1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CodeMetrics.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 static cl::opt<bool> PrintInstructionComments( 58 "print-instruction-comments", cl::Hidden, cl::init(false), 59 cl::desc("Prints comments for instruction based on inline cost analysis")); 60 61 static cl::opt<int> InlineThreshold( 62 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 63 cl::desc("Control the amount of inlining to perform (default = 225)")); 64 65 static cl::opt<int> HintThreshold( 66 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 67 cl::desc("Threshold for inlining functions with inline hint")); 68 69 static cl::opt<int> 70 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 71 cl::init(45), cl::ZeroOrMore, 72 cl::desc("Threshold for inlining cold callsites")); 73 74 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 75 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 76 cl::desc("Enable the cost-benefit analysis for the inliner")); 77 78 static cl::opt<int> InlineSavingsMultiplier( 79 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 80 cl::desc("Multiplier to multiply cycle savings by during inlining")); 81 82 static cl::opt<int> 83 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 84 cl::ZeroOrMore, 85 cl::desc("The maximum size of a callee that get's " 86 "inlined without sufficient cycle savings")); 87 88 // We introduce this threshold to help performance of instrumentation based 89 // PGO before we actually hook up inliner with analysis passes such as BPI and 90 // BFI. 91 static cl::opt<int> ColdThreshold( 92 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 93 cl::desc("Threshold for inlining functions with cold attribute")); 94 95 static cl::opt<int> 96 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 97 cl::ZeroOrMore, 98 cl::desc("Threshold for hot callsites ")); 99 100 static cl::opt<int> LocallyHotCallSiteThreshold( 101 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 102 cl::desc("Threshold for locally hot callsites ")); 103 104 static cl::opt<int> ColdCallSiteRelFreq( 105 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 106 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a callsite to be cold in the absence of " 108 "profile information.")); 109 110 static cl::opt<int> HotCallSiteRelFreq( 111 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 112 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 113 "entry frequency, for a callsite to be hot in the absence of " 114 "profile information.")); 115 116 static cl::opt<bool> OptComputeFullInlineCost( 117 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 118 cl::desc("Compute the full inline cost of a call site even when the cost " 119 "exceeds the threshold.")); 120 121 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 122 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 123 cl::ZeroOrMore, 124 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 125 "attributes.")); 126 127 static cl::opt<bool> DisableGEPConstOperand( 128 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 129 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 130 131 namespace { 132 class InlineCostCallAnalyzer; 133 134 // This struct is used to store information about inline cost of a 135 // particular instruction 136 struct InstructionCostDetail { 137 int CostBefore = 0; 138 int CostAfter = 0; 139 int ThresholdBefore = 0; 140 int ThresholdAfter = 0; 141 142 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 143 144 int getCostDelta() const { return CostAfter - CostBefore; } 145 146 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 147 }; 148 149 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 150 private: 151 InlineCostCallAnalyzer *const ICCA; 152 153 public: 154 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 155 virtual void emitInstructionAnnot(const Instruction *I, 156 formatted_raw_ostream &OS) override; 157 }; 158 159 /// Carry out call site analysis, in order to evaluate inlinability. 160 /// NOTE: the type is currently used as implementation detail of functions such 161 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 162 /// expectation is that they come from the outer scope, from the wrapper 163 /// functions. If we want to support constructing CallAnalyzer objects where 164 /// lambdas are provided inline at construction, or where the object needs to 165 /// otherwise survive past the scope of the provided functions, we need to 166 /// revisit the argument types. 167 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 168 typedef InstVisitor<CallAnalyzer, bool> Base; 169 friend class InstVisitor<CallAnalyzer, bool>; 170 171 protected: 172 virtual ~CallAnalyzer() {} 173 /// The TargetTransformInfo available for this compilation. 174 const TargetTransformInfo &TTI; 175 176 /// Getter for the cache of @llvm.assume intrinsics. 177 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 178 179 /// Getter for BlockFrequencyInfo 180 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 181 182 /// Profile summary information. 183 ProfileSummaryInfo *PSI; 184 185 /// The called function. 186 Function &F; 187 188 // Cache the DataLayout since we use it a lot. 189 const DataLayout &DL; 190 191 /// The OptimizationRemarkEmitter available for this compilation. 192 OptimizationRemarkEmitter *ORE; 193 194 /// The candidate callsite being analyzed. Please do not use this to do 195 /// analysis in the caller function; we want the inline cost query to be 196 /// easily cacheable. Instead, use the cover function paramHasAttr. 197 CallBase &CandidateCall; 198 199 /// Extension points for handling callsite features. 200 // Called before a basic block was analyzed. 201 virtual void onBlockStart(const BasicBlock *BB) {} 202 203 /// Called after a basic block was analyzed. 204 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 205 206 /// Called before an instruction was analyzed 207 virtual void onInstructionAnalysisStart(const Instruction *I) {} 208 209 /// Called after an instruction was analyzed 210 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 211 212 /// Called at the end of the analysis of the callsite. Return the outcome of 213 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 214 /// the reason it can't. 215 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 216 /// Called when we're about to start processing a basic block, and every time 217 /// we are done processing an instruction. Return true if there is no point in 218 /// continuing the analysis (e.g. we've determined already the call site is 219 /// too expensive to inline) 220 virtual bool shouldStop() { return false; } 221 222 /// Called before the analysis of the callee body starts (with callsite 223 /// contexts propagated). It checks callsite-specific information. Return a 224 /// reason analysis can't continue if that's the case, or 'true' if it may 225 /// continue. 226 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 227 /// Called if the analysis engine decides SROA cannot be done for the given 228 /// alloca. 229 virtual void onDisableSROA(AllocaInst *Arg) {} 230 231 /// Called the analysis engine determines load elimination won't happen. 232 virtual void onDisableLoadElimination() {} 233 234 /// Called to account for a call. 235 virtual void onCallPenalty() {} 236 237 /// Called to account for the expectation the inlining would result in a load 238 /// elimination. 239 virtual void onLoadEliminationOpportunity() {} 240 241 /// Called to account for the cost of argument setup for the Call in the 242 /// callee's body (not the callsite currently under analysis). 243 virtual void onCallArgumentSetup(const CallBase &Call) {} 244 245 /// Called to account for a load relative intrinsic. 246 virtual void onLoadRelativeIntrinsic() {} 247 248 /// Called to account for a lowered call. 249 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 250 } 251 252 /// Account for a jump table of given size. Return false to stop further 253 /// processing the switch instruction 254 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 255 256 /// Account for a case cluster of given size. Return false to stop further 257 /// processing of the instruction. 258 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 259 260 /// Called at the end of processing a switch instruction, with the given 261 /// number of case clusters. 262 virtual void onFinalizeSwitch(unsigned JumpTableSize, 263 unsigned NumCaseCluster) {} 264 265 /// Called to account for any other instruction not specifically accounted 266 /// for. 267 virtual void onMissedSimplification() {} 268 269 /// Start accounting potential benefits due to SROA for the given alloca. 270 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 271 272 /// Account SROA savings for the AllocaInst value. 273 virtual void onAggregateSROAUse(AllocaInst *V) {} 274 275 bool handleSROA(Value *V, bool DoNotDisable) { 276 // Check for SROA candidates in comparisons. 277 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 278 if (DoNotDisable) { 279 onAggregateSROAUse(SROAArg); 280 return true; 281 } 282 disableSROAForArg(SROAArg); 283 } 284 return false; 285 } 286 287 bool IsCallerRecursive = false; 288 bool IsRecursiveCall = false; 289 bool ExposesReturnsTwice = false; 290 bool HasDynamicAlloca = false; 291 bool ContainsNoDuplicateCall = false; 292 bool HasReturn = false; 293 bool HasIndirectBr = false; 294 bool HasUninlineableIntrinsic = false; 295 bool InitsVargArgs = false; 296 297 /// Number of bytes allocated statically by the callee. 298 uint64_t AllocatedSize = 0; 299 unsigned NumInstructions = 0; 300 unsigned NumVectorInstructions = 0; 301 302 /// While we walk the potentially-inlined instructions, we build up and 303 /// maintain a mapping of simplified values specific to this callsite. The 304 /// idea is to propagate any special information we have about arguments to 305 /// this call through the inlinable section of the function, and account for 306 /// likely simplifications post-inlining. The most important aspect we track 307 /// is CFG altering simplifications -- when we prove a basic block dead, that 308 /// can cause dramatic shifts in the cost of inlining a function. 309 DenseMap<Value *, Constant *> SimplifiedValues; 310 311 /// Keep track of the values which map back (through function arguments) to 312 /// allocas on the caller stack which could be simplified through SROA. 313 DenseMap<Value *, AllocaInst *> SROAArgValues; 314 315 /// Keep track of Allocas for which we believe we may get SROA optimization. 316 DenseSet<AllocaInst *> EnabledSROAAllocas; 317 318 /// Keep track of values which map to a pointer base and constant offset. 319 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 320 321 /// Keep track of dead blocks due to the constant arguments. 322 SetVector<BasicBlock *> DeadBlocks; 323 324 /// The mapping of the blocks to their known unique successors due to the 325 /// constant arguments. 326 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 327 328 /// Model the elimination of repeated loads that is expected to happen 329 /// whenever we simplify away the stores that would otherwise cause them to be 330 /// loads. 331 bool EnableLoadElimination; 332 SmallPtrSet<Value *, 16> LoadAddrSet; 333 334 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 335 auto It = SROAArgValues.find(V); 336 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 337 return nullptr; 338 return It->second; 339 } 340 341 // Custom simplification helper routines. 342 bool isAllocaDerivedArg(Value *V); 343 void disableSROAForArg(AllocaInst *SROAArg); 344 void disableSROA(Value *V); 345 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 346 void disableLoadElimination(); 347 bool isGEPFree(GetElementPtrInst &GEP); 348 bool canFoldInboundsGEP(GetElementPtrInst &I); 349 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 350 bool simplifyCallSite(Function *F, CallBase &Call); 351 template <typename Callable> 352 bool simplifyInstruction(Instruction &I, Callable Evaluate); 353 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 354 355 /// Return true if the given argument to the function being considered for 356 /// inlining has the given attribute set either at the call site or the 357 /// function declaration. Primarily used to inspect call site specific 358 /// attributes since these can be more precise than the ones on the callee 359 /// itself. 360 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 361 362 /// Return true if the given value is known non null within the callee if 363 /// inlined through this particular callsite. 364 bool isKnownNonNullInCallee(Value *V); 365 366 /// Return true if size growth is allowed when inlining the callee at \p Call. 367 bool allowSizeGrowth(CallBase &Call); 368 369 // Custom analysis routines. 370 InlineResult analyzeBlock(BasicBlock *BB, 371 SmallPtrSetImpl<const Value *> &EphValues); 372 373 // Disable several entry points to the visitor so we don't accidentally use 374 // them by declaring but not defining them here. 375 void visit(Module *); 376 void visit(Module &); 377 void visit(Function *); 378 void visit(Function &); 379 void visit(BasicBlock *); 380 void visit(BasicBlock &); 381 382 // Provide base case for our instruction visit. 