming a binary search, we should find the number of nodes 546 // which is same as the number of comparisons when lowered. For a given 547 // number of clusters, n, we can define a recursive function, f(n), to find 548 // the number of nodes in the tree. The recursion is : 549 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 550 // and f(n) = n, when n <= 3. 551 // This will lead a binary tree where the leaf should be either f(2) or f(3) 552 // when n > 3. So, the number of comparisons from leaves should be n, while 553 // the number of non-leaf should be : 554 // 2^(log2(n) - 1) - 1 555 // = 2^log2(n) * 2^-1 - 1 556 // = n / 2 - 1. 557 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 558 // number of comparisons in a simple closed form : 559 // n + n / 2 - 1 = n * 3 / 2 - 1 560 if (NumCaseCluster <= 3) { 561 // Suppose a comparison includes one compare and one conditional branch. 562 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 563 return; 564 } 565 566 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 567 int64_t SwitchCost = 568 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 569 570 addCost(SwitchCost, (int64_t)CostUpperBound); 571 } 572 void onMissedSimplification() override { 573 addCost(InlineConstants::InstrCost); 574 } 575 576 void onInitializeSROAArg(AllocaInst *Arg) override { 577 assert(Arg != nullptr && 578 "Should not initialize SROA costs for null value."); 579 SROAArgCosts[Arg] = 0; 580 } 581 582 void onAggregateSROAUse(AllocaInst *SROAArg) override { 583 auto CostIt = SROAArgCosts.find(SROAArg); 584 assert(CostIt != SROAArgCosts.end() && 585 "expected this argument to have a cost"); 586 CostIt->second += InlineConstants::InstrCost; 587 SROACostSavings += InlineConstants::InstrCost; 588 } 589 590 void onBlockAnalyzed(const BasicBlock *BB) override { 591 auto *TI = BB->getTerminator(); 592 // If we had any successors at this point, than post-inlining is likely to 593 // have them as well. Note that we assume any basic blocks which existed 594 // due to branches or switches which folded above will also fold after 595 // inlining. 596 if (SingleBB && TI->getNumSuccessors() > 1) { 597 // Take off the bonus we applied to the threshold. 598 Threshold -= SingleBBBonus; 599 SingleBB = false; 600 } 601 } 602 603 void onInstructionAnalysisStart(const Instruction *I) override { 604 // This function is called to store the initial cost of inlining before 605 // the given instruction was assessed. 606 if (!PrintInstructionComments) 607 return; 608 InstructionCostDetailMap[I].CostBefore = Cost; 609 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 610 } 611 612 void onInstructionAnalysisFinish(const Instruction *I) override { 613 // This function is called to find new values of cost and threshold after 614 // the instruction has been assessed. 615 if (!PrintInstructionComments) 616 return; 617 InstructionCostDetailMap[I].CostAfter = Cost; 618 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 619 } 620 621 InlineResult finalizeAnalysis() override { 622 // Loops generally act a lot like calls in that they act like barriers to 623 // movement, require a certain amount of setup, etc. So when optimising for 624 // size, we penalise any call sites that perform loops. We do this after all 625 // other costs here, so will likely only be dealing with relatively small 626 // functions (and hence DT and LI will hopefully be cheap). 627 auto *Caller = CandidateCall.getFunction(); 628 if (Caller->hasMinSize()) { 629 DominatorTree DT(F); 630 LoopInfo LI(DT); 631 int NumLoops = 0; 632 for (Loop *L : LI) { 633 // Ignore loops that will not be executed 634 if (DeadBlocks.count(L->getHeader())) 635 continue; 636 NumLoops++; 637 } 638 addCost(NumLoops * InlineConstants::CallPenalty); 639 } 640 641 // We applied the maximum possible vector bonus at the beginning. Now, 642 // subtract the excess bonus, if any, from the Threshold before 643 // comparing against Cost. 644 if (NumVectorInstructions <= NumInstructions / 10) 645 Threshold -= VectorBonus; 646 else if (NumVectorInstructions <= NumInstructions / 2) 647 Threshold -= VectorBonus / 2; 648 649 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 650 return InlineResult::success(); 651 return InlineResult::failure("Cost over threshold."); 652 } 653 bool shouldStop() override { 654 // Bail out the moment we cross the threshold. This means we'll under-count 655 // the cost, but only when undercounting doesn't matter. 656 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 657 } 658 659 void onLoadEliminationOpportunity() override { 660 LoadEliminationCost += InlineConstants::InstrCost; 661 } 662 663 InlineResult onAnalysisStart() override { 664 // Perform some tweaks to the cost and threshold based on the direct 665 // callsite information. 666 667 // We want to more aggressively inline vector-dense kernels, so up the 668 // threshold, and we'll lower it if the % of vector instructions gets too 669 // low. Note that these bonuses are some what arbitrary and evolved over 670 // time by accident as much as because they are principled bonuses. 671 // 672 // FIXME: It would be nice to remove all such bonuses. At least it would be 673 // nice to base the bonus values on something more scientific. 674 assert(NumInstructions == 0); 675 assert(NumVectorInstructions == 0); 676 677 // Update the threshold based on callsite properties 678 updateThreshold(CandidateCall, F); 679 680 // While Threshold depends on commandline options that can take negative 681 // values, we want to enforce the invariant that the computed threshold and 682 // bonuses are non-negative. 683 assert(Threshold >= 0); 684 assert(SingleBBBonus >= 0); 685 assert(VectorBonus >= 0); 686 687 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 688 // this Threshold any time, and cost cannot decrease, we can stop processing 689 // the rest of the function body. 690 Threshold += (SingleBBBonus + VectorBonus); 691 692 // Give out bonuses for the callsite, as the instructions setting them up 693 // will be gone after inlining. 694 addCost(-getCallsiteCost(this->CandidateCall, DL)); 695 696 // If this function uses the coldcc calling convention, prefer not to inline 697 // it. 698 if (F.getCallingConv() == CallingConv::Cold) 699 Cost += InlineConstants::ColdccPenalty; 700 701 // Check if we're done. This can happen due to bonuses and penalties. 702 if (Cost >= Threshold && !ComputeFullInlineCost) 703 return InlineResult::failure("high cost"); 704 705 return InlineResult::success(); 706 } 707 708 public: 709 InlineCostCallAnalyzer( 710 Function &Callee, CallBase &Call, const InlineParams &Params, 711 const TargetTransformInfo &TTI, 712 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 713 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 714 ProfileSummaryInfo *PSI = nullptr, 715 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 716 bool IgnoreThreshold = false) 717 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 718 ComputeFullInlineCost(OptComputeFullInlineCost || 719 Params.ComputeFullInlineCost || ORE), 720 Params(Params), Threshold(Params.DefaultThreshold), 721 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 722 Writer(this) {} 723 724 /// Annotation Writer for instruction details 725 InlineCostAnnotationWriter Writer; 726 727 void dump(); 728 729 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 730 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 731 return InstructionCostDetailMap[I]; 732 return None; 733 } 734 735 virtual ~InlineCostCallAnalyzer() {} 736 int getThreshold() { return Threshold; } 737 int getCost() { return Cost; } 738 }; 739 } // namespace 740 741 /// Test whether the given value is an Alloca-derived function argument. 742 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 743 return SROAArgValues.count(V); 744 } 745 746 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 747 onDisableSROA(SROAArg); 748 EnabledSROAAllocas.erase(SROAArg); 749 disableLoadElimination(); 750 } 751 752 void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I, 753 formatted_raw_ostream &OS) { 754 // The cost of inlining of the given instruction is printed always. 755 // The threshold delta is printed only when it is non-zero. It happens 756 // when we decided to give a bonus at a particular instruction. 757 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 758 if (!Record) 759 OS << "; No analysis for the instruction"; 760 else { 761 OS << "; cost before = " << Record->CostBefore 762 << ", cost after = " << Record->CostAfter 763 << ", threshold before = " << Record->ThresholdBefore 764 << ", threshold after = " << Record->ThresholdAfter << ", "; 765 OS << "cost delta = " << Record->getCostDelta(); 766 if (Record->hasThresholdChanged()) 767 OS << ", threshold delta = " << Record->getThresholdDelta(); 768 } 769 OS << "\n"; 770 } 771 772 /// If 'V' maps to a SROA candidate, disable SROA for it. 773 void CallAnalyzer::disableSROA(Value *V) { 774 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 775 disableSROAForArg(SROAArg); 776 } 777 } 778 779 void CallAnalyzer::disableLoadElimination() { 780 if (EnableLoadElimination) { 781 onDisableLoadElimination(); 782 EnableLoadElimination = false; 783 } 784 } 785 786 /// Accumulate a constant GEP offset into an APInt if possible. 787 /// 788 /// Returns false if unable to compute the offset for any reason. Respects any 789 /// simplified values known during the analysis of this callsite. 