383 bool visitInstruction(Instruction &I); 384 385 // Our visit overrides. 386 bool visitAlloca(AllocaInst &I); 387 bool visitPHI(PHINode &I); 388 bool visitGetElementPtr(GetElementPtrInst &I); 389 bool visitBitCast(BitCastInst &I); 390 bool visitPtrToInt(PtrToIntInst &I); 391 bool visitIntToPtr(IntToPtrInst &I); 392 bool visitCastInst(CastInst &I); 393 bool visitCmpInst(CmpInst &I); 394 bool visitSub(BinaryOperator &I); 395 bool visitBinaryOperator(BinaryOperator &I); 396 bool visitFNeg(UnaryOperator &I); 397 bool visitLoad(LoadInst &I); 398 bool visitStore(StoreInst &I); 399 bool visitExtractValue(ExtractValueInst &I); 400 bool visitInsertValue(InsertValueInst &I); 401 bool visitCallBase(CallBase &Call); 402 bool visitReturnInst(ReturnInst &RI); 403 bool visitBranchInst(BranchInst &BI); 404 bool visitSelectInst(SelectInst &SI); 405 bool visitSwitchInst(SwitchInst &SI); 406 bool visitIndirectBrInst(IndirectBrInst &IBI); 407 bool visitResumeInst(ResumeInst &RI); 408 bool visitCleanupReturnInst(CleanupReturnInst &RI); 409 bool visitCatchReturnInst(CatchReturnInst &RI); 410 bool visitUnreachableInst(UnreachableInst &I); 411 412 public: 413 CallAnalyzer( 414 Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 415 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 416 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 417 ProfileSummaryInfo *PSI = nullptr, 418 OptimizationRemarkEmitter *ORE = nullptr) 419 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 420 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 421 CandidateCall(Call), EnableLoadElimination(true) {} 422 423 InlineResult analyze(); 424 425 Optional<Constant*> getSimplifiedValue(Instruction *I) { 426 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 427 return SimplifiedValues[I]; 428 return None; 429 } 430 431 // Keep a bunch of stats about the cost savings found so we can print them 432 // out when debugging. 433 unsigned NumConstantArgs = 0; 434 unsigned NumConstantOffsetPtrArgs = 0; 435 unsigned NumAllocaArgs = 0; 436 unsigned NumConstantPtrCmps = 0; 437 unsigned NumConstantPtrDiffs = 0; 438 unsigned NumInstructionsSimplified = 0; 439 440 void dump(); 441 }; 442 443 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 444 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 445 class InlineCostCallAnalyzer final : public CallAnalyzer { 446 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 447 const bool ComputeFullInlineCost; 448 int LoadEliminationCost = 0; 449 /// Bonus to be applied when percentage of vector instructions in callee is 450 /// high (see more details in updateThreshold). 451 int VectorBonus = 0; 452 /// Bonus to be applied when the callee has only one reachable basic block. 453 int SingleBBBonus = 0; 454 455 /// Tunable parameters that control the analysis. 456 const InlineParams &Params; 457 458 // This DenseMap stores the delta change in cost and threshold after 459 // accounting for the given instruction. The map is filled only with the 460 // flag PrintInstructionComments on. 461 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 462 463 /// Upper bound for the inlining cost. Bonuses are being applied to account 464 /// for speculative "expected profit" of the inlining decision. 465 int Threshold = 0; 466 467 /// Attempt to evaluate indirect calls to boost its inline cost. 468 const bool BoostIndirectCalls; 469 470 /// Ignore the threshold when finalizing analysis. 471 const bool IgnoreThreshold; 472 473 // True if the cost-benefit-analysis-based inliner is enabled. 474 const bool CostBenefitAnalysisEnabled; 475 476 /// Inlining cost measured in abstract units, accounts for all the 477 /// instructions expected to be executed for a given function invocation. 478 /// Instructions that are statically proven to be dead based on call-site 479 /// arguments are not counted here. 480 int Cost = 0; 481 482 // The cumulative cost at the beginning of the basic block being analyzed. At 483 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 484 // the size of that basic block. 485 int CostAtBBStart = 0; 486 487 // The static size of live but cold basic blocks. This is "static" in the 488 // sense that it's not weighted by profile counts at all. 489 int ColdSize = 0; 490 491 // Whether inlining is decided by cost-benefit analysis. 492 bool DecidedByCostBenefit = false; 493 494 bool SingleBB = true; 495 496 unsigned SROACostSavings = 0; 497 unsigned SROACostSavingsLost = 0; 498 499 /// The mapping of caller Alloca values to their accumulated cost savings. If 500 /// we have to disable SROA for one of the allocas, this tells us how much 501 /// cost must be added. 502 DenseMap<AllocaInst *, int> SROAArgCosts; 503 504 /// Return true if \p Call is a cold callsite. 505 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 506 507 /// Update Threshold based on callsite properties such as callee 508 /// attributes and callee hotness for PGO builds. The Callee is explicitly 509 /// passed to support analyzing indirect calls whose target is inferred by 510 /// analysis. 511 void updateThreshold(CallBase &Call, Function &Callee); 512 /// Return a higher threshold if \p Call is a hot callsite. 513 Optional<int> getHotCallSiteThreshold(CallBase &Call, 514 BlockFrequencyInfo *CallerBFI); 515 516 /// Handle a capped 'int' increment for Cost. 517 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 518 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 519 Cost = (int)std::min(UpperBound, Cost + Inc); 520 } 521 522 void onDisableSROA(AllocaInst *Arg) override { 523 auto CostIt = SROAArgCosts.find(Arg); 524 if (CostIt == SROAArgCosts.end()) 525 return; 526 addCost(CostIt->second); 527 SROACostSavings -= CostIt->second; 528 SROACostSavingsLost += CostIt->second; 529 SROAArgCosts.erase(CostIt); 530 } 531 532 void onDisableLoadElimination() override { 533 addCost(LoadEliminationCost); 534 LoadEliminationCost = 0; 535 } 536 void onCallPenalty() override { addCost(InlineConstants::CallPenalty); } 537 void onCallArgumentSetup(const CallBase &Call) override { 538 // Pay the price of the argument setup. We account for the average 1 539 // instruction per call argument setup here. 540 addCost(Call.arg_size() * InlineConstants::InstrCost); 541 } 542 void onLoadRelativeIntrinsic() override { 543 // This is normally lowered to 4 LLVM instructions. 544 addCost(3 * InlineConstants::InstrCost); 545 } 546 void onLoweredCall(Function *F, CallBase &Call, 547 bool IsIndirectCall) override { 548 // We account for the average 1 instruction per call argument setup here. 549 addCost(Call.arg_size() * InlineConstants::InstrCost); 550 551 // If we have a constant that we are calling as a function, we can peer 552 // through it and see the function target. This happens not infrequently 553 // during devirtualization and so we want to give it a hefty bonus for 554 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 555 // Pretend to inline the function, with a custom threshold. 556 if (IsIndirectCall && BoostIndirectCalls) { 557 auto IndirectCallParams = Params; 558 IndirectCallParams.DefaultThreshold = 559 InlineConstants::IndirectCallThreshold; 560 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 561 /// to instantiate the derived class. 562 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 563 GetAssumptionCache, GetBFI, PSI, ORE, false); 564 if (CA.analyze().isSuccess()) { 565 // We were able to inline the indirect call! Subtract the cost from the 566 // threshold to get the bonus we want to apply, but don't go below zero. 567 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 568 } 569 } else 570 // Otherwise simply add the cost for merely making the call. 571 addCost(InlineConstants::CallPenalty); 572 } 573 574 void onFinalizeSwitch(unsigned JumpTableSize, 575 unsigned NumCaseCluster) override { 576 // If suitable for a jump table, consider the cost for the table size and 577 // branch to destination. 578 // Maximum valid cost increased in this function. 579 if (JumpTableSize) { 580 int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + 581 4 * InlineConstants::InstrCost; 582 583 addCost(JTCost, (int64_t)CostUpperBound); 584 return; 585 } 586 // Considering forming a binary search, we should find the number of nodes 587 // which is same as the number of comparisons when lowered. For a given 588 // number of clusters, n, we can define a recursive function, f(n), to find 589 // the number of nodes in the tree. The recursion is : 590 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 591 // and f(n) = n, when n <= 3. 592 // This will lead a binary tree where the leaf should be either f(2) or f(3) 593 // when n > 3. So, the number of comparisons from leaves should be n, while 594 // the number of non-leaf should be : 595 // 2^(log2(n) - 1) - 1 596 // = 2^log2(n) * 2^-1 - 1 597 // = n / 2 - 1. 598 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 599 // number of comparisons in a simple closed form : 600 // n + n / 2 - 1 = n * 3 / 2 - 1 601 if (NumCaseCluster <= 3) { 602 // Suppose a comparison includes one compare and one conditional branch. 603 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 604 return; 605 } 606 607 int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; 608 int64_t SwitchCost = 609 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 610 611 addCost(SwitchCost, (int64_t)CostUpperBound); 612 } 613 void onMissedSimplification() override { 614 addCost(InlineConstants::InstrCost); 615 } 616 617 void onInitializeSROAArg(AllocaInst *Arg) override { 618 assert(Arg != nullptr && 619 "Should not initialize SROA costs for null value."); 620 SROAArgCosts[Arg] = 0; 621 } 622 623 void onAggregateSROAUse(AllocaInst *SROAArg) override { 624 auto CostIt = SROAArgCosts.find(SROAArg); 625 assert(CostIt != SROAArgCosts.end() && 626 "expected this argument to have a cost"); 627 CostIt->second += InlineConstants::InstrCost; 628 SROACostSavings += InlineConstants::InstrCost; 629 } 630 631 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 632 633 void onBlockAnalyzed(const BasicBlock *BB) override { 634 if (CostBenefitAnalysisEnabled) { 635 // Keep track of the static size of live but cold basic blocks. For now, 636 // we define a cold basic block to be one that's never executed. 637 assert(GetBFI && "GetBFI must be available"); 638 BlockFrequencyInfo *BFI = &(GetBFI(F)); 639 assert(BFI && "BFI must be available"); 640 auto ProfileCount = BFI->getBlockProfileCount(BB); 641 assert(ProfileCount.hasValue()); 642 if (ProfileCount.getValue() == 0) 643 ColdSize += Cost - CostAtBBStart; 644 } 645 646 auto *TI = BB->getTerminator(); 647 // If we had any successors at this point, than post-inlining is likely to 648 // have them as well. Note that we assume any basic blocks which existed 649 // due to branches or switches which folded above will also fold after 650 // inlining. 651 if (SingleBB && TI->getNumSuccessors() > 1) { 652 // Take off the bonus we applied to the threshold. 653 Threshold -= SingleBBBonus; 654 SingleBB = false; 655 } 656 } 657 658 void onInstructionAnalysisStart(const Instruction *I) override { 659 // This function is called to store the initial cost of inlining before 660 // the given instruction was assessed. 661 if (!PrintInstructionComments) 662 return; 663 InstructionCostDetailMap[I].CostBefore = Cost; 664 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 665 } 666 667 void onInstructionAnalysisFinish(const Instruction *I) override { 668 // This function is called to find new values of cost and threshold after 669 // the instruction has been assessed. 670 if (!PrintInstructionComments) 671 return; 672 InstructionCostDetailMap[I].CostAfter = Cost; 673 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 674 } 675 676 bool isCostBenefitAnalysisEnabled() { 677 if (!PSI || !PSI->hasProfileSummary()) 678 return false; 679 680 if (!GetBFI) 681 return false; 682 683 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 684 // Honor the explicit request from the user. 685 if (!InlineEnableCostBenefitAnalysis) 686 return false; 687 } else { 688 // Otherwise, require instrumentation profile. 689 if (!PSI->hasInstrumentationProfile()) 690 return false; 691 } 692 693 auto *Caller = CandidateCall.getParent()->getParent(); 694 if (!Caller->getEntryCount()) 695 return false; 696 697 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 698 if (!CallerBFI) 699 return false; 700 701 // For now, limit to hot call site. 702 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 703 return false; 704 705 // Make sure we have a nonzero entry count. 706 auto EntryCount = F.getEntryCount(); 707 if (!EntryCount || !EntryCount.getCount()) 708 return false; 709 710 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 711 if (!CalleeBFI) 712 return false; 713 714 return true; 715 } 716 717 // Determine whether we should inline the given call site, taking into account 718 // both the size cost and the cycle savings. Return None if we don't have 719 // suficient profiling information to determine. 720 Optional<bool> costBenefitAnalysis() { 721 if (!CostBenefitAnalysisEnabled) 722 return None; 723 724 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 725 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 726 // falling back to the cost-based metric. 