790 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 791 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 792 assert(IntPtrWidth == Offset.getBitWidth()); 793 794 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 795 GTI != GTE; ++GTI) { 796 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 797 if (!OpC) 798 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 799 OpC = dyn_cast<ConstantInt>(SimpleOp); 800 if (!OpC) 801 return false; 802 if (OpC->isZero()) 803 continue; 804 805 // Handle a struct index, which adds its field offset to the pointer. 806 if (StructType *STy = GTI.getStructTypeOrNull()) { 807 unsigned ElementIdx = OpC->getZExtValue(); 808 const StructLayout *SL = DL.getStructLayout(STy); 809 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 810 continue; 811 } 812 813 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 814 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 815 } 816 return true; 817 } 818 819 /// Use TTI to check whether a GEP is free. 820 /// 821 /// Respects any simplified values known during the analysis of this callsite. 822 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 823 SmallVector<Value *, 4> Operands; 824 Operands.push_back(GEP.getOperand(0)); 825 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 826 if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) 827 Operands.push_back(SimpleOp); 828 else 829 Operands.push_back(*I); 830 return TargetTransformInfo::TCC_Free == 831 TTI.getUserCost(&GEP, Operands, 832 TargetTransformInfo::TCK_SizeAndLatency); 833 } 834 835 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 836 // Check whether inlining will turn a dynamic alloca into a static 837 // alloca and handle that case. 838 if (I.isArrayAllocation()) { 839 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 840 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 841 Type *Ty = I.getAllocatedType(); 842 AllocatedSize = SaturatingMultiplyAdd( 843 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(), 844 AllocatedSize); 845 return Base::visitAlloca(I); 846 } 847 } 848 849 // Accumulate the allocated size. 850 if (I.isStaticAlloca()) { 851 Type *Ty = I.getAllocatedType(); 852 AllocatedSize = 853 SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize); 854 } 855 856 // We will happily inline static alloca instructions. 857 if (I.isStaticAlloca()) 858 return Base::visitAlloca(I); 859 860 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 861 // a variety of reasons, and so we would like to not inline them into 862 // functions which don't currently have a dynamic alloca. This simply 863 // disables inlining altogether in the presence of a dynamic alloca. 864 HasDynamicAlloca = true; 865 return false; 866 } 867 868 bool CallAnalyzer::visitPHI(PHINode &I) { 869 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 870 // though we don't want to propagate it's bonuses. The idea is to disable 871 // SROA if it *might* be used in an inappropriate manner. 872 873 // Phi nodes are always zero-cost. 874 // FIXME: Pointer sizes may differ between different address spaces, so do we 875 // need to use correct address space in the call to getPointerSizeInBits here? 876 // Or could we skip the getPointerSizeInBits call completely? As far as I can 877 // see the ZeroOffset is used as a dummy value, so we can probably use any 878 // bit width for the ZeroOffset? 879 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 880 bool CheckSROA = I.getType()->isPointerTy(); 881 882 // Track the constant or pointer with constant offset we've seen so far. 883 Constant *FirstC = nullptr; 884 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 885 Value *FirstV = nullptr; 886 887 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 888 BasicBlock *Pred = I.getIncomingBlock(i); 889 // If the incoming block is dead, skip the incoming block. 890 if (DeadBlocks.count(Pred)) 891 continue; 892 // If the parent block of phi is not the known successor of the incoming 893 // block, skip the incoming block. 894 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 895 if (KnownSuccessor && KnownSuccessor != I.getParent()) 896 continue; 897 898 Value *V = I.getIncomingValue(i); 899 // If the incoming value is this phi itself, skip the incoming value. 900 if (&I == V) 901 continue; 902 903 Constant *C = dyn_cast<Constant>(V); 904 if (!C) 905 C = SimplifiedValues.lookup(V); 906 907 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 908 if (!C && CheckSROA) 909 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 910 911 if (!C && !BaseAndOffset.first) 912 // The incoming value is neither a constant nor a pointer with constant 913 // offset, exit early. 914 return true; 915 916 if (FirstC) { 917 if (FirstC == C) 918 // If we've seen a constant incoming value before and it is the same 919 // constant we see this time, continue checking the next incoming value. 920 continue; 921 // Otherwise early exit because we either see a different constant or saw 922 // a constant before but we have a pointer with constant offset this time. 923 return true; 924 } 925 926 if (FirstV) { 927 // The same logic as above, but check pointer with constant offset here. 928 if (FirstBaseAndOffset == BaseAndOffset) 929 continue; 930 return true; 931 } 932 933 if (C) { 934 // This is the 1st time we've seen a constant, record it. 935 FirstC = C; 936 continue; 937 } 938 939 // The remaining case is that this is the 1st time we've seen a pointer with 940 // constant offset, record it. 941 FirstV = V; 942 FirstBaseAndOffset = BaseAndOffset; 943 } 944 945 // Check if we can map phi to a constant. 946 if (FirstC) { 947 SimplifiedValues[&I] = FirstC; 948 return true; 949 } 950 951 // Check if we can map phi to a pointer with constant offset. 952 if (FirstBaseAndOffset.first) { 953 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 954 955 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 956 SROAArgValues[&I] = SROAArg; 957 } 958 959 return true; 960 } 961 962 /// Check we can fold GEPs of constant-offset call site argument pointers. 963 /// This requires target data and inbounds GEPs. 964 /// 965 /// \return true if the specified GEP can be folded. 966 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 967 // Check if we have a base + offset for the pointer. 968 std::pair<Value *, APInt> BaseAndOffset = 969 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 970 if (!BaseAndOffset.first) 971 return false; 972 973 // Check if the offset of this GEP is constant, and if so accumulate it 974 // into Offset. 975 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 976 return false; 977 978 // Add the result as a new mapping to Base + Offset. 979 ConstantOffsetPtrs[&I] = BaseAndOffset; 980 981 return true; 982 } 983 984 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 985 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 986 987 // Lambda to check whether a GEP's indices are all constant. 988 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 989 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 990 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 991 return false; 992 return true; 993 }; 994 995 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 996 if (SROAArg) 997 SROAArgValues[&I] = SROAArg; 998 999 // Constant GEPs are modeled as free. 1000 return true; 1001 } 1002 1003 // Variable GEPs will require math and will disable SROA. 1004 if (SROAArg) 1005 disableSROAForArg(SROAArg); 1006 return isGEPFree(I); 1007 } 1008 1009 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1010 /// \p Evaluate is a callable specific to instruction type that evaluates the 1011 /// instruction when all the operands are constants. 1012 template <typename Callable> 1013 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1014 SmallVector<Constant *, 2> COps; 1015 for (Value *Op : I.operands()) { 1016 Constant *COp = dyn_cast<Constant>(Op); 1017 if (!COp) 1018 COp = SimplifiedValues.lookup(Op); 1019 if (!COp) 1020 return false; 1021 COps.push_back(COp); 1022 } 1023 auto *C = Evaluate(COps); 1024 if (!C) 1025 return false; 1026 SimplifiedValues[&I] = C; 1027 return true; 1028 } 1029 1030 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1031 // Propagate constants through bitcasts. 1032 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1033 return ConstantExpr::getBitCast(COps[0], I.getType()); 1034 })) 1035 return true; 1036 1037 // Track base/offsets through casts 1038 std::pair<Value *, APInt> BaseAndOffset = 1039 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1040 // Casts don't change the offset, just wrap it up. 1041 if (BaseAndOffset.first) 1042 ConstantOffsetPtrs[&I] = BaseAndOffset; 1043 1044 // Also look for SROA candidates here. 1045 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1046 SROAArgValues[&I] = SROAArg; 1047 1048 // Bitcasts are always zero cost. 1049 return true; 1050 } 1051 1052 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1053 // Propagate constants through ptrtoint. 1054 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1055 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1056 })) 1057 return true; 1058 1059 // Track base/offset pairs when converted to a plain integer provided the 1060 // integer is large enough to represent the pointer. 1061 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1062 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1063 if (IntegerSize >= DL.getPointerSizeInBits(AS)) { 1064 std::pair<Value *, APInt> BaseAndOffset = 1065 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1066 if (BaseAndOffset.first) 1067 ConstantOffsetPtrs[&I] = BaseAndOffset; 1068 } 1069 1070 // This is really weird. Technically, ptrtoint will disable SROA. However, 1071 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1072 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1073 // would block SROA would also block SROA if applied directly to a pointer, 1074 // and so we can just add the integer in here. The only places where SROA is 1075 // preserved either cannot fire on an integer, or won't in-and-of themselves 1076 // disable SROA (ext) w/o some later use that we would see and disable. 1077 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1078 SROAArgValues[&I] = SROAArg; 1079 1080 return TargetTransformInfo::TCC_Free == 1081 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1082 } 1083 1084 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1085 // Propagate constants through ptrtoint. 1086 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1087 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1088 })) 1089 return true; 1090 1091 // Track base/offset pairs when round-tripped through a pointer without 1092 // modifications provided the integer is not too large. 1093 Value *Op = I.getOperand(0); 1094 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1095 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1096 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1097 if (BaseAndOffset.first) 1098 ConstantOffsetPtrs[&I] = BaseAndOffset; 1099 } 1100 1101 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1102 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1103 SROAArgValues[&I] = SROAArg; 1104 1105 return TargetTransformInfo::TCC_Free == 1106 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1107 } 1108 1109 bool CallAnalyzer::visitCastInst(CastInst &I) { 1110 // Propagate constants through casts. 1111 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1112 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1113 })) 1114 return true; 1115 1116 // Disable SROA in the face of arbitrary casts we don't explicitly list 1117 // elsewhere. 1118 disableSROA(I.getOperand(0)); 1119 1120 // If this is a floating-point cast, and the target says this operation 1121 // is expensive, this may eventually become a library call. Treat the cost 1122 // as such. 1123 switch (I.getOpcode()) { 1124 case Instruction::FPTrunc: 1125 case Instruction::FPExt: 1126 case Instruction::UIToFP: 1127 case Instruction::SIToFP: 1128 case Instruction::FPToUI: 1129 case Instruction::FPToSI: 1130 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1131 onCallPenalty(); 1132 break; 1133 default: 1134 break; 1135 } 1136 1137 return TargetTransformInfo::TCC_Free == 1138 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1139 } 1140 1141 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 1142 Value *Operand = I.getOperand(0); 1143 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1144 return ConstantFoldInstOperands(&I, COps[0], DL); 1145 })) 1146 return true; 1147 1148 // Disable any SROA on the argument to arbitrary unary instructions. 1149 disableSROA(Operand); 1150 1151 return false; 1152 } 1153 1154 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1155 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1156 } 1157 1158 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1159 // Does the *call site* have the NonNull attribute set on an argument? We 1160 // use the attribute on the call site to memoize any analysis done in the 1161 // caller. This will also trip if the callee function has a non-null 1162 // parameter attribute, but that's a less interesting case because hopefully 1163 // the callee would already have been simplified based on that. 1164 if (Argument *A = dyn_cast<Argument>(V)) 1165 if (paramHasAttr(A, Attribute::NonNull)) 1166 return true; 1167 1168 // Is this an alloca in the caller? This is distinct from the attribute case 1169 // above because attributes aren't updated within the inliner itself and we 1170 // always want to catch the alloca derived case. 1171 if (isAllocaDerivedArg(V)) 1172 // We can actually predict the result of comparisons between an 1173 // alloca-derived value and null. Note that this fires regardless of 1174 // SROA firing. 1175 return true; 1176 1177 return false; 1178 } 1179 1180 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1181 // If the normal destination of the invoke or the parent block of the call 1182 // site is unreachable-terminated, there is little point in inlining this 1183 // unless there is literally zero cost. 1184 // FIXME: Note that it is possible that an unreachable-terminated block has a 1185 // hot entry. For example, in below scenario inlining hot_call_X() may be 1186 // beneficial : 1187 // main() { 1188 // hot_call_1(); 1189 // ... 1190 // hot_call_N() 1191 // exit(0); 1192 // } 1193 // For now, we are not handling this corner case here as it is rare in real 1194 // code. In future, we should elaborate this based on BPI and BFI in more 1195 // general threshold adjusting heuristics in updateThreshold(). 1196 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1197 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1198 return false; 1199 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1200 return false; 1201 1202 return true; 1203 } 1204 1205 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1206 BlockFrequencyInfo *CallerBFI) { 1207 // If global profile summary is available, then callsite's coldness is 1208 // determined based on that. 1209 if (PSI && PSI->hasProfileSummary()) 1210 return PSI->isColdCallSite(Call, CallerBFI); 1211 1212 // Otherwise we need BFI to be available. 1213 if (!CallerBFI) 1214 return false; 1215 1216 // Determine if the callsite is cold relative to caller's entry. We could 1217 // potentially cache the computation of scaled entry frequency, but the added 1218 // complexity is not worth it unless this scaling shows up high in the 1219 // profiles. 1220 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1221 auto CallSiteBB = Call.getParent(); 1222 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1223 auto CallerEntryFreq = 1224 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1225 return CallSiteFreq < CallerEntryFreq * ColdProb; 1226 } 1227 1228 Optional<int> 1229 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1230 BlockFrequencyInfo *CallerBFI) { 1231 1232 // If global profile summary is available, then callsite's hotness is 1233 // determined based on that. 1234 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1235 return Params.HotCallSiteThreshold; 1236 1237 // Otherwise we need BFI to be available and to have a locally hot callsite 1238 // threshold. 1239 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1240 return None; 1241 1242 // Determine if the callsite is hot relative to caller's entry. We could 1243 // potentially cache the computation of scaled entry frequency, but the added 1244 // complexity is not worth it unless this scaling shows up high in the 1245 // profiles. 1246 auto CallSiteBB = Call.getParent(); 1247 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1248 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1249 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1250 return Params.LocallyHotCallSiteThreshold; 1251 1252 // Otherwise treat it normally. 1253 return None; 1254 } 1255 1256 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1257 // If no size growth is allowed for this inlining, set Threshold to 0. 1258 if (!allowSizeGrowth(Call)) { 1259 Threshold = 0; 1260 return; 1261 } 1262 1263 Function *Caller = Call.getCaller(); 1264 1265 // return min(A, B) if B is valid. 1266 auto MinIfValid = [](int A, Optional<int> B) { 1267 return B ? std::min(A, B.getValue()) : A; 1268 }; 1269 1270 // return max(A, B) if B is valid. 1271 auto MaxIfValid = [](int A, Optional<int> B) { 1272 return B ? std::max(A, B.getValue()) : A; 1273 }; 1274 1275 // Various bonus percentages. These are multiplied by Threshold to get the 1276 // bonus values. 1277 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1278 // basic block at the given callsite context. This is speculatively applied 1279 // and withdrawn if more than one basic block is seen. 1280 // 1281 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1282 // of the last call to a static function as inlining such functions is 1283 // guaranteed to reduce code size. 1284 // 1285 // These bonus percentages may be set to 0 based on properties of the caller 1286 // and the callsite. 1287 int SingleBBBonusPercent = 50; 1288 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1289 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1290 1291 // Lambda to set all the above bonus and bonus percentages to 0. 1292 auto DisallowAllBonuses = [&]() { 1293 SingleBBBonusPercent = 0; 1294 VectorBonusPercent = 0; 1295 LastCallToStaticBonus = 0; 1296 }; 1297 1298 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1299 // and reduce the threshold if the caller has the necessary attribute. 1300 if (Caller->hasMinSize()) { 1301 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1302 // For minsize, we want to disable the single BB bonus and the vector 1303 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1304 // a static function will, at the minimum, eliminate the parameter setup and 1305 // call/return instructions. 