727 // TODO: Improve this hacky condition. 728 if (Threshold == 0) 729 return None; 730 731 assert(GetBFI); 732 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 733 assert(CalleeBFI); 734 735 // The cycle savings expressed as the sum of InlineConstants::InstrCost 736 // multiplied by the estimated dynamic count of each instruction we can 737 // avoid. Savings come from the call site cost, such as argument setup and 738 // the call instruction, as well as the instructions that are folded. 739 // 740 // We use 128-bit APInt here to avoid potential overflow. This variable 741 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 742 // assumes that we can avoid or fold a billion instructions, each with a 743 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 744 // period on a 4GHz machine. 745 APInt CycleSavings(128, 0); 746 747 for (auto &BB : F) { 748 APInt CurrentSavings(128, 0); 749 for (auto &I : BB) { 750 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 751 // Count a conditional branch as savings if it becomes unconditional. 752 if (BI->isConditional() && 753 dyn_cast_or_null<ConstantInt>( 754 SimplifiedValues.lookup(BI->getCondition()))) { 755 CurrentSavings += InlineConstants::InstrCost; 756 } 757 } else if (Value *V = dyn_cast<Value>(&I)) { 758 // Count an instruction as savings if we can fold it. 759 if (SimplifiedValues.count(V)) { 760 CurrentSavings += InlineConstants::InstrCost; 761 } 762 } 763 } 764 765 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 766 assert(ProfileCount.hasValue()); 767 CurrentSavings *= ProfileCount.getValue(); 768 CycleSavings += CurrentSavings; 769 } 770 771 // Compute the cycle savings per call. 772 auto EntryProfileCount = F.getEntryCount(); 773 assert(EntryProfileCount.hasValue() && EntryProfileCount.getCount()); 774 auto EntryCount = EntryProfileCount.getCount(); 775 CycleSavings += EntryCount / 2; 776 CycleSavings = CycleSavings.udiv(EntryCount); 777 778 // Compute the total savings for the call site. 779 auto *CallerBB = CandidateCall.getParent(); 780 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 781 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 782 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 783 784 // Remove the cost of the cold basic blocks. 785 int Size = Cost - ColdSize; 786 787 // Allow tiny callees to be inlined regardless of whether they meet the 788 // savings threshold. 789 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 790 791 // Return true if the savings justify the cost of inlining. Specifically, 792 // we evaluate the following inequality: 793 // 794 // CycleSavings PSI->getOrCompHotCountThreshold() 795 // -------------- >= ----------------------------------- 796 // Size InlineSavingsMultiplier 797 // 798 // Note that the left hand side is specific to a call site. The right hand 799 // side is a constant for the entire executable. 800 APInt LHS = CycleSavings; 801 LHS *= InlineSavingsMultiplier; 802 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 803 RHS *= Size; 804 return LHS.uge(RHS); 805 } 806 807 InlineResult finalizeAnalysis() override { 808 // Loops generally act a lot like calls in that they act like barriers to 809 // movement, require a certain amount of setup, etc. So when optimising for 810 // size, we penalise any call sites that perform loops. We do this after all 811 // other costs here, so will likely only be dealing with relatively small 812 // functions (and hence DT and LI will hopefully be cheap). 813 auto *Caller = CandidateCall.getFunction(); 814 if (Caller->hasMinSize()) { 815 DominatorTree DT(F); 816 LoopInfo LI(DT); 817 int NumLoops = 0; 818 for (Loop *L : LI) { 819 // Ignore loops that will not be executed 820 if (DeadBlocks.count(L->getHeader())) 821 continue; 822 NumLoops++; 823 } 824 addCost(NumLoops * InlineConstants::CallPenalty); 825 } 826 827 // We applied the maximum possible vector bonus at the beginning. Now, 828 // subtract the excess bonus, if any, from the Threshold before 829 // comparing against Cost. 830 if (NumVectorInstructions <= NumInstructions / 10) 831 Threshold -= VectorBonus; 832 else if (NumVectorInstructions <= NumInstructions / 2) 833 Threshold -= VectorBonus / 2; 834 835 if (auto Result = costBenefitAnalysis()) { 836 DecidedByCostBenefit = true; 837 if (Result.getValue()) 838 return InlineResult::success(); 839 else 840 return InlineResult::failure("Cost over threshold."); 841 } 842 843 if (IgnoreThreshold || Cost < std::max(1, Threshold)) 844 return InlineResult::success(); 845 return InlineResult::failure("Cost over threshold."); 846 } 847 bool shouldStop() override { 848 // Bail out the moment we cross the threshold. This means we'll under-count 849 // the cost, but only when undercounting doesn't matter. 850 return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost; 851 } 852 853 void onLoadEliminationOpportunity() override { 854 LoadEliminationCost += InlineConstants::InstrCost; 855 } 856 857 InlineResult onAnalysisStart() override { 858 // Perform some tweaks to the cost and threshold based on the direct 859 // callsite information. 860 861 // We want to more aggressively inline vector-dense kernels, so up the 862 // threshold, and we'll lower it if the % of vector instructions gets too 863 // low. Note that these bonuses are some what arbitrary and evolved over 864 // time by accident as much as because they are principled bonuses. 865 // 866 // FIXME: It would be nice to remove all such bonuses. At least it would be 867 // nice to base the bonus values on something more scientific. 868 assert(NumInstructions == 0); 869 assert(NumVectorInstructions == 0); 870 871 // Update the threshold based on callsite properties 872 updateThreshold(CandidateCall, F); 873 874 // While Threshold depends on commandline options that can take negative 875 // values, we want to enforce the invariant that the computed threshold and 876 // bonuses are non-negative. 877 assert(Threshold >= 0); 878 assert(SingleBBBonus >= 0); 879 assert(VectorBonus >= 0); 880 881 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 882 // this Threshold any time, and cost cannot decrease, we can stop processing 883 // the rest of the function body. 884 Threshold += (SingleBBBonus + VectorBonus); 885 886 // Give out bonuses for the callsite, as the instructions setting them up 887 // will be gone after inlining. 888 addCost(-getCallsiteCost(this->CandidateCall, DL)); 889 890 // If this function uses the coldcc calling convention, prefer not to inline 891 // it. 892 if (F.getCallingConv() == CallingConv::Cold) 893 Cost += InlineConstants::ColdccPenalty; 894 895 // Check if we're done. This can happen due to bonuses and penalties. 896 if (Cost >= Threshold && !ComputeFullInlineCost) 897 return InlineResult::failure("high cost"); 898 899 return InlineResult::success(); 900 } 901 902 public: 903 InlineCostCallAnalyzer( 904 Function &Callee, CallBase &Call, const InlineParams &Params, 905 const TargetTransformInfo &TTI, 906 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 907 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 908 ProfileSummaryInfo *PSI = nullptr, 909 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 910 bool IgnoreThreshold = false) 911 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 912 ComputeFullInlineCost(OptComputeFullInlineCost || 913 Params.ComputeFullInlineCost || ORE || 914 isCostBenefitAnalysisEnabled()), 915 Params(Params), Threshold(Params.DefaultThreshold), 916 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 917 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 918 Writer(this) {} 919 920 /// Annotation Writer for instruction details 921 InlineCostAnnotationWriter Writer; 922 923 void dump(); 924 925 // Prints the same analysis as dump(), but its definition is not dependent 926 // on the build. 927 void print(); 928 929 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 930 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 931 return InstructionCostDetailMap[I]; 932 return None; 933 } 934 935 virtual ~InlineCostCallAnalyzer() {} 936 int getThreshold() { return Threshold; } 937 int getCost() { return Cost; } 938 bool wasDecidedByCostBenefit() { return DecidedByCostBenefit; } 939 }; 940 } // namespace 941 942 /// Test whether the given value is an Alloca-derived function argument. 943 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 944 return SROAArgValues.count(V); 945 } 946 947 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 948 onDisableSROA(SROAArg); 949 EnabledSROAAllocas.erase(SROAArg); 950 disableLoadElimination(); 951 } 952 953 void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I, 954 formatted_raw_ostream &OS) { 955 // The cost of inlining of the given instruction is printed always. 956 // The threshold delta is printed only when it is non-zero. It happens 957 // when we decided to give a bonus at a particular instruction. 958 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 959 if (!Record) 960 OS << "; No analysis for the instruction"; 961 else { 962 OS << "; cost before = " << Record->CostBefore 963 << ", cost after = " << Record->CostAfter 964 << ", threshold before = " << Record->ThresholdBefore 965 << ", threshold after = " << Record->ThresholdAfter << ", "; 966 OS << "cost delta = " << Record->getCostDelta(); 967 if (Record->hasThresholdChanged()) 968 OS << ", threshold delta = " << Record->getThresholdDelta(); 969 } 970 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 971 if (C) { 972 OS << ", simplified to "; 973 C.getValue()->print(OS, true); 974 } 975 OS << "\n"; 976 } 977 978 /// If 'V' maps to a SROA candidate, disable SROA for it. 979 void CallAnalyzer::disableSROA(Value *V) { 980 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 981 disableSROAForArg(SROAArg); 982 } 983 } 984 985 void CallAnalyzer::disableLoadElimination() { 986 if (EnableLoadElimination) { 987 onDisableLoadElimination(); 988 EnableLoadElimination = false; 989 } 990 } 991 992 /// Accumulate a constant GEP offset into an APInt if possible. 993 /// 994 /// Returns false if unable to compute the offset for any reason. Respects any 995 /// simplified values known during the analysis of this callsite. 996 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 997 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 998 assert(IntPtrWidth == Offset.getBitWidth()); 999 1000 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1001 GTI != GTE; ++GTI) { 1002 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1003 if (!OpC) 1004 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1005 OpC = dyn_cast<ConstantInt>(SimpleOp); 1006 if (!OpC) 1007 return false; 1008 if (OpC->isZero()) 1009 continue; 1010 1011 // Handle a struct index, which adds its field offset to the pointer. 1012 if (StructType *STy = GTI.getStructTypeOrNull()) { 1013 unsigned ElementIdx = OpC->getZExtValue(); 1014 const StructLayout *SL = DL.getStructLayout(STy); 1015 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1016 continue; 1017 } 1018 1019 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1020 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1021 } 1022 return true; 1023 } 1024 1025 /// Use TTI to check whether a GEP is free. 1026 /// 1027 /// Respects any simplified values known during the analysis of this callsite. 1028 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1029 SmallVector<Value *, 4> Operands; 1030 Operands.push_back(GEP.getOperand(0)); 1031 for (const Use &Op : GEP.indices()) 1032 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1033 Operands.push_back(SimpleOp); 1034 else 1035 Operands.push_back(Op); 1036 return TTI.getUserCost(&GEP, Operands, 1037 TargetTransformInfo::TCK_SizeAndLatency) == 1038 TargetTransformInfo::TCC_Free; 1039 } 1040 1041 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1042 disableSROA(I.getOperand(0)); 1043 1044 // Check whether inlining will turn a dynamic alloca into a static 1045 // alloca and handle that case. 1046 if (I.isArrayAllocation()) { 1047 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1048 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1049 // Sometimes a dynamic alloca could be converted into a static alloca 1050 // after this constant prop, and become a huge static alloca on an 1051 // unconditional CFG path. Avoid inlining if this is going to happen above 1052 // a threshold. 1053 // FIXME: If the threshold is removed or lowered too much, we could end up 1054 // being too pessimistic and prevent inlining non-problematic code. This 1055 // could result in unintended perf regressions. A better overall strategy 1056 // is needed to track stack usage during inlining. 1057 Type *Ty = I.getAllocatedType(); 1058 AllocatedSize = SaturatingMultiplyAdd( 1059 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getKnownMinSize(), 1060 AllocatedSize); 1061 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1062 HasDynamicAlloca = true; 1063 return false; 1064 } 1065 } 1066 1067 // Accumulate the allocated size. 1068 if (I.isStaticAlloca()) { 1069 Type *Ty = I.getAllocatedType(); 1070 AllocatedSize = 1071 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1072 } 1073 1074 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1075 // a variety of reasons, and so we would like to not inline them into 1076 // functions which don't currently have a dynamic alloca. This simply 1077 // disables inlining altogether in the presence of a dynamic alloca. 