1306 SingleBBBonusPercent = 0; 1307 VectorBonusPercent = 0; 1308 } else if (Caller->hasOptSize()) 1309 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1310 1311 // Adjust the threshold based on inlinehint attribute and profile based 1312 // hotness information if the caller does not have MinSize attribute. 1313 if (!Caller->hasMinSize()) { 1314 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1315 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1316 1317 // FIXME: After switching to the new passmanager, simplify the logic below 1318 // by checking only the callsite hotness/coldness as we will reliably 1319 // have local profile information. 1320 // 1321 // Callsite hotness and coldness can be determined if sample profile is 1322 // used (which adds hotness metadata to calls) or if caller's 1323 // BlockFrequencyInfo is available. 1324 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1325 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1326 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1327 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1328 // FIXME: This should update the threshold only if it exceeds the 1329 // current threshold, but AutoFDO + ThinLTO currently relies on this 1330 // behavior to prevent inlining of hot callsites during ThinLTO 1331 // compile phase. 1332 Threshold = HotCallSiteThreshold.getValue(); 1333 } else if (isColdCallSite(Call, CallerBFI)) { 1334 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1335 // Do not apply bonuses for a cold callsite including the 1336 // LastCallToStatic bonus. While this bonus might result in code size 1337 // reduction, it can cause the size of a non-cold caller to increase 1338 // preventing it from being inlined. 1339 DisallowAllBonuses(); 1340 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1341 } else if (PSI) { 1342 // Use callee's global profile information only if we have no way of 1343 // determining this via callsite information. 1344 if (PSI->isFunctionEntryHot(&Callee)) { 1345 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1346 // If callsite hotness can not be determined, we may still know 1347 // that the callee is hot and treat it as a weaker hint for threshold 1348 // increase. 1349 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1350 } else if (PSI->isFunctionEntryCold(&Callee)) { 1351 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1352 // Do not apply bonuses for a cold callee including the 1353 // LastCallToStatic bonus. While this bonus might result in code size 1354 // reduction, it can cause the size of a non-cold caller to increase 1355 // preventing it from being inlined. 1356 DisallowAllBonuses(); 1357 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1358 } 1359 } 1360 } 1361 1362 // Finally, take the target-specific inlining threshold multiplier into 1363 // account. 1364 Threshold *= TTI.getInliningThresholdMultiplier(); 1365 1366 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1367 VectorBonus = Threshold * VectorBonusPercent / 100; 1368 1369 bool OnlyOneCallAndLocalLinkage = 1370 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1371 // If there is only one call of the function, and it has internal linkage, 1372 // the cost of inlining it drops dramatically. It may seem odd to update 1373 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1374 if (OnlyOneCallAndLocalLinkage) 1375 Cost -= LastCallToStaticBonus; 1376 } 1377 1378 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1379 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1380 // First try to handle simplified comparisons. 1381 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1382 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1383 })) 1384 return true; 1385 1386 if (I.getOpcode() == Instruction::FCmp) 1387 return false; 1388 1389 // Otherwise look for a comparison between constant offset pointers with 1390 // a common base. 1391 Value *LHSBase, *RHSBase; 1392 APInt LHSOffset, RHSOffset; 1393 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1394 if (LHSBase) { 1395 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1396 if (RHSBase && LHSBase == RHSBase) { 1397 // We have common bases, fold the icmp to a constant based on the 1398 // offsets. 1399 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1400 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1401 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1402 SimplifiedValues[&I] = C; 1403 ++NumConstantPtrCmps; 1404 return true; 1405 } 1406 } 1407 } 1408 1409 // If the comparison is an equality comparison with null, we can simplify it 1410 // if we know the value (argument) can't be null 1411 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1412 isKnownNonNullInCallee(I.getOperand(0))) { 1413 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1414 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1415 : ConstantInt::getFalse(I.getType()); 1416 return true; 1417 } 1418 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1419 } 1420 1421 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1422 // Try to handle a special case: we can fold computing the difference of two 1423 // constant-related pointers. 1424 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1425 Value *LHSBase, *RHSBase; 1426 APInt LHSOffset, RHSOffset; 1427 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1428 if (LHSBase) { 1429 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1430 if (RHSBase && LHSBase == RHSBase) { 1431 // We have common bases, fold the subtract to a constant based on the 1432 // offsets. 1433 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1434 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1435 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1436 SimplifiedValues[&I] = C; 1437 ++NumConstantPtrDiffs; 1438 return true; 1439 } 1440 } 1441 } 1442 1443 // Otherwise, fall back to the generic logic for simplifying and handling 1444 // instructions. 1445 return Base::visitSub(I); 1446 } 1447 1448 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1449 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1450 Constant *CLHS = dyn_cast<Constant>(LHS); 1451 if (!CLHS) 1452 CLHS = SimplifiedValues.lookup(LHS); 1453 Constant *CRHS = dyn_cast<Constant>(RHS); 1454 if (!CRHS) 1455 CRHS = SimplifiedValues.lookup(RHS); 1456 1457 Value *SimpleV = nullptr; 1458 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1459 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1460 FI->getFastMathFlags(), DL); 1461 else 1462 SimpleV = 1463 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1464 1465 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1466 SimplifiedValues[&I] = C; 1467 1468 if (SimpleV) 1469 return true; 1470 1471 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1472 disableSROA(LHS); 1473 disableSROA(RHS); 1474 1475 // If the instruction is floating point, and the target says this operation 1476 // is expensive, this may eventually become a library call. Treat the cost 1477 // as such. Unless it's fneg which can be implemented with an xor. 1478 using namespace llvm::PatternMatch; 1479 if (I.getType()->isFloatingPointTy() && 1480 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1481 !match(&I, m_FNeg(m_Value()))) 1482 onCallPenalty(); 1483 1484 return false; 1485 } 1486 1487 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1488 Value *Op = I.getOperand(0); 1489 Constant *COp = dyn_cast<Constant>(Op); 1490 if (!COp) 1491 COp = SimplifiedValues.lookup(Op); 1492 1493 Value *SimpleV = SimplifyFNegInst( 1494 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1495 1496 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1497 SimplifiedValues[&I] = C; 1498 1499 if (SimpleV) 1500 return true; 1501 1502 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1503 disableSROA(Op); 1504 1505 return false; 1506 } 1507 1508 bool CallAnalyzer::visitLoad(LoadInst &I) { 1509 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1510 return true; 1511 1512 // If the data is already loaded from this address and hasn't been clobbered 1513 // by any stores or calls, this load is likely to be redundant and can be 1514 // eliminated. 1515 if (EnableLoadElimination && 1516 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1517 onLoadEliminationOpportunity(); 1518 return true; 1519 } 1520 1521 return false; 1522 } 1523 1524 bool CallAnalyzer::visitStore(StoreInst &I) { 1525 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1526 return true; 1527 1528 // The store can potentially clobber loads and prevent repeated loads from 1529 // being eliminated. 1530 // FIXME: 1531 // 1. We can probably keep an initial set of eliminatable loads substracted 1532 // from the cost even when we finally see a store. We just need to disable 1533 // *further* accumulation of elimination savings. 1534 // 2. We should probably at some point thread MemorySSA for the callee into 1535 // this and then use that to actually compute *really* precise savings. 1536 disableLoadElimination(); 1537 return false; 1538 } 1539 1540 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1541 // Constant folding for extract value is trivial. 1542 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1543 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1544 })) 1545 return true; 1546 1547 // SROA can look through these but give them a cost. 1548 return false; 1549 } 1550 1551 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1552 // Constant folding for insert value is trivial. 1553 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1554 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1555 /*InsertedValueOperand*/ COps[1], 1556 I.getIndices()); 1557 })) 1558 return true; 1559 1560 // SROA can look through these but give them a cost. 1561 return false; 1562 } 1563 1564 /// Try to simplify a call site. 1565 /// 1566 /// Takes a concrete function and callsite and tries to actually simplify it by 1567 /// analyzing the arguments and call itself with instsimplify. Returns true if 1568 /// it has simplified the callsite to some other entity (a constant), making it 1569 /// free. 1570 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1571 // FIXME: Using the instsimplify logic directly for this is inefficient 1572 // because we have to continually rebuild the argument list even when no 1573 // simplifications can be performed. Until that is fixed with remapping 1574 // inside of instsimplify, directly constant fold calls here. 1575 if (!canConstantFoldCallTo(&Call, F)) 1576 return false; 1577 1578 // Try to re-map the arguments to constants. 1579 SmallVector<Constant *, 4> ConstantArgs; 1580 ConstantArgs.reserve(Call.arg_size()); 1581 for (Value *I : Call.args()) { 1582 Constant *C = dyn_cast<Constant>(I); 1583 if (!C) 1584 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1585 if (!C) 1586 return false; // This argument doesn't map to a constant. 1587 1588 ConstantArgs.push_back(C); 1589 } 1590 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1591 SimplifiedValues[&Call] = C; 1592 return true; 1593 } 1594 1595 return false; 1596 } 1597 1598 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1599 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1600 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1601 // This aborts the entire analysis. 1602 ExposesReturnsTwice = true; 1603 return false; 1604 } 1605 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1606 ContainsNoDuplicateCall = true; 1607 1608 Value *Callee = Call.getCalledOperand(); 1609 Function *F = dyn_cast_or_null<Function>(Callee); 1610 bool IsIndirectCall = !F; 1611 if (IsIndirectCall) { 1612 // Check if this happens to be an indirect function call to a known function 1613 // in this inline context. If not, we've done all we can. 1614 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1615 if (!F) { 1616 onCallArgumentSetup(Call); 1617 1618 if (!Call.onlyReadsMemory()) 1619 disableLoadElimination(); 1620 return Base::visitCallBase(Call); 1621 } 1622 } 1623 1624 assert(F && "Expected a call to a known function"); 1625 1626 // When we have a concrete function, first try to simplify it directly. 1627 if (simplifyCallSite(F, Call)) 1628 return true; 1629 1630 // Next check if it is an intrinsic we know about. 1631 // FIXME: Lift this into part of the InstVisitor. 1632 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1633 switch (II->getIntrinsicID()) { 1634 default: 1635 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1636 disableLoadElimination(); 1637 return Base::visitCallBase(Call); 1638 1639 case Intrinsic::load_relative: 1640 onLoadRelativeIntrinsic(); 1641 return false; 1642 1643 case Intrinsic::memset: 1644 case Intrinsic::memcpy: 1645 case Intrinsic::memmove: 1646 disableLoadElimination(); 1647 // SROA can usually chew through these intrinsics, but they aren't free. 1648 return false; 1649 case Intrinsic::icall_branch_funnel: 1650 case Intrinsic::localescape: 1651 HasUninlineableIntrinsic = true; 1652 return false; 1653 case Intrinsic::vastart: 1654 InitsVargArgs = true; 1655 return false; 1656 } 1657 } 1658 1659 if (F == Call.getFunction()) { 1660 // This flag will fully abort the analysis, so don't bother with anything 1661 // else. 1662 IsRecursiveCall = true; 1663 return false; 1664 } 1665 1666 if (TTI.isLoweredToCall(F)) { 1667 onLoweredCall(F, Call, IsIndirectCall); 1668 } 1669 1670 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1671 disableLoadElimination(); 1672 return Base::visitCallBase(Call); 1673 } 1674 1675 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1676 // At least one return instruction will be free after inlining. 1677 bool Free = !HasReturn; 1678 HasReturn = true; 1679 return Free; 1680 } 1681 1682 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1683 // We model unconditional branches as essentially free -- they really 1684 // shouldn't exist at all, but handling them makes the behavior of the 1685 // inliner more regular and predictable. Interestingly, conditional branches 1686 // which will fold away are also free. 1687 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1688 dyn_cast_or_null<ConstantInt>( 1689 SimplifiedValues.lookup(BI.getCondition())); 1690 } 1691 1692 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1693 bool CheckSROA = SI.getType()->isPointerTy(); 1694 Value *TrueVal = SI.getTrueValue(); 1695 Value *FalseVal = SI.getFalseValue(); 1696 1697 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1698 if (!TrueC) 1699 TrueC = SimplifiedValues.lookup(TrueVal); 1700 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1701 if (!FalseC) 1702 FalseC = SimplifiedValues.lookup(FalseVal); 1703 Constant *CondC = 1704 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1705 1706 if (!CondC) { 1707 // Select C, X, X => X 1708 if (TrueC == FalseC && TrueC) { 1709 SimplifiedValues[&SI] = TrueC; 1710 return true; 1711 } 1712 1713 if (!CheckSROA) 1714 return Base::visitSelectInst(SI); 1715 1716 std::pair<Value *, APInt> TrueBaseAndOffset = 1717 ConstantOffsetPtrs.lookup(TrueVal); 1718 std::pair<Value *, APInt> FalseBaseAndOffset = 1719 ConstantOffsetPtrs.lookup(FalseVal); 1720 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1721 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1722 1723 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1724 SROAArgValues[&SI] = SROAArg; 1725 return true; 1726 } 1727 1728 return Base::visitSelectInst(SI); 1729 } 1730 1731 // Select condition is a constant. 1732 Value *SelectedV = CondC->isAllOnesValue() 1733 ? TrueVal 1734 : (CondC->isNullValue()) ? FalseVal : nullptr; 1735 if (!SelectedV) { 1736 // Condition is a vector constant that is not all 1s or all 0s. If all 1737 // operands are constants, ConstantExpr::getSelect() can handle the cases 1738 // such as select vectors. 1739 if (TrueC && FalseC) { 1740 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1741 SimplifiedValues[&SI] = C; 1742 return true; 1743 } 1744 } 1745 return Base::visitSelectInst(SI); 1746 } 1747 1748 // Condition is either all 1s or all 0s. SI can be simplified. 1749 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1750 SimplifiedValues[&SI] = SelectedC; 1751 return true; 1752 } 1753 1754 if (!CheckSROA) 1755 return true; 1756 1757 std::pair<Value *, APInt> BaseAndOffset = 1758 ConstantOffsetPtrs.lookup(SelectedV); 1759 if (BaseAndOffset.first) { 1760 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1761 1762 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1763 SROAArgValues[&SI] = SROAArg; 1764 } 1765 1766 return true; 1767 } 1768 1769 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1770 // We model unconditional switches as free, see the comments on handling 1771 // branches. 1772 if (isa<ConstantInt>(SI.getCondition())) 1773 return true; 1774 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1775 if (isa<ConstantInt>(V)) 1776 return true; 1777 1778 // Assume the most general case where the switch is lowered into 1779 // either a jump table, bit test, or a balanced binary tree consisting of 1780 // case clusters without merging adjacent clusters with the same 1781 // destination. We do not consider the switches that are lowered with a mix 1782 // of jump table/bit test/binary search tree. The cost of the switch is 1783 // proportional to the size of the tree or the size of jump table range. 1784 // 1785 // NB: We convert large switches which are just used to initialize large phi 1786 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 1787 // inlining those. It will prevent inlining in cases where the optimization 1788 // does not (yet) fire. 1789 1790 unsigned JumpTableSize = 0; 1791 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 1792 unsigned NumCaseCluster = 1793 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 1794 1795 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 1796 return false; 1797 } 1798 1799 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 1800 // We never want to inline functions that contain an indirectbr. This is 1801 // incorrect because all the blockaddress's (in static global initializers 1802 // for example) would be referring to the original function, and this 1803 // indirect jump would jump from the inlined copy of the function into the 1804 // original function which is extremely undefined behavior. 1805 // FIXME: This logic isn't really right; we can safely inline functions with 1806 // indirectbr's as long as no other function or global references the 1807 // blockaddress of a block within the current function. 