1078 if (!I.isStaticAlloca()) 1079 HasDynamicAlloca = true; 1080 1081 return false; 1082 } 1083 1084 bool CallAnalyzer::visitPHI(PHINode &I) { 1085 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1086 // though we don't want to propagate it's bonuses. The idea is to disable 1087 // SROA if it *might* be used in an inappropriate manner. 1088 1089 // Phi nodes are always zero-cost. 1090 // FIXME: Pointer sizes may differ between different address spaces, so do we 1091 // need to use correct address space in the call to getPointerSizeInBits here? 1092 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1093 // see the ZeroOffset is used as a dummy value, so we can probably use any 1094 // bit width for the ZeroOffset? 1095 APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); 1096 bool CheckSROA = I.getType()->isPointerTy(); 1097 1098 // Track the constant or pointer with constant offset we've seen so far. 1099 Constant *FirstC = nullptr; 1100 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1101 Value *FirstV = nullptr; 1102 1103 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1104 BasicBlock *Pred = I.getIncomingBlock(i); 1105 // If the incoming block is dead, skip the incoming block. 1106 if (DeadBlocks.count(Pred)) 1107 continue; 1108 // If the parent block of phi is not the known successor of the incoming 1109 // block, skip the incoming block. 1110 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1111 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1112 continue; 1113 1114 Value *V = I.getIncomingValue(i); 1115 // If the incoming value is this phi itself, skip the incoming value. 1116 if (&I == V) 1117 continue; 1118 1119 Constant *C = dyn_cast<Constant>(V); 1120 if (!C) 1121 C = SimplifiedValues.lookup(V); 1122 1123 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1124 if (!C && CheckSROA) 1125 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1126 1127 if (!C && !BaseAndOffset.first) 1128 // The incoming value is neither a constant nor a pointer with constant 1129 // offset, exit early. 1130 return true; 1131 1132 if (FirstC) { 1133 if (FirstC == C) 1134 // If we've seen a constant incoming value before and it is the same 1135 // constant we see this time, continue checking the next incoming value. 1136 continue; 1137 // Otherwise early exit because we either see a different constant or saw 1138 // a constant before but we have a pointer with constant offset this time. 1139 return true; 1140 } 1141 1142 if (FirstV) { 1143 // The same logic as above, but check pointer with constant offset here. 1144 if (FirstBaseAndOffset == BaseAndOffset) 1145 continue; 1146 return true; 1147 } 1148 1149 if (C) { 1150 // This is the 1st time we've seen a constant, record it. 1151 FirstC = C; 1152 continue; 1153 } 1154 1155 // The remaining case is that this is the 1st time we've seen a pointer with 1156 // constant offset, record it. 1157 FirstV = V; 1158 FirstBaseAndOffset = BaseAndOffset; 1159 } 1160 1161 // Check if we can map phi to a constant. 1162 if (FirstC) { 1163 SimplifiedValues[&I] = FirstC; 1164 return true; 1165 } 1166 1167 // Check if we can map phi to a pointer with constant offset. 1168 if (FirstBaseAndOffset.first) { 1169 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1170 1171 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1172 SROAArgValues[&I] = SROAArg; 1173 } 1174 1175 return true; 1176 } 1177 1178 /// Check we can fold GEPs of constant-offset call site argument pointers. 1179 /// This requires target data and inbounds GEPs. 1180 /// 1181 /// \return true if the specified GEP can be folded. 1182 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1183 // Check if we have a base + offset for the pointer. 1184 std::pair<Value *, APInt> BaseAndOffset = 1185 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1186 if (!BaseAndOffset.first) 1187 return false; 1188 1189 // Check if the offset of this GEP is constant, and if so accumulate it 1190 // into Offset. 1191 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1192 return false; 1193 1194 // Add the result as a new mapping to Base + Offset. 1195 ConstantOffsetPtrs[&I] = BaseAndOffset; 1196 1197 return true; 1198 } 1199 1200 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1201 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1202 1203 // Lambda to check whether a GEP's indices are all constant. 1204 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1205 for (const Use &Op : GEP.indices()) 1206 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1207 return false; 1208 return true; 1209 }; 1210 1211 if (!DisableGEPConstOperand) 1212 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1213 SmallVector<Constant *, 2> Indices; 1214 for (unsigned int Index = 1 ; Index < COps.size() ; ++Index) 1215 Indices.push_back(COps[Index]); 1216 return ConstantExpr::getGetElementPtr(I.getSourceElementType(), COps[0], 1217 Indices, I.isInBounds()); 1218 })) 1219 return true; 1220 1221 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1222 if (SROAArg) 1223 SROAArgValues[&I] = SROAArg; 1224 1225 // Constant GEPs are modeled as free. 1226 return true; 1227 } 1228 1229 // Variable GEPs will require math and will disable SROA. 1230 if (SROAArg) 1231 disableSROAForArg(SROAArg); 1232 return isGEPFree(I); 1233 } 1234 1235 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1236 /// \p Evaluate is a callable specific to instruction type that evaluates the 1237 /// instruction when all the operands are constants. 1238 template <typename Callable> 1239 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1240 SmallVector<Constant *, 2> COps; 1241 for (Value *Op : I.operands()) { 1242 Constant *COp = dyn_cast<Constant>(Op); 1243 if (!COp) 1244 COp = SimplifiedValues.lookup(Op); 1245 if (!COp) 1246 return false; 1247 COps.push_back(COp); 1248 } 1249 auto *C = Evaluate(COps); 1250 if (!C) 1251 return false; 1252 SimplifiedValues[&I] = C; 1253 return true; 1254 } 1255 1256 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1257 // Propagate constants through bitcasts. 1258 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1259 return ConstantExpr::getBitCast(COps[0], I.getType()); 1260 })) 1261 return true; 1262 1263 // Track base/offsets through casts 1264 std::pair<Value *, APInt> BaseAndOffset = 1265 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1266 // Casts don't change the offset, just wrap it up. 1267 if (BaseAndOffset.first) 1268 ConstantOffsetPtrs[&I] = BaseAndOffset; 1269 1270 // Also look for SROA candidates here. 1271 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1272 SROAArgValues[&I] = SROAArg; 1273 1274 // Bitcasts are always zero cost. 1275 return true; 1276 } 1277 1278 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1279 // Propagate constants through ptrtoint. 1280 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1281 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1282 })) 1283 return true; 1284 1285 // Track base/offset pairs when converted to a plain integer provided the 1286 // integer is large enough to represent the pointer. 1287 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1288 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1289 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1290 std::pair<Value *, APInt> BaseAndOffset = 1291 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1292 if (BaseAndOffset.first) 1293 ConstantOffsetPtrs[&I] = BaseAndOffset; 1294 } 1295 1296 // This is really weird. Technically, ptrtoint will disable SROA. However, 1297 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1298 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1299 // would block SROA would also block SROA if applied directly to a pointer, 1300 // and so we can just add the integer in here. The only places where SROA is 1301 // preserved either cannot fire on an integer, or won't in-and-of themselves 1302 // disable SROA (ext) w/o some later use that we would see and disable. 1303 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1304 SROAArgValues[&I] = SROAArg; 1305 1306 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1307 TargetTransformInfo::TCC_Free; 1308 } 1309 1310 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1311 // Propagate constants through ptrtoint. 1312 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1313 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1314 })) 1315 return true; 1316 1317 // Track base/offset pairs when round-tripped through a pointer without 1318 // modifications provided the integer is not too large. 1319 Value *Op = I.getOperand(0); 1320 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1321 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1322 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1323 if (BaseAndOffset.first) 1324 ConstantOffsetPtrs[&I] = BaseAndOffset; 1325 } 1326 1327 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1328 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1329 SROAArgValues[&I] = SROAArg; 1330 1331 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1332 TargetTransformInfo::TCC_Free; 1333 } 1334 1335 bool CallAnalyzer::visitCastInst(CastInst &I) { 1336 // Propagate constants through casts. 1337 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1338 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1339 })) 1340 return true; 1341 1342 // Disable SROA in the face of arbitrary casts we don't explicitly list 1343 // elsewhere. 1344 disableSROA(I.getOperand(0)); 1345 1346 // If this is a floating-point cast, and the target says this operation 1347 // is expensive, this may eventually become a library call. Treat the cost 1348 // as such. 1349 switch (I.getOpcode()) { 1350 case Instruction::FPTrunc: 1351 case Instruction::FPExt: 1352 case Instruction::UIToFP: 1353 case Instruction::SIToFP: 1354 case Instruction::FPToUI: 1355 case Instruction::FPToSI: 1356 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1357 onCallPenalty(); 1358 break; 1359 default: 1360 break; 1361 } 1362 1363 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1364 TargetTransformInfo::TCC_Free; 1365 } 1366 1367 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1368 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1369 } 1370 1371 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1372 // Does the *call site* have the NonNull attribute set on an argument? We 1373 // use the attribute on the call site to memoize any analysis done in the 1374 // caller. This will also trip if the callee function has a non-null 1375 // parameter attribute, but that's a less interesting case because hopefully 1376 // the callee would already have been simplified based on that. 1377 if (Argument *A = dyn_cast<Argument>(V)) 1378 if (paramHasAttr(A, Attribute::NonNull)) 1379 return true; 1380 1381 // Is this an alloca in the caller? This is distinct from the attribute case 1382 // above because attributes aren't updated within the inliner itself and we 1383 // always want to catch the alloca derived case. 1384 if (isAllocaDerivedArg(V)) 1385 // We can actually predict the result of comparisons between an 1386 // alloca-derived value and null. Note that this fires regardless of 1387 // SROA firing. 1388 return true; 1389 1390 return false; 1391 } 1392 1393 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1394 // If the normal destination of the invoke or the parent block of the call 1395 // site is unreachable-terminated, there is little point in inlining this 1396 // unless there is literally zero cost. 1397 // FIXME: Note that it is possible that an unreachable-terminated block has a 1398 // hot entry. For example, in below scenario inlining hot_call_X() may be 1399 // beneficial : 1400 // main() { 1401 // hot_call_1(); 1402 // ... 1403 // hot_call_N() 1404 // exit(0); 1405 // } 1406 // For now, we are not handling this corner case here as it is rare in real 1407 // code. In future, we should elaborate this based on BPI and BFI in more 1408 // general threshold adjusting heuristics in updateThreshold(). 1409 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1410 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1411 return false; 1412 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1413 return false; 1414 1415 return true; 1416 } 1417 1418 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1419 BlockFrequencyInfo *CallerBFI) { 1420 // If global profile summary is available, then callsite's coldness is 1421 // determined based on that. 1422 if (PSI && PSI->hasProfileSummary()) 1423 return PSI->isColdCallSite(Call, CallerBFI); 1424 1425 // Otherwise we need BFI to be available. 1426 if (!CallerBFI) 1427 return false; 1428 1429 // Determine if the callsite is cold relative to caller's entry. We could 1430 // potentially cache the computation of scaled entry frequency, but the added 1431 // complexity is not worth it unless this scaling shows up high in the 1432 // profiles. 