1808 HasIndirectBr = true; 1809 return false; 1810 } 1811 1812 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 1813 // FIXME: It's not clear that a single instruction is an accurate model for 1814 // the inline cost of a resume instruction. 1815 return false; 1816 } 1817 1818 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 1819 // FIXME: It's not clear that a single instruction is an accurate model for 1820 // the inline cost of a cleanupret instruction. 1821 return false; 1822 } 1823 1824 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 1825 // FIXME: It's not clear that a single instruction is an accurate model for 1826 // the inline cost of a catchret instruction. 1827 return false; 1828 } 1829 1830 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 1831 // FIXME: It might be reasonably to discount the cost of instructions leading 1832 // to unreachable as they have the lowest possible impact on both runtime and 1833 // code size. 1834 return true; // No actual code is needed for unreachable. 1835 } 1836 1837 bool CallAnalyzer::visitInstruction(Instruction &I) { 1838 // Some instructions are free. All of the free intrinsics can also be 1839 // handled by SROA, etc. 1840 if (TargetTransformInfo::TCC_Free == 1841 TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency)) 1842 return true; 1843 1844 // We found something we don't understand or can't handle. Mark any SROA-able 1845 // values in the operand list as no longer viable. 1846 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 1847 disableSROA(*OI); 1848 1849 return false; 1850 } 1851 1852 /// Analyze a basic block for its contribution to the inline cost. 1853 /// 1854 /// This method walks the analyzer over every instruction in the given basic 1855 /// block and accounts for their cost during inlining at this callsite. It 1856 /// aborts early if the threshold has been exceeded or an impossible to inline 1857 /// construct has been detected. It returns false if inlining is no longer 1858 /// viable, and true if inlining remains viable. 1859 InlineResult 1860 CallAnalyzer::analyzeBlock(BasicBlock *BB, 1861 SmallPtrSetImpl<const Value *> &EphValues) { 1862 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1863 // FIXME: Currently, the number of instructions in a function regardless of 1864 // our ability to simplify them during inline to constants or dead code, 1865 // are actually used by the vector bonus heuristic. As long as that's true, 1866 // we have to special case debug intrinsics here to prevent differences in 1867 // inlining due to debug symbols. Eventually, the number of unsimplified 1868 // instructions shouldn't factor into the cost computation, but until then, 1869 // hack around it here. 1870 if (isa<DbgInfoIntrinsic>(I)) 1871 continue; 1872 1873 // Skip ephemeral values. 1874 if (EphValues.count(&*I)) 1875 continue; 1876 1877 ++NumInstructions; 1878 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 1879 ++NumVectorInstructions; 1880 1881 // If the instruction simplified to a constant, there is no cost to this 1882 // instruction. Visit the instructions using our InstVisitor to account for 1883 // all of the per-instruction logic. The visit tree returns true if we 1884 // consumed the instruction in any way, and false if the instruction's base 1885 // cost should count against inlining. 1886 onInstructionAnalysisStart(&*I); 1887 1888 if (Base::visit(&*I)) 1889 ++NumInstructionsSimplified; 1890 else 1891 onMissedSimplification(); 1892 1893 onInstructionAnalysisFinish(&*I); 1894 using namespace ore; 1895 // If the visit this instruction detected an uninlinable pattern, abort. 1896 InlineResult IR = InlineResult::success(); 1897 if (IsRecursiveCall) 1898 IR = InlineResult::failure("recursive"); 1899 else if (ExposesReturnsTwice) 1900 IR = InlineResult::failure("exposes returns twice"); 1901 else if (HasDynamicAlloca) 1902 IR = InlineResult::failure("dynamic alloca"); 1903 else if (HasIndirectBr) 1904 IR = InlineResult::failure("indirect branch"); 1905 else if (HasUninlineableIntrinsic) 1906 IR = InlineResult::failure("uninlinable intrinsic"); 1907 else if (InitsVargArgs) 1908 IR = InlineResult::failure("varargs"); 1909 if (!IR.isSuccess()) { 1910 if (ORE) 1911 ORE->emit([&]() { 1912 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1913 &CandidateCall) 1914 << NV("Callee", &F) << " has uninlinable pattern (" 1915 << NV("InlineResult", IR.getFailureReason()) 1916 << ") and cost is not fully computed"; 1917 }); 1918 return IR; 1919 } 1920 1921 // If the caller is a recursive function then we don't want to inline 1922 // functions which allocate a lot of stack space because it would increase 1923 // the caller stack usage dramatically. 1924 if (IsCallerRecursive && 1925 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 1926 auto IR = 1927 InlineResult::failure("recursive and allocates too much stack space"); 1928 if (ORE) 1929 ORE->emit([&]() { 1930 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 1931 &CandidateCall) 1932 << NV("Callee", &F) << " is " 1933 << NV("InlineResult", IR.getFailureReason()) 1934 << ". Cost is not fully computed"; 1935 }); 1936 return IR; 1937 } 1938 1939 if (shouldStop()) 1940 return InlineResult::failure( 1941 "Call site analysis is not favorable to inlining."); 1942 } 1943 1944 return InlineResult::success(); 1945 } 1946 1947 /// Compute the base pointer and cumulative constant offsets for V. 1948 /// 1949 /// This strips all constant offsets off of V, leaving it the base pointer, and 1950 /// accumulates the total constant offset applied in the returned constant. It 1951 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 1952 /// no constant offsets applied. 1953 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 1954 if (!V->getType()->isPointerTy()) 1955 return nullptr; 1956 1957 unsigned AS = V->getType()->getPointerAddressSpace(); 1958 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 1959 APInt Offset = APInt::getNullValue(IntPtrWidth); 1960 1961 // Even though we don't look through PHI nodes, we could be called on an 1962 // instruction in an unreachable block, which may be on a cycle. 1963 SmallPtrSet<Value *, 4> Visited; 1964 Visited.insert(V); 1965 do { 1966 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1967 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 1968 return nullptr; 1969 V = GEP->getPointerOperand(); 1970 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1971 V = cast<Operator>(V)->getOperand(0); 1972 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1973 if (GA->isInterposable()) 1974 break; 1975 V = GA->getAliasee(); 1976 } else { 1977 break; 1978 } 1979 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1980 } while (Visited.insert(V).second); 1981 1982 Type *IdxPtrTy = DL.getIndexType(V->getType()); 1983 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 1984 } 1985 1986 /// Find dead blocks due to deleted CFG edges during inlining. 1987 /// 1988 /// If we know the successor of the current block, \p CurrBB, has to be \p 1989 /// NextBB, the other successors of \p CurrBB are dead if these successors have 1990 /// no live incoming CFG edges. If one block is found to be dead, we can 1991 /// continue growing the dead block list by checking the successors of the dead 1992 /// blocks to see if all their incoming edges are dead or not. 1993 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 1994 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 1995 // A CFG edge is dead if the predecessor is dead or the predecessor has a 1996 // known successor which is not the one under exam. 1997 return (DeadBlocks.count(Pred) || 1998 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 1999 }; 2000 2001 auto IsNewlyDead = [&](BasicBlock *BB) { 2002 // If all the edges to a block are dead, the block is also dead. 2003 return (!DeadBlocks.count(BB) && 2004 llvm::all_of(predecessors(BB), 2005 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2006 }; 2007 2008 for (BasicBlock *Succ : successors(CurrBB)) { 2009 if (Succ == NextBB || !IsNewlyDead(Succ)) 2010 continue; 2011 SmallVector<BasicBlock *, 4> NewDead; 2012 NewDead.push_back(Succ); 2013 while (!NewDead.empty()) { 2014 BasicBlock *Dead = NewDead.pop_back_val(); 2015 if (DeadBlocks.insert(Dead)) 2016 // Continue growing the dead block lists. 2017 for (BasicBlock *S : successors(Dead)) 2018 if (IsNewlyDead(S)) 2019 NewDead.push_back(S); 2020 } 2021 } 2022 } 2023 2024 /// Analyze a call site for potential inlining. 2025 /// 2026 /// Returns true if inlining this call is viable, and false if it is not 2027 /// viable. It computes the cost and adjusts the threshold based on numerous 2028 /// factors and heuristics. If this method returns false but the computed cost 2029 /// is below the computed threshold, then inlining was forcibly disabled by 2030 /// some artifact of the routine. 2031 InlineResult CallAnalyzer::analyze() { 2032 ++NumCallsAnalyzed; 2033 2034 auto Result = onAnalysisStart(); 2035 if (!Result.isSuccess()) 2036 return Result; 2037 2038 if (F.empty()) 2039 return InlineResult::success(); 2040 2041 Function *Caller = CandidateCall.getFunction(); 2042 // Check if the caller function is recursive itself. 2043 for (User *U : Caller->users()) { 2044 CallBase *Call = dyn_cast<CallBase>(U); 2045 if (Call && Call->getFunction() == Caller) { 2046 IsCallerRecursive = true; 2047 break; 2048 } 2049 } 2050 2051 // Populate our simplified values by mapping from function arguments to call 2052 // arguments with known important simplifications. 2053 auto CAI = CandidateCall.arg_begin(); 2054 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 2055 FAI != FAE; ++FAI, ++CAI) { 2056 assert(CAI != CandidateCall.arg_end()); 2057 if (Constant *C = dyn_cast<Constant>(CAI)) 2058 SimplifiedValues[&*FAI] = C; 2059 2060 Value *PtrArg = *CAI; 2061 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2062 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); 2063 2064 // We can SROA any pointer arguments derived from alloca instructions. 2065 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2066 SROAArgValues[&*FAI] = SROAArg; 2067 onInitializeSROAArg(SROAArg); 2068 EnabledSROAAllocas.insert(SROAArg); 2069 } 2070 } 2071 } 2072 NumConstantArgs = SimplifiedValues.size(); 2073 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2074 NumAllocaArgs = SROAArgValues.size(); 2075 2076 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2077 // the ephemeral values multiple times (and they're completely determined by 2078 // the callee, so this is purely duplicate work). 2079 SmallPtrSet<const Value *, 32> EphValues; 2080 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2081 2082 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2083 // adding basic blocks of the callee which can be proven to be dead for this 2084 // particular call site in order to get more accurate cost estimates. This 2085 // requires a somewhat heavyweight iteration pattern: we need to walk the 2086 // basic blocks in a breadth-first order as we insert live successors. To 2087 // accomplish this, prioritizing for small iterations because we exit after 2088 // crossing our threshold, we use a small-size optimized SetVector. 2089 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2090 SmallPtrSet<BasicBlock *, 16>> 2091 BBSetVector; 2092 BBSetVector BBWorklist; 2093 BBWorklist.insert(&F.getEntryBlock()); 2094 2095 // Note that we *must not* cache the size, this loop grows the worklist. 2096 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2097 if (shouldStop()) 2098 break; 2099 2100 BasicBlock *BB = BBWorklist[Idx]; 2101 if (BB->empty()) 2102 continue; 2103 2104 // Disallow inlining a blockaddress with uses other than strictly callbr. 2105 // A blockaddress only has defined behavior for an indirect branch in the 2106 // same function, and we do not currently support inlining indirect 2107 // branches. But, the inliner may not see an indirect branch that ends up 2108 // being dead code at a particular call site. If the blockaddress escapes 2109 // the function, e.g., via a global variable, inlining may lead to an 2110 // invalid cross-function reference. 2111 // FIXME: pr/39560: continue relaxing this overt restriction. 2112 if (BB->hasAddressTaken()) 2113 for (User *U : BlockAddress::get(&*BB)->users()) 2114 if (!isa<CallBrInst>(*U)) 2115 return InlineResult::failure("blockaddress used outside of callbr"); 2116 2117 // Analyze the cost of this block. If we blow through the threshold, this 2118 // returns false, and we can bail on out. 2119 InlineResult IR = analyzeBlock(BB, EphValues); 2120 if (!IR.isSuccess()) 2121 return IR; 2122 2123 Instruction *TI = BB->getTerminator(); 2124 2125 // Add in the live successors by first checking whether we have terminator 2126 // that may be simplified based on the values simplified by this call. 2127 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2128 if (BI->isConditional()) { 2129 Value *Cond = BI->getCondition(); 2130 if (ConstantInt *SimpleCond = 2131 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2132 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2133 BBWorklist.insert(NextBB); 2134 KnownSuccessors[BB] = NextBB; 2135 findDeadBlocks(BB, NextBB); 2136 continue; 2137 } 2138 } 2139 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2140 Value *Cond = SI->getCondition(); 2141 if (ConstantInt *SimpleCond = 2142 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2143 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2144 BBWorklist.insert(NextBB); 2145 KnownSuccessors[BB] = NextBB; 2146 findDeadBlocks(BB, NextBB); 2147 continue; 2148 } 2149 } 2150 2151 // If we're unable to select a particular successor, just count all of 2152 // them. 2153 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2154 ++TIdx) 2155 BBWorklist.insert(TI->getSuccessor(TIdx)); 2156 2157 onBlockAnalyzed(BB); 2158 } 2159 2160 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2161 &F == CandidateCall.getCalledFunction(); 2162 // If this is a noduplicate call, we can still inline as long as 2163 // inlining this would cause the removal of the caller (so the instruction 2164 // is not actually duplicated, just moved). 2165 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2166 return InlineResult::failure("noduplicate"); 2167 2168 return finalizeAnalysis(); 2169 } 2170 2171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2172 /// Dump stats about this call's analysis. 2173 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2174 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2175 if (PrintInstructionComments) 2176 F.print(dbgs(), &Writer); 2177 DEBUG_PRINT_STAT(NumConstantArgs); 2178 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2179 DEBUG_PRINT_STAT(NumAllocaArgs); 2180 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2181 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2182 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2183 DEBUG_PRINT_STAT(NumInstructions); 2184 DEBUG_PRINT_STAT(SROACostSavings); 2185 DEBUG_PRINT_STAT(SROACostSavingsLost); 2186 DEBUG_PRINT_STAT(LoadEliminationCost); 2187 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2188 DEBUG_PRINT_STAT(Cost); 2189 DEBUG_PRINT_STAT(Threshold); 2190 #undef DEBUG_PRINT_STAT 2191 } 2192 #endif 2193 2194 /// Test that there are no attribute conflicts between Caller and Callee 2195 /// that prevent inlining. 2196 static bool functionsHaveCompatibleAttributes( 2197 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2198 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2199 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2200 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2201 // object, and always returns the same object (which is overwritten on each 2202 // GetTLI call). Therefore we copy the first result. 2203 auto CalleeTLI = GetTLI(*Callee); 2204 return TTI.areInlineCompatible(Caller, Callee) && 2205 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2206 InlineCallerSupersetNoBuiltin) && 2207 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2208 } 2209 2210 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2211 int Cost = 0; 2212 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2213 if (Call.isByValArgument(I)) { 2214 // We approximate the number of loads and stores needed by dividing the 2215 // size of the byval type by the target's pointer size. 2216 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2217 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); 2218 unsigned AS = PTy->getAddressSpace(); 2219 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2220 // Ceiling division. 2221 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2222 2223 // If it generates more than 8 stores it is likely to be expanded as an 2224 // inline memcpy so we take that as an upper bound. Otherwise we assume 2225 // one load and one store per word copied. 2226 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2227 // here instead of a magic number of 8, but it's not available via 2228 // DataLayout. 2229 NumStores = std::min(NumStores, 8U); 2230 2231 Cost += 2 * NumStores * InlineConstants::InstrCost; 2232 } else { 2233 // For non-byval arguments subtract off one instruction per call 2234 // argument. 2235 Cost += InlineConstants::InstrCost; 2236 } 2237 } 2238 // The call instruction also disappears after inlining. 2239 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2240 return Cost; 2241 } 2242 2243 InlineCost llvm::getInlineCost( 2244 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2245 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2246 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2247 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2248 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2249 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2250 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2251 } 2252 2253 Optional<int> llvm::getInliningCostEstimate( 2254 CallBase &Call, TargetTransformInfo &CalleeTTI, 2255 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2256 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2257 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2258 const InlineParams Params = {/* DefaultThreshold*/ 0, 2259 /*HintThreshold*/ {}, 2260 /*ColdThreshold*/ {}, 2261 /*OptSizeThreshold*/ {}, 2262 /*OptMinSizeThreshold*/ {}, 2263 /*HotCallSiteThreshold*/ {}, 2264 /*LocallyHotCallSiteThreshold*/ {}, 2265 /*ColdCallSiteThreshold*/ {}, 2266 /*ComputeFullInlineCost*/ true, 2267 /*EnableDeferral*/ true}; 2268 2269 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2270 GetAssumptionCache, GetBFI, PSI, ORE, true, 2271 /*IgnoreThreshold*/ true); 2272 auto R = CA.analyze(); 2273 if (!R.isSuccess()) 2274 return None; 2275 return CA.getCost(); 2276 } 2277 2278 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2279 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2280 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2281 2282 // Cannot inline indirect calls. 