1433 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1434 auto CallSiteBB = Call.getParent(); 1435 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1436 auto CallerEntryFreq = 1437 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1438 return CallSiteFreq < CallerEntryFreq * ColdProb; 1439 } 1440 1441 Optional<int> 1442 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1443 BlockFrequencyInfo *CallerBFI) { 1444 1445 // If global profile summary is available, then callsite's hotness is 1446 // determined based on that. 1447 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1448 return Params.HotCallSiteThreshold; 1449 1450 // Otherwise we need BFI to be available and to have a locally hot callsite 1451 // threshold. 1452 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1453 return None; 1454 1455 // Determine if the callsite is hot relative to caller's entry. We could 1456 // potentially cache the computation of scaled entry frequency, but the added 1457 // complexity is not worth it unless this scaling shows up high in the 1458 // profiles. 1459 auto CallSiteBB = Call.getParent(); 1460 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1461 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1462 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1463 return Params.LocallyHotCallSiteThreshold; 1464 1465 // Otherwise treat it normally. 1466 return None; 1467 } 1468 1469 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1470 // If no size growth is allowed for this inlining, set Threshold to 0. 1471 if (!allowSizeGrowth(Call)) { 1472 Threshold = 0; 1473 return; 1474 } 1475 1476 Function *Caller = Call.getCaller(); 1477 1478 // return min(A, B) if B is valid. 1479 auto MinIfValid = [](int A, Optional<int> B) { 1480 return B ? std::min(A, B.getValue()) : A; 1481 }; 1482 1483 // return max(A, B) if B is valid. 1484 auto MaxIfValid = [](int A, Optional<int> B) { 1485 return B ? std::max(A, B.getValue()) : A; 1486 }; 1487 1488 // Various bonus percentages. These are multiplied by Threshold to get the 1489 // bonus values. 1490 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1491 // basic block at the given callsite context. This is speculatively applied 1492 // and withdrawn if more than one basic block is seen. 1493 // 1494 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1495 // of the last call to a static function as inlining such functions is 1496 // guaranteed to reduce code size. 1497 // 1498 // These bonus percentages may be set to 0 based on properties of the caller 1499 // and the callsite. 1500 int SingleBBBonusPercent = 50; 1501 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1502 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1503 1504 // Lambda to set all the above bonus and bonus percentages to 0. 1505 auto DisallowAllBonuses = [&]() { 1506 SingleBBBonusPercent = 0; 1507 VectorBonusPercent = 0; 1508 LastCallToStaticBonus = 0; 1509 }; 1510 1511 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1512 // and reduce the threshold if the caller has the necessary attribute. 1513 if (Caller->hasMinSize()) { 1514 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1515 // For minsize, we want to disable the single BB bonus and the vector 1516 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1517 // a static function will, at the minimum, eliminate the parameter setup and 1518 // call/return instructions. 1519 SingleBBBonusPercent = 0; 1520 VectorBonusPercent = 0; 1521 } else if (Caller->hasOptSize()) 1522 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1523 1524 // Adjust the threshold based on inlinehint attribute and profile based 1525 // hotness information if the caller does not have MinSize attribute. 1526 if (!Caller->hasMinSize()) { 1527 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1528 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1529 1530 // FIXME: After switching to the new passmanager, simplify the logic below 1531 // by checking only the callsite hotness/coldness as we will reliably 1532 // have local profile information. 1533 // 1534 // Callsite hotness and coldness can be determined if sample profile is 1535 // used (which adds hotness metadata to calls) or if caller's 1536 // BlockFrequencyInfo is available. 1537 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1538 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1539 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1540 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1541 // FIXME: This should update the threshold only if it exceeds the 1542 // current threshold, but AutoFDO + ThinLTO currently relies on this 1543 // behavior to prevent inlining of hot callsites during ThinLTO 1544 // compile phase. 1545 Threshold = HotCallSiteThreshold.getValue(); 1546 } else if (isColdCallSite(Call, CallerBFI)) { 1547 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1548 // Do not apply bonuses for a cold callsite including the 1549 // LastCallToStatic bonus. While this bonus might result in code size 1550 // reduction, it can cause the size of a non-cold caller to increase 1551 // preventing it from being inlined. 1552 DisallowAllBonuses(); 1553 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1554 } else if (PSI) { 1555 // Use callee's global profile information only if we have no way of 1556 // determining this via callsite information. 1557 if (PSI->isFunctionEntryHot(&Callee)) { 1558 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1559 // If callsite hotness can not be determined, we may still know 1560 // that the callee is hot and treat it as a weaker hint for threshold 1561 // increase. 1562 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1563 } else if (PSI->isFunctionEntryCold(&Callee)) { 1564 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1565 // Do not apply bonuses for a cold callee including the 1566 // LastCallToStatic bonus. While this bonus might result in code size 1567 // reduction, it can cause the size of a non-cold caller to increase 1568 // preventing it from being inlined. 1569 DisallowAllBonuses(); 1570 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1571 } 1572 } 1573 } 1574 1575 Threshold += TTI.adjustInliningThreshold(&Call); 1576 1577 // Finally, take the target-specific inlining threshold multiplier into 1578 // account. 1579 Threshold *= TTI.getInliningThresholdMultiplier(); 1580 1581 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1582 VectorBonus = Threshold * VectorBonusPercent / 100; 1583 1584 bool OnlyOneCallAndLocalLinkage = 1585 F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction(); 1586 // If there is only one call of the function, and it has internal linkage, 1587 // the cost of inlining it drops dramatically. It may seem odd to update 1588 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1589 if (OnlyOneCallAndLocalLinkage) 1590 Cost -= LastCallToStaticBonus; 1591 } 1592 1593 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1594 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1595 // First try to handle simplified comparisons. 1596 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1597 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1598 })) 1599 return true; 1600 1601 if (I.getOpcode() == Instruction::FCmp) 1602 return false; 1603 1604 // Otherwise look for a comparison between constant offset pointers with 1605 // a common base. 1606 Value *LHSBase, *RHSBase; 1607 APInt LHSOffset, RHSOffset; 1608 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1609 if (LHSBase) { 1610 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1611 if (RHSBase && LHSBase == RHSBase) { 1612 // We have common bases, fold the icmp to a constant based on the 1613 // offsets. 1614 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1615 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1616 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1617 SimplifiedValues[&I] = C; 1618 ++NumConstantPtrCmps; 1619 return true; 1620 } 1621 } 1622 } 1623 1624 // If the comparison is an equality comparison with null, we can simplify it 1625 // if we know the value (argument) can't be null 1626 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1627 isKnownNonNullInCallee(I.getOperand(0))) { 1628 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1629 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1630 : ConstantInt::getFalse(I.getType()); 1631 return true; 1632 } 1633 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1634 } 1635 1636 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1637 // Try to handle a special case: we can fold computing the difference of two 1638 // constant-related pointers. 1639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1640 Value *LHSBase, *RHSBase; 1641 APInt LHSOffset, RHSOffset; 1642 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1643 if (LHSBase) { 1644 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1645 if (RHSBase && LHSBase == RHSBase) { 1646 // We have common bases, fold the subtract to a constant based on the 1647 // offsets. 1648 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1649 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1650 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1651 SimplifiedValues[&I] = C; 1652 ++NumConstantPtrDiffs; 1653 return true; 1654 } 1655 } 1656 } 1657 1658 // Otherwise, fall back to the generic logic for simplifying and handling 1659 // instructions. 1660 return Base::visitSub(I); 1661 } 1662 1663 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1664 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1665 Constant *CLHS = dyn_cast<Constant>(LHS); 1666 if (!CLHS) 1667 CLHS = SimplifiedValues.lookup(LHS); 1668 Constant *CRHS = dyn_cast<Constant>(RHS); 1669 if (!CRHS) 1670 CRHS = SimplifiedValues.lookup(RHS); 1671 1672 Value *SimpleV = nullptr; 1673 if (auto FI = dyn_cast<FPMathOperator>(&I)) 1674 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 1675 FI->getFastMathFlags(), DL); 1676 else 1677 SimpleV = 1678 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 1679 1680 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1681 SimplifiedValues[&I] = C; 1682 1683 if (SimpleV) 1684 return true; 1685 1686 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 1687 disableSROA(LHS); 1688 disableSROA(RHS); 1689 1690 // If the instruction is floating point, and the target says this operation 1691 // is expensive, this may eventually become a library call. Treat the cost 1692 // as such. Unless it's fneg which can be implemented with an xor. 1693 using namespace llvm::PatternMatch; 1694 if (I.getType()->isFloatingPointTy() && 1695 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 1696 !match(&I, m_FNeg(m_Value()))) 1697 onCallPenalty(); 1698 1699 return false; 1700 } 1701 1702 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 1703 Value *Op = I.getOperand(0); 1704 Constant *COp = dyn_cast<Constant>(Op); 1705 if (!COp) 1706 COp = SimplifiedValues.lookup(Op); 1707 1708 Value *SimpleV = SimplifyFNegInst( 1709 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 1710 1711 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 1712 SimplifiedValues[&I] = C; 1713 1714 if (SimpleV) 1715 return true; 1716 1717 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 1718 disableSROA(Op); 1719 1720 return false; 1721 } 1722 1723 bool CallAnalyzer::visitLoad(LoadInst &I) { 1724 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1725 return true; 1726 1727 // If the data is already loaded from this address and hasn't been clobbered 1728 // by any stores or calls, this load is likely to be redundant and can be 1729 // eliminated. 1730 if (EnableLoadElimination && 1731 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 1732 onLoadEliminationOpportunity(); 1733 return true; 1734 } 1735 1736 return false; 1737 } 1738 1739 bool CallAnalyzer::visitStore(StoreInst &I) { 1740 if (handleSROA(I.getPointerOperand(), I.isSimple())) 1741 return true; 1742 1743 // The store can potentially clobber loads and prevent repeated loads from 1744 // being eliminated. 1745 // FIXME: 1746 // 1. We can probably keep an initial set of eliminatable loads substracted 1747 // from the cost even when we finally see a store. We just need to disable 1748 // *further* accumulation of elimination savings. 1749 // 2. We should probably at some point thread MemorySSA for the callee into 1750 // this and then use that to actually compute *really* precise savings. 1751 disableLoadElimination(); 1752 return false; 1753 } 1754 1755 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 1756 // Constant folding for extract value is trivial. 1757 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1758 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 1759 })) 1760 return true; 1761 1762 // SROA can't look through these, but they may be free. 1763 return Base::visitExtractValue(I); 1764 } 1765 1766 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 1767 // Constant folding for insert value is trivial. 1768 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1769 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 1770 /*InsertedValueOperand*/ COps[1], 1771 I.getIndices()); 1772 })) 1773 return true; 1774 1775 // SROA can't look through these, but they may be free. 1776 return Base::visitInsertValue(I); 1777 } 1778 1779 /// Try to simplify a call site. 1780 /// 1781 /// Takes a concrete function and callsite and tries to actually simplify it by 1782 /// analyzing the arguments and call itself with instsimplify. Returns true if 1783 /// it has simplified the callsite to some other entity (a constant), making it 1784 /// free. 1785 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 1786 // FIXME: Using the instsimplify logic directly for this is inefficient 1787 // because we have to continually rebuild the argument list even when no 1788 // simplifications can be performed. Until that is fixed with remapping 1789 // inside of instsimplify, directly constant fold calls here. 1790 if (!canConstantFoldCallTo(&Call, F)) 1791 return false; 1792 1793 // Try to re-map the arguments to constants. 1794 SmallVector<Constant *, 4> ConstantArgs; 1795 ConstantArgs.reserve(Call.arg_size()); 1796 for (Value *I : Call.args()) { 1797 Constant *C = dyn_cast<Constant>(I); 1798 if (!C) 1799 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 1800 if (!C) 1801 return false; // This argument doesn't map to a constant. 1802 1803 ConstantArgs.push_back(C); 1804 } 1805 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 1806 SimplifiedValues[&Call] = C; 1807 return true; 1808 } 1809 1810 return false; 1811 } 1812 1813 bool CallAnalyzer::visitCallBase(CallBase &Call) { 1814 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 1815 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 1816 // This aborts the entire analysis. 1817 ExposesReturnsTwice = true; 1818 return false; 1819 } 1820 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 1821 ContainsNoDuplicateCall = true; 1822 1823 Value *Callee = Call.getCalledOperand(); 1824 Function *F = dyn_cast_or_null<Function>(Callee); 1825 bool IsIndirectCall = !F; 1826 if (IsIndirectCall) { 1827 // Check if this happens to be an indirect function call to a known function 1828 // in this inline context. If not, we've done all we can. 1829 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 1830 if (!F) { 1831 onCallArgumentSetup(Call); 1832 1833 if (!Call.onlyReadsMemory()) 1834 disableLoadElimination(); 1835 return Base::visitCallBase(Call); 1836 } 1837 } 1838 1839 assert(F && "Expected a call to a known function"); 1840 1841 // When we have a concrete function, first try to simplify it directly. 1842 if (simplifyCallSite(F, Call)) 1843 return true; 1844 1845 // Next check if it is an intrinsic we know about. 1846 // FIXME: Lift this into part of the InstVisitor. 1847 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 1848 switch (II->getIntrinsicID()) { 1849 default: 1850 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 1851 disableLoadElimination(); 1852 return Base::visitCallBase(Call); 1853 1854 case Intrinsic::load_relative: 1855 onLoadRelativeIntrinsic(); 1856 return false; 1857 1858 case Intrinsic::memset: 1859 case Intrinsic::memcpy: 1860 case Intrinsic::memmove: 1861 disableLoadElimination(); 1862 // SROA can usually chew through these intrinsics, but they aren't free. 1863 return false; 1864 case Intrinsic::icall_branch_funnel: 1865 case Intrinsic::localescape: 1866 HasUninlineableIntrinsic = true; 1867 return false; 1868 case Intrinsic::vastart: 1869 InitsVargArgs = true; 1870 return false; 1871 case Intrinsic::launder_invariant_group: 1872 case Intrinsic::strip_invariant_group: 1873 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 1874 SROAArgValues[II] = SROAArg; 1875 return true; 1876 } 1877 } 1878 1879 if (F == Call.getFunction()) { 1880 // This flag will fully abort the analysis, so don't bother with anything 1881 // else. 1882 IsRecursiveCall = true; 1883 return false; 1884 } 1885 1886 if (TTI.isLoweredToCall(F)) { 1887 onLoweredCall(F, Call, IsIndirectCall); 1888 } 1889 1890 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 1891 disableLoadElimination(); 1892 return Base::visitCallBase(Call); 1893 } 1894 1895 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 1896 // At least one return instruction will be free after inlining. 1897 bool Free = !HasReturn; 1898 HasReturn = true; 1899 return Free; 1900 } 1901 1902 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 1903 // We model unconditional branches as essentially free -- they really 1904 // shouldn't exist at all, but handling them makes the behavior of the 1905 // inliner more regular and predictable. Interestingly, conditional branches 1906 // which will fold away are also free. 1907 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 1908 dyn_cast_or_null<ConstantInt>( 1909 SimplifiedValues.lookup(BI.getCondition())); 1910 } 1911 1912 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 1913 bool CheckSROA = SI.getType()->isPointerTy(); 1914 Value *TrueVal = SI.getTrueValue(); 1915 Value *FalseVal = SI.getFalseValue(); 1916 1917 Constant *TrueC = dyn_cast<Constant>(TrueVal); 1918 if (!TrueC) 1919 TrueC = SimplifiedValues.lookup(TrueVal); 1920 Constant *FalseC = dyn_cast<Constant>(FalseVal); 1921 if (!FalseC) 1922 FalseC = SimplifiedValues.lookup(FalseVal); 1923 Constant *CondC = 1924 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 1925 1926 if (!CondC) { 1927 // Select C, X, X => X 1928 if (TrueC == FalseC && TrueC) { 1929 SimplifiedValues[&SI] = TrueC; 1930 return true; 1931 } 1932 1933 if (!CheckSROA) 1934 return Base::visitSelectInst(SI); 1935 1936 std::pair<Value *, APInt> TrueBaseAndOffset = 1937 ConstantOffsetPtrs.lookup(TrueVal); 1938 std::pair<Value *, APInt> FalseBaseAndOffset = 1939 ConstantOffsetPtrs.lookup(FalseVal); 1940 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 1941 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 1942 1943 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 1944 SROAArgValues[&SI] = SROAArg; 1945 return true; 1946 } 1947 1948 return Base::visitSelectInst(SI); 1949 } 1950 1951 // Select condition is a constant. 1952 Value *SelectedV = CondC->isAllOnesValue() 1953 ? TrueVal 1954 : (CondC->isNullValue()) ? FalseVal : nullptr; 1955 if (!SelectedV) { 1956 // Condition is a vector constant that is not all 1s or all 0s. If all 1957 // operands are constants, ConstantExpr::getSelect() can handle the cases 1958 // such as select vectors. 1959 if (TrueC && FalseC) { 1960 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 1961 SimplifiedValues[&SI] = C; 1962 return true; 1963 } 1964 } 1965 return Base::visitSelectInst(SI); 1966 } 1967 1968 // Condition is either all 1s or all 0s. SI can be simplified. 1969 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 1970 SimplifiedValues[&SI] = SelectedC; 1971 return true; 1972 } 1973 1974 if (!CheckSROA) 1975 return true; 1976 1977 std::pair<Value *, APInt> BaseAndOffset = 1978 ConstantOffsetPtrs.lookup(SelectedV); 1979 if (BaseAndOffset.first) { 1980 ConstantOffsetPtrs[&SI] = BaseAndOffset; 1981 1982 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 1983 SROAArgValues[&SI] = SROAArg; 1984 } 1985 1986 return true; 1987 } 1988 1989 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 1990 // We model unconditional switches as free, see the comments on handling 1991 // branches. 1992 if (isa<ConstantInt>(SI.getCondition())) 1993 return true; 1994 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 1995 if (isa<ConstantInt>(V)) 1996 return true; 1997 1998 // Assume the most general case where the switch is lowered into 1999 // either a jump table, bit test, or a balanced binary tree consisting of 2000 // case clusters without merging adjacent clusters with the same 2001 // destination. We do not consider the switches that are lowered with a mix 2002 // of jump table/bit test/binary search tree. The cost of the switch is 2003 // proportional to the size of the tree or the size of jump table range. 2004 // 2005 // NB: We convert large switches which are just used to initialize large phi 2006 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 2007 // inlining those. It will prevent inlining in cases where the optimization 2008 // does not (yet) fire. 2009 2010 unsigned JumpTableSize = 0; 2011 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2012 unsigned NumCaseCluster = 2013 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2014 2015 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2016 return false; 2017 } 2018 2019 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2020 // We never want to inline functions that contain an indirectbr. This is 2021 // incorrect because all the blockaddress's (in static global initializers 2022 // for example) would be referring to the original function, and this 2023 // indirect jump would jump from the inlined copy of the function into the 2024 // original function which is extremely undefined behavior. 2025 // FIXME: This logic isn't really right; we can safely inline functions with 2026 // indirectbr's as long as no other function or global references the 2027 // blockaddress of a block within the current function. 2028 HasIndirectBr = true; 2029 return false; 2030 } 2031 2032 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2033 // FIXME: It's not clear that a single instruction is an accurate model for 2034 // the inline cost of a resume instruction. 2035 return false; 2036 } 2037 2038 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2039 // FIXME: It's not clear that a single instruction is an accurate model for 2040 // the inline cost of a cleanupret instruction. 2041 return false; 2042 } 2043 2044 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2045 // FIXME: It's not clear that a single instruction is an accurate model for 2046 // the inline cost of a catchret instruction. 2047 return false; 2048 } 2049 2050 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2051 // FIXME: It might be reasonably to discount the cost of instructions leading 2052 // to unreachable as they have the lowest possible impact on both runtime and 2053 // code size. 2054 return true; // No actual code is needed for unreachable. 2055 } 2056 2057 bool CallAnalyzer::visitInstruction(Instruction &I) { 2058 // Some instructions are free. All of the free intrinsics can also be 2059 // handled by SROA, etc. 2060 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2061 TargetTransformInfo::TCC_Free) 2062 return true; 2063 2064 // We found something we don't understand or can't handle. Mark any SROA-able 2065 // values in the operand list as no longer viable. 2066 for (const Use &Op : I.operands()) 2067 disableSROA(Op); 2068 2069 return false; 2070 } 2071 2072 /// Analyze a basic block for its contribution to the inline cost. 2073 /// 2074 /// This method walks the analyzer over every instruction in the given basic 2075 /// block and accounts for their cost during inlining at this callsite. It 2076 /// aborts early if the threshold has been exceeded or an impossible to inline 2077 /// construct has been detected. It returns false if inlining is no longer 2078 /// viable, and true if inlining remains viable. 2079 InlineResult 2080 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2081 SmallPtrSetImpl<const Value *> &EphValues) { 2082 for (Instruction &I : *BB) { 2083 // FIXME: Currently, the number of instructions in a function regardless of 2084 // our ability to simplify them during inline to constants or dead code, 2085 // are actually used by the vector bonus heuristic. As long as that's true, 2086 // we have to special case debug intrinsics here to prevent differences in 2087 // inlining due to debug symbols. Eventually, the number of unsimplified 2088 // instructions shouldn't factor into the cost computation, but until then, 2089 // hack around it here. 2090 if (isa<DbgInfoIntrinsic>(I)) 2091 continue; 2092 2093 // Skip pseudo-probes. 2094 if (isa<PseudoProbeInst>(I)) 2095 continue; 2096 2097 // Skip ephemeral values. 2098 if (EphValues.count(&I)) 2099 continue; 2100 2101 ++NumInstructions; 2102 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2103 ++NumVectorInstructions; 2104 2105 // If the instruction simplified to a constant, there is no cost to this 2106 // instruction. Visit the instructions using our InstVisitor to account for 2107 // all of the per-instruction logic. The visit tree returns true if we 2108 // consumed the instruction in any way, and false if the instruction's base 2109 // cost should count against inlining. 2110 onInstructionAnalysisStart(&I); 2111 2112 if (Base::visit(&I)) 2113 ++NumInstructionsSimplified; 2114 else 2115 onMissedSimplification(); 2116 2117 onInstructionAnalysisFinish(&I); 2118 using namespace ore; 2119 // If the visit this instruction detected an uninlinable pattern, abort. 2120 InlineResult IR = InlineResult::success(); 2121 if (IsRecursiveCall) 2122 IR = InlineResult::failure("recursive"); 2123 else if (ExposesReturnsTwice) 2124 IR = InlineResult::failure("exposes returns twice"); 2125 else if (HasDynamicAlloca) 2126 IR = InlineResult::failure("dynamic alloca"); 2127 else if (HasIndirectBr) 2128 IR = InlineResult::failure("indirect branch"); 2129 else if (HasUninlineableIntrinsic) 2130 IR = InlineResult::failure("uninlinable intrinsic"); 2131 else if (InitsVargArgs) 2132 IR = InlineResult::failure("varargs"); 2133 if (!IR.isSuccess()) { 2134 if (ORE) 2135 ORE->emit([&]() { 2136 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2137 &CandidateCall) 2138 << NV("Callee", &F) << " has uninlinable pattern (" 2139 << NV("InlineResult", IR.getFailureReason()) 2140 << ") and cost is not fully computed"; 2141 }); 2142 return IR; 2143 } 2144 2145 // If the caller is a recursive function then we don't want to inline 2146 // functions which allocate a lot of stack space because it would increase 2147 // the caller stack usage dramatically. 