2283 if (!Callee) 2284 return InlineResult::failure("indirect call"); 2285 2286 // Never inline calls with byval arguments that does not have the alloca 2287 // address space. Since byval arguments can be replaced with a copy to an 2288 // alloca, the inlined code would need to be adjusted to handle that the 2289 // argument is in the alloca address space (so it is a little bit complicated 2290 // to solve). 2291 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2292 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2293 if (Call.isByValArgument(I)) { 2294 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2295 if (PTy->getAddressSpace() != AllocaAS) 2296 return InlineResult::failure("byval arguments without alloca" 2297 " address space"); 2298 } 2299 2300 // Calls to functions with always-inline attributes should be inlined 2301 // whenever possible. 2302 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2303 auto IsViable = isInlineViable(*Callee); 2304 if (IsViable.isSuccess()) 2305 return InlineResult::success(); 2306 return InlineResult::failure(IsViable.getFailureReason()); 2307 } 2308 2309 // Never inline functions with conflicting attributes (unless callee has 2310 // always-inline attribute). 2311 Function *Caller = Call.getCaller(); 2312 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2313 return InlineResult::failure("conflicting attributes"); 2314 2315 // Don't inline this call if the caller has the optnone attribute. 2316 if (Caller->hasOptNone()) 2317 return InlineResult::failure("optnone attribute"); 2318 2319 // Don't inline a function that treats null pointer as valid into a caller 2320 // that does not have this attribute. 2321 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2322 return InlineResult::failure("nullptr definitions incompatible"); 2323 2324 // Don't inline functions which can be interposed at link-time. 2325 if (Callee->isInterposable()) 2326 return InlineResult::failure("interposable"); 2327 2328 // Don't inline functions marked noinline. 2329 if (Callee->hasFnAttribute(Attribute::NoInline)) 2330 return InlineResult::failure("noinline function attribute"); 2331 2332 // Don't inline call sites marked noinline. 2333 if (Call.isNoInline()) 2334 return InlineResult::failure("noinline call site attribute"); 2335 2336 return None; 2337 } 2338 2339 InlineCost llvm::getInlineCost( 2340 CallBase &Call, Function *Callee, const InlineParams &Params, 2341 TargetTransformInfo &CalleeTTI, 2342 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2343 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2344 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2345 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2346 2347 auto UserDecision = 2348 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2349 2350 if (UserDecision.hasValue()) { 2351 if (UserDecision->isSuccess()) 2352 return llvm::InlineCost::getAlways("always inline attribute"); 2353 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2354 } 2355 2356 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2357 << "... (caller:" << Call.getCaller()->getName() 2358 << ")\n"); 2359 2360 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2361 GetAssumptionCache, GetBFI, PSI, ORE); 2362 InlineResult ShouldInline = CA.analyze(); 2363 2364 LLVM_DEBUG(CA.dump()); 2365 2366 // Check if there was a reason to force inlining or no inlining. 2367 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2368 return InlineCost::getNever(ShouldInline.getFailureReason()); 2369 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2370 return InlineCost::getAlways("empty function"); 2371 2372 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2373 } 2374 2375 InlineResult llvm::isInlineViable(Function &F) { 2376 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2377 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2378 // Disallow inlining of functions which contain indirect branches. 2379 if (isa<IndirectBrInst>(BI->getTerminator())) 2380 return InlineResult::failure("contains indirect branches"); 2381 2382 // Disallow inlining of blockaddresses which are used by non-callbr 2383 // instructions. 2384 if (BI->hasAddressTaken()) 2385 for (User *U : BlockAddress::get(&*BI)->users()) 2386 if (!isa<CallBrInst>(*U)) 2387 return InlineResult::failure("blockaddress used outside of callbr"); 2388 2389 for (auto &II : *BI) { 2390 CallBase *Call = dyn_cast<CallBase>(&II); 2391 if (!Call) 2392 continue; 2393 2394 // Disallow recursive calls. 2395 if (&F == Call->getCalledFunction()) 2396 return InlineResult::failure("recursive call"); 2397 2398 // Disallow calls which expose returns-twice to a function not previously 2399 // attributed as such. 2400 if (!ReturnsTwice && isa<CallInst>(Call) && 2401 cast<CallInst>(Call)->canReturnTwice()) 2402 return InlineResult::failure("exposes returns-twice attribute"); 2403 2404 if (Call->getCalledFunction()) 2405 switch (Call->getCalledFunction()->getIntrinsicID()) { 2406 default: 2407 break; 2408 case llvm::Intrinsic::icall_branch_funnel: 2409 // Disallow inlining of @llvm.icall.branch.funnel because current 2410 // backend can't separate call targets from call arguments. 2411 return InlineResult::failure( 2412 "disallowed inlining of @llvm.icall.branch.funnel"); 2413 case llvm::Intrinsic::localescape: 2414 // Disallow inlining functions that call @llvm.localescape. Doing this 2415 // correctly would require major changes to the inliner. 2416 return InlineResult::failure( 2417 "disallowed inlining of @llvm.localescape"); 2418 case llvm::Intrinsic::vastart: 2419 // Disallow inlining of functions that initialize VarArgs with 2420 // va_start. 2421 return InlineResult::failure( 2422 "contains VarArgs initialized with va_start"); 2423 } 2424 } 2425 } 2426 2427 return InlineResult::success(); 2428 } 2429 2430 // APIs to create InlineParams based on command line flags and/or other 2431 // parameters. 2432 2433 InlineParams llvm::getInlineParams(int Threshold) { 2434 InlineParams Params; 2435 2436 // This field is the threshold to use for a callee by default. This is 2437 // derived from one or more of: 2438 // * optimization or size-optimization levels, 2439 // * a value passed to createFunctionInliningPass function, or 2440 // * the -inline-threshold flag. 2441 // If the -inline-threshold flag is explicitly specified, that is used 2442 // irrespective of anything else. 2443 if (InlineThreshold.getNumOccurrences() > 0) 2444 Params.DefaultThreshold = InlineThreshold; 2445 else 2446 Params.DefaultThreshold = Threshold; 2447 2448 // Set the HintThreshold knob from the -inlinehint-threshold. 2449 Params.HintThreshold = HintThreshold; 2450 2451 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2452 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2453 2454 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2455 // populate LocallyHotCallSiteThreshold. Later, we populate 2456 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2457 // we know that optimization level is O3 (in the getInlineParams variant that 2458 // takes the opt and size levels). 2459 // FIXME: Remove this check (and make the assignment unconditional) after 2460 // addressing size regression issues at O2. 2461 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2462 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2463 2464 // Set the ColdCallSiteThreshold knob from the 2465 // -inline-cold-callsite-threshold. 2466 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2467 2468 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2469 // -inlinehint-threshold commandline option is not explicitly given. If that 2470 // option is present, then its value applies even for callees with size and 2471 // minsize attributes. 2472 // If the -inline-threshold is not specified, set the ColdThreshold from the 2473 // -inlinecold-threshold even if it is not explicitly passed. If 2474 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2475 // explicitly specified to set the ColdThreshold knob 2476 if (InlineThreshold.getNumOccurrences() == 0) { 2477 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2478 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2479 Params.ColdThreshold = ColdThreshold; 2480 } else if (ColdThreshold.getNumOccurrences() > 0) { 2481 Params.ColdThreshold = ColdThreshold; 2482 } 2483 return Params; 2484 } 2485 2486 InlineParams llvm::getInlineParams() { 2487 return getInlineParams(DefaultThreshold); 2488 } 2489 2490 // Compute the default threshold for inlining based on the opt level and the 2491 // size opt level. 2492 static int computeThresholdFromOptLevels(unsigned OptLevel, 2493 unsigned SizeOptLevel) { 2494 if (OptLevel > 2) 2495 return InlineConstants::OptAggressiveThreshold; 2496 if (SizeOptLevel == 1) // -Os 2497 return InlineConstants::OptSizeThreshold; 2498 if (SizeOptLevel == 2) // -Oz 2499 return InlineConstants::OptMinSizeThreshold; 2500 return DefaultThreshold; 2501 } 2502 2503 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2504 auto Params = 2505 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2506 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2507 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2508 // when it is specified explicitly. 2509 if (OptLevel > 2) 2510 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2511 return Params; 2512 } 2513