2148 if (IsCallerRecursive && 2149 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2150 auto IR = 2151 InlineResult::failure("recursive and allocates too much stack space"); 2152 if (ORE) 2153 ORE->emit([&]() { 2154 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2155 &CandidateCall) 2156 << NV("Callee", &F) << " is " 2157 << NV("InlineResult", IR.getFailureReason()) 2158 << ". Cost is not fully computed"; 2159 }); 2160 return IR; 2161 } 2162 2163 if (shouldStop()) 2164 return InlineResult::failure( 2165 "Call site analysis is not favorable to inlining."); 2166 } 2167 2168 return InlineResult::success(); 2169 } 2170 2171 /// Compute the base pointer and cumulative constant offsets for V. 2172 /// 2173 /// This strips all constant offsets off of V, leaving it the base pointer, and 2174 /// accumulates the total constant offset applied in the returned constant. It 2175 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2176 /// no constant offsets applied. 2177 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2178 if (!V->getType()->isPointerTy()) 2179 return nullptr; 2180 2181 unsigned AS = V->getType()->getPointerAddressSpace(); 2182 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2183 APInt Offset = APInt::getNullValue(IntPtrWidth); 2184 2185 // Even though we don't look through PHI nodes, we could be called on an 2186 // instruction in an unreachable block, which may be on a cycle. 2187 SmallPtrSet<Value *, 4> Visited; 2188 Visited.insert(V); 2189 do { 2190 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2191 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2192 return nullptr; 2193 V = GEP->getPointerOperand(); 2194 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2195 V = cast<Operator>(V)->getOperand(0); 2196 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2197 if (GA->isInterposable()) 2198 break; 2199 V = GA->getAliasee(); 2200 } else { 2201 break; 2202 } 2203 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2204 } while (Visited.insert(V).second); 2205 2206 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2207 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2208 } 2209 2210 /// Find dead blocks due to deleted CFG edges during inlining. 2211 /// 2212 /// If we know the successor of the current block, \p CurrBB, has to be \p 2213 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2214 /// no live incoming CFG edges. If one block is found to be dead, we can 2215 /// continue growing the dead block list by checking the successors of the dead 2216 /// blocks to see if all their incoming edges are dead or not. 2217 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2218 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2219 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2220 // known successor which is not the one under exam. 2221 return (DeadBlocks.count(Pred) || 2222 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2223 }; 2224 2225 auto IsNewlyDead = [&](BasicBlock *BB) { 2226 // If all the edges to a block are dead, the block is also dead. 2227 return (!DeadBlocks.count(BB) && 2228 llvm::all_of(predecessors(BB), 2229 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2230 }; 2231 2232 for (BasicBlock *Succ : successors(CurrBB)) { 2233 if (Succ == NextBB || !IsNewlyDead(Succ)) 2234 continue; 2235 SmallVector<BasicBlock *, 4> NewDead; 2236 NewDead.push_back(Succ); 2237 while (!NewDead.empty()) { 2238 BasicBlock *Dead = NewDead.pop_back_val(); 2239 if (DeadBlocks.insert(Dead)) 2240 // Continue growing the dead block lists. 2241 for (BasicBlock *S : successors(Dead)) 2242 if (IsNewlyDead(S)) 2243 NewDead.push_back(S); 2244 } 2245 } 2246 } 2247 2248 /// Analyze a call site for potential inlining. 2249 /// 2250 /// Returns true if inlining this call is viable, and false if it is not 2251 /// viable. It computes the cost and adjusts the threshold based on numerous 2252 /// factors and heuristics. If this method returns false but the computed cost 2253 /// is below the computed threshold, then inlining was forcibly disabled by 2254 /// some artifact of the routine. 2255 InlineResult CallAnalyzer::analyze() { 2256 ++NumCallsAnalyzed; 2257 2258 auto Result = onAnalysisStart(); 2259 if (!Result.isSuccess()) 2260 return Result; 2261 2262 if (F.empty()) 2263 return InlineResult::success(); 2264 2265 Function *Caller = CandidateCall.getFunction(); 2266 // Check if the caller function is recursive itself. 2267 for (User *U : Caller->users()) { 2268 CallBase *Call = dyn_cast<CallBase>(U); 2269 if (Call && Call->getFunction() == Caller) { 2270 IsCallerRecursive = true; 2271 break; 2272 } 2273 } 2274 2275 // Populate our simplified values by mapping from function arguments to call 2276 // arguments with known important simplifications. 2277 auto CAI = CandidateCall.arg_begin(); 2278 for (Argument &FAI : F.args()) { 2279 assert(CAI != CandidateCall.arg_end()); 2280 if (Constant *C = dyn_cast<Constant>(CAI)) 2281 SimplifiedValues[&FAI] = C; 2282 2283 Value *PtrArg = *CAI; 2284 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2285 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2286 2287 // We can SROA any pointer arguments derived from alloca instructions. 2288 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2289 SROAArgValues[&FAI] = SROAArg; 2290 onInitializeSROAArg(SROAArg); 2291 EnabledSROAAllocas.insert(SROAArg); 2292 } 2293 } 2294 ++CAI; 2295 } 2296 NumConstantArgs = SimplifiedValues.size(); 2297 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2298 NumAllocaArgs = SROAArgValues.size(); 2299 2300 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2301 // the ephemeral values multiple times (and they're completely determined by 2302 // the callee, so this is purely duplicate work). 2303 SmallPtrSet<const Value *, 32> EphValues; 2304 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2305 2306 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2307 // adding basic blocks of the callee which can be proven to be dead for this 2308 // particular call site in order to get more accurate cost estimates. This 2309 // requires a somewhat heavyweight iteration pattern: we need to walk the 2310 // basic blocks in a breadth-first order as we insert live successors. To 2311 // accomplish this, prioritizing for small iterations because we exit after 2312 // crossing our threshold, we use a small-size optimized SetVector. 2313 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2314 SmallPtrSet<BasicBlock *, 16>> 2315 BBSetVector; 2316 BBSetVector BBWorklist; 2317 BBWorklist.insert(&F.getEntryBlock()); 2318 2319 // Note that we *must not* cache the size, this loop grows the worklist. 2320 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2321 if (shouldStop()) 2322 break; 2323 2324 BasicBlock *BB = BBWorklist[Idx]; 2325 if (BB->empty()) 2326 continue; 2327 2328 onBlockStart(BB); 2329 2330 // Disallow inlining a blockaddress with uses other than strictly callbr. 2331 // A blockaddress only has defined behavior for an indirect branch in the 2332 // same function, and we do not currently support inlining indirect 2333 // branches. But, the inliner may not see an indirect branch that ends up 2334 // being dead code at a particular call site. If the blockaddress escapes 2335 // the function, e.g., via a global variable, inlining may lead to an 2336 // invalid cross-function reference. 2337 // FIXME: pr/39560: continue relaxing this overt restriction. 2338 if (BB->hasAddressTaken()) 2339 for (User *U : BlockAddress::get(&*BB)->users()) 2340 if (!isa<CallBrInst>(*U)) 2341 return InlineResult::failure("blockaddress used outside of callbr"); 2342 2343 // Analyze the cost of this block. If we blow through the threshold, this 2344 // returns false, and we can bail on out. 2345 InlineResult IR = analyzeBlock(BB, EphValues); 2346 if (!IR.isSuccess()) 2347 return IR; 2348 2349 Instruction *TI = BB->getTerminator(); 2350 2351 // Add in the live successors by first checking whether we have terminator 2352 // that may be simplified based on the values simplified by this call. 2353 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2354 if (BI->isConditional()) { 2355 Value *Cond = BI->getCondition(); 2356 if (ConstantInt *SimpleCond = 2357 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2358 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2359 BBWorklist.insert(NextBB); 2360 KnownSuccessors[BB] = NextBB; 2361 findDeadBlocks(BB, NextBB); 2362 continue; 2363 } 2364 } 2365 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2366 Value *Cond = SI->getCondition(); 2367 if (ConstantInt *SimpleCond = 2368 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2369 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2370 BBWorklist.insert(NextBB); 2371 KnownSuccessors[BB] = NextBB; 2372 findDeadBlocks(BB, NextBB); 2373 continue; 2374 } 2375 } 2376 2377 // If we're unable to select a particular successor, just count all of 2378 // them. 2379 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2380 ++TIdx) 2381 BBWorklist.insert(TI->getSuccessor(TIdx)); 2382 2383 onBlockAnalyzed(BB); 2384 } 2385 2386 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 2387 &F == CandidateCall.getCalledFunction(); 2388 // If this is a noduplicate call, we can still inline as long as 2389 // inlining this would cause the removal of the caller (so the instruction 2390 // is not actually duplicated, just moved). 2391 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2392 return InlineResult::failure("noduplicate"); 2393 2394 return finalizeAnalysis(); 2395 } 2396 2397 void InlineCostCallAnalyzer::print() { 2398 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 2399 if (PrintInstructionComments) 2400 F.print(dbgs(), &Writer); 2401 DEBUG_PRINT_STAT(NumConstantArgs); 2402 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2403 DEBUG_PRINT_STAT(NumAllocaArgs); 2404 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2405 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2406 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2407 DEBUG_PRINT_STAT(NumInstructions); 2408 DEBUG_PRINT_STAT(SROACostSavings); 2409 DEBUG_PRINT_STAT(SROACostSavingsLost); 2410 DEBUG_PRINT_STAT(LoadEliminationCost); 2411 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2412 DEBUG_PRINT_STAT(Cost); 2413 DEBUG_PRINT_STAT(Threshold); 2414 #undef DEBUG_PRINT_STAT 2415 } 2416 2417 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2418 /// Dump stats about this call's analysis. 2419 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { 2420 print(); 2421 } 2422 #endif 2423 2424 /// Test that there are no attribute conflicts between Caller and Callee 2425 /// that prevent inlining. 2426 static bool functionsHaveCompatibleAttributes( 2427 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2428 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2429 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2430 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2431 // object, and always returns the same object (which is overwritten on each 2432 // GetTLI call). Therefore we copy the first result. 2433 auto CalleeTLI = GetTLI(*Callee); 2434 return TTI.areInlineCompatible(Caller, Callee) && 2435 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2436 InlineCallerSupersetNoBuiltin) && 2437 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2438 } 2439 2440 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2441 int Cost = 0; 2442 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2443 if (Call.isByValArgument(I)) { 2444 // We approximate the number of loads and stores needed by dividing the 2445 // size of the byval type by the target's pointer size. 2446 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2447 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2448 unsigned AS = PTy->getAddressSpace(); 2449 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2450 // Ceiling division. 2451 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2452 2453 // If it generates more than 8 stores it is likely to be expanded as an 2454 // inline memcpy so we take that as an upper bound. Otherwise we assume 2455 // one load and one store per word copied. 2456 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2457 // here instead of a magic number of 8, but it's not available via 2458 // DataLayout. 2459 NumStores = std::min(NumStores, 8U); 2460 2461 Cost += 2 * NumStores * InlineConstants::InstrCost; 2462 } else { 2463 // For non-byval arguments subtract off one instruction per call 2464 // argument. 2465 Cost += InlineConstants::InstrCost; 2466 } 2467 } 2468 // The call instruction also disappears after inlining. 2469 Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; 2470 return Cost; 2471 } 2472 2473 InlineCost llvm::getInlineCost( 2474 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2475 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2476 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2477 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2478 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2479 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2480 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2481 } 2482 2483 Optional<int> llvm::getInliningCostEstimate( 2484 CallBase &Call, TargetTransformInfo &CalleeTTI, 2485 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2486 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2487 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2488 const InlineParams Params = {/* DefaultThreshold*/ 0, 2489 /*HintThreshold*/ {}, 2490 /*ColdThreshold*/ {}, 2491 /*OptSizeThreshold*/ {}, 2492 /*OptMinSizeThreshold*/ {}, 2493 /*HotCallSiteThreshold*/ {}, 2494 /*LocallyHotCallSiteThreshold*/ {}, 2495 /*ColdCallSiteThreshold*/ {}, 2496 /*ComputeFullInlineCost*/ true, 2497 /*EnableDeferral*/ true}; 2498 2499 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2500 GetAssumptionCache, GetBFI, PSI, ORE, true, 2501 /*IgnoreThreshold*/ true); 2502 auto R = CA.analyze(); 2503 if (!R.isSuccess()) 2504 return None; 2505 return CA.getCost(); 2506 } 2507 2508 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2509 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2510 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2511 2512 // Cannot inline indirect calls. 2513 if (!Callee) 2514 return InlineResult::failure("indirect call"); 2515 2516 // When callee coroutine function is inlined into caller coroutine function 2517 // before coro-split pass, 2518 // coro-early pass can not handle this quiet well. 2519 // So we won't inline the coroutine function if it have not been unsplited 2520 if (Callee->isPresplitCoroutine()) 2521 return InlineResult::failure("unsplited coroutine call"); 2522 2523 // Never inline calls with byval arguments that does not have the alloca 2524 // address space. Since byval arguments can be replaced with a copy to an 2525 // alloca, the inlined code would need to be adjusted to handle that the 2526 // argument is in the alloca address space (so it is a little bit complicated 2527 // to solve). 2528 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2529 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2530 if (Call.isByValArgument(I)) { 2531 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2532 if (PTy->getAddressSpace() != AllocaAS) 2533 return InlineResult::failure("byval arguments without alloca" 2534 " address space"); 2535 } 2536 2537 // Calls to functions with always-inline attributes should be inlined 2538 // whenever possible. 2539 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2540 auto IsViable = isInlineViable(*Callee); 2541 if (IsViable.isSuccess()) 2542 return InlineResult::success(); 2543 return InlineResult::failure(IsViable.getFailureReason()); 2544 } 2545 2546 // Never inline functions with conflicting attributes (unless callee has 2547 // always-inline attribute). 2548 Function *Caller = Call.getCaller(); 2549 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2550 return InlineResult::failure("conflicting attributes"); 2551 2552 // Don't inline this call if the caller has the optnone attribute. 2553 if (Caller->hasOptNone()) 2554 return InlineResult::failure("optnone attribute"); 2555 2556 // Don't inline a function that treats null pointer as valid into a caller 2557 // that does not have this attribute. 2558 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2559 return InlineResult::failure("nullptr definitions incompatible"); 2560 2561 // Don't inline functions which can be interposed at link-time. 2562 if (Callee->isInterposable()) 2563 return InlineResult::failure("interposable"); 2564 2565 // Don't inline functions marked noinline. 2566 if (Callee->hasFnAttribute(Attribute::NoInline)) 2567 return InlineResult::failure("noinline function attribute"); 2568 2569 // Don't inline call sites marked noinline. 2570 if (Call.isNoInline()) 2571 return InlineResult::failure("noinline call site attribute"); 2572 2573 // Don't inline functions if one does not have any stack protector attribute 2574 // but the other does. 2575 if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr()) 2576 return InlineResult::failure( 2577 "stack protected caller but callee requested no stack protector"); 2578 if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr()) 2579 return InlineResult::failure( 2580 "stack protected callee but caller requested no stack protector"); 2581 2582 return None; 2583 } 2584 2585 InlineCost llvm::getInlineCost( 2586 CallBase &Call, Function *Callee, const InlineParams &Params, 2587 TargetTransformInfo &CalleeTTI, 2588 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2589 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2590 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2591 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2592 2593 auto UserDecision = 2594 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2595 2596 if (UserDecision.hasValue()) { 2597 if (UserDecision->isSuccess()) 2598 return llvm::InlineCost::getAlways("always inline attribute"); 2599 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2600 } 2601 2602 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2603 << "... (caller:" << Call.getCaller()->getName() 2604 << ")\n"); 2605 2606 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2607 GetAssumptionCache, GetBFI, PSI, ORE); 2608 InlineResult ShouldInline = CA.analyze(); 2609 2610 LLVM_DEBUG(CA.dump()); 2611 2612 // Always make cost benefit based decision explicit. 2613 // We use always/never here since threshold is not meaningful, 2614 // as it's not what drives cost-benefit analysis. 2615 if (CA.wasDecidedByCostBenefit()) { 2616 if (ShouldInline.isSuccess()) 2617 return InlineCost::getAlways("benefit over cost"); 2618 else 2619 return InlineCost::getNever("cost over benefit"); 2620 } 2621 2622 // Check if there was a reason to force inlining or no inlining. 2623 if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold()) 2624 return InlineCost::getNever(ShouldInline.getFailureReason()); 2625 if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold()) 2626 return InlineCost::getAlways("empty function"); 2627 2628 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 2629 } 2630 2631 InlineResult llvm::isInlineViable(Function &F) { 2632 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2633 for (BasicBlock &BB : F) { 2634 // Disallow inlining of functions which contain indirect branches. 2635 if (isa<IndirectBrInst>(BB.getTerminator())) 2636 return InlineResult::failure("contains indirect branches"); 2637 2638 // Disallow inlining of blockaddresses which are used by non-callbr 2639 // instructions. 2640 if (BB.hasAddressTaken()) 2641 for (User *U : BlockAddress::get(&BB)->users()) 2642 if (!isa<CallBrInst>(*U)) 2643 return InlineResult::failure("blockaddress used outside of callbr"); 2644 2645 for (auto &II : BB) { 2646 CallBase *Call = dyn_cast<CallBase>(&II); 2647 if (!Call) 2648 continue; 2649 2650 // Disallow recursive calls. 2651 Function *Callee = Call->getCalledFunction(); 2652 if (&F == Callee) 2653 return InlineResult::failure("recursive call"); 2654 2655 // Disallow calls which expose returns-twice to a function not previously 2656 // attributed as such. 2657 if (!ReturnsTwice && isa<CallInst>(Call) && 2658 cast<CallInst>(Call)->canReturnTwice()) 2659 return InlineResult::failure("exposes returns-twice attribute"); 2660 2661 if (Callee) 2662 switch (Callee->getIntrinsicID()) { 2663 default: 2664 break; 2665 case llvm::Intrinsic::icall_branch_funnel: 2666 // Disallow inlining of @llvm.icall.branch.funnel because current 2667 // backend can't separate call targets from call arguments. 2668 return InlineResult::failure( 2669 "disallowed inlining of @llvm.icall.branch.funnel"); 2670 case llvm::Intrinsic::localescape: 2671 // Disallow inlining functions that call @llvm.localescape. Doing this 2672 // correctly would require major changes to the inliner. 2673 return InlineResult::failure( 2674 "disallowed inlining of @llvm.localescape"); 2675 case llvm::Intrinsic::vastart: 2676 // Disallow inlining of functions that initialize VarArgs with 2677 // va_start. 2678 return InlineResult::failure( 2679 "contains VarArgs initialized with va_start"); 2680 } 2681 } 2682 } 2683 2684 return InlineResult::success(); 2685 } 2686 2687 // APIs to create InlineParams based on command line flags and/or other 2688 // parameters. 2689 2690 InlineParams llvm::getInlineParams(int Threshold) { 2691 InlineParams Params; 2692 2693 // This field is the threshold to use for a callee by default. This is 2694 // derived from one or more of: 2695 // * optimization or size-optimization levels, 2696 // * a value passed to createFunctionInliningPass function, or 2697 // * the -inline-threshold flag. 2698 // If the -inline-threshold flag is explicitly specified, that is used 2699 // irrespective of anything else. 2700 if (InlineThreshold.getNumOccurrences() > 0) 2701 Params.DefaultThreshold = InlineThreshold; 2702 else 2703 Params.DefaultThreshold = Threshold; 2704 2705 // Set the HintThreshold knob from the -inlinehint-threshold. 2706 Params.HintThreshold = HintThreshold; 2707 2708 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 2709 Params.HotCallSiteThreshold = HotCallSiteThreshold; 2710 2711 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 2712 // populate LocallyHotCallSiteThreshold. Later, we populate 2713 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 2714 // we know that optimization level is O3 (in the getInlineParams variant that 2715 // takes the opt and size levels). 2716 // FIXME: Remove this check (and make the assignment unconditional) after 2717 // addressing size regression issues at O2. 2718 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 2719 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2720 2721 // Set the ColdCallSiteThreshold knob from the 2722 // -inline-cold-callsite-threshold. 2723 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 2724 2725 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 2726 // -inlinehint-threshold commandline option is not explicitly given. If that 2727 // option is present, then its value applies even for callees with size and 2728 // minsize attributes. 2729 // If the -inline-threshold is not specified, set the ColdThreshold from the 2730 // -inlinecold-threshold even if it is not explicitly passed. If 2731 // -inline-threshold is specified, then -inlinecold-threshold needs to be 2732 // explicitly specified to set the ColdThreshold knob 2733 if (InlineThreshold.getNumOccurrences() == 0) { 2734 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 2735 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 2736 Params.ColdThreshold = ColdThreshold; 2737 } else if (ColdThreshold.getNumOccurrences() > 0) { 2738 Params.ColdThreshold = ColdThreshold; 2739 } 2740 return Params; 2741 } 2742 2743 InlineParams llvm::getInlineParams() { 2744 return getInlineParams(DefaultThreshold); 2745 } 2746 2747 // Compute the default threshold for inlining based on the opt level and the 2748 // size opt level. 2749 static int computeThresholdFromOptLevels(unsigned OptLevel, 2750 unsigned SizeOptLevel) { 2751 if (OptLevel > 2) 2752 return InlineConstants::OptAggressiveThreshold; 2753 if (SizeOptLevel == 1) // -Os 2754 return InlineConstants::OptSizeThreshold; 2755 if (SizeOptLevel == 2) // -Oz 2756 return InlineConstants::OptMinSizeThreshold; 2757 return DefaultThreshold; 2758 } 2759 2760 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 2761 auto Params = 2762 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 2763 // At O3, use the value of -locally-hot-callsite-threshold option to populate 2764 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 2765 // when it is specified explicitly. 2766 if (OptLevel > 2) 2767 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 2768 return Params; 2769 } 2770 2771 PreservedAnalyses 2772 InlineCostAnnotationPrinterPass::run(Function &F, 2773 FunctionAnalysisManager &FAM) { 2774 PrintInstructionComments = true; 2775 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 2776 Function &F) -> AssumptionCache & { 2777 return FAM.getResult<AssumptionAnalysis>(F); 2778 }; 2779 Module *M = F.getParent(); 2780 ProfileSummaryInfo PSI(*M); 2781 DataLayout DL(M); 2782 TargetTransformInfo TTI(DL); 2783 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 2784 // In the current implementation, the type of InlineParams doesn't matter as 2785 // the pass serves only for verification of inliner's decisions. 2786 // We can add a flag which determines InlineParams for this run. Right now, 2787 // the default InlineParams are used. 2788 const InlineParams Params = llvm::getInlineParams(); 2789 for (BasicBlock &BB : F) { 2790 for (Instruction &I : BB) { 2791 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2792 Function *CalledFunction = CI->getCalledFunction(); 2793 if (!CalledFunction || CalledFunction->isDeclaration()) 2794 continue; 2795 OptimizationRemarkEmitter ORE(CalledFunction); 2796 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 2797 GetAssumptionCache, nullptr, &PSI, &ORE); 2798 ICCA.analyze(); 2799 OS << " Analyzing call of " << CalledFunction->getName() 2800 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 2801 ICCA.print(); 2802 } 2803 } 2804 } 2805 return PreservedAnalyses::all(